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CONVERGENCE ANALYSIS OF A COLOCATED FINITE VOLUME
SCHEME FOR THE INCOMPRESSIBLE NAVIER–STOKES

EQUATIONS ON GENERAL 2D OR 3D MESHES∗

R. EYMARD† , R. HERBIN‡ , AND J. C. LATCHÉ§

Abstract. We study a colocated cell-centered finite volume method for the approximation of the
incompressible Navier–Stokes equations posed on a 2D or 3D finite domain. The discrete unknowns
are the components of the velocity and the pressure, all of them colocated at the center of the cells
of a unique mesh; such a configuration is known to lead to stability problems, hence the need for
a stabilization technique, which we choose of the Brezzi–Pitkäranta type. The scheme features two
essential properties: the discrete gradient is the transpose of the divergence terms, and the discrete
trilinear form associated to nonlinear advective terms vanishes on discrete divergence free velocity
fields. As a consequence, the scheme is proved to be unconditionally stable and convergent for the
Stokes problem and for the transient and the steady Navier–Stokes equations. In this latter case,
for a given sequence of approximate solutions computed on meshes the size of which tends to zero,
we prove, up to a subsequence, the L2-convergence of the components of the velocity, and, in the
steady case, the weak L2-convergence of the pressure. The proof relies on the study of space and
time translates of approximate solutions, which allows the application of Kolmogorov’s theorem.
The limit of this subsequence is then shown to be a weak solution of the Navier–Stokes equations.
Numerical examples are performed to obtain numerical convergence rates in both the linear and
nonlinear cases.
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1. Introduction. In this paper we are interested in finding an approximation
of the fields ū = (ū(i))i=1,...,d : Ω× [0, T ] → R

d, and p̄ : Ω× [0, T ] → R, weak solution
to the incompressible Navier–Stokes equations which we write

∂tū
(i) − νΔū(i) + ∂ip̄ +

d∑
j=1

ū(j)∂j ū
(i) = f (i) in Ω × (0, T ), for i = 1, . . . , d,

divū =

d∑
i=1

∂iū
(i) = 0 in Ω × (0, T ),

(1.1)

with a homogeneous Dirichlet boundary condition for ū and the initial condition

ū(i)(·, 0) = ū
(i)
ini in Ω for i = 1, . . . , d.(1.2)

In the above equations, ū(i), i = 1, . . . , d, denotes the components of the velocity of a
fluid which flows in a domain Ω during the time (0, T ), p̄ denotes the pressure, and
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ν > 0 stands for the viscosity of the fluid. We make the following assumptions:

Ω is a polygonal open bounded connected subset of R
d, d = 2 or 3,(1.3)

T > 0 is the finite duration of the flow,(1.4)

ν ∈ (0,+∞),(1.5)

ūini ∈ L2(Ω)d,(1.6)

f (i) ∈ L2(Ω × (0, T )), for i = 1, . . . , d.(1.7)

Numerical schemes for the Stokes equations and the Navier–Stokes equations have
been extensively studied; see [21, 33, 34, 35, 23, 22] and the references therein. Among
different schemes, finite element schemes and finite volume schemes are frequently used
for mathematical or engineering studies. An advantage of finite volume schemes is that
the unknowns are approximated by piecewise constant functions: this makes it easy
to take into account additional nonlinear phenomena or the coupling with algebraic or
differential equations, for instance in the case of reactive flows; in particular, one can
find in [33, 25] the presentation of the classical finite volume scheme on rectangular
meshes, which has been the basis of several industrial applications. However, the use
of rectangular grids makes an important limitation to the type of domain which can
be gridded and, more recently, finite volume schemes for the Navier–Stokes equations
on triangular grids have been presented; see, for example, [24] where the vorticity
formulation is used and [4] where primal variables are used with a Chorin-type pro-
jection method to ensure the divergence condition. Proofs of convergence for finite
volume-type schemes for the Stokes and steady-state Navier–Stokes equations have
recently been given for staggered grids [7, 24, 18, 3, 19, 2], following the pioneering
work of Nicolaides [31] and Nicolaides and Wu [32].

In this paper, we propose the mathematical and numerical analysis of a discretiza-
tion method which uses the primitive variables, that is the velocity and pressure, both
approximated by piecewise constant functions on the cells of a 2D or 3D mesh. We
emphasize that the approximate velocity and pressure are colocated, and therefore no
dual grid is needed. The only requirement on the mesh is a geometrical assumption
needed for the consistency of the approximate diffusion flux (see [13] and section 2
for a precise definition of the admissible discretizations).

As far as we know, this work is a first proof of the convergence of a finite volume
scheme, which is of large interest in industry. Indeed, industrial computational fluid
dynamics (CFD) codes (see, e.g., [29, 1]) use colocated cell-centered finite volume
schemes; leaving aside implementation considerations, the principle of these schemes
seems to differ from the present scheme only by the stabilization choice. The main
reasons why this scheme is so popular in industry are

• a colocated arrangement of the unknowns,
• a very cheap assembling step (no numerical integration to perform),
• an easy coupling with other systems of equations.

The finite volume scheme studied here is based on three basic ingredients. First, a
stabilization technique à la Brezzi–Pitkäranta [6] is used to cope with the instability
of colocated velocity/pressure approximation spaces. Second, the discretization of
the pressure gradient in the momentum balance equation is performed to ensure,
by construction, that it is the transpose of the divergence term of the continuity
constraint. Finally, the contribution of the discrete nonlinear advection term to the
kinetic energy balance vanishes for discrete divergence free velocity fields, as in the
continuous case. These features appear to be essential in the proof of convergence.
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We are then able to prove the stability of the scheme and the convergence of
discrete solutions towards a solution of the continuous problem when the size of the
mesh tends to zero, for the steady linear case (generalized Stokes problem) and the
stationary and transient Navier–Stokes equations, in two and three dimensions. Our
results are valid for general meshes and do not require any assumption on the regu-
larity of the continuous solution nor, in the nonlinear case, any small data condition.
We emphasize that the convergence of the fully discrete (time and space) approxima-
tion is proven here, using an original estimate for the time translates, which yields,
combined with a classical estimate on the space translates, a sufficient relative com-
pactness property.

An error analysis is performed in the steady linear case, under regularity assump-
tions on the solution. An error bound of order 0.5 with respect to the step size is
obtained in the discrete H1 norm and the L2 norm for, respectively, the velocity and
the pressure. Of course, this is probably not a sharp estimate, as can be seen from
the numerical results shown in section 5. Indeed, a better rate of convergence can be
proven under additional assumptions on the mesh [20].

This paper is organized as follows. In section 2, we introduce the discretization
tools together with some discrete functional analysis tools. Section 3 is devoted to
the linear steady problem (Stokes problem), for which the finite volume scheme is
given and convergence analysis and error estimates are detailed. The complete finite
volume scheme for the nonlinear case is presented in section 4, in both the steady and
transient cases. We then develop the analysis of its convergence to a weak solution
of the continuous problem. We give some numerical results in section 5, and finally
conclude with some remarks on open problems in section 6.

2. Spatial discretization and discrete functional analysis.

2.1. Admissible discretization of Ω. We first recall the notion of admissible
discretization for a finite volume method, which is given in [13].

Definition 2.1 (admissible discretization, steady case). Let Ω be an open
bounded polygonal (polyhedral if d = 3) subset of R

d, and ∂Ω = Ω\Ω its boundary. An
admissible finite volume discretization of Ω, denoted by D, is given by D = (M, E ,P),
where

• M is a finite family of nonempty open polygonal convex disjoint subsets of
Ω (the “control volumes”) such that Ω = ∪K∈MK. For any K ∈ M, let
∂K = K \K be the boundary of K and mK > 0 denote the area of K.

• E is a finite family of disjoint subsets of Ω (the “edges” of the mesh) such that,
for all σ ∈ E, there exists a hyperplane E of R

d, K ∈ M with σ = ∂K ∩ E,
and σ is a nonempty open subset of E. We then denote by mσ > 0 the (d−1)-
dimensional measure of σ. We assume that, for all K ∈ M, there exists a
subset EK of E such that ∂K = ∪σ∈EK

σ. It then results from the previous
hypotheses that, for all σ ∈ E, either σ ⊂ ∂Ω or there exists (K,L) ∈ M2

with K �= L such that K ∩ L = σ; we denote in the latter case σ = K|L.
• P is a family of points of Ω indexed by M, denoted by P = (xK)K∈M. The

coordinates of xK are denoted by x
(i)
K , i = 1, . . . , d. The family P is such that,

for all K ∈ M, xK ∈ K. Furthermore, for all σ ∈ E such that there exists
(K,L) ∈ M2 with σ = K|L, it is assumed that the straight line (xK , xL) going
through xK and xL is orthogonal to K|L. For all K ∈ M and all σ ∈ EK , let
zσ be the orthogonal projection of xK on σ. We suppose that zσ ∈ σ.

An example of two neighboring control volumes K and L of M is depicted in
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Figure 2.1.

dK,σ

xL

xK

K|LL
K

mσ

dK|L

Fig. 2.1. Notations for an admissible mesh.

The following notations are used. The size of the discretization is defined by

size(D) = sup{diam(K),K ∈ M}.

For all K ∈ M and σ ∈ EK , we denote by nK,σ the unit vector normal to σ outward
to K. We denote by dK,σ the Euclidean distance between xK and σ. The set of
interior (resp., boundary) edges is denoted by Eint (resp., Eext), that is, Eint = {σ ∈ E ;
σ �⊂ ∂Ω} (resp., Eext = {σ ∈ E ; σ ⊂ ∂Ω}). For all K ∈ M, we denote by NK the
subset of M of the neighboring control volumes. For all K ∈ M and L ∈ NK , we set
nKL = nK,K|L, and we denote by dK|L the Euclidean distance between xK and xL.

We shall measure the regularity of the mesh through the function regul(D) defined
by

regul(D) = inf

{
dK,σ

diam(K)
, K ∈ M, σ ∈ EK

}
∪
{
dK,K|L
dK|L

, L ∈ NK

}
∪
{

1

card(EK)
, K ∈ M

}
.

(2.1)

2.2. Discrete functional properties. Finite volume schemes are discrete bal-
ance equations with an adequate approximation of the fluxes; see, e.g., [13]. Recent
works dealing with cell-centered finite volume methods for elliptic problems [16, 14, 19]
introduce an equivalent variational formulation in adequate functional spaces. Here
we shall follow this latter path, also introducing discrete analogues of the continu-
ous Laplace, gradient, divergence, and transport operators, each of them featuring
properties similar to their continuous counterparts.

Definition 2.2. Let Ω be an open bounded polygonal subset of R
d, with d ∈ N

∗.
Let D = (M, E ,P) be an admissible finite volume discretization of Ω in the sense
of Definition 2.1. We denote by HD(Ω) ⊂ L2(Ω) the space of functions which are
piecewise constant on each control volume K ∈ M. For all w ∈ HD(Ω) and for
all K ∈ M, we denote by wK the constant value of w in K. The space HD(Ω)
is equipped with the following Euclidean structure. For (v, w) ∈ (HD(Ω))2, we first
define the following inner product (corresponding to Neumann boundary conditions):

〈v, w〉D =
1

2

∑
K∈M

∑
L∈NK

mK|L
dK|L

(vL − vK)(wL − wK).(2.2)



CONVERGENCE ANALYSIS OF A FINITE VOLUME SCHEME 5

We then define another inner product (corresponding to Dirichlet boundary condi-
tions),

[v, w]D = 〈v, w〉D +
∑

K∈M

∑
σ∈EK∩Eext

mσ

dK,σ
vKwK .(2.3)

Next, we define a seminorm and a norm in HD(Ω) (thanks to the discrete Poincaré
inequality (2.4) given below) by

|w|D = (〈w,w〉D)
1/2

, ‖w‖D = ([w,w]D)
1/2

.

We define the interpolation operator PD : C(Ω) → HD(Ω) by (PDϕ)K = ϕ(xK) for
all K ∈ M and for all ϕ ∈ C(Ω).

Similarly, for u = (u(i))i=1,...,d ∈ HD(Ω)d, v = (v(i))i=1,...,d ∈ HD(Ω)d, and
w = (w(i))i=1,...,d ∈ HD(Ω)d, we define

‖u‖D =

(
d∑

i=1

[u(i), u(i)]D

)1/2

, [v, w]D =

d∑
i=1

[v(i), w(i)]D,

and PD : C(Ω)d → HD(Ω)d by (PDϕ)K = ϕ(xK) for all K ∈ M and for all
ϕ ∈ C(Ω)d.

The following discrete Poincaré inequalities (see [13]) hold,

‖w‖L2(Ω) ≤ diam(Ω)‖w‖D ∀w ∈ HD(Ω),(2.4)

and there exists CΩ > 0, depending only on Ω, such that

‖w‖2
L2(Ω) ≤ CΩ|w|2D ∀w ∈ HD(Ω) with

∫
Ω

w(x)dx = 0.(2.5)

Remark 2.1 (on the choice of the inner product). Before we go on with the
definition of the discrete divergence and gradient operators, let us explain on the
simple Laplace equation why the inner product defined by (2.3) is adequate for the
approximation of the diffusion term. The discretization of the Laplace equation using
finite volume methods is now classical (see [26, 13]) and is usually written in terms
of fluxes; more recently [15, 27], a weak form of the scheme was introduced, which
leads to more compact notations. For the sake of completeness, let us recall these
two formulations for the Laplace equation −Δw = f with homogeneous Dirichlet
boundary conditions on Ω. Integrating this equation on a control volume K yields∫
∂K

−∇w·n = mKfK . Decomposing the boundary of K into edges and approximating
the diffusive flux through an edge σ = K|L by a two-point finite difference scheme
yields ∑

σ∈EK

FK,σmKfK ,(2.6)

with FK,σ = mσ

dK|L
(wK − wL) if σ = K|L is an internal edge separating the control

volumes K and L, and FK,σ = mσ

dK,σ
wK if σ is a boundary edge. Let ϕ ∈ HD(Ω),

ϕ =
∑

K∈M ϕK1K . Multiplying (2.6) by ϕK , summing over K, and reordering the
summations yields

[w,ϕ]D =

∫
Ω

f(x)ϕ(x)dx.(2.7)
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Conversely, taking ϕ = 1K in (2.7) yields (2.6). The flux form (2.6) of the scheme is
therefore equivalent to the weak form (2.7) featuring the inner product (2.3).

Let us also remark that a given function u ∈ HD(Ω), considered only as an
element of L2(Ω), does not have a trace on ∂Ω. However, since u is constant per
control volume, one may define uσ = uK for any edge σ ∈ Eext, where K is the unique
cell of which σ is an edge. One can then immediately deduce from the definition (2.3)
of the inner product that

∑
σ∈Eext

mσu
2
σ ≤ hD‖u‖2

D. Therefore, if (Dn, uDn)n∈N is a
sequence such that hDn → 0 as n → +∞, and uDn

∈ HDn
(Ω) is such that ‖uDn

‖Dn

remains bounded, then
∑

σ∈Eext
mσ(uDn

)2σ → 0 as n → +∞. We then recover, “at
the limit,” the homogeneous Dirichlet boundary condition.

We define a discrete divergence operator divD : HD(Ω)d → HD(Ω), by

divD(u)(x) =
1

mK

∑
L∈NK

AKL · (uK + uL), for a.e. x ∈ K ∀K ∈ M,(2.8)

with

AKL =
mK|L
dK|L

xL − xK

2
=

1

2
mK|L nKL ∀K ∈ M and ∀L ∈ NK .(2.9)

We then set ED(Ω) = {u ∈ HD(Ω)d,divD(u) = 0}.
Remark 2.2. Thanks to the conservative formulation (2.8), the function divD(u)

satisfies
∫
Ω

divD(u)(x)dx = 0.
Remark 2.3. Any definition of AKL such that AKL = mK|LaKLnKL with aKL ≥

0 and aKL + aLK = 1, combined with the definition divD(u)(x) = 1
mK

∑
L∈NK

(AKL ·
uK − ALK · uL), yields a consistent approximation of the normal fluxes, and thus
the same results of convergence as those which are proven in this paper, namely
an order h1/2 error estimate. On particular meshes, one can prove a better error
estimate by choosing aKL = d(xL,K|L)/dKL (see [20]), which yields an order 2
consistent approximation of the normal flux, and therefore an order h error estimate.
Nevertheless, in the general framework of this paper, there is no specific choice which
improves the convergence result nor the error estimate. Therefore, we set in this paper
aKL = 1/2, which corresponds to (2.9). The advantage of this choice is that it leads
to simpler notations and shorter equations.

The adjoint of this discrete divergence defines a discrete gradient ∇D : HD(Ω) →
HD(Ω)d:

(∇Du)K =
1

mK

∑
L∈NK

AKL(uL − uK) ∀K ∈ M and ∀u ∈ HD(Ω).(2.10)

This operator ∇D then satisfies the following property.
Lemma 2.3. Let (D(m))m∈N be a sequence of admissible discretizations of Ω in

the sense of Definition 2.1, such that limm→∞ size(D(m)) = 0. Let us assume that
there exists C > 0 and α ∈ [0, 2), a sequence (u(m))m∈N such that u(m) ∈ HD(m)(Ω),
and |u(m)|2Dm

≤ C size(D(m))−α for all m ∈ N.
Then the following property holds:

lim
m→+∞

∫
Ω

(
PDmϕ(x)∇Dmu(m)(x) + u(m)(x)∇ϕ(x)

)
dx = 0 ∀ϕ ∈ C∞

c (Ω),(2.11)

and therefore

lim
m→+∞

∫
Ω

∇Dmu(m)(x) · PDmψ(x)dx = 0 ∀ψ ∈ C∞
c (Ω)d ∩ E(Ω),(2.12)
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where E(Ω) is defined by (3.5).
Proof. Under the hypotheses stated in Lemma 2.3, let i = 1, . . . , d and ϕ ∈ C∞

c (Ω)
be given. Let us study, for m ∈ N, the term

T
(m)
1 =

∫
Ω

(
PDm

ϕ(x)∇Dm
u(m)(x) + u(m)(x)∇ϕ(x)

)
dx.

From (2.9) and (2.10), we get that

T
(m)
1 =

∑
σ∈Eint,σ=K|L

(u
(m)
L − u

(m)
K )mK|L R

(m)
KL ,

where

R
(m)
KL =

(
1

2
(ϕ(xK) + ϕ(xL)) − 1

mK|L

∫
K|L

ϕ(x)dγ(x)

)
nKL.

Thanks to the Cauchy–Schwarz inequality,

|T (m)
1 |2 ≤ |u(m)|2Dm

∑
σ∈Eint,σ=K|L

∣∣∣R(m)
KL

∣∣∣2 mK|LdKL.

One has
∑

σ∈Eint,σ=K|L mK|LdKL ≤ d m(Ω). Thanks to the existence of Cϕ > 0,

which depends only on ϕ such that |R(m)
KL | ≤ Cϕsize(D(m)), and since α < 2, we then

get that

lim
m→∞

T
(m)
1 = 0,

which yields (2.11).
Consider now ψ ∈ C∞

c (Ω)d ∩ E(Ω). One may write (2.11) componentwise and
take ϕ = ψi in the ith equation. Summing the d resulting equations and using the
fact that ψ ∈ E(Ω) yields (2.12).

Lemma 2.4 (discrete Rellich theorem). Let (D(m))m∈N be a sequence of admissi-
ble discretizations of Ω in the sense of Definition 2.1, such that limm→∞ size(D(m)) =
0. Let us assume that there exist C > 0 and a sequence (u(m))m∈N such that u(m) ∈
HD(m)(Ω) and ‖u(m)‖Dm ≤ C for all m ∈ N.

Then, there exist ū ∈ H1
0 (Ω) and a subsequence of (u(m))m∈N, again denoted by

(u(m))m∈N, such that
1. the sequence (u(m))m∈N converges in L2(Ω) to ū as m → +∞,
2. for all ϕ ∈ C∞

c (Ω), we have

lim
m→+∞

[u(m), PDmϕ]Dm =

∫
Ω

∇ū(x) · ∇ϕ(x)dx,(2.13)

3. ∇Dmu(m) weakly converges to ∇ū in L2(Ω)d as m → +∞ and (2.11) holds.
Proof. The proof of the first two items is given in [13, proof of Theorem 9.1,

pp. 773–774]. Since we have |u(m)|Dm ≤ ‖u(m)‖Dm , we can apply Lemma 2.3, which
gives the third item.

Remark 2.4. Following [10], if we denote

DK,σ = {txK + (1 − t)y, t ∈ (0, 1), y ∈ σ} ∀K ∈ M and ∀σ ∈ EK ,
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we may alternatively define a discrete gradient ∇̃D : HD(Ω) → L2(Ω)d by

∀ K ∈ M,

∇̃Du(x) =
d

dKL
(uL − uK)nKL, for a.e. x ∈ DK,K|L ∪ DL,K|L ∀L ∈ NK ,

∇̃Du(x) =
d

dK,σ
(0 − uK)nK,σ, for a.e. x ∈ DK,σ ∀σ ∈ EK ∩ Eext.

A result similar to that of Lemma 2.4 holds with this definition of a discrete gradient,
and in fact it can be shown that the weak convergence of ∇̃Dm

u(m) is equivalent to
the weak convergence of ∇Dm

u(m).
Lemma 2.5. Let (D(m))m∈N be a sequence of admissible discretizations of Ω in

the sense of Definition 2.1, such that limm→∞ size(D(m)) = 0.
Let us assume that there exist two sequences, (u(m))m∈N and (v(m))m∈N, such that
1. for all m ∈ N, u(m) belongs to HD(m)(Ω) and there exists ū ∈ H1

0 (Ω) such
that the sequence (u(m))m∈N converges in L2(Ω) to ū as m → +∞ and

lim
m→∞

‖u(m)‖2
D(m) = ‖∇ū‖2

L2(Ω)d ;(2.14)

2. for all m ∈ N, v(m) belongs to HD(m)(Ω) and there exists C > 0 and v̄ ∈
H1

0 (Ω) such that ‖v(m)‖D(m) ≤ C for all m ∈ N and the sequence (v(m))m∈N

converges in L2(Ω) to v̄ as m → +∞.
Then the following convergence result holds:

lim
m→+∞

[u(m), v(m)]D(m) =

∫
Ω

∇ū(x) · ∇v̄(x)dx.(2.15)

Proof. Under the assumptions of the lemma, let ϕ ∈ C∞
c (Ω). We have

[u(m), v(m)]D(m) = [u(m) − PD(m)ϕ, v(m)]D(m) + [PD(m)ϕ, v(m)]D(m) ,

and therefore, thanks to the Cauchy–Schwarz inequality, we get

[u(m), v(m)]D(m) ≥ [PDmϕ, v(m)]D(m) − ‖u(m) − PD(m)ϕ‖D(m)‖v(m)‖D(m)

and

[u(m), v(m)]D(m) ≤ [PDmϕ, v(m)]D(m) + ‖u(m) − PD(m)ϕ‖D(m)‖v(m)‖D(m) .

From (2.14) and thanks to Lemma 2.4, we get that

lim
m→+∞

‖u(m) − PD(m)ϕ‖2
D(m) = ‖∇ū−∇ϕ‖2

L2(Ω)d ,

and thus, passing to the limit m → ∞ in the two above inequalities, we get that

lim inf
m→∞

[u(m), v(m)]D(m) ≥
∫

Ω

∇ϕ(x) · ∇v̄(x)dx− C‖∇ū−∇ϕ‖L2(Ω)d

and

lim sup
m→∞

[u(m), v(m)]D(m) ≤
∫

Ω

∇ϕ(x) · ∇v̄(x)dx + C‖∇ū−∇ϕ‖L2(Ω)d .

Letting ϕ tend to ū in H1
0 (Ω) in the two above inequalities completes the proof.
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3. Approximation of the linear steady problem.

3.1. The Stokes problem. We first study the following linear steady problem:
Find an approximation of ū and p̄, weak solution to the generalized Stokes equations
with homogeneous boundary conditions on ∂Ω, which read

ηū− νΔū + ∇p̄ = f in Ω,

divū = 0 in Ω,

ū = 0 on ∂Ω.

(3.1)

For this problem, the following assumptions are made:

Ω is a polygonal open bounded connected subset of R
d, d = 2 or 3,(3.2)

ν ∈ (0,+∞), η ∈ [0,+∞),(3.3)

f ∈ L2(Ω)d.(3.4)

We then consider the following weak sense for problem (3.1).
Definition 3.1 (weak solution to the steady Stokes equations). Under hypothe-

ses (3.2)–(3.4), let E(Ω) be defined by

E(Ω) := {v̄ = (v̄(i))i=1,...,d ∈ H1
0 (Ω)d,divv̄ = 0 a.e. in Ω}.(3.5)

Then (ū, p̄) is called a weak solution of (3.1) (see, e.g., [36] or [5]) if⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ū ∈ E(Ω), p̄ ∈ L2(Ω) with

∫
Ω

p̄(x)dx = 0,

η

∫
Ω

ū(x) · v̄(x)dx + ν

∫
Ω

∇ū(x) : ∇v̄(x)dx

−
∫

Ω

p̄(x)divv̄(x)dx =

∫
Ω

f(x) · v̄(x)dx ∀v̄ ∈ H1
0 (Ω)d,

(3.6)

where, for all ū, v̄ ∈ H1
0 (Ω)d and for a.e. x ∈ Ω, we use the following notation:

∇ū(x) : ∇v̄(x) =
d∑

i=1

∇ū(i)(x) · ∇v̄(i)(x).

The existence and uniqueness of the weak solution of (3.1) in the sense of the
above definition is a classical result (see, e.g., [36] or [5]).

3.2. The finite volume scheme. Under hypotheses (3.2)–(3.4), let D be an
admissible discretization of Ω in the sense of Definition 2.1. It is then natural to write
an approximate problem to the Stokes problem (3.6) in the following way (recall that
ED(Ω) = {u ∈ HD(Ω)d,divD(u) = 0}):⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u ∈ ED(Ω), p ∈ HD(Ω) with

∫
Ω

p(x)dx = 0,

η

∫
Ω

u(x) · v(x)dx + ν[u, v]D

−
∫

Ω

p(x)divD(v)(x)dx =

∫
Ω

f(x) · v(x)dx ∀v ∈ HD(Ω)d.

(3.7)
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As we use a colocated approximation for the velocity and the pressure fields, the
scheme must be stabilized. Using a nonconsistent stabilization à la Brezzi–Pitkäranta
[6], we then look for (u, p) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u, p) ∈ HD(Ω)d ×HD(Ω) with

∫
Ω

p(x)dx = 0,

η

∫
Ω

u(x) · v(x)dx + ν[u, v]D

−
∫

Ω

p(x)divD(v)(x)dx =

∫
Ω

f(x) · v(x)dx ∀v ∈ HD(Ω)d,∫
Ω

divD(u)(x)q(x)dx = −λ size(D)α 〈p, q〉D ∀q ∈ HD(Ω),

(3.8)

where λ > 0 and α ∈ (0, 2) are adjustable parameters of the scheme which will have
to be tuned in order to make a balance between accuracy and stability.

System (3.8) is equivalent to finding the family of vectors of R
d, (uK)K∈M, and

scalars, (pK)K∈M, solution to the system of equations obtained by writing for each
control volume K of M⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

η mK uK − ν
∑

L∈NK

mK|L
dK|L

(uL − uK) − ν
∑

σ∈EK∩Eext

mσ

dK,σ
(0 − uK)

+
∑

L∈NK

AKL (pL − pK) =

∫
K

f(x)dx,

∑
L∈NK

AKL · (uK + uL) − λ size(D)α
∑

L∈NK

mK|L
dK|L

(pL − pK) = 0,

(3.9)

supplemented by the relation ∑
K∈M

mK pK = 0.(3.10)

Defining pσ = (pK + pL)/2 if σ = K|L, and pσ = pK if σ ∈ Eext ∩ EK , and using
the fact that

∑
σ∈EK

mσnK,σ = 0, one notices that
∑

L∈NK
AKL (pL − pK) is in fact

equal to
∑

σ∈EK
mσpσnK,σ, thus yielding a conservative form, which shows that (3.9)

is indeed a finite volume scheme.
The existence of a solution to (3.8) will be proven below.

3.3. Study of the scheme in the linear case. We first prove a stability
estimate for the velocity.

Lemma 3.2 (discrete H1
0 estimate for the velocity). Under hypotheses (3.2)–

(3.4), let D be an admissible discretization of Ω in the sense of Definition 2.1. Let
λ ∈ (0,+∞) and α ∈ (0, 2) be given. Let (u, p) ∈ HD(Ω)d ×HD(Ω) be a solution to
(3.8). Then the following inequalities hold:

ν‖u‖D ≤ diam(Ω)‖f‖L2(Ω)d(3.11)

and

ν λ size(D)α |p|2D ≤ diam(Ω)2‖f‖2
L2(Ω)d .(3.12)

Proof. Setting v = u and q = p in (3.8), we get

η

∫
Ω

u(x)2dx + ν‖u‖2
D −

∫
Ω

p(x)divD(u)(x)dx =

∫
Ω

f(x) · u(x)dx.
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Since η ≥ 0, the second equation of (3.8) with q = p and Young’s inequality yields

η

∫
Ω

u(x)2dx + ν‖u‖2
D + λ size(D)α |p|2D

≤ diam(Ω)2

2ν
‖f‖2

L2(Ω)d +
ν

2 diam(Ω)2
‖u‖2

L2(Ω)d .

Using the Poincaré inequality (2.4) gives

ν‖u‖2
D + λ size(D)α |p|2D ≤ diam(Ω)2

2ν
‖f‖2

L2(Ω)d +
ν

2
‖u‖2

D,

which leads to (3.11) and (3.12).
We can now state the existence and uniqueness of a discrete solution to (3.8).
Corollary 3.3 (existence and uniqueness of a solution to the finite volume

scheme). Under hypotheses (3.2)–(3.4), let D be an admissible discretization of Ω in
the sense of Definition 2.1. Let λ ∈ (0,+∞) and α ∈ (0, 2) be given. Then there
exists a unique solution to (3.8).

Proof. Let us define the finite dimensional vector space

V =

{
(u, p) ∈ HD(Ω)d ×HD(Ω),

∫
Ω

p(x) dx = 0

}
.

Let (u, p) ∈ V be given, and let us define (ũ, p̃) ∈ HD(Ω)d ×HD(Ω) by⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫
Ω

ũ(x) · v(x)dx = η

∫
Ω

u(x) · v(x)dx + ν[u, v]D −
∫

Ω

p(x)divD(v)(x)dx

∀v ∈ HD(Ω)d,∫
Ω

p̃(x)q(x)dx =

∫
Ω

divD(u)(x)q(x)dx + λ size(D)α 〈p, q〉D ∀q ∈ HD(Ω).

Taking q = 1Ω shows that
∫
Ω
p̃(x) dx = 0 (see Remark 2.2), and therefore (ũ, p̃) ∈ V .

Hence we define the linear mapping Ψ : V → V such that Ψ(u, p) = (ũ, p̃). From
Lemma 3.2, we get that Ψ(u, p) = 0 implies u = 0 and p = 0. This proves that Ψ(·) is
one to one. This concludes the proof of existence and uniqueness of the (u, p) solution
to (3.8), since ũK = 1

mK

∫
K
f(x)dx and p̃K = 0 for all K ∈ M obviously define an

element of V .
We then prove the following strong estimate for the pressure.
Lemma 3.4 (L2 estimate for the pressure). Under hypotheses (3.2)–(3.4), let

D be an admissible discretization of Ω in the sense of Definition 2.1 and let ζ > 0
be such that regul(D) > ζ. Let λ ∈ (0,+∞) and α ∈ (0, 2) be given. Let (u, p) ∈
HD(Ω)d ×HD(Ω) be a solution to (3.8). Then there exists C1 , depending only on d,
Ω, η, ν, λ, α, and ζ, and not on size(D), such that the following inequality holds:

‖p‖L2(Ω) ≤ C1 ‖f‖L2(Ω)d .(3.13)

Proof. We first apply a result by Nečas [30]: thanks to
∫
Ω
p(x)dx = 0, there exists

C2 > 0, which depends only on d and Ω, and v̄ ∈ H1
0 (Ω)d such that divv̄(x) = p(x)

for a.e. x ∈ Ω and

‖v̄‖H1
0 (Ω)d ≤ C2 ‖p‖L2(Ω).(3.14)
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We then set

vσ =
1

mσ

∫
σ

v̄(x)dγ(x) ∀σ ∈ E

(note that vσ = 0 for all σ ∈ Eext) and define v ∈ HD(Ω)d by

vK =
1

mK

∫
K

v̄(x)dx ∀K ∈ M.(3.15)

Applying the results given in [13, p. 777], we get that there exists C3 > 0, depending
only on d and ζ, such that

(v
(i)
K − v(i)

σ )2 ≤ C3
diam(K)

mσ

∫
K

(∇v̄(i)(x))2dx ∀i = 1, . . . , d,(3.16)

and

‖v‖D ≤ C3 ‖v̄‖H1
0 (Ω)d ≤ C3 C2 ‖p‖L2(Ω).(3.17)

We then have∫
Ω

p(x)divDv(x)dx =
∑

K∈M
pK

∑
L∈NK

AKL · (vK + vL) = T2 + T3,

where

T2 =
∑

K∈M
pK

∑
L∈NK

2AKL · vK|L

=
∑

K∈M
pK

∑
L∈NK

∫
K|L

v̄(x) · nKLdγ(x)

=

∫
Ω

p(x)divv̄(x)dx = ‖p‖2
L2(Ω),

and

T3 =
∑

K∈M
pK

∑
L∈NK

mK|L

(
1

2
(vK + vL) − vK|L

)
· nKL

=
∑

σ=K|L∈Eint

mK|L(pK − pL)

(
1

2
(vK + vL) − vK|L

)
· nKL.

We then have, thanks to the Cauchy–Schwarz inequality,

T 2
3 ≤ |p|2D

∑
σ=K|L∈Eint

mK|LdKL

(
1

2
(vK + vL) − vK|L

)2

.

Applying inequality (3.16) and thanks to (1
2 (vK + vL) − vK|L)2 ≤ 1

2 ((vK − vK|L)2 +
(vL − vK|L)2), we get that

T 2
3 ≤ 1

2
|p|2D

∑
σ=K|L∈Eint

dKLC3 size(D)

∫
K∪L

d∑
i=1

(∇v̄(i)(x))2dx.
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This in turn implies the existence of C4 > 0, depending only on d and ζ, such that

T 2
3 ≤ C4 size(D)2|p|2D‖v̄‖2

H1
0 (Ω)d .

Thanks to (3.14), we then get, by gathering the previous results,∫
Ω

p(x)divDv(x)dx ≥ ‖p‖2
L2(Ω) − C4 size(D)|p|DC2 ‖p‖L2(Ω).(3.18)

We then introduce v as a test function in (3.8). We get∫
Ω

p(x)divD(v)(x)dx = η

∫
Ω

u(x) · v(x)dx + ν[u, v]D −
∫

Ω

f(x) · v(x)dx.(3.19)

Applying the discrete Poincaré inequality, (3.17), and (3.18), we get the existence of
C5 , depending only on d, Ω, f , η, ν, and ζ, such that

‖p‖2
L2(Ω) − C4 size(D)|p|DC2 ‖p‖L2(Ω) ≤ C5

(
‖u‖D + ‖f‖L2(Ω)d

)
‖p‖L2(Ω).

We now apply (3.11) and (3.12). Since size(D)2 ≤ size(D)αdiam(Ω)2−α, the condition
α ≤ 2 is sufficient to yield (3.13) from the above inequality, a factor 1/λ being
introduced in the expression of C1 (it is therefore not possible to let λ tend to 0
in (3.13)).

We then have the following result, which states the convergence of the scheme
(3.8).

Lemma 3.5 (convergence in the linear case). Under hypotheses (3.2)–(3.4), let
(ū, p̄) be the unique weak solution of the Stokes problem (3.1) in the sense of Definition
3.1. Let λ ∈ (0,+∞), α ∈ (0, 2), and ζ > 0 be given, and let D be an admissible
discretization of Ω in the sense of Definition 2.1 such that regul(D) ≥ ζ. Let (u, p) ∈
HD(Ω)d ×HD(Ω) be the unique solution to (3.8).

Then u converges to ū in L2(Ω)d, ‖u(i)‖D converges to ‖∇ū(i)‖L2(Ω)d for all
i = 1, . . . , d, and p converges to p̄ in L2(Ω) as size(D) tends to 0.

Remark 3.1. The convergence of ‖u(i)‖D to ‖∇ū(i)‖L2(Ω)d×d as size(D) tends to

0 is sufficient to prove the convergence of some discrete gradient of u(i) to ∇ū(i) in
L2(Ω)d (see [15]).

Proof. Under the hypotheses of the above lemma, let (D(m))m∈N be a sequence
of admissible discretizations of Ω in the sense of Definition 2.1 such that

lim
m→∞

size(D(m)) = 0

and such that regul(D(m)) ≥ ζ for all m ∈ N.
Let (u(m), p(m)) ∈ HD(m)(Ω)d × HD(m)(Ω) be given by (3.8) for all m ∈ N. We

shall prove in a first step the existence of a subsequence of (D(m))m∈N such that
the corresponding sequence (u(m))m∈N converges in L2(Ω)d to some function ū and
the sequence (p(m))m∈N weakly converges in L2(Ω)d to some function p̄, as m → ∞.
We then show that (ū, p̄) is the solution of (3.8). Then, in a second step, following
some ideas of [15], we again extract a subsequence such that ‖u(m)‖D(m) converges
to ‖∇ū‖L2(Ω)d×d and p(m) strongly converges to p̄ in L2(Ω) as m → ∞. The proof is
then complete since the solution (ū, p̄) of (3.8) is unique and therefore the convergence
property holds for the whole sequence.

Step 1. Convergence of the velocity.
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Using (3.11), we obtain (see [12, 13]) an estimate for the translates of u(m): for
all m ∈ N, there exists C6 > 0, depending only on Ω, ν, f , and g, such that∫

Ω

(u(m,k)(x + ξ) − u(m,k)(x))2dx ≤ C6 |ξ|(|ξ| + 4 size(D(m))),

for k = 1, . . . , d ∀ξ ∈ R
d,

(3.20)

where u(m,k) denotes the kth component of u(m). We may then apply Kolmogorov’s
theorem and obtain the existence of a subsequence of (D(m))m∈N and of ū ∈ H1

0 (Ω)d

such that (u(m))m∈N converges to ū in L2(Ω)d. Thanks to Lemma 3.4, we extract
from this subsequence another one (still denoted by (D(m))m∈N) such that (p(m))m∈N

weakly converges to some function p̄ in L2(Ω). In order to conclude the proof of the
convergence of the scheme, there only remains to prove that (ū, p̄) is the solution of
(3.6).

Let ϕ ∈ C∞
c (Ω)d. For m large enough, and thus size(D(m)) small enough, ∂K ∩

∂Ω = ∅ holds for all K ∈ M such that K∩ support(ϕ) �= ∅. Let us take v = PD(m)ϕ
in (3.8). Applying Lemma 2.4, we get

lim
m→∞

[u(m), PD(m)ϕ]D(m)

∫
Ω

∇ū(x) : ∇ϕ(x)dx.

Moreover, it is clear that

lim
m→∞

∫
Ω

f(x) · PD(m)ϕ(x)dx

∫
Ω

f(x) · ϕ(x)dx,

and

lim
m→∞

η

∫
Ω

u(m)(x) · PD(m)ϕ(x)dxη

∫
Ω

ū(x) · ϕ(x)dx.

Thanks to the weak convergence of the sequence of approximate pressures, to (3.12)
and to the hypothesis α < 2 we now apply Lemma 2.3, which gives

lim
m→∞

∫
Ω

p(m)(x)divD(m)(PD(m)ϕ)(x)dx =

∫
Ω

p̄(x)divϕ(x)dx.(3.21)

Let us now prove that div(ū) = 0 almost everywhere in Ω. Let ϕ ∈ C∞
c (Ω) be

given and let us take q = PD(m)ϕ in (3.8). We get T
(m)
4 = −T

(m)
5 , where

T
(m)
4 =

∫
Ω

divD(m)(x)(u(m))PD(m)ϕ(x)dx

and

T
(m)
5 = λ size(D(m))α〈p(m), PD(m)ϕ〉D.

On one hand, the third item of Lemma 2.4 yields

lim
m→∞

T
(m)
4 =

d∑
i=1

∫
Ω

ϕ(x)∂iū
(i)dx.

On the other hand, using the Cauchy–Schwarz inequality, we get

T
(m)
5 ≤ λsize(D(m))α|p(m)|D(m) |PD(m)ϕ|D(m) .
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Therefore, thanks to (3.12) and to the regularity of ϕ (that implies that |PD(m)ϕ|D
remains bounded independently of size(D(m))) we obtain limm→∞ T

(m)
5 = 0. This in

turn implies that

d∑
i=1

∫
Ω

ϕ(x)∂iū
(i)(x)dx = 0 ∀ ϕ ∈ C∞

c (Ω),(3.22)

which proves that ū ∈ E(Ω).
Step 2. Strong convergence of the pressure.
As in the proof of Lemma 3.2, we set v = u(m) and q = p(m) in (3.8). We get

η

∫
Ω

u(m)(x)2dx + ν‖u(m)‖2
D(m) + λ size(D(m))α |p|2D(m) =

∫
Ω

f(x) · u(m)(x)dx.

Passing to the limit in the above equation provides

η

∫
Ω

ū(x)2dx + ν lim sup
m→∞

‖u(m)‖2
D(m) ≤

∫
Ω

f(x) · ū(x)dx,

and therefore, since ū is the solution of the continuous problem (3.6), we have

lim sup
m→∞

‖u(m)‖2
D(m) ≤

∫
Ω

(∇ū(x))2dx.

Thanks to the fact that

lim inf
m→∞

‖u(i,m)‖2
D(m) ≥

∫
Ω

(∇ū(i)(x))2dx ∀i = 1, . . . , d,

proved in [28, Lemma 2.2], we get that

lim
m→∞

‖u(i,m)‖2
D(m) =

∫
Ω

(∇ū(i)(x))2dx ∀i = 1, . . . , d.(3.23)

Following the same line as in the proof of Lemma 3.4, we now consider a function
v̄(m) ∈ H1

0 (Ω)d such that divv̄(m)(x) = p(m)(x) for a.e. x ∈ Ω and

‖v̄(m)‖H1
0 (Ω)d ≤ C2 ‖p(m)‖L2(Ω).

We then define v(m) ∈ HD(m)(Ω)d by

v
(m)
K =

1

mK

∫
K

v̄(m)(x)dx ∀K ∈ M.

Thanks to (3.13) and applying Lemma 2.4, we get the existence of a subsequence of
(D(m))m∈N, and of v̄ ∈ H1

0 (Ω)d such that (v(m))m∈N converges to v̄ in L2(Ω)d. Passing
to the limit m → ∞ shows that divv̄(x) = p̄(x) for a.e. x ∈ Ω.

Using the relations (3.18) and (3.19) obtained in the proof of Lemma 3.4, we get

‖p(m)‖2
L2(Ω) − C4 size(D(m))|p(m)|D(m)C2 ‖p(m)‖L2(Ω)

≤ η

∫
Ω

u(m)(x) · v(m)(x)dx + ν[u(m), v(m)]D(m) −
∫

Ω

f(x) · v(m)(x)dx.
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Thanks to (3.12) and (3.13), we have

lim
m→∞

C4 size(D(m))|p(m)|D(m)C2 ‖p(m)‖L2(Ω) = 0.

In addition, using (3.23), we have from Lemma 2.5 that

lim
m→+∞

[u(m), v(m)]D(m) =

∫
Ω

∇ū(x) : ∇v̄(x)dx.

Therefore, passing to the limit m → ∞ in the above inequality yields

lim sup
m→∞

‖p(m)‖2
L2(Ω) ≤ η

∫
Ω

ū(x) · v̄(x)dx + ν

∫
Ω

∇ū(x) : ∇v̄(x)dx−
∫

Ω

f(x) · v̄(x)dx.

Taking v̄ as test function in (3.6) gives

η

∫
Ω

ū(x) · v̄(x)dx + ν

∫
Ω

∇ū(x) : ∇v̄(x)dx−
∫

Ω

p̄(x)2dx =

∫
Ω

f(x) · v̄(x)dx,

and therefore lim supm→∞ ‖p(m)‖2
L2(Ω) ≤ ‖p̄‖2

L2(Ω). Since, classically, we get from the

weak convergence of p(m) to p̄ in L2(Ω) that lim infm→∞ ‖p(m)‖2
L2(Ω) ≥ ‖p̄‖2

L2(Ω), we

thus obtain that limm→∞ ‖p(m)‖2
L2(Ω) = ‖p̄‖2

L2(Ω). This completes the proof of the

strong convergence of p(m) to p̄ in L2(Ω).

3.4. An error estimate. The following result states an error estimate for the
scheme (3.8).

Lemma 3.6 (error estimate in the linear case). Under hypotheses (3.2)–(3.4),
we assume that the weak solution (ū, p̄) of the Stokes problem (3.1) in the sense of
Definition 3.1 is such that (ū, p̄) ∈ H2(Ω)d ×H1(Ω). Let λ ∈ (0,+∞) and α ∈ (0, 2)
be given, let D be an admissible discretization of Ω in the sense of Definition 2.1, and
let ζ > 0 such that regul(D(m)) ≥ ζ. Let (u, p) ∈ HD(Ω)d ×HD(Ω) be the solution to
(3.8). Then there exists C7 , which depends only on d, Ω, ν, η, and ζ such that

‖u− PDū‖2
D ≤ C7 ε(λ, size(D), p̄, ū),(3.24)

‖u− ū‖2
L2(Ω) ≤ C7 ε(λ, size(D), p̄, ū),(3.25)

λ size(D)α |p|2D ≤ C7 ε(λ, size(D), p̄, ū),(3.26)

‖p− p̄‖2
L2(Ω) ≤ C7 ε(λ, size(D), p̄, ū),(3.27)

where

ε(λ, size(D), p̄, ū) = max

(
λsize(D)α,

1

λ
size(D)2−α

)(
‖p̄‖2

H1(Ω) + ‖ū‖2
H2(Ω)

)
.

(3.28)

Proof. The proof is divided into three steps: we first state the equation controlling
the errors, then we prove the estimates (3.24)–(3.26) and, finally, (3.27).

Step 1. Statement of the control equation for the errors.

We define (û, p̂) ∈ HD(Ω)d ×HD(Ω) by û = PDū, which means ûK = ū(xK) for
all K ∈ M, and p̂K = 1

mK

∫
K
p̄(x)dx for all K ∈ M.
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Integrating the first equation of (3.1) on K ∈ M gives

η

∫
K

ū(x)dx +
∑
σ∈EK

(
−ν

∫
σ

∇ū(x) · nK,σdγ(x) +

∫
σ

p̄(x)nK,σdγ(x)

)
=

∫
K

f(x)dx.

(3.29)

We introduce for K ∈ M the following consistency residuals:

Ro,K = ûK − 1

mK

∫
K

ū(x)dx,

for L ∈ NK , RΔ,K|L =
1

dK|L
(ûL − ûK) − 1

mK|L

∫
K|L

∇ū(x) · nK,K|Ldγ(x),

for σ ∈ EK ∩ Eext, RΔ,σ =
1

dK,σ
(0 − ûK) − 1

mσ

∫
σ

∇ū(x) · nK,σdγ(x),

for L ∈ NK , R∇,K|L =
1

2
(p̂K + p̂L) − 1

mK|L

∫
K|L

p̄(x)dγ(x),

for σ ∈ EK ∩ Eext, R∇,σ = p̂K − 1

mσ

∫
σ

p̄(x)dγ(x).

Using these notations and the relation
∑

σ∈EK
mσnK,σ = 0, we get from (3.29)

η mK ûK − ν

( ∑
L∈NK

mK|L
dK|L

(ûL − ûK) +
∑

σ∈EK∩Eext

mσ

dK,σ
(0 − ûK)

)
+

∑
L∈NK

AKL (p̂L − p̂K) =

∫
K

f(x)dx + mKRK ,

with

RK = η Ro,K − ν
1

mK

∑
σ∈EK

mσRΔ,σ +
1

mK

∑
σ∈EK

mσ R∇,σnK,σ.

We set δu = û − u and δp = p̂ − p. We then get, subtracting the first relation of the
scheme (3.9) from the above equation, for all v ∈ HD(Ω)d,

η

∫
Ω

δu(x)v(x)dx + ν[δu, v]D −
∫

Ω

δp(x)divD(v)(x)dx =

∫
Ω

R(x)vdx,(3.30)

and, setting v = δu in this relation,

η

∫
Ω

δu(x)2dx + ν‖δu‖2
D −

∫
Ω

δp(x)divD(δu)(x)dx =

∫
Ω

R(x)δu(x)dx.

We now integrate the second equation of (3.1) on K ∈ M. This gives∑
σ∈EK

∫
σ

ū(x) · nK,σdγ(x) = 0.

Since ū vanishes on the boundary of Ω, we then obtain∑
L∈NK

AKL · (ûK + ûL) =
∑

L∈NK

mK|LRdiv,K|L ∀K ∈ M
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with

Rdiv,K|L =

(
1

2
(ûK + ûL) − 1

mK|L

∫
K|L

ū(x)dγ(x)

)
· nKL ∀K ∈ M and∀L ∈ NK .

We then have, subtracting the second relation of the scheme (3.9) from the above
equation,∫

Ω

divD(δu)(x)δp(x)dx = λ size(D)α 〈p, p̂− p〉D +
∑

σ∈Eint

mσRdiv,σ(δpK − δpL).

Gathering the above results, we get

η

∫
Ω

δu(x)2dx + ν‖δu‖2
D + λ size(D)α |p|2D

= λ size(D)α 〈p, p̂〉D +

∫
Ω

R(x) · δu(x)dx +
∑

σ∈Eint

mσRdiv,σ(δpK − δpL).
(3.31)

Step 2. Proof of the bounds (3.24)–(3.26).

Let us study the terms at the right-hand side of the above equation. We have,
using the Young inequality,

〈p, p̂〉D ≤ 1

4
|p|2D + |p̂|2D ≤ 1

4
|p|2D + C8 ‖p̄‖2

H1(Ω).(3.32)

We then decompose
∫
Ω
R(x) · δu(x)dx as

∫
Ω
R(x) · δu(x)dx = T6 + T7 + T8, with

T6 = η

∫
Ω

Ro(x) · δu(x)dx,

T7 = ν
∑

K∈M

( ∑
L∈NK

mK|LRΔ,K|L +
∑

σ∈EK∩Eext

mσRΔ,σ

)
· δuK ,

T8 =
∑

K∈M

∑
σ∈EK

mσ R∇,σnK,σ · δuK .

Thanks to interpolation results proven in [13] and to (2.4) (see also [20] for a compre-
hensive exposition of consistency estimates, although with slightly different projection
operators), we obtain

T6 ≤ C9 size(D)2‖ū‖2
H2(Ω)d +

ν

4
‖δu‖2

D,

T7 ≤ C10 size(D)2‖ū‖2
H2(Ω)d +

ν

4
‖δu‖2

D,

T8 ≤ C11 size(D)2‖p̄‖2
H1(Ω) +

ν

4
‖δu‖2

D.

(3.33)

We then have ∑
σ∈Eint

mσRdiv,σ(δpK − δpL) = T9 − T10

with

T9 =
∑

σ∈Eint

mσRdiv,σ(p̂K − p̂L) ≤ C12 size(D)
(
‖p̄‖2

H1(Ω) + ‖ū‖2
H2(Ω)d

)
,(3.34)
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and

T10 =
∑

σ∈Eint

mσRdiv,σ(pK − pL)

≤ 1

4
λ size(D)α |p|2D + C13

1

λ
size(D)2−α‖ū‖2

H2(Ω)d .

(3.35)

Gathering equations (3.31)–(3.35) gives

‖δu‖2
D + λ size(D)α |p|2D ≤ C14 ε(λ, size(D), p̄, ū),

where ε(λ, size(D), p̄, ū) is defined by (3.28). This in turn yields (3.24) (and thus
(3.25) thanks to the Poincaré inequality) and (3.26).

Step 3. Proof of the bound (3.27).
We then again follow the method used in the proof of Lemma 3.4.
Using

∫
Ω
p̂(x)dx = 0, and therefore

∫
Ω
δp(x)dx = 0, let v̄ ∈ H1

0 (Ω)d be given such
that divv̄(x) = δp(x) for a.e. x ∈ Ω and

‖v̄‖H1
0 (Ω)d ≤ C2 ‖δp‖L2(Ω).(3.36)

We again set

v(i)
σ =

1

mσ

∫
σ

v̄(i)(x)dγ(x) ∀σ ∈ E and ∀i = 1, . . . , d,

and we define v ∈ HD(Ω)d by

v
(i)
K =

1

mK

∫
K

v̄(i)(x)dx ∀K ∈ M and ∀i = 1, . . . , d.

The same method gives

‖δp‖2
L2(Ω) ≤

∫
Ω

δp(x)divD(v)(x)dx + C4 size(D)|p|D‖v̄‖H1
0 (Ω)d

≤
∫

Ω

δp(x)divD(v)(x)dx + C15 size(D)2|p|2D +
1

4
‖δp‖2

L2(Ω).

We now use v as test function in (3.30). We get∫
Ω

δp(x)divD(v)(x)dx = η

∫
Ω

δu(x)v(x)dx + ν[δu, v]D +

∫
Ω

R(x)vdx.

Gathering the two above relations, (3.33) and (3.36) yield

‖δp‖2
L2(Ω) ≤

1

2
‖δp‖2

L2(Ω) + C16 size(D)2
(
‖p̄‖2

H1(Ω) + ‖ū‖2
H2(Ω)d

)
+C17 ‖δu‖2

D + C15 size(D)2|p|2D.

Applying (3.25) and (3.26) then gives (3.27).
Remark 3.2. In the above result, letting α = 1, we get an order 1/2 for the

convergence of the scheme. We recall that this result is not sharp, and that the
numerical results show a much better order of convergence.
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4. The finite volume scheme for the Navier–Stokes equations. Before
handling the transient nonlinear case, we first address in the following section the
steady-state case.

4.1. The steady-state case. For the continuous equations

ηū(i) − νΔū(i) + ∂ip̄ +

d∑
j=1

ū(j)∂j ū
(i) = f (i) in Ω, for i = 1, . . . , d,

divū =

d∑
i=1

∂iū
(i) = 0 in Ω

(4.1)

with homogeneous Dirichlet boundary conditions for the velocity, we define the fol-
lowing weak sense.

Definition 4.1 (weak solution to the steady Navier–Stokes equations). Under
hypotheses (3.2)–(3.4), let E(Ω) be defined by (3.5). Then (ū, p̄) is called a weak
solution of (4.1) if⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ū ∈ E(Ω), p̄ ∈ L2(Ω) with

∫
Ω

p̄(x)dx = 0,

η

∫
Ω

ū(x) · v̄(x)dx + ν

∫
Ω

∇ū(x) : ∇v̄(x)dx

−
∫

Ω

p̄(x)divv̄(x)dx + b(ū, ū, v̄) =

∫
Ω

f(x) · v̄(x)dx ∀v̄ ∈ H1
0 (Ω)d,

(4.2)

where the trilinear form b(·, ·, ·) is defined, for all ū, v̄, w̄ ∈ H1
0 (Ω)d, by

b(ū, v̄, w̄) =

d∑
k=1

d∑
i=1

∫
Ω

ū(i)(x)∂iv̄
(k)(x)w̄(k)(x) dx.

The existence of a weak solution of (4.2) in the sense of the above definition, in
two or three dimensions, is a classical result (again, see, e.g., [36]). Note that the
uniqueness of the solution holds only under small data conditions.

We now give the finite volume scheme for this problem. Under hypotheses (3.2)–
(3.4), let D be an admissible discretization of Ω in the sense of Definition 2.1. We
introduce Bernoulli’s pressure p + 1

2u
2 instead of p, again denoted by p, and for any

real value λ > 0 and α ∈ (0, 2) we look for (u, p) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u, p) ∈ HD(Ω)d ×HD(Ω) with

∫
Ω

p(x)dx = 0,

η

∫
Ω

u(x) · v(x)dx + ν[u, v]D +
1

2

∫
Ω

u(x)2divD(v)(x)dx

−
∫

Ω

p(x)divD(v)(x)dx + bD(u, u, v) =

∫
Ω

f(x) · v(x)dx ∀v ∈ HD(Ω)d,

∫
Ω

divD(u)(x)q(x)dx = −λ size(D)α 〈p, q〉D ∀q ∈ HD(Ω),

(4.3)

where, for u, v, w ∈ HD(Ω)d, we define the following approximation for b(u, v, w):

bD(u, v, w) =
1

2

∑
K∈M

∑
L∈NK

(AKL · (uK + uL)) ((vL − vK) · wK).(4.4)
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System (4.3) is equivalent to finding the family of vectors of R
d, (uK)K∈M, and

scalars, (pK)K∈M, solution to the system of equations obtained by writing for each
control volume K of M⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η mK uK − ν
∑

L∈NK

mK|L
dK|L

(uL − uK) − ν
∑

σ∈EK∩Eext

mσ

dK,σ
(0 − uK)

+
∑

L∈NK

(
AKL ·

(
1

2
(uK + uL)

))
(uL − uK)

+
∑

L∈NK

AKL (pL − pK) − 1

2

∑
L∈NK

AKL (u2
L − u2

K) =

∫
K

f(x)dx,

∑
L∈NK

AKL · (uK + uL) − λ size(D)α
∑

L∈NK

mK|L
dK|L

(pL − pK) = 0,

(4.5)

supplemented by the relation ∑
K∈M

mK pK = 0.

Defining p̃K = pK − u2
K/2 and p̃σ = (p̃K + p̃L)/2 if σ = K|L, p̃σ = p̃K if

σ ∈ Eext ∩ EK , and using the fact that
∑

σ∈EK
mσnK,σ = 0, one again notices that∑

L∈NK
AKL (p̃L− p̃K) is in fact equal to

∑
σ∈EK

mσp̃σnK,σ, thus yielding a conserva-
tive form for the fifth and sixth terms of the left-hand side of the discrete momentum
equation in (4.5). Defining uσ = (uK +uL)/2 if σ = K|L, uσ = 0 if σ ∈ Eext∩EK , one
obtains that the nonlinear advective term

∑
L∈NK

(AKL · ( 1
2 (uK + uL))) (uL − uK) is

equal to
∑

σ∈EK
mσ(nK,σ · uσ)uσ − mKuK(divDu)K ; one may note that (divDu)K =∑

σ∈EK
mσnK,σ · uσ. Hence the nonlinear advective term is the sum of a conserva-

tive form and a source term due to the stabilization (this source term vanishes for a
discrete divergence free function u).

Let us then study some properties of the trilinear form bD(·, ·, ·). First note that
the quantity bD(u, v, w) also states that

bD(u, v, w) =
1

2

∑
K|L∈Eint

(AKL · (uK + uL)) ((vL − vK) · (wL + wK)).(4.6)

We thus get that, for all u, v ∈ HD(Ω)d,

bD(u, v, v) =
1

2

∑
K|L∈Eint

(AKL · (uK + uL))((vL)2 − (vK)2)

= −1

2

∫
Ω

v(x)2 divD(u)(x) dx.

(4.7)

We get, in particular, that, for all u ∈ ED(Ω), bD(u, u, u) = 0, which is the discrete
equivalent of the continuous property.

Remark 4.1 (upstream weighting versions of the scheme). The results of this
paper are still valid setting FKL(u) = AKL · (uK + uL) and considering, for u, v, w ∈
HD(Ω)d,

bups
D (u, v, w) = bD(u, v, w) +

1

2

∑
K|L∈Eint

ΘKL|FKL(u)| (vL − vK) · (wL − wK),
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with, for example, ΘKL = max(1 − 2ν
mK|L
dK|L

|FKL(u)|, 0).

We then get, for all u, v ∈ HD(Ω)d, the inequality

bups
D (u, v, v) ≥ −1

2

∫
Ω

v(x)2divD(u)(x)dx,

which is sufficient to get all the estimates of this paper, together with the convergence
properties of the scheme. The use of such a local upwinding technique may help avoid
the development of nonphysical oscillations only when meshes are too coarse.

The following technical estimates are crucial to prove the convergence properties
of the scheme.

Lemma 4.2 (estimates on bD(·, ·, ·) by discrete Sobolev norms). Under hypotheses
(1.3)–(1.7), let D be an admissible discretization of Ω in the sense of Definition 2.1,
and ζ > 0 such that regul(D) ≥ ζ. Then there exist C18 > 0 and C19 > 0, depending
only on d, ζ, and Ω, such that

bD(u, v, w) ≤ C18 ‖u‖L4(Ω)d ‖v‖D ‖w‖L4(Ω)d ≤ C19 ‖u‖D ‖v‖D ‖w‖D.(4.8)

Proof. The quantity bD(u, v, w) reads

bD(u, v, w) =
1

4

∑
K∈M

∑
L∈NK

(wK · (vL − vK))
mK|L
dK|L

((xL − xK) · (uK + uL)).

Applying the Cauchy–Schwarz inequality twice and using the fact that (xL − xK)2 =
d2
KL, and that, for any admissible discretization,

∑
L∈NK

mK|L
dK|L

d2
KL ≤ d mK

ζ , yields

bD(u, v, w)2 ≤ C20

( ∑
K∈M

∑
L∈NK

mK|L
dK|L

(wK)2(xL − xK)2(2(uK)2 + 2(uL)2)

)
( ∑

K∈M

∑
L∈NK

mK|L
dK|L

(vL − vK)2

)

≤ C21

( ∑
K∈M

mK |wK |4
)1/2 ( ∑

K∈M
mK |uK |4

)1/2

‖v‖2
D.

The inequality (4.8) is now a straightforward consequence of the following discrete
Sobolev inequality, which holds under the same regularity assumptions on the mesh
(see proof in [8] or [13, pp. 790–791]):

‖u‖L4(Ω) ≤ C22 ‖u‖D.(4.9)

Remark 4.2 (2D case). In the case d = 2, it may be proven setting α = 2, p =
p′ = 2 in the proof of [13, p. 791] that

‖u‖L4(Ω)d ≤ C23 ‖u‖1/2

L2(Ω)d
‖u‖1/2

D

and therefore that there exists C24 > 0, depending only on d and Ω, such that

bD(u, v, w) ≤ C24 ‖v‖D
(
‖u‖D ‖u‖L2(Ω)d ‖w‖D ‖w‖L2(Ω)d

)1/2
.

This is a discrete analogue to the classical continuous estimate for the trilinear form.
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The existence of a solution to the scheme (4.3) is obtained through a so-called
“topological degree” argument. For the sake of completeness, we recall this argument
(which was first used for numerical schemes in [11]) in the finite dimensional case in
the following theorem and refer to [9] for the general case.

Theorem 4.3 (application of the topological degree, finite dimensional case).
Let V be a finite dimensional vector space on R, and g be a continuous function from
V to V . Let us assume that there exists a continuous function F from V × [0, 1] to V
satisfying the following:

1. F (·, 1) = g, F (·, 0) is an affine function.
2. There exists R > 0 such that, for any (v, ρ) ∈ V × [0, 1], if F (v, ρ) = 0, then

‖v‖V �= R.
3. The equation F (v, 0) = 0 has a solution v ∈ V such that ‖v‖V < R.

Then there exists at least a solution v ∈ V such that g(v) = 0 and ‖v‖V < R.

Here g(v) = 0 represents the nonlinear system (4.3), and we are now going to
construct the function F and show the required estimates. Note that here the use of
Bernouilli’s pressure leads to simpler calculations.

Lemma 4.4 (discrete H1
0 estimate for the velocity). Under hypotheses (3.2)–

(3.4), let D be an admissible discretization of Ω in the sense of Definition 2.1. Let
λ ∈ (0,+∞) and α ∈ (0, 2) be given. Let ρ ∈ [0, 1] be given, and let (u, p) ∈ HD(Ω)d×
HD(Ω) be a solution to the following system of equations (which reduces to (4.3) as
ρ = 1 and to (3.8) as ρ = 0):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u, p) ∈ HD(Ω)d ×HD(Ω) with

∫
Ω

p(x)dx = 0,

η

∫
Ω

u(x) · v(x)dx + ν[u, v]D +
ρ

2

∫
Ω

u(x)2divD(v)(x)dx

+ ρ bD(u, u, v) −
∫

Ω

p(x)divD(v)(x)dx =

∫
Ω

f(x) · v(x)dx ∀v ∈ HD(Ω)d,∫
Ω

divD(u)(x)q(x)dx = −λ size(D)α 〈p, q〉D ∀q ∈ HD(Ω).

(4.10)
Then u and p satisfy the following estimates, which are the same inequalities as ob-
tained in the linear case (inequalities (3.11) and (3.12)):

ν‖u‖D ≤ diam(Ω)‖f‖L2(Ω)d ,

ν λ size(D)α |p|2D ≤ diam(Ω)2‖f‖2
L2(Ω)d .

Proof. The proof is similar to that of Lemma 3.2, using the property (4.7) on the
discrete trilinear form.

We are now in position to prove the existence of at least one solution to scheme
(4.3).

Lemma 4.5 (existence of a discrete solution). Under hypotheses (3.2)–(3.4), let
D be an admissible discretization of Ω in the sense of Definition 2.1. Let λ ∈ (0,+∞)
and α ∈ (0, 2) be given. Then there exists at least one (u, p) ∈ HD(Ω)d × HD(Ω),
solution to (4.3).

Proof. Let us define V = {(u, p) ∈ HD(Ω)d×HD(Ω) s.t.
∫
Ω
p(x)dx = 0}. Consider

the continuous mapping F : V × [0, 1] → V such that, for a given (u, p) ∈ V and
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ρ ∈ [0, 1], (û, p̂) = F (u, p, ρ) is defined by∫
Ω

û(x) · v(x)dx = η

∫
Ω

u(x) · v(x)dx + ν[u, v]D −
∫

Ω

p(x)divD(v)(x)dx

+ρ

(
1

2

∫
Ω

u(x)2divD(v)(x)dx + bD(u, u, v)

)
−
∫

Ω

f(x) · v(x)dx ∀v ∈ HD(Ω)d,

∫
Ω

p̂(x) · q(x)dx =

∫
Ω

divD(u)(x)q(x)dx + λ size(D)α 〈p, q〉D ∀q ∈ HD(Ω).

It is easily checked that the two above relations uniquely define the function F (·, ·, ·).
Indeed, the value of û

(i)
K and p̂K for a given K ∈ M and i = 1, . . . , d are readily

obtained by setting v(i) = 1K , v(j) = 0 for j �= i, and q = 1K .
The mapping F (., ., .) is continuous, and, for a given (u, p) such that F (u, p, ρ) =

(0, 0), we can apply Lemma 4.4, which proves that (u, p) is bounded independently on
ρ. Since F (u, p, 0) is an affine function of (u, p) and F (u, p, 0) = 0 admits one solution
(see Corollary 3.3), we may apply Theorem 4.3 and conclude the existence of at least
one solution (u, p) to (4.3).

We then have the following strong estimate for the pressure.
Lemma 4.6 (L2(Ω) estimate for the pressure). Under hypotheses (3.2)–(3.4),

let D be an admissible discretization of Ω in the sense of Definition 2.1, and let
ζ > 0 such that regul(D) > ζ. Let λ ∈ (0,+∞) and α ∈ (0, 2) be given. Let
(u, p) ∈ HD(Ω)d × HD(Ω) be a solution to (4.3). Then there exists C25 , depending
only on d, Ω, η, ν, λ, α, and ζ, and not on size(D), such that the following inequality
holds:

‖p‖L2(Ω) ≤ C25

(
‖f‖L2(Ω)d +

(
‖f‖L2(Ω)d

)2)
.(4.11)

Proof. We may follow the proof of Lemma 3.4 until (3.19), which is changed to∫
Ω

p(x)divD(v)(x)dx = η

∫
Ω

u(x) · v(x)dx + ν[u, v]D −
∫

Ω

f(x) · v(x)dx

+
1

2

∫
Ω

u(x)2divD(v)(x)dx + bD(u, u, v).

(4.12)

We again apply the discrete Poincaré inequality (2.4), (3.17), (3.18), and we use (4.8).
We get the existence of C26 , depending only on d, Ω, f , η, ν, λ, and ζ, such that

‖p‖2
L2(Ω) − C4 size(D)|p|DC2 ‖p‖L2(Ω)

≤ C26

(
‖u‖D + ‖f‖L2(Ω)d + ‖u‖2

D
)
‖p‖L2(Ω).

We now apply (3.11) and (3.12), which yields the conclusion.
We now can state the convergence of scheme (4.3).
Theorem 4.7 (convergence of the scheme). Under hypotheses (3.2)–(3.4), let

(D(m))m∈N be a sequence of admissible discretizations of Ω in the sense of Definition
2.1, such that size(D(m)) tends to 0 as m → ∞ and such that there exists ζ > 0 with
regul(D(m)) ≥ ζ for all m ∈ N. Let λ ∈ (0,+∞) and α ∈ (0, 2) be given. Let, for all
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m ∈ N, (u(m), p(m)) ∈ HD(m)(Ω)d ×HD(m)(Ω) be a solution to (4.3) with D = D(m).
Then there exists a weak solution (ū, p̄) of (4.1) in the sense of Definition 4.1 and a
subsequence of (D(m))m∈N, again denoted by (D(m))m∈N, such that the corresponding
subsequence of solutions (u(m))m∈N converges to ū in L2(Ω) and (p(m)− 1

2 (u(m))2)m∈N

weakly converges to p̄ in L2(Ω).
Proof. Since the same estimates as in the linear case are available in the steady

nonlinear case, the first step of the proof of Lemma 3.5 holds for all the terms of (4.2),
which are present in (3.6). We have to prove only that for a given ϕ ∈ C∞

c (Ω)d, as
m → +∞,

T
(m)
11 =

∫
Ω

u(m)(x)2divD(m)(PD(m)ϕ)(x)dx tends to

∫
Ω

ū(x)2divϕ(x)dx

and

T
(m)
12 = bD(u(m), u(m), PD(m)ϕ) tends to b(ū, ū, ϕ).

Thanks to the convergence in L2(Ω)d of (u(m))m∈N to ū and to the discrete Sobolev
inequalities ‖v‖Lq(Ω) ≤ C27 ‖v‖D(m) for all v ∈ HD(m)(Ω) and all q ≤ 6 (see [13,
p. 790]), we get, using the first stability estimate of Lemma 4.4, the convergence
in L2(Ω) of ((u(m))2)m∈N to ū2. We now remark that for i = 1, . . . , d the sequence
(PD(m)ϕ(i))m∈N satisfies the hypotheses of Lemma 2.4. Hence, ∇D(m)PD(m)ϕ(i) weakly

converges to ∇ϕ(i) in L2(Ω)d. One has divDu =
∑d

i=1 ∇
(i)
D u(i) for all u ∈ HD(Ω)d

such that uK = 0 if EK ∩ Eext �= ∅. Hence divD(m)(PD(m)ϕ) weakly converges to divϕ

in L2(Ω), thus providing the limit of T
(m)
11 .

Thanks to (4.6), dropping for short some indices (m), we have

bD(u, u, PDϕ) = T
(m)
13 − T

(m)
14 ,

with

T
(m)
13 =

∑
K∈M

∑
L∈NK

(AKL · uK)((uL − uK) · ϕ(xK))

=

d∑
k=1

d∑
i=1

∫
Ω

u(i)(x)∇(i)
D (u(k))(x)PDϕ

(k)(x)dx,

T
(m)
14 =

1

2

∑
K|L∈Eint

(AKL · (uL − uK))((uL − uK) · (ϕ(xK) − ϕ(xL))).

Thanks to the convergence in L2(Ω) of (u(m)(i)PD(m)ϕ(j))m∈N to ū(i)ϕ(j), i, j =
1, . . . , d, we get from Lemma 2.4 that

lim
m→∞

T
(m)
13 =

d∑
k=1

d∑
i=1

∫
Ω

ū(i)(x)∂iū
(k)(x)ϕ̄(k)(x)dx = b(ū, ū, ϕ).

We have

T
(m)
14 =

1

4

∑
K|L∈Eint

dKL

(
mK|L
dK|L

nKL · (uL − uK)

)
((uL − uK) · (ϕ(xK) − ϕ(xL))),
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and therefore, since |ϕ(xK)−ϕ(xL)| ≤ dKLCϕsize(D), where Cϕ is a bound of ∇ϕ in
L∞(Ω)d×d, and since dKL ≤ 2 size(D), the following estimate holds:

|T (m)
14 | ≤ 4 size(D)2Cϕ‖u‖2

D.

Therefore, the second estimate of Lemma 4.4 yields

lim
m→∞

T
(m)
14 = 0,

which concludes the proof of convergence.

4.2. The transient case. We now turn to the study of the finite volume scheme
for the transient Navier–Stokes equations, the weak formulation of which is in the
following definition.

Definition 4.8 (weak solution to the transient Navier–Stokes equations). Under
hypotheses (1.3)–(1.7), let E(Ω) be defined by (3.5). Then ū is called a weak solution
of (1.1)–(1.2) if ū ∈ L2(0, T ;E(Ω)) ∩ L∞(0, T ;L2(Ω)d) and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀ϕ ∈ L2(0, T ;E(Ω)) ∩ C∞
c (Ω × (−∞, T ))d,

−
∫ T

0

∫
Ω

ū(x, t) · ∂tϕ(x, t) dxdt−
∫

Ω

ūini(x) · ϕ(x, 0) dx

+ ν

∫ T

0

∫
Ω

∇ū(x, t) : ∇ϕ(x, t) dxdt +

∫ T

0

b(ū(·, t), ū(·, t), ϕ(·, t)) dt

=

∫ T

0

∫
Ω

f(x) · ϕ(x, t) dxdt.

(4.13)

The existence of a weak solution of (4.13) in the sense of the above definition, in
two or three dimensions, is a classical result (again, see, e.g., [36] or [5]). Note that
the uniqueness of the solution holds in two dimensions, and that it has only been
proven in three dimensions under small data conditions.

Remark 4.3. From (4.13), we get that a weak solution u of (1.1)–(1.2) in the sense
of Definition 4.8 satisfies ∂tū ∈ L4/d(0, T ;E(Ω)′) and is therefore a weak solution
in the classical sense, such that ū(·, 0) is the orthogonal L2-projection of ūini on
{v̄ ∈ L2(Ω)d,divv̄ = 0, trace(v̄ · n∂Ω, ∂Ω) = 0} (see, for example, [36] or [5]).

We first give the definition of an admissible discretization for a space-time domain.
Definition 4.9 (admissible discretization, transient case). Let Ω be an open

bounded polygonal (polyhedral if d = 3) subset of R
d, and ∂Ω = Ω \ Ω its boundary,

and let T > 0. An admissible finite volume discretization of Ω × (0, T ), denoted by
D, is given by D = (M, E ,P, N), where (M, E ,P) is an admissible discretization of
Ω in the sense of Definition 2.1 and N ∈ N

∗ is given. We then define δt = T/N , and
we denote by size(D) = max(size(M, E ,P), δt) and regul(D) = regul(M, E ,P).

Under hypotheses (1.3)–(1.7), let D be an admissible discretization of Ω × (0, T )
in the sense of Definition 4.9 and let λ ∈ (0,+∞) and α ∈ (0, 2) be given. We write a
Crank–Nicolson scheme for the time discretization, and follow the nonlinear steady-
state case for the space discretization; the finite volume scheme for the approximation
of the solution (1.1)–(1.2) is then

u0 ∈ HD(Ω)d,

u0,K =
1

mK

∫
K

uini(x)dx ∀K ∈ M,
(4.14)
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and, again using Bernoulli’s pressure p + 1
2u

2 instead of p, again still denoted by p,

for n = 0, . . . , N − 1, find (un+1, pn+ 1
2
) ∈ HD(Ω)d ×HD(Ω),

such that

∫
Ω

pn+ 1
2
(x)dx = 0 and ∀v ∈ HD(Ω)d,∀q ∈ HD(Ω),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

(un+1(x) − un(x)) · v(x)dx + νδt[un+ 1
2
, v]D

− δt

∫
Ω

pn+ 1
2
(x)divD(v)(x)dx +

δt

2

∫
Ω

un+ 1
2
(x)2divD(v)(x)dx

+ δt bD(un+ 1
2
, un+ 1

2
, v) =

∫ (n+1)δt

nδt

∫
Ω

f(x, t) · v(x)dxdt,∫
Ω

divD(un+ 1
2
)(x)q(x)dx = −λ size(D)α 〈pn+ 1

2
, q〉D,

(4.15)

where un+ 1
2

stands for 1
2 (un+1 + un).

In (4.15), we consider the approximation of bD(·, ·, ·) given by (4.4). We then
define the set HD(Ω×(0, T )) of piecewise constant functions in each K×(nδt, (n+1)δt),
K ∈ M, n = 0, . . . , N − 1, and we define (u, p) ∈ HD(Ω × (0, T ))d ×HD(Ω × (0, T ))
by, for n = 1, . . . , N − 1,{

u(x, t) = un+ 1
2
(x),

p(x, t) = pn+ 1
2
(x),

for a.e. (x, t) ∈ Ω × (nδt, (n + 1)δt).(4.16)

Remark 4.4 (time discretization). If, instead of the Crank–Nicolson scheme, we
use the θ scheme, un+ 1

2
= θun+1 + (1− θ)un, with θ ∈ [1/2, 1], the convergence proof

which follows applies with a few minor changes. However, this is not so if θ is smaller
than 1/2; in particular, the estimate of Lemma 4.10 does not seem to be obtained
easily in this case. Note that variable time steps may also be considered.

Lemma 4.10 (existence of a discrete solution). Under hypotheses (1.3)–(1.7),
let D be an admissible discretization of Ω × (0, T ) in the sense of Definition 4.9.
Let λ ∈ (0,+∞) and α ∈ (0, 2) be given. Then there exists at least one (u, p) ∈
HD(Ω × (0, T ))d ×HD(Ω × (0, T )), solution to (4.14)–(4.16).

Proof. We remark that, for a given n = 0, . . . , N − 1, taking as unknown un+ 1
2
,

and noting that un+1 = 2un+ 1
2
−un, scheme (4.15) is under the same form as scheme

(4.3), with η = 2/δt and with a term involving un included in the right-hand side.
Therefore the existence of at least one solution follows from Lemma 4.5.

Lemma 4.11 (estimates for the velocity). Under hypotheses (1.3)–(1.7), let D
be an admissible discretization of Ω × (0, T ) in the sense of Definition 4.9. Let λ ∈
(0,+∞) and α ∈ (0, 2). Let (u, p) ∈ HD(Ω × (0, T ))d ×HD(Ω × (0, T )) be a solution
to (4.14)–(4.16). Then there exists C28 > 0, depending only on d, Ω, ν, u0, f , T ,
such that the following inequalities hold:

‖u‖L∞(0,T ;L2(Ω)d) ≤ C28 ,(4.17)

‖u‖L2(0,T ;HD(Ω)d) ≤ C28 ,(4.18)

and

λ size(D)α
N−1∑
n=0

δt|pn+ 1
2
|2D = λ size(D)α

∫ T

0

|p(·, t)|2Ddt ≤ C28 .(4.19)
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Proof. Let k = 1, . . . , N . Setting v = un+ 1
2

in the first equation of (4.15), and

summing on K ∈ M and n = 0, . . . , k − 1 in the first equation of (4.15), and using
property (4.7), we get.

1

2

k−1∑
n=0

∫
Ω

(un+1(x)2 − un(x)2)dx + ν

k−1∑
n=0

δt[un+ 1
2
, un+ 1

2
]D

−
k−1∑
n=0

δt

∫
Ω

pn+ 1
2
(x)divD(un+ 1

2
)(x)dx =

k−1∑
n=0

∫ (n+1)δt

nδt

∫
Ω

f(x, t) · un+ 1
2
(x)dxdt.

This leads, setting q = pn+ 1
2

in the second equation of (4.15), to

1

2

∫
Ω

(uk(x)2 − u0(x)2)dx + ν

k−1∑
n=0

δt[un+ 1
2
, un+ 1

2
]D

+ λ size(D)α
k−1∑
n=0

δt|pn+ 1
2
|2D =

∫ kδt

0

∫
Ω

f(x, t) · u(x, t)dxdt.

(4.20)

Setting k = N in (4.20) gives (4.18) and (4.19). The discrete Poincaré inequality (2.4)
and the inequality ‖u0‖L2(Ω)d ≤ ‖uini‖L2(Ω)d give

‖uk‖2
L2(Ω)d ≤ diam(Ω)2

2ν
‖f‖2

L2(Ω×(0,T ))d + ‖uini‖2
L2(Ω)d ∀k = 1, . . . , N,

which proves (4.17), since ‖un+ 1
2
‖L2(Ω)d ≤ 1

2 (‖un‖L2(Ω)d + ‖un+1‖L2(Ω)d) for all n =
0, . . . , N − 1.

Lemma 4.12 (space and time velocity translate estimates). Under hypotheses
(1.3)–(1.7), let D be an admissible discretization of Ω×(0, T ) in the sense of Definition
4.9. Let λ ∈ (0,+∞), α ∈ (0, 2), and ζ > 0, such that regul(D) ≥ ζ. Let (u, p) ∈
HD(Ω× (0, T ))d×HD(Ω× (0, T )) be a solution to (4.14)–(4.16). We still denote by u
the extension in R

d×R of u by 0 outside of Ω×(0, T ). Then there exists C29 > 0 and
C30 > 0, depending only on d, Ω, ν, λ, α, u0, f , ζ, and T , such that the following
inequalities hold:

‖u(· + ξ, ·) − u‖2
L2(Rd×R)d ≤ C29 |ξ|(|ξ| + 4 size(M)) ∀ξ ∈ R

d(4.21)

and

‖u(·, · + τ) − u‖L1(R;L2(Rd)d) ≤ C30 |τ |1/2 ∀τ ∈ R.(4.22)

Proof. In the following proof, we denote by Ci, where i is an integer, various
positive real numbers which can depend only on d, Ω, ν, λ, α, u0, f , ζ, and T .
Inequality (4.21) is obtained from (4.18) (see [13]). Let us prove (4.22). Let τ ∈ (0, T )
be given. We define the following norms on HD(Ω)d,

∀ w ∈ HD(Ω)d,

‖w‖2
D,λ = ‖w‖2

D

+
1

λsize(D)α

(
sup

{∫
Ω

divD(w)(x)q(x)dx, q ∈ HD(Ω), |q|D = 1

})2
(4.23)
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and

∀ w ∈ HD(Ω)d,

‖w‖	,D,λ = sup

{∫
Ω

w(x) · v(x)dx, v ∈ HD(Ω)d, ‖v‖D,λ = 1

}
.

(4.24)

We then have, for a.e. t ∈ (0, T ),

‖u(·, t + τ) − u(·, t)‖2
L2(Ω)d ≤ ‖u(·, t + τ) − u(·, t)‖D,λ‖u(·, t + τ) − u(·, t)‖	,D,λ,

and therefore, thanks to Young’s formula,

‖u(·, t + τ) − u(·, t)‖L2(Ω)d ≤
√
τ

2
‖u(·, t + τ) − u(·, t)‖D,λ

+
1

2
√
τ
‖u(·, t + τ) − u(·, t)‖	,D,λ.

(4.25)

We get, from (4.15), for all q ∈ HD(Ω) and for a.e. t ∈ (0, T ),∫
Ω

divD(u(·, t))(x)q(x)dx = −λ size(D)α 〈p(·, t), q〉D,

which proves, using (4.23), that

‖u(·, t)‖2
D,λ ≤ ‖u(·, t)‖2

D + λ size(D)α|p(·, t)|2D.
Using the Cauchy–Schwarz inequality, we have(∫ T−τ

0

‖u(·, t + τ) − u(·, t)‖D,λdt

)2

≤ 4T

∫ T

0

‖u(·, t)‖2
D,λdt,

and therefore, using (4.18) and (4.19),∫ T−τ

0

‖u(·, t + τ) − u(·, t)‖D,λdt ≤ C31 .(4.26)

We now study ‖u(·, t + τ) − u(·, t)‖	,D,λ. We can write, for a.e. t ∈ (0, T − τ) and
x ∈ Ω,

u(x, t + τ) − u(x, t) =
1

2

N−1∑
n=0

(χn(t, τ) + χn+1(t, τ))(un+1(x) − un(x)),

where, for all n ∈ N and t ∈ (0, T ), χn(t, τ) = 1 if nδt ∈ [t, t + τ [, and χn(t, τ) = 0
otherwise. This implies

‖u(·, t + τ) − u(·, t)‖	,D,λ

≤ 1

2

N−1∑
n=0

(χn(t, τ) + χn+1(t, τ))‖un+1 − un‖	,D,λ.

(4.27)

Let us then obtain a bound for ‖un+1 − un‖	,D,λ. Using the definition of the scheme
(4.15), we get that, for all v ∈ HD(Ω)d,∫

Ω

(un+1(x) − un(x)) · v(x)dx =

∫ (n+1)δt

nδt

∫
Ω

f(x, t) · v(x)dxdt

− νδt[un+ 1
2
, v]D + δt

∫
Ω

pn+ 1
2
(x)divD(v)(x)dx

− δt

2

∫
Ω

u2
n+ 1

2
divD(v)(x)dx− δt bD(un+ 1

2
, un+ 1

2
, v).

(4.28)
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Using the definition of divD, the fact that
∑

σ∈EK
mσnK,σ = 0, and the Cauchy–

Schwarz inequality, there exists C32 such that∫
Ω

u2
n+ 1

2
(x)divD(v)(x)dx ≤ C32 ‖u2

n+ 1
2
‖L2(Ω) ‖v‖D.

The discrete Sobolev inequality (4.9) leads to

‖u2
n+ 1

2
‖L2(Ω) ≤

d∑
i=1

‖(u(i)

n+ 1
2

)2‖L2(Ω) =

d∑
i=1

‖u(i)

n+ 1
2

‖2
L4(Ω) ≤ C33 ‖un+ 1

2
‖2
D.

We take ‖v‖D,λ = 1 and note that, from definition (4.23), we obtain that ‖v‖D ≤ 1
and that ∫

Ω

pn+ 1
2
(x)divD(v)(x)dx ≤ (λ size(D)α)

1/2 |pn+ 1
2
|D.

We then take the supremum in (4.28). Using the Cauchy–Schwarz inequality, the
discrete Poincaré inequality, and (4.8), this yields

‖un+1 − un‖	,D,λ ≤
√
δt diam(Ω)‖f‖L2((nδt,(n+1)δt);L2(Ω)d)δt

+ δt ν ‖un+ 1
2
‖D + (λ size(D)α)

1/2 |pn+ 1
2
|D

+δt

(
1

2
C32 C33 + C19

)
‖un+ 1

2
‖2
D.

Summing the above equation for n = 0 to N − 1, applying the Cauchy–Schwarz
inequality to all terms of the right-hand side except the last one, and using (4.18) and
(4.19), we get that there exists C34 such that

N−1∑
n=0

‖un+1 − un‖	,D,λ ≤ C34 .

Hence, noting that for all n = 0, . . . , N ,
∫ T−τ

0
χn(t, τ)dt ≤ τ , we have

1

2

∫ T−τ

0

N−1∑
n=0

(χn(t, τ) + χn+1(t, τ))‖un+1 − un‖	,D,λdt ≤ C34 τ,

which proves, using (4.27),∫ T−τ

0

‖u(·, t + τ) − u(·, t)‖	,D,λdt ≤ C34 τ.(4.29)

Thanks to (4.25), (4.26), and (4.29), we obtain that∫ T−τ

0

‖u(·, t + τ) − u(·, t)‖L2(Ω)ddt ≤ C35

√
τ .

Using (4.17), we have∫ T

T−τ

‖u(·, t + τ) − u(·, t)‖L2(Ω)ddt =

∫ T

T−τ

‖ − u(·, t)‖L2(Ω)ddt ≤ C28 τ ≤
√
τ
√
TC28 ,
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and a similar inequality holds for
∫ 0

−τ
‖u(·, t + τ) − u(·, t)‖L2(Ω)ddt. This thus gives

(4.22), for any τ ∈ (0, T ). The case τ ≥ T is obtained again using (4.17), and the case
τ ≤ 0 is obtained from τ ≥ 0 by the change of variable s = t+ τ . This completes the
proof of (4.22).

Theorem 4.13 (convergence of the scheme). Under hypotheses (1.3)–(1.7), let
ζ > 0 be given and let (D(m))m∈N be a sequence of admissible discretizations of Ω ×
(0, T ) in the sense of Definition 4.9, such that regul(D(m)) ≥ ζ and size(D(m)) tends
to 0 as m → ∞. Let λ ∈ (0,+∞) and α ∈ (0, 2) be given. Let, for all m ∈ N,
(u(m), p(m)) ∈ HD(m)(Ω × (0, T ))d ×HD(m)(Ω × (0, T )) be a solution to (4.14)–(4.16)
with D = D(m). Then there exists a subsequence of (D(m))m∈N, again denoted by
(D(m))m∈N, such that the corresponding subsequence of solutions (u(m))m∈N converges
in L2(0, T ;L2(Ω)d) to a weak solution ū of (1.1)–(1.2) in the sense of Definition 4.8.

Proof. Let us assume that the assumptions of the theorem hold. Using trans-
lates estimates (4.21) and (4.22) in the space L1(R;L1(Rd)d), we can apply Kol-
mogorov’s theorem. We get that there exist ū ∈ L1(0, T ;L1(Ω)d) and a subsequence
of (D(m))m∈N, again denoted by (D(m))m∈N, such that the corresponding subsequence
of solutions (u(m))m∈N converges in L1(0, T ;L1(Ω)d) to ū as m → ∞. Using (4.18),
we get ‖u(m)‖L2(0,T ;HDm (Ω)d) ≤ C28 for all m ∈ N, which gives, using the discrete

Sobolev inequalities, ‖u(m)‖L1(0,T ;L4(Ω)d) ≤ C36 for all m ∈ N. Using a classical re-

sult on spaces Lp(0, T ;Lq(Ω)), we get that (u(m))m∈N converges in L1(0, T ;L2(Ω)d)
to ū as m → ∞. Thanks to (4.17), we have ‖u(m)‖L∞(0,T ;L2(Ω)d) ≤ C28 for all

m ∈ N. The same result on spaces Lp(0, T ;Lq(Ω)) implies that (u(m))m∈N converges
in L2(0, T ;L2(Ω)d) to ū as m → ∞. We can therefore pass to the limit in (4.21). The
resulting inequality implies ū ∈ L2(0, T ;H1

0 (Ω)d) (see [13]). Passing to the limit in
(4.17) leads to ū ∈ L∞(0, T ;L2(Ω)d).

Let us now prove that ū is a weak solution of (1.1)–(1.2) in the sense of Definition
4.8.

Let ϕ ∈ C∞
c (Ω × (−∞, T ))d be given, with divϕ(x, t) = 0 for all (x, t) ∈ Ω ×

(−∞, T ). Let D(m) be a given admissible discretization extracted from the considered
subsequence. Omitting some of the indices m for the simplicity of notation, we then
set v = PDϕ(·, nδt) in (4.15), and we sum for n = 0, . . . , N − 1. We thus get

T
(m)
15 + T

(m)
16 + T

(m)
17 + T

(m)
18 + T

(m)
19 = T

(m)
20 ,(4.30)

with

T
(m)
15 =

N−1∑
n=0

∫
Ω

(un+1(x) − un(x)) · PDϕ(x, nδt)dx,

T
(m)
16 =

N−1∑
n=0

δt[un+ 1
2
, PDϕ(·, nδt)]D,

T
(m)
17 = −

N−1∑
n=0

δt

∫
Ω

pn+ 1
2
(x)divD(PDϕ(·, nδt))(x)dx,

T
(m)
18 =

1

2

N−1∑
n=0

δt

∫
Ω

un+ 1
2
(x)2divD(PDϕ(·, nδt))(x)dx,
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T
(m)
19 =

N−1∑
n=0

δtbD(un+ 1
2
, un+ 1

2
, PDϕ(·, nδt)),

and

T
(m)
20 =

N−1∑
n=0

∫ (n+1)δt

nδt

∫
Ω

f(x, t) · PDϕ(x, nδt)dxdt.

In the following, we denote by Ci various positive reals which can depend only on d,
Ω, T , uini, f , ν, ζ, and λ. We first start with the study of T16. We classically have
(see [13])

lim
m→∞

T
(m)
16 =

∫ T

0

∫
Ω

∇ū(x, t) : ∇ϕ(x, t)dxdt.(4.31)

The proof that

lim
m→∞

T
(m)
17 = 0(4.32)

is a consequence of (4.19) and of a direct adaptation of Lemma 2.3 to time-dependent
functions. Let us now prove that

lim
m→∞

T
(m)
18 = 0.(4.33)

Since (u(m))2 tend to ū2 as m → ∞ in L1(Ω × (0, T )), the same argument as in the
steady-state case (see proof of Theorem 4.7) provides (4.33).

We now turn to the study of T19. Following the proof of Lemma 4.7, the proof
that

lim
m→∞

T
(m)
19 =

∫ T

0

b(ū(·, t), ū(·, t), ϕ(·, t))dt(4.34)

is a direct consequence of the convergence of u to ū in L2(Ω × (0, T ))d and Lemma
2.3. The study of T20 is classical, and we have

lim
m→∞

T
(m)
20 =

∫ T

0

∫
Ω

f(x, t) · ϕ(x, t)dxdt.(4.35)

Let us now prove that

lim
m→∞

T
(m)
15 = −

∫ T

0

∫
Ω

ū(x, t)∂tϕ(x, t)dxdt−
∫

Ω

uini(x)ϕ(x, 0)dx.(4.36)

Indeed, we have

T
(m)
15 = −

∫
Ω

u0(x) · PDϕ(x, 0)dx− T
(m)
21 − 1

2
T

(m)
22

with

T
(m)
21 =

N−1∑
n=0

∫
Ω

un+ 1
2
(x) · (PDϕ(x, (n + 1)δt) − PDϕ(x, nδt))dx
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and

T
(m)
22 =

N−1∑
n=0

∫
Ω

(un+1(x) − un(x)) · (PDϕ(x, (n + 1)δt) − PDϕ(x, nδt))dx.

We classically have

lim
m→∞

∫
Ω

u0(x) · PDϕ(x, 0)dx =

∫
Ω

uini(x)ϕ(x, 0)dx.

We also easily have, thanks to the convergence properties of u(m), that

lim
m→∞

T
(m)
21 =

∫ T

0

∫
Ω

ū(x, t)∂tϕ(x, t)dxdt.

Let us prove that the term T
(m)
22 tends to 0 as m → ∞. We have T

(m)
22 = T

(m)
23 −T

(m)
15 ,

with

T
(m)
23 =

N−1∑
n=0

∫
Ω

(un+1(x) − un(x)) · PDϕ(x, (n + 1)δt)dx.

Thanks to the limits given by (4.31), (4.32), (4.33), (4.34), and (4.35), and thanks to

(4.30), we obtain that limm→∞ T
(m)
15 = T24, with

T24 = −ν

d∑
i=1

∫ T

0

∫
Ω

∇u(i)(x, t) · ∇ϕ(i)(x, t)dxdt−
∫ T

0

b(u(·, t), u(·, t), ϕ(·, t))dt

+

∫ T

0

∫
Ω

f(x) · ϕ(x, t)dxdt.

Since (4.31), (4.32), (4.33), (4.34), and (4.35) are available as well, replacing PDϕ(·, nδt)
by PDϕ(·, (n + 1)δt) in T16, T17, T18, T19, and T20, we also get using (4.15) with

v = PDϕ(·, (n+1)δt), that limm→∞ T
(m)
23 = T24. Thus we get that limm→∞ T

(m)
22 = 0,

which concludes the proof of (4.36). Thanks to (4.30), (4.36), (4.31), (4.32), (4.33),
(4.34), and (4.35), we thus obtain (4.13), provided that we can prove that

divū(x, t) = 0 for a.e. (x, t) ∈ Ω × (0, T ).

This last relation can be shown by following the proof of (3.22). This completes the
proof of the above theorem.

Remark 4.5. Using the above proof of convergence, we get the energy inequality
for d = 2 or 3 from inequality (4.20), since we have the property

∫ T

0

∫
Ω

(∇u(i)(x, t))2dxdt ≤ lim inf
m→∞

N(m)−1∑
n=0

δt
[
u

(m,i)

n+ 1
2

, u
(m,i)

n+ 1
2

]
D(m)

.

5. Numerical results. Some simple numerical experiments are described here
to observe the convergence rate of schemes (3.8) and (4.14)–(4.15) with respect to the
space and time discretizations. To that purpose, we use a prototype code where the
nonlinear equations are solved by an underrelaxed Newton method, and the linear
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systems by a direct band Gaussian elimination solver. This code handles Stokes or
Navier–Stokes problems with various boundary conditions, using nonuniform rectan-
gular or triangular meshes on general 2D polygonal domains.

The linear Stokes equations are first considered in the case d = 2, Ω = (0, 1) ×
(0, 1), ν = 1, and f is taken to satisfy (3.1) with a solution equal to

ū(1)(x(1), x(2)) = −∂(2)Ψ(x(1), x(2)),
ū(2)(x(1), x(2)) = ∂(1)Ψ(x(1), x(2)),
p̄(x(1), x(2)) = 100

(
(x(1))2 + (x(2))2

)
,

denoting by Ψ(x(1), x(2)) = 1000 [x(1)(1 − x(1))x(2)(1 − x(2))]2. The approximate
solution (u, p) is computed with the scheme (3.8). The observed numerical order of
convergence, considering the norms ‖u− PDū‖L2(Ω)d and ‖p− PDp̄‖L2(Ω), is equal to
2 for the velocity components, and to 1 for the pressure in the cases of nonuniform
rectangular and square meshes (from 400 to 6400 control volumes). Note that in these
cases, there is apparently no need for a significant positive value of the stabilization
coefficient λ. The observed numerical order of convergence is similar in the case of
triangular meshes (from 1400 to 5600 control volumes), but values such as λ = 10−4,
α = 1 have to be used in order to avoid oscillations in the pressure field. This
confirms that in the case of triangles, the approximate pressure space is too large to
avoid stabilization. In fact, other tests were performed (e.g., the classical backward
step) which show that stabilization is also needed in the case of rectangles when more
severe problems are considered. Note that in industrial implementations, stabilization
may be performed by other means; see [29, 1] (see also [4] in the triangular case).

We then proceed to a similar comparison in the case of transient nonlinear prob-
lems. Considering a transient adaptation of the above steady-state analytical solu-
tion, the continuous problem is then defined by zero initial and boundary conditions,
T = 0.1, and the function f is taken to satisfy (1.1) with a solution equal to

ū(1)(x(1), x(2), t) = −t ∂(2)Ψ(x(1), x(2)),
ū(2)(x(1), x(2), t) = t ∂(1)Ψ(x(1), x(2)),
p̄(x(1), x(2), t) = 100 t

(
(x(1))2 + (x(2))2

)
,

with the same function Ψ as above. We again observe an order 2 of convergence
of the approximate solution at times t = .05 and t = .1, when the space and time
discretizations are simultaneously modified with the same ratio (from δt = 0.01 to
δt = 0.0025 as the size of the mesh is divided by 4). Similar observations are still
valid for the classical Green–Taylor example.

6. Conclusions. The above numerical results show that the theoretical error
estimate, which is proven in section 3 for the linear Stokes equations, is nonoptimal;
a sharper estimate is currently being written [20] under more regularity assumptions
on the mesh.

The proof of convergence of the full space-time discrete approximation of (1.1)
given by (4.15) uses estimates on the time translates, which were introduced in the
L2(Ω × (0, T )) framework for the proof of convergence of the finite volume method
for degenerate parabolic equations [17, 13] and used for several other cases; see, e.g.,
[16]. A major difficulty which arises here is the handling on the nonlinear advective
term, as in the continuous case, which leads us to establish an estimate for the time
translates in L1(0, T ;L2(Ω)). This new technique may be used for parabolic problems
with other types of nonlinearities.
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We remarked that industrial codes use other types of stabilizations than the
one used here. Further works will be devoted to the mathematical study of such
stabilizations, for which, to our knowledge, no proof of convergence is known up to
now.

Finally, let us also mention undergoing work on a generalization of the scheme
studied here to the full transient Navier–Stokes equations including the energy balance
under the Boussinesq approximation.
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[12] R. Eymard, T. Gallouët, and R. Herbin, Convergence of finite volume approximations
to the solutions of semilinear convection diffusion reaction equations, Numer. Math., 82
(1999), pp. 91–116.
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A REFINED GALERKIN ERROR AND STABILITY ANALYSIS FOR
HIGHLY INDEFINITE VARIATIONAL PROBLEMS∗

L. BANJAI† AND S. SAUTER†

Abstract. Recently, a refined finite element analysis for highly indefinite Helmholtz problems
was introduced by the second author. We generalize the analysis to the Galerkin method applied to
an abstract highly indefinite variational problem. In the refined analysis, the condition for stability
and a quasi-optimal error estimate are expressed in terms of approximation properties T (S) ≈ S
and T (u + S) ≈ S. Here, u is the solution of the original variational problem, T is a certain
continuous solution operator, and S is the finite dimensional test and trial space. The abstract
analysis can be applied to both finite and boundary element solutions of high-frequency Helmholtz
problems. We apply the analysis to investigate the properties of the Brakhage–Werner boundary
integral formulation of the Helmholtz problem, discretized by a standard Galerkin boundary element
method. In the case of scattering by the unit sphere, we derive the explicit dependence of the error
and of the stability condition on the wave number k. We show that hk � 1 is a sufficient condition for
stability and a quasi-optimal error estimate. Further, we show that the constant of quasioptimality
is independent of k, which is an improvement over previously available results. Thus, the boundary
element method does not suffer from the pollution effect.

Key words. indefinite problems, Helmholtz equation, finite and boundary element methods
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1. Introduction. The numerical solution of high-frequency Helmholtz problems
has attracted much interest in recent years; see, for example, [3, 4, 7, 10, 11, 12, 17,
28, 29]. The main aim of this paper is to develop a refined analysis for the error and
the stability of the Galerkin discretization of high-frequency Helmholtz problems.
The analysis should be general enough to include both boundary and finite element
methods and allow for discussion of standard and special finite/boundary elements
such as the ones used in [23, 27, 29]. Most importantly, it should be possible to obtain
optimal results on the dependence of the error bounds and the stability condition on
the wave number k. The explicit dependence on k is rarely given in existing literature;
for exceptions, see [8, 11, 13].

It is well known that the Galerkin finite element method with standard piecewise
polynomial basis functions suffers from the so-called pollution effect [3]. If piecewise
linear basis functions are used, the stability condition in the mesh width h is very
strong: hk2 � 1. In [3], a generalized finite element method was presented in one
dimension, with the stability condition reduced to hk � 1; see also [17]. The proofs
rely on explicit knowledge of the Green’s function and, hence, do not carry over to
higher dimensions. Further, the general stability and convergence analysis given in
[23] does not yield the improved stability condition. With this in mind, in [29] a
refined finite element analysis was developed that gives improved stability and error
estimates.

In this paper, we generalize the results of [29] to an abstract theory applicable
to a general indefinite variational problem. We prove that the condition T (S) ≈ S,
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of approximate invariance of the test and trial space S under a certain continuous
solution operator T , is sufficient for stability. The quasi-optimal error estimate is
proved under a similar condition T (u + S) ≈ S, where u is the solution of the con-
tinuous variational problem. This new concept is the crux of the abstract analysis
we develop. We describe how the abstract analysis can be used to prove the results
of [29] for the finite element method. As a further example of its use, we consider
the boundary element method for the solution of high-frequency Helmholtz problems
using the Brakhage–Werner boundary integral formulation. This problem has already
been considered in [13] and recently in [11]. There, the stability condition hk � 1 and
a quasi-optimal error estimate, with the constant of quasi-optimality proportional to
k1/3, was proved for the case of the unit sphere. In [11], the authors consider the
problem of high-frequency scattering by a convex object in two dimensions. Known
asymptotics of the scattered wave were used to reduce the problem to the computation
of unknown amplitudes, which are less oscillatory than the original scattered wave.
These were then computed using a Galerkin method for which the quasi-optimal error
with constant of O(k1/3) was proved in the case of the unit disk and sphere.

We obtain a sharper error estimate, with the quasi-optimality constant indepen-
dent of k. More importantly, our paper provides a framework in which to investigate
the properties of boundary element methods with special basis elements such as plane
waves [27]. For special finite element methods, it was already shown in [29] that
the refined analysis obtains results outside the reach of standard analyses. We give
reasons to expect the same to be true for boundary element methods. Further, the
condition of the approximability of T (S) and T (u+S) by the boundary element space
can give guidelines for the construction of special boundary elements.

2. A highly indefinite variational problem. Let H and V be Hilbert spaces
such that H is continuously imbedded in V and, hence, V ′ is continuously imbedded
in H ′, where V ′ and H ′ are the dual spaces; see [33]. Denote by (·, ·)H and (·, ·)V the
respective inner products, and by ‖ · ‖H and ‖ · ‖V the induced norms.

We are interested in the following abstract variational problem: Given f ∈ H ′,
find u ∈ H such that

a(u, v) = 〈f, v〉 for all v ∈ H,(2.1)

where a(·, ·) : H × H → C and we have written 〈f, v〉 = f(v) for the value of the
functional f at v.

Naturally, we need to place some conditions on the above problem.
Assumptions.

A1: a(·, ·) : H ×H → C is a bounded sesquilinear form. Thus, a(u, v) is linear in
u, conjugate linear in v, and

|a(u, v)| ≤ Cc‖u‖H‖v‖H .

A2: There exist bounded sesquilinear forms aH(·, ·) : H × H → C and aV (·, ·) :
V × V → C such that

a(u, v) = aH(u, v) + aV (u, v)

and

|aH(u, u)| ≥ αH‖u‖2
H , |aV (u, v)| ≤ CV ‖u‖V ‖v‖V for any u, v ∈ H.
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A3: Problem (2.1) and its adjoint have a unique solution u ∈ H. Further,

‖u‖H ≤ Creg‖f‖H′ .

The sesquilinear forms a(·, ·), aH(·, ·), and aV (·, ·) define the corresponding bound-
ed linear operators:

A : H → H ′, AH : H → H ′, and AV : V → V ′.(2.2)

In view of A3, the inverses of A and the adjoint A∗ are also bounded linear operators:

A−1 : H ′ → H and A∗−1 : H ′ → H.(2.3)

We now investigate the properties of the Galerkin discretization of (2.1).

2.1. Abstract stability and convergence analysis of the Galerkin meth-
od. Let S ⊂ H be a finite dimensional subspace of H. We wish to consider the
Galerkin discretization of problem (2.1): Given f ∈ H ′, find uS ∈ S such that

a(uS, v) = 〈f, v〉 for all v ∈ S.(2.4)

We now derive a condition on S that guarantees the existence and uniqueness of uS

and a quasi-optimal error estimate.

2.1.1. Stability and convergence. For our analysis of the stability and con-
vergence of (2.4), the following continuous dual problem will be crucial: Given w ∈ H,
let z ∈ H be such that

a(v, z) = −aV (w, v) for all v ∈ H.

From (A2) it follows that aV (w, ·) defines a bounded linear functional on V . Since H
is continuously imbedded in V , i.e., the identity mapping I : H → V is continuous,
aV (w, ·) defines also a bounded linear functional on H. Therefore, we can apply (A3)
to obtain that the solution z ∈ H of the above adjoint problem exists and is unique.
Consequently, we can define a solution operator by T w := z. Using again the fact
that H is continuously imbedded in V and the properties of the operators in (2.2)
and (2.3), we conclude that the solution operator T = −A∗−1AV is a bounded linear
operator mapping from H to H. Hence, there exists a constant CT such that

‖T u‖H ≤ CT ‖u‖H for all u ∈ H.(2.5)

Remark 1. In applications, the operator T will be a compact operator. Usually
it is also a smoothening operator; see Remark 5 and [29].

Let us now define a measure of approximability in the space S. This measure
depends on some subset H̃ ⊆ H, which satisfies S ⊂ H̃ and u + S ⊂ H̃, where u is
the exact solution of (2.1). The measure is defined by

η(S) := sup
w∈H̃\{0}

inf
v∈S

‖T w − v‖H

‖w‖H

.(2.6)

Remark 2.

1. For a dense sequence (Sl)l≥1 of spaces, i.e., ∪lSl
‖·‖H

= H, we have liml→∞ η(Sl)
= 0.
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2. We will prove stability of (2.4) and a quasi-optimal error estimate, under the
condition that η(S) is small enough.

3. Note that the choice H̃ = H is always possible. However, a choice of a smaller
set H̃ � H might result in a smaller value of η(S) and a less restrictive
stability condition.

Theorem 2.1. Let S be such that

η(S) ≤ αH

2Cc
,(2.7)

and let u ∈ H be the solution of (2.1). Then there exists a unique solution uS ∈ S of
the discrete problem (2.4). Moreover,

‖u− uS‖H ≤ 2Cc

αH

inf
v∈S

‖u− v‖H .

Proof. Since S is finite dimensional, it suffices to prove uniqueness. Given wS ∈ S,
let zS be the best approximation to z = T wS with respect to the H-norm. Then,

|a(wS, wS + zS)| = |aH(wS, wS) − a(wS, z − zS)| ≥ αH‖wS‖2
H − Cc‖wS‖H‖z − zS‖H

≥ αH‖wS‖2
H − Ccη(S)‖wS‖2

H .

From (2.5) we have that

‖z‖H ≤ CT ‖wS‖H

and hence

‖wS + zS‖H ≤ ‖wS‖H + ‖z‖H + ‖z − zS‖H ≤ (1 + CT + η(S))‖wS‖H .

Using (2.7), we have that

|a(wS, wS + zS)| ≥ αH

2
‖wS‖2

H ≥ αH

2 + 2CT + 2η(S)
‖wS‖H‖wS + zS‖H .

Hence, we have the discrete inf-sup condition

inf
u∈S\{0}

sup
v∈S\{0}

|a(u, v)|
‖u‖H‖v‖H

≥ αH

2 + 2CT + 2η(S)
> 0,

and we have proved that the discrete solution uS exists and is unique.
Next, let z′ = T e, where e = u− uS, and again let z′S be the best approximation

to z′ in the H-norm. Then,

|aV (e, e)| = |a(e, z′)| = |a(e, z′ − z′S)| ≤ Ccη(S)‖e‖2
H .

Hence, for any v ∈ S,

αH‖e‖2
H ≤ |aH(e, e)| = |a(e, e) − aV (e, e)| = |a(e, u− v) − aV (e, e)|
≤ Cc‖e‖H‖u− v‖H + Ccη(S)‖e‖2

H .

Therefore, using (2.7),

‖e‖H ≤ 2Cc

αH

‖u− v‖H for any v ∈ S.

Thus, we have also proved the quasioptimality of the Galerkin method.
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Remark 3. A result on the stability and convergence of the Galerkin finite el-
ement method applied to an indefinite PDE can be found in Theorem 5.7.6 of [6].
The same constant of quasioptimality 2Cc/αH, as above, is also given in [6]; this is
an improvement over the usual estimate given by Céa’s lemma; see Remark 6. The
essential novelty of our concept is that for stability and convergence it is sufficient to
have T (S) ≈ S and T (u + S) ≈ S. In contrast, the approach taken in [6] requires
that the adjoint problem have full regularity. Theorem 2.1 is a stronger result, which
implies the result of [6]. In particular, the kind of condition given in [6] does not
allow for improved stability estimates of [29]; for details see [29].

2.1.2. Error estimate in the V -norm. By using the Aubin–Nitsche tech-
nique, we can bound the V -norm of the error by the H-norm of the error. Let ψ ∈ H
be such that

a(v, ψ) = (e, v)V for all v ∈ H.

Let S : H → H be the solution operator defined by Se := ψ, and let

μ(S) := sup
w∈H̃\{0}

inf
v∈S

‖Sw − v‖H

‖w‖V

.

If ψS is the best approximation to ψ with respect to the H-norm, then

‖e‖2
V = a(e, ψ) = a(e, ψ − ψS) ≤ Ccμ(S)‖e‖H‖e‖V .(2.8)

Hence, we have an estimate of the V -norm of the error in terms of the H-norm of the
error. We proceed now to obtain an alternative condition to that given in Theorem 2.1
for the existence of a quasi-optimal error estimate. For any v ∈ H,

αH‖e‖2
H ≤ |aH(e, e)| = |a(e, e) − aV (e, e)| ≤ Cc‖e‖H‖u− v‖H + CV ‖e‖2

V

≤ Cc‖e‖H‖u− v‖H + CV (Ccμ(S))
2 ‖e‖2

H .

Hence, under the alternative condition

CV (Ccμ(S))
2
< αH/2,

we have obtained the same quasi-optimal estimate as before. The results are collected
in the following theorem.

Theorem 2.2. Let u ∈ H be the solution of (2.1) and uS ∈ S be a solution of
(2.4). Then

‖u− uS‖V ≤ Ccμ(S)‖u− uS‖H .

Further, if S is such that CV (Ccμ(S))
2
< αH/2, then

‖u− uS‖H ≤ 2Cc

αH

inf
v∈S

‖u− v‖H .

Remark 4. An abstract indefinite problem similar to the one we investigate here
has been considered by Schatz in [31]. As an assumption of the abstract problem,
Schatz imposes a condition of the type (2.8) with μ(S) → 0 for dim(S) → ∞; see [31,
(12)]. This is not possible if V = H, which is the case of the boundary integral equation
considered in section 3; hence the results of [31] do not apply, and Theorem 2.1 needs
to be used. Further in [31] the constant of quasioptimality is not investigated.
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2.2. An example application in a finite element setting. The abstract
analysis given here is a generalization of the finite element analysis for highly indefinite
Helmholtz problems introduced in [29]. The appropriate choice of spaces H and V
for the finite element method in [29] is

H = H1(Ω), V = L2(Ω),

where the space H is equipped with a weighted norm (cf. [23]):

‖u‖H :=
(
|u|21,Ω + k2‖u‖2

0,Ω

)1/2
.

With this choice of spaces, the assumptions A1–A3 are proved in [29]. Theorems 2.2
and 2.5 of [29] are then implied by Theorems 2.1 and 2.2, respectively. For details we
refer the reader to [29].

We now turn to another case to which the abstract theory can be applied. Namely,
we consider the solution of a Helmholtz problem by a Galerkin boundary element
method.

3. A Helmholtz scattering problem. Let Ω be a bounded domain in R
d,

d = 2, 3, with a smooth boundary Γ. We consider the following exterior Helmholtz
problem: Given g ∈ H1/2(Γ), find u ∈ H1

loc(Ω
c) such that

−Δu− k2u = 0 in Ωc,

u = g on Γ,(3.1)

lim
r→∞

r(d−1)/2

(
∂u

∂r
− iku

)
= 0, where r := ‖x‖,

is satisfied in a weak sense. The equation governs the process of acoustic scattering
by a sound soft object; see [25].

Let Gk(·) be the fundamental solution of the Helmholtz equation:

Gk(r) =
i

4
H0(kr), for d = 2,

Gk(r) =
1

4π

eikr

r
, for d = 3,

with r > 0. Throughout the paper Hν is the Hankel function of the first kind of order
ν defined by

Hν(x) := Jν(x) + i Yν(x), x > 0,

where Jν and Yν are the Bessel functions of the first and second kind. Employing the
fundamental solution, we define, respectively, the single layer and the double layer
integral operators:

(Skϕ) (x) :=

∫
Γ

Gk(‖x− y‖)ϕ(y)dΓy, x ∈ R
d \ Γ,(3.2)

(Dkϕ) (x) :=

∫
Γ

∂

∂ny
Gk(‖x− y‖)ϕ(y)dΓy, x ∈ R

d \ Γ,(3.3)

where ny is the unit normal to the surface Γ at the point y ∈ Γ. The corresponding
boundary integral operators are defined by

(Vkϕ) (x) :=

∫
Γ

Gk(‖x− y‖)ϕ(y)dΓy, x ∈ Γ,(3.4)

(Kkϕ) (x) :=

∫
Γ

∂

∂ny
Gk(‖x− y‖)ϕ(y)dΓy, x ∈ Γ.(3.5)
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We now state the well-known mapping properties of the above operators; see [9, 30].
Proposition 3.1. Let Ω ⊂ R

d, d = 2 or 3, be a bounded domain with smooth
boundary Γ. Then for any s ∈ R the following are bounded linear operators:

(a) Vk : Hs(Γ) → Hs+1(Γ),
(b) Kk : Hs(Γ) → Hs+1(Γ).
It is well known that every solution ϕ ∈ H−1/2(Γ) of Vkϕ = g has the property

that u = Skϕ satisfies the exterior Helmholtz problem (3.1). However, for countably
many wave numbers k the operator Vk is not injective. To avoid this problem Brakhage
and Werner [5], Leis [22], and Panič [26], independently suggested representing the
solution as a combination of the single and double layer potentials,

u = Dkϕ− iαSkϕ,(3.6)

for some coupling parameter α > 0. The unknown density ϕ in (3.6) satisfies the
boundary integral equation

g =

(
1

2
I + Kk − iαVk

)
ϕ,(3.7)

where I is the identity operator. We denote by (·, ·)0 the L2(Γ) inner product, and
by ‖ · ‖0 the corresponding norm, and define

a(ϕ, v) := (Rkϕ, v)0, where Rk :=
1

2
I + Kk − iαVk.(3.8)

To be able to apply the abstract theory developed in section 2, we need to prove that
the assumptions A1–A3 hold in this case. Proposition 3.1 implies that the condi-
tion A1 is satisfied with the choice H = L2(Γ). We can then define

aH(ϕ, v) :=
1

2
(Iϕ, v)0 and aV (ϕ, v) := (R̃kϕ, v)0, where R̃k := Kk − iαVk.

Therefore, A := Rk, AH := 1
2I, and AV := R̃k. Again by Proposition 3.1, it follows

that the condition A2 holds with the choice V = L2(Γ); trivially, V is then contin-
uously imbedded in H. Furthermore, we can clearly set αH = 1/2. The following
proposition deals with assumption A3.

Proposition 3.2. Let Ω ⊂ R
d be a bounded domain with smooth boundary Γ.

Then, for any g ∈ L2(Γ) there exists a unique ϕ ∈ L2(Γ) such that

a(ϕ, v) = (g, v)0 for all v ∈ L2(Γ),(3.9)

and there exists a constant Creg > 0, which depends on both k and Ω, such that

‖ϕ‖0 ≤ Creg‖g‖0.

Moreover,

u = (Dkϕ) − iα (Skϕ)

is the solution of the Helmholtz problem (3.1).
Proof. In the original paper of Brakhage and Werner [5], the existence and unique-

ness were proved for the classical formulation. To extend the proof to the variational
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formulation we proceed as in [13].1 Since R̃k is a continuous operator from L2(Γ) to

H1(Γ), and H1(Γ) is compactly imbedded in L2(Γ), we have that R̃k is a compact
operator from L2(Γ) to L2(Γ). Therefore we can apply the Fredholm–Riesz–Schauder

theory to the operator Rk = I/2 + R̃k, which implies that to prove invertibility it
suffices to prove injectivity; i.e., it suffices to prove that KerRk = {0}.

Let Rkϕ = 0; then ϕ = −2R̃kϕ. Applying the mapping property R̃k : Hs(Γ) →
Hs+1(Γ) twice, we have that ϕ ∈ H2(Γ) and is hence continuous. For continuous
functions the proof of uniqueness given in [5] is applicable, therefore ϕ = 0.

To find an approximation to the solution ϕ numerically, we use the Galerkin
discretization. Let S be a finite dimensional subset of L2(Γ). Then, find a ϕS ∈ S
such that

a(ϕS, v) = (g, v)0 for all v ∈ S.(3.10)

Since we have checked that all the assumptions of the abstract theory hold, from
Theorem 2.1 we immediately obtain the following result.

Corollary 3.3. Let S be such that Ccη(S) ≤ 1/4. Then (3.10) has a unique
solution ϕS ∈ L2(Γ) and

‖ϕ− ϕS‖0 ≤ 4Cc inf
v∈S

‖ϕ− v‖0,

where ϕ ∈ L2(Γ) is the solution of (3.9).
Remark 5. Recall the definition of T from the previous section. Since T =

R∗
k
−1R̃k, from Proposition 3.1 we have that T : L2(Γ) → H1(Γ); therefore, T is a

smoothening operator. To emphasize the dependence of T on k, for the rest of the
paper we denote it by Tk := T .

We will later show that for the case of Ω = S
2 and a particular choice of the

coupling parameter α, the constant Cc is independent of k. The result of Theorem 2.2
brings little new in this setting, since V = H. For the finite element method of [29],
Theorem 2.2 is of more interest.

So far we have made no specification for the set S except that it is a finite dimen-
sional subspace of L2(Γ). Next, we consider the special case of the usual piecewise
polynomial boundary elements.

3.1. Piecewise polynomial boundary elements. Let G be a shape-regular
triangulation of Γ. We assume that no approximation of the boundary occurs; namely,

Γ =
⋃
τ∈G

τ.

The mesh width h is defined to be

h := max{hτ : τ ∈ G}, where hτ := sup
x,y∈τ

‖x− y‖.

The set S is then defined to be a space of piecewise polynomial functions on the tri-
angulation G. In particular we are interested in the space S0,−1

G,h of functions constant
on each triangle τ ∈ G.

Next we give the well-known approximation property of the piecewise-constant
finite element spaces.

1In [13] a weaker assumption is made on the smoothness of Γ but stronger on the spaces: Γ ∈ C2,λ,
0 < λ < 1, and u, f ∈ H1/2(Γ).
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Theorem 3.4. Let ϕ ∈ H1(Γ) and S = S0,−1
G,h . There exists a constant CA,

which depends only on the minimal angle of the triangulation G, such that

inf
v∈S

‖ϕ− v‖0 ≤ CAh‖ϕ‖1.

We now proceed to investigate the dependence of the stability and the Galerkin
error on the wave number. To do this, we make the assumption that the derivatives
of the solution grow proportionally with the wave number k.

Definition 3.5. For a given ρ > 0, the set Oρ,k,l contains functions ϕ ∈ H l(Γ)
such that

‖ϕ‖l ≤ ρkl‖ϕ‖0.

The conditions under which the solution of (3.9) belongs to a class Oρ,k,l are
discussed in [8].

Corollary 3.6. Let S = S0,−1
G,h , and let ϕ ∈ L2(Γ) be the solution of (3.9). If

CcCAh‖Tk‖H1(Γ)←L2(Γ) < 1/4,

the discrete problem (3.10) has a unique solution ϕS ∈ S. If, further, ϕ ∈ Oρ,k,1 and
ϕ �= 0, then the relative error is bounded as

‖ϕ− ϕS‖0

‖ϕ‖0
≤ 4CcCAhk.

Proof. Using the approximation property of the piecewise-constant space and
choosing H̃ = H = L2(Γ), we have that

η(S) = sup
ϕ∈L2(Γ)\{0}

inf
v∈S

‖Tkϕ− v‖0

‖ϕ‖0
≤ CA sup

ϕ∈L2(Γ)\{0}

h‖Tkϕ‖1

‖ϕ‖0
≤ 1

4Cc
.

Hence, by Corollary 3.3, we have the required stability condition.
Let us now assume that ϕ ∈ Oρ,k,l. Using Corollary 3.3 again,

‖ϕ− ϕS‖0 ≤ 4Cc inf
v∈S

‖ϕ− v‖0 ≤ 4CcCAh‖ϕ‖1 ≤ 4CcCAhk‖ϕ‖0.

In the next section we investigate the dependence of Cc and of ‖Tk‖H1(Γ)←L2(Γ)

on the wave number k. Our goal is to state the dependence on k of all the constants
in Corollary 3.6 in the case of the sphere.

3.2. The special case of the unit sphere. In this section we restrict our
discussion to the case Γ = S

2. This case was investigated by Giebermann in [13] and
by Domı́nguez, Graham, and Smyshlyaev in [11]. Our final result will be a slight
improvement on the results of [13] and [11]. The improvement is in part due to the
abstract theory developed at the start of the paper and in part due to some stronger
bounds on the eigenvalues that we prove; the details are stated in Remark 6.

The Fourier coefficients of a function f ∈ L2(S2) are defined by

fm
n :=

∫
S2

Y m
n (x̂)f(x̂)dsx,(3.11)

where Y m
n are the spherical harmonics; see [1]. Spaces equivalent to the usual Sobolev

spaces on S
2 can be defined through the Fourier coefficients.
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Definition 3.7. For any s ≥ 0, let Hs(S2) be the space containing all functions
f ∈ L2(S2) whose Fourier coefficients satisfy

∞∑
n=0

n∑
m=−n

|fm
n |2(1 + n2)s < ∞.

The inner product is defined by

〈f, g〉s :=

∞∑
n=0

(1 + n2)s
n∑

m=−n

fm
n gmn .

For negative s, Hs(S2) is the dual space of H−s(S2).

In the following, jn, yn, and h
(1)
n are spherical Bessel functions of the first, second,

and third kind, respectively; see [1]. These can be defined through the Bessel functions

jn(x) :=

√
π

2x
Jn+ 1

2
(x),

yn(x) :=

√
π

2x
Yn+ 1

2
(x),(3.12)

h(1)
n (x) := jn(x) + iyn(x) =

√
π

2x
Hn+ 1

2
(x).

Lemma 3.8.

(a) The space Hs(S2) is a Hilbert space and is equivalent to Hs(S2). Namely, the
norms induced by the inner products are equivalent, and the sets Hs(S2) and
Hs(S2) coincide.

(b) The spherical harmonics form a complete orthogonal system in Hs(S2) and
are the eigenfunctions of operators Vk, Kk, Rk, and Tk. We have that

VkY
m
n = λ

(V )
n,kY

m
n , with λ

(V )
n,k := 2ikh(1)

n (k)jn(k),

KkY
m
n = λ

(K)
n,k Y

m
n , with λ

(K)
n,k := −1/2 + ik2h(1)

n (k)j′n(k),

RkY
m
n = λ

(R)
n,kY

m
n , with λ

(R)
n,k := 1/2 + λ

(K)
n,k − iαλ

(V )
n,k

= ik2h(1)
n (k)j′n(k) + 2αkh(1)

n (k)jn(k).

TkY n
m = R∗

k
−1R̃kY

n
m = λ

(T )
n,kY

m
n , with λ

(T )
n,k :=

λ
(K)
n,k − iαλ

(V )
n,k

1/2 + λ
(K)
n,k + iαλ

(V )
n,k

.

(c) For s ≥ 0,

‖Rk‖Hs(S2)←Hs(S2) = sup
n∈N0

|λ(R)
n,k |, ‖Tk‖Hs+1(S2)←Hs(S2) = sup

n∈N0

√
1 + n2|λ(T )

n,k |.

Proof. For the proof of (a) see [24]. The eigenvalues of the operators Vk and Kk

are given in [19]. From these it is easy to derive the eigenvalues of the remaining two
operators. A proof of (c) can be found in [13]; see also [24].

The above result justifies our writing Hs(S2) for both Hs(S2) and Hs(S2). We
now prove some results on the Bessel functions that, in view of (3.12) and Lemma 3.8,

have direct use in bounding eigenvalues λ
(R)
n,k . Recall that the Bessel functions Jν(x)

and Yν(x) are real valued for ν ∈ R and x ≥ 0.
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Lemma 3.9.

(a) Jν(x), J ′
ν(x), Y ′

ν(x) > 0, Yν(x) < 0, for 0 < x < ν,
(b) Jν(x) and xJ ′

ν(x) are positive increasing functions of x, for 0 < x < ν,
(c) for x > 0 the product x

[
J2
ν (x) + Y 2

ν (x)
]
, as a function of x, decreases mono-

tonically if ν > 1/2, and increases monotonically if ν < 1/2.
Proof. Parts (a) and (b) are proved in Watson [32, section 15.3]. A proof of

part (c) can also be found in Watson [32, section 13.74].
Proposition 3.10. There exists a constant C > 0 such that for any x ≥ 1 and

ν ∈ [1/2,∞) ∪ {0},
(a) |Jν(x)Hν(x)| ≤ Cx−2/3,
(b) |xJ ′

ν(x)Hν(x)| ≤ C.
Proof. A proof of part (a) for ν > 1/2 is given in [13] and [11], where also a bound

that is less sharp than what we prove here is given for part (b).
In the proof we make use of the following asymptotic expansions [1, (9.3.31)–

(9.3.34)]:

Jν(ν) = aν−1/3 + O(ν−5/3),

Yν(ν) = −
√

3aν−1/3 + O(ν−5/3),

J ′
ν(ν) = bν−2/3 − cν−4/3 + O(ν−8/3),

Y ′
ν(ν) =

√
3
(
bν−2/3 + cν−4/3

)
+ O(ν−8/3),

(3.13)

where a, b, and c are certain positive constants.
We divide the proof into two cases, as follows.
Case 1: ν > x ≥ 0. Using the identity Jν(x)Y ′

ν(x) − J ′
ν(x)Yν(x) = 2/(πx)

[1, (9.1.16)], we have that

0
Lemma 3.9(a)

≤ Jν(x)Y ′
ν(x)

[1, (9.1.16)]
=

2

πx
+ J ′

ν(x)Yν(x).

Therefore,

|xJ ′
ν(x)Yν(x)| Lemma 3.9(a)

= −xJ ′
ν(x)Yν(x) ≤ 2

π
.

Also,

|xJ ′
ν(x)Jν(x)| = xJ ′

ν(x)Jν(x)
Lemma 3.9(b)

≤ νJ ′
ν(ν)Jν(ν)

(3.13)

≤ C,

where C is independent of x and ν. Combining the last two results, we have that

|xJ ′
ν(x)Hν(x)| ≤ |xJ ′

ν(x)Jν(x)| + |xJ ′
ν(x)Yν(x)| ≤ C +

2

π
for x < ν.(3.14)

Case 2: 1/2 < ν ≤ x. We use the following definitions:

Mν(x) := |Hν(x)| and Nν(x) := |H ′
ν(x)|.

We have that

x2|J ′
ν(x)Hν(x)|2 ≤ x2N2

ν (x)M2
ν (x)

[1, (9.2.22)]
= x2M ′

ν
2
(x)M2

ν (x) +
4

π
.(3.15)
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Next,

x
d

dx
{−xM ′

ν(x)}

[1, (9.2.25)]
= (x2 − ν2)Mν(x) − 4

π2

1

M3
ν (x)

= Mν(x)

(
x2 − ν2 − 4

π2
M−4

ν (x)

)
[14, (8.479)]

≤ Mν(x)
(
x2 − ν2 − x2

)
≤ 0.

Hence, −xM ′
ν(x) is a monotonically decreasing function. From Lemma 3.9(c) we have

that, for ν > 1/2, xM2
ν (x) is monotonically decreasing, and hence M ′

ν(x) ≤ 0. It is

now not difficult to see that xM ′
ν
2
(x) is also a monotonically decreasing function.

Therefore,

xM ′
ν
2
(x)xM2

ν (x) ≤ ν2M ′
ν
2
(ν)Mν(ν)2

(3.13)

≤ C for x ≥ ν >
1

2
.(3.16)

Combining this last result with (3.14) and (3.15) gives the required bound for ν >
1/2. The result for ν = 1/2 is obtained by the continuity of Bessel functions in the
argument ν.

Finally we prove (a) and (b) for ν = 0.

|J0(k)H0(k)| ≤ 1

k
kM2

0 (k)
Lemma 3.9(c)

≤ 1

k
lim
k→∞

kM2
0 (k)

[1, (9.2.3)]

≤ C
1

k
≤ Ck−2/3.

Similarly,

k|J ′
0(k)H0(k)| = k|J1(k)H0(k)| ≤

√
kM1(k)

√
kM0(k)

Lemma 3.9(c)

≤ M1(1) lim
k→∞

√
kM0(k)

[1, (9.2.3)]

≤ C.

Corollary 3.11. Let Rk : L2(S2) → L2(S2) be the operator defined, as in (3.8),
by

Rk = I/2 + Kk − iαVk.

Then Rk is bounded, and there exists a constant C > 0 independent of k such that

‖Rk‖L2(S2)←L2(S2) ≤ C(1 + αk−2/3).

Proof. In view of Lemma 3.8, to prove the statement we need to find bounds on
the eigenvalues of the operator Rk. Using the definition of spherical Bessel functions
(3.12) and Proposition 3.10, we have that∣∣∣λ(V )

n,k

∣∣∣ =
∣∣∣2kh(1)

n (k)jn(k)
∣∣∣ =

∣∣∣πHn+ 1
2
(k)Jn+ 1

2
(k)

∣∣∣ ≤ Ck−2/3,

and ∣∣∣∣12 + λ
(K)
n,k

∣∣∣∣ =
∣∣∣k2h(1)

n (k)j′n(k)
∣∣∣ =

∣∣∣∣π2 kHn+ 1
2
(k)

(
J ′
n+ 1

2
(k) +

1

2k
Jn+ 1

2
(k)

)∣∣∣∣
≤

∣∣∣π
2
kHn+ 1

2
(k)J ′

n+ 1
2
(k)

∣∣∣ +
∣∣∣π
4
Hn+ 1

2
(k)Jn+ 1

2
(k)

∣∣∣ ≤ C(1 + k−2/3).
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The result now follows from the identity

‖Rk‖Hs(S2)←Hs(S2) = sup
n∈N0

∣∣∣λ(R)
n,k

∣∣∣ = sup
n∈N0

∣∣∣1/2 + λ
(K)
n,k − iαλ

(V )
n,k

∣∣∣ .
Note that for α ≤ k2/3, ‖Rk‖L2(S2)←L2(S2) is bounded by a constant independent

of k. Numerical experiments suggest Cc = ‖Rk‖L2(S2)←L2(S2) ≤ 1.76, for α = k2/3.

Definition 3.12. Let α := k2/3 in the definition of Rk; see (3.8).

Remark 6. The choice α ∝ k is prevalent in the literature; see [2, 11, 13, 21].
In [2] and [21] the choice was made to minimize the condition number of the matrices
arising from the discretization of boundary integral operators in the case of the unit
sphere and the unit disk. The same choice maximizes the inf-sup constant and hence
optimizes the error estimate given by Céa’s lemma; see [13]. The error estimate in
Corollary 3.3 is not affected by the inf-sup constant, and with the choice α = k2/3

the constant of quasioptimality Cc is independent of k. Céa’s lemma gives a more
pessimistic bound, with the quasioptimality constant growing as k1/3; see [11, 13].

It remains now to find the dependence on k of the continuity constant of the
operator Tk = R∗

k
−1R̃. From Lemma 3.8 we have that

‖Tk‖H1(S2)←L2(S2) = sup
n

√
1 + n2|λT

n,k| = sup
n

√
1 + n2

∣∣∣∣∣∣ λ
(K)
n,k − iαλ

(V )
n,k

1/2 + λ
(K)
n,k + iαλ

(V )
n,k

∣∣∣∣∣∣ .
By taking into account the properties of the zeros of Bessel functions (see [1, (9.5)]),
it can be seen that the denominator in the above expression is never zero; however,
a proof of a useful upper bound for the whole expression is beyond the scope of this
paper. Instead, we consider the three asymptotic cases: k fixed and n → ∞, n ≈ k,
and n fixed and k → ∞.

Proposition 3.13.

(a) For fixed ν and k → ∞ we have, for α ≤ k,

∣∣λT
ν,k

∣∣ =

∣∣∣∣∣1 − 1

2eiχ
(
− 2α

k cosχ + i sinχ
) + O(k−1)

∣∣∣∣∣ ,
where χ = k − νπ/2 − π/2.

(b) For ν + 1/2 = k and α ≤ k4/3 we have

|λT
ν,k| = 1 +

∣∣∣iπab(1 +
√

3i) + 2πa2(1 −
√

3i)αk−2/3 + O(k−2/3)
∣∣∣−1

,

where a and b are constants from the asymptotic expansions (3.13).
(c) For fixed k and ν → ∞ we have

λT
ν,k = O(ν−1).

Proof. Part (a). We first use the definition of spherical functions to write the
eigenvalues in terms of Bessel functions and then make use of asymptotic expansions
given in [1, (9.2)]. From (3.12), as in proof of Corollary 3.11, we have for ν fixed and
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k → ∞ that

∣∣λT
ν,k

∣∣ =

∣∣∣∣∣−
1
2 + iπ2 kHν+ 1

2
(k)J ′

ν+ 1
2

(k) − π
2 ( i

2 − 2α)Hν+ 1
2
(k)Jν+ 1

2
(k)

iπ2 kHν+ 1
2
(k)J ′

ν+ 1
2

(k) − π
2 ( i

2 − 2α)Hν+ 1
2
(k)Jν+ 1

2
(k)

∣∣∣∣∣
=

∣∣∣∣∣1 − 1

iπkHν+ 1
2
(k)J ′

ν+ 1
2

(k) − π( i
2 − 2α)Hν+ 1

2
(k)Jν+ 1

2
(k)

∣∣∣∣∣
[1, (9.2)]

=

∣∣∣∣∣1 − 1

2eiχ
(
− 2α

k cosχ + i sinχ
)
− α

kO(k−1) + O(k−1)

∣∣∣∣∣ ,
where χ = k − (ν + 1/2)π/2 − π/4 = k − νπ/2 − π/2. The result now follows from
the assumption α ≤ k.

Part (b). Using the asymptotic expansions (3.13), we obtain that

λT
ν,k = 1 +

∣∣∣iπkab((1 +
√

3i)k−1 + O(k−5/3)
)

−πa2(i/2 − 2α)
(
(1 −

√
3i)k−2/3 + O(k−2)

)∣∣∣−1

= 1 +
∣∣∣iπab(1 +

√
3i) + 2πa2(1 −

√
3i)αk−2/3 + O(k−2/3) + αO(k−2)

∣∣∣−1

.

Part (c). For the proof, we use the asymptotic expansions given in [1, (9.3)]:

Jν(k)Hν(k)
[1, (9.3.1)]∼ 1

2πν

(
ek

2ν

)2ν

− i
1

πν
= O(ν−1).(3.17)

We also make use of Stirling’s approximation to the Gamma function [1, (6.1.39)]:

J ′
ν(k)

[1, (9.1.10)]
= ν

( 1
2k)ν

Γ(ν + 1)

(
1

k
− 2 + ν

2ν

(
1

2
k

)
1

ν + 1
+ · · ·

)
[1, (6.1.39)]∼

√
ν

2π

(
ke

2ν

)ν (
1

k
+ O(ν−1)

)
.

Hence,

J ′
ν(k)Hν(k)

[1, (9.3.1)]∼ −i
1

πk
+ O(ν−1).(3.18)

Finally,

λT
ν,k

(3.17), (3.18)∼ −1/2 + 1/2 + O(ν−1)

1/2 + O(ν−1)
= O(ν−1).

Part (c) in the above proposition merely confirms that Tk is a pseudodifferential
operator of order −1. From part (b) we conclude that for n + 1/2 = k,√

1 + n2|λT
n,k| ∼ O(k).(3.19)

The denominator in the expression of part (a) is clearly never 0; however, it becomes
arbitrarily close to zero for certain large enough values of k and for α < k. Neverthe-
less, note that |− 2α

k cosχ + i sinχ| ≥ 2α/k, for k > 2α. Thus,

|λT
ν,k| = O(k/α) for k > 2α.
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Fig. 3.1. Plot of
√

1 + n2|λT
n,k| for different values of n and k. The vertical lines denote the

positions at which n + 1/2 = k.

Since α = k2/3, the condition k > 2α is equivalent to k > 8.
To see how relevant these asymptotic cases are for estimating the continuity con-

stant, in Figure 3.1 we plot
√

1 + n2|λT
n,k| for different values of k and n. The picture

suggests that the maximum occurs for n + 1/2 ≈ k. Hence, in view of (3.19), we are
lead to the following heuristic:

‖Tk‖H1(S2)←L2(S2) ≤ CXk(3.20)

for some constant CX > 0 independent of k. Numerical experiments suggest that
CX ≤ 1.7. In [11], it was proved that, in two dimensions with the coupling parameter
α = k and large enough k, the eigenvalues of Rk are bounded below by 1/2. This
further supports our claim (3.20).

Now we are in a position to give estimates of the dependence on k of the stability
and the accuracy of the boundary element method.

3.2.1. Piecewise-constant Galerkin boundary element method.
Proposition 3.14. Let Γ = S

2, S = S0,−1
G,h , ϕ ∈ L2(Γ) be the solution of (3.9),

and let (3.20) hold. There exists a constant c independent of k such that if hk < c,
the discrete problem (3.10) has a unique solution ϕS ∈ S. If, further, ϕ ∈ Oρ,k,1, then
there exists a constant C independent of k such that

‖ϕ− ϕS‖0 ≤ Chk‖ϕ‖0.

Therefore, the boundary element method does not suffer from the pollution effect,
and a condition hk � 1 is sufficient to guarantee stability and a quasi-optimal error
estimate.

Remark 7. Let us consider the two dimensional case, Γ = {x ∈ R
2 : ‖x‖ = 1}.

The Sobolev space Hs(Γ) can be identified with the space Hs([0, 2π]) of 2π periodic
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distributions; see [2, 20]. Periodic functions, e±inθ, n ∈ N0, are then the eigenfunc-
tions of the operators Vk and Kk with eigenvalues given by

λ
(V )
n,k =

iπ

2
Jn(k)Hn(k), λ

(K)
n,k = −1

2
+

iπ

2
kJ ′

n(k)Hn(k).

Comparing these with the case of the sphere, it is clear that the analogous analysis of
this section holds for the two dimensional case as well. In particular, the statement
of Proposition 3.14 also holds for the case of the unit ball in two dimensions.

3.2.2. The h-p version of the Galerkin method. Just as in the finite element
method [17, 18], the use of higher order polynomials improves the stability condition
of the boundary element method. Let S = Sp,1

G,h be the usual boundary element space
of continuous piecewise polynomial functions of order p. Using the approximation
properties of such spaces proved in [15, 16, 17, 18], we proceed as in the case of

piecewise-constant basis functions. Assuming that H̃ = Oρ,k,l, where 1 ≤ l ≤ p, we
obtain the estimate

η(S) = sup
ψ∈H̃\{0}

inf
v∈S

‖Tkψ − v‖0

‖ψ‖0

[15, 17]

≤ CA(l) sup
ψ∈H̃\{0}

‖Tkψ‖l+1

‖ψ‖0

(
h

2p

)l+1

≤ CA(l)CXk sup
ψ∈H̃\{0}

‖ψ‖l
‖ψ‖0

(
h

2p

)l+1

≤ ρCA(l)CX

(
kh

2p

)l+1

,

where C(l) is a constant depending only on l. Therefore, the condition for stability
and the quasi-optimal error estimate reduces to hk � 2p. Thus, higher order elements
allow for a coarser mesh and the following error estimate:

‖ϕ− ϕS‖0 ≤ C

(
kh

2p

)l+1

‖ϕ‖0.
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[5] H. Brakhage and P. Werner, Über das Dirichletsche Außenraumproblem für die Helm-
holtzsche Schwingungsgleichung, Arch. Math., 16 (1965), pp. 325–329.

[6] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 2nd
ed., Texts in Appl. Math. 15, Springer-Verlag, New York, 2002.

[7] O. P. Bruno, C. A. Geuzaine, J. A. Monro, Jr., and F. Reitich, Prescribed error tolerances
within fixed computational times for scattering problems of arbitrarily high frequency: The
convex case, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 362 (2004), pp. 629–
645.

[8] A. Buffa and S. Sauter, On the acoustic single layer potential: Stabilization and Fourier
Analysis, SIAM J. Sci. Comput., to appear.



A REFINED GALERKIN ERROR AND STABILITY ANALYSIS 53

[9] G. Chen and J. Zhou, Boundary Element Methods, Comput. Math. Appl., Academic Press,
London, 1992.

[10] E. Darrigrand, Coupling of fast multipole method and microlocal discretization for the 3-D
Helmholtz equation, J. Comput. Phys., 181 (2002), pp. 126–154.
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TIME SPLITTING ERROR IN DSMC SCHEMES FOR THE
SPATIALLY HOMOGENEOUS INELASTIC BOLTZMANN

EQUATION∗

SERGEJ RJASANOW† AND WOLFGANG WAGNER‡

Abstract. The paper is concerned with the numerical treatment of the uniformly heated inelastic
Boltzmann equation by the direct simulation Monte Carlo (DSMC) method. This technique is
presently the most widely used numerical method in kinetic theory. We consider three modifications
of the DSMC method and study them with respect to their efficiency and convergence properties.
Convergence is investigated with respect to both the number of particles and the time step. The
main issue of interest is the time step discretization error due to various splitting strategies. A
scheme based on the Strang-splitting strategy is shown to be of second order with respect to time
step, while there is only first order for the commonly used Euler-splitting scheme. On the other
hand, a no-splitting scheme based on appropriate Markov jump processes does not produce any time
step error. It is established in numerical examples that the no-splitting scheme is about two orders
of magnitude more efficient than the Euler-splitting scheme. The Strang-splitting scheme reaches
almost the same level of efficiency as that of the no-splitting scheme, since the deterministic time
step error vanishes sufficiently fast.

Key words. granular matter, Boltzmann equation, stochastic numerics
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1. Introduction. A basic tool for modeling low-density flows of granular mate-
rials is the inelastic Boltzmann equation. We refer to the conference proceedings [17],
[16] and to the monograph [5] for details concerning applications and an appropriate
physical justification. In this paper we consider the spatially homogeneous uniformly
heated inelastic Boltzmann equation

∂tf − β Δv f = Qα(f, f)(1.1)

with initial condition

f(0, v) = f0(v).(1.2)

Equation (1.1) describes the time evolution of a function f(t, v) representing the
average number of particles at time t having a velocity close to v. The symbol Δ
denotes the Laplace operator and the parameter β > 0 determines the strength of the
random forcing. The collision integral is most conveniently written in the weak form∫

R3

Qα(f, f)(v)ϕ(v) dv(1.3)

=
1

2

∫
R3

∫
R3

∫
S2

B(v, w, e) [ϕ(v′α) + ϕ(w′
α) − ϕ(v) − ϕ(w)] f(v) f(w) de dw dv,
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where ϕ is a test function and S2 denotes the unit sphere in the Euclidean space R
3.

The function B is called the collision kernel. The postcollisional velocities are defined
by

v′α = v′α(v, w, e) =
1

2
(v + w) +

1 − α

4
(v − w) +

1 + α

4
|v − w| e,

(1.4)

w′
α = w′

α(v, w, e) =
1

2
(v + w) − 1 − α

4
(v − w) − 1 + α

4
|v − w| e.

The parameter 0 < α ≤ 1 is called the restitution coefficient. For α = 1 the collisions
are elastic and Q1(f, f) coincides with the classical Boltzmann collision operator. A
discussion of the relevance of (1.1), as well as more references, can be found in [10].

In this paper we address the issue of the numerical treatment of (1.1) by the
direct simulation Monte Carlo (DSMC) method. This technique is presently the most
widely used numerical method in kinetic theory (cf. [2], [6]). It is based on a system of
particles performing a random evolution that imitates the behavior of the underlying
physical model. As to inelastic collisions, the homogeneous cooling state of a low-
density granular flow was studied by the DSMC method in [4]. A DSMC method for
uniformly heated granular fluids, described by (1.1), was introduced in [13]. Related
studies were performed in [1], [21]. We refer to [8] for an account of deterministic
numerical methods for the elastic Boltzmann equation and to [9] concerning a deter-
ministic numerical approach to (1.1).

The purpose of this paper is to study three modifications of the DSMC method
for the uniformly heated inelastic Boltzmann equation with respect to their efficiency
and convergence properties. The main issue of interest is the time step discretization
error due to various splitting strategies. The first method, from [13], implements a
straightforward Euler-type splitting in analogy with the classical Bird scheme for the
spatially inhomogeneous elastic Boltzmann equation. The second method follows the
Strang-splitting strategy (cf. [20]). The third method, previously used in [11], avoids
any time step discretization error, since no splitting is used. Convergence is studied
with respect to both the number of particles and the time step. All methods are of first
order with respect to the inverse number of particles. The Strang-splitting scheme is
of second order with respect to the time step, while the Euler-splitting scheme is of
first order. In the numerical examples, the no-splitting scheme is about two orders
of magnitude more efficient than the Euler-splitting scheme. It is observed that the
Strang-splitting scheme reaches almost the same level of efficiency compared to the
no-splitting scheme, since the deterministic time step error vanishes sufficiently fast.

The paper is organized as follows. In section 2 we describe a Markovian parti-
cle system approximating (1.1). In section 3 we define the three DSMC algorithms
mentioned above. In section 4 we introduce a test example and present the results
of numerical experiments. Here we study efficiency and convergence properties of the
algorithms both in the transient and in the steady state cases. Section 5 contains
some concluding remarks.

2. The direct simulation process. Here we describe the time evolution of a
Markovian particle system (

v1(t), . . . , vn(t)
)
, t ≥ 0,(2.1)

where each particle is characterized by its velocity. The process (2.1) corresponds to
(1.1) in the sense that the family of empirical measures
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ν(n)(t, dv) =
1

n

n∑
j=1

δvj(t)(dv)(2.2)

converges (as n → ∞) to the measures f(t, v) dv. We refer to [14], [12] concerning
rigorous convergence results for a wide class of Boltzmann-type models (see also [19,
section 2.3.3]).

Roughly speaking, the system interacts through binary inelastic collisions. In
addition, the particles continuously gain kinetic energy due to Gaussian white noise
forcing. More precisely, we assume∫

S2

B(v, w, e) de ≤ Bmax ∀ v, w ∈ R
3.(2.3)

Then the evolution of system (2.1) is determined via the following steps.

Initial measure. System (2.1) at t = 0 is chosen in such a way that the empirical
measure ν(n)(0, dv) (cf. (2.2)) approximates the initial measure f0(v) dv (cf. (1.2)).

Time counter. Given system (2.1) at time t, the next interaction (collision) takes
place at a random time t + τ, where

Prob {τ ≥ s} = exp

(
−n− 1

2
Bmax s

)
, s ≥ 0.(2.4)

Brownian motion. The particle velocities perform individual Brownian motions
between the collisions. After some time τ without collisions, the particle velocities
are given by

vj(t + τ) = vj(t) +
√

2β τ ξj , j = 1, . . . , n,(2.5)

where ξj ∈ R
3 are independent standard Gaussian random variables.

Collision partners. The indices i and j of the collision partners are chosen uni-
formly on the set {1 ≤ i �= j ≤ n}.

Fictitious collision. Given i and j, the collision is fictitious (the system does not
change) with probability

1 −
∫
S2 B(vi, vj , e) de

Bmax
.(2.6)

Collision. With the remaining probability, a direction vector e is generated ac-
cording to the density

B(vi, vj , e)∫
S2 B(vi, vj , e) de

, e ∈ S2,(2.7)

and the postcollisional velocities

v′α(vi, vj , e), w′
α(vi, vj , e)(2.8)

are computed according to the collision transformation (1.4).
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3. DSMC algorithms. Here we describe three algorithms based on the Markov
process introduced in the previous section. They differ in the way time splitting is
carried out.

The algorithms perform the time evolution of a particle system (v1, . . . , vn). At
some observation points

sm, m = 0, 1 . . . ,M,(3.1)

functionals of the system

ξ(n) =
1

n

n∑
j=1

ϕ(vj)(3.2)

are computed, where ϕ is an appropriate test function. The random variable (3.2)
approximates the functional ∫

R3

ϕ(v) f(sm, v) dv(3.3)

of the solution of (1.1).
In order to reduce the random fluctuations of the estimator (3.2), a number

N of independent ensembles of particles is generated. The corresponding values of

the random variable are denoted by ξ
(n)
1 , . . . , ξ

(n)
N . The empirical mean value of the

random variable (3.2)

η(n,N) =
1

N

N∑
j=1

ξ
(n)
j(3.4)

is used as an approximation to the functional (3.3). The independent ensembles of
particles are also used to estimate the random fluctuations by means of confidence
intervals. For details we refer, e.g., to [19, section 3.1.4].

3.1. Euler-splitting scheme. First we describe the DSMC method introduced
in [13]. It implements the idea of standard (elastic) DSMC, where the free flow and
collision simulation are separated (cf. [2]). The simulation of random “kicking” and
collisions is split over a time step Δt. The state of the particle system is calculated
at the discrete time points

tk = kΔt, k = 0, 1, . . . ,(3.5)

until all observation points (3.1) (assumed to be multiples of the time step) are
reached.

Algorithm 3.1.

1. Initialization

1.1 set system time t = t0
1.2 generate vj, j = 1, . . . , n, according to f0(v)

2. Simulation (for k = 1, 2, . . . )
2.1 Collision step of length Δt
2.1.1 compute τ according to (2.4)

2.1.2 update the system time t := t + τ
2.1.3 if t ≥ tk then go to Step 2.2
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2.1.4 generate the indices i �= j
2.1.5 go to Step 2.1.1 with probability (2.6)

2.1.6 generate e according to (2.7)

2.1.7 replace vi and vj according to (2.8)

2.2 Kicking step of length Δt
2.2.1 update all velocities (cf. (2.5))

vi := vi +
√

2β Δt ξi, i = 1, . . . , n

2.2.2 set system time t = tk
3. Compute functional (3.2) at all sm

3.2. Strang-splitting scheme. Next we describe a modification of the algo-
rithm from the previous section. We apply the idea of the Strang splitting. This
has been introduced in the context of the elastic Boltzmann equation in [15]. Its
application to equations with rather general operators was studied in [3].

Algorithm 3.2.

1. Initialization

2. Simulation (for k = 1, 2, . . . )
2.1 Collision step of length Δt/2
2.2 Kicking step of length Δt
2.3 Collision step of length Δt/2

3. Computation of functionals

3.3. No-splitting scheme. Finally we recall a DSMC algorithm that was in-
troduced in [11]. The symbols σj denote the last time, at which the particle j was
kicked.

Algorithm 3.3.

1. Initialization

1.1 set system time t = 0
1.2 generate vj, j = 1, . . . , n, according to f0(v)
1.3 set σj = 0, j = 1, . . . , n

2. Simulation (for m = 0, 1, . . . ,M)

2.1 compute τ according to (2.4)

2.2 update the system time t := t + τ
2.3 if t ≥ sm then go to Step 3

2.4 generate the indices i �= j
2.5 update the velocities vi and vj (cf. (2.5))

vi := vi +
√

2β (t− σi) ξi, vj := vj +
√

2β (t− σj) ξj

2.6 update the times of last kicking σi = σj := t
2.7 go to Step 2.1 with probability (2.6)

2.8 generate e according to (2.7)

2.9 replace vi and vj according to (2.8) and go to Step 2.1

3. Calculation of functionals

3.1 update the velocities of all particles (cf. (2.5))

vi := vi +
√

2β (sm − σi) ξi, i = 1, . . . , n

3.2 compute (3.2)

3.3 set system time t = sm and go to Step 2.1
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3.4. Comments. In Algorithms 3.1 and 3.2, the kicking step is computed accu-
rately, i.e., without any further time discretization. Particles are just moved according
to Brownian motion. The collision step contains the random interaction times dis-
tributed according to (2.4). Its accuracy depends on the number of particles. In Algo-
rithm 3.3 particles perform Brownian motion between collisions so that any splitting
errors are avoided.

One might use deterministic interaction times obtained as the expectation of the
distribution (2.4). This would introduce another error, which is small for large n. We
refer to [19, section 3.5.2] concerning a discussion of various time counting procedures.

Unbounded collision kernels. The variable hard sphere model

B(v, w, e) = Cλ |v − w|λ, 0 ≤ λ ≤ 1,(3.6)

is widely used in applications (cf. [2, Chapter 2]). Particular cases are the models
of hard spheres (λ = 1) and of pseudo-Maxwell molecules (λ = 0). The kernel (3.6)
does not satisfy condition (2.3), unless λ = 0. In order to fit into the framework of
section 2, one has to truncate the kernel using some maximal relative velocity Umax.
The truncated kernel

B̂(v, w, e) =

{
B(v, w, e) if |v − w| ≤ Umax,
Cλ U

λ
max otherwise

(3.7)

satisfies (2.3) with Bmax = 4π Cλ U
λ
max. Correspondingly, the parameter of the wait-

ing time distribution (2.4) takes the form

2π (n− 1)Cλ U
λ
max.(3.8)

The probability of a fictitious collision (2.6) is

1 −
(
|vi − vj |
Umax

)λ

.

The density (2.7) is constant so that the vector e is distributed uniformly on the unit
sphere.

Adapting majorants. There are two aspects related to the choice of the trun-
cation parameter Umax. If it is small, then the solution of (1.1) for the kernel (3.7)
will significantly differ from the solution for the original kernel B. If, on the other
hand, the parameter Umax is big, then the time steps between collisions are small
(inverse of parameter (3.8)) and the algorithms are time consuming. Therefore, the
parameter Umax is usually derived from the particle system used in the simulation.

In the classical (elastic) DSMC algorithm (cf. [2]) the starting value of Umax is
based on the temperature of the initial particle system. Then this value is adapted
during the process of calculation each time the relative velocity of a pair of particles
exceeds the stored quantity. This procedure works well in steady state calculations.
The error related to this procedure in transient calculations was studied in [18].

A problem with finding the maximum relative velocity in a particle system is
related to the fact that the effort is quadratic in the number of particles. However,
this can easily be reduced to a linear effort by using the estimate

max
i,j

|vi − vj | ≤ max
i,j

(
|vi − V | + |V − vj |

)
= 2 max

i
|vi − V |,
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where V is any fixed vector. A particular choice is the numerical bulk velocity

V =
1

n

n∑
j=1

vj .

Thus, one may start with Umax = 2 maxi |vi−V | and update the majorant after each
collision

Umax := max
{
Umax, |vi − V |, |vj − V |

}
.(3.9)

This procedure is used in Algorithms 3.1 and 3.2. The situation in Algorithm 3.3 is
slightly more difficult, since particle velocities change continuously as a result of the
kicking process. Here we implemented the above procedure of adapting the majorant,
but in addition the quantity Umax was updated according to (3.9) after each Step 2.5.
The error caused by this truncation does not seem to be significant, as shown by the
very precise tail calculations in [11].

4. Numerical examples. Here we test the algorithms introduced in the previ-
ous section with respect to their convergence properties and efficiency.

We consider the case of a constant collision kernel, namely, (3.6), with

λ = 0, C0 =
1

π
.(4.1)

Note that other values of the constant C0 can be handled by an appropriate time scal-
ing, since the function f(c t, v) solves (1.1) with diffusion coefficient c β and collision
kernel cB, where c > 0 is some constant. Furthermore, we assume∫

R3

f0(v) dv = 1,

∫
R3

v f0(v) dv = 0.

Note the conservation properties∫
R3

f(t, v) dv =

∫
R3

f0(v) dv,

∫
R3

v f(t, v) dv =

∫
R3

v f0(v) dv,

which can be derived easily from the weak form of the equation (cf. (1.3)).
In this case the relaxation of the temperature

T (t) =
1

3

∫
R3

|v|2f(t, v) dv(4.2)

is known analytically. Assuming 0 < α < 1, one obtains (cf. [11])

T (t) = Tα,β(t) = T0 e
−(1 − α2) t + Tα,β(∞)

(
1 − e−(1 − α2) t

)
= Tα,β(∞) + [T0 − Tα,β(∞)] e−(1 − α2) t,(4.3)

where

T0 =
1

3

∫
R3

|v|2f0(v) dv
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and

Tα,β(∞) =
2β

1 − α2
.(4.4)

Note that

lim
α→1

Tα,β(t) = T0 + 2β t.

According to (4.1), the collision kernel is bounded so that the only sources of error
are the number of particles n, the time step Δt (in Algorithms 3.1 and 3.2), and the
number of independent samples N (cf. (3.4)). First order of convergence with respect
to n has been established under rather general assumptions (cf. [14], [12] concerning
the transient case and [7] concerning the steady state case). Convergence with respect
to Δt for Euler splitting (first order) and Strang splitting (second order) was studied
in [3] in the context of rather general operator equations. We refer to [19, section
3.5.5] for more details.

4.1. Approximation on a finite time interval (transient case). Here we
use the Maxwell distribution

f0(v) =
1

(2π)3/2
e−

|v|2
2(4.5)

as the initial condition. For the parameters

α =
1

2
, β = 1,(4.6)

one obtains from (4.3), (4.4)

T (t) = e−
3
4 t +

8

3

(
1 − e−

3
4 t
)
.(4.7)

We approximate the evolution of the temperature (4.2) on the time interval [0, 8.0],
using (3.2) with ϕ(v) = 1

3 |v|2 (cf. (3.3)). The time step in the splitting schemes
(cf. (3.5)) is chosen in the form

Δt =
8

K
, K ≥ 4.

Unless indicated otherwise, the results are averaged over N = 10 000 independent
ensembles (cf. (3.4)).

Particle number convergence. Figure 4.1 illustrates the approximation of the
analytical solution (4.7) (dashed line) by confidence bands (solid lines) computed using
the no-splitting scheme with two different values of n. A “zoom” on the time interval
[5.0, 8.0] of the no-splitting scheme for two higher values of n is shown in Figure 4.2.
The analytical solution (4.7) is mostly covered by the confidence interval for n = 4 096
and completely covered for n = 65 536. More detailed results are given in Table 4.1.
The errors are computed as

Eend =

∣∣∣∣T (tK) − TK

T (tK)

∣∣∣∣ , Emax = max
0≤k≤K

∣∣∣∣T (tk) − Tk

T (tk)

∣∣∣∣ ,
where T (tk) are the exact values (4.7) of the temperature at time point tk and Tk is
the computed temperature. The convergence factors (quotients of subsequent values)
are denoted by CF. The results in Table 4.1 clearly indicate the expected convergence
order O(n−1) of the error. Note that the width Confend of the confidence interval at
tK is proportional to 1√

nN
, since the variance of the estimator (3.2) has the order 1

n .
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Fig. 4.1. No-splitting scheme for n = 64 (left) and n = 256 (right).
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Fig. 4.2. No-splitting scheme for n = 4 096 (left) and n = 65 536 (right).

Table 4.1

No-splitting scheme for different n.

n Eend CF Confend CF Emax CF

16 0.359 E-00 - 0.119 E-00 - 0.359 E-00 -
64 0.939 E-01 3.82 0.420 E-01 2.83 0.939 E-01 3.82

256 0.229 E-01 4.10 0.183 E-01 2.30 0.229 E-01 4.10
1 024 0.584 E-02 3.92 0.865 E-02 2.11 0.584 E-02 3.92
4 096 0.136 E-02 4.29 0.430 E-02 2.01 0.136 E-02 4.29

16 382 0.293 E-03 4.64 0.215 E-02 2.00 0.332 E-03 4.10
65 536 0.141 E-03 2.08 0.108 E-02 1.99 0.141 E-03 2.35

Table 4.2

Euler- and Strang-splitting schemes for n = 4 096.

K EEuler
max CF EStrang

max CF

4 0.931 E-00 - 0.863 E-01 -
8 0.421 E-00 2.21 0.195 E-01 4.42

16 0.200 E-00 2.11 0.501 E-02 3.89
32 0.977 E-01 2.05 0.997 E-03 5.03

Time step convergence. Similar convergence behavior with respect to the par-
ticle number is observed for the Euler- and Strang-splitting schemes, except that the
n-limits contain an error depending on Δt. The corresponding numerical results are
collected in Table 4.2. The linear convergence of the Euler-splitting scheme as well as
the quadratic convergence of the Strang-splitting scheme are clearly indicated.

For n = 4 096 and K = 32 the error of the Strang-splitting scheme is comparable
to that of the no-splitting scheme, while the error of the Euler-splitting scheme is
about 70 times larger. We note that for these parameters the numerical work of all
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Fig. 4.3. No-splitting scheme for n = 256, 1 024, and 4 096 (from below).
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Fig. 4.4. No-splitting scheme (thick line), Strang-splitting scheme (upper thin line), and Euler-
splitting scheme (lower thin line) for n = 4 096.

schemes is roughly the same. A more detailed study of the efficiency will be made in
section 4.2.

Deviation from the Maxwellian state. An interesting feature of the inelastic
Boltzmann equation (1.1) is a non-Maxwellian steady state. A specific “criterion” for
detecting deviations from the Maxwellian state has the form (cf. [19, section 1.8])

Crit(t) =
1

T (t)

(
1

2
‖P (t) − p(t) I‖2

F +
2

5T (t)
‖q(t)‖2 +

1

120T (t)2
γ(t)2

)1/2

,(4.8)

where P (t) is the pressure tensor, p(t) is the scalar pressure, q(t) is the heat flux
vector, I denotes the identity matrix, ‖A‖F denotes the Frobenius norm of a matrix
A, and

γ(t) =

∫
R3

‖v‖4 f(t, v) dv − 15T (t)2

is a fourth moment of the distribution function.
In Figure 4.3 we show the criterion (4.8) obtained by the no-splitting scheme

with different values of n. The curves were calculated using, respectively, N = 65 536,
16 192, and 4 096 repetitions. The functional starts from zero, according to (4.5), and
tends to a strictly positive stationary value as t → ∞. So it allows one to quantify
the deviation from the Maxwellian state.

For comparison the corresponding curves for the splitting schemes with K = 32,
n = 4 096, and N = 4 096 are provided in Figure 4.4. Similar to what was observed
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Table 4.3

Euler-splitting scheme for n = 65 536.

K T∞ Error CF Conf CPU CF

32 2.9226 0.2559 - 0.0046 1.09 -
256 2.6975 0.0308 8.3 0.0041 6.57 6.03
512 2.6817 0.0150 2.1 0.0040 12.8 1.95

2 048 2.6719 0.0052 2.9 0.0039 51.1 3.99
4 094 2.6710 0.0043 1.2 0.0053 100.4 1.96

Table 4.4

Strang-splitting scheme for n = 65 536.

K T∞ Error CF Conf CPU

8 2.6055 0.0612 - 0.0040 0.61
16 2.6520 0.0147 4.2 0.0047 0.86
32 2.6620 0.0047 3.1 0.0038 1.07
64 2.6655 0.0012 3.9 0.0045 1.87

Table 4.5

No-splitting scheme for n = 65 536.

T∞ Error Conf CPU

2.6684 0.0017 0.0040 1.0

for the temperature, the Strang-splitting scheme gives basically the same accuracy as
the no-splitting scheme, while the error of the Euler-splitting scheme is significantly
larger.

4.2. Approximation of the stationary value (steady state case). Here we
consider the same example as in section 4.1 (cf. (4.7)). Figures 4.1 and 4.2 show that
the stationary value T (∞) ∼ 2.6667 has almost been reached. So we start averaging
at s0 = 8 (cf. (3.1)). The quantity of interest is measured after each Δtmax = 2 so
that

sm = s0 + mΔtmax, m = 1, . . . ,M.

This time step (corresponding to K = 4 in the context of the previous subsection)
is big enough to assure almost independent observations. Confidence intervals are
constructed over M = 64 observation points, so that sM = 136.

Time step error. We choose n = 65 536 so that the particle number error is
negligible. Results for the different methods are given in Tables 4.3–4.5. As above,
Conf denotes the width of the confidence interval and CF denotes the convergence
factors (quotients of subsequent values). The CPU times for the splitting schemes are
measured relative to the CPU time for the no-splitting scheme.

First order of the time step error is observed for the Euler-splitting scheme, while
the Strang-splitting scheme provides second order. The no-splitting scheme avoids
any time step error. Note that 0.0267 would be a 1% error.

Efficiency. The effort is roughly determined by the sum of the mean number of
collisions Ncoll and the mean number of kicks Nkick. These quantities can be predicted
rather accurately.

The mean number of collisions is (cf. (3.8), (4.1))

Ncoll(n) = 2 (n− 1) sM .
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Table 4.6

Example (4.9) for n = 65 536.

Method T∞ Error Conf

Euler 109.596 9.596 0.1711
Strang 99.739 0.261 0.1425
no-split 99.981 0.019 0.1877

This quantity does not depend on the particular splitting procedure. The number of
kicks is easily calculated from the other parameters. In the no-splitting scheme one
obtains

Nnosplit
kick (n) = 2Ncoll(n) + nM, M =

sM − s0

Δtmax
,

since at each collision both partners are kicked and, in addition, all particles are kicked
before making a measurement. In the other methods one obtains

N split
kick (n) =

sM
Δt

n,

independently of the particular way of splitting. Accordingly, the effort is roughly the
same for the splitting and no-splitting schemes if

4 (n− 1) sM + n
sM − s0

Δtmax
∼ sM

Δt
n

or

1

Δt
∼ 4 +

1

Δtmax
.

Thus, all methods have a similar effort for Δt ∼ 1
4 , i.e., K ∼ 32. In general, the effort

for the splitting schemes increases inversely proportional to the time step. Note that
these predictions are confirmed by the CPU measurements in Tables 4.3–4.5.

In conclusion, the Euler-splitting scheme needs running time about 100 times
longer than the no-splitting scheme to cover the correct temperature by the confidence
interval. The Strang-splitting scheme needs running time only about two times longer.
Alternatively, with the same effort, the error for the Euler-splitting scheme is 100 times
bigger than that for the no-splitting scheme, while the error for the Strang-splitting
scheme is two times bigger.

These conclusions are qualitatively confirmed by a rough test for another param-
eter configuration, namely,

α = 0.5, β = 37.5(4.9)

instead of (4.6). In this case the exact asymptotic value of the temperature is T (∞) =
100 (cf. (4.4)). All other parameters are as above, in particular, K = 32, so that all
three methods have approximately the same effort. The results are given in Table 4.6.

5. Concluding remarks. The direct simulation Monte Carlo (DSMC) method
is one of the basic tools for the numerical treatment of nonlinear kinetic equations
so that improvements of its efficiency are of significant practical importance. In this
paper we considered a particular application, namely, the uniformly heated inelastic
Boltzmann equation. We investigated the performance of two new DSMC algorithms
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compared to a commonly used procedure. The order of convergence with respect to
the numerical parameters (number of particles, time step) as well as the computational
efficiency of the algorithms were studied both in the transient case (approximation
of the solution on a finite time interval) and in the steady state case (approximation
of the stationary solution). One scheme uses the Strang-splitting strategy instead of
the Euler-splitting scheme. It provides second order time step convergence instead
of first order. The other scheme is based on an appropriate Markov process avoiding
any splitting procedure. It can be considered as providing infinite order time step
convergence. All schemes are of first order with respect to the inverse particle number.
In our particular numerical test cases, both the Strang-splitting scheme and the no-
splitting scheme were up to two orders of magnitude more efficient than the Euler-
splitting scheme.

Here we comment on the relevance of the results for more general applications.
The first direction of generalization concerns the type of the driving force in (1.1).
The adaptation of the schemes to other mechanisms instead of Brownian motion, e.g.,
to deterministic force terms as in [13], is rather obvious. We expect that the main
messages of the paper concerning “Strang versus Euler” and “no-splitting scheme”
remain valid.

It should be emphasized that in the case of inelastic collisions the spatially homo-
geneous situation is of independent interest, since there is some “nontrivial” behavior
as, for example, a non-Maxwellian steady state. This issue has been intensively stud-
ied in recent years. The no-splitting scheme is very useful for investigating “fine”
properties of the solution, as higher moments or tails of the steady state distribu-
tion. It is remarkable that the no-splitting scheme not only avoids the time step
discretization error, but also is usually even more efficient than the other schemes.
The quantitative value of the efficiency gain depends on the concrete example, in
particular, on the level of “acceptable” time step error: if big time steps are sufficient,
there is less or no efficiency gain; if small time steps are required, the efficiency gain
may be rather significant.

Another interesting aspect of the present study is that it throws some additional
light on the controversial issue about the order of the time step error in the elastic case
(β = 0, α = 1). Without going into detail, we refer to [19, section 3.5.5] concerning
a discussion of this matter for the DSMC method in rarefied gas dynamics. Since
temperature is not conserved, it provides a simple nontrivial test example in the
inelastic situation. This is in contrast to the elastic case, where the time step issue
can be studied only in spatially inhomogeneous examples.

A second direction of further study concerns the spatially inhomogeneous situa-
tion. In this case a term (v,∇x) is added to (1.1) and the solution f(t, x, v) depends
on three more variables (position coordinates x). The direct simulation process intro-
duced in section 2 can be adapted to this situation. In addition to being accelerated by
a random force, particles change their positions between collisions. However, DSMC
algorithms in engineering applications [6] are based on splitting. The point is that it
would be computationally too expensive to take into account the relative positions for
the whole system at all times. The splitting should be performed by the Strang strat-
egy, moreover, since the Strang and Euler schemes have basically the same effort per
trajectory. The no-splitting approach provides alternatives for the splitting procedure
in the spatially inhomogeneous situation. For example, the acceleration term might
be combined either with the motion term or with the collision term. Additional time
step errors should be avoided, whenever this is possible, and the no-splitting idea may
help to do so.



INELASTIC BOLTZMANN EQUATION 67

REFERENCES
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Abstract. This paper establishes a unified framework for the a posteriori error analysis of a
large class of nonconforming finite element methods. The theory assures reliability and efficiency of
explicit residual error estimates up to data oscillations under the conditions (H1)–(H2) and applies
to several nonconforming finite elements: the Crouzeix–Raviart triangle element, the Han parallel-
ogram element, the nonconforming rotated (NR) parallelogram element of Rannacher and Turek,
the constrained NR parallelogram element of Hu and Shi, the P1 element on parallelograms due to
Park and Sheen, and the DSSY parallelogram element. The theory is extended to include 1-irregular
meshes with at most one hanging node per edge.
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1. Introduction. Nonconforming finite element methods are very appealing for
the numerical approximation of partial differential equations, for they enjoy better
stability properties compared to the conforming finite elements. While the study of
the approximation properties of nonconforming triangular and quadrilateral elements
has reached a certain level of maturity [3, 18, 27], the a posteriori error analysis of
nonconforming quadrilateral finite element approximations is still in its infancy.

Following the contribution of [16, 15] the a posteriori error analysis for the L2

norm of the piecewise gradient of the error, ‖∇he‖L2(Ω), has been carried out success-
fully for triangular elements [9, 1] on the basis of two arguments: (a) the Helmholtz
decomposition of ∇he, and (b) some orthogonality with respect to some conforming
finite element space V c

h . Condition (b) fails for some quadrilateral nonconforming
finite elements, e.g., the nonconforming rotated quadrilateral element of Rannacher
and Turek, referred to as the NR element [25]. As a result, the a posteriori error
analysis of ‖∇he‖L2(Ω) for nonconforming quadrilateral elements appears as a mine-
field. For the NR element, for instance, the work [23] bypasses condition (b) by some
enlargement of V nc

h with local bubble trial functions, but their analysis applies only
to goal-oriented error control and cannot be extended to the control of ‖∇he‖L2(Ω).
Another inherent mathematical difficulty for the NR element functions results from
the nonequivalence of the continuity at midpoints and the equality of integral averages
along edges. This makes the operator Π in [2] not well defined (while correct for all
triangular elements of [1]).
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This paper aims to clarify and develop a unified framework for the a posteriori
error analysis of nonconforming finite element methods based on properties for meshes
obtained through affine mappings. The resulting framework is exemplified in the two-
dimensional elliptic model problem

div∇u = f in Ω, u = uD on ΓD, ∇u · ν = g on ΓN(1.1)

on some Lipschitz domain Ω ⊂ R
2 with the outward unit normal ν along ∂Ω :=

ΓD ∪ΓN . Let V := {v ∈ H1(Ω) : v = 0 on ΓD} denote the space of the test functions
approximated by conforming, V c

h,0, and nonconforming, V nc
h,0, finite element spaces

associated with a shape regular triangulation T , with E the set of the edges and E(Ω)
and E(ΓD) the interior and boundary edges, respectively. Also, define [vh] as the jump
across E ∈ E(Ω) of the general discontinuous vh ∈ V nc

h and Pk(ω) the polynomials of
total degree k on the domain ω. Throughout the paper, the hypotheses (H1)–(H2)
characterize some class of nonconforming finite elements allowing for efficient and
reliable error control.

(H1) For all vh ∈ V nc
h there holds∫

E

[vh] ds = 0 for E ∈ E(Ω) and

∫
E

(vh − uD) ds = 0 for E ∈ E(ΓD).(1.2)

(H2) There exists some bounded, linear operator Π : V �→ V nc
h,0 and some mesh size

independent constant C with the properties (1.3)–(1.5) for every vh ∈ V c
h,0, K ∈ T ,

and E ∈ E , ∫
K

∇wh · ∇(vh − Πvh) dx = 0 for all wh ∈ V nc
h ;(1.3)

∫
K

(vh − Πvh) dx = 0;

∫
E

(vh − Πvh) ds = 0;(1.4)

‖∇Πvh‖L2(K) ≤ C‖∇ vh‖L2(K).(1.5)

The main result of the paper (Theorem 3.1 below) establishes the reliability of

η2:=
∑
K∈T

η2
K +

∑
E∈E

η2
E , with(1.6)

η2
K := h2

K‖f + div∇uh‖2
L2(K) for K ∈ T ;(1.7)

η2
E := hE

(
‖JE,ν‖2

L2(E) + ‖JE,τ‖2
L2(E)

)
for E ∈ E ,(1.8)

up to the data oscillations osc(f) and osc(g) (see section 2.5 below):

‖∇h(u− uh)‖L2(Ω) ≤ C(η + osc(f) + osc(g)),(1.9)

with JE,ν and JE,τ defined by (2.9) and (2.10), respectively.
The weak continuity condition (H1) is met by quite a large class of nonconforming

finite elements proposed in the literature [14, 19, 25, 17, 24, 21]. However, there are
also elements that fail the above condition, for instance, the version of the Rannacher–
Turek element [25] with local degree of freedom equal to the value of the function at the
midside nodes of each edge, and the nonconforming quadrilateral element of Wilson
et al. [29]. Both elements are therefore ruled out by the present analysis.
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Condition (H2) represents a key assumption of the theory. It weakens the or-
thogonality condition (b) mentioned above (see Lemma 3.3 below) by means of an
estimate depending on data oscillations and allows the analysis of nonconforming fi-
nite elements obtained through affine mappings.

The efficiency of η in the sense that there exists a mesh size–independent constant
C such that

η ≤ C(‖∇he‖L2(Ω) + osc(f) + osc(uD) + osc(g)),(1.10)

with osc(uD) defined in section 2.5, can be proved by adapting the arguments from
[28, pp. 15–18] and [16, 9].

An outline of the remaining parts of the paper is as follows. Section 2 displays the
setup of the model problem (1.1), and introduces the conforming and nonconforming
finite element spaces as well as the a posteriori error estimate (1.6) and the data oscil-
lations in (1.9). Theorem 3.1 shows that the abstract conditions (H1)–(H2) imply the
reliability in the sense of (1.9). This is stated and proved in section 3 in the abstract
framework, while the relevant examples follow in section 4. Namely, applications of
the theory are given for the Crouzeix–Raviart element, the Han element [19], the NR
element [25] with local degrees of freedom equal to the average value over the edges,
the constrained NR element of Hu and Shi [21], the P1 quadrilateral element of Park
and Sheen [24], and the DSSY element [17]. Section 4 concludes with a discussion of
the applicability of the theory to 1-irregular meshes, with at most one hanging node
per edge, and its generalization to elliptic systems. Section 5 describes an adaptive
finite element method and a numerical example for the NR element with hanging
nodes.

2. Notation and preliminaries.

2.1. Model problem. Let Ω be a polygonal domain in R
2 with boundary Γ :=

∂Ω split into a closed Dirichlet boundary ΓD ⊆ Γ with positive surface measure and
the remaining Neumann boundary ΓN := Γ \ ΓD. Given f ∈ L2(Ω), g ∈ L2(ΓN ),
uD ∈ H1/2(ΓD), and V := {v ∈ H1(Ω) : v = 0 on ΓD}, the solution of (1.1) satisfies∫

Ω

∇u · ∇v dx =

∫
Ω

fv dx +

∫
ΓN

gv ds for every v ∈ V,(2.1)

where the symbol · is the scalar product in the Euclidean space R
2. Furthermore, we

denote by L2 the Lebesgue space of square integrable functions, and by Hs with s > 0
the Sobolev space defined in the usual way [18]. For the corresponding norm we use
the symbols ‖ · ‖L2 and ‖ · ‖Hs , respectively, with explicit indication of the domain
of integration. With Ω an open set of R

2, and ϕ ∈ H1(Ω), the curl and gradient
operators are given as

curlϕ = (−∂ϕ/∂x2, ∂ϕ/∂x1), ∇ϕ = (∂ϕ/∂x1, ∂ϕ/∂x2),(2.2)

whereas for an R
2-valued function v = (v1, v2) the divergence is

div v = ∂v1/∂x1 + ∂v2/∂x2.(2.3)

Throughout the paper, the letter C denotes a generic constant, not necessarily the same
at each occurrence.
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2.2. Conforming finite element spaces. For approximating (2.1) by the finite
element method, we introduce a regular triangulation T of Ω̄ ⊂ R

2 in the sense of
Ciarlet [12, 6] into closed triangles, and/or convex quadrilaterals, such that

⋃
K∈T K =

Ω̄, two distinct elements K and K ′ in T are either disjoint, or share the common edge
E, or a common vertex; that is, hanging nodes at this stage are not allowed, and we
refer to section 4.6 and [11] for further discussion. Let E denote the set of all edges
in T , N the set of vertices of the elements K ∈ T , and Nm the set of the midside
nodes mE of the edges E ∈ E . The set of interior edges of Ω are denoted by E(Ω),
the set of edges of the element K by E(K), whereas those that belong to the Dirichlet
and Neumann boundary are denoted by E(ΓD) and E(ΓN ), respectively. For the set
of midpoints of the edges E ∈ E(ΓD) we use the notation Nm(ΓD). By hK and hE

we denote the diameter of the element K ∈ T and of the edge E ∈ E , respectively.
Also, we denote by ωK the patch of elements K ′ ∈ T that share an edge with K, and
by ωE the patch of elements having in common the edge E. Given any edge E ∈ E
we assign one fixed unit normal νE ; if (ν1, ν2) are its components, τE denotes the
orthogonal vector of components (−ν2, ν1). For E ∈ E(ΓD)∪E(ΓN ) on the boundary
we choose νE = ν, the unit outward normal to Ω, and concordantly the unit tangent
vector τ . Once νE and τE have been fixed on E, in relation to νE one defines the
elements Kin ∈ T and Kout ∈ T , with E = Kout ∩Kin, as depicted in Figure 1.

Kin

E

ν
E

Kout

Fig. 1. Definition of the elements Kin and Kout in relation to νE .

Given E ∈ E(Ω) and an R
d-valued function v defined in Ω, with d = 1, 2, we

denote by [v]E the jump of v across E, that is,

[v]E(x) = (v|Kout
(x) − v|Kin(x)) for x ∈ E = Kin ∩Kout;

the subscript E will be omitted whenever it is clear from the context.
With the triangulation T we associate, moreover, the space H1(T ) defined as

H1(T ) = {v ∈ L2(Ω) : ∀K ∈ T , v|K ∈ H1(K)},

and for v ∈ H1(T ), we denote by ∇hv the gradient operator defined piecewise with
respect to T , i.e.,

∇hv|K := ∇(v|K).

Whenever it is clear from the context that we are considering the restriction of v to
an element K ∈ T , then we clearly write only ∇v in lieu of ∇hv.

For a nonnegative integer k the space Qk(ω) consists of polynomials of total
degree at most k defined over ω in the case in which ω = K is a triangle, whereas it
denotes polynomials of degree at most k in each variable in the case in which K is a
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quadrilateral. For this presentation it will suffice to assume k = 1. The corresponding
conforming space will be denoted by

V c
h := {v ∈ H1(Ω) : v|K ∈ Q1(K)} and V c

h,0 := {v ∈ V c
h : v = 0 on ΓD}.

Throughout the paper, for triangular elements, V c
h,0 stands for the conforming

space of P1 elements, whereas for quadrilateral elements it denotes the conforming
space of bilinear elements.

Given the conforming finite element space V c
h,0, we consider the Clément inter-

polation operator or any other regularized conforming finite element approximation
operator J : H1(Ω) �→ V c

h with the property

‖∇Jϕ‖L2(K) + ‖h−1
K (ϕ− Jϕ)‖L2(K) ≤ C‖∇ϕ‖L2(ωK),(2.4)

‖h−1/2
E (ϕ− Jϕ)‖L2(E) ≤ C‖∇ϕ‖L2(ωE)(2.5)

for all K ∈ T , E ∈ E , and ϕ ∈ H1(Ω). The existence of such operators is guaranteed,
for instance, in [13, 26, 7, 5].

2.3. Nonconforming finite element spaces and a posteriori error estima-
tor. A nonconforming finite element approximation is defined by a finite-dimensional
trial space V nc

h ⊂ H1(T ) along with the test space V nc
h,0 corresponding to the dis-

crete homogeneous Dirichlet boundary conditions. The nonconforming finite element
approximation uh ∈ V nc

h of (2.1) then satisfies∫
Ω

∇huh · ∇hvh dx =

∫
Ω

fvh dx +

∫
ΓN

gvh ds for every vh ∈ V nc
h,0.(2.6)

The Helmholtz decomposition is a well-established tool in the a posteriori error anal-
ysis of nonconforming finite element methods [16, 9].

Lemma 2.1. Given any e ∈ V + V nc
h such that ∇he ∈ L2(Ω; R2) there exist

w, ϕ ∈ H1(Ω) with w = 0 on ΓD, and ∇ϕ · τ = curlϕ · ν = 0 on ΓN such that

∇he = ∇w + curlϕ,(2.7)

‖∇he‖2
L2(Ω) = ‖∇w‖2

L2(Ω) + ‖ curlϕ‖2
L2(Ω).(2.8)

2.4. A posteriori error estimator. For each edge E ∈ E , define JE,ν the jump
of ∇huh across E in direction νE , i.e.,

JE,ν :=

⎧⎪⎪⎨⎪⎪⎩
[∇huh]E · νE if E ∈ EΩ,

g −∇uh · ν if E ∈ EN ,

0 if E ∈ ED,

(2.9)

and JE,τ the jump of ∇huh across E in direction tE , i.e.,

JE,τ :=

⎧⎪⎪⎨⎪⎪⎩
[∇huh]E · τE if E ∈ EΩ,

0 if E ∈ EN ,

(∇uD −∇uh) · τ if E ∈ ED,

(2.10)

and recall η from (1.6) with the local contributions ηK (1.7) and ηE (1.8) for each
K ∈ T and E ∈ E , respectively.
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2.5. Data oscillations. For f ∈ L2(Ω) and its piecewise constant approxima-
tion fh with respect to T , we refer to osc(f) as the oscillation of f [28],

osc2(f) :=
∑
K∈T

h2
K‖f − fh‖2

L2(K),(2.11)

with osc(f) being a higher order term if f ∈ H1(Ω). Similar definitions hold for the
oscillations osc(uD) and osc(g) of the Dirichlet and Neumann boundary data, uD ∈
H1/2(ΓD) and g ∈ L2(ΓN ), and their piecewise affine and constant approximations
uD,h and gh, respectively, as [28, 8]

osc2(uD) :=
∑

E∈E(ΓD)

hE

∥∥∥∥ ∂

∂s
(uD − uD,h)

∥∥∥∥2

L2(E)

,

osc2(g) :=
∑

E∈E(ΓN )

hE‖g − gh‖2
L2(E).

3. Reliability of η. This section presents the main result of this paper, that is,
(H1)–(H2) imply the reliability of η. Throughout this section, let u solve (2.1), let uh

solve (2.6), and set e := u− uh.
Theorem 3.1. Assume that the space V nc

h along with the corresponding V nc
h,0

satisfy (H1)–(H2). Then there exists a positive constant C depending only on the
minimum angle of T such that η is reliable in the sense that

‖∇he‖L2(Ω) ≤ C
(
η + osc(f) + osc(g)

)
.(3.1)

The remainder of this section is devoted to the proof of Theorem 3.1.
We establish first some interpolation error estimates for the operator Π in (H2).
Lemma 3.2. Given the operator Π meeting (H2), there then exists some mesh

size–independent constant C such that there holds

h−1
K ‖vh − Πvh‖L2(K) + ‖∇(vh − Πvh)‖L2(K) ≤ C‖∇vh‖L2(K),

h
−1/2
E ‖vh − Πvh‖L2(E) ≤ C‖∇vh‖L2(ωE).

(3.2)

Proof. Let ΠK
0 denote the mean average operator over K. Using condition (1.4)1

with ΠK
0 vh = ΠK

0 Π vh, the triangular inequality, and (1.5), one obtains

‖vh − Πvh‖L2(K) ≤ ‖vh − ΠK
0 vh‖L2(K) + ‖ΠK

0 Πvh − Πvh‖L2(K)

≤ C(hK‖∇vh‖L2(K) + hK‖∇vh‖L2(K)).
(3.3)

A triangular inequality and (1.5) also gives

‖∇vh −∇Πvh‖L2(K) ≤ C‖∇vh‖L2(K),

which, combined with (3.3), finally yields (3.2)1. Arguing in a similar way and using
the trace theorem [6, 12] one obtains (3.2)2.

Here and throughout, fh and gh denote piecewise constant approximations of f
and g, respectively. From (H2) and for every vh ∈ V c

h,0, the following holds:∫
Ω

∇huh · ∇vh dx =

∫
Ω

f Πvh dx +

∫
ΓN

gΠvh ds.(3.4)
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Lemma 3.3. There exists a mesh size–independent constant C such that, for
every vh ∈ V c

h,0, the following holds:∫
Ω

∇he · ∇vh dx ≤ C(osc(f) + osc(g)) ‖∇vh‖L2(Ω).(3.5)

Proof. From (2.1) and (3.4), for every vh ∈ V c
h,0 it follows that∫

Ω

∇he · ∇vh dx =
∑
K∈T

(∫
K

(f − fh)(vh − Πvh) dx +

∫
K

fh(vh − Πvh) dx

)
+

∑
E∈E(ΓN )

(∫
E

(g − gh)(vh − Πvh) ds +

∫
E

gh(vh − Πvh) ds

)
.

Since (1.4), this equals∫
Ω

(f − fh)(vh − Πvh) dx +

∫
ΓN

(g − gh)(vh − Πvh) ds.

The combination of Cauchy inequalities with (3.2) yields its upper bound:

C

(( ∑
K∈T

h2
K‖f − fh‖2

L2(K)

)1/2

+

( ∑
E∈E(ΓN )

hE‖g − gh‖2
L2(E)

)1/2)
‖∇vh‖L2(Ω).

Remark 1. If V c
h,0 is a subspace of V nc

h,0, then (H1)–(H2) hold for Π = I and (3.5)

recovers the L2-orthogonality of ∇he and ∇vh for every vh ∈ V c
h,0 (because C = 0 in

(3.2)).
The following orthogonality condition (3.6) is well established in the literature on

a posteriori error estimates for nonconforming finite element schemes.
Lemma 3.4. For every vh ∈ V c

h such that ∂vh/∂s = 0 on ΓN , it holds that∫
Ω

∇he · curl vh dx = 0.(3.6)

Proof. The proof is along the lines of [16, eqn. (3.4)] for the Crouzeix–Raviart
element. An integration by parts over each element gives∫

Ω

∇he · curl vh dx =
∑
E∈E

∫
E

[u− uh]
∂vh
∂s

ds.(3.7)

Since for vh ∈ V c
h , ∂vh/∂s is constant over each edge E ∈ E(Ω)∪ E(ΓD), or is zero on

E ∈ E(ΓN ), accounting for (H1), one obtains (3.6).
The proof of (3.1) starts with the decomposition (2.7), the interpolation operator

J of Clément, and Lemma 3.4. Without loss of generality one can choose ϕ in (2.7)
to be equal to a constant on ΓN , and Jϕ|ΓN

= ϕ|ΓN
. Then it follows that

‖∇he‖2
L2(Ω) =

∫
Ω

∇he · (∇w + curlϕ) dx =

∫
Ω

∇he · ∇(w − Jw) dx

+

∫
Ω

∇he · curl(ϕ− Jϕ) dx +

∫
Ω

∇he · ∇Jw dx.



A POSTERIORI ERROR ANALYSIS FOR NONCONFORMING FEs 75

From Lemma 3.3 and the estimate (2.4), one obtains∫
Ω

∇he · ∇Jw dx ≤ C
(
osc(f) + osc(g)

)
‖∇Jw‖L2(Ω)

≤ C
(
osc(f) + osc(g)

)
‖∇w‖L2(Ω).

(3.8)

Since (w − Jw) and (ϕ − Jϕ) belong to H1(Ω), the use of the Stokes theorem and
Green’s formula over each element gives, after some rearrangements,∫

Ω

∇he · ∇(w − Jw) dx +

∫
Ω

∇he · curl(ϕ− Jϕ) dx

=
∑
E∈E

(∫
E

JE,τ (ϕ− Jϕ) ds +

∫
E

JE,ν(w − Jw) ds

)

+
∑
K∈T

∫
K

(f + div∇uh) (w − Jw) dx.

It is a standard argument with Cauchy inequalities and (2.4)–(2.5) to bound this by

Cη
(
‖∇w‖L2(Ω) + ‖∇ϕ‖L2(Ω)

)
,

with η from (1.6). The combination of the aforementioned estimates with (2.8) con-
cludes the proof of (3.1).

4. Examples. In this section, we verify (H1)–(H2) for several nonconforming
finite elements proposed in the literature and discuss the applicability of the theory
to 1-irregular meshes and to elliptic systems in divergence form. For the following
examples, the operator Π that enters (H2) is the interpolation operator of V associated
with V nc

h,0.

4.1. The Crouzeix–Raviart element. The nonconforming finite element space
associated with the Crouzeix–Raviart element [14] reads

V nc
h :=

{
vh ∈ H1(T ) : vh|K ∈ P1(K) ∀K ∈ T , vh is continuous at each

mE ∈ Nm \ Nm(ΓD), and vh(mE) = uD(mE) for mE ∈ Nm(ΓD)
}
,

(4.1)

and V nc
h,0 denotes the space corresponding to the discrete homogeneous Dirichlet

boundary conditions. For this element, it is trivial to check that the space V nc
h meets

(H1). Furthermore, since V c
h,0 ⊂ V nc

h,0, (H2) follows immediately (see Remark 1) and
Theorem 3.1 recovers the results of [16, 9].

4.2. The Han element. With respect to the global coordinate system (x1, x2),
the nonparametric formulation of rectangular and parallelogram elements proposed
by Han in [19] is obtained by introducing the local space

Qnc
H = span

{
1, x1, x2, x

2
1 −

5

3
x4

1, x
2
2 −

5

3
x4

2

}
,(4.2)

and the Qnc
H -unisolvent set of linearly independent linear forms [12, 19] reads

FE(v) =
1

hE

∫
E

v ds, FK(v) =
1

|K|

∫
K

v dx with E ∈ E(K), K ∈ T .(4.3)
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This defines the five degrees of freedom for the Han element. In (4.3), |K| denotes
the area of the element. Recall from [12] that, given E = K ∩K ′ for K, K ′ ∈ T , and
v ∈ H1(T ) such that v|K ∈ Qnc

H (K) and v|K′ ∈ Qnc
H (K ′), we say that v is continuous

with respect to FE if FE(v|K) = FE(v|K′). The nonconforming finite element space
V nc
h is then defined as

V nc
h :=

{
v ∈ H1(T ) : v|K ∈ Qnc

H (K) for each K ∈ T , v continuous with respect

to FE ∀ E ∈ E(Ω), and FE(v) = FE(uD) ∀ E ∈ E(ΓD)
}
,

(4.4)

whereas V nc
h,0 denotes the space corresponding to the discrete homogeneous Dirichlet

boundary conditions in (4.4). For vh ∈ V nc
h , the definition (4.4) of V nc

h and (4.3) yield

∫
E

[vh] ds = 0 for all E ∈ E(Ω) and

∫
E

(vh − uD) ds = 0 for all E ∈ E(ΓD),

(4.5)

and so V nc
h verifies (H1). Let V c

h be the conforming space of the bilinear elements
constructed from the local spaces Qc(K) = span{1, x1, x2, x1x2}. Consider then
the interpolation operator Π : V �→ V nc

h,0 defined by the following conditions: For all
E ∈ E(K) and K ∈ T ,

Πv ∈ V nc
h,0, FE(Πv|K) = FE(v|K), FK(Πv|K) = FK(v|K).(4.6)

Given v ∈ V c
h,0, the restriction of v to K ∈ T has the following representation:

v = a0 + a1x1 + a2x2 + a3x1x2(4.7)

for some interpolation constants ai, i = 0, . . . , 3. Since the degrees of freedom (4.3)
vanish over the nonconforming bubble function x1x2 ∈ Qc(K), it follows that the
restriction of Π to V c

h,0 yields [21]

Πv|K = a0 + a1x1 + a2x2.(4.8)

By a scaling argument, one can verify that Π meets (1.5) and therefore the estimates
(3.2). Furthermore, for every vh ∈ V c

h,0 a direct evaluation of the integrals shows
(1.3)–(1.4) over rectangular and parallelogram element domains, i.e., the space V nc

h

meets (H2).

4.3. The quadrilateral rotated nonconforming element. In [25] Rannacher
and Turek introduced two types of quadrilateral nonconforming elements referred to
as NR elements. The corresponding local finite element spaces are obtained by rotat-
ing the mixed term of the bilinear element, and assuming as local degree of freedom
either the average of the function over the edge or its value at the midside node. In
this section we consider the nonparametric formulation for rectangular and parallel-
ogram elements with the first choice of degree of freedom. More precisely, for each
element K ∈ T and with respect to the global coordinate system (x1, x2), we set [25]

Qnc
R = span{ 1, x1, x2, x

2
1 − x2

2 }(4.9)

and introduce the four degrees of freedom as

FE(v) =
1

hE

∫
E

v ds with E ∈ E(K).(4.10)



A POSTERIORI ERROR ANALYSIS FOR NONCONFORMING FEs 77

With the corresponding nonconforming finite element space defined as in (4.4) and
concordantly V nc

h,0, it follows that V nc
h meets (H1).

For any v ∈ V , the interpolation operator Πv ∈ V nc
h,0 is defined as in [25, 21]: For

all E ∈ E(K) and K ∈ T ,

Πv ∈ V nc
h,0 and FE(Πv|K) = FE(v|K),(4.11)

and, hence, as with the Han element, since FE vanishes over the nonconforming bubble
function x1x2 ∈ Qc(K), the restriction of Π to V c

h,0 ⊂ V is represented locally by (4.8)
[21]. Therefore, the above arguments verify (H2).

Remark 2. For the version of the NR element with function evaluation at the
midpoints as degree of freedom, (H1) is not satisfied and we refer to section 4.5 for a
modification of the NR element.

Remark 3. The proof of Lemma 3.4 for the NR element can be found in [20, 22].
Remark 4. The interpolation operator ΠP defined in [2, eqn. (6)] does not, in

general, map into the space XP,E of the NR element functions continuous at the
midside nodes [2, p. 4]. This results in a gap in the analysis of [2] for this finite
element; the remaining assertions in [2] seem to be correct.

Remark 5. The present analysis shows that the augmentation of V nc
h with local

bubble trial functions proposed in [23] is not necessary for the error control of ‖∇he‖.
Remark 6. The flux ∇hu|K · νE is not required to be constant over each edge E

with normal νE as in [2]. The latter hypothesis would in fact restrict the analysis to
only rectangular meshes.

4.4. The constrained NR element and the P1-quadrilateral element.
The constrained NR finite element (referred to as the CNR element) introduced in
[20, 21] is obtained by enforcing a constraint on the degree of freedom of the NR
element described in section 4.3. With Qnc

R denoting here the space of the global trial
functions defined over Ω and corresponding to the NR element, the space of the CNR
element is then defined as follows:

Qnc
J :=

{
v ∈ Qnc

R : ∀K ∈ T
∫
E1

v ds +

∫
E3

v ds =

∫
E2

v ds +

∫
E4

v ds

with Ei, 1≤ i≤ 4, edges of K ∈ T numbered counterclockwise

}
.

(4.12)

For rectangular and parallelogram element domains, considered here, the element is
equivalent to the P1-quadrilateral element of [24]. For homogeneous Dirichlet bound-
ary conditions, it is trivial to check that the space V nc

h meets (H1) for being the CNR
space, a subspace of NR. Furthermore, in [20, 21] it is also proved that on the generic
element K ∈ T with vertices 1, 2, 3, 4 labeled counterclockwise, the interpolation
Πv ∈ V nc

h,0 defined as in (4.11) and for v ∈ V c
h,0 has the representation

Πv|K = v1φ1 + v2φ2 + v3φ3 + v4φ4,(4.13)

with vi nodal value of v ∈ V c
h,0 and

φ1(x1, x2) =
1

4
(1 − x1 − x2), φ2(x1, x2) =

1

4
(1 − x1 + x2),

(4.14)
φ3(x1, x2) =

1

4
(1 + x1 + x2), φ4(x1, x2) =

1

4
(1 − x1 + x2)

associated with each of such vertices. The arguments of section 4.3 finally show (H2).
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4.5. The DSSY element. The main motivation for the definition of this ele-
ment is to obtain a quadrilateral element with approximation properties similar to
those of the Crouzeix–Raviart element. For parallelogram elements these properties
were identified in [17] by (i) continuity at the midpoints of each edge, (ii) value of the
function at these points as degrees of freedom, and (iii) validity of the orthogonality
condition [17, eqn. (6.1)]: For all vh ∈ V nc

h,0 there holds∫
E

[vh] ds = 0 for E ∈ E(Ω).(4.15)

The latter condition plays a crucial role in the proof of optimal error estimates as
realized in [17], for instance, by two spaces of local basis obtained by an ad hoc
modification of the local basis of the Rannacher–Turek element. Set

θ�(t) =

{
t2 − 5

3 t
4 for 
 = 1,

t2 − 25
6 t4 + 7

2 t
6 for 
 = 2.

(4.16)

Then the local space reads

Qnc
D = span{1, x1, x2, θ�(x1) − θ�(x2)} for 
 = 1, 2,(4.17)

and the Qnc
D -unisolvent linear forms read

FEi
(vh|K) = vh|K(mEi) for Ei ∈ E(K), 1 ≤ i ≤ 4, vh ∈ Qnc

D ,(4.18)

with mEi midside nodes of the edge Ei. The nonconforming finite element spaces V nc
h

and V nc
h,0 are then defined as in (4.4) with Qnc

H replaced by Qnc
D . Following [17], one

can show that (H1) holds. Furthermore, with the interpolation operator Π : V �→ V nc
h,0

defined as in (4.11), one obtains

Πv ∈ V nc
h,0, Πv|K(mE) =

1

hE

∫
E

v ds for each edge E ∈ E(K), K ∈ T ,(4.19)

with the restriction of Π to the space V c
h,0 having the local representation (4.8) that

implies (H2).

4.6. Hanging nodes. This section discusses 1-irregular meshes and refers to
[11] for further details and technicalities. Given an initial regular mesh T0 of Ω in
the sense of Ciarlet [12, 6], a 1-irregular mesh T� is obtained from T�−1 by refining
some elements K into four congruent elements by connecting the midside points of
the edges of K [4].

Let NH denote the set of hanging nodes, NE the set of the endpoints of the edges
containing one hanging node, EC the set of edges with one endpoint in NH , and EH the
set of edges containing one hanging node, hereafter referred to as hanging edges. We
define the set NR of regular nodes as NR = N \ (NH ∪NE) and the set ER of regular
edges as ER = (E(Ω) \ EC) ∪ E(ΓD). It is then possible to construct a partition of
unity (ϕz)z∈NE∪NR

on Ω that forms a basis for V c
h,0 and define a regularized operator

J : H1(Ω) �→ V c
h meeting (2.4)–(2.5) [11].

Under proper constraints for the degrees of freedom for the hanging edges we have
the following result that controls the nonconforming part of the error [11]:

min
v∈H1(Ω)

v=uD on ΓD

‖∇h(uh − v)‖L2(Ω) ≤ C

( ∑
E∈ER

hE‖JE,τ‖2
L2(E)

)1/2

+ Cosc(uD).(4.20)
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Fig. 2. Experimental convergence rate of ηN and the exact error ‖∇heN‖ with respect to the
number N of degrees of freedom for the adaptive and uniform refinement based on ηN and with
the NR finite element. The displayed results show 2.13 ≤ ηN/‖∇heN‖ ≤ 2.83 for adaptive and
2.13 ≤ ηN/‖∇heN‖ ≤ 2.35 for uniform mesh refinement.

An integration by parts, use of Young’s inequality, the properties of the operator J ,
and (4.20) finally prove (3.1) with η + osc(f) + osc(g) + osc(uD) and corresponding
modifications for the contribution to η from the hanging edges [11].

4.7. Generalizations. If A ∈ L∞(Ω; R2×2) denotes a symmetric positive defi-
nite matrix piecewise constant with respect to T , then Theorem 3.1 with correspond-
ing modifications for the definition of η applies also to the elliptic PDE divA∇u = f
with boundary conditions u = uD on ΓD and (A∇u) · ν = g on ΓN .

5. Numerical experiment. This section concludes the paper with an example
of an adaptive finite element model for the Poisson problem.

5.1. Adaptive finite element method. By rewriting η from (1.6) as η2 =∑
K∈T η2

K , with

η2
K := h2

K‖f + div∇uh‖2
L2(K) +

1

2

∑
E∈E(K)

hE

(
‖JE,ν‖2

L2(E) + ‖JE,τ‖2
L2(E)

)
,

the estimate η and the elemental contributions ηK can be used to generate the trian-
gulations {T�}�∈N in an adaptive way using the following algorithm.

Algorithm 1. Input a coarse mesh T0 with rectangular and/or triangular ele-
ments, and set 
 = 0.

(a) Solve the discrete problem on T� with N degrees of freedom.
(b) Compute ηK for all K ∈ T� and ηN := (

∑
K∈T η2

K)1/2.
(c) Mark K ∈ M ⊂ T� for refinement into four congruent elements by connecting

the midside points of its edges if θmaxT∈T�
ηT ≤ ηK .

(d) Mark further elements to ensure at most one hanging node per edge. Define
the resulting mesh as the actual mesh T�+1, update 
, and go to (a).
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T0 T1

T2 T3

T4 T5

Fig. 3. Adapted triangulations T0, . . . , T5 generated with Algorithm 1 with θ = 1/2. Notice a
local higher refinement towards the reentrant corner.

The triangulations T generated by Algorithm 1 are 1-irregular meshes. Error
reduction and convergence of the adaptive finite element method based on the bulk
criterion has been established in [10] for the Crouzeix–Raviart element.

5.2. Numerical example. On the L-shaped domain Ω = [0, 1]2 \ [0.5, 1.0]2,
we use the NR element defined in section 4.3 to approximate the Poisson problem
(1.1) with f ≡ 0, ΓD = ∂Ω, ΓN = ∅, and uD a smooth function such that in polar
coordinates

u(r, θ) = r2/3sin

(
2

3
θ

)
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is the exact solution of (1.1). Figure 2 displays experimental convergence rates for
the exact error and the estimate ηN for uniform and adaptive refinement with the
corresponding triangulations depicted in Figure 3. The adaptive refinement improves
the convergence rate of uniform refinement to the optimal one, O(N−1/2), with respect
to the number of degrees of freedom, and the convergence rate of the estimate mirrors
that of the exact error for both uniform and adaptive refinement.
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FAST SWEEPING METHODS FOR EIKONAL EQUATIONS ON
TRIANGULAR MESHES∗

JIANLIANG QIAN† , YONG-TAO ZHANG‡ , AND HONG-KAI ZHAO‡

Abstract. The original fast sweeping method, which is an efficient iterative method for sta-
tionary Hamilton–Jacobi equations, relies on natural ordering provided by a rectangular mesh. We
propose novel ordering strategies so that the fast sweeping method can be extended efficiently and
easily to any unstructured mesh. To that end we introduce multiple reference points and order all the
nodes according to their lp-metrics to those reference points. We show that these orderings satisfy
the two most important properties underlying the fast sweeping method: (1) these orderings can
cover all directions of information propagating efficiently; (2) any characteristic can be decomposed
into a finite number of pieces and each piece can be covered by one of the orderings. We prove
the convergence of the new algorithm. The computational complexity of the algorithm is nearly
optimal in the sense that the total computational cost consists of O(M) flops for iteration steps
and O(M logM) flops for sorting at the predetermined initialization step which can be efficiently
optimized by adopting a linear time sorting method, where M is the total number of mesh points.
Extensive numerical examples demonstrate that the new algorithm converges in a finite number of
iterations independent of mesh size.

Key words. eikonal equations, fast sweeping, Hamilton–Jacobi, viscosity solution
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1. Introduction. The eikonal equation in its simplest form says that the mag-
nitude of the gradient of the eikonal is constant: |∇T | = 1, where T is the so-called
eikonal. Because it appears in a variety of applications, it is essential to develop fast
and efficient numerical methods to solve such an equation. In this work, we design
a class of fast sweeping methods on triangulated domains for an eikonal equation of
the following form: {

|∇T (x)| = f(x), x ∈ Ω \ Γ,

T (x) = g(x), x ∈ Γ ⊂ Ω,
(1.1)

where f(x) is a nonnegative function, Ω is an open, bounded polygonal domain in
Rd, and Γ is a subset of Ω.

Two key points in designing an efficient numerical algorithm for solving such a
nonlinear boundary value problem of hyperbolic type are (1) a numerical discretization
that is both consistent with the causality of the PDE and able to deal with singu-
larities in the solution gradient, and (2) a fast algorithm to solve the resulting large
nonlinear system of equations. There are usually two types of methods for solving the
nonlinear system: time marching methods and direct methods. Time marching meth-
ods add to the equation a pseudo–time variable which transforms the problem into
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a time dependent one and evolve the solution to the steady state. Due to the finite
speed of propagation and the Courant–Friedrichs–Lewy (CFL) condition for stability,
many iterations are needed to reach the steady state solution. The last two decades
have witnessed much effort towards solving the eikonal equation directly: upwind-
ing schemes [32, 31], dynamic programming sweeping methods [27], Jacobi iterations
[26], semi-Lagrangian schemes [8], fast marching-type methods [30, 10, 28, 13], down-
n-out approaches [7], wavefront expanding methods [23], adaptive upwinding methods
[19, 21], fast sweeping methods [2, 37, 29, 35, 12, 34, 11, 36, 33]; see also the refer-
ences therein. Accuracy of numerical solutions is determined by the discretization
scheme. For example, if a first-order monotone scheme is used, in general only the
h1/2 convergence rate can be shown [6] and the h log h convergence rate is optimal for
the eikonal equation [35].

Among all these methods, both the fast marching method and the fast sweeping
method are designed to solve the nonlinear discretized system directly and efficiently
by exploiting causality of the underlying PDE. In terms of complexity, the fast march-
ing method [30, 10, 28, 13] has the complexity of O(M logM), where M is the total
number of mesh points and the logM factor comes from the heapsort algorithm needed
for sorting out the causality order at each step, while the fast sweeping method has
the complexity of O(M), where the constant in O depends on the equation, and this
was proved in [35] for eikonal equations on rectangular grids. For a particular problem
on a fixed grid, one method could be faster than the other. When the grid is more
refined the fast sweeping method will be faster eventually. In [9], concrete and de-
tailed comparisons are presented for various numerical examples. In terms of accuracy
there is no difference since they are two different ways of solving the same nonlinear
discretized equation. The main difference between these two methods lies in the use
of causality. The fast marching method enforces the causality sequentially and on the
fly during each update step; that is why a heapsort algorithm is needed to order all
possible candidates and pick up the correct one by the causality at each step; once a
point is accepted it cannot be revisited and its value cannot be changed afterwards.
On the other hand the fast sweeping method is an iterative method of Gauss–Seidel
type which is extremely simple to implement; such a simple iterative method for a
nonlinear problem is able to achieve an optimal complexity because it can capture
the causality of the PDE in a parallel way, as shown in [35]. Since it is an iterative
method by nature the fast sweeping method is applicable to other situations such as
higher order schemes with ease [34, 33], nonconvex Hamiltonians [12], and parallel
implementation [36].

On the other hand, most of these methods are based on rectangular meshes.
However, it is important to design fast methods on triangulated meshes as well. For
example, in seismics a subsurface velocity model usually consists of several irregular
interfaces, and in robotic path planning an obstacle may have an irregular boundary.
Thus, for applications involving irregular boundaries or interfaces, it is much desired
to triangulate a computational domain into irregular meshes to fit with boundaries
or interfaces. Kimmel and Sethian [13] extended the fast marching method to trian-
gulated domains to compute geodesics on manifolds.

In this work, we extend the fast sweeping method to triangulated domains by in-
troducing novel ordering processes into the sweeping strategy. The resulting method
is proved to be convergent, and numerical examples demonstrate that the method
converges in a finite number of iterations independent of mesh size. The computa-
tional complexity of the new algorithm is nearly optimal in the sense that the total
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computational cost consists of O(M) flops for iteration steps and O(M logM) flops
for sorting at the predetermined initialization step, which can be efficiently optimized
by adopting a linear time sorting method.

An essential property of the eikonal equation is that it is hyperbolic, and a stable
scheme must look for information by following characteristics in an upwind fashion,
which is equivalent to the simple causality for the eikonal equation in that its so-
lution is always increasing (or decreasing) along a characteristic. To satisfy such a
property, it is crucial for a scheme of computing viscosity solutions to be based on a
monotone numerical Hamiltonian [1, 17]. Once we have in place such a discretization
for eikonal equations, the problem reduces to one of solving the resulting nonlinear
system efficiently; the fast sweeping method is designed to do exactly that. The orig-
inal fast sweeping method was inspired by the work in [2]. The fast sweeping method
uses Gauss–Seidel iterations with alternate sweeping orderings to solve the nonlinear
system. The fact that the iterative algorithm for a nonlinear system can converge in
a finite number of iterations independent of mesh size is quite remarkable; even for
a linear system, such as the discretized system for the Laplace equation, this is not
true.

The crucial idea underlying the fast sweeping method is the following [35]: all
directions of characteristics can be divided into a finite number of groups; any char-
acteristic can be decomposed into a finite number of pieces that belong to one of the
above groups; there are systematic orderings that can follow the causality of each
group of directions simultaneously.

On a rectangular grid there are natural orderings of all grid points. For example,
in the two-dimensional (2-D) case, all directions of the characteristics can be parti-
tioned into four groups, up-right, up-left, down-right, and down-left, and it is very
natural to order all the nodes according to their indexes in ascent or descent orders
[2, 37, 29, 11, 35, 12, 34], which yields four possible orderings to cover all those four
directions of characteristics.

However, on an unstructured mesh, only local connection of the nodes is available
and natural ordering no longer exists. To overcome these difficulties we propose
general ordering strategies by introducing multiple reference points and ordering all
the nodes according to their lp-distances to those reference points. For example,
information is propagated as plane waves in different directions when the l1-metric is
used or as spherical waves with different centers when the l2-metric is used. We show
that these orderings satisfy the key properties essential for the fast sweeping method
to converge and numerically demonstrate that the fast sweeping method converges
in a finite number of iterations independent of mesh size. Although it may still
cost O(M logM) by a comparison-based sorting method, the ordering step in our
algorithm may be made to be O(M) by a linear time sorting method since we know
the distribution of nodes at the initial step. For example, the radix sorting method
[4] may be used for such a purpose. Moreover this initial ordering is done for a fixed
mesh once and for all. This is different from other methods based on heap sorting to
maintain a dynamic data structure. Therefore the methods proposed here are very
efficient and extremely easy to write in any number of dimensions.

The rest of the paper is organized as follows. In section 2, we construct local
solvers at each node on a triangulated mesh, propose novel ordering strategies, and
detail fast sweeping algorithms. In section 3, we analyze the new algorithm and prove
convergence results. In section 4, we present various numerical examples to illustrate
the efficiency and the accuracy of the new method. We conclude the paper in section 5.
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Fig. 2.1. Update the value at C in a triangle when causality is satisfied.

2. Fast sweeping methods on unstructured meshes.

2.1. 2-D local solvers. Take d = 2 in (1.1):{√
T 2
x + T 2

y = f(x, y), (x, y) ∈ Ω ⊂ R2,

T (x, y) = g(x, y), (x, y) ∈ Γ ⊂ Ω,
(2.1)

where f(x) is a nonnegative function, Ω is an open, bounded polygonal domain in
Rd, and Γ is a subset of Ω.

We consider a triangulation Th of Ω which consists of nonoverlapping, nonempty,
and closed triangles T , with diameter hT , such that Ω̄ = ∪T ∈Th

T . We assume that
Th satisfies the following conditions:

• No more than μ triangles have a common vertex; h = supT ∈Th
hT < 1.

• Th is regular; there exists a constant ω0 independent of h such that if ρT is
the diameter of the largest ball B ⊂ T , then for all T ∈ Th, hT ≤ ω0ρT .

For a given triangle �ABC, we denote ∠A = β, ∠B = α, and ∠C = γ; AB = c,
AC = b, and BC = a are the lengths of the edges AB, AC, and BC, respectively.

During the solution process we need a local solver at vertex C for each triangle;
see Figure 2.1. Given the values TA and TB at A and B of triangle �ABC, we want
to calculate the value TC at C.

To make the description specific, we introduce the definition of causality.
Definition 2.1. Under the above regular triangulation we consider a local scheme

based on piecewise linear reconstructions. By the causality condition of isotropic wave
propagation for updating the travel-time at the node C from travel-times TA and TB,
we mean that the ray which is orthogonal to the wavefront and passes through C must
fall inside the triangle �ABC.

We notice that in isotropic wave propagation the ray direction is the same as
the gradient direction of the travel-time field and thus it is the same as the outward
normal of the wavefront.

First we assume that �ABC is acute. To construct a first-order scheme we
determine a planar wavefront from the known values TA and TB . Suppose that the
angle is θ between the incoming wavefront and the edge AB.

Without loss of generality, we further assume that TB ≥ TA. If TC is deter-
mined by both TA and TB , then by the Huygens principle the wavefront must first
pass through the vertex A, then B, and finally C. To guarantee this, the following
conditions must be satisfied:
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Fig. 2.2. Update the value at vertex C in a triangle when causality is not satisfied.
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Fig. 2.3. C and its obtuse triangle.

• [TB − TA]/fC ≤ AB = c; i.e., it is possible for the wavefront to propagate
from A to B with the given speed, where fC is the value of f(C), the inverse
of the speed at C.

• θ ≤ α so that the wavefront passes through B first rather than C.
• θ + β < π

2 ; otherwise the causality is violated since the vertical line from C
to the wavefront does not fall inside the triangle; see Figure 2.2.

If all n triangles T1, T2, . . . , Tn around C are acute, the wavefront can be captured
well in one of these triangles, no matter which direction the wave comes from. How-
ever, if one of the triangles is obtuse and the wavefront comes in just from this obtuse
angle, then the situation is different; there are two possible cases: (i) if the normal
of the wavefront is contained between those two dotted lines in Figure 2.3, then the
value at C can be updated using values at A and B even though the accuracy will
be degraded; (ii) otherwise, the value at C cannot be updated by A and B correctly
[25]. These will be shown in numerical examples in section 4.

In order to treat obtuse triangles, we adopt the strategy used in [25]. As illustrated
in Figure 2.4, if ∠C is obtuse, then we connect C to a vertex D of a neighboring
triangle to cut the obtuse angle into two smaller angles. If these two angles are both
acute, then we are done, as shown in Figure 2.4(a); otherwise, if one of the smaller
angles is still obtuse, then we keep connecting C to the vertexes of the neighboring
triangles of the next level until all new angles at C are acute, as shown in Figure
2.4(b). All these added edges are “virtual”; i.e., they exist only when the value at
C is updated. Because such a treatment depends on a given mesh, we only need to
do that once before the iteration in the algorithm begins; the resulting algorithm is
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Fig. 2.4. A strategy to treat obtuse angles.

simple with almost no extra computational cost, as shown by numerical examples in
section 4. This construction is different from the one used in [13].

We first give a geometric version of our local solvers.
A 2-D local solver (Version 1: given TA ≤ TB , determine TC = TC(TA, TB)).
1. If [TB − TA] ≤ c fC , then

θ = arcsin

(
[TB − TA]

c fC

)
;

(a) if max (0, α− π
2 ) ≤ θ ≤ π

2 − β, then

h = CP = a sin(α− θ);TC = min{TC , h fC + TB};

(b) else

TC = min{TC , TA + b fC , TB + a fC};

2. else

TC = min{TC , TA + b fC , TB + a fC}.

The angle condition,

max
(
0, α− π

2

)
≤ θ ≤ π

2
− β,

can be obtained in the following way:
1. If β > π

2 , then the causality condition is not valid.
2. If β < π

2 , then we must have θ ≤ π
2 − β; otherwise, the causality is violated

since the vertical line from C to the wavefront does not fall inside the triangle.
Furthermore,
(a) from this condition we can directly deduce that α ≥ θ, since ∠C = γ < π

2
by construction;

(b) if α ≥ π
2 , then we must have α− θ ≤ π

2 so that the ray from C reaching
the wavefront is located inside the triangle.

The following algorithm unifies all the cases into one.
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A 2-D local solver (Version 2: given TA and TB , determine TC = TC(TA, TB)).
1. If |TB − TA| ≤ c fC , then

θ = arcsin

(
[TB − TA]

c fC

)
;

(a) if max (0, α− π
2 ) ≤ θ ≤ π

2 − β or α− π
2 ≤ θ ≤ min (0, π

2 − β), then

h = CP = a sin(α− θ);H = CQ = b sin(β + θ);

TC = min{TC , 0.5 (h fC + TB) + 0.5 (H fC + TA)};

(b) else

TC = min{TC , TA + b fC , TB + a fC};

2. else

TC = min{TC , TA + b fC , TB + a fC}.

In the special case that a given mesh is rectangular and α = β = π
4 , it is straight-

forward to verify that the above local solver reduces to the one given in [35]. Therefore,
the local solver is consistent with the one on rectangular meshes.

If a triangle is acute, then the angle conditions in Version 2 reduce to one condi-
tion:

α− π

2
≤ θ ≤ π

2
− β;

otherwise, the two angle conditions cannot be combined into one, since there are gaps
corresponding to one of the angles α or β being obtuse. See Figures 2.1 and 2.2 for
illustrations.

We emphasize that both updating algorithms require that ∠C = γ < π
2 , but one

of the other two angles may be obtuse.

2.2. A 3-D local solver. A local solver in three dimensions can be derived
similarly. Take d = 3 in (1.1):{√

T 2
x + T 2

y + T 2
z = f(x, y, z), (x, y, z) ∈ Ω ⊂ R3,

T (x, y, z) = g(x, y, z), (x, y, z) ∈ Γ ⊂ Ω.
(2.2)

Equation (2.2) is solved in the domain Ω, which has a triangulation Th consisting of
tetrahedrons. We consider every vertex and all tetrahedrons which are associated to
this vertex. Again the question reduces to one of calculating the numerical solution
at the current central vertex for each tetrahedron; see Figure 2.5.

Given the values TA, TB , and TC at A, B, and C of the tetrahedron ABCD,
we need to calculate the value TD at the current central vertex D. The key is to
determine the normal direction 	n of the wavefront and determine whether the causality
condition is satisfied or not. Analogous to Definition 2.1, the ray which has direction
	n and passes through D must fall inside the tetrahedron ABCD so as to satisfy the
causality condition. To check the causality condition numerically, we first compute
the coordinates of the point E at which the ray passing through D with direction 	n
intersects the plane spanned by A, B, and C; afterwards, we check to see whether E
is inside �ABC or not.

Without loss of generality, we assume that TA = min{TA, TB , TC}.
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Fig. 2.5. A 3-D local solver.

A 3-D local solver (given TA, TB , and TC , determine TD = TD(TA, TB , TC)).
1. If [TB −TA] ≤ AB · fD and [TC −TA] ≤ AC · fD, then we solve the quadratic

equation for the normal direction 	n of the wavefront:⎧⎨⎩
−→
AB · 	n = [TB − TA]/fD,
−→
AC · 	n = [TC − TA]/fD,

|	n| = 1;

(2.3)

(a) if there exist solutions 	n(i), i = 1, 2, for the quadratic equation (2.3) and
the area |�EAB|+ |�EAC|+ |�EBC| = |�ABC| for an 	n(i), then

TD = min{TD, TA + (|−→AD · 	n(i)|) · fD};

(b) else, apply the 2-D local solver on surfaces �ABD,�ACD, and �BCD
and take the minimal one;

2. else, apply the 2-D local solver on surfaces �ABD,�ACD, and �BCD and
take the minimal one.

2.3. Sweeping orders and a complete algorithm. An essential ingredient
for making the fast sweeping method [35] successful is a systematic ordering that
covers all directions of characteristics efficiently. With a causality preserving dis-
cretization in place, information along characteristics of certain directions is captured
simultaneously in each sweeping ordering. Moreover, once the solution at a node gets
its correct value, i.e., the smallest possible value, it will not change in later iterations.
There are natural orderings on rectangular meshes. For example, in 2-D cases [35],
all directions can be divided into four groups, up-right, up-left, down-left, and down-
right, which can be covered by the orderings i = 1 : I, j = 1 : J ; i = 1 : I, j = J : 1;
i = I : 1, j = 1 : J ; i = I : 1, j = J : 1, respectively, where i and j are the running
indexes in the x- and y-directions, respectively. However, such natural orderings no
longer exist on an unstructured mesh.

To devise efficient fast sweeping methods on unstructured meshes, we propose
systematic orderings by introducing multiple reference points and sorting all the nodes
according to their lp-distances to each individual reference point. In this paper we
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focus on p = 1 and 2 and give explicit geometric interpretation. The argument works
for all other p’s.

The lp-metric for a vector x=(x1, x2, . . . , xn)∈Rn is defined as |x|p=(
∑n

j=1|xj |p)1/p.
Without abuse of notation we also use |x| to denote the 2-norm of a vector x. For
example, in two dimensions, we first fix a reference point xref ; if we sweep through
all nodes according to |x − xref |1 in the ascent (or descent) order, then the sweeping
wavefront is an outgoing (or incoming) plane wave since the unit ball of the l1-metric
is a tilted square. If we use |x−xref |2 to order all nodes, then the sweeping wavefront
is an outgoing (or incoming) spherical wave.

Next we address the following questions:
1. How many references points are needed in a systematic ordering that can

cover all directions of information propagating?
2. How many iterations are needed for the algorithm to converge?

To address the first question, we have to understand the directional relation be-
tween a sweeping wavefront and a characteristic. In the continuous case the following
is a basic fact: if the propagating direction of the sweeping wavefront forms an acute
angle with the direction of the characteristic, then the causality along this charac-
teristic can be captured in this ordering. As illustrated in Figure 2.6, if we use the
l2-metric, i.e., with a spherical sweeping wavefront, a straight characteristic in any
direction can be partitioned into two pieces by the tangent point to a particular
spherical sweeping wavefront, and each piece forms an acute angle to the outgoing
or incoming sweeping wavefront. If all characteristics are straight lines, which is the
case when the right-hand side of the eikonal equation is constant, we cover almost all
characteristics by sweeping all nodes according to the l2-distance to a single reference
point in both ascent and descent orders alternately. However, for all characteristics at
the tangent point, the normal of the sweeping wavefront is orthogonal to the direction
of characteristics. So information will not propagate across the tangent point from
one piece to other pieces effectively. To remedy this problem we introduce another
reference point. Now all directions of characteristics can be covered effectively by
the four orderings except one direction, which is orthogonal to the line connecting
these two reference points, as shown in Figure 2.6. Therefore we need at least three
noncollinear reference points and we sweep through all the nodes according to their
l2-distances to these reference points in ascent and descent orderings; a total of six
orderings cover all directions of information propagating along characteristics. It can
be easily seen that four noncoplanar reference points are needed in three dimensions.

If we use the l1-metric, the sweeping wavefront is a tilted square. For each refer-
ence point, as shown in Figure 2.7, the whole plane can be divided into four quadrants,
and each quadrant can be covered by one planar sweeping wavefront. If we choose
two reference points such that the computational domain lies in different quadrants of
these two reference points, all directions of characteristics can be covered by the four
orderings corresponding to the ascent and descent sorting according to the l1-metric;
see Figure 2.7.

When characteristics are not straight lines, any characteristic can be divided into
a finite number of pieces so that each piece can be covered effectively by one of the
orderings, as shown in [35]. The total number of sweepings is increased due to curved
characteristics, but it is still finite. The number of iterations will be estimated in
section 3.

In terms of numerical implementation on a particular mesh some remarks are in
order.
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Fig. 2.6. Reference points and sweeping wavefronts for the l2-metric.
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Fig. 2.7. Reference points and sweeping wavefronts for the l1-metric.

The domain of dependence for a node in the discrete case is a region rather
than only the characteristic that passes through the node in the continuous case.
On a triangular mesh, the propagating direction of a sweeping wavefront has to fall
into the triangle which satisfies the causality criterion in Definition 2.1 so that the
two neighbors that determine the current vertex have already been updated in the
current sweeping. Numerically this means that the normal of the sweeping wavefront
has to make an acute angle with the characteristic that passes through this vertex.

The criterion for an optimal choice of reference points and their locations on a
triangular mesh is that all directions of characteristics should be covered with minimal
redundancy. In practice, it is better if these reference points are evenly spaced both
spatially and angularly with respect to the data set or boundary where the solution
is prescribed. In our numerical tests we use the corners as reference points if the
computational domain is rectangular. Other points, such as the center point of the
domain or middle points of each edge, can be used as well. The number of iterations
needed for convergence may be different for different choices of reference points but
it will be finite.

If we have only a point source as the boundary condition on a rectangular mesh
and we use that point as the single reference point, then the square wave sweeping
accesses nodes in the ascent order in the same way that the down-n-out model does
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[32, 7], and the spherical wave sweeping shares some similarities with the expanding
wavefront model proposed in [31, 23]. However, we are not aware of any work accessing
the nodes in the way similar to the plane wave sweeping proposed here.

The above isotropic metrics are suitable for ordering nodes in solving isotropic
eikonal equations. For general anisotropic eikonal equations considered in [24, 18, 20],
we may introduce anisotropic Riemannian metrics [5] to sort all the nodes, derive
a local solver to update solutions at each node by using phase velocity and group
velocity, as illustrated in [24, 18], and design fast sweeping methods accordingly; see
[22] for a recent work along this direction.

Now we summarize local solvers and sweeping orderings into a complete algorithm.
The fast sweeping algorithm on a triangular mesh.

1. Initialization:
(a) Triangulate the computational domain Ω. Add virtual edges to cut ob-

tuse angles if there are any.
(b) Choose multiple reference points: xi

ref , i = 1, . . . , R.
(c) Sort all nodes according to their lp-distances to the reference points in

ascent and descent orders, and put them into arrays:

S+
i : ascent order, i = 1, 2, . . . , R;

S−
i : descent order, i = 1, 2, . . . , R.(2.4)

(d) Assign exact values or interpolated values T (0) at vertexes on or near the
given boundary Γ, and keep these values fixed during the iterations. At
all other vertexes, assign large positive values N to T (0), where N should
be larger than the maximum of the true solution, and these values will
be updated in later iterations.

2. Gauss–Seidel iteration for k = 0, 1, . . . :
(a) For i = 1, . . . , R:

i. For j = +,−:
A. To every vertex C ∈ Sj

i and every triangle associated with C,
fC=f(C), apply the local solver;

B. Convergence test: ‖T (k+1) − T (k)‖ ≤ ε for ε > 0 given, where
‖ · ‖ is some specified norm.

We remark that during the Gauss–Seidel iteration the numerical solution at C is
calculated using the current values of its neighbors in every triangle. The smallest
one will be taken as the possible new value. If this smallest new value is smaller than
the current value at C, then the numerical solution at C is updated to be the smallest
new value.

In passing we point out that the sorting procedure in the above algorithm can cost
O(M logM) flops if a comparison-based sorting method is used; however, to achieve
an optimal O(M) complexity for the algorithm, we may use a radix sorting method [4]
in that we know the distribution of nodes. Radix sorting runs an O(M) counting sort
on each digit of the key, starting with the least significant and working for bounded
integers. For general distances computed in the above algorithm, we argue that a
fixed number of digits is sufficient because in some sense the order of updates does
not matter too much for two nodes sufficiently close to each other. Moreover, this
initial ordering is done for a fixed mesh once and for all.

3. Convergence results. In this section we prove convergence of the fast sweep-
ing algorithm on triangular meshes. In the following analysis, we consider a regular
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triangulation Th of Ω with the property that all the inner angles of the triangles in
Th satisfy ≤ π

2 .
Considering a triangle �ABC in which TA and TB are given, we update the

travel-time TC at the vertex C. Denoting

p1 =
TC − TA

b
, p2 =

TC − TB

a
, p3 =

TB − TA

c
,

we adopt the framework in [3] to show consistency and monotonicity of the Godunov
numerical Hamiltonian resulting from the local solver introduced in section 2.

Lemma 3.1 (Godunov numerical Hamiltonian). Assuming that the causality
condition holds, the updating formula for the local solver is one of the solutions for
the following equations:⎧⎪⎨⎪⎩

(TC−TA)2

b2 − 2 (TC−TA)(TC−TB)
a b cos γ + (TC−TB)2

a2 = f2
C sin2 γ

if |p3| ≤ fC and α− π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

max (TC−TA

b , TC−TB

a ) = fC otherwise.

(3.1)

Here ∠C = γ, ∠A = β, ∠B = α, and fC = f(C). This discretization for the eikonal
equation is based on the Godunov numerical Hamiltonian:

ĤC

(
TC − TA

b
,
TC − TB

a

)
= fC ,(3.2)

where

ĤC(p1, p2) =

⎧⎪⎨⎪⎩
1

sin γ

√
p2
1 − 2p1 p2 cos γ + p2

2

if |p3| ≤ fC and α− π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

max (p1, p2) otherwise.

(3.3)

Proof. By Version 2 of the local solver, we have

TC =

⎧⎪⎨⎪⎩
1
2 (TA + TB) + sin(α−β)

2 sin γ (TB − TA) + sinα sin β
sin γ

√
c2f2

C − (TB − TA)2

if |p3| ≤ fC and α− π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

min (TA + bfC , TB + afC) otherwise.

(3.4)

By solving (3.1), we have

TC =

⎧⎪⎨⎪⎩
1
2 (TA + TB) + b2−a2

2c2 (TB − TA) ± a b sin γ
c2

√
c2f2

C − (TB − TA)2

if |p3| ≤ fC and α− π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

min (TA + bfC , TB + afC) otherwise;

(3.5)

one of the two roots corresponds to (3.4).
Next we derive the numerical Hamiltonian. Denote A : (xA, yA), B : (xB , yB),

and C : (xC , yC). Since the causality condition holds, we have

TC − TA

b
= ∇T (C) ·

(
xC − xA

b
,
yC − yA

b

)t

+ o(h2),(3.6)

TC − TB

a
= ∇T (C) ·

(
xC − xB

a
,
yC − yB

a

)t

+ o(h2),(3.7)
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where t denotes the transpose of vectors. Furthermore we have(
TC−TA

b
TC−TB

a

)
= P∇T (C) + o(h2),(3.8)

where

P =

(
xC−xA

b
yC−yA

b
xC−xB

a
yC−yB

a

)
.

Ignoring higher-order terms and solving for ∇TC , we have

|∇T (C)| ≈

⎧⎪⎨⎪⎩
1

sin γ

√
(TC−TA)2

b2 − 2 (TC−TA)(TC−TB)
a b cos γ + (TC−TB)2

a2

if |p3| ≤ fC and α− π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

max
(
TC−TA

b , TC−TB

a

)
otherwise;

(3.9)

this is the Godunov numerical Hamiltonian for the eikonal equation.
Lemma 3.2 (consistency and causality). The Godunov numerical Hamiltonian

ĤC(p1, p2) =

⎧⎪⎨⎪⎩
1

sin γ

√
p2
1 − 2p1 p2 cos γ + p2

2

if |p3| ≤ fC and α− π
2 ≤ arcsin( p3

fC
) ≤ π

2 − β;

max (p1, p2) otherwise

(3.10)

is consistent; namely,

ĤC

(
TC − TA

b
,
TC − TB

a

)
= |p|(3.11)

if ∇Th = p ∈ R2. It is monotone if the causality condition holds: 0 ≤ γ1 ≤ γ, where
γ1 is the angle from the edge CA to the ray (i.e., the vertical line to the wavefront)
CQ counterclockwise; see Figure 2.1.

Proof. By ∇Th = p ∈ R2, we have(
TC−TA

b
TC−TB

a

)
= Pp.(3.12)

Inserting this into the numerical Hamiltonian, we have (3.11).
Differentiating ĤC(p1, p2) with respect to p1 and p2, the monotonicity of the

Hamiltonian requires

∂ĤC

∂p1
≥ 0,

∂ĤC

∂p2
≥ 0;(3.13)

these can be satisfied if and only if cos γ ≤ p2

p1
≤ 1

cos γ . By

p1 =
TC − TA

b
= fC sin(β + θ),(3.14)

p2 =
TC − TB

a
= fC sin(α− θ),(3.15)

where θ = arcsin( p3

fC
), we have

cos γ ≤ sin(β + θ)

sin(α− θ)
≤ 1

cos γ
,(3.16)
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which is equivalent to the causality condition 0 ≤ γ1 ≤ γ, since γ1 = π
2 − (β + θ) and

γ1 = (γ + α− θ) − π
2 .

Lemma 3.3 (monotonicity). The fast sweeping algorithm is monotone and Lip-
schitz continuous, i.e.,

1 ≥ ∂TC

∂TB
≥ 0, 1 ≥ ∂TC

∂TA
≥ 0,(3.17)

and

∂TC

∂TB
+

∂TC

∂TA
= 1.(3.18)

Proof. Consider the case that TA ≤ TB . We need only verify that the above
inequalities hold when TC is updated by

TC = h fC + TB ,(3.19)

which is the case that the causality condition is satisfied. From Version 1 of the local
solver we have

∂TC

∂TB
= 1 + afC cos(α− θ)

(
− ∂θ

∂TB

)
(3.20)

= 1 − a cos(α− θ)

c cos θ
;(3.21)

∂TC

∂TA
= afC cos(α− θ)

(
− ∂θ

∂TA

)
(3.22)

=
a cos(α− θ)

c cos θ
.(3.23)

From Figure 2.1, we have a cos(α − θ)=PB, c cos(θ)=AR, and PB ≤ AR; therefore,
1 ≥ ∂TC

∂TB
≥ 0, 1 ≥ ∂TC

∂TA
≥ 0, and ∂TC

∂TB
+ ∂TC

∂TA
= 1.

Lemma 3.4 (maximum change principle). In the Gauss–Seidel iteration for the
fast sweeping algorithm, the maximum change of Th at any vertex is less than or equal
to the maximum change of Th at its neighboring points.

Proof. This follows from the above monotonicity property proved in Lemma
3.3.

Lemma 3.5 (order preserving). The fast sweeping algorithm is monotone in the
initial data.

Proof. By the monotonicity property of the solution, if Th(C) ≤ Rh(C) at all
vertexes initially, then Th(C) ≤ Rh(C) at all vertexes after any number of Gauss–
Seidel iterations.

Lemma 3.6 (nonincreasing). The solution of the fast sweeping algorithm is non-
increasing with each Gauss–Seidel iteration.

Proof. This is evident from the updating formula, which updates the current
value only if it is larger than the newly computed value during the Gauss–Seidel
iteration.

Lemma 3.7 (l∞-contraction). Let T (k) and R(k) be two numerical solutions at
the kth iteration of the fast sweeping algorithm. Let ‖ · ‖∞ be the maximum norm.
Then

‖T (k) −R(k)‖∞ ≤ ‖T (k−1) −R(k−1)‖∞;(3.24)
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0 ≤ max
C

{
T

(k)
C − T

(k+1)
C

}
≤ max

C

{
T

(k−1)
C − T

(k)
C

}
.(3.25)

Proof. Assume that the first update at the kth iteration is at C,

T
(k)
C = min{T (k−1)

C , T̄},

where T̄ is the solution computed from its neighbors T
(k−1)
A and T

(k−1)
B . The same is

true for R
(k)
C . By the maximum change principle, we have

|T (k)
C −R

(k)
C | ≤ ‖T (k−1) −R(k−1)‖∞.(3.26)

For an update at any other node later in the iteration, the neighboring values used
for the update are either from the previous iteration or from an earlier update in
the current iteration, both of which satisfy the above bound. By induction, we have
l∞-contraction (3.24). By the monotonicity of the fast sweeping algorithm and (3.24),
setting R(k) = T (k−1) we conclude (3.25).

Theorem 3.8 (convergence). The solution of the fast sweeping algorithm con-
verges monotonically to the solution of the discretized system.

Proof. Denote the numerical solution after the kth iteration by T
(k)
C . Since T

(k)
C

is bounded below by 0 and is nonincreasing with Gauss–Seidel iterations, T
(k)
C is

convergent for all C. After each sweep for each C at each triangle, we have by the
monotonicity of the numerical Hamiltonian

(T
(k)
C − T

(k)
A )2

b2 sin2 γ
− 2

(T
(k)
C − T

(k)
A )(T

(k)
C − T

(k)
B )

a b sin2 γ
cos γ +

(T
(k)
C − T

(k)
B )2

a2 sin2 γ
≥ f2

C(3.27)

because any later update of neighbors of T
(k)
C in the same iteration is nonincreasing.

Moreover, it is easy to see that after T
(k)
C is updated, the function

F (T
(k)
A , T

(k)
B ) =

(T
(k)
C − T

(k)
A )2

b2 sin2 γ
− 2

(T
(k)
C − T

(k)
A )(T

(k)
C − T

(k)
B )

a b sin2 γ
cos γ

+
(T

(k)
C − T

(k)
B )2

a2 sin2 γ
− f2

C(3.28)

is Lipschitz continuous in T
(k)
A and T

(k)
B , and the Lipschitz constant is bounded by

2 max

{
|T (k)

C − T
(k)
A |

b2 sin2 γ
+

|T (k)
C − T

(k)
B |

a b sin2 γ
cos γ,

|T (k)
C − T

(k)
B |

a2 sin2 γ
+

|T (k)
C − T

(k)
A |

a b sin2 γ
cos γ

}
.

Since T
(k)
C is monotonically convergent for all C, we can have an upper bound Z > 0

for the Lipschitz constant. Let δ(k) = max{T (k−1)
C − T

(k)
C } be the maximum change

at all grid points during the kth iteration. By the l∞-contraction property and the

convergence property of T
(k)
C , δ(k) converges monotonically to zero. After the kth

iteration, we have

0 ≤ (T
(k)
C − T

(k)
A )2

b2 sin2 γ
− 2

(T
(k)
C − T

(k)
A )(T

(k)
C − T

(k)
B )

a b sin2 γ
cos γ +

(T
(k)
C − T

(k)
B )2

a2 sin2 γ
− f2

C

≤ Zδ(k).

(3.29)
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Fig. 3.1. Partitioning of a characteristic.

Thus T (k) converges to the solution to (3.1).
Note that the monotone convergence is very important during iterations. Once

the solution at a node reaches the minimal value that it can get, it is the correct value
at that node and will not change in later iterations.

Next we show the estimate for the total number of iterations needed for conver-
gence. As pointed out above, given a systematic ordering, any characteristic can be
partitioned into a finite number of pieces and each piece will be covered correctly by
one of the sweeping orderings, as shown in Figure 3.1(a). Since these pieces have to
be captured sequentially the total number of iterations needed is proportional to the
number of pieces. Finally the number of pieces needed to partition a characteristic is
related to the directional change of the characteristic. We now give an estimate on
the total variation of the tangent direction of any characteristic in a fixed domain Ω.

Denote H(p,x) = |p| − f(x), where p = ∇T . The characteristic equation for the
eikonal equation is ⎧⎪⎨⎪⎩

ẋ = ∇pH = ∇T
f(x) ,

ṗ = −∇xH = ∇f(x),

Ṫ = ∇T · ẋ = f(x),

where ˙ denotes the derivative along characteristics parametrized by the arc length s.
Since |ẋ| = 1, it was shown in [35] that the curvature bound along a characteristic

is

|ẍ| ≤
∣∣∣∣∇f(x)

f(x)

∣∣∣∣ .(3.30)

Lemma 3.9. Assuming that f(x) is strictly positive and C1 in Ω, the total vari-
ation of the tangent direction of the shortest characteristic L from an initial point
x0 ∈ Γ to a point x ∈ Ω is bounded by∫

L

|ẍ|ds ≤ DKfM
fm

,(3.31)

where s is the arc-length along the characteristic L, D is the diameter of domain Ω,
and

K = sup
x∈Ω

∣∣∣∣∇f(x)

f(x)

∣∣∣∣ , fM = sup
x∈Ω

f(x), fm = inf
x∈Ω

f(x).
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Proof. The existence of the shortest path L, yielding the first-arrival travel-time
from an initial point x0 ∈ Γ to a point x ∈ Ω, is guaranteed by the results in [14, 16].
If L is a single characteristic curve, then from (3.30) we have∫

L

|ẍ|ds ≤
∫
L

|∇f(x)|
f(x)

ds ≤ K

∫
L

ds,(3.32)

where s is the arc-length; see Figure 3.1(b). The travel-time at x is T (x) =
∫
L
f(s)ds.

This travel-time, which is the first arrival time at x, is smaller than the travel-time
along the direct path from x0 to x. So we have

fm

∫
L

ds ≤
∫
L

f(s)ds = T (x) ≤
∫ x

x0

f(s)ds ≤ fM |x − x0|.(3.33)

Hence

length(L) =

∫
L

ds ≤ DfM
fm

.(3.34)

Together with (3.32) we finish the proof. In general L may be composed of several
pieces of characteristic curves. The above integral may be broken into several parts
accordingly, but the same proof goes through.

According to the above lemma the maximal number of sweeping needed to cover
all characteristics can be bounded by C × DKfM

fm
, where the constant C may depend

on the number of reference points and orderings.
Here is a discrete version of the above argument [36]. For an appropriate upwind

scheme the corresponding discretized nonlinear system of equations has a solution (see
Theorem 3.8). We can classify all nodes into a few groups according to the solution.
All nodes in each group have a dependence pattern similar to their neighbors. For
example, on a rectangular grid in two dimensions, almost all grid points can be di-
vided into simply connected regions. In each region the value at a grid point depends
on two of its neighbors in the following ways: (1) left and down neighbors; (2) left
and up neighbors; (3) right and down neighbors; (4) right and up neighbors. By the
Gauss–Seidel iteration each connected region can be covered by one of the orderings
simultaneously when the ordering is in the upwind direction of the dependence pat-
tern. The number of connected regions is proportional to the number of directional
changes of characteristics which is bounded above. This relates the number of itera-
tions for the fast sweeping method to the above bound. On a triangular mesh, because
an arbitrary unstructured mesh may accommodate much more information flowing
directions than a rectangular mesh, the situation is more complicated. However, given
a triangulation and a choice of the reference points, all nodes can be partitioned into
a finite number of connected regions. In each region the nodal dependence follows one
of the orderings according to the increase/decrease of the distance to the reference
points. For example, all those connected nodes, whose values depend on neighboring
nodes that are closer to one of the reference points, belong to one region. The number
of regions is proportional to the bound above. Although the triangulation and the
choice of the reference points may affect the number of iterations, it is finite for a
fixed setup.

4. Numerical examples. Now we show numerical examples in both two and
three dimensions to illustrate the efficiency and the accuracy of our algorithm. In all
the examples we have used the quick-sort method to order the nodes, though a radix
sorting method may be implemented as well.
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Our computational experience indicates that for an acute triangulation, using
four corners in 2-D rectangular domains or eight corners in 3-D rectangular domains
as the reference points is sufficient for the algorithm to converge in a finite number of
iterations. For a triangulation with some obtuse triangles, more reference points may
be needed. However, if the virtual splitting of obtuse angles as described in section
2.1 is used, then no extra reference point is needed; the results in convergence and
accuracy are similar to those with all triangles being acute.

In all the presented examples the number of iterations is independent of the mesh
size. The convergence of iteration is measured as full convergence in terms of the
l∞-norm; i.e., the iteration stops when the successive error reaches machine zero. On
the other hand, the convergence order of the method is measured in the l1-norm, as
advocated by Lin and Tadmor [15].

We note that in our implementation, the convergence test is checked for every
sweeping; here one sweeping is defined as passing through each node once according
to a given ordering of nodes. So the iteration numbers reported in numerical examples
are, in fact, the sweeping numbers needed for the algorithm to converge.

4.1. 2-D acute triangulation. We first triangulate the computational domain
into acute triangles, then we refine the mesh uniformly by cutting each triangle in
the coarse mesh into four smaller similar ones. We have chosen the four corners as
the reference points in Examples 1, 2, and 3, with both the l1- and l2-metric–based
sortings.

Example 1 (two-circle problem). The eikonal equation (2.1) with f(x, y) = 1. The
computational domain is Ω = [−2, 2]× [−2, 2]; Γ consists of two circles of equal radius
0.5 with centers located at (−1, 0) and (

√
1.5, 0), respectively. The exact solution is

the distance function to Γ. An acute triangulation is used in the computation. The
solution is shown in Figure 4.1(a).

Example 2 (shape-from-shading). This example is taken from [26], in which

f(x, y) = 2π
√

[cos(2πx) sin(2πy)]2 + [sin(2πx) cos(2πy)]2.(4.1)

Γ = {( 1
4 ,

1
4 ), ( 3

4 ,
3
4 ), ( 1

4 ,
3
4 ), ( 3

4 ,
1
4 ), ( 1

2 ,
1
2 )}, consisting of five isolated points. The

computational domain is Ω = [0, 1]× [0, 1]. T (x, y) = 0 is prescribed on the boundary
of the unit square. The solution to this problem is the shape function, which has
the brightness I(x, y) = 1/

√
1 + f(x, y)2 under vertical lighting. We have used acute

triangulations for the following two cases.
Case a.

g

(
1

4
,

1

4

)
= g

(
3

4
,

3

4

)
= 1, g

(
1

4
,

3

4

)
= g

(
3

4
,

1

4

)
= −1, g

(
1

2
,

1

2

)
= 0.

The exact solution for this case is smooth,

T (x, y) = sin(2πx) sin(2πy).

Case b.

g

(
1

4
,

1

4

)
= g

(
3

4
,

3

4

)
= g

(
1

4
,

3

4

)
= g

(
3

4
,

1

4

)
= 1, g

(
1

2
,

1

2

)
= 2.

The exact solution for this case is nonsmooth,

T (x, y) =

⎧⎪⎨⎪⎩
max(| sin(2πx) sin(2πy)|, 1 + cos(2πx) cos(2πy))

if |x + y − 1| < 1
2 and |x− y| < 1

2 ;

| sin(2πx) sin(2πy)| otherwise.
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Fig. 4.1. (a) Example 1: two-circle problem. (b) Example 3: five-ring problem.

Table 4.1

Accuracy tests for Examples 1 and 2. Acute triangulation. Four corners as the reference points.

Two-circle Shape (Case a) Shape (Case b)

Nodes Elements L1 error Order L1 error Order L1 error Order
1473 2816 7.71E-3 – 4.54E-2 – 2.83E-2 –
5716 11264 4.21E-3 0.87 2.54E-2 0.84 1.62E-2 0.81

22785 45056 2.18E-3 0.95 1.34E-2 0.92 8.76E-3 0.89
90625 180224 1.11E-3 0.97 6.90E-3 0.96 4.60E-3 0.93

Table 4.2

Iteration numbers for Examples 1, 2, and 3. Acute triangulation. Spherical wave sweeping based
on the l2-metric ordering. Four corners as the reference points.

Nodes Elements Two-circle Shape (Case a) Shape (Case b) Five-ring
1473 2816 6 9 9 19
5716 11264 6 13 13 20

22785 45056 8 11 13 21
90625 180224 8 11 13 21

Example 3 (five-ring). The computational domain is Ω = [0, 1]× [0, 1], Γ is a point
source at (0, 0), and a five-ring obstacle is placed in the computational domain. This
example is borrowed from [9]. Here we also use an acute triangulation. The solution
is shown in Figure 4.1(b).

From Table 4.1, we can see that the accuracy of the algorithm for Examples 1 and
2 is first order. Although the same discretized nonlinear system is solved, no matter
which ordering metric is used, different ordering strategies may result in different
numbers of iterations, as illustrated in Tables 4.2 and 4.3, where we have applied
orderings based on l1- and l2-metrics, respectively. Certainly, the two tables also
indicate that the iteration number does not depend on the mesh size as the mesh is
refined.

Table 4.4 shows the number of iterations needed using the l1-metric with only
two reference points. The two reference points are two corners that are not diagonal
to each other.

On the other hand, Table 4.5 shows that a simple extension of the ordering
strategy used for rectangular meshes, i.e., sorting all vertexes according to the ascent
and descent orders of their x- and y-coordinates, may result in more iterations.
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Table 4.3

Iteration numbers for Examples 1, 2, and 3. Acute triangulation. Planar wave sweeping based
on the l1-metric ordering. Four corners as the reference points.

Nodes Elements Two-circle Shape (Case a) Shape (Case b) Five-ring
1473 2816 7 12 9 26
5716 11264 7 12 9 27

22785 45056 7 16 9 27
90625 180224 7 15 9 27

Table 4.4

Iteration numbers for Examples 1, 2, and 3. Acute triangulation. Planar wave sweeping based
on the l1-metric ordering using only two reference points.

Nodes Elements Two-circle Shape (Case a) Shape (Case b) Five-ring
1473 2816 6 12 8 16
5716 11264 6 12 9 25

22785 45056 7 17 9 29
90625 180224 7 14 10 29

Table 4.5

Iteration numbers for Examples 1, 2, and 3. Acute triangulation. Nodes are sorted by x- and
y-coordinates. Four corners as the reference points.

Nodes Elements Two-circle Shape (Case a) Shape (Case b) Five-ring
1473 2816 9 9 9 22
5716 11264 9 10 14 26

22785 45056 13 18 15 33
90625 180224 13 13 15 33

4.2. 2-D obtuse triangulation. We test our strategy for treating a triangula-
tion which has obtuse angles. The obtuse triangulations are constructed by perturbing
randomly the x-coordinates of vertexes (Figure 4.2(a)) or perturbing randomly both
the x-coordinates and the y-coordinates of vertexes (Figure 4.2(b)) in a uniform trian-
gulation. The uniform triangulation, in turn, is obtained by connecting the diagonal
line in every rectangle of a rectangular mesh and cutting every rectangle into two
equivalent isosceles triangles. The perturbation range is [−0.5h, 0.5h], where h is the
length of an isosceles triangle. We use Example 1 in section 4.1 as a test example and
apply spherical-wave sweepings.

As a first test, we use the obtuse triangulation as in Figure 4.2(a), choose four
corners of the computational domain as the reference points, and sweep through all the
nodes according to both ascent and descent sortings. The accuracy and the number
of iterations for the algorithm without and with the obtuse-angle treatment are listed
in Table 4.6.

As a second test, we use eight reference points which include both the four cor-
ners and four middle points of the four edges of the computational domain, and we
use only ascent orders. The accuracy and the number of iterations for the algorithm
without and with the obtuse-angle treatment are listed in Table 4.7 for the obtuse
triangulation as in Figure 4.2(a) and in Table 4.8 for the obtuse triangulation as in
Figure 4.2(b). Comparing Tables 4.6, 4.7, and 4.8, we can see that more reference
points may help us reduce the number of sweepings needed in the algorithm. Roughly
speaking, for different meshes the errors from the algorithm with the obtuse-angle
treatment are decreased 2 ∼ 4 times in comparison to the errors from the algorithm
without such a treatment, as shown in both Table 4.7 and Table 4.8. The first-order
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Fig. 4.2. Obtuse triangulations. (a) Perturbing randomly the x-coordinate of vertexes in a
uniform triangulation; (b) perturbing randomly x- and y-coordinates of vertexes.

Table 4.6

Two-circle problem. Obtuse triangulation (Figure 4.2(a)). Spherical wave sweepings: 4 refer-
ence points (4 corners of computational domain). Both ascent and descent orderings.

Before treatment After treatment

Elements Obtuse elements Max obtu L1 error Order Iter. L1 error Order Iter.
200 78 120◦ 6.70E-2 – 6 4.26E-2 – 5
800 528 115◦ 2.49E-2 1.43 8 1.71E-2 1.32 6

3200 958 125◦ 2.90E-2 −0.22 15 9.71E-3 0.81 12
12800 5890 118◦ 1.98E-2 0.55 34 4.60E-3 1.08 18
51200 40558 116◦ 4.71E-3 2.07 44 2.31E-3 0.99 24

Table 4.7

Two-circle problem. Obtuse triangulation (Figure 4.2(a)). Spherical wave sweepings: 8 refer-
ence points (4 corners and 4 middle points of the 4 edges). Only ascent ordering.

Before treatment After treatment

Elements Obtuse elements Max obtu L1 error Order Iter. L1 error Order Iter.
200 78 120◦ 6.70E-2 – 4 4.26E-2 – 4
800 528 115◦ 2.49E-2 1.43 8 1.71E-2 1.32 6

3200 958 125◦ 2.91E-2 −0.22 8 9.71E-3 0.81 8
12800 5890 118◦ 1.98E-2 0.55 8 4.60E-3 1.08 9
51200 40558 116◦ 4.72E-3 2.07 13 2.31E-3 0.99 11

Table 4.8

Two-circle problem. Obtuse triangulation (Figure 4.2(b)). Spherical wave sweepings: 8 refer-
ence points (4 corners and 4 middle points of the 4 edges). Only ascent ordering.

Before treatment After treatment

Elements Obtuse elements Max obtu L1 error Order Iter. L1 error Order Iter.
200 81 106◦ 3.55E-2 – 4 3.08E-2 – 4
800 727 108◦ 2.30E-2 0.63 8 1.70E-2 0.86 4

3200 1344 106◦ 1.32E-2 0.80 8 8.04E-3 1.08 6
12800 5909 106◦ 7.73E-3 0.77 11 4.66E-3 0.79 10
51200 50560 108◦ 3.88E-3 0.99 14 1.89E-3 1.31 14
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Fig. 4.3. Two-sphere problem. Use a tetrahedral mesh. (a) The surface contour, 30 equally
spaced contour lines from T = 0 to T = 0.742402 (produced automatically by the plotting software);
(b) the contour plot of T = 0.17 in the 3-D case.

Table 4.9

Two-sphere problem. Comparison between tetrahedral meshes and rectangular meshes. Spheri-
cal wave sweepings: 8 corners as reference points. Both ascent and descent orderings.

Unstructured mesh Structured mesh

Nodes Elements L1 error Order Iter. L1 error Order Iter.
9261 48000 1.25E-2 – 12 1.77E-2 – 15

68921 384000 7.17E-3 0.81 12 1.02E-2 0.80 15
531441 3072000 3.79E-3 0.92 12 5.41E-3 0.91 16

accuracy with the obtuse-angle treatment is more regular than that without the treat-
ment. Moreover, comparing the errors in Table 4.6 with those in Table 4.7, we can
observe that without the obtuse-angle treatment different sweeping ordering strate-
gies yield slightly different numerical solutions, and with the obtuse-angle treatment
different sweeping ordering strategies yield the same solutions up to machine zero.
This indicates that the causality of PDEs may not be captured accurately if obtuse
angles are not treated.

4.3. A 3-D example. We test our 3-D fast sweeping methods on tetrahedral
meshes. We use a two-sphere problem as an example: the eikonal equation (2.3) with
f(x, y, z) = 1.

The computational domain is Ω = [0, 1] × [0, 1] × [0, 1]; Γ consists of two spheres
of equal radius 0.1 with centers located at (0.25, 0.25, 0.25) and (0.75, 0.75, 0.75), re-
spectively. The exact solution is the distance function to Γ.

We first partition the computational domain into identical rectangular cubes.
Then a tetrahedral mesh is obtained by cutting each cube into six tetrahedrons.

The results in Figure 4.3 are obtained by using a tetrahedral mesh which consists
of 40 × 40 × 40 × 6 = 384000 tetrahedrons. We choose the eight corners of the
computational domain as the reference points. Both ascent and descent orderings
are used, and the ordering strategy is based on the l2-metric. Figure 4.3(a) shows
contours of the solution on the surface of the domain, and Figure 4.3(b) shows 3-D
plots of the contour T = 0.17.

In Table 4.9, we present the accuracy and numbers of iterations when the tetra-
hedral mesh is refined. To calibrate the result, we apply the same sweeping ordering
to the rectangular mesh from which the tetrahedral mesh is obtained. For the rec-
tangular mesh we use the local solver for rectangular grids as in [35]. Although the
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Table 4.10

Two-circle problem. Comparison between triangular meshes and rectangular meshes. Spherical
wave sweepings: 4 corners as reference points.

Unstructured mesh Structured mesh

Nodes Elements L1 error Order Iter. L1 error Order Iter.
1681 3200 9.85E-3 – 5 1.46E-2 – 5
6561 12800 5.30E-3 0.89 5 7.91E-3 0.88 5

25921 51200 2.74E-3 0.95 5 4.13E-3 0.94 5
103041 204800 1.39E-3 0.98 5 2.10E-3 0.97 5
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Fig. 4.4. log plot of convergence error for 2-D and 3-D examples.

nodes are the same, the local solvers at each node are different so that the discretized
nonlinear systems of the equation are different. The comparison results are also shown
in Table 4.9. It is obvious from the table that the local solver on unstructured meshes
can achieve higher accuracy than that on structured meshes since the former uses
more neighboring points at each node and captures directions of characteristics more
accurately than the latter.

Also we can see from Table 4.9 that if the l2-metric is used for ordering, the
number of iterations on an unstructured mesh can be less than that on a structured
one. However, the local solver at each node for an unstructured mesh is more expensive
than that for a rectangular mesh. Most importantly, we see that both iteration
numbers do not change as the mesh is refined. So our ordering strategy works for
both cases.

A similar comparison for a 2-D case, Example 1 of section 4.1, is presented in
Table 4.10; again the local solver on unstructured meshes achieves higher accuracy
than that on structured meshes.

4.4. Typical convergence behavior. Figure 4.4 shows the typical behavior of
convergence error of the fast sweeping method in terms of the difference between two
consecutive iterations in maximum norm. It demonstrates that the exact solution (up
to machine error) to the discretized system is achieved in a finite number of iterations
independent of mesh size.

5. Conclusion. We propose novel ordering strategies to extend the fast sweep-
ing method to unstructured meshes. To that end we introduce multiple reference
points and order all the nodes according to their lp-metrics to those reference points.
Information propagating along all characteristics can be covered efficiently by the
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systematic orderings. We prove that the new algorithm converges and numerical ex-
amples demonstrate that the algorithm converges in a finite number of iterations in-
dependent of mesh size. The computational complexity of the new algorithm is nearly
optimal in the sense that the total computational cost consists of O(M) flops for iter-
ation steps and O(M logM) flops for sorting at the predetermined initialization step,
which can be efficiently optimized by adopting a linear time sorting method, where
M is the total number of mesh points. Extensive numerical examples demonstrate
the accuracy and the efficiency of the new fast sweeping method.
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Abstract. Attenuated Radon projections with respect to the weight function Wμ(x, y) = (1 −
x2 − y2)μ−1/2 are shown to be closely related to the orthogonal expansion in two variables with
respect to Wμ. This leads to an algorithm for reconstructing two-dimensional functions (images)
from attenuated Radon projections. Similar results are established for reconstructing functions on
the sphere from projections described by integrals over circles on the sphere, and for reconstructing
functions on the three-dimensional ball and cylinder domains.

Key words. approximation, reconstruction of images, Radon projections, polynomials of several
variables, algorithms
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1. Introduction. Computer tomography (CT) offers a noninvasive method for
two-dimensional (2D) cross-sectional or three-dimensional (3D) imaging of an object.
In a typical CT application, the distribution of the attenuation coefficient through a
body from measurements of x-ray transmission is estimated and used to reconstruct
an image of the object. The mathematical foundation of CT is the Radon transform.
Let f be a function defined on the unit disk B2 of the R

2 plane. A Radon transform
of f is a line integral,

Rθ(f ; t) :=

∫
I(θ,t)

f(x, y)dx dy, 0 ≤ θ ≤ 2π, −1 ≤ t ≤ 1,(1.1)

where I(θ, t) = {(x, y) : x cos θ + y sin θ = t} ∩ B2 is a line segment inside B2. An
essential problem in CT is to reconstruct the function f from its Radon projections.
An algorithm amounts to an approximation to f that uses values of Rθ(f ; t) from a
finite set of parameters (θ, t).

The attenuation of an x-ray beam is dependent on the energy of each photon.
A line integral as defined in (1.1) represents a monochromatic x-ray. In practice,
however, an x-ray is usually polychromatic, meaning that it consists of photons with
different energies. This could lead to artifacts in the reconstruction; see, for example,
[4, Chap. 4]. A polychromatic x-ray is represented by the so-called attenuated Radon
projections for which the integral is taken against exp{−αθ(x, y)}dx dy, where αθ(x, y)
is a given function, instead of dx dy. The attenuated Radon transform appears in,
for example, emission tomography [7]. The reconstruction algorithms for attenuated
Radon data have been derived from Novikov’s inversion formula; see [10] and [8]. See
also the recent survey in [3] in this direction.

In the present paper we consider the special case that exp{−αθ(x, y)} is given, or
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can be approximated, by the function

Wμ(x, y) = (1 − x2 − y2)μ−1/2, (x, y) ∈ B2,(1.2)

where μ ≥ 0; in other words, αθ(x, y) = −(μ− 1/2) log(1 − x2 − y2). The attenuated
Radon transform, denoted by Rμ

θ , then takes the form

Rμ
θ (f ; t) :=

∫
I(θ,t)

f(x, y)Wμ(x, y)dx dy, 0 ≤ θ ≤ 2π, −1 ≤ t ≤ 1.(1.3)

Clearly this is just a special case of the attenuated Radon transform. This case,
however, appears to be useful in understanding the effect of monochromatic and
polychromatic x-rays. In this regard let us mention the classical example of the water
phantom in a skull in [4, p. 121], which demonstrated that beam hardening causes an
elevation in CT numbers for tissues close to the skull bone. The attenuated Radon
transform defined in (1.3) models the boundary behavior of the x-rays differently.

Our approach is based on orthogonal polynomial expansions on B2. Let V2
n(Wμ)

denote the space of orthogonal polynomials with respect to the weight function Wμ

on B2. It is well known that

L2(B2,Wμ) =

∞∑
k=0

⊕V2
k : f =

∞∑
k=1

projμk f,

where projμk f is the projection of f on V2
k(Wμ). The infinite series holds in the sense

that the sequence of the partial sums

Sμ
n(f ;x, y) :=

n∑
k=0

projμk f(x, y), n ≥ 0,

converges to f as n → ∞ in L2(B2,Wμ) norm. The partial sum Snf provides a natural
approximation to f . It turns out that there is a remarkable connection between Sμ

nf
and the attenuated Radon transforms, which states that

S2mf(x, y) =

2m∑
ν=0

∫ 1

−1

Rμ
φν

(f ; t)Φν(t;x, y)dt, φν =
2νπ

2m + 1
,(1.4)

where Φν are polynomials of two variables given by explicit formulas. This represen-
tation provides a simple and direct access to attenuated Radon data. For the ordinary
Radon transforms (μ = 1/2), this was discovered recently in [16]. Applying an appro-
priate quadrature formula to the integrals in the expression leads to an approximation
to f that uses discrete attenuated Radon projections. One important feature of the
algorithm is that polynomials up to a certain degree are reconstructed exactly, which
guarantees that the algorithm has a fast rate of convergence. Such an algorithm can
be easily implemented numerically. For the ordinary Radon transforms, the algorithm
is named OPED (orthogonal polynomial expansion on the disk) and has proved to be
a highly effective method [17, 18].

There are other expressions in the spirit of (1.4). In order to prove them, we need
to study orthogonal expansions in terms of orthogonal polynomials with respect to
Wμ(x, y) on B2. The case μ = 1/2 is easier since an orthonormal basis for V2

k(W1/2)

is known to be Uk(x cos jπ
k+1 + y sin jπ

k+1 ), 0 ≤ j ≤ k. No such convenient orthonormal
basis is available for μ 	= 1/2.
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There is another advantage for considering the attenuated Radon transform
Rμ

θ (f ; t). It is known that there is a close relation between orthogonal polynomials
on the unit ball and those on the unit sphere, which allows us to establish analogous
results on the unit sphere S2. In particular, the case μ = 0 on B2 can be used to
show that we can reconstruct a function f from its integral projections:

Qf(ζ; t) =

∫
〈x,ζ〉=t

f(x)dω(x), 0 	= ζ ∈ S2, −1 ≤ t ≤ 1,(1.5)

where x = (x1, x2, x3) and dω is the surface measure on S2. Reconstruction from such
spherical transforms has been studied in the literature; see [9].

From the disk B2 we can also extend the results to the unit ball B3 and to cylinder
domains in R

3, taking Radon projections on parallel disks in each case. It turns out,
however, that there is an important difference between the ball and the cylinder. For
the cylinder domain, all results obtained in the disk can be extended without problem.
For the unit ball, however, we still have an analogue of (1.4), but the reconstruction
algorithm may no longer work as efficiently as in the cylinder case. The problem is
that the operator produced by the algorithm no longer preserves polynomials.

For the algorithm on B2, we provide a numerical example in section 2, which
reconstructs a 2D phantom image for three different values of μ. For the transform
on the sphere and the 3D transforms on the ball and on the cylinder domain, we
will be content with deriving the algorithms and will not discuss convergence or the
performance of the algorithms at this time.

The paper is organized as follows. In the following section we consider the recon-
struction and approximation on the unit disk B2 from attenuated Radon projections.
This section is divided into several subsections, the last one including the numerical
example. In section 3 the results on B2 are transplanted to those on the surface S2,
while the attenuated Radon projections become weighted spherical transforms. The
analogous results are then established for the unit ball B3 in section 4 and for the
cylinder domain in section 5.

2. Reconstruction and approximation on the unit disk. Let Πd denote
the space of polynomials of d variables and let Πd

n denote the subspace of polynomials
of total degree n in Πd, which has dimension dim Πd

n =
(
n+d
d

)
. We set Πn := Π1

n. In
this section we mainly work with the case d = 2.

2.1. Orthogonal polynomials on the unit disk. Let Wμ be the weight func-
tion defined in (1.2). Let V2

k(Wμ) denote the space of orthogonal polynomials of
degree k on B2 with respect to the inner product

〈P,Q〉μ = aμ

∫
B2

P (x, y)Q(x, y)Wμ(x, y)dx dy, aμ = (μ + 1/2)/π,

where aμ is the normalization constant of Wμ, aμ = 1/
∫
B2 Wμ(x)dx. Thus, P ∈

V2
k(Wμ) if P is of degree k and 〈P,Q〉μ = 0 for all Q ∈ Π2

k−1. We note that elements
in a basis for V2

k(Wμ) may not be orthogonal with respect to each other according to
our definition. A basis for V2

k(Wμ) is called orthonormal if the elements in the basis
are mutually orthogonal and 〈P, P 〉μ = 1.

The reproducing kernel of the space V2
k(Wμ) plays an important role in our de-

velopment. In terms of an orthonormal basis {P k
j : 0 ≤ j ≤ k} of V2

k(Wμ), the
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reproducing kernel satisfies

Pk(Wμ;x,y) =

k∑
j=0

P k
j (x)P k

j (y).(2.1)

The kernel is independent of the choice of the bases of V2
k(Wμ). In fact, a compact

formula for this kernel can be given in terms of the Gegenbauer polynomial [13],

Pk(Wμ;x,y) =
k + μ + 1/2

μ + 1/2
bμ−1

∫ 1

−1

C
μ+1/2
k

(
〈x,y〉(2.2)

+
√

1 − ‖x‖2
√

1 − ‖y‖2 t
)
(1 − t2)μ−1dt

for μ > 0; the formula also holds for μ = 0 upon taking limit μ → 0. Here and
in the following, the Gegenbauer polynomials Cλ

k (s) are orthogonal with respect to
(1 − s2)λ−1/2 on [−1, 1],

cλ−1/2

∫ 1

−1

Cλ
k (s)Cλ

l (s)(1 − s2)λ−1/2ds =
λ(2λ)k

(k + λ)k!
δk,l := hkδk,l,(2.3)

where cλ−1/2 := Γ(λ+1)/(
√
πΓ(λ+1/2)) is the normalization constant of the weight

function (1 − s2)λ−1/2 on [−1, 1], and (a)k := a(a + 1) · · · (a + k − 1). For μ = 1/2,

C
μ+1/2
k (s) = Uk(s) is the Chebyshev polynomial of the second kind.

For the weight function W1/2(x) = 1, it is known [5] that the set

{Uk (x cos θj,k + y sin θj,k) : 0 ≤ j ≤ k}

forms an orthonormal basis of V2
k(W1/2). The elements of this basis are the so-called

ridge functions. In general, given an angle φ and a polynomial p ∈ Πk := Π1
k, a ridge

polynomial is defined by

p(φ;x, y) := p(x cosφ + y sinφ), φ ∈ [0, 2π].

It is easy to see that p(φ;x, y) is a polynomial in Π2
k as well. The functions

{Cμ+1/2
k (θj,k;x, y) : 0 ≤ j ≤ k}, where θj,k = jπ/(k + 1), form a basis for V2

k(Wμ),
albeit not a mutually orthogonal one (see, for example, [14]). The lack of an orthonor-
mal ridge basis in the case of μ 	= 1/2 makes the results for the attenuated Radon
transform more difficult, as we shall see below.

We call a polynomial P ∈ Πk of one variable symmetric with respect to the origin

if P is even when k is even, and if P is odd when k is odd. It is known that C
μ+1/2
k (t)

is symmetric with respect to the origin. The ridge polynomials arising from such a
polynomial turn out to satisfy a remarkable relation.

Proposition 2.1. For n ≥ 0 and k ≤ n, the identity

1

n + 1

n∑
ν=0

Uk

(
νπ

n + 1
; cos θ, sin θ

)
Pk

(
νπ

n + 1
;x, y

)
= Pk(θ;x, y)(2.4)

holds for all polynomials Pk ∈ Πk that are symmetric with respect to the origin.
Proof. The proof uses the elementary trigonometric identities

n∑
ν=0

sin k
2νπ

n + 1
= 0 and

n∑
ν=0

cos k
2νπ

n + 1
=

{
n + 1 if k = 0 mod n + 1,

0 otherwise,
(2.5)
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which hold for all nonnegative integers k. Let us prove the case k = 2l. We follow
the proof of Proposition 2.3 in [16]. The polynomial Pk can be written as a linear
combination of Uk−2j for 0 ≤ 2j ≤ k. Consequently, we can write P2l(θ;x, y) as

P2l(θ;x, y) = P2l(r cos(θ − φ)) =

l∑
j=0

bj(r) cos 2j(θ − φ)(2.6)

in polar coordinates x = r cosφ and y = r sinφ, where bj(r) is a polynomial of degree
2j in r. Furthermore, we know that

U2l(θ; cosφ, sinφ) = U2l(cos(θ − φ)) =

l∑
j=0

dj cos 2j(θ − φ),

where d0 = 1 and dj = 2 for j ≥ 1. The identities (2.5) and the product formula of
the cosine function show that

1

n + 1

n∑
ν=0

cos 2i

(
θ − νπ

n + 1

)
cos 2j

(
φ− νπ

n + 1

)
=

⎧⎪⎪⎨⎪⎪⎩
0 if i 	= j,
1

2
cos 2j(θ − φ) if 0<i= j≤n,

1 if i = j = 0.

Let us denote by Ik the left-hand side of (2.4). The above trigonometric identity
implies immediately that, for 0 ≤ 2l ≤ n,

I2l =

l∑
i=0

di

l∑
j=0

bj(r)
1

n + 1

n∑
ν=0

cos 2i

(
θ − νπ

n + 1

)
cos 2j

(
φ− νπ

n + 1

)

=
l∑

j=0

bj(r) cos 2j(θ − φ) = P2l(r cos(θ − φ)) = P2l(θ;x, y).

This completes the proof for the case k = 2l ≤ n. The case k = 2l−1 is similar.
In (2.4) the summation is over angles, νπ/(n+ 1), that are equally spaced in the

interval [0, π). In the case that n is even, the angles can be arranged as equally spaced
angles in [0, 2π] by using the fact that

cos
(2k + 1)π

2m + 1
= − cos

(2m + 2k)π

2m + 1
and sin

(2k + 1)π

2m + 1
= − sin

(2m + 2k)π

2m + 1
.(2.7)

The result is the following proposition proved in [16] for Pk being the Chebyshev
polynomial of the second kind.

Proposition 2.2. For m ≥ 0 and k ≤ 2m, the identity

1

2m + 1

2m∑
ν=0

Uk

(
2νπ

2m + 1
; cos θ, sin θ

)
Pk

(
2νπ

2m + 1
;x, y

)
= Pk(θ;x, y)(2.8)

holds for all polynomials Pk ∈ Πk that are symmetric with respect to the origin.
There are many orthonormal bases of V2

k(Wμ) that are known explicitly (see [2]).
One that is particularly useful for us is given in terms of the polar coordinates

x = r cosφ, y = r sinφ, 0 ≤ r ≤ 1, 0 ≤ φ ≤ 2π,
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and Jacobi polynomials [2, Prop. 2.3.1]. Let p
(α,β)
n (t) denote the orthonormal Jacobi

polynomials, that is,

cα,β

∫ 1

−1

p(α,β)
n (t)p(α,β)

m (t)(1 − t)α(1 + t)βdt = δm,n, m, n = 0, 1, 2, . . . ,

where cα,β is the normalized constant so that cα,β
∫ 1

−1
(1 − t)α(1 + t)βdt = 1.

Proposition 2.3. For ε = 0 or 1, define the polynomials P k
l,ε by

P k
l,ε(x, y) = hl,kp

(μ− 1
2 ,k−2l)

l (2r2 − 1)rk−2lSk−2l,ε(φ),(2.9)

where

Sk−2l,0(φ) = cos(k − 2l)φ for 0 ≤ 2l ≤ k,

Sk−2l,1(φ) = sin(k − 2l)φ for 0 ≤ 2l ≤ k − 1,

and

[hl,k]
2 :=

Γ(k − 2l + μ + 3/2)

Γ(μ + 3/2)Γ(k − 2l + 1)
.

Then these polynomials form an orthonormal basis for V2
k(Wμ).

By the definition of the reproducing kernel (2.1) and formula (2.2), it follows that
the above orthonormal basis satisfies∑

ε=0,1

∑
0≤2l≤k

P k
l,ε(x, y)P

k
l,ε(cosφ, sinφ) =

k + λ

λ
Cλ

k (φ;x, y),(2.10)

where λ = μ + 1/2. This formula will play an important role below. It shows, in

particular, the expansion of C
μ+1/2
k (φ;x, y) in terms of our orthonormal basis. The

following lemma shows the converse.
Lemma 2.4. Let θj,k = jπ/(k+1). Then for 0 ≤ 2l ≤ k if ε = 0 and 0 ≤ 2l ≤ k−1

if ε = 1,

1

k + 1

k∑
j=0

Sk−2l,ε(θj,k)C
μ+1/2
k (θj,k;x, y) =

μ + 1
2

k + μ + 1
2

Hμ
l,kdl,kP

k
l,ε(x, y),

where dl,k = 1/2 if 2l < k and dl,k = 1 if 2l = k, Hμ
l,k := hμ

l,kp
(μ+1/2,k−2l)
l (1) and

[
Hμ

l,k

]2
=

(μ + 1
2 )l(μ + 3

2 )k−l(k + μ + 3
2 )

l!(k − l)!(k − l + μ + 3
2 )

.

Proof. Using the identities (2.5) it is easy to verify that

1

k + 1

k∑
j=0

Sk−2l,ε(θj,k)Sk−2l′,ε(θj,k) = dl,kδl,l′ .(2.11)
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Using (2.9) and the fact that P k
l,ε(cos θj,k, sin θl,k) = Hμ

l,kSk−2l,ε(θj,k), we obtain

1

k + 1

k∑
j=0

Sk−2l,ε(θj,k)C
μ+1/2
k (θj,k;x, y)

=
μ + 1

2

k + μ + 1
2

∑
0≤l≤2k

P k
l,ε(x, y)

1

k + 1

k∑
l=0

P k
l,ε(cos θj,k, sin θj,k)Sk−2l,ε(θj,k)

=
μ + 1

2

k + μ + 1
2

Hμ
l,kdl,kP

k
l (x, y)

upon using (2.11). Finally, the expression of [Hμ
l,k]

2 is derived from the well-known

formula of pα,βl (1) (see [11]) and the formula of hμ
l,k.

Lemma 2.5. Let θj,k be as above. Then

1

k + 1

k∑
j=0

Sk−2l,ε(θj,k)Uk(θj,k; cosφ, sinφ) = dl,kSk−2l,ε(φ).

Proof. Using (2.6) and the analogous formula for U2l−1, the identity is an easy
consequence of (2.11).

2.2. Attenuated Radon transforms. Let θ be an angle measured counter-
clockwise from the positive x-axis. Let � denote the line perpendicular to the direction
(cos θ, sin θ) and passing through the point (t cos θ, t sin θ). The equation of the line
is �(θ, t) = {(x, y) : x cos θ + y sin θ = t} for −1 ≤ t ≤ 1. We use

I(θ, t) = �(θ, t) ∩B2, 0 ≤ θ < 2π, −1 ≤ t ≤ 1,(2.12)

to denote the line segment of � inside B2. Let Wμ be the weight function defined in
(1.2). The attenuated Radon projection of a function f , with respect to Wμ, in the
direction θ with parameter t ∈ [−1, 1] is defined in (1.3). It can be written as

Rμ
θ (f ; t) =

∫ √
1−t2

−
√

1−t2
f(t cos θ − s sin θ, t sin θ + s cos θ)Wμ(s, t)ds,(2.13)

using the fact that the mapping (s, t) �→ (x, y) defined by x = t cos θ − s sin θ and
y = t sin θ + s cos θ amounts to a rotation. When μ = 1/2, this is the usual Radon
projection, which is also called an x-ray transform. The definition (1.3) or (2.13)
shows that Rμ

θ (f ; t) = Rμ
π+θ(f ;−t).

The ridge polynomials are particularly useful for studying Radon transforms, as
seen in the following result.

Proposition 2.6. For f ∈ L1(B2) and p ∈ Πk,∫
B2

f(x, y)p(φ;x, y)Wμ(x, y)dx dy =

∫ 1

−1

Rμ
φ(f ; t)p(t)dt.(2.14)

Proof. Since the change of variables t = x cosφ+y sinφ and s = −x sinφ+y cosφ
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amounts to a rotation, we have∫
B2

f(x, y)pk(φ;x, y)Wμ(x, y)dx dy

=

∫
B2

f(t cosφ− s sinφ, t sinφ + s cosφ)pk(t)Wμ(t, s)dt ds

=

∫ 1

−1

∫ √
1−t2

−
√

1−t2
f(t cosφ− s sinφ, t sinφ + s cosφ)Wμ(t, s)dspk(t)dt,

and the inner integral is exactly Rμ
φ(f ; t) by (2.13).

In particular, attenuated Radon transforms of the orthogonal polynomials in
V2
n(Wμ) can be explicitly computed.

Lemma 2.7. If P ∈ V2
k(Wμ), then for each t ∈ (−1, 1), 0 ≤ θ ≤ 2π,

Rμ
θ (P ; t) = bμ(1 − t2)μ

C
μ+1/2
k (t)

C
μ+1/2
k (1)

P (cos θ, sin θ),(2.15)

where bμ = c−1
μ for cμ defined in (2.3).

Proof. Changing variables in (2.13) shows that

Q(t) := (1 − t2)−μRμ
θ (P ; t)

=

∫ 1

−1

P
(
t cos θ − s

√
1 − t2 sin θ, t sin θ + s

√
1 − t2 cos θ

)
(1 − s2)μ−1/2ds.

Since an odd power of
√

1 − t in the integrand is always attached to an odd power of
s, which has integral zero, Q(t) is a polynomial of t of degree at most k. Furthermore,
the integral shows that Q(1) = bμP (cos θ, sin θ). Equation (2.14) in Proposition 2.6
shows that∫ 1

−1

Rμ
θ (P ; t)

(1 − t2)μ
C

μ+1/2
j (t)(1 − t2)μdt =

∫
B2

P (x, y)C
μ+1/2
j (θ;x, y)dx dy = 0

for j = 0, 1, . . . , k − 1, since P ∈ Vk(B
2). In particular, this shows that Q(t) is

in fact orthogonal to all polynomials in Πk−1 with respect to the weight function
(1 − t2)μ on [−1, 1]. Since Q is of degree k, it must be an orthogonal polynomial
of degree k with respect to this weight function. Hence, we conclude that Q(t) =

cC
μ+1/2
k (t) for some constant c independent of t. Setting t = 1 shows that c =

bμP (cos θ, sin θ)/C
μ+1/2
k (1).

In the case of μ = 1/2, the above lemma appeared first in [6].

2.3. Orthogonal expansion and attenuated Radon projections. The stan-
dard Hilbert space theory shows that any function in L2(Wμ;B2) can be expanded
as a Fourier orthogonal series in terms of V2

n(Wμ). More precisely,

L2(Wμ;B2) =

∞∑
k=1

⊕V2
k(Wμ) : f =

∞∑
k=1

projμk f,(2.16)

where projμk f is the orthogonal projection of f from L2(Wμ;B2) onto the subspace
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V2
k(Wμ). It is well known that projμk f can be written as an integral operator in terms

of the reproducing kernel Pk(Wμ; ·, ·) of Vk(B
2) in L2(B2); that is,

projμk f(x) =

∫
B2

Pk(Wμ;x,y)f(y)Wμ(y)dy,(2.17)

where x = (x1, x2) and y = (y1, y2).
This formula plays an essential role in studying the convergence behavior of the

orthogonal expansions; see, for example, [13, 15]. For our purposes, we need a different
expression for projk f . This is the following remarkable formula that relates projk f
to the attenuated Radon transforms of f directly. Let

ξν =
νπ

n + 1
, 0 ≤ ν ≤ n.

Theorem 2.8. For n ≥ 0 and k ≤ n, the operator projμk f can be written as

projμk f(x, y) =
1

n + 1

n∑
ν=0

aμ

∫ 1

−1

Rμ
ξν

(f ; t)D
μ+1/2
k (ξν , t;x, y)dt(2.18)

=
1

2n + 2

2n+1∑
ν=0

aμ

∫ 1

−1

Rμ
ξν

(f ; t)D
μ+1/2
k (ξν , t;x, y)dt,(2.19)

where

D
μ+1/2
k (ξ, t;x, y) =

k + μ + 1/2

μ + 1/2
C

μ+1/2
k (t)D

μ+1/2
k (ξ;x, y)(2.20)

with λμ
l,k = [Hμ

l,k]
−2 and

D
μ+1/2
k (ξν ;x, y) :=

k∑
l=0

λμ
l,kP

k
l (cos ξν , sin ξν)P

k
l (x, y).

Proof. Since C
μ+1/2
k is symmetric with respect to the origin, using Propositions 2.1

and 2.6, we have

aμ

∫
B2

f(x, y)C
μ+1/2
k (θj,k;x, y)Wμ(x, y)dx dy

=
1

n + 1

n∑
ν=0

Uk(ξν ; cos θj,k, sin θj,k)

× aμ

∫
B2

f(x, y)C
μ+1/2
k (ξν ;x, y)Wμ(x, y)dx dy

=
1

n + 1

n∑
ν=0

aμ

∫ 1

−1

Rξν (f ; t)C
μ+1/2
k (t)dtUk(ξν ; cos θj,k, sin θj,k).
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Using Lemmas 2.4 and 2.5 we conclude that

aμ

∫
B2

f(x, y)P k
l,ε(x, y)Wμ(x, y)dx dy

=
1

n + 1

n∑
ν=0

aμ

∫ 1

−1

Rξν (f ; t)C
μ+1/2
k (t)dt

k + μ + 1
2

μ + 1
2

[Hμ
l,k]

−1

× d−1
l,k

1

k + 1

k∑
j=0

Sk−2l,ε(θj,k)Uk(ξν ; cos θj,k, sin θj,k)

=
1

n + 1

n∑
ν=0

aμ

∫ 1

−1

Rξν (f ; t)C
μ+1/2
k (t)dt

k + μ + 1
2

μ + 1
2

[Hμ
l,k]

−1Sk−2l,ε(ξν).

Multiplying by P k
l,ε(x, y) and summing up, it follows from the definition of the repro-

ducing kernel that

projμk f(x, y) =
1

n + 1

n∑
ν=0

aμ

∫ 1

−1

Rξν (f ; t)C
μ+1/2
k (t)dt

k + μ + 1
2

μ + 1
2

×
k∑

l=0

[Hμ
l,k]

−1
[
Sk−2l,0(ξν)P

k
l,0(x, y) + Sk−2l,1(ξν)P

k
l,1(x, y)

]
=

1

n + 1

n∑
ν=0

aμ

∫ 1

−1

Rξν (f ; t)C
μ+1/2
k (t)dt

k + μ + 1
2

μ + 1
2

D
μ+1/2
k (ξμ;x, y),

since P k
l,ε(cos ξν , sin ξν) = Hμ

l,kSk−2l,ε(ξν) and λμ
l,k = [Hμ

l,k]
−2. This proves the first

identity.
We now prove the second equation, (2.19). Using the fact that ξn+ν+1 = ξν + π,

cos(k − 2l)ξn+ν+1 = (−1)k cos(k − 2l)ξν , sin(k − 2l)ξn+ν+1 = (−1)k sin(k − 2l)ξν ,

we conclude that D
μ+1/2
k (ξν ;x, y) = (−1)kC

μ+1/2
k (ξn+1+ν ;x, y). Hence, using the fact

that Rμ
ξν+π(f ; t) = Rμ

ξν
(f ;−t), we conclude that

projμk f(x, y) =
1

n + 1

n∑
ν=0

aμ

∫ 1

−1

Rμ
ξn+1+ν

(f ; t)D
μ+1/2
k (ξn+1+ν , t;x, y)dt.

Adding this equation and the first equation of (2.18) and dividing the result by 2, we
then have (2.19).

In the case of μ = 1/2, it is easy to see that λ
1
2

l,k = 1/(k + 1), independent of l.
Hence, for μ = 1/2, (2.10) shows that

D
μ+1/2
k (ξν ;x, y) =

1

k + 1
(k + 1)C1

k(ξν ;x, y) = Uk(ξν ;x, y),

and formulas (2.18) and (2.19) are of a particular simple form. This case was studied
in [16].

The two expressions of projk f look similar but are different in one important
point: the first expression consists of Radon projections in equally spaced directions
along half of the circumference of the circle, while the second expression uses Radon
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projections in equally spaced directions along the entire circumference of the circle.
This distinction is meaningful for reconstruction algorithms for Radon data.

If n is even, then we can use Proposition 2.2 instead of Proposition 2.1 in the
proof. The result is another identity that uses Radon projections over equally spaced
angles in [0, 2π]. Let

φν =
2νπ

2m + 1
, 0 ≤ ν ≤ 2m.

Theorem 2.9. For m ≥ 0 and k ≤ 2m, the operator projμk f can be written as

projμk f(x, y) =
1

2m + 1

2m∑
ν=0

aμ

∫ 1

−1

Rμ
φν

(f ; t)D
μ+1/2
k (φν , t;x, y)dt.(2.21)

This expression of projk f is not a special case of (2.19), even though both use
equally spaced angles. In fact, setting n = 2m shows that (2.19) uses exactly twice as
many Radon projections in equally spaced directions. For μ = 1/2 the identity (2.21)
has appeared in [16]. Equation (2.21) can be deduced from (2.18) by using the fact
that Rφ+πf(t) = Rφ(f ;−t) and changing variable t �→ −t in the integral whenever
φ = ξ2ν−1 in (2.18), then making use of the equations in (2.7) and the fact that the
Gegenbauer polynomial is symmetric.

Let Sμ
nf denote the nth partial sum of the expansion (2.16); that is,

Sμ
n(f ;x, y) =

n∑
k=0

projμk f(x, y).

The operator Sμ
n is a projection operator from L2(Wμ;B2) onto Π2

n. An immediate
consequence of Theorem 2.8 is the following corollary.

Corollary 2.10. For n ≥ 0, the partial sum operator Sμ
nf can be written as

Sμ
n(f ;x, y) =

1

n + 1

n∑
ν=0

aμ

∫ 1

−1

Rμ
ξν

(f ; t)Φμ
n(ξν , t;x, y)dt(2.22)

=
1

2n + 2

2n+1∑
ν=0

aμ

∫ 1

−1

Rμ
ξν

(f ; t)Φμ
n(ξν , t;x, y)dt,

where

Φμ
n(ξ, t;x, y) =

n∑
k=0

k + μ + 1/2

μ + 1/2
C

μ+1/2
k (t)D

μ+1/2
k (ξ;x, y).(2.23)

Likewise, an immediate consequence of Theorem 2.9 is the following corollary.
Corollary 2.11. For m ≥ 0, the partial sum operator Sμ

2mf can be written as

Sμ
2m(f ;x, y) =

1

2m + 1

2m∑
ν=0

aμ

∫ 1

−1

Rμ
φν

(f ; t)Φμ
2m(φν , t;x, y)dt.(2.24)

2.4. Discretization and reconstruction algorithm. Equation (2.22) ex-
presses the partial sum of the Fourier orthogonal expansion as the integrals of at-
tenuated Radon projections in the equally spaced directions. In order to derive an
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algorithm that uses only values of attenuated Radon projections on a set of finite line
segments, we approximate the integrals by a quadrature formula. If f is a polyno-
mial, then Rμ

φ(f ; t)/(1− t2)μ is a polynomial of the same degree by Lemma 2.7, which
shows that we should use a quadrature formula with respect to the weight function
(1 − t2)μ; that is, ∫ 1

−1

g(t)(1 − t2)μdt ≈
N∑
j=1

λjg(tj),

where tj are real numbers and λj are chosen so that the quadrature produces exact
values of the integrals for polynomials of degree at least M . Such a quadrature is said
to be of N points and of precision M . A Gaussian quadrature of N points has the
highest precision M = 2N − 1 among all quadrature formulas of N points.

For our purpose we are interested in quadrature formulas of precision 2n that use
n + 1 points. A class of such formulas is given in the following proposition, which is

based on the zeros of the quasi-orthogonal polynomial C
μ+1/2
n+1 (t)+aC

μ+1/2
n (t), where

a is a real number [11]. For a certain range of a, such a polynomial has n + 1 real
distinct zeros in the interval [−1, 1].

Proposition 2.12. Let tj,n, 0 ≤ j ≤ n, be the distinct zeros of a quasi-orthogonal

polynomial C
μ+1/2
n+1 (t) + aC

μ+1/2
n (t). Then there are positive numbers λj,n such that

the quadrature ∫ 1

−1

g(t)(1 − t2)μdt ≈
n∑

j=0

λj,ng(tj,n) := Iμ
n(g)(2.25)

has precision 2n if a 	= 0. If a = 0, then the quadrature has precision 2n + 1.
Using an appropriate quadrature on the integrals in (2.22) we obtain a recon-

struction algorithm for the attenuated Radon data. We state such an algorithm only
in the case of the quadrature formula in (2.25).

Algorithm 2.13. Let μ ≥ 0 and n ≥ 0. Let tj,n and λj,n be as in (2.25). For
(x, y) ∈ B2 define

Aμ
n(f ;x, y) =

n∑
ν=0

n∑
j=0

Rμ
ξν

(f ; tj,n)Tμ
j,ν(x, y),(2.26)

where

Tμ
j,ν(x, y) =

aμλj,n

n + 1
(1 − t2j,n)−μΦμ

n(ξν , tj,n;x, y).

For a given f , the approximation process Aμ
nf uses attenuated Radon data{

Rμ
ξν

(f ; tj,n) : 0 ≤ ν ≤ n, 0 ≤ j ≤ n
}

of f . The data consist of Radon projections on n + 1 equally spaced directions
(specified by ξν) along the circumference of a half circle, and there are n + 1 parallel
lines (specified by tj,n) in each direction. The algorithm produces a polynomial Aμ

nf
which is an approximation to f . In the case of μ = 1/2 the algorithm (2.13) appeared
earlier in [1]; the connection to the orthogonal partial sums, however, was neither
established nor used there.
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Theorem 2.14. The operator Aμ
n is a projection operator on Π2

n. In other words,
Aμ

nf ∈ Π2
n and Aμ

nP = P for P ∈ Π2
n.

Proof. The function Φμ(ξν , tj,n;x, y) is evidently an element in Π2
n. It follows

immediately that Aμ
nf ∈ Π2

n. By definition, Sμ
n is a projection operator on Π2

n. The
operator Aμ

nf is obtained from Sμ
nf by applying the quadrature (2.25), exactly for

polynomials in Π2
2n, on (1− t2)−μRμ

ξν
(f ; t)Φμ

n(ξν , t; ·), which is a polynomial of degree

2n in t variable by Lemma 2.7 and (2.23) whenever f ∈ Π2
n. Hence, the quadrature

(2.25) is exact. Thus, Aμ
nf = Sμ

nf = f if f ∈ Π2
n.

Alternatively, we can use a quadrature formula of proper order on the second
expression of (2.22) to derive an algorithm that uses Radon projections on 2n + 2
directions equally distributed along the circumference of the entire circle. Instead of
stating such an algorithm we consider the case of n = 2m and use the expression
(2.24). This leads to an algorithm that sums over 2m + 1 angles that are equally
spaced over [0, 2π], as we shall discuss in the following subsection.

2.5. Reconstruction algorithm using attenuated Radon projections. For
practical applications in CT, the discretization described in Algorithm 2.13 needs to
be further specified or simplified. In fact, one has to take into consideration what scan
geometry is used in practice. For example, the zeros of quasi-orthogonal polynomials
will not coincide with the discrete measurement of the attenuated Radon projections
in the usual scan geometry. If these points were used, then it would be necessary to
introduce an interpolation process, which would introduce new errors. As an alter-
native, we suggest using a different discretization, which amounts to using a different
quadrature formula.

For the ordinary Radon projections (μ = 1/2), Gaussian quadrature formulas for
the weight function

√
1 − x2 are used for the integrals in (2.24) to generate algorithms.

For practical implementation in CT, the quadrature formula

1

π

∫ 1

−1

f(t)
dt√

1 − t2
=

1

n + 1

n∑
j=0

f

(
cos

(2j + 1)π

2n + 2

)
,(2.27)

based on zeros of Tn+1(x) = cos(n+1)θ, x = cos θ, is used [17]. The reason for such a
choice lies in the scanning geometry of the input data. It turns out that for n = 2m,
such a choice allows us to adopt fan beam geometry and use it as parallel geometry
in a straightforward way.

It is possible to use the quadrature formula (2.27) for attenuated Radon trans-
forms Rμ

φ(f ; t), especially when μ is a half integer. The resulting A2m will no longer
be a projection operator, but it still reproduces polynomials of degree slightly less
than n when μ is a half integer.

Algorithm 2.15. For m ≥ 0, (x, y) ∈ B2,

Aμ
2m(f ;x, y) =

2m∑
ν=0

2m∑
j=0

Rμ
φν

(f ; cosψj)T
μ
j,ν(x, y),(2.28)

where

Tμ
j,ν(x, y) =

μ + 1/2

(2m + 1)2
sinψjΦ

μ
2m(φν , cosψj ;x, y), ψj =

(2j + 1)π

4m + 2
.

The constant μ + 1/2 in Tμ
j,ν comes from the fact that aμ = (μ + 1/2)/π.
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This algorithm provides an approximation for the reconstruction of a function
f(x, y) from a set of attenuated Radon projections{

Rμ
φν

(f ; cosψj), 0 ≤ ν ≤ 2m, 1 ≤ j ≤ 2m
}
.

The set {φν : 0 ≤ ν ≤ 2m} consists of equally spaced angles along the circumference
of the disk. For μ = 1/2 it has appeared in [16]. The advantage of this algorithm
lies in the fact that it can be used with attenuated Radon data obtained from the fan
beam geometry directly; see the discussion in [17]. The operator, however, reproduces
polynomials up to a lower degree.

Theorem 2.16. Let μ be a half integer, μ + 1/2 ∈ N. Then the operator Aμ
2m

in Algorithm 2.15 preserves polynomials of degree 2m − 2μ; that is, Aμ
2mP = P for

P ∈ Π2
2m−2μ.

Proof. The algorithm is obtained by using the Gaussian quadrature formula (2.27)
to discretize the integrals in (2.24); that is,∫ 1

−1

Rμ
φν

(f ; t)C
μ+1/2
k (t)dt =

∫ 1

−1

Rμ
φν

(f ; t)
√

1 − t2
C

μ+1/2
k (t)

√
1 − t2dt

≈ π

2m + 1

2m∑
k=0

sinψjRμ
φν

(f ; cosψj)C
μ+1/2
k (cosψj).

If f ∈ Π2
2m−2μ, then using the fact that Rμ

φ(f ; t)/(1 − t2)μ is a polynomial of degree
2m− 2μ, the assumption that μ is a half integer shows that

Rφν (f ; t)/
√

1 − t2 = (1 − t2)μ−1/2Rφν (f ; t)/(1 − t2)μ

is a polynomial of 2μ− 1 + 2m− 2μ = 2m− 1. Since Φμ
2m(ξν , t; ·) is of degree 2m and

the quadrature (2.27) is of precision 4m− 1, the discretization becomes exact in this
case and we conclude that Aμ

2mf = f if f ∈ Π2
2m−2μ.

Let C(B2) denote the space of continuous function on B2 with the uniform norm
‖ · ‖∞ and let ‖Aμ

n‖ denote the operator norm of Aμ
n under the uniform norm. By

A ∼ B we mean that there are two constants c1 and c2 such that c1A ≤ B ≤ c2A.
Evidently the convergence of the algorithm depends on ‖Aμ

n‖. In fact, since Aμ
n in

Algorithm 2.13 preserves Πn, it is easy to see that

‖f −Aμ
nf‖ ≤ cf (1 + ‖Aμ

n‖)En(f),

where En(f) := inf{‖f −P‖ : P ∈ Π2
n} is the error of the best approximation of f by

polynomials on B2. If f has rth order continuous derivatives, then En(f) ≤ cfn
−r,

in which cf depends on the norm of the rth derivatives of f . The same applies to
Aμ

2m in Algorithm 2.15, which preserves Π2m−2μ. Using the formula in (2.13), the
proof of Proposition 5.1 of [16] gives the following formula of the norm of Aμ

2m in
Algorithm 2.15.

Proposition 2.17. The operator norm ‖Aμ
2m‖ of C(B2) to C(B2) is given by

‖Aμ
2m‖ = max

(x,y)∈B2
Λm(x, y), Λm(x, y) :=

2m∑
ν=0

2m∑
j=0

(sin θj,m)μ|Tμ
j,ν(x, y)|.

As m → ∞, the norm grows in an essentially polynomial order of m. Hence, the
algorithm converges uniformly if f is sufficiently smooth. Estimating the exact order
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Fig. 1. From left to right, μ = 0, 1/2, 3/2.

of Aμ
2m is difficult. In the case of μ = 1/2, it is carried out in [16] and the order is

‖A2m‖ ∼ m log(m + 1). Based on this fact, we conjecture that the operator norm of
Aμ

2m is of the the order

‖Aμ
2m‖ ∼ mμ+1/2 log(m + 1) as m → ∞,

which is only slightly worse than the norm ‖Sμ
n‖ ∼ nμ+1/2 (see [15]). If the conjecture

holds, then the algorithm will converge uniformly for smooth f ∈ Cr(B2) with r >
μ+1/2. In most applications, however, the function or image could have jumps; that
is, there is not even continuity. The numerical tests in the case of ordinary Radon
data shows that the algorithm is stable and yields fairly accurate results even when
the data are highly singular (see [17]). See also the example given in the following
subsection.

2.6. Numerical example. For the numerical examples we use Algorithm 2.15,
for which the scan geometry is easy to implement. The data required are gj,ν :=
Rμ

φν
(f ; cosψj), where φν = 2νπ/(2m+ 1) stands for the 2m+ 1 views equally spaced

along the circumference of the region to be reconstructed and ψj = (2j +1)/(4m+2)
means that the x-rays in each view are distributed according to the zeros of the
Chebyshev polynomial T2m+1. In this case the fan data can be resorted into parallel
data (see [17]).

We reconstruct a simple analytical phantom defined by the function

f(x, y) =

{
1 if 0.9 ≤ r ≤ 1 or 0 ≤ r ≤ 0.1,

0 if 0.1 < r < 0.9,

where r =
√
x2 + y2 on the unit disk. This phantom contains strong singularity along

the circles r = 0.9 and r = 0.1. The rotationally invariant nature of the function allows
certain simplification of the algorithm.

For the reconstruction, we choose three values of the parameter μ, μ = 0, 1/2, 3/2.
The case μ = 1/2 means the ordinary Radon transform. The case μ = 0 means that
the Radon transform is attenuated by the weight function (1 − x2 − y2)−1/2, which
is infinity at the boundary of the disk. The case μ = 3/2 means that the Radon
transform is attenuated by the weight function 1 − x2 − y2, which is zero at the
boundary. In each case, the Radon data are computed analytically.

For each of the three values of μ, we use Algorithm 2.15 for the reconstruction
with a moderate m = 100. The reconstructed image is evaluated on a 300× 300 grid.
The result is shown in Figure 1.
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These images show that the function is reconstructed rather faithfully in each of
the three cases, even though the function has strong singularity. The case μ = 1/2
has been tested extensively and compared with the FBP (filtered back-projection)
algorithm (see [17, 18]). The above is our first attempt to test the algorithm for
attenuated Radon transforms.

3. Reconstruction and approximation on the unit sphere. It is known
that orthogonal polynomials on the unit ball and on the unit sphere are closely related
(see [12]). Since the approximation and the reconstruction in the previous section are
based on orthogonal expansions on the unit disk, the relation suggests analogous
results on the unit sphere S2 = {(x, y, z) : x2 + y2 + z2 = 1}, which we explore in this
section.

On the sphere we consider the attenuated spherical transform defined by

Qμf(ζ; t) =

∫
〈x,ζ〉=t

f(x)|x3|2μdω,

where x = (x1, x2, x3) ∈ S2, ζ ∈ R
3, and ξ 	= 0, and dω is the measure on the subset

{x ∈ S2 : 〈x, ζ〉 = t}, which is the circle on the sphere. When μ = 0, this is the usual
spherical transform (1.5); see, for example, [9, p. 33]. We will mainly work with the
case that ζ3 = 0. We say that a function is even in x3 if f(x1, x2, x3) = f(x1, x2,−x3).

Proposition 3.1. Let f be even in x3. If ζ = (cos θ, sin θ, 0), then

Qμf(ζ; t) = Rμ
θ (F ; t), F (x1, x2) = f

(
x1, x2,

√
1 − x2

1 − x2
2

)
.(3.1)

Proof. Since f is even in x3 we have f(x) = F (x1, x2) for x ∈ S2. The definition
of ζ shows that 〈x, ζ〉 = x1 cos θ + x2 sin θ = I(θ, t). In terms of x1 and x2, dω =
dx1dx2/

√
1 − x2

1 − x2
2. Thus,

Qμf(ζ; t) =

∫
x1 cos θ+x2 sin θ=t

F (x1, x2)
(
1 − x2

1 − x2
2

)μ dx1dx2√
1 − x2

1 − x2
2

,

which is precisely Rμ
θ (F ; t).

Let Hμ(x) = |x3|μ. The space L2(Hμ;S2) has an orthogonal decomposition

L2(Hμ;S2) =

∞∑
k=0

⊕Hμ
k ,(3.2)

where the subspace Hμ
k contains homogeneous polynomials of degree k that are or-

thogonal to lower degree polynomials with respect to Hμdω on S2. For μ = 0, H0
k is

the space of ordinary spherical harmonics. Let

projHμ
k
f : L2(Hμ;S2) �→ Hμ

k

be the orthogonal projection from L2(Hμ;S2) onto Hμ
k . The space Hμ

k is closely
related to the space V2

k(Wμ) discussed in the previous section (see [12]). For our
purpose, we only need the following relation on the orthogonal projections: if f is
even in x3, then

projHμ
n
f(x) = projμn F (x1, x2),(3.3)
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where F is the function defined in (3.1). This relation, together with (3.1), allows
us to express the projection operator on the sphere in terms of spherical transforms.
Using these relations and Theorem 2.8 we obtain the following result.

Theorem 3.2. Let f be even in x3. For n ≥ 0 and k ≤ n, the operator projHμ
k

can be written as

projHμ
k
f(x) =

1

n + 1

n∑
ν=0

aμ

∫ 1

−1

Qμf(ζν ; t)D
μ+1/2
k (ξν , t;x1, x2)dt,(3.4)

where ξν = νπ
n+1 , ζν = (cos ξν , sin ξν , 0), and D

μ+1/2
k (ξ, t;x, y) is defined in (2.20).

Let Y μ
n f denote the nth partial sum of the expansion (3.2); that is,

Y μ
n (f ;x) =

n∑
k=0

projHμ
k
f(x1, x2).

The operator Y μ
n is a projection operator from L2(Hμ;S2) onto Πn(S2), the restriction

of Π3
n on S2. An immediate consequence of Theorem 3.2 is the following.
Corollary 3.3. Let f be even in x3. For n ≥ 0, the partial sum operator Y μ

n f
can be written as

Y μ
n (f ;x) =

1

n + 1

n∑
ν=0

aμ

∫ 1

−1

Qμf(ζν ; t)Φ
μ
n(ξν , t;x1, x2)dt(3.5)

=
1

2n + 2

2n+1∑
ν=0

aμ

∫ 1

−1

Qμf(ζν ; t)Φ
μ
n(ξν , t;x1, x2)dt,

where Φμ
n is the function defined in (2.23).

For n = 2m we can also use Theorem 2.9 to derive an expression for Y μ
2m(f),

which leads to the following corollary.
Corollary 3.4. Let f be even in x3. For m ≥ 0, the partial sum operator Y μ

2mf
can be written as

Y μ
2m(f ;x) =

1

2m + 1

2m∑
ν=0

aμ

∫ 1

−1

Qμf(ζν ; t)Φ
μ
2m(φν , t;x1, x2)dt,(3.6)

where φν = 2νπ
2m+1 , ζν = (cosφν , sinφν , 0), and Φμ

2m is the function defined in (2.23).
In the case of μ = 0, equations (3.5) and (3.6) are representations of the partial

sums of ordinary spherical harmonic expansions, which are expressed in terms of the

Legendre polynomial Pk(t) = C
1/2
k (t).

Just like the case of orthogonal expansions on the unit disk, we can use a quadra-
ture formula to obtain a reconstruction algorithm using spherical transforms. For
example, using the quadrature formula with respect to (1 − t2)μ in Proposition 2.12
as in the case of Algorithm 2.13, we get the following result.

Algorithm 3.5. Let f be even in x3. Let μ ≥ 0. For n ≥ 0, x ∈ S2,

Sμ
n (f ;x) =

n∑
ν=0

n∑
j=0

Qμf(ζν ; tj,n)Tμ
j,ν(x1, x2),(3.7)

where tj,n are as in the quadrature (2.25) and Tμ
j,ν are defined in Algorithm 2.13.
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This algorithm reconstructs a function f(x) from a set of spherical transforms

{Qμf(ζν ; tj), ζν = (cos ξν , sin ξμ, 0), 0 ≤ ν ≤ 2m, 1 ≤ j ≤ 2m} ,

which consists of integrals over a number of circles on the sphere. These circles lie
on planes that are parallel to the x3-axis. The circles intersect the circumference of
a disk perpendicular to the x3-axis at equally spaced angles. The distance between
these parallel circles depends on the values of tj,n. In the case μ = 0, the algorithm
provides an approximation to the function based on ordinary spherical transforms.
The assumption that f is even in x3 implies that we can use the algorithm to recon-
struct a function defined on the upper hemisphere from spherical transforms that are
integrals over half circles parallel to the x3-axis on the upper hemisphere.

If μ is a half integer, we can also state an algorithm using the quadrature (2.27),
as in Algorithm 2.15, so that tj,n = cos jπ/(2m+1). However, in the most interesting
case of μ = 0, we do not have such a somewhat simplified algorithm.

4. Reconstruction and approximation on the unit ball. In this section we
consider reconstruction of functions on a unit ball B3 in R

3 based on the attenuated
Radon projections.

4.1. Radon projections and orthogonal polynomials. We will work with
attenuated Radon projections that are integrals on line segments inside B3 with re-
spect to the weight function

Wμ(x) = (1 − ‖x‖2)μ−1/2, x = (x1, x2, x3) ∈ B3, μ ≥ 0.

For our purpose, however, we will consider only those lines lying on the planes that
are perpendicular to the x3-axis. Let x3 = w be such a plane. Its intersection with
the unit ball B3 is a disk {x : x2

1 + x2
2 ≤

√
1 − w2, x3 = w}. A line on this disk is

given by the equation

� : x cos θ + y sin θ = t
√

1 − w2, −1 ≤ t ≤ 1.

Let I(θ, w; t) denote the intersection of � with B3. The attenuated Radon projection
on such a line is then defined by

Rμ
θ (f ; t, w) :=

∫
I(θ,w;t)

f(x)Wμ(x)dx.(4.1)

The case μ = 1/2 again corresponds to the usual Radon projection.
Lemma 4.1. For f ∈ L1(Wμ;B3) and for a fixed w ∈ [−1, 1], define a function

gw on B2 by

gw(x, y) = f
(√

1 − w2 x,
√

1 − w2 y, w
)
.

The x-ray transform (4.1) is related to the 2D Radon transform (1.3) by

Rμ
θ (f ; t, w) = (1 − w2)μRμ

θ (gw; t).(4.2)

Proof. Since I(θ, w; t) can be represented by

x1 =
√

1 − w2(t cos θ − s sin θ), x2 =
√

1 − w2(t sin θ + t cos θ), x3 = w
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for s ∈ [−
√

1 − t2,
√

1 − t2], which is a rotation around the x3-axis on the plane
defined by x3 = w, we have

Rθ(f ; t, w) = (1 − w2)μ
∫ √

1−t2

−
√

1−t2
gw(t cos θ − s sin θ, t sin θ + s cos θ)Wμ(s, t)ds.

The integral is precisely Rμ
θ (gw; t) by (2.13).

Let V3
n(Wμ) denote the space of orthogonal polynomials with respect to Wμ on

B3, which contains polynomials of degree n that are orthogonal to polynomials of
lower degrees with respect to the inner product

〈P,Q〉 = aμ,3

∫
B3

P (x)Q(x)Wμ(x)dx, aμ,3 =
Γ(μ + 2)

π3/2Γ(μ + 1/2)
,

where aμ,3 is the normalization constant of Wμ. We derive a basis for V3
n(Wμ), making

use of an orthogonal basis for V2
n(Wμ). We note that the Wμ in these two notations

are different: the first one is on B3 and the second one is on B2. We denote by C̃λ
j

the orthonormal Gegenbauer polynomial, which is equal to Cλ
n/

√
hn by (2.3).

Proposition 4.2. Let {P k
j : 0 ≤ j ≤ k} be an orthonormal basis for V2

k(Wμ).
Then the polynomials

Ql,k,j(x, y, z) = hk(1 − z2)k/2P k
j

(
x√

1 − z2
,

y√
1 − z2

)
C̃k+μ+1

l−k (z)(4.3)

for 0 ≤ j ≤ k ≤ l, where h2
k = (μ + 2)k/(μ + 3/2)k, form an orthonormal basis for

V3
l (Wμ).

Proof. From Proposition 2.3, it is easy to see that P k
j is a sum of even powers of

homogeneous polynomials when k is even, and a sum of odd powers of homogeneous
polynomials when k is odd. Thus, it follows that Ql,k,j ∈ Π3

l . Using the fact that P k
j

is orthonormal, it follows from the integral relation∫
B3

f(x)dx =

∫ 1

−1

∫
B2

f

(
x1

√
1 − x2

3, x2

√
1 − x2

3, x3

)
dx1dx2(1 − x2

3)dx3(4.4)

and the fact that aμ,3 = aμcμ+1/2, where aμ is the normalization of Wμ on B2 and cμ
is defined in (2.3), that

aμ,3

∫
B3

Ql,k,j(x)Ql′,k′,j′(x)Wμ(x)dx

= h2
kcμ+1/2

∫ 1

−1

C̃k+μ+1
l−k (t)C̃k+μ+1

l′−k (t)(1 − t2)k+μ+1/2dtδk,k′δj,j′

= h2
k

cμ+1/2

ck+μ+1/2
δl,l′δk,k′δj,j′ .

It follows from the definition of cμ that cμ+1/2/ck+μ+1/2 = (μ+3/2)k/(μ+2)k, which
completes the proof.

The attenuated Radon transforms of this basis can be computed explicitly.
Proposition 4.3. Let μ ≥ 0 and let Ql,k,j be defined by (4.3). Then

Rμ
φ(Ql,k,j ; t, w)

(1 − t2)μ(1 − w2)μ
= bμ

C
μ+1/2
k (t)

C
μ+1/2
k (1)

Ql,k,j

(√
1 − w2 cosφ,

√
1 − w2 sinφ,w

)
.(4.5)
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Proof. By Lemma 4.1 and the definition of Ql,k,j we have

Rμ
φ(Ql,k,j ; t, w) = (1 − w2)μRμ

φ(gw; t),

where gw(x, y) = hkP
k
j (x, y)(1 − w2)k/2C̃k+μ+1

l−k (w). By Lemma 2.7, it follows that

Rμ
φ(gw; t) = hk(1 − w2)k/2C̃k+μ+1

l−k (w)Rμ
φ(P k

j ; t)

= bμhk(1 − w2)k/2C̃k+μ+1
l−k (w)(1 − t2)μ

C
μ+1/2
k (t)

C
μ+1/2
k (1)

P k
j (cosφ, sinφ)

= bμ(1 − t2)μ
C

μ+1/2
k (t)

C
μ+1/2
k (1)

Ql,k,j

(√
1 − w2 cosφ,

√
1 − w2 sinφ,w

)
by the definition of Ql,k,j . Putting these equations together completes the proof.

Let projμl,3 denote the projection operator from L2(Wμ;B3) onto the space

V3
l (Wμ). Again we have the decomposition

L2(Wμ;B3) =

∞∑
k=0

⊕V3
k(Wμ) : f =

∞∑
k=0

projμk,3 f.(4.6)

Proposition 4.4. For n ≥ 0 and 0 ≤ l ≤ n,

projμl,3 f(x) =
1

n + 1

n∑
ν=0

∫ 1

−1

∫ 1

−1

Rμ
ξν

(f ; t, w)Gl(ξν , t, w;x)dt
√

1 − w2dw(4.7)

=
1

2n + 2

2n+1∑
ν=0

∫ 1

−1

∫ 1

−1

Rμ
ξν

(f ; t, w)Gl(ξν , t, w;x)dt
√

1 − w2dw,

where

Gl(ξ, t, w;x) = aμ,3

l∑
k=0

h2
kD

μ+1/2
k

(
ξ, t;

x1√
1 − x2

3

,
x2√

1 − x2
3

)
× (1 − w2)k/2(1 − x2

3)
k/2C̃k+μ+1

l−k (w)C̃k+μ+1
l−k (x3).

Proof. The projection operator has an integral expression just as that of (2.17).
Furthermore, the kernel function P (Wμ;x,y) can be written as a sum of an orthonor-
mal basis. In particular,

projμl,3 f(x) =

l∑
k=0

k∑
j=0

f̂l,k,jQl,k,j(x),

where Ql,k,j is the orthonormal basis for V3
l (Wμ) defined in (4.3) and

f̂l,k,j = aμ,3

∫
B3

f(y)Ql,k,j(y)Wμ(y)dy.

Using (4.4), the definition of Qk,l,j , and the fact that aμ,3 = aμcμ+1/2, we have

f̂l,k,j = cμ+1/2

∫ 1

−1

[
aμ

∫
B2

gw(u, v)P k
j (u, v)Wμ(u, v)dudv

]
× hkC̃

k+μ+1
l−k (w)(1 − w2)k/2+μ+1/2dw,
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where gw is defined as in Lemma 4.1. Hence, it follows from (2.17) and (2.1) that

projl,3 f(x) =

l∑
k=0

h2
kC̃

k+μ+1
l−k (x3)(1 − x2

3)
k/2cμ+1/2

×
∫ 1

−1

projμk gw

(
x1√

1 − x2
3

,
x2√

1 − x2
3

)
C̃k+μ+1

l−k (w)(1 − w2)(k+1)/2+μdw.

The identity (4.7) follows from the above equation upon using (2.18) and (4.2).
Let us denote by Sμ

n,3f the nth partial sum of the orthogonal expansion (4.6),

Sμ
n,3f(x) =

n∑
l=0

projμl,3 f(x).

As an immediate consequence of Proposition 4.4 we have the following corollary.
Corollary 4.5. For n ≥ 0,

Sμ
n,3f(x) =

1

n + 1

n∑
ν=0

∫ 1

−1

∫ 1

−1

Rμ
ξν

(f ; t, w)Φμ
n(ξν , t, w;x)dt

√
1 − w2dw(4.8)

=
1

2n + 2

2n+1∑
ν=0

∫ 1

−1

∫ 1

−1

Rμ
ξν

(f ; t, w)Φμ
n(ξν , t, w;x)dt

√
1 − w2dw,

where

Φμ
n(ξ, t, w;x) =

n∑
l=0

Gl(ξ, t, w;x).

In the case of n = 2m we can use (2.21) instead of (2.18) in the last step of
the proof of Proposition 4.4 to get an expression for projμl,3 f . The corresponding
expression for the partial sum is the following result.

Proposition 4.6. For m ≥ 0,

Sμ
2m,3f(x) =

1

2m + 1

2m∑
ν=0

∫ 1

−1

∫ 1

−1

Rμ
φν

(f ; t, w)Φ2m(φν , t, w;x)dt
√

1 − w2dw.

From such an expression of Sμ
n,3 we naturally want to derive an algorithm as in

the 2D case. However, there is a problem when we use a quadrature formula. Indeed,
in order to obtain an algorithm, we need to discretize the integrals∫ 1

−1

∫ 1

−1

Rμ
ξν

(f ; t, w)Φμ
n(ξν , t, w;x)dt

√
1 − w2dw(4.9)

in Sμ
n,3f by a quadrature formula. We can use, for example, the quadrature (2.25) of

precision 2n, which we denote by∫ 1

−1

f(t)(1 − t2)αdt ≈
n∑

k=0

λα
k,nf(tαk,n)

to emphasis the dependence of tk,n and λk,n on the weight function. If we follow the
2D case, then (4.5) indicates that we should apply the quadrature with respect to
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(1− t2)μ in the t variable, and apply the quadrature with respect to (1−w2)μ+1/2 in
the w variable. The result of using these quadrature formulas gives us the following.

Algorithm 4.7. Let μ ≥ 0. For n ≥ 0, x = (x1, x2, x3) ∈ B3,

Bμ
n(f ;x) =

n∑
ν=0

n∑
j=0

n∑
k=0

Rμ
φν

(f ; tμj,n, t
μ+1/2
k,n )Tj,k,ν(x),

where

Tμ
j,k,ν(x) =

λμ
j λ

μ+1/2
k

n + 1
Φμ

n(ξν , t
μ
j,n, t

μ+1/2
k,n ;x).

However, this is not likely an accurate algorithm. The problem is that the operator
Bμ
n does not preserve polynomials of degree n. In fact, in order that BnP = P for

P ∈ Π3
n, we need the discretization of the integrals (4.9) to be exact whenever f is a

polynomial of degree at most n. The function

Fμ(t, w) := (1 − t2)−μ(1 − w2)−μRμ
ξν

(f ; t, w)Φμ
n(ξν , t, w;x)

is a polynomial of degree 2n in variable t whenever f is a polynomial of degree n by
the definition of Φμ

n and Proposition 4.3, so that the discretization in the t variable
is exact. However, the function Fμ(t, w) is not a polynomial in the w variable. By
the definition of Ql,k,j in (4.3), equation (4.5) shows that Fμ(t, w) with f = Ql,k,j

contains (1 − w)k/2C̃k+μ+1
l−k (w), which is not a polynomial in the w variable if k is

odd. The formula of Φμ
n(ξν , t, w;x) shows that it is a sum of functions, which is also

not a polynomial. This means that the quadrature will not be exact and polynomials
are not preserved by Bμ

n.
An algorithm should have high convergence order if it preserves polynomials up

to certain degrees. The fact that Bμ
nf does not preserve polynomials means that the

convergence of the algorithm may not be as desirable.

5. Reconstruction and approximation on the cylinder domain. In con-
trast to the unit ball in R

3, the reconstruction algorithm on a cylinder domain works
well. Let L > 0 and let BL be the cylinder domain defined by

BL = B2 × [0, L] = {(x, y, z) : (x, y) ∈ B2, 0 ≤ z ≤ L}.

We will show that the partial sum operator of the orthogonal expansions on WL admits
an expression that relates to Radon data, and we will use it to get a reconstruction
algorithm.

Let Wμ be defined as in (1.2). Let Wμ,L be the weight function

Wμ,L(x, y, z) = Wμ(x, y)WL(z), (x, y, z) ∈ BL.

We retain the notation Rμ
φ(g; t) for the attenuated Radon projection of a function

g : B2 �→ R, as defined in (1.3). For a fixed z in [0, L], we define

Rμ
φ(f(·, ·, z); t) :=

∫
I(φ,t)

f(x, y, z)Wμ(x, y)dx dy,(5.1)

which is the attenuated Radon projection of f in a disk that is perpendicular to the
z-axis.
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We consider the orthogonal polynomials with respect to the inner product

〈f, g〉BL
=

1

π

∫
BL

f(x, y, z)g(x, y, z)Wμ,L(x, y, z) dx dy dz.(5.2)

Let V3
n(Wμ,L) denote the subspace of orthogonal polynomials of degree n on BL with

respect to the inner product (5.2); that is, P ∈ V3
n(Wμ,L) if 〈P,Q〉BL

= 0 for all
polynomial Q ∈ Π3

n−1.
Let pk be the orthonormal polynomial of degree n with respect to WL on [0, L]

and let {P k
j (x, y) : 0 ≤ j ≤ k} denote an orthonormal basis of V2

k(Wμ). Since Wμ,L is
a product on a product domain, the following proposition is obvious.

Proposition 5.1. An orthonormal basis for V3
l (Wμ,L) is given by

Pl =
{
Pμ
l,k,j : 0 ≤ j ≤ k ≤ n

}
, Pμ

n,k,j(x, y, z) = P k
j (x, y)pn−k(z).

In particular, the set {Pl : 0 ≤ l ≤ n} is an orthonormal basis for Π3
n.

For f ∈ L2(Wμ,L;BL), the Fourier coefficients of f with respect to the orthonor-
mal system {Pl : l ≥ 0} are given by

f̂μ
l,k,j = aμ

∫
BL

f(x)Pμ
l,k,j(x)Wμ,L(x)dx, 0 ≤ j ≤ k ≤ l.

Let Sμ
n,Lf denote the Fourier partial sum operator,

Sμ
n,Lf(x) =

n∑
l=0

l∑
k=0

k∑
j=0

f̂μ
l,k,jP

μ
l,k,j(x).

Just like its counterpart in two variables, this is a projection operator. The following
is an analogue of Theorem 2.10 for the cylinder domain BL.

Theorem 5.2. For n ≥ 0,

Sμ
n,Lf(x) =

1

n + 1

n∑
ν=0

aμ

∫ 1

−1

∫ L

0

Rμ
ξν

(f(·, ·, w); t)Φμ
n(ξν , w, t;x)WL(w)dw dt,(5.3)

where

Φμ
n(ξ, w, t;x) =

n∑
k=0

k + μ + 1/2

μ + 1/2
D

μ+1/2
k (ξ, t;x1, x2)

n−k∑
l=0

pl(w)pl(x3).(5.4)

Proof. By the definition of f̂μ
l,k,j we can write

f̂μ
l,k,j = aμ

∫
B2

fl−k(x, y)P
k
j (x, y)Wμ(x, y)dx dy,

where

fl−k(x, y) :=

∫ L

0

f(x, y, w)pl−k(w)WL(w)dw, l ≥ k ≥ 0.

Consequently, by the definition of projμk in (2.17), it follows that

Sμ
n,Lf(x) =

n∑
l=0

l∑
k=0

projμk(fl−k;x1, x2)pl−k(x3).
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We can then use the expression (2.18) for projμk f and the fact that

Rμ
ξ (fl−k; t) =

∫ L

0

Rμ
ξ (f(·, ·, w); t)pl−k(w)WL(w)dw

to complete the proof.
In the case of n = 2m, we can use (2.21) in place of (2.18) in the proof. The

result is the following proposition, which has appeared in [16] when μ = 1/2.
Proposition 5.3. For m ≥ 0,

Sμ
2m,Lf(x)(5.5)

=
1

2m + 1

2m∑
ν=0

aμ

∫ 1

−1

∫ L

0

Rμ
ξν

(f(·, ·, w); t)Φμ
2m(φν , w, t;x)WL(w)dw dt.

From the expression (5.3) or (5.5) of Sμ
n,Lf , we can apply a quadrature formula

to get a reconstruction algorithm on Bl for the attenuated Radon data. In [16] the
weight function WL is chosen to be the Chebyshev weight function

WL(z) =
1

π

1√
z(L− z)

, z ∈ [0, L],

normalized to have integral 1 on [0, L]. The reason for this choice is that the Gaussian
quadrature formula takes a simple form∫ L

0

g(z)WL(z)dz ≈ 1

n + 1

n∑
j=0

g(zi), zi =
1

2

(
1 + cos

2j + 1

2n + 2

)
,(5.6)

which is of precision 2n+1. We can apply this quadrature for the integral with respect
to w and use the quadrature (2.25) for the integral with respect to t in (5.3) or (5.5).
The result is the following algorithm.

Algorithm 5.4. Let μ ≥ 0 and let γμ,j,i = Rμ
ξν

(f(·, ·, zi); tj,n). For n ≥ 0

Bμ
n,L(f ;x) =

n∑
ν=0

n∑
j=0

n∑
i=0

γν,j,iTν,j,i(x),(5.7)

where

Tν,j,i(x) =
aμλj,n

n + 1
(1 − t2j,n)−μΦμ

n(ξν , zi, tj,n;x).

Like the algorithms in the previous sections, this algorithm produces a polynomial
as an approximation to the function. It does preserve polynomials of lower degrees.

Theorem 5.5. The operator Bμ
n,L is a projection operator on Π3

n. In other words,

Bnf ∈ Π3
n and Bn,L(f) = f if f ∈ Π3

n.
Proof. Let Pμ

n,k,j be defined as in Proposition 5.1. It follows from the definition

in (5.1) that Rμ
φ(Pμ

l,k,j(·, ·, w); t) = Rμ
φ(P k

j ; t)pl−k(w). Consequently, it follows from

(2.15) that Rμ
φ(P (·, ·, w); t)/(1 − t2)μ is a polynomial of degree n in both the t vari-

able and the w variable whenever P ∈ Π3
n. By its definition in (5.4), the function

Φμ(ξ, w, t;x) is evidently a polynomial of degree n in both t and w variables. Hence,
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we can apply (5.6) for the w variable and apply the quadrature (2.25) of precision 2n
to the t variable, which are exact on (1 − t2)−μRμ

φ(P (·, ·, w); t)Φμ(ξ, w, t; ·).
The approximation process in Algorithm 5.4 uses the attenuated Radon data{

Rμ
ξν

(f(·, ·, zi); tj,n) : 0 ≤ ν ≤ n, 0 ≤ j ≤ n, 0 ≤ i ≤ n
}
,

which consists of Radon projections on n + 1 disks that are parallel to the z-axis. In
other words, it consists of reconstructions of the function on n + 1 planes.

In the case in which n = 2m and μ is a half integer, we can also use the quadrature
(2.27) to derive a more explicit algorithm as in Algorithm 2.15. Such an algorithm is
given in [17] for μ = 1/2. We shall not elaborate further.
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COMPOSITE WAVELET BASES WITH EXTENDED STABILITY
AND CANCELLATION PROPERTIES∗

ROB STEVENSON†

Abstract. The efficient solution of operator equations using wavelets requires that they gen-
erate a Riesz basis for the underlying Sobolev space and that they have cancellation properties of
a sufficiently high order. Suitable biorthogonal wavelets were constructed on reference domains as
the n-cube. Via a domain decomposition approach, these bases have been used as building blocks to
construct biorthogonal wavelets on general domains or manifolds, where, in order to end up with local
wavelets, biorthogonality was realized with respect to a modified L2-scalar product. The use of this
modified scalar product restricts the application of these so-called composite wavelets to problems
of orders strictly larger than −1. Moreover, those wavelets with supports that extend to more than
one patch generally have no cancellation properties. In this paper, we construct local, composite
wavelets that are close to being biorthogonal with respect to the standard L2-scalar product. As a
consequence, they generate Riesz bases for the Sobolev spaces Hs for the full range of s allowed by
the continuous gluing of functions over the patch interfaces, the properties of the primal and dual
approximation spaces on the reference domain, and, in the manifold case, by the regularity of the
manifold. Moreover, all these wavelets have cancellation properties of the full order induced by the
approximation properties of the dual spaces on the reference domain. We illustrate our findings by
a concrete realization of wavelets on a perturbed sphere.

Key words. wavelets, Riesz bases, cancellation properties, domain decomposition, boundary
integral equations

AMS subject classifications. 46B15, 46E35, 65N55, 65T60

DOI. 10.1137/060651021

1. Introduction. The use of wavelet bases for solving operator equations, as
partial differential equations or (boundary) integral equations, has a number of advan-
tages; cf. [9, 3]. Let us assume that the operator is symmetric, and, for H being some
Hilbert space, H-bounded and H-coercive, and that the infinite collection of properly
scaled wavelets generates a Riesz basis for H. Then the stiffness matrix in wavelet co-
ordinates resulting from a Ritz–Galerkin discretization is well conditioned uniformly
in its size, guaranteeing a uniform rate of convergence of an iterative method. In
case of a differential operator, this stiffness matrix is not truly sparse, but has the
well-known “finger structure.” For multiplying with this matrix, however, one may
switch to a single-scale basis, with respect to which the stiffness matrix is sparse.

For integral operators, the stiffness matrix with respect to both single-scale and
wavelet basis is densely populated. Here the second important property of wavelets—
that of having vanishing moments or, more generally, cancellation properties, meaning
that the integral of a wavelet against a smooth function vanishes with a certain order
of the length scale of the wavelet—can be exploited. If, depending on the order of the
operator and the order of approximation, this order of the cancellation properties is
sufficiently large, then the stiffness matrix with respect to the wavelet basis can be a
priorily compressed to a sparse one without reducing the order of convergence. With
this a method of linear complexity is obtained for solving integral equations [18, 10].
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Instead of projecting the operator equation onto a fixed finite dimensional space,
and then solving the resulting matrix-vector problem with an iterative method, the
availability of a Riesz basis for H opens an attractive alternative for approximating
the solution by adaptive wavelet methods [4, 5]. By writing this unknown solution
in terms of this basis and testing the equation for all basis functions, one obtains an
infinite dimensional matrix-vector problem. This problem is equivalent to the operator
equation, and it is well-posed in �2-metric, meaning that it can be solved using an
iterative method. In each iteration of such a method, the application of the infinite
stiffness matrix to the current approximation vector has to be approximated. Here
the concept of adaptivity enters; the accuracy with which a column is approximated
grows with the modulus of the corresponding entry of the vector. The resulting
method, extended with a so-called coarsening routine to remove small entries from the
approximation vector, can be proven to be optimal in the following sense. Whenever,
for a certain range of s, the solution is in a class of functions for which the error of the
best N -term approximations from the wavelet basis decays like N−s, the sequence of
approximations produced by this adaptive method has the same rate of convergence,
whereas the computational cost is equivalent to their support sizes. A necessary
condition for this statement to be true is that the stiffness matrix is sufficiently close
to a sparse matrix, which depends on the smoothness of the wavelets and, again, on
the order of the cancellation properties [21]. Recently, it has been shown that an
optimal adaptive wavelet method can even be obtained without coarsening [15].

Aiming at the aforementioned applications, this paper deals with the construc-
tion on general n-dimensional domains or manifolds of wavelets that, properly scaled,
generate Riesz bases for a range of Sobolev spaces, and satisfy cancellation properties
of any required order. To be able to choose this order independently from the order of
approximation, we will consider biorthogonal wavelets. Their construction starts with
two nested sequences of approximation spaces that both satisfy Jackson and Bern-
stein estimates (“multiresolution analyses”). Then the primal and dual wavelets are
sought as bases of the biorthogonal complements of successive approximation spaces
at primal and dual side, respectively. In case the primal and dual approximation
spaces can be equipped with bases of local, biorthogonal scaling functions, local pri-
mal wavelets are found by applying the biorthogonal projector onto a local basis of
some complement space of two successive primal approximation spaces. In this case,
under some mild additional condition, the corresponding dual wavelets are also local.
Actually, for constructing only local primal wavelets, a reduced set of assumptions
already suffices, which for simplicity we will ignore in this introduction. Note that in
algorithms for solving operator equations, usually dual wavelets do not play any role.

Biorthogonal scaling functions have been constructed on the real line [6] and,
as adaptations of these, on the interval [11]. By taking tensor products, one ob-
tains biorthogonal scaling functions on the n-dimensional unit cube. To construct
biorthogonal scaling functions and wavelets on general domains and manifolds, a do-
main decomposition approach has been developed by Dahmen and Schneider in [12]
(see [1, 7] for related approaches). The domain or manifold of interest is written as
a disjoint union of smooth parametric images of the unit cube. The biorthogonal
scaling functions on the cube are lifted to the patches, and, assuming that the decom-
position satisfies some matching condition, they are continuously connected over the
interfaces. With respect to a modified L2-scalar product, defined by ignoring the Jaco-
bian determinants of the parametrizations in the definition of the canonical L2-scalar
product, the resulting collections of scaling functions are biorthogonal. Wavelets, in
this setting called composite wavelets, can now be constructed using the biorthogonal



COMPOSITE WAVELET BASES 135

projector. There are, however, two principal limitations related to the realization of
biorthogonality with respect to the modified L2-scalar product. First, wavelets with
supports that extend to more than one patch generally have no cancellation proper-
ties with respect to the canonical L2-scalar product. So results concerning matrix
compression do not apply to entries involving such wavelets. Second, with respect to
the interpretation of a wavelet as a functional using the duality pairing in terms of
the canonical L2-scalar product, generally the resulting wavelets cannot generate a
Riesz basis for Hs for s ≤ − 1

2 . So for operators of order 2s ≤ −1, like the single-layer
potential operator, neither are the optimal preconditioning results valid, nor can the
adaptive wavelet method be applied.

These limitations were already recognized by the authors in [12]. In [13], they
developed an elegant approach to construct wavelets on general domains or manifolds
that, properly scaled, generate Riesz bases for Hs for in principal any s, and that
have cancellation properties of any required order. Unfortunately, so far with this
approach it seems not easy to construct wavelets that have competitive quantitative
properties. A recent investigation of this approach was made in [16].

In this paper, we reconsider the approach from [12], except that, in view of the
aforementioned limitations, we make use of the canonical L2-scalar product. Al-
though, generally, the lifted and connected scaling functions are not biorthogonal
with respect to this scalar product, we can derive a general formula for the corre-
sponding biorthogonal wavelets. Since this formula, however, involves the inverse of
the matrix consisting of the L2-scalar products between all primal and dual scaling
functions (this matrix is thus generally not diagonal), these wavelets have global sup-
ports. On the other hand, this matrix is nearly diagonal, so that its inverse can be
well approximated by sparse matrices, which gives rise to local, approximate wavelets.
We derive general conditions under which, properly scaled, such approximate wavelets
generate a Riesz basis for Hs for the full range of s allowed by the continuous gluing
of the scaling functions over the interfaces, by the properties of the primal and dual
approximation spaces on the cube, and, in the manifold case, by the regularity of
the manifold. We give three possibilities for the construction of approximate wavelets
that are local and generate Riesz bases for Hs for the aforementioned full range of
s, and all have cancellation properties of the full order induced by the approximation
properties of the dual spaces on the unit cube. First, we show that the approximation
of the inverse of the matrix of L2-scalar products of primal and dual scaling functions
by a suitable, fixed number of Jacobi iterations yields such approximate wavelets. In
view of the relatively large supports of these wavelets, second, we show that away
from the patch interfaces they can be replaced by the wavelets one gets by ignoring
the Jacobian determinants, which are the wavelets from [12]. Third, we show that
also along the patch interfaces suitable approximate wavelets with smaller supports
can be constructed, which, however, will involve solving some local systems. Although
several proofs will be quite involved, we emphasize that the implementation of the
approximate wavelets is relatively straightforward.

In [14, 20], we constructed wavelet bases for Lagrange finite element spaces based
on a subdivision of polygonal domains into n-simplices. In this paper, we include
the option that these finite element wavelets, or more precisely the underlying scaling
functions, are used as building blocks for wavelets on general (nonpolygonal) domains
or manifolds, where then the unit n-cube as reference domain should be replaced by
some reference n-simplex.

This paper is organized as follows. In the remainder of this section we fix a
few notations. In section 2, we specify the type of domains and manifolds and their
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parametrizations that we will consider. We recall the definition of the Sobolev spaces,
that may involve zero order Dirichlet boundary conditions, which we are going to
equip with Riesz bases. In section 3, we collect all assumptions on the multiresolution
analyses on the reference domain. The induced, continuous, multiresolution analyses
on the target domain or manifold are defined in section 4. Although put here into a
more general framework, the main construction principles from sections 2–4 originate
from [12]. Biorthogonal space decompositions and the, generally, globally supported
biorthogonal wavelets are constructed in section 5. Sections 6 and 7, which form the
main part of this paper, are devoted to the construction of local, approximate wavelets.
Finally, in section 8 we show examples of approximate wavelets on a perturbed sphere
and give some numerically computed condition numbers.

In order to limit the size of this paper, for some technical (parts of) proofs we
will refer to the extended preprint version [22].

In order to avoid the repeated use of generic but unspecified constants, in this
paper by C <∼ D we mean that C can be bounded by a multiple of D, independently

of parameters on which C and D may depend. Obviously, C >∼ D is defined as D <∼ C,

and C � D as C <∼ D and C >∼ D.

Let H be a separable Hilbert space with scalar product 〈·, ·〉 and norm ‖ · ‖. For
a countable collection Σ of functions in H, which we formally view as a (column)
vector, and for c = (cσ)σ∈Σ a vector of scalars, with cTΣ we will mean the expansion∑

σ∈Σ cσσ. The span of Σ will be denoted as S(Σ). For x ∈ H, by 〈Σ, x〉 and 〈x,Σ〉
we will mean the column- and row-vectors with coefficients 〈σ, x〉 and 〈x, σ〉, σ ∈ Σ.
When Σ̃ is another countable collection in H, with 〈Σ, Σ̃〉 we denote the matrix
(〈σ, σ̃〉)σ∈Σ,σ̃∈Σ̃. For V ⊂ H being a dense, continuously embedded Banach space, as
usual we will use 〈·, ·〉 sometimes also to denote the duality pairing 〈·, ·〉V×V ′ , which,
with the aforementioned meaning, can also be applied to collections from V and/or V ′.

On the spaces of (possibly infinite) scalar vectors or matrices, we will exclusively
use the �2-scalar product, �2-norm, or the resulting operator norm, that we therefore
simply denote by 〈·, ·〉 or ‖ · ‖, respectively. A collection Σ is called a Riesz system
when ‖cTΣ‖ � ‖c‖, i.e., when 〈Σ,Σ〉 is boundedly invertible, and Σ is called a Riesz
basis when it is in addition a basis for H. When Σ depends on a parameter, we
will speak about uniform Riesz systems (or bases) when the above equivalence holds

uniformly over the values this parameter may attain. We set ‖Σ‖ = ‖〈Σ,Σ〉‖ 1
2 and

collect a few properties related to this definition.

Proposition 1.1.

(i) supc �=0
‖cT Σ‖
‖c‖ = ‖Σ‖,

(ii) ‖〈Σ, Σ̃〉‖ ≤ ‖Σ‖‖Σ̃‖,
(iii) ‖Σ + Σ̃‖ ≤ ‖Σ‖ + ‖Σ̃‖,
(iv) for a matrix A, ‖AΣ‖ ≤ ‖A‖‖Σ‖.
Proof. For (i), use ‖cTΣ‖2 = 〈〈Σ,Σ〉c, c〉. Part (ii) follows from |〈〈Σ, Σ̃〉c, c̃〉| =

|〈cTΣ, c̃T Σ̃〉| ≤ ‖c‖‖c̃‖‖Σ‖‖Σ̃‖ because of (i). Part (iii) follows easily from (ii). For
(iv), use 〈AΣ,AΣ〉 = A〈Σ,Σ〉A∗.

2. Domains and function spaces. For some n′ ≥ n ≥ 1, let Γ be an n-
dimensional bounded manifold in R

n′
, with or without a boundary. For � denoting

the interior either of the n-cube [0, 1]n or, despite its notation, of some reference
n-simplex, we assume that Γ is given as

Γ = ∪M
q=1Γq, with Γq ∩ Γq′ = ∅ when q 
= q′, and Γq = κq(�),
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where κq : R
n → R

n′
are some smooth, regular parametrizations. With Π we will

denote the collection of all affine mappings from � onto �. So in case � is the interior
of an n-simplex, this collection consists of the permutations of the n + 1 barycentric
coordinates, and otherwise it consists of the compositions of any permutation of the
n Cartesian coordinates and reflections of type y �→ (y1, . . . , yi−1, 1− yi, yi+1, . . . , yn)
(1 ≤ i ≤ n). We assume that the splitting of Γ into the patches Γq is conforming in
the sense that for any q 
= q′, either Γq ∩ Γq′ is empty or

κ−1
q (Γq ∩ Γq′) is a face of �.

In addition, we assume that the parametrizations can be chosen such that the following
matching condition is satisfied: There exists a π ∈ Π with

κq′ ◦ π ◦ κ−1
q = Id on Γq ∩ Γq′ .(M)

Here and in the remainder of this paper, by a “face” of �, we mean a (complete,
closed) face of any dimension 0 ≤ k ≤ n− 1; i.e., for n = 3, it is a vertex, an edge, or
a facet. Note that our setting allows Γ to be a bounded domain in R

n, as well as an
open or closed bounded manifold in R

n′
for some n′ > n.

We include the possibility that homogeneous, zero order Dirichlet boundary con-
ditions are prescribed on some part ∂ΓD ⊂ Γ\Γ, for which, for all 1 ≤ q ≤ M ,

κ−1
q (∂ΓD ∩ Γq) is a, possibly empty, union of faces of �;(2.1)

see Figure 2.1.

� Γ

κq

∂ΓD

Fig. 2.1. Illustration of the domain decomposition approach.

For some sΓ > 0, we assume that, globally,

Γ ∈ CsΓ when sΓ 
∈ N, or Γ ∈ CsΓ−1,1 when sΓ ∈ N.

This means that for 0 ≤ s < sΓ 
∈ N, or 0 ≤ s ≤ sΓ ∈ N, the Sobolev spaces

Hs(Γ) :=

{
Hs

0,∂ΓD
(Γ) when s ≤ 1,

Hs(Γ) ∩H1
0,∂ΓD

(Γ) when s > 1

can be defined in the usual way using a partition of unity relative to some atlas. For
s > 0 in the above range, H−s(Γ) will be understood as being the dual of Hs(Γ).

With μ being the induced Lebesgue measure on Γ, the inner product on L2(Γ) is
given by

〈u, v〉L2(Γ) =

∫
Γ

uvdμ =

M∑
q=1

〈u ◦ κq, v ◦ κq〉L2(�),|∂κq|.(2.2)
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Here, for w ∈ L∞(�) with w > 0 a.e., 〈f, g〉L2(�),w :=
∫

�
f(y)g(y)w(y)dy, and |∂κq| :

z �→ |∂κq(z)| are the Jacobian determinants of the parametrizations. We will also
make use of a modified inner product

〈〈u, v〉〉0 :=

M∑
q=1

〈u ◦ κq, v ◦ κq〉L2(�),(2.3)

which is the inner product one gets by ignoring the Jacobian determinants. It is

equivalent to 〈 , 〉L2(Γ) in the sense that ||| · |||0 := 〈〈·, ·〉〉
1
2
0 � ‖ · ‖L2(Γ). More generally,

for any s ≥ 0, we define

〈〈u, v〉〉s =

M∑
q=1

〈u ◦ κq, v ◦ κq〉Hs(�),

and let Hs(Γ) denote the closure with respect to ||| · |||s := 〈〈·, ·〉〉
1
2
s of the set all globally

continuous, and with respect to the subdivision Γ = ∪M
q=1Γq, piecewise C∞ functions

on Γ that are zero on ∂ΓD. For s > 0, we define H−s(Γ) = (Hs(Γ))′. For 0 ≤ s <
sΓ 
∈ N or 0 ≤ s ≤ sΓ ∈ N, it holds that ‖ · ‖Hs(Γ) � ||| · |||s on Hs(Γ). Furthermore, if

s < 3
2 , then the functions in the aforementioned set generate a dense subset in Hs(Γ).

Using in addition duality, we infer that

Hs(Γ) � Hs(Γ) (|s| < 3
2 with |s| < sΓ 
∈ N or |s| ≤ sΓ ∈ N),(2.4)

meaning that both spaces agree as sets and have equivalent norms. The spaces Hs(Γ)
will serve only as auxiliary spaces to prove that the wavelets we are going to construct
generate, when properly scaled, a Riesz basis for Hs for the full range of s; in case
this range is limited by the regularity of Γ to a closed range [−sΓ, sΓ].

3. Multiresolution analyses on the reference domain. On the reference
domain, we will need two nested sequences of approximation spaces (multiresolution
analyses) that satisfy Jackson and Bernstein estimates. We will assume that these
spaces are equipped with single-scale bases that satisfy certain conditions concerning
their supports and symmetry (cf. assumptions (L), (V), (S)), so that after their lifting
to the patches, they can be continuously connected over the interfaces. Furthermore,
we will assume that the rate of best approximation from these sequences is realized
by some concrete projector (cf. (J) and Proposition 3.1), with which it will be shown
that the induced approximation spaces on Γ are nested and have the same rate of
approximation. We will make some assumptions ((I1) and (I2)) connecting primal
and dual multiresolution analyses to ensure the existence and uniform boundedness of
the biorthogonal projector (cf. Proposition 5.2). Finally, we will assume the existence
of a suitable “initial stable completion.”

For j ∈ N0, let I�
j ⊂ � be some index set with

π(I�
j ) = I�

j (π ∈ Π), sup
y∈�

#(I�
j ∩B(y; 2−j)) <∼ 1

(see Figure 2.1). For completeness, for A ⊂ R
n and δ ≥ 0, by B(A; δ) we mean

{y ∈ R
n : dist(y,A) ≤ δ}, and B(∅; δ) := ∅. For j ∈ N0, we assume a collection

Φ�
j = (φ�

j,x)x∈I�
j
⊂ C(�), usually referred to as the set of scaling functions, such that

the following hold:
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(L) ∃ constant ε > 0, suppφ�
j,x ⊂ B(x; ε2−j).

(V) φ�
j,x vanishes on any face of � that does not contain x.

(S) φ�
j,x = φ�

j,π(x) ◦ π (π ∈ Π).

(R) Φ�
j is a uniform L2(�)-Riesz system.

(J) There exists a collection of functionals Λ�
j = (λ�

j,x)x∈I�
j
⊂ C(�)′ such that

(i) ∃ constant ϑ > 0, supp λ�
j,x ⊂ B(x;ϑ2−j).

(ii) If x ∈ ∂�, then supp λ�
j,x is contained in the lowest dimensional face of

� that contains x.
(iii) 〈u, λ�

j,π(x)〉L2(�) = 〈u ◦ π, λ�
j,x〉L2(�) (π ∈ Π).

(iv) |〈u, λ�
j,x〉L2(�)| <∼ 2−jn/2‖u‖L∞(suppλ�

j,x).

(v) 〈Φ�
j ,Λ

�
j 〉L2(�) = Id .

(vi) For some n
2 < d ∈ N, Pd−1(�) ⊂ S(Φ�

j ).
(N) S(Φ�

j ) ⊂ S(Φ�
j+1).

(B) For some γ > 0, and any s ∈ [0, γ), it holds that

‖uj‖Hs(�)
<∼ 2sj‖uj‖L2(�) (uj ∈ S(Φ�

j )).

Note that, in particular, (J)(ii) implies that for x being a vertex of �, 〈u, λ�
j,x〉L2(�)

is a multiple of u(x). Examples of such collections will be given at the end of this
section.

Proposition 3.1. For the projector P�
j : u �→ 〈u,Λ�

j 〉L2(�)Φ
�
j onto S(Φ�

j ), we
have

‖u− P�
j u‖L2(�)

<∼ 2−dj |u|Hd(B(�;(ϑ+3ε)2−j)∩�) (� ⊂ �, u ∈ Hd(�)).

The proof given in [22] follows standard lines.

Apart from the above collection Φ�
j of primal scaling functions, for j ∈ N0 we

assume the existence of a collection Φ̃�
j = (φ̃�

j,x)x∈I�
j
⊂ C(�) of dual scaling functions.

This collection should also satisfy all of (L)–(B) with the same index set I�
j , but with

generally different parameters and functionals in (B) and (J) that we will denote as
γ̃ > 0, d̃ > n

2 , Λ̃�
j , and ε̃, ϑ̃ > 0. The resulting projector P̃�

j : u �→ 〈u, Λ̃�
j 〉L2(�)Φ̃

�
j

satisfies the analogue of Proposition 3.1 with (d, ϑ, ε) replaced by (d̃, ϑ̃, ε̃).

Since Φ�
j and Φ̃�

j are uniform L2(�)-Riesz systems, the matrix 〈Φ�
j , Φ̃

�
j 〉L2(�)

defines a uniformly bounded linear operator on �2(I
�
j ). A relation between S(Φ�

j )

and S(Φ̃�
j ) is established by assuming that its real part satisfies

�〈Φ�
j , Φ̃

�
j 〉L2(�)

>∼ Id .(I1)

Finally, for j ∈ N0, let J�
j ⊂ � be some index set with π(J�

j ) = J�
j (π ∈ Π),

supy∈� #(J�
j ∩ B(y; 2−j)) <∼ 1, and for e being either � or any face of �, #((I�

j ∪
J�
j ) ∩ e) = #(I�

j+1 ∩ e). In case I�
j ⊂ I�

j+1, a natural candidate is J�
j = I�

j+1\I�
j . We

assume the existence of collections Θ�
j = (θ�

j,x)x∈I�
j

with

〈Θ�
j , Φ̃

�
j 〉L2(�) = Id ,(I2)

and Ξ�
j = (ξ�

j,x)x∈J�
j

such that the union Υ�
j+1 :=

[
(Θ�

j )T (Ξ�
j )T

]T
satisfies (L)–(R),

and S(Υ�
j+1) = S(Φ�

j+1).
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Remark 3.2. “Classical” wavelet constructions start with assuming biorthogonal
scaling functions, i.e., 〈Φ�

j , Φ̃
�
j 〉L2(�) = Id , in which case (I1) and (I2) are satisfied

with Θ�
j = Φ�

j . When there is no need for locally supported dual wavelets, biorthog-
onality of the scaling functions can be relaxed to the conditions given here, with
generally Θ�

j different from Φ�
j , and in particular not contained in S(Φj). For the

case that Θ�
j = Φ�

j , in the literature the set Ξ�
j is sometimes called an initial “stable”

completion of Φ�
j , that is, a completion of Φ�

j to a uniform L2(�)-Riesz basis for
S(Φ�

j+1). The wavelets to be constructed are then thought of being the target stable
completion.

Remark 3.3. The condition (I2) can be further relaxed, which turned out to be
useful in [20]. Instead of assuming that 〈Θ�

j , Φ̃
�
j 〉L2(�) is diagonal, more generally it

is also sufficient when, for some fixed p, I�
j is the union of disjoint sets I�

j,1, . . . , I
�
j,p,

with π(I�
j,i) = I�

j,i (π ∈ Π, 1 ≤ i ≤ p), such that, with respect to this partitioning,

〈Θ�
j , Φ̃

�
j 〉L2(�) is a block triangular matrix, with diagonal blocks that are identity

matrices. Although all results from this paper are also valid under this relaxed as-
sumption, for ease of presentation we will stick to assumption (I2).

Because of S(Φ�
j ) ⊂ S(Φ�

j+1), S(Φ̃�
j ) ⊂ S(Φ̃�

j+1), and S(Υ�
j+1) = S(Φ�

j+1),

it holds that Φ�
j = 〈Φ�

j ,Λ
�
j+1〉L2(�)Φ

�
j+1, Φ̃�

j = 〈Φ̃�
j , Λ̃

�
j+1〉L2(�)Φ̃

�
j+1, and Υ�

j+1 =
〈Υ�

j+1,Λ
�
j+1〉L2(�)Φ

�
j+1, where 〈Υ�

j+1,Λ
�
j+1〉L2(�) is uniformly boundedly invertible.

Lemma 3.4. For the matrix R�
j being 〈Φ�

j ,Λ
�
j+1〉L2(�), 〈Φ̃�

j , Λ̃
�
j+1〉L2(�), 〈Υ�

j+1,

Λ�
j+1〉L2(�), or 〈Υ�

j+1,Λ
�
j+1〉−1

L2(�), it holds that

(a) (R�
j )π(x),π(y) = (R�

j )x,y (π ∈ Π).
(b) (R�

j )x,y = 0 when y is on a face of � that does not contain x.
Proof. Part (a) follows from the assumptions (S) or (J)(iii) for the involved

collections of functions and functionals, respectively. Similarly, for the first three
matrices, part (b) follows from the assumptions (V) or (J)(ii). Now let e be a face
of �. With respect to the partitioning of the index sets for Υ�

j+1 and Λ�
j+1 into

indices on e and indices not on e, 〈Υ�
j+1,Λ

�
j+1〉L2(�) is a 2× 2 upper block triangular

matrix with square diagonal blocks, and thus so is its inverse, which shows (b) also
for 〈Υ�

j+1,Λ
�
j+1〉−1

L2(�).

By our assumptions, the matrices 〈Φ�
j ,Λ

�
j+1〉L2(�) and 〈Υ�

j+1,Λ
�
j+1〉L2(�) are uni-

formly local, by which we mean that only entries with indices (x, y) with |x−y| � 2−j

might be nonzero. As a consequence, for the wavelets we are going to construct, the
basis transformation from wavelet to single-scale basis will be of optimal computa-
tional complexity.

For some applications, it is also essential to have a basis transformation from
single-scale to wavelet basis that is of optimal computational complexity. In that
case, one has to assume both that

Θ�
j = Φ�

j ,

with which (I1) can be dropped since it is implied by (I2), and also that

〈Υ�
j+1,Λ

�
j+1〉−1

L2(�) is uniformly local.(3.1)

Note that, for Θ�
j = Φ�

j , 〈Υ�
j+1,Λ

�
j+1〉−1

L2(�) is the basis transformation from Φ�
j+1 to

the two-level basis Φ�
j ∪ Ξ�

j .

All conditions imposed in this section are satisfied by the collections Φ�
j , Φ̃�

j , Θ�
j ,

Ξ�
j underlying the finite element wavelets introduced in [14]. With this construction,
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S(Φ�
j ), S(Φ̃�

j ) are standard Lagrange finite element spaces, so that γ = γ̃ = 3
2 ,

of orders d and d̃, respectively, with respect to a j times repeated uniform dyadic
refinement of an initial simplicial partition of a polytope. For the present setting,
we take this polytope to be a reference n-simplex. Thinking of d̃ ≥ d, these orders
are chosen such that there is an m ∈ N with 2m(d − 1) = d̃ − 1, so that with
the initial partition at the dual side being the reference simplex itself, and at the
primal side being created by applying m dyadic recursive refinements to this simplex,
we have dimS(Φ�

j ) = dimS(Φ̃�
j ). So each “element” at the dual side is equal to

a macro-element at the primal side consisting of 2m “elements.” The collections
Φ̃�

j at the dual side, and Φ�
j , Θ�

j , Ξ�
j at the primal side are now assembled in the

standard finite element fashion from local collections, of a small, fixed dimension, of
functions defined on the individual elements or macroelements, respectively. Each of
these collections is a copy, or more precisely, a push forward using an affine bijection
of such a collection created once and for all on a reference (macro)element. The
functionals from Λ̃�

j and Λ�
j are assembled in the same manner from local collections,

and are either simply scaled function evaluations in the “nodal points” I�
j or local

linear combinations of these. Actually, in the present paper, we will repeat the idea
of assembling functions and functionals from collections defined on (macro)elements,
which in turn are push forwards of collections defined on a reference (macro)element.
Now the role of the (macro)elements will be played by the patches Γq, and that of
the reference (macro)element by κ−1

q (Γq). A difference is that the number of patches
is fixed, and that, as a consequence, the dimension of the local collections grows with
the level. The major difficulty we have to deal with is that generally the κq are not
affine, so that the Jacobian determinants are not constants.

In [20], we reconsidered the finite element wavelets and constructed collections
with Θ�

j = Φ�
j , so that also the resulting dual wavelets are locally supported. In this

case, the dual spaces, although consisting of continuous piecewise polynomials, are
not standard finite element spaces.

Other examples of collections Φ�
j , Φ̃�

j , Θ�
j , Ξ�

j that satisfy our assumptions,
with Θ�

j = Φ�
j , and now with � being the n-cube, are given in [12] and underlie the

construction of biorthogonal spline wavelets. These collections are slight modifications
of those developed in [11], and, for n > 1, they are simply generated using tensor

products from univariate collections Φ
[0,1]
j , Φ̃

[0,1]
j , Ξ

[0,1]
j defined on [0, 1]. For given

d̃ ≥ d ≥ 2 with d + d̃ even, S(Φ
[0,1]
j ) is the spline space of order d, so that γ = d− 1

2 ,
with respect to the knot sequence

(0, . . . , 0︸ ︷︷ ︸
d times

, r2−j , r2−j + 2−j , . . . , 1 − r2−j , 1, . . . , 1︸ ︷︷ ︸
d times

),

where N � r ≥ d − 1 is some parameter that one can choose. The collection Φ̃
[0,1]
j

is such that Pd̃−1[0, 1] ⊂ S(Φ̃
[0,1]
j ) and 〈Φ[0,1]

j , Φ̃
[0,1]
j 〉L2([0,1]) = Id , where γ̃ grows

linearly with d̃. For x not near the endpoints 0 or 1, φ
[0,1]
j,x = 2j/2φ(2j · −x) and

φ̃
[0,1]
j,x = 2j/2φ̃(2j · −x), where (φ, φ̃) is a biorthogonal pair constructed in [6]. Also

the functionals from Λ�
j and Λ̃�

j are constructed from the collections of univariate

functionals Λ
[0,1]
j and Λ̃

[0,1]
j using tensor products, where λ

[0,1]
j,x = φ̃

[0,1]
j,x , λ̃

[0,1]
j,x = φ

[0,1]
j,x

for x 
∈ {0, 1}, and where they are simply scaled function evaluations in 0 or 1,
respectively, otherwise.
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4. Induced, continuous multiresolution analyses on Γ. By lifting the col-
lections of functions on � to the patches of Γ, and by connecting those that do not
vanish at the interfaces continuously with ones from other patches, we will construct
nested sequences of primal and dual spaces that satisfy Jackson estimates and Bern-
stein inequalities.

We define the index sets Ij ⊂ Γ\∂ΓD, and analogously Jj , by

Ij = (∪M
q=1κq(I

�
j )) ∩ (Γ\∂ΓD)

(see Figure 2.1). By (M) and π(I�
j ) = I�

j (π ∈ Π), for any 1 ≤ q, q′ ≤ M with

Γq ∩ Γq′ 
= ∅, the sets κq(I
�
j ) and κq′(I

�
j ) restricted to this interface coincide. For

x ∈ Γ, we set k(x) = #{q : x ∈ Γq}.
For j ∈ N0, we define the collection Φj = (φj,x)x∈Ij ⊂ C(Γ) by

φj,x(y) = k(x)−
1
2

{
φ�

j,κ−1
q (x)

(κ−1
q (y)) when x, y ∈ Γq for some 1 ≤ q ≤ M,

0 elsewhere.
(4.1)

Note that by (S), (V), and (2.1), φj,x is well defined and indeed continuous, and it
vanishes on ∂ΓD. By assumption (L), the collection Φj is uniformly local, by which

we mean that x ∈ suppφj,x, and that dΓ(x, y) <∼ 2−j for any y ∈ suppφj,x, where
dΓ(x, y) denotes the geodesic distance of x and y over Γ, i.e., the length of the shortest
curve on Γ connecting x and y.

With Ej,q : �2(I
�
j ) → �2(Ij) defined by

(Ej,qc
�
j )x = k(x)−

1
2

{
c�

j,κ−1
q (x)

, x ∈ Γq,

0, otherwise,
(4.2)

and similarly Fj,q : �2(J
�
j ) → �2(Jj), we have

∑M
q=1Ej,qE

T
j,q = Id and

∑M
q=1Fj,qF

T
j,q =

Id . By construction of Φj from Φ�
j , we have

〈Φj ,Φj〉L2(Γ) =

M∑
q=1

Ej,q〈Φ�
j ,Φ

�
j 〉L2(�),|∂κq|E

T
j,q,(4.3)

so that, because of 〈Φ�
j ,Φ

�
j 〉L2(�),|∂κq| � 〈Φ�

j ,Φ
�
j 〉L2(�) � Id by |∂κq| � 1 and (R),

Φj is a uniform L2(Γ)-Riesz system.
Proposition 4.1. Setting Λj = (λj,x)x∈Ij ⊂ C(Γ)′ by

λj,x(u) = k(x)
1
2λ�

j,κ−1
q (x)

(u ◦ κq) when x ∈ Γq,

we have 〈Φj ,Λj〉L2(Γ) = Id. The projector Pj : u �→ 〈u,Λj〉L2(Γ)Φj onto S(Φj)
satisfies

‖(Id−Pj)u‖L2(Ω)
<∼ 2−dj

M∑
q=1

|u◦κq|Hd(B(κ−1
q (Ω∩Γq);(ϑ+3ε)2−j)∩�) (Ω ⊂ Γ, u ∈ Hd(Γ)).

Proof. Assumption (J)(ii) shows that λj,x(u) is well defined for u ∈ C(Γ), also
when x is on an interface between patches, and, because of (4.1), that (Pju) ◦ κq =
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P�
j (u ◦ κq) when u vanishes on ∂ΓD. Condition (J)(v) shows that 〈Φj ,Λj〉L2(Γ) = Id .

By Proposition 3.1, we have

‖(Id − Pj)u‖L2(Ω) �

M∑
q=1

‖((Id − Pj)u) ◦ κq‖L2(κ
−1
q (Ω∩Γq))

=

M∑
q=1

‖(Id − P�
j )(u ◦ κq)‖L2(κ

−1
q (Ω∩Γq))

<∼ 2−dj
M∑
q=1

|u ◦ κq|Hd(B(κ−1
q (Ω∩Γq);(ϑ+3ε)2−j)∩�).

By substituting Ω = Γ in Proposition 4.1, we have the following Jackson estimate:

inf
uj∈S(Φj)

‖u− uj‖L2(Γ)
<∼ 2−dj |||u|||d (u ∈ Hd(Γ)).(4.4)

A direct consequence of (B) is the following Bernstein inequality: For s ∈ [0, γ),

|||uj |||s <∼ 2sj‖uj‖L2(Γ) (uj ∈ S(Φj)).(4.5)

Thanks to properties of a Sobolev scale, (4.5) gives rise to the following extended
version that will be used in the appendix.

Lemma 4.2. For any t ≤ s < γ with t ≤ 0,

|||uj |||s <∼ 2(s−t)j |||uj |||t (uj ∈ S(Φj)).

The short proof of this lemma can be found in [22].

As Φ�
j , via (4.1), gave rise to a uniformly local, uniform L2(Γ)-Riesz system Φj ,

analogously the collections Υ�
j+1 =

[
(Θ�

j )T (Ξ�
j )T

]T
and Φ̃�

j yield uniformly local,

uniform L2(Γ)-Riesz systems Υj+1 =
[
ΘT

j ΞT
j

]T
and Φ̃j , respectively.

We have the analogue of Proposition 4.1 at the dual side, with functionals and
a projector denoted as Λ̃j = (λ̃j,x)x∈Ij and P̃j , respectively, and with Φj , d, ϑ, ε

replaced by Φ̃j , d̃, ϑ̃, ε̃. In particular, we have the Jackson estimate

inf
uj∈S(Φ̃j)

‖u− uj‖L2(Γ)
<∼ 2−d̃j |||u|||d̃ (u ∈ Hd̃(Γ)),(4.6)

and furthermore also the Bernstein inequality: For any s ∈ [0, γ̃),

|||uj |||s <∼ 2sj‖uj‖L2(Γ) (uj ∈ S(Φ̃j)),(4.7)

which can be extended analogously to Lemma 4.2.

Analogously to [12, Prop. 4.3.1], using Lemma 3.4, one may verify the following
easily implementable formulas for the representations of the global embeddings in
terms of corresponding representations of local embeddings.
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Proposition 4.3. It holds that

Φj =

M∑
q=1

Ej,q〈Φ�
j ,Λ

�
j+1〉L2(�)E

T
j+1,qΦj+1,

Φ̃j =

M∑
q=1

Ej,q〈Φ̃�
j , Λ̃

�
j+1〉L2(�)E

T
j+1,qΦ̃j+1,

Υj+1 =

M∑
q=1

[
Ej,q 0
0 Fj,q

]
〈Υ�

j+1,Λ
�
j+1〉L2(�)E

T
j+1,qΦj+1,

Φj+1 =

M∑
q=1

Ej+1,q〈Υ�
j+1,Λ

�
j+1〉−1

L2(�)

[
ET

j,q 0

0 FT
j,q

]
Υj+1.

So, in particular, S(Φj) ⊂ S(Φj+1), S(Φ̃j) ⊂ S(Φ̃j+1), and S(Υj+1) = S(Φj+1).

5. Biorthogonal space decompositions and wavelets. We have constructed
primal and dual sequences of nested spaces that satisfy Jackson and Bernstein esti-
mates. To conclude existence and stability, with respect to a range of Sobolev norms,
of the corresponding biorthogonal space decompositions, the only thing left to show
is the existence and uniform L2(Γ)-boundedness of the biorthogonal projector.

Results similar to the next lemma are often used in the context of saddle point
problems. A proof of (the nontrivial part of) this lemma can be found in, e.g., [14,
Theorem 2.1(a)].

Lemma 5.1. Let V,U be closed subspaces of a Hilbert space H. Then the following
statements are equivalent:

(a) γ := inf0 �=u∈U sup0 �=v∈V
|〈u,v〉|
‖u‖‖v‖ > 0, and for any v ∈ V , there exists a u ∈ U

with 〈u, v〉 
= 0.
(b) There exists a bounded projector Q : H → H with �(Q) = V and �(I −Q) =

U⊥, which is therefore appropriately called a biorthogonal projector.

In either case it holds that γ = ‖Q‖−1, and the adjoint Q∗ satisfies �(Q∗) = U and
�(I −Q∗) = V ⊥.

When Σ and Δ are Riesz bases for U and V , respectively, then (a) or (b) is
equivalent to the existence of a bounded inverse of 〈Σ,Δ〉 : �2(Δ) → �2(Σ). In that
case it holds that

‖〈Σ,Σ〉−1‖− 1
2 ‖〈Δ,Δ〉−1‖− 1

2 ≤ ‖Q‖
‖〈Σ,Δ〉−1‖ ≤ ‖Σ‖‖Δ‖.

To be able to transfer results valid on the reference parameter domain to the
manifold, in particular those concerning L2(�)- or L2(Γ)-angles between spaces, we
will have to assume that the coarsest “mesh” is sufficiently fine in order to control
the influence of the generally nonconstant Jacobian determinants.

Proposition 5.2. For j ≥ j0 being large enough, there exists a uniformly
bounded projector Qj : L2(Γ) → L2(Γ) with �(Qj) = S(Φj) and �(I − Qj) =

S(Φ̃j)
⊥L2(Γ) .

Proof. Setting

Δ�
j,q = diag(|∂κq(x)|)x∈I�

j
,(5.1)
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by (L) for both Φ�
j , Φ̃

�
j , the smoothness of z �→ |∂κq(z)|, and the uniform boundedness

of ‖φ�
j,x‖L2(�), ‖φ̃�

j,x‖L2(�), we have

‖〈Φ�
j , Φ̃

�
j 〉L2(�), |∂κq| − (Δ�

j,q)
1
2 〈Φ�

j , Φ̃
�
j 〉L2(�)(Δ

�
j,q)

1
2 ‖ <∼ 2−j .(5.2)

By assumption (I1) and |∂κq| >∼ 1, we have

�((Δ�
j,q)

1
2 〈Φ�

j , Φ̃
�
j 〉L2(�)(Δ

�
j,q)

1
2 ) = (Δ�

j,q)
1
2�〈Φ�

j , Φ̃
�
j 〉L2(�)(Δ

�
j,q)

1
2 >∼ Id ,

so that for j ≥ j0 large enough, �〈Φ�
j , Φ̃

�
j 〉L2(�), |∂κq|

>∼ Id . Similarly to (4.3), we find
that

�〈Φj , Φ̃j〉L2(Γ) =

M∑
q=1

Ej,q�〈Φ�
j , Φ̃

�
j 〉L2(�), |∂κq|E

T
j,q

>∼
M∑
q=1

Ej,qE
T
j,q = Id .

Since apparently, for j ≥ j0, 〈Φj , Φ̃j〉L2(Γ) is uniformly boundedly invertible, and Φj

and Φ̃j are uniform L2(Γ)-Riesz systems, an application of Lemma 5.1 completes the
the proof.

For j ≥ j0, the nesting S(Φ̃j) ⊂ S(Φ̃j+1) gives Q∗
j = Q∗

j+1Q
∗
j or Qj = QjQj+1,

from which it follows that

�(Qj+1 −Qj) = S(Φj+1) ∩ S(Φ̃j)
⊥L2(Γ) .

Analogously, S(Φj) ⊂ S(Φj+1) implies that

�(Q∗
j+1 −Q∗

j ) = S(Φ̃j+1) ∩ S(Φj)
⊥L2(Γ) .

From the Jackson estimates and Bernstein inequalities at primal and dual sides
(4.4), (4.5), (4.6), and (4.7), and the existence and uniform L2(Γ)-boundedness of the
biorthogonal projectors Qj from Proposition 5.2, we have the following theorem.

Theorem 5.3 (cf., e.g., [8], [14, Theorem 2.1]). With Qj0−1 := 0, it holds that∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

∞∑
j=j0

wj

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

s

<∼
∞∑

j=j0

4sj‖wj‖2
L2(Γ) (wj ∈ �(Qj −Qj−1), s ∈ (−d̃, γ)),(5.3)

and

∞∑
j=j0

4sj‖(Qj −Qj−1)u‖2
L2(Γ)

<∼ |||u|||2s (u ∈ Hs(Γ), s ∈ (−γ̃, d)).(5.4)

For s ∈ (−min{γ̃, d̃},min{γ, d}), (wj)j≥j0 �→
∑∞

j=j0
wj, and u �→ ((Qj−Qj−1)u)j≥j0 ,

mappings that are bounded in the sense of (5.3) and (5.4) are each others’ inverse.
Analogous results are valid with (Qj) replaced by (Q∗

j ) and with interchanged roles

of (γ, d) and (γ̃, d̃).
Next, we construct a uniform L2(Γ)-Riesz basis for �(Qj+1−Qj), whose elements

are called wavelets.
Proposition 5.4.

(a) For j ≥ j0 being large enough, there exists a uniformly bounded projector
Q̄j : L2(Γ) → L2(Γ) with �(Q̄j) = S(Θj) and �(Id − Q̄j) = S(Φ̃j)

⊥L2(Γ) .
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(b) This projector can be computed as Q̄ju = 〈u, Φ̃j〉L2(Γ)〈Θj , Φ̃j〉−1
L2(Γ)Θj.

(c) The collection of wavelets

Ψj := Ξj − 〈Ξj , Φ̃j〉L2(Γ)〈Θj , Φ̃j〉−1
L2(Γ)Θj(5.5)

is a uniform L2(Γ)-Riesz basis for S(Φj+1) ∩ S(Φ̃j)
⊥L2(Γ) .

So by taking j0 to be the maximum of the values from (a) and that of Proposition 5.2,
for s ∈ (−min{γ̃, d̃},min{γ, d}),

Φj0 ∪ ∪j≥j02
−sjΨj is a Riesz basis for Hs(Γ),

and thus, in view of (2.4), when in addition |s| < 3
2 , |s| < sΓ 
∈ N, or |s| ≤ sΓ ∈ N, it

is a Riesz basis for Hs(Γ).
Proof. (a) Since Θj and Φ̃j are uniform L2(Γ)-Riesz bases, by Lemma 5.1 we have

to show that, for j ≥ j0 large enough, 〈Θj , Φ̃j〉L2(Γ) is uniformly boundedly invertible,
which follows from (I2) similarly to the proof of Proposition 5.2.

(b) Using that 〈Θj , Φ̃j〉L2(Γ) is uniformly boundedly invertible, one easily verifies
that Q̄j , as given in (b), indeed has the properties listed in (a).

(c) Let u ∈ S(Φj+1); then u = cTj Θj + dT
j Ξj with ‖u‖L2(Γ) � (‖cj‖2 + ‖dj‖2)

1
2 .

If, in addition, u ∈ S(Φ̃j)
⊥L2(Γ) , then u = (Id − Q̄j)u = (Id − Q̄j)d

T
j Ξj = dT

j Ψj , and

so with ‖u‖L2(Γ)
<∼ (1 + ‖Q̄j‖L2(Γ)→L2(Γ))‖dT

j Ξj‖L2(Γ)
<∼ ‖dj‖ <∼ ‖u‖L2(Γ). Noting

that Ψj ⊂ S(Φj+1) ∩ S(Φ̃j)
⊥L2(Γ) , we conclude that it is a uniform L2(Γ)-Riesz basis

for this space. The last statements are now consequences of Theorem 5.3.
Note that Proposition 4.1 at the dual side implies that Ψj = (ψj,x)x∈Jj , yielded

by (5.5), satisfies

|〈 ψ j,x, u〉L2(Γ)| = |〈ψj,x, (Id − P̃j)u〉L2(Γ)|(5.6)

<∼ 2−d̃j
M∑
q=1

|u ◦ κq|Hd̃(B(κ−1
q (suppψj,x∩Γq);(ϑ̃+3ε̃)2−j)∩�) (u ∈ Hd̃(Γ)).

This property of the collections Ψj , with ϑ̃ + 3ε̃ replaced by an arbitrary but fixed
η̃ ≥ 0 and the seminorms | · |Hd̃(··· ) replaced by the norms ‖ · ‖Hd̃(··· ), will be referred

to as the uniform cancellation property of order d̃.

6. Stability of approximate wavelet bases. Similarly to (4.3), the definition
of the collections Θj and Φ̃j via (4.1) shows that

〈Θj , Φ̃j〉L2(Γ) =

M∑
q=1

Ej,q〈Θ�
j , Φ̃

�
j 〉L2(�),|∂κq|E

T
j,q.(6.1)

So if, for each q, z �→ |∂κq(z)| is a constant function, then (I2) shows that 〈Θj , Φ̃j〉L2(Γ)

is diagonal, and the collection of wavelets Ψj given in (5.5) is uniformly local. Unfor-
tunately, only a restricted class of manifolds can be described as the union of patches
that are the images of � under parametrizations that have constant Jacobians. In
case not all Jacobians are constants, then, generally, 〈Θj , Φ̃j〉L2(Γ) is not diagonal
and its inverse is densely populated, so that (5.5) yields wavelets Ψj that have global
supports.
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A possibility to circumvent this problem, pursued in [12], is to carry out the whole
wavelet construction outlined so far using the modified scalar product 〈〈 , 〉〉0 instead of

〈 , 〉L2(Γ). Indeed, 〈〈Θj , Φ̃j〉〉0 =
∑M

q=1 Ej,q〈Θ�
j , Φ̃

�
j 〉L2(�)E

T
j,q =

∑M
q=1 Ej,q ET

j,q = Id ,
and so uniformly local wavelets are obtained. What is more, by employing this scalar
product, it is always possible to take the coarsest level j0 = 0.

As was already recognized in [12], this approach, however, has two limitations:
First, the obtained wavelets will be orthogonal to the constant function with respect
to 〈〈 , 〉〉0. As a consequence, if the function

J : ∪M
q=1Γq → R : x �→ |∂κq′(κ

−1
q′ (x))| when x ∈ Γ′

q

has discontinuities, or more precisely, cannot be extended to a continuous function on
Γ, then wavelets with supports that are not contained in one patch will generally not
have a zero mean value with respect to the canonical Lebesgue measure on Γ, meaning
that they have no cancellation property with respect to 〈·, ·〉L2(Γ). The application of
wavelets we focus on is that for the solution of differential or integral equations in
variational form using the duality pairing with respect to 〈·, ·〉L2(Γ) (taking a different
scalar product here yields other disadvantages; cf. [14, section 1.2]). For obtaining
nearly sparse representations of these operators in wavelet coordinates, and with that
algorithms of optimal computational complexity, the wavelets should have a cancella-
tion property of sufficiently high order (cf. [10, 21] or the surveys [9, 3]) with respect
thus to 〈·, ·〉L2(Γ). In a nonadaptive setting, under certain circumstances it might be
possible that the fact that only wavelets along the lower dimensional patch interfaces
do not have cancellation properties does not spoil optimal complexity. In an adaptive
setting, however, such an argument cannot be applied.

The second limitation has to do with the interpretation for s < 0 of the state-
ment that Φj0 ∪ ∪j≥j02

−sjΨj is a Riesz basis for Hs(Γ), which is a consequence of
Theorem 5.3. In case biorthogonality is realized with respect to 〈·, ·〉L2(Γ), then an
expansion in terms of the basis Φj0 ∪ ∪j≥j02

−sjΨj should be interpreted as an ele-
ment of Hs(Γ), i.e., as a functional, using the embedding L2(Γ) → Hs(Γ) : u �→ (v �→
〈v, u〉L2(Γ)). Replacing 〈·, ·〉L2(Γ) by 〈〈·, ·〉〉0 means that also the embedding should be
changed into u �→ (v �→ 〈〈v, u〉〉0). One can show (cf. [17, section 4]) that if J has
discontinuities, then for s ≤ − 1

2 a set Φj0 ∪ ∪j≥j02
−sjΨj which is a Riesz basis for

Hs(Γ) using the embedding u �→ (v �→ 〈〈v, u〉〉0) cannot be a Riesz basis for Hs(Γ) us-
ing the embedding u �→ (v �→ 〈v, u〉L2(Γ)). For s > − 1

2 , the property of being a Riesz
basis for Hs(Γ) is the same for both embeddings. Again, since in applications duality
pairing with respect to 〈·, ·〉L2(Γ) is used, in this paper the property of a collection
of functions to be a Riesz basis for Hs(Γ) for s < 0 will always be interpreted with
respect to the canonical embedding u �→ (v �→ 〈v, u〉L2(Γ)).

In this paper, we propose another approach to solve the problem that generally
〈Θj , Φ̃j〉−1

L2(Γ) is densely populated, so that the wavelets yielded by (5.5) have global

supports. As we will see, 〈Θj , Φ̃j〉−1
L2(Γ) can be well approximated by uniformly local

matrices, so that close to the collections of the wavelets Ψj , there are collections of
uniformly local functions of which suitable ones might be applied instead. In the
following main theorem of this paper we derive general criteria under which such
approximate wavelets satisfy the same conditions as Ψj concerning both stability with
respect to a range of Sobolev norms and the order of the cancellation property, where,
moreover, in contrast to Ψj , they are uniformly local.

Theorem 6.1. If, for j ≥ j0,
(i) Ψ̆j = (ψ̆j,x)x∈Jj ⊂ S(Φj+1) is uniformly local,
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(ii) Ψ̆j has the uniform cancellation property of order d̃ (with respect to 〈·, ·〉L2(Γ)),

(iii) for some ω ∈ (0, 1), ‖Ψj − Ψ̆j‖L2(Γ)
<∼ ωj,

then, possibly for a larger value of j0, for s ∈ (−min{γ̃, d̃},min{γ, d}),

Φj0 ∪ ∪j≥j02
−sjΨ̆j is a Riesz basis for Hs(Γ),

and thus, in view of (2.4), when in addition |s| < 3
2 , |s| < sΓ 
∈ N, or |s| ≤ sΓ ∈ N, it

is a Riesz basis for Hs(Γ).
The rather lengthy proof of this theorem is postponed to the appendix. The

new aspect of this theorem is that instead of assuming (iii) with ω ≤ 2−min{γ̃,d̃},
which would yield the statement by “brute force” arguments, it is allowed that ω is
arbitrarily close to 1 when, in addition, (ii) is valid, which property we like to have
anyway. So although in two of our three constructions of approximate wavelets in the
next section, ω will be equal to 1

2 , we nevertheless thus end up with Riesz bases for

Hs(Γ) for the full range of s allowed by γ̃, d̃ , γ, and d. It is easily seen that (ii) alone
is not sufficient to guarantee that the approximate wavelets generate a Riesz basis for
any Hs(Γ).

The proof of Theorem 6.1 is based on perturbation arguments making use of the
fact that we know that the true L2(Γ)-biorthogonal wavelets generate Riesz bases for
the full range of Sobolev spaces. We derived this fact in section 5 by generalizing
upon the well-known concept of stable completions developed in [2]. Note that in our
setting we did not assume to have explicitly available L2(Γ)-biorthogonal collections
of scaling functions. Theorem 6.1 and the applications in the following sections show
the value of this generalization.

Remark 6.2. The approximate wavelets Ψ̆j we are going to construct will be of

type Ψ̆j = Ξj−ZjΘj , where Zj is a uniformly local #Jj×#Ij matrix. Since the basis

transformation 〈Υj+1,Λj+1〉TL2(Γ) from Υj+1 =
[
ΘT

j ΞT
j

]T
to Φj+1 is uniformly local,

so is the basis transformation from
[
ΘT

j Ψ̆T
j

]T
to Φj+1, and the transformation from

the multiscale basis Φj0 ∪ ∪j−1
k=j0

Ψ̆k to the single-scale basis Φj has linear complexity.

In the special case that Θj = Φj and 〈Υj+1,Λj+1〉−T
L2(Γ) is uniformly local, which

by Proposition 4.3 holds assuming (3.1), the basis transformation from Φj+1 to[
ΦT

j Ψ̆T
j

]T
will also be uniformly local, and so the inverse transformation from single-

scale basis Φj to multiscale basis Φj0 ∪∪j−1
k=j0

Ψ̆k also has linear complexity. However,

since S(Ψ̆j) is only approximately L2(Γ)-orthogonal to S(Φj), the corresponding dual
wavelets will not be explicitly given.

7. Construction of uniformly local approximate wavelet bases.

7.1. Approximating 〈Θj, Φ̃j〉−1
L2(Γ) using Jacobi iteration. As we will see,

for j → ∞, the matrix 〈Θj , Φ̃j〉L2(Γ) is increasingly close to its diagonal, and so it

makes sense to approximate its inverse by a few Jacobi iteration steps (d̃ steps will
be sufficient). We will denote the resulting collection of approximate wavelets as ΨJc

j ,
where “Jc” refers to Jacobi iteration.

Theorem 7.1. With Dj := diag〈Θj , Φ̃j〉L2(Γ), and for j ≥ j0 large enough,

ΨJc
j := Ξj − 〈Ξj , Φ̃j〉L2(Γ)

⎡⎣d̃−1∑
k=0

(Id − D−1
j 〈Θj , Φ̃j〉L2(Γ))

kD−1
j

⎤⎦Θj
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is uniformly local, and it has the uniform cancellation property of order d̃; and finally,
for s ∈ (−min{γ̃, d̃},min{γ, d}),

Φj0 ∪ ∪j≥j02
−sjΨJc

j is a Riesz basis for Hs(Γ).

In view of (2.4), when in addition |s| < 3
2 , |s| < sΓ 
∈ N, or |s| ≤ sΓ ∈ N, the

collection is thus a Riesz basis for Hs(Γ).
Proof. With Δ�

j,q as defined in (5.1), and by using (I2), similarly to (5.2) we have

‖〈Θ�
j , Φ̃

�
j 〉L2(�),|∂κq| − Δ�

j,q‖ <∼ 2−j . Since

D̄j :=

M∑
q=1

Ej,qΔ
�
j,qE

T
j,q

is diagonal, by (6.1) we have

‖Dj − D̄j‖ ≤ max
x,y∈Ij

|(Dj − D̄j)x,y| ≤ max
x,y∈Ij

|(〈Θj , Φ̃j〉L2(Γ) − D̄j)x,y|

≤ ‖〈Θj , Φ̃j〉L2(Γ) − D̄j‖ <∼ 2−j ,

and so ‖Dj − 〈Θj , Φ̃j〉L2(Γ)‖ ≤ ‖Dj − D̄j‖ + ‖D̄j − 〈Θj , Φ̃j〉L2(Γ)‖ <∼ 2−j .
As we have seen in the proof of Proposition 5.4, for j ≥ j0 large enough, the

matrix 〈Θj , Φ̃j〉L2(Γ) is uniformly boundedly invertible, and thus, possibly for a larger
j0, so is Dj . We infer that∥∥∥∥∥〈Θj , Φ̃j〉−1

L2(Γ) −
d̃−1∑
k=0

(Id − D−1
j 〈Θj , Φ̃j〉L2(Γ))

kD−1
j

∥∥∥∥∥(7.1)

= ‖〈Θj , Φ̃j〉−1
L2(Γ)((Dj − 〈Θj , Φ̃j〉L2(Γ))D

−1
j )d̃‖ <∼ 2−d̃j ,

and thus by ‖〈Ξj , Φ̃j〉L2(Γ)‖ <∼ 1 that

‖Ψj − ΨJc
j ‖L2(Γ)

<∼ 2−d̃j‖Θj‖L2(Γ)
<∼ 2−d̃j .(7.2)

Since furthermore ΨJc
j is uniformly local, in view of Theorem 6.1 the only thing left

to show is that ΨJc
j has the uniform cancellation property of order d̃.

Although Ψj has the uniform cancellation property of order d̃, we cannot imme-
diately conclude this from (7.2) for ΨJc

j . Indeed, since the wavelets from Ψj generally
have global supports, invoking (7.2) and the cancellation property of ψj,x would yield
a bound for |〈ψJc

j,x, u〉L2(Γ)| in terms of the global Hd-norms of u ◦ κq, whereas the

definition of the cancellation property requires a bound in terms of the Hd-norms of
u ◦ κq in a neighborhood of supp(ψJc

j,x ◦ κq) with diameter of order 2−j . To arrive at

this result, we split u into (Id − P̃j)u and P̃ju, and then replace P̃ju by a function,

equal to P̃ju on suppψJc
j,x and still in S(Φ̃j), that has a support with diameter of

order 2−j . The details can be found in [22].
Remark 7.2. The construction of the approximate wavelets ΨJc

j in Theorem 7.1
has some similarities to the construction of approximate “prewavelets” in [23]. There
the inverse of a mass matrix with respect to a standard finite element basis is ap-
proximated by a number of steps of an iterative method, as the Jacobi or symmetric
Gauss–Seidel method. A difference is that in our case the matrix Dj converges to
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〈Θj , Φ̃j〉L2(Γ) as j → ∞, allowing us to derive much stronger results concerning the
generation of Riesz bases by the resulting approximate wavelets.

Compared to the approximate wavelets one gets by simply replacing 〈·, ·〉L2(Γ) by

〈〈·, ·〉〉0 in (5.5), for d̃ ≥ 2 the approximate wavelets ψJc
j,x have relatively large supports.

Although this has not so much an effect on the multiscale to single-scale transform
that can be implemented much more efficiently than is suggested by the sizes of the
supports, it is a disadvantage, for example, when it concerns the compression of the
stiffness matrix of an integral operator with respect to these approximate wavelets.
In the following two subsections, we construct approximate wavelets with smaller
supports.

As a preparation, the next proposition facilitates the verification of the third
condition from Theorem 6.1, in case different constructions of approximate wavelets
are used on different parts of Γ. In the proof, the problem of the generally global
supports of the true biorthogonal wavelets is circumvented by approximating them by
sufficiently accurate, uniformly local approximate wavelets generated by the Jacobi
iteration approach.

Proposition 7.3. Let ω ∈ (0, 1) and let Ψ̆j = (ψ̆j,x)x∈Jj
be uniformly local.

Then ‖Ψj − Ψ̆j‖L2(Γ)
<∼ ωj if and only if supx∈Jj

‖ψj,x − ψ̆j,x‖L2(Γ)
<∼ ωj.

Proof. Let supx∈Jj
‖ψj,x − ψ̆j,x‖L2(Γ)

<∼ ωj . Selecting m ∈ N such that 2−m ≤ ω,

from the proof of Theorem 7.1 we learn that there exists a uniformly local ΨJc
j with

‖Ψj − ΨJc
j ‖L2(Γ)

<∼ 2−mj ≤ ωj , and so supx∈Jj
‖ψj,x − ψJc

j,x‖L2(Γ)
<∼ ωj and thus

supx∈Jj
‖ψJc

j,x − ψ̆j,x‖L2(Γ)
<∼ ωj . Since both ΨJc

j and Ψ̆j are uniformly local, this

implies ‖ΨJc
j − Ψ̆j‖L2(Γ)

<∼ ωj and thus that ‖Ψj − Ψ̆j‖L2(Γ) ≤ ‖Ψj − ΨJc
j ‖L2(Γ) +

‖ΨJc
j − Ψ̆j‖L2(Γ)

<∼ ωj . The proof of the other implication is trivial.

7.2. Ignoring the Jacobian determinants away from the interfaces. In
this subsection, we show that away from the patch interfaces, we may replace the
wavelets from ΨJc

j by the corresponding ones from

Ψ
(0)
j := Ξj − 〈〈Ξj , Φ̃j〉〉0Θj .

This is the collection of biorthogonal wavelets one obtains when biorthogonality is
realized with respect to 〈〈 , 〉〉0 instead of 〈 , 〉L2(Γ), i.e., when, in the wavelet formula
(5.5), all Jacobian determinants are replaced by the constant 1.

Recalling that for x ∈ Γ, k(x) = #{q : x ∈ Γq}, we set I◦j = {x ∈ Ij : k(x) = 1}
and

J◦
j = {x ∈ Jj : k(x) = 1 and 〈ξj,x, φ̃j,y〉L2(Γ) = 0 for all y ∈ Ij\I◦j };

this set is designed such that for x ∈ J◦
j , ψ

(0)
j,x is fully supported inside one patch Γq.

Theorem 7.4. The set Ψ̆j = {ψ̆j,x : x ∈ Jj}, defined by ψ̆j,x = ψ
(0)
j,x when

x ∈ J◦
j , and ψ̆j,x = ψJc

j,x when x ∈ Jj\J◦
j , is uniformly local and it has the uniform

cancellation property of order d̃, and for any s ∈ (−min{γ̃, d̃},min{γ, d}) and j0 large
enough,

Φj0 ∪ ∪j≥j02
−sjΨ̆j is a Riesz basis for Hs(Γ).

In view of (2.4), when in addition |s| < 3
2 , |s| < sΓ 
∈ N, or |s| ≤ sΓ ∈ N, this

collection is thus a Riesz basis for Hs(Γ).
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Proof. Using that, for j ≥ j0 large enough, ‖〈Θj , Φ̃j〉−1
L2(Γ) − D−1

j ‖ <∼ 2−j , which

follows as a special case from (7.2), and that the mappings z �→ |∂κq(z)| are smooth,
one easily verifies that for x ∈ J◦

j ,

‖ψj,x − ψ
(0)
j,x‖ <∼ 2−j .

Since for x ∈ Jj\J◦
j , ‖ψj,x − ψJc

j,x‖ <∼ 2−d̃j , and Ψ̆j is uniformly local, in view of

Theorem 6.1 and Proposition 7.3 the only thing left to show is that Ψ̆j has the

uniform cancellation property of order d̃. Knowing this for ΨJc
j , we have only to

consider ψ
(0)
j,x for x ∈ J◦

j .

Let x ∈ J◦
j , say, x ∈ Γq, and let u be a globally continuous, patchwise smooth

function on Γ that is zero on ∂ΓD. Let v be some arbitrary extension of the mapping
x �→ u(x)|∂κq(κ

−1
q (x))| on Γq to a globally continuous, patchwise smooth function on

Γ that is zero on ∂ΓD. Since suppψ
(0)
j,x ⊂ Γq, from Proposition 4.1 at the dual side

we have

|〈ψ(0)
j,x , u〉L2(Γ)| = |〈〈ψ(0)

j,x , v〉〉0| = |〈〈ψ(0)
j,x , ((Id − P̃j)v)|suppψ

(0)
j,x

〉〉0|

<∼ 2−d̃j |v ◦ κq|Hd̃(B(κ−1
q (suppψ

(0)
j,x);(ϑ̃+3ε̃)2−j)∩�)

<∼ 2−d̃j‖u ◦ κq‖Hd̃(B(κ−1
q (suppψ

(0)
j,x);(ϑ̃+3ε̃)2−j)∩�)

,

which completes the proof.

Note that for x ∈ J◦
j , generally it holds only that ‖ψj,x − ψ

(0)
j,x‖L2(Γ) � 2−j . So

in contrast to ΨJc
j , for the approximate wavelets Ψ̆j from this subsection, generally

‖Ψj−Ψ̆j‖L2(Γ) 
<∼ 2−d̃j when d̃ > 1. The same will hold true for the collections Ψ̆j that
will be constructed in the next subsection. As follows from Theorem 6.1, however,
this fact does not limit the range of s for which the approximate wavelets generate a
Riesz basis for Hs(Γ).

7.3. Approximate wavelets with small supports near the interfaces. As

we saw in the previous subsection, for x ∈ J◦
j we can replace ψJc

j,x by ψ
(0)
j,x , which, for

d̃ ≥ 2, has a much smaller support. In this subsection, we investigate whether also
near the interfaces we can find appropriate approximate wavelets ψ̆j,x with smaller
supports.

We set

Pd̃−2(Γ) := C(Γ) ∩
M∏
q=1

κq(Pd̃−2(�)),

where when � is the interior of an n-simplex, Pd̃−2(�) := Pd̃−2(�), and when
� = (0, 1)n, Pd̃−2(�) := Qd̃−2(�), being the tensor product space of the univari-
ate polynomial spaces Pd̃−2(0, 1) in the n coordinate directions. In the latter case, in

addition to the assumption that Pd̃−1(�) ⊂ S(Φ̃�
j ) ((J)(ii) at the dual side), in this

subsection we assume that

Qd̃−2(�) ⊂ S(Φ̃�
j ).(J̃e)
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For z ∈ Γ and ε ≥ 0, let BΓ(z; ε) = {y ∈ Γ : dΓ(z, y) ≤ ε}. With, for some
constant ρ ≥ 0, setting

Ṽj,x,ρ =
{
v ∈ Pd̃−2(Γ) : v|∂ΓD∩BΓ(x;ρ2−j) = 0

}
,

for x ∈ Jj\J◦
j we will search

ψ̆j,x ⊥L2(Γ) Ṽj,x,ρ with ‖ψ̆j,x − ψ̂j,x‖L2(Γ) � 2−j .(7.3)

We note that by taking Ṽj,x,ρ to be the smaller set {v ∈ Pd̃−2(Γ) : v|∂ΓD
= 0}, ψ̆j,x

would not necessarily have the cancellation property of order d̃, and on the other
hand, as we will see later, without incorporating boundary conditions in the defi-
nition of Ṽj,x,ρ, generally we cannot expect that ‖ψ̆j,x − ψj,x‖L2(Γ)

<∼ 2−j . For the

moment assuming that such ψ̆j,x can be found, a topic that will be treated later in
this subsection, Theorem 7.5 shows that they have the uniform cancellation property
of order d̃, which, by Theorem 6.1, additionally yields the Riesz basis property for
the full range of s. This may look surprising since, ignoring boundary conditions, the
condition ψ̆j,x ⊥L2(Γ) Ṽj,x,ρ seems only to imply the uniform cancellation property of

order d̃−1. Yet, given a u ∈ Hd̃(Γ), an interpolant v ∈ Ṽj,x,ρ can be constructed such

that ‖u− v‖L2(supp ψ̆j,x) � 2−(d̃−1)j and, using (J̃e), such that (Id − P̃j)v vanishes on

supp ψ̆j,x. Now by writing

〈ψ̆j,x, u〉L2(Γ) = 〈ψ̆j,x, u− v〉L2(Γ) = 〈ψ̆j,x, (Id − P̃j)u〉L2(Γ) + 〈ψ̆j,x, P̃j(u− v)〉L2(Γ)

= 〈ψ̆j,x, (Id − P̃j)u〉L2(Γ) + 〈ψ̆j,x − ψj,x, P̃j(u− v)〉L2(Γ),

and, for the second term, using the additional factor 2−j from ‖ψ̆j,x−ψj,x‖L2(Γ) � 2−j ,

the cancellation property of order d̃ can be shown. For a detailed proof of Theorem 7.5,
we refer the reader to [22].

Theorem 7.5. Let Ψ̆j = {ψ̆j,x : x ∈ Jj} ⊂ S(Φj+1) be a uniformly local set,

with ψ̆j,x = ψ
(0)
j,x when x ∈ J◦

j , and such that for x ∈ Jj\J◦
j , (7.3) is valid. Then,

for j ≥ j0 large enough, Ψ̆j has the uniform cancellation property of order d̃, and for

s ∈ (−min{γ̃, d̃},min{γ, d}),

Φj0 ∪ ∪j≥j02
−sjΨ̆j is a Riesz basis for Hs(Γ).

In view of (2.4), when in addition |s| < 3
2 , |s| < sΓ 
∈ N, or |s| ≤ sΓ ∈ N, this

collection is thus a Riesz basis for Hs(Γ).
Next, we discuss a construction of Ψ̆j as in Theorem 7.5. Consider, for x ∈ Jj\J◦

j ,

the first order approximation ψ̂j,x for ψj,x from the collection

Ψ̂j := Ξj − 〈Ξj , Φ̃j〉L2(Γ)D
−1
j Θj .(7.4)

As a special case of (7.2), we have ‖ψj,x− ψ̂j,x‖L2(Γ)
<∼ 2−j , where generally ψ̂j,x only

has the cancellation property of order 1. We will construct ψ̆j,x from ψ̂j,x by adding

correction terms. In view of our requirement that ‖ψj,x − ψ̆j,x‖L2(Γ)
<∼ 2−j , we first

show that ψ̂j,x is already nearly orthogonal to Ṽj,x,ρ, so that the correction can be
small. For this to be true, the incorporation of boundary conditions in the definition
of Ṽj,x,ρ is essential.
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We set Īj = ∪M
q=1κq(I

�
j ), i.e., without the exclusion of possible points on ∂ΓD,

and define φ̃j,y and λ̃j,y similarly as in (4.1) and Proposition 4.1, respectively, but
now also for y ∈ Īj\Ij .

Lemma 7.6. Let the constant ρ in the definition of Ṽj,x,ρ be sufficiently large such

that for all x ∈ Jj and y ∈ Īj with supp φ̃j,y ∩ supp ψ̂j,x 
= ∅, supp λ̃j,y ⊂ BΓ(x; ρ2−j).
Then

|〈ψ̂j,x, p〉L2(Γ)| � 2−j‖p‖L2(supp ψ̂j,x) (p ∈ Ṽj,x,ρ).

Proof. Since p ∈ Pd̃−2(Γ), by the inclusion of possible points on ∂ΓD and (J̃e),

we have p =
∑

y∈Īj
〈p, λ̃j,y〉L2(Γ)φ̃j,y. Terms in this sum for y ∈ Īj\Ij vanish on

supp ψ̂j,x by (J)(ii) and because p vanishes on ∂ΓD ∩ BΓ(x; ρ2−j). Setting pj,x =∑
{y∈Ij :supp φ̃j,y∩supp ψ̂j,x �=∅}〈p, λ̃j,y〉L2(Γ)φ̃j,y, which is a function in S(Φ̃j), we find

that

|〈ψ̂j,x, p〉L2(Γ)| = |〈ψ̂j,x, pj,x〉L2(Γ)| = |〈ψ̂j,x − ψj,x, pj,x〉L2(Γ)|
� 2−j‖pj,x‖L2(Γ) � 2−j‖p‖L2(supp ψ̂j,x),

where in the last step we used (J)(iv).
Let us first consider the special case d̃ = 2 making the natural assumption that

|
∫
ξj,xdμ| >∼ 2−jn/2. Let ρ be as in Lemma 7.6. If x ∈ Jj\J◦

j is such that ∂ΓD ∩
BΓ(x; ρ2−j) 
= ∅, then Ṽj,x,ρ = {0}, and we can take ψ̆j,x = ψ̂j,x. Otherwise, we

take ψ̆j,x := ψ̂j,x − [
∫
Γ
ψ̂j,xdμ/

∫
Γ
ξj,xdμ]ξj,x. Obviously ψ̆j,x ⊥L2(Γ) 1, i.e., ψ̆j,x ⊥

Ṽj,x,ρ, and Lemma 7.6 shows that |
∫
Γ
ψ̂j,xdμ| <∼ 2−j(1+n/2), so that indeed ‖ψ̂j,x −

ψ̆j,x‖L2(Γ)
<∼ 2−j . In view of our aim to replace ψJc

j,x for x ∈ Jj\J◦
j by an approximate

wavelet with smaller support, note that the support of ψ̆j,x is equal to that of ψ̂j,x

(which is equal to that of ψ
(0)
j,x).

For d̃ > 2, generally we have to add more than one degree of freedom to find a
correction of ψ̂j,x that is orthogonal to Ṽj,x,ρ. We will search the correction from the
span of θj,y with dΓ(x, y) � 2−j . Instead of adding as many degrees of freedom as

dim(Ṽj,x,ρ), generally we add more degrees of freedom, but then solve the resulting
underdetermined problem in a minimal norm sense to end up with a correction term
that is as small as possible. The resulting approximate wavelets will be denoted
as ψls

j,x, where “ls” refers to least squares. In Theorem 7.7 it is stated that if, for

sufficiently large δ, we use all θj,y for y ∈ Ij with dΓ(x, y) ≤ δ2−j , then the constrained

minimization problem has a unique solution ψls
j,x, with ‖ψls

j,x−ψj,x‖L2(Γ)
<∼ 2−j . Note

that although in our numerical example we end up with ψls
j,x, which has the same

support as ψ̂j,x, which thus in particular is much smaller than the support of ψJc
j,x, we

cannot prove this in general.
Theorem 7.7. Let ρ be as in Lemma 7.6. For a sufficiently large constant δ > 0,

and with Θδ
j,x := {θj,y : y ∈ Ij ∩ BΓ(x; δ2−j)}, for any x ∈ Jj\J◦

j the problem of
determining

argmin
ψls

j,x∈ψ̂j,x+S(Θδ
j,x)
{‖ψls

j,x − ψ̂j,x‖L2(Γ) : ψls
j,x ⊥L2(Γ) Ṽj,x,ρ}

has a unique solution with ‖ψls
j,x − ψj,x‖L2(Γ) � 2−j, so that Theorem 7.5 applies.
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For a proof of this theorem we refer the reader to [22]. From the theory of saddle
point problems we know that the constrained minimization problem has a solution if
and only if for each p ∈ Ṽj,x,ρ there exists a vj ∈ S(Θδ

j,x) with 〈p, vj〉L2(Γ) > 0. It

can be observed that on a sufficiently large neighborhood of supp ψ̂j,x with diameter

� 2−j , any p ∈ Pd̃−2 can be well approximated by a linear combination of those φ̃j,y

(y ∈ Ij) that are fully supported in this neighborhood. Since 〈Θj , Φ̃j〉L2(Γ) is nearly

diagonal, for any function wj in the span of these φ̃j,y, a vj can be found in the
span of the θj,y, for the same set of y, with 〈wj , vj〉L2(Γ) > 0. By combining both
properties, the existence and uniqueness of the constrained minimization problem can
be inferred. The estimate ‖ψls

j,x − ψj,x‖L2(Γ)
<∼ 2−j can be derived from the fact that

ψ̂j,x is already nearly orthogonal to Ṽj,x,ρ, as was shown in Lemma 7.6.

Remark 7.8. In case Θj 
= Φj , it is not of any interest that Ψ̆j − Ξj ∈ S(Θj)
(cf. Remark 6.2). In that case, in Theorem 7.7 we may search ψls

j,x in the larger space

ψ̂j,x + S(Φδ
j+1,x), with Φδ

j+1,x := {φj+1,y : x ∈ Ij+1 ∩ BΓ(x; δ2−j)}, which opens the
possibility that we may take a smaller δ, and so reduce the support of the resulting
ψls
j,x.

Remark 7.9. Both the construction of ψJc
j,x from Theorem 7.1, and that of

ψls
j,x from Theorem 7.7 requires the evaluation of L2(Γ)-scalar products. For general

parametrizations κq, these scalar products cannot be evaluated exactly, and therefore
have to be approximated using numerical quadrature. Theorem 6.1 shows that if

the quadrature is organized such that it causes an L2(Γ)-error � 2−d̃j in the result-
ing approximate wavelet, then all results concerning cancellation properties and the
generation of Riesz bases remain valid.

8. Numerical example. We consider a 2-dimensional Lipschitz manifold Γ =
∪4
i=1Γq ⊂ R

3 as illustrated in Figure 8.1, which, together with its parametrization that
satisfies (M) is defined as follows. Let P be a tetrahedron in R

3, with vertices on the
unit sphere, geometric centroid in (0, 0, 0), and one of its four facets F1, . . . , F4, say, F4,
parallel to and below the x3 = 0 plane. Let � be the interior of a reference 2-simplex
in R

2, with vol(�) = 1, and for 1 ≤ q ≤ 4, let Bq : � → Fq some affine bijection. The
parametrizations κq : � → Γq are defined by κq(z) = Bq(z)/‖Bq(z)‖ for 1 ≤ q ≤ 3,
and by κ4(z) = Bq(z)/‖Bq(z)‖− 27

4 (0, 0, λ1(z)λ2(z)λ3(z)), where (λ1(z), λ2(z), λ3(z))
are the barycentric coordinates of z with respect to �. So without the perturbation
by this cubic bubble, Γ would be the unit sphere. We added this perturbation term so
that J : x �→ |∂κq(κ

−1
q (x))| when x ∈ Γq cannot be extended to a continuous function

Fig. 8.1. The manifold Γ, excluding one of the patches F1, F2, or F3, and the tetrahedron P .
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on Γ. This means that constructions based on ignoring the Jacobian determinants will
yield wavelets of which those that have supports that intersect an interface between
Γ4 and one of the three other patches have no cancellation properties. Furthermore,
in view of our discussion at the beginning of section 6, note that z �→ |∂κq(z)| are not
constant functions.

We consider two examples of collections Φ�
j , Φ̃�

j , Θ�
j , Ξ�

j , Λ�
j , Λ̃�

j , both based
on the construction of finite element wavelets from [14]. These collections satisfy all
conditions formulated in section 3, where � is a reference 2-simplex, γ = γ̃ = 3

2 , d = 2,

and d̃ = 2 or d̃ = 3. With Sj being the standard Lagrange finite element space of

order 2 with respect to a j times repeated uniform dyadic refinement of �, for d̃ = 2,
S(Φ�

j ) = Sj , and for d̃ = 3, S(Φ�
j ) = Sj+1. The index set I�

j is the set of all vertices
in the triangulation underlying the finite element space, and J�

j = I�
j+1\I�

j . For more
details, we refer the reader to [22].

We implemented the approximate wavelet constructions from sections 7.2 and
7.3,which away from the patch interfaces both yield the approximate wavelets from

the collection Ψ
(0)
j = Ξj −〈〈Ξj , Φ̃j〉〉0〈〈Θj , Φ̃j〉〉−1

0 Θj obtained by ignoring the Jacobian
determinants. The pull-backs of these wavelets to the parameter domain are illus-
trated in Figure 8.2; the functions are continuous piecewise linear with respect to the
indicated triangulation.

Fig. 8.2. Wavelets ψ
(0)
j,x away from the patch interfaces for d̃ = 2 and d̃ = 3 (one of the two

different types), and their supports in terms of the underlying triangulation.

With the approach from section 7.2, wavelets along the patch interfaces are taken

from the collection ΨJc
j := Ξj−〈Ξj , Φ̃j〉L2(Γ)

[∑d̃−1
k=0(Id−D−1

j 〈Θj , Φ̃j〉L2(Γ))
kD−1

j

]
Θj ,

where Dj := diag〈Θj , Φ̃j〉L2(Γ). Illustrations of the naturally joined, patchwise pull-
backs of these wavelets can be found in Figure 8.3. For j = 0, the Neumann se-

ries does not converge, and as a consequence
∑d̃−1

k=0(Id − D−1
j 〈Θj , Φ̃j〉L2(Γ))

kD−1
j

provides a very poor approximation for 〈Θj , Φ̃j〉−1
L2(Γ). We redefined Ψ̆0 := Ξ0 −

〈Ξj , Φ̃j〉L2(Γ)〈Θj , Φ̃j〉−1
L2(Γ)Θ0.

For the construction from section 7.3, for each x ∈ Jj\J◦
j we have to specify a
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Fig. 8.3. Wavelets ψJc
4,x for d̃ = 2 and ψJc

3,x for d̃ = 3 near the “north pole,” and their supports
in terms of the underlying triangulation.

Fig. 8.4. Wavelets ψls
4,x for d̃ = 2 and ψls

3,x for d̃ = 3 near the “north pole,” and their supports
in terms of the underlying triangulation.

subspace Aj,x ⊂ S(Φj+1) that defines ψls
j,x via

argmin
ψls

j,x∈ψ̂j,x+Aj,x

{‖ψls
j,x − ψ̂j,x‖L2(Γ) : ψls

j,x ⊥L2(Γ) Pd̃−2(Γ)}.

For d̃ = 2, we took Aj,x = S({ξj,x}), so that ψls
j,x = ψ̂j,x + αξj,x with α such that∫

Γ
ψls
j,x = 0. For d̃ = 3, we took Aj,x = S({φj+1,y : suppφj+1,y ⊂ supp ψ̂j,x}),

where the space turns out to be sufficiently large so that the constrained minimization
problem has a solution ψls

j,x, with ‖ψls
j,x − ψ̂j,x‖L2(Γ)

<∼ 2−j . The naturally joined,

patchwise pull-backs of the resulting ψls
j,x are illustrated in Figure 8.4. By definition

they have the same supports as the corresponding ψ
(0)
j,x that one obtains by ignoring

the Jacobian determinants also along the interfaces. As with the Jacobi iteration
approach, for j = 0, we redefined Ψ̆0 := Ξ0 − 〈Ξj , Φ̃j〉L2(Γ)〈Θj , Φ̃j〉−1

L2(Γ)Θ0.

Let

Ψ̆(j) :=

{
Φ0 ∪ ∪j−1

k=0Ψ̆k when d̃ = 2,

Φ0 ∪ ∪j−2
k=0Ψ̆k when d̃ = 3,
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in both cases being a basis for C(Γ) ∩
∏4

q=1 κq(Sj). With

κΣ,‖·‖ := sup
0 �=c=(cσ)σ∈Σ

∥∥∥∑σ∈Σ cσ
σ

‖σ‖

∥∥∥2

‖c‖2

/
inf

0 �=c=(cσ)σ∈Σ

∥∥∥∑σ∈Σ cσ
σ

‖σ‖

∥∥∥2

‖c‖2
,

which, in case ‖ · ‖ corresponds to a scalar product, is the spectral norm of the
corresponding mass matrix, for j ≤ 6 we computed κΨ̆(j),‖·‖L2(Γ)

, κΨ̆(j),|||·|||1 , and

κΨ̆(j),|||·|||−1,6
, where on C(Γ) ∩

∏4
q=1 κq(Sm), |||u|||−1,m := supv∈C(Γ)∩

∏4
q=1 κq(Sm)

|〈u,v〉L2(Γ)|
|||v|||1 . The uniform boundedness in ||| · |||1 of the L2(Γ)-orthogonal projector onto

C(Γ) ∩
∏4

q=1 κq(Sm), which is a consequence of Theorem 5.3, shows that ||| · |||−1 �

||| · |||−1,m on C(Γ) ∩
∏4

q=1 κq(Sj) uniformly in m and j ≤ m.

Since the functions from Φ0, and for d̃ = 2, from Ψ̆0 and Ψ̆1, and for d̃ = 3, from
Ψ̆0 have global supports anyway, for computing the condition numbers we replaced
each of these collections by an orthonormalized version with respect to 〈·, ·〉L2(Γ),
〈〈·, ·〉〉1, or 〈〈·, ·〉〉−1,6, the latter being the scalar product corresponding to the norm
‖·‖−1,6. The results for the Jacobi approximation or least squares approximation along
the interfaces are presented in Tables 8.1 and 8.2, respectively. Although it turns out
that unfortunately, in particular in the ‖·‖−1,6-norm, the condition numbers were not
completely stabilized yet, we stopped our computations at j = 6 since mainly due to
the normalization of the wavelets, in particular with respect to the ‖ · ‖−1,6-norm, on
higher levels they became too time consuming.

Table 8.1

Condition numbers for d̃ = 2.

Jacobi approximation Least squares approximation
j κΨ(j),‖·‖L2(Γ)

κΨ̆(j),|||·|||1 κΨ̆(j),|||·|||−1,6
κΨ̆(j),‖·‖L2(Γ)

κΨ̆(j),|||·|||1 κΨ̆(j),|||·|||−1,6

1 1.35e0 2.30e0 3.06e0 1.35e0 2.30e0 3.09e0
2 1.45e0 7.86e0 8.65e0 1.82e0 7.64e0 1.09e1
3 1.75e1 4.82e1 2.79e1 2.42e1 6.84e1 3.41e1
4 1.79e1 6.51e1 4.53e1 2.46e1 9.06e1 5.21e1
5 1.79e1 7.66e1 6.20e1 2.46e1 1.06e2 6.69e1
6 1.79e1 8.25e1 7.34e1 2.46e1 1.14e2 7.84e1

Table 8.2

Condition numbers for d̃ = 3.

Jacobi approximation Least squares approximation
j κΨ(j),‖·‖L2(Γ)

κΨ̆(j),|||·|||1 κΨ̆(j),|||·|||−1,6
κΨ̆(j),‖·‖L2(Γ)

κΨ̆(j),|||·|||1 κΨ̆(j),|||·|||−1,6

2 2.80e0 1.26e1 4.18e1 2.80e0 1.26e1 4.22e0
3 1.36e1 5.47e1 3.36e1 1.85e1 8.51e1 3.82e1
4 1.81e1 7.88e1 5.76e1 2.34e1 1.19e2 6.86e1
5 1.97e1 8.83e1 8.00e1 2.44e1 1.32e2 9.65e1
6 2.03e1 9.20e1 9.64e1 2.47e1 1.36e2 1.34e2

Appendix. Proof of Theorem 6.1. The proof consists of steps (I)–(VI).
Although basically (V) and (VI) can be found in [19, Theorem 3.1], which in turn
was based on [24, appendix], for convenience we include a complete proof.
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(I) Since, as shown in Proposition 5.4, for j ≥ j0 large enough, Ψj is a uniform
L2(Γ)-Riesz system, and by condition (iii),

‖〈Ψ̆j , Ψ̆j〉L2(Γ) − 〈Ψj ,Ψj〉L2(Γ)‖
= ‖〈Ψ̆j − Ψj ,Ψj〉L2(Γ) + 〈Ψj , Ψ̆j − Ψj〉L2(Γ) + 〈Ψ̆j − Ψj , Ψ̆j − Ψj〉L2(Γ)‖ <∼ ωj ,

we infer that, possibly for a larger value of j0, for j ≥ j0, Ψ̆j is a uniform L2(Γ)-Riesz
system.

(II) Next we investigate whether S(Φj) + S(Ψ̆j) is a uniformly L2(Γ)-stable two-
level decomposition of S(Φj+1).

Proposition A.1. Let V,W be subspaces of a Hilbert space H. Then the follow-
ing are equivalent:

(a) H = V + W and α := sup0 �=v∈V, 0 �=w∈W
|〈v,w〉|
‖v‖‖w‖ < 1.

(b) There exists a bounded projector Q : H → H with �(Q) = V and �(Id−Q) =
W .

Moreover, ‖Q‖ = (1 − α2)−
1
2 .

Now let (a), or equivalently (b), be satisfied, and let W̆ be another subspace of H
for which there exists a linear mapping R : W̆ → W with ‖Id −R‖ < 1−α

1+α . Then

ᾰ := sup
0 �=v∈V, 0 �=w̆∈W̆

|〈v, w̆〉|
‖v‖‖w̆‖ ≤ α + (1 + α)‖Id −R‖ < 1.

With Q̆ : H → H being the bounded projector with �(Q̆) = V and �(Id − Q̆) = W̆ , it
holds that

‖Q− Q̆‖ ≤ ‖Id −R‖
(1 − α2)

1
2 (1 − ᾰ2)

1
2

.

Proof. If (a) is valid, then H = V ⊕ W , and so there exists a projector Q with
�(Q) = V and �(Id −Q) = W . For any u ∈ H, we have

‖u‖2 = ‖Qu + (Id −Q)u‖2 ≥ ‖Qu‖2 − 2|〈Qu, (Id −Q)u〉| + ‖(Id −Q)u‖2

≥ ‖Qu‖2 − 2α‖Qu‖‖(Id −Q)u‖ + ‖(Id −Q)u‖2 ≥ (1 − α2)‖Qu‖2,

or ‖Q‖ ≤ (1 − α2)−
1
2 .

Now let (b) be valid. Suppose there exist nonzero v ∈ V , w ∈ W such that

μ := |〈v,w〉|
‖v‖‖w‖ > (1 − ‖Q‖−2)

1
2 . Then there exist nonzero v ∈ V , w ∈ W with 〈v, w〉 =

−μ‖v‖‖w‖, moreover, which can be chosen such that ‖w‖ = −μ‖v‖. From

‖Q‖−2‖v‖2 ≤ ‖v + w‖2 = ‖v‖2 + 2〈v, w〉 + ‖w‖2 = (1 − μ2)‖v‖2

we conclude a contradiction, so that sup0 �=v∈V, 0 �=w∈W
|〈v,w〉|
‖v‖‖w‖ ≤ (1 − ‖Q‖−2)

1
2 .

Now let (a) or, equivalently, (b) be valid, and let W̆ be a subspace as in the
proposition. For any v ∈ V , w̆ ∈ W̆ ,

|〈v, w̆〉| = |〈v,Rw̆〉 + 〈v, (Id −R)w̆〉| ≤ α‖v‖‖Rw̆‖ + ‖v‖‖(Id −R)w̆‖
≤ α‖v‖‖w̆‖ + (1 + α)‖v‖‖(Id −R)w̆‖ ≤ (α + (1 + α)‖Id −R‖)‖v‖‖w̆‖,

showing the statement about ᾰ. The last statement follows from ‖Q‖ = (1 − α2)−
1
2 ,

‖Id−Q̆‖ = (1−ᾰ2)−
1
2 , and Q−Q̆ = Q(Id−R)(Id−Q̆) by QR = 0 and QQ̆ = Q̆.
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Returning to the proof of Theorem 6.1, with, for j ≥ j0, Q
(j+1)
j := Qj |S(Φj+1), it

holds that �(Q
(j+1)
j ) = S(Φj) and �(Id − Q

(j+1)
j ) = S(Ψj). Setting Rj : S(Ψ̆j) →

S(Ψj) : cTj Ψ̆j �→ cTj Ψj , by condition (iii) and (I) we have

‖(Id −Rj)c
T
j Ψ̆j‖L2(Γ) = ‖cTj (Ψ̆j −Ψj)‖L2(Γ) ≤ ‖c‖‖Ψ̆j −Ψj‖L2(Γ)

<∼ ‖cTj Ψ̆j‖L2(Γ)ω
j ,

or ‖Id − Rj‖L2(Γ)→L2(Γ)
<∼ ωj . From Proposition A.1 we conclude that, possibly

for a larger value of j0, for j ≥ j0 there exists a uniformly L2(Γ)-bounded projector

Q̆
(j+1)
j : S(Φj+1) → S(Φj+1) with

�(Q̆
(j+1)
j ) = S(Φj), �(Id − Q̆

(j+1)
j ) = S(Ψ̆j),

and

‖Q(j+1)
j − Q̆

(j+1)
j ‖L2(Γ)→L2(Γ)

<∼ ωj .(A.1)

(III) By condition (i), Ψ̆j is uniformly local. Since furthermore, as shown in (I), Ψ̆j

is a uniform L2(Γ)-Riesz system that, by condition (ii), has the uniform cancellation
property of order d̃, for some η̃ ≥ 0 we have

|〈cTj Ψ̆j , u〉L2(Γ)| ≤
∑
x∈Jj

|cj,x||〈ψ̆j,x, u〉L2(Γ)| (cj ∈ �2(Jj), u ∈ Hd̃(Γ))

<∼ 2−jd̃‖cj‖
[ ∑

x∈Jj

M∑
q=1

‖u ◦ κq‖2
Hd̃(B(κ−1

q (supp ψ̆j,x∩Γq);η̃2−j)∩�)

] 1
2

<∼ 2−jd̃‖cTj Ψ̆j‖L2(Γ)|||u|||d̃,

or

||| · |||−d̃
<∼ 2−d̃j‖ · ‖L2(Γ) on S(Ψ̆j).(A.2)

By the uniform L2(Γ)-boundedness of Q̆
(j+1)
j for j ≥ j0, a direct consequence

of the last result is that |||Id − Q̆
(j+1)
j |||0→−d̃

<∼ 2−d̃j . By the Jackson estimate at
the dual side (4.6), and the uniform L2(Γ)-boundedness of Qj for j ≥ j0, we have

|||Id −Q
(j+1)
j |||0→−d̃ ≤ |||Id −Qj |||0→−d̃

<∼ 2−d̃j , and so |||Q(j+1)
j − Q̆

(j+1)
j |||0→−d̃

<∼ 2−d̃j .

By the extended Bernstein inequality Lemma 4.2, |||Q(j+1)
j − Q̆

(j+1)
j |||−d̃→−d̃

<∼ 1, so
that by interpolation using (A.1) we infer that

|||Q(j+1)
j − Q̆

(j+1)
j |||s→s

<∼ ω(1+ s
d̃
)j (s ∈ [−d̃, 0]).(A.3)

(IV) Knowing (A.3), we are ready to investigate the stability of the multilevel
decomposition defined by the collections Ψ̆j . We are going to construct a projector

Q̆j defined on Hs(Γ) for some range of s, such that, for j ≥ j0, �(Q̆j) = S(Φj) and

�(Q̆j+1 − Q̆j) = S(Ψ̆j).

By writing Qj =
∑j

k=j0
Qk − Qk−1, for any s ∈ (−min{γ̃, d̃},min{γ, d}) and

u ∈ Hs(Γ), Theorem 5.3 shows that |||Qju|||2s <∼
∑j

k=j0
4sk|||(Qk − Qk−1)u|||2L2(Γ) ≤∑∞

k=j0
4sk|||(Qk −Qk−1)u|||2L2(Γ)

<∼ |||u|||2s or |||Qj |||s→s
<∼ 1.
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For � ≥ j ≥ j0, we define Q̆
(�)
j : S(Φ�) → S(Φj) by Q̆

(�)
� = Id and, for j < �, by

Q̆
(�)
j = Q̆

(j+1)
j Q̆

(�)
j+1. For some arbitrary but fixed t ∈ (−min{γ̃, d̃}, 0], we set

ρ
(�)
j := max

j0≤k≤j
|||QkQ̆

(�)
j |||t→t, εj := max

j0≤k≤j
|||Qk(Q̆

(j+1)
j −Q

(j+1)
j )|||t→t.

From QkQ̆
(�)
j = Qk(Q̆

(j+1)
j −Q

(j+1)
j )Q̆

(�)
j+1 +QkQ̆

(�)
j+1, we find ρ

(�)
j ≤ (εj + 1)ρ

(�)
j+1, and

so by ρ
(�)
� = maxj0≤k≤j |||Qk|||t→t

<∼ 1, and εj <∼ ω(1+ t
d̃
)j by (A.3), we infer that

|||Q̆(�)
j |||t→t ≤ ρ

(�)
j

<∼
�−1∏
k=j

(εk + 1) <∼ 1 +

�−1∑
k=j

εk <∼ 1,

which thus holds uniformly in j and �.
As a consequence of Id =

∑∞
j=j0

(Qj −Qj−1) on Ht(Γ) by Theorem 5.3, we have
closHt(Γ) ∪j≥j0 S(Φj) = Ht(Γ). Since for any u ∈ Ht(Γ), j ≤ k ≤ �, and uk ∈ S(Φk),

Q̆
(�)
j Q�u = Q̆

(k)
j uk+Q̆

(�)
j Q�(u−uk), from |||Q̆(�)

j Q�|||t→t
<∼ 1 we infer that for any j ≥ j0,

(Q̆
(�)
j Q�u)�≥j is a Cauchy sequence in Ht(Γ), and we set Q̆ju = lim�→∞ Q̆

(�)
j Q�u. We

conclude that Q̆j : Ht(Γ) → Ht(Γ) is uniformly bounded, with �(Q̆j) = S(Φj) and

�(Q̆j+1 − Q̆j) = S(Ψ̆j).

(V) Let s ∈ (t,min{γ, d}). With Q̆j0−1 := 0, we are going to prove that

∞∑
j=j0

4sj‖(Q̆j − Q̆j−1)u‖2
L2(Γ)

<∼ |||u|||2s (u ∈ Hs(Γ)).(A.4)

For u ∈ Hs(Γ), w� := (Q� −Q�−1)u, Theorem 6.1 shows that u =
∑∞

�=j0
w�, |||u|||2s �∑∞

�=j0
4s�‖w�‖2

L2(Γ), and |||w�|||t <∼ 2t�‖w�‖L2(Γ). Since |||Q̆j |||t→0
<∼ 2−tj , which follows

from |||Q̆j |||t→t
<∼ 1 and the extended Bernstein inequality Lemma 4.2, and Q̆j − Q̆j−1

vanishes on S(Φj−1), we arrive at

∞∑
j=j0

4sj‖(Q̆j − Q̆j−1)u‖2
L2(Γ) =

∞∑
j=j0

∞∑
�,�′=j0

4sj〈(Q̆j − Q̆j−1)w�, (Q̆j − Q̆j−1)w�′〉L2(Γ)

=

∞∑
�,�′=j0

min{�,�′}∑
j=j0

4sj〈(Q̆j − Q̆j−1)w�, (Q̆j − Q̆j−1)w�′〉L2(Γ)

<∼
∞∑

�,�′=j0

min{�,�′}∑
j=j0

4sj4−tj |||w�|||t|||w�′ |||t <∼
∞∑

�,�′=j0

4(s−t) min{�,�′}|||w�|||t|||w�′ |||t

<∼
∞∑

�,�′=j0

4(s−t) min{�,�′}2(t−s)(�+�′)(2s�‖w�‖L2(Γ))(2
s�′‖w�′‖L2(Γ))

<∼
∞∑

�=j0

4s�‖w�‖2
L2(Γ) � |||u|||2s,

where we have used that the infinite matrix [2(s−t)(2 min{�,�′}−�−�′)]�,�′≥j0 is bounded.

(VI) For s ∈ [−d̃, γ), it holds that

||| · |||s <∼ 2sj‖ · ‖L2(Γ) on �(Q̆j − Q̆j−1).
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Indeed for s > 0 this is just the Bernstein inequality (4.5), whereas for s < 0 it is a
consequence of the extended Bernstein inequality Lemma 4.2 and (A.2). Now let s ∈
(−d̃, γ), and let ε > 0 be such that s± ε ∈ [−d̃, γ). Then for any w̆j ∈ �(Q̆j − Q̆j−1),
with

∑∞
j=j0

4sj‖w̆j‖2
L2(Γ) < ∞, it holds that∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

∞∑
j=j0

w̆j

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

s

=

∞∑
j,j′=j0

〈〈w̆j , w̆j′〉〉s <∼
∞∑

j=j0

∞∑
j′≥j

|||w̆j |||s+ε|||w̆j′ |||s−ε

<∼
∞∑

j=j0

∞∑
j′≥j

2εj2−εj′(2sj‖w̆j‖L2(Γ))(2
sj′‖w̆j′‖L2(Γ)) <∼

∞∑
j=j0

4sj‖w̆j‖2
L2(Γ).

Since, when s ∈ (t,min{γ, d}), (A.4) shows that
∑∞

j=j0
4sj‖w̆j‖2

L2(Γ)
<∼ |||

∑∞
j=j0

w̆j |||2s,
and Φj0 is an L2(Γ)-Riesz basis for �(Q̆j0), and for j > j0, Ψ̆j−1 is a uniform L2(Γ)-

Riesz basis for �(Q̆j − Q̆j−1), we conclude that Φj0 ∪ ∪j≥j02
−sjΨ̆j is a Riesz system

in Hs(Γ). Finally, since, as follows from Theorem 5.3, closHs(Γ) ∪j≥0 S(Φj) = Hs(Γ),
we conclude it is even Riesz basis for this space, with which the proof of Theorem 6.1
is completed.
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Abstract. In this paper, both symmetric and nonsymmetric interior penalty discontinuous hp-
Galerkin methods are applied to a class of quasi-linear elliptic problems which are of nonmonotone
type. Using Brouwer’s fixed point theorem, it is shown that the discrete problem has a solution,
and then, using Lipschitz continuity of the discrete solution map, uniqueness is also proved. A priori
error estimates in the broken H1-norm, which are optimal in h and suboptimal in p, are derived.
Moreover, on a regular mesh an hp-error estimate for the L2-norm is also established. Finally,
numerical experiments illustrating the theoretical results are provided.
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1. Introduction. In recent years, there has been renewed interest in discontinu-
ous Galerkin methods for the numerical solution of a wide range of partial differential
equations. This is due to their flexibility in local mesh adaptivity and their flexibil-
ity in handling nonuniform degrees of approximation for solutions whose smoothness
exhibits variation over the computational domain. Based on Nitsche’s symmetric
formulation in 1970, these methods were introduced for second order elliptic and
parabolic equations by Arnold [3], Douglas and Dupont [13], and Wheeler [24] and
hence are presently called symmetric interior penalty discontinuous Galerkin (SIPG)
methods. It is observed that SIPG methods are adjoint consistent, but the stabilizing
parameters in these methods depend on the bounds of the coefficients of the problem
considered and various constants involved in inverse inequalities. Recently, Oden,
Babuška, and Baumann [21] proposed another discontinuous Galerkin method, which
is based on a nonsymmetric formulation. Rivière, Wheeler, and Girault [23] and Hous-
ton, Schwab, and Süli [16] introduced and analyzed the nonsymmetric interior penalty
discontinuous Galerkin (NIPG) method, which is a stabilized discontinuous Galerkin
method. For a review, see [22], and for variants of discontinuous formulations, see
Brezzi et al. [9], Arnold et al. [4], Houston, Robson, and Süli [17], and the references
therein. A significant property of an NIPG method is that it is unconditionally stable
with respect to the choice of the penalty parameter. Hence, this advantage has stimu-
lated renewed interest in applying these methods to a large class of partial differential
equations.

In the literature, optimal a priori error estimates are derived in the broken H1-
norm, and numerical experiments are conducted for SIPG and NIPG methods for
linear self-adjoint elliptic problems; see [4], [23]. Except for [17], there are hardly
any results on discontinuous Galerkin approximation of nonlinear elliptic problems.
In [17], a one-parameter family of discontinuous Galerkin methods is applied to the
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quasi-linear elliptic problems where the differential operator is strongly monotone
and Lipschitz continuous. In particular, the authors have considered a class of elliptic
problems

−∇ · (μ(x, |∇u|)∇u) = f(x)

subject to mixed Dirichlet–Neumann boundary conditions. Under the structural con-
ditions on μ ∈ C(Ω̄ × [0,∞)),

mμ(t− s) ≤ μ(x, t)t− μ(x, s)s ≤ Mμ(t− s) for t ≥ s ≥ 0,(1.1)

and for some positive constants mμ and Mμ, it is shown that the discontinuous
Galerkin formulation is monotone, and hence a priori error estimates in broken H1-
norm are derived. For nonlinear problems of the type

−∇ · (a(u)∇u) = f in Ω,(1.2)

u = g on ∂Ω,(1.3)

where 0 < α ≤ a(u) ≤ M , for some α, M ∈ R
+, the nonlinearity may not satisfy

(1.1), and hence it is difficult to extend the analysis of [17]. Therefore, an attempt has
been made in this paper to study discontinuous Galerkin methods for the problem
(1.2)–(1.3). The results presented in this paper can be thought of an extension to
discontinuous Galerkin methods of the results established for the nonlinear Dirichlet
problem (1.2)–(1.3) by using a Galerkin method in [12]. Both SIPG and NIPG meth-
ods are discussed for the problem (1.2)–(1.3), and a priori error estimates are derived
in the broken H1-norm which are optimal in h. These results lead to precisely the
same h-optimal and p-suboptimal rates of convergence in the broken H1-norm as in
the case of linear elliptic problems, when it is approximated by an NIPG method; see
[23, Theorem 3.1].

The organization of this article is as follows. Section 1 is introductory in nature,
and section 2 is devoted to notation, definitions, and preliminaries. In section 3, dis-
continuous Galerkin methods are discussed for linear nonselfadjoint elliptic problems,
and a priori error estimates are derived in the broken H1-norm, which are optimal
in h and suboptimal in p. Section 4 is devoted to SIPG and NIPG methods for
the quasi-linear elliptic problems (1.2)–(1.3). Using Brouwer’s fixed point theorem,
existence of a discrete solution is proved. Then a priori error estimates are derived
in the broken H1-norm, which are optimal in h and suboptimal in p. Further, an
a priori error estimate in the L2-norm is established on regular meshes for (1.2)–(1.3)
with piecewise polynomial or zero Dirichlet boundary datum. In section 5, we pro-
vide some numerical experiments to illustrate the theoretical results obtained in this
article. Finally, in section 6, we present a summary and some extensions.

2. Preliminaries. Let Ω ⊂ R
2 be a bounded domain with boundary ∂Ω, where

the boundary ∂Ω is assumed sufficiently smooth in order that a duality argument can
be employed in our subsequent analysis. Let Th = {Ki : 1 ≤ i ≤ Nh} be a shape
regular finite element subdivision of Ω, where Ki is either a triangle or a rectangle
(possibly curvilinear) defined as follows. Let K̂ be a shape regular master triangle
or rectangle in R

2, and let {Fi} be a family of invertible maps such that Fi maps
from K̂ onto Ki. For a definition of shape regularity, we refer to [10, p. 124]. Let
hi be the diameter of Ki and h = max{hi : 1 ≤ i ≤ Nh}. We denote the set of
interior edges of Th by ΓI = {eij : eij = ∂Ki ∩ ∂Kj , |eij | > 0} and the set of
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boundary edges by Γ∂ = {ei∂ : ei∂ = ∂Ki ∩ ∂Ω, |ei∂ | > 0}, where |ek| denotes the
one-dimensional measure of ek. Let Γ = ΓI ∪ Γ∂ . Since for each ek ∈ ΓI there
exist Ki,Kj ∈ Th such that ek = ∂Ki ∩ ∂Kj (i > j), we associate with ek a unit
normal vector νk which is directed outward from Ki. For ek ∈ Γ∂ , let νk be the unit
outward normal to the boundary ∂Ω. For simplicity, we denote ν = νk. Note that our
definition of ek also admits hanging nodes along each edge of the finite elements. On
this subdivision Th, we define the following broken Sobolev space of composite order
s = {si ≥ 0 : 1 ≤ i ≤ Nh} and exponent r, with 1 ≤ r ≤ ∞:

W s
r (Ω, Th) = {v ∈ Lr(Ω) : v|Ki

∈ W si
r (Ki) ∀Ki ∈ Th},

where W si
r (Ki) is the standard Sobolev space of order si with exponent r for each Ki.

For 1 ≤ r < ∞, the associated broken norm and seminorm are defined, respectively,
by

‖v‖W s
r (Ω,Th) =

(
Nh∑
i=1

‖v‖r
W

si
r (Ki)

)1/r

and |v|W s
r (Ω,Th) =

(
Nh∑
i=1

|v|r
W

si
r (Ki)

)1/r

,

and for the case r = ∞, the associated broken norm and seminorm are defined,
respectively, by

‖v‖W s
∞(Ω,Th) = max

1≤i≤Nh

‖v‖W si∞ (Ki)
and |v|W s

∞(Ω,Th) = max
1≤i≤Nh

|v|W si∞ (Ki)
,

where ||v||W si
r (Ki)

and |v|W si
r (Ki)

are the standard Sobolev norm and seminorm on Ki.
When r = 2, we write Hs(Ω, Th) = W s

2 (Ω, Th) and also write the norm and seminorm
as

||v||s,h = ‖v‖W s
r (Ω,Th) and |v|s,h = |v|W s

r (Ω,Th),

and when s = si for all 1 ≤ i ≤ Nh, we write Hs(Ω, Th),‖v‖s,h and |v|s,h, respectively.
For s = 0, we denote the norm by ‖.‖ which is the standard L2-norm. We now define
the jump and average of a function v ∈ H1(Ω, Th) on an edge ek ∈ Γ as follows. If
ek ∈ ΓI , that is, ek = ∂Ki ∩ ∂Kj (i > j) for some i and j, then we define the jump
and average as

[v] = v|Ki
− v|Kj , {v} =

v|Ki + v|Kj

2
.

In the case ek ∈ Γ∂ , there exists Ki such that ek = ∂Ki ∩ ∂Ω, and we then define, for
notational convenience, the jump and average on ek as

[v] = v|Ki∩∂Ω, {v} = v|Ki∩∂Ω.

Let P̂pi(K̂) be the space of polynomials of total degree less than or equal to pi on the

triangle K̂, and let Q̂pi(K̂) be the space of polynomials of degree less than or equal to

pi in each variable which are defined on the rectangle K̂. LetZpi
(K̂) denote P̂pi

(K̂)

or Q̂pi(K̂) whenever K̂ is a master triangle or a rectangle, respectively. Now define
(see [21], [14])

Zpi(Ki) = {v : v = v̂ ◦ F−1
i , v̂ ∈Ẑpi(K̂)}.

The discontinuous finite element space is defined as

Dp(Th) = {v ∈ L2(Ω) : v|Ki ∈Zpi(Ki)},

where p = min{pi ≥ 1 : 1 ≤ i ≤ Nh}.
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We also need the following discontinuous finite element space of piecewise poly-
nomials with uniform degree p:

D∗
p(Th) = {v ∈ L2(Ω) : v|Ki ∈Zp(Ki) ∀i}.

We also define the following Sobolev space with piecewise polynomial traces:

Hs
p(Ω) = {v ∈ Hs(Ω) : v|∂Ω = w|∂Ω for some w ∈ D∗

p(Th)}.

Assumption P.

1. The finite element subdivision Th satisfies the bounded local variation condi-
tion in the sense that if |∂Ki ∩ ∂Kj | > 0 for any Ki and Kj ∈ Th, then there
exists a constant κ independent of hi, hj such that

hi

hj
≤ κ.

In particular, this implies that for any element Ki the number of neighboring
elements Kj ∈ Th with |∂Ki∩∂Kj | > 0 is bounded by Nκ uniformly for some
positive integer Nκ.

2. The discontinuous finite element space Dp(Th) satisfies the following bounded
local variation: If |∂Ki ∩ ∂Kj | > 0 for any Ki and Kj ∈ Th, then there exists
a constant � independent of pi and pj such that

pi
pj

≤ �.

Here, |.| denotes the one-dimensional Euclidean measure.

We now present some examples which satisfy Assumption P(1).

(i) Regular subdivision. A subdivision of Ω into shape regular elements Ki, 1 ≤
i ≤ Nh, is such that for any two elements Ki and Kj , the common portion ∂Ki∩∂Kj

is either empty or a vertex of Ki or an entire edge e of Ki, that is, e = ∂Ki ∩ ∂Kj

and there is no other element Kl ∈ Th (l 
= j, i) such that |e ∩ ∂Kl| > 0 [10, p. 132].

(ii) 1-irregular subdivision. A shape regular subdivision {Ki}Nh
i=1 of Ω is such that

for any side of an element Ki, there can be at most one hanging node (cf. Figure 1);
see [16] and [17, p. 5].

For ek ∈ ΓI , there are two elements Ki and Kj such that ek = ∂Ki ∩ ∂Kj .
Hence, we define the “degree” of polynomial in Ki and Kj restricted to ek by pk, by
pk = (pi+pj)/2. For ek ∈ Γ∂ , we note that there is one element Ki with ek = ∂Ki∩∂Ω,
and hence we denote the degree of polynomial restricted to ek by pk = pi.

From Assumption P, it is easy to see that if ek ⊂ ∂Ki, then there exist constants
c1(κ), c2(κ), c3(�), and c4(�) which are independent of h and p such that

c1(κ)hi ≤ |ek| ≤ c2(κ)hi, c3(�)pi ≤ pk ≤ c4(�)pi.(2.1)

Let v ∈ H2(Ω, Th). We define the following mesh-dependent norms which appear
naturally in the analysis of interior penalty discontinuous Galerkin methods:

|||v|||2 =

(
Nh∑
i=1

∫
Ki

|∇v|2 dx + J 1,β(v, v)

)
(2.2)
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Fig. 1. 1-irregular mesh.

and

|||v|||2+ =

(
Nh∑
i=1

∫
Ki

|∇v|2 dx +
∑
ek∈Γ

|ek|β
p2
k

∫
ek

{
∂v

∂ν

}2

ds + J 1,β(v, v)

)
,(2.3)

where

J σ,β(v, w) =

(∑
ek∈Γ

σk
p2
k

|ek|β
∫
ek

[v][w] ds

)
,

σ|ek = σk, and σk, β are positive real numbers.

Approximation properties of finite element spaces. Below, we state with-
out proof a lemma on some hp-approximation properties.

Lemma 2.1. For φ ∈ H s(Ki), there exists a positive constant CA (depending on
s but independent of φ, pi , and hi) and a sequence φhi

pi
∈Zpi(Ki), pi = 1, 2, . . . , such

that
(i) for any 0 ≤ l ≤ si,

‖φ− φhi
pi
‖Hl(Ki) ≤ CA

hμi−l
i

pisi−l
‖φ‖Hsi (Ki);

(ii) for si > l + 1
2 ,

‖φ− φhi
pi
‖Hl(ek) ≤ CA

h
μi−l−1/2
i

p
si−l−1/2
i

‖φ‖Hsi (Ki);

(iii) for 0 ≤ l ≤ si − 1 + 2/r,

‖φ− φhi
pi
‖W l

r(Ki) ≤ CA
h
μi−l−1+2/r
i

pisi−l−1+2/r
‖φ‖Hsi (Ki),

where μi = min(si, pi + 1).
The proof of properties (i) and (ii) can be found in [6, Lemma 4.5]. Then using

properties (1) and (3) in Lemma 1 of [1] and rescaling (see [2, Lemma 2]), it is easy
to derive property (iii).

For given φ ∈ Hs(Ω, Th), we define Ihφ ∈ Dp(Th) by (Ihφ)|Ki
= φhi

pi
(φ|Ki

) for all
1 ≤ i ≤ Nh. By virtue of Lemma 2.1, Ihφ satisfies the local approximation properties
derived in Lemma 2.1; see [17, p. 737].
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Trace inequalities. We state without proof the following trace inequality. For
r = 2 it is proved in [22, Appendix A.2], and using similar arguments, we can easily
obtain the inequality for r = 4.

Lemma 2.2. Let φ ∈ Hj+1(Ki), Ki ∈ Th. Then there exists a constant CT1 > 0
such that

‖φ‖r
W j

r (ek)
≤ CT1

(
1

hi
‖φ‖r

W j
r (Ki)

+ ‖φ‖r−1

W j
2r−2(Ki)

‖∇(j+1)φ‖L2(Ki)

)
,(2.4)

where j = 0, 1 and r = 2, 4.
We recall the following trace inequality on finite element spaces for our future

use. For a proof, we refer to [23, Lemma 2.1].
Lemma 2.3. Let vh ∈Zpi

(Ki). Then there exists a constant CT2
> 0 such that

‖∇lvh‖L2(ek) ≤ CT2pih
−1/2
i ‖∇lvh‖L2(Ki), l = 0, 1.(2.5)

Below, we state without proof a lemma on inverse inequalities. For a proof, we
refer to [18, p. 6], [7, Theorem 6.1].

Lemma 2.4 (inverse inequalities). Let vh ∈ Zpi
(Ki). Then, for r ≥ 2, there

exists a constant CI > 0 such that

‖vh‖Lr(Ki) ≤ CIp
1−2/r
i h

(2/r−1)
i ‖vh‖L2(Ki),(2.6)

|vh|Hl(Ki) ≤ CIp
2
ih

−1
i |vh|Hl−1(Ki), l ≥ 1,(2.7)

and

‖vh‖Lr(ek) ≤ CIp
1−2/r
i |ek|(1/r−1/2)‖vh‖L2(ek),(2.8)

where ek ⊂ ∂Ki is an edge.
For our future use, we state the following Poincaré-type inequalities on H1(Ω, Th).

For a proof, we refer to [18, Theorem 3.7]; see also [8] for the case of r = 2.
Lemma 2.5 (Poincaré-type inequalities). Let v ∈ H1(Ω, Th). Then there exists a

constant CP > 0 independent of h and v such that, for 1 ≤ r < ∞,

‖v‖Lr(Ω) ≤ CP |||v|||.

3. Nonselfadjoint linear elliptic problems. For our error analysis of dis-
continuous Galerkin methods applied to the nonlinear elliptic problem (1.2)–(1.3),
we need some results on the corresponding linearized problems. Since the linearized
problem is a nonselfadjoint elliptic problem, in this section, we consider the following
second order linear nonselfadjoint elliptic partial differential equation:

−∇ · (a(x)∇u) +
b(x) · ∇u + a0(x)u = f(x) in Ω,(3.1)

u = g on ∂Ω.

We adopt the following assumptions on the problem (3.1).
Assumption R.
1. There exists α > 0 such that 0 < α ≤ a(x) and a0(x) ≥ 0 for all x ∈ Ω̄.
2. a∈W 1

∞(Ω) and b, a0 ∈L∞(Ω) with M = max{‖a‖L∞(Ω), ‖b‖L∞(Ω), ‖a0‖L∞(Ω)}.
3. f ∈ L2(Ω) and g ∈ H3/2(∂Ω).
Then, from [15, Lemma 9.17] it is well known that there exists a unique solution

u ∈ H2(Ω) to the problem (3.1) satisfying

‖u‖H2(Ω) ≤ C
(
‖f‖L2(Ω) + ‖g‖H3/2(∂Ω)

)
.(3.2)
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3.1. Weak formulation. For w, v ∈ H2(Ω, Th), we consider the bilinear form

B(w, v) =

Nh∑
i=1

∫
Ki

(a∇w · ∇v + a0wv + (
b · ∇w)v) −
∑
ek∈Γ

∫
ek

{
a
∂w

∂ν

}
[v]

− θ
∑
ek∈Γ

∫
ek

{
a
∂v

∂ν

}
[w] + J σ,β(w, v) +

∑
ek∈Γ

∫
ek

{

b · νv

}
[w]

and the linear form

L(v) =

∫
Ω

fv − θ
∑

ek∈Γ∂

∫
ek

(
a
∂v

∂ν

)
g +

∑
ek∈Γ∂

∫
ek

σk
p2
k

|ek|β
vg +

∑
ek∈Γ∂

∫
ek


b · νvg,

where θ = ±1. When 
b = 0, we note that θ = +1 corresponds to a symmetric and
θ = −1 to a nonsymmetric interior penalty method.

We define a weak formulation which is suitable for the discontinuous Galerkin
methods as follows: Find u ∈ H2(Ω, Th) such that

B(u, v) = L(v) ∀v ∈ H2(Ω, Th).(3.3)

Now the discontinuous Galerkin approximation of u is to seek uh ∈ Dp(Th) such that

B(uh, vh) = L(vh) ∀vh ∈ Dp(Th).(3.4)

Below, we examine the consistency of the above scheme (3.4).
Theorem 3.1. If the solution u of problem (3.1) is in H2(Ω), then u satisfies

problem (3.3). Conversely, if the solution u of problem (3.3) is in H1(Ω)∩H2(Ω, Th),
then u satisfies problem (3.1) weakly.

The proof techniques of Rivière, Wheeler, and Girault [23, Lemma 2.2] or [22,
Theorem 3.1] can be easily modified to prove Theorem 3.1, and so the proof is omitted.
The solvability of (3.4) will be discussed at the end of section 3. From (3.3)–(3.4) and
Theorem 3.1, it is easy to check that

B(u− uh, vh) = 0 ∀vh ∈ Dp(Th).(3.5)

Following [22], [24], we state the following G̊arding-type inequality.
Lemma 3.2. Let β ≥ 1 and 0 < σ0 ≤ σk ≤ σm. Further, assume that σ0 ≥

C(α, M, CT2
, Nκ) when θ = 1, and σ0 > 0 when θ = −1. Then there exist two

constants C1 = C(α, σ0) > 0 and C2 = C(α, σ0, M, CT2
, Nκ) > 0 which are

independent of h and p such that

B(vh, vh) ≥ C1|||vh|||2 − C2‖vh‖2 ∀vh ∈ Dp(Th).

A straightforward modification of the analysis of Prudhomme, Pascal, and Oden
[22, Theorems 3.4 and 3.5] and of Wheeler [24, Lemma 3] yields the proof of Lemma
3.2, and so we omit the proof. Throughout this article, C denotes a generic con-
stant which is independent of h, p, and uh but may depend on κ, �, σ0, σm, α,
M, CA, CT1

, CT2
, CI , CP , C1, and C2.

Using the trace inequality (2.5) and (2.1), it is an easy exercise to prove the
following Lemma 3.3. For details, see [22, Theorem 3.3].
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Lemma 3.3. Let β ≥ 1 and φ ∈ H2(Ω, Th). If σk is bounded above by a positive
number σm, then there exists a positive constant C, independent of h and p, such that

|B(φ, vh)| ≤ C|||φ|||+ |||vh||| ∀vh ∈ Dp(Th).

Lemma 3.4. Let β = 1. Then there exists a positive constant C which depends
on CA, but is independent of h and p, such that

|||φ− Ihφ|||+ ≤ C

(
Nh∑
i=1

h2μi−2
i

p2si−3
i

‖φ‖2
Hsi (Ki)

)1/2

,

where μi = min{pi + 1, si}.
Proof. Let η∗ = φ− Ihφ. Then, using (2.3), Lemma 2.1, and (2.1), we obtain

|||η∗|||2+ =

Nh∑
i=1

∫
Ki

|∇η∗|2 +
∑
ek∈Γ

∫
ek

|ek|β
p2
i

{
∂η∗

∂ν

}2

+
∑
ek∈Γ

∫
ek

p2
i

|ek|β
[η∗]2

≤ C

Nh∑
i=1

(
h2μi−2
i

p2si−2
i

‖φ‖2
Hsi (Ki)

+
h2μi−3+β
i

p2si−1
i

‖φ‖2
Hsi (Ki)

+
h2μi−1−β
i

p2si−3
i

‖φ‖2
Hsi (Ki)

)
.(3.6)

Since β = 1, the lemma is proved by taking a square root on both sides of (3.6).
We prove the following lemma, which will be used in the proof of a priori error

estimates.
Lemma 3.5. Let β = 1 and q ∈ L2(Ω). Then, for sufficiently small h, there

exists a unique φh ∈ Dp(Th) satisfying

B(vh, φh) =

∫
Ω

qvh ∀vh ∈ Dp(Th).(3.7)

Moreover, φh satisfies

|||φh||| ≤ C‖q‖.(3.8)

Proof. Note that (3.7) leads to a system of linear algebraic equations. So it is
enough to prove uniqueness. Set vh = φh in (3.7) and use Lemma 3.2 to obtain

C1|||φh|||2 − C2‖φh‖2 ≤ B(φh, φh) =

∫
Ω

qφh

≤ ‖q‖ ‖φh‖.

Therefore, we arrive at

|||φh||| ≤ C1‖q‖ + C2‖φh‖.(3.9)

To estimate ‖φh‖ in terms of |||φh|||, we apply the standard Aubin–Nitsche duality
argument. For φh ∈ Dp(Th), we consider the following auxiliary problem:

−∇ · (a(x)∇ψ) +
b(x) · ∇ψ + a0(x)ψ = φh in Ω,(3.10)

ψ = 0 on ∂Ω.

Then Assumption R implies that ψ satisfies the following elliptic regularity:

‖ψ‖H2(Ω) ≤ C‖φh‖L2(Ω).(3.11)
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We multiply (3.10) by φh and integrate over Ω, apply integration by parts, and then
use Lemmas 3.3 and 3.4 to obtain

‖φh‖2 = B(ψ, φh) = B(ψ − Ihψ, φh) + B(Ihψ, φh) = B(ψ − Ihψ, φh) +

∫
Ω

qIhψ

≤ C (h |||φh||| + ‖q‖) ‖ψ‖H2(Ω).

From the elliptic regularity (3.11), we now arrive at

‖φh‖ ≤ Ch|||φh||| + ‖q‖.(3.12)

Substituting (3.12) into (3.9), we obtain the estimate (3.8) for sufficiently small h.
Hence, (3.7) has a unique solution and this completes the rest of the proof.

3.2. A priori error estimates. Let β = 1. Since Lemma 3.2 holds for elements
in Dp(Th), we split e = u− uh into e = η + χ, where η = u− Ihu and χ = Ihu− uh.
Then using Lemmas 3.2 and 3.3 and (3.5), we obtain

C1|||χ|||2 − C2‖χ‖2 ≤ B(χ, χ) = B((Ihu− u) + (u− uh), χ)

= B(Ihu− u, χ) = B(η, χ)

≤ C|||η|||+ |||χ|||.

Therefore,

|||χ||| ≤ C|||η|||+ + C2‖χ‖.(3.13)

In order to estimate ‖χ‖, we set q = χ and vh = χ in Lemma 3.5. Using (3.5) and
Lemma 3.3, we now obtain

‖χ‖2 = B(χ, φh) = B(Ihu− uh, φh) = B(Ihu− u, φh)

≤ C|||η|||+ |||φh|||.

Using (3.8), we arrive at

‖χ‖ ≤ C|||η|||+.(3.14)

From the estimates (3.13) and (3.14), we obtain

|||χ||| ≤ C|||η|||+.(3.15)

Now using Lemma 3.4, inequality (3.15), and triangle inequality, we deduce the fol-
lowing theorem.

Theorem 3.6. Let β = 1; then for sufficiently small h, there exists a positive
constant C which is independent of h and p such that

|||u− uh||| ≤ C

(
Nh∑
i=1

h2μi−2
i

p2si−3
‖u‖2

Hsi (Ki)

)1/2

,

where μi = min{si, pi + 1}.
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Existence and uniqueness. We now prove the existence of a unique solution
to problem (3.4) using the discrete dual problem (3.7) stated in Lemma 3.5. Assume
that there exist two distinct solutions u1

h and u2
h for the problem (3.4). Let ξ = u1

h−u2
h

and set q = ξ, vh = ξ in (3.7). Since B(u1
h−u2

h, vh) = 0 for all vh ∈ Dp(Th), we obtain

‖ξ‖2 = B(ξ, φh) = B(u1
h − u2

h, φh) = 0.

Therefore, u1
h = u2

h, which leads to a contradiction. Hence, we conclude that there
exists a unique solution uh for problem (3.4). Now uniqueness implies the existence
of a discrete solution uh to problem (3.4).

4. Quasi-linear elliptic problems. In this section, we consider the following
nonlinear elliptic boundary value problem:

−∇ · (a(x, u)∇u) = f(x) in Ω,(4.1)

u(x) = g(x) on ∂Ω,(4.2)

where Ω is a bounded domain in R
2 with smooth boundary ∂Ω. As in [12], we make

the following assumptions for problem (4.1)–(4.2). There exist positive constants
α, M such that 0 < α ≤ a(x, v) ≤ M , x ∈ Ω̄, v ∈ R, a(x, v) ∈ C2

b (Ω̄ × R), where
C2

b (Ω̄ × R) is the class of twice continuously differentiable functions on Ω̄ × R such
that all derivatives of a(x, v) up to and including second order are bounded in Ω̄×R.
Further, for some δ ∈ (0, 1), f ∈ Cδ(Ω) and g can be extended to Ω to be in C2+δ(Ω);
then it follows from [11] that there exists a unique weak solution u to (4.1)–(4.2) and
u ∈ C2+δ(Ω̄), where Cm+δ(Ω̄) consists of all functions whose mth order derivatives
are Hölder continuous of order δ on Ω̄.

4.1. Weak formulation. For ψ, w, and v ∈ H2(Ω, Th), we define the form
B(ψ;w, v), which is linear in w, v for fixed ψ, by

B(ψ;w, v) =

Nh∑
i=1

∫
Ki

a(ψ)∇w · ∇v −
∑

ek∈ΓI

∫
ek

({
a(ψ)

∂w

∂ν

}
[v] + θ

{
a(ψ)

∂v

∂ν

}
[w]

)

−
∑

ek∈Γ∂

∫
ek

(
a(g)

∂w

∂ν
v + θa(g)

∂v

∂ν
w

)
+ J σ,β(w, v),

and the linear functional L on H2(Ω, Th) by

L(v) =

∫
Ω

fv + θ
∑

ek∈Γ∂

∫
ek

a(g)
∂v

∂ν
g +

∑
ek∈Γ∂

∫
ek

σk
p2
i

|ek|β
vg,

where θ = ±1. Since for each fixed ψ, B(ψ; ·, ·) is a bilinear form, we note that θ = +1
corresponds to a symmetric and θ = −1 to a nonsymmetric method. We define the
weak formulation of (4.1)–(4.2) which is suitable for applying a discontinuous Galerkin
method as follows: Find u ∈ H2(Ω, Th) such that

B(u;u, v) = L(v) ∀v ∈ H2(Ω, Th).(4.3)

Now the discontinuous Galerkin (SIPG and NIPG) approximation of u is to seek
uh ∈ Dp(Th) such that

B(uh;uh, vh) = L(vh) ∀vh ∈ Dp(Th).(4.4)

Below, we state without proof the consistency of the above scheme (4.4).
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Theorem 4.1 (equivalence of (4.1)–(4.2) and (4.3)). If the solution u of (4.1)–
(4.2) is in H2(Ω), then u satisfies (4.3). Conversely, if u ∈ H1(Ω) ∩H2(Ω, Th) is a
solution of (4.3), then u satisfies (4.1)–(4.2) weakly.

The proof follows along the lines of the proof given in [23, Lemma 2.2] or [22,
Theorem 3.1], so we omit it. With v = vh ∈ Dp(Th) ⊂ H2(Ω, Th) in (4.3), and using
(4.4), we obtain

B(u;u, vh) = B(uh;uh, vh) ∀vh ∈ Dp(Th).(4.5)

Following Taylor series expansion, we write

a(w) = a(u) + ãu(w)(w − u),(4.6)

where ãu(w) =
∫ 1

0
au(w + t[u− w])dt, and

a(w) = a(u) + au(u)(w − u) + ãuu(w)(w − u)2,(4.7)

where ãuu(w) =
∫ 1

0
(1 − t)auu(w + t[w − u])dt.

Note that since au ∈ C1
b (Ω̄ × R) and auu ∈ C0

b (Ω̄ × R), it is easy to see that
ãu ∈ L∞(Ω × R) and ãuu ∈ L∞(Ω × R). We use the following notation throughout
this section:

Ca = max
[
‖ãu‖L∞(Ω×R), ‖ãuu‖L∞(Ω×R)

]
.(4.8)

For simplicity, we consider the following form B̃(· ; · , ·):

B̃(ψ;w, v) = B(ψ;w, v) +

Nh∑
i=1

∫
Ki

(au(ψ)∇ψ)w · ∇v −
∑

ek∈ΓI

∫
ek

{
au(ψ)

∂ψ

∂ν
w

}
[v].

Note that B̃ is linear in w and v ∈ H2(Ω, Th) for a fixed ψ. It is clear from the
assumptions on a(u) that Lemmas 3.2 and 3.3 hold for B̃. Since a ∈ C2

b (Ω̄ × R) and
u ∈ C2(Ω̄), there is a unique solution ψ ∈ H2(Ω) to the following elliptic problem:

−∇ · (a(u)∇ψ + au(u)∇uψ) = φh in Ω,(4.9)

ψ = 0 on ∂Ω,

and ψ satisfies the elliptic regularity ‖ψ‖H2(Ω) ≤ C‖φh‖; see [11, Theorem 2], [12,

p. 692]. Hence, Lemma 3.5 holds as well for B̃. Now we linearize problem (4.4) around
Ihu for our subsequent analysis. Set e = u− uh. Subtracting B(u;uh, vh) from both
sides of (4.5), we obtain

B(u; e, vh) =

Nh∑
i=1

∫
Ki

(a(uh) − a(u))∇uh · ∇vh −
∑

ek∈ΓI

∫
ek

{
(a(uh) − a(u))

∂uh

∂ν

}
[vh]

− θ
∑

ek∈ΓI

∫
ek

{
(a(uh) − a(u))

∂vh
∂ν

}
[uh].(4.10)
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Since [u] = 0 on each ek ∈ ΓI , we rewrite (4.10) as

B(u; e, vh) =

Nh∑
i=1

∫
Ki

(a(uh) − a(u))∇(uh − u) · ∇vh −
∫

ΓI

{
(a(uh) − a(u))

∂u

∂ν

}
[vh]

−
∑

ek∈ΓI

∫
ek

{
(a(uh) − a(u))

∂(uh − u)

∂ν

}
[vh] +

Nh∑
i=1

∫
Ki

(a(uh) − a(u))∇u · ∇vh

− θ
∑

ek∈ΓI

∫
ek

{
(a(uh) − a(u))

∂vh
∂ν

}
[uh − u].(4.11)

Finally, we add the following terms to both sides of (4.11):

−
Nh∑
i=1

∫
Ki

au(u)(uh − u)∇u · ∇vh +
∑

ek∈ΓI

∫
ek

{
au(u)(uh − u)

∂u

∂ν

}
[vh].

We split e = u−uh = u−Ihu+Ihu−uh. Now using the Taylor formulae (4.6)–(4.7),
equation (4.11) takes the form

B̃(u; Ihu− uh, vh) = B̃(u; Ihu− u, vh) + F(uh;uh − u, vh),(4.12)

where

F(uh;−e, vh) =

Nh∑
i=1

∫
Ki

ãu(uh)e∇e · ∇vh −
∑

ek∈ΓI

∫
ek

{
ãu(uh)e

∂e

∂ν

}
[vh]

− θ
∑

ek∈ΓI

∫
ek

{
ãu(uh)e

∂vh
∂ν

}
[e] +

Nh∑
i=1

∫
Ki

ãuu(uh)e2∇u · ∇vh

−
∑

ek∈ΓI

∫
ek

{
ãuu(uh)e2 ∂u

∂ν

}
[vh].(4.13)

Note that (4.4) is equivalent to (4.12).
Assumption Q (hp-quasi-uniformity [19]). Along with Assumption P, we also

assume that the subdivision Th and discontinuous space Dp(Th) satisfy the following
hp-quasi-uniformity condition:(

max
1≤i≤Nh

hi

pi

)
≤ CQ

(
min

1≤i≤Nh

hi

pi

)
,(4.14)

where CQ is a positive constant which is independent of h and p.
Observe that under assumption (4.14), the following holds:(

max
1≤i≤Nh

pi
hi

)(
max

1≤i≤Nh

hi

pi

)
=

(
min

1≤i≤Nh

hi

pi

)−1 (
max

1≤i≤Nh

hi

pi

)
≤ CQ.(4.15)

4.2. Existence and uniqueness. For a given z ∈ Dp(Th), let Sh : Dp(Th) →
Dp(Th) be a map y = Shz ∈ Dp(Th) satisfying

B̃(u; Ihu− y, vh) = B̃(u; Ihu− u, vh) + F(z; z − u, vh) ∀vh ∈ Dp(Th).(4.16)
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For a given z, problem (4.16) leads to a system of linear algebraic equations. So using
Lemmas 3.2 and 3.5, it is easy to show that the map Sh is well defined. Now consider
the ball

Oδ(Ihu) = {z ∈ Dp(Th) : |||Ihu− z||| ≤ δ}

of radius δ, where δ will be chosen later. We first show that for some δ > 0, Sh

maps Oδ(Ihu) into itself. Then appealing to Brouwer’s fixed point theorem yields
the existence of a solution to problem (4.12), and hence there exists a solution to
problem (4.4). The following lemma is a key result for proving the existence of a
unique solution to the discrete problem (4.4). Throughout this section we use the
following notation to denote the Sobolev norm of u:

Cu = max
[
‖u‖H2(Ω), ‖u‖H1(Ω)|u|W 1

∞(Ω)

]
.(4.17)

Lemma 4.2. Let β ≥ 1 and z, vh ∈ Dp(Th). Set χ = z − Ihu and η = u − Ihu.
Then there exists a constant C > 0 which is independent of h and p such that

|F(z; z − u, vh)| ≤ CCa

[(
max

1≤i≤Nh

pi
hi

)1/2

|||χ|||2 + Cuh
1/2(|||χ||| + |||η|||)

]
|||vh|||.

Proof. Let z ∈ Dp(Th) and set ζ = z − u. In (4.13), we now replace uh by z and
e by z − u to obtain

F(z; ζ, vh) =

Nh∑
i=1

∫
Ki

ãu(z)ζ∇ζ · ∇vh −
∑

ek∈ΓI

∫
ek

{
ãu(z)ζ

∂ζ

∂ν

}
[vh]

− θ
∑

ek∈ΓI

∫
ek

{
ãu(z)ζ

∂vh
∂ν

}
[ζ] +

Nh∑
i=1

∫
Ki

ãuu(z)ζ2∇u · ∇vh

−
∑

ek∈ΓI

∫
ek

{
ãuu(z)ζ2 ∂u

∂ν

}
[vh].(4.18)

We split ζ = χ − η, where χ = z − Ihu and η = u − Ihu. Then we estimate from
below the bound for each term on the right-hand side of (4.18). For the first term on
the right-hand side of (4.18), we split and then bound it as

Nh∑
i=1

∫
Ki

|ãu(z)ζ∇ζ · ∇vh| ≤ Ca

Nh∑
i=1

∫
Ki

|χ∇χ · ∇vh| + Ca

Nh∑
i=1

∫
Ki

|χ∇η · ∇vh|

+ Ca

Nh∑
i=1

∫
Ki

|η∇χ · ∇vh| + Ca

Nh∑
i=1

∫
Ki

|η∇η · ∇vh|.(4.19)

Using Hölder’s inequality and the inverse inequality (2.6), we estimate the first term
on the right-hand side of (4.19) as

Nh∑
i=1

∫
Ki

|χ∇χ · ∇vh| ≤
Nh∑
i=1

‖χ‖L6(Ki)‖∇χ‖L3(Ki)‖∇vh‖L2(Ki)

≤ C

Nh∑
i=1

‖χ‖L6(Ki)
p
1/3
i

h
1/3
i

‖∇χ‖L2(Ki)‖∇vh‖L2(Ki)
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≤ C‖χ‖L6(Ω)

(
Nh∑
i=1

pi
hi

‖∇χ‖3
L2(Ki)

)1/3

|vh|1,h

≤ C‖χ‖L6(Ω)

⎡⎣max
Ki

‖∇χ‖1/3
L2(Ki)

(
Nh∑
i=1

pi
hi

‖∇χ‖2
L2(Ki)

)1/3
⎤⎦ |vh|1,h

≤ C|||χ|||
(

Nh∑
i=1

‖∇χ‖2
L2(Ki)

)1/6 (Nh∑
i=1

pi
hi

‖∇χ‖2
L2(Ki)

)1/3

|||vh|||

≤ C

(
max

1≤i≤Nh

pi
hi

)1/3

|||χ|||2 |||vh|||.(4.20)

For the second term on the right-hand side of (4.19), we use Hölder’s inequality and
Lemma 2.1 to obtain

Nh∑
i=1

∫
Ki

|χ∇η · ∇vh| ≤ C

Nh∑
i=1

‖χ‖L6(Ki)‖∇η‖L3(Ki)‖∇vh‖L2(Ki)

≤ C

Nh∑
i=1

‖χ‖L6(Ki)
h

2/3
i

p
2/3
i

‖u‖H2(Ki)‖∇vh‖L2(Ki)

≤ C
h2/3

p2/3
‖χ‖L6(Ω)

(
Nh∑
i=1

‖u‖3
H2(Ki)

)1/3

|vh|1,h

≤ C
h2/3

p2/3
|||χ|||

⎡⎣max
Ki

‖u‖1/3
H2(Ki)

(
Nh∑
i=1

‖u‖2
H2(Ki)

)1/3
⎤⎦ |||vh|||

≤ C
h2/3

p2/3
|||χ|||

(
Nh∑
i=1

‖u‖2
H2(Ki)

)1/2

|||vh|||

≤ C
h2/3

p2/3
‖u‖H2(Ω)|||χ||| |||vh|||.(4.21)

To estimate the third term on the right-hand side of (4.19), apply Hölder’s inequality
and the inverse inequality (2.6) to find, following estimate (4.22), that

Nh∑
i=1

∫
Ki

|η∇χ · ∇vh| ≤ C

Nh∑
i=1

‖η‖L6(Ki)‖∇χ‖L3(Ki)‖∇vh‖L2(Ki)

≤ C

Nh∑
i=1

h
4/3
i

p
4/3
i

‖u‖H2(Ki)
p
2/3
i

h
2/3
i

‖∇χ‖L2(Ki)‖∇vh‖L2(Ki)

≤ C
h2/3

p2/3
‖u‖H2(Ω)|||χ||| |||vh|||.(4.22)

For the last term on the right-hand side of (4.19), we use Lemmas 2.1 and 2.5 to esti-
mate it as

Nh∑
i=1

∫
Ki

|η∇η · ∇vh| ≤ C

Nh∑
i=1

‖η‖L6(Ki)‖∇η‖L3(Ki)‖∇vh‖L2(Ki)

≤ C
h2/3

p2/3
‖u‖H2(Ω)|||η||| |||vh|||.(4.23)
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We substitute the estimates (4.20)–(4.23) into (4.19) to obtain

Nh∑
i=1

∫
Ki

|ãu(z)ζ∇ζ · ∇vh| ≤ CCa

(
max

1≤i≤Nh

pi
hi

)1/2

|||χ|||2 |||vh|||

+ CCa
h2/3

p2/3
‖u‖H2(Ω) (|||χ||| + |||η|||) |||vh|||.(4.24)

As in (4.19) the second term on the right-hand side of (4.18) becomes∑
ek∈ΓI

∫
ek

∣∣∣∣{ãu(z)ζ
∂ζ

∂ν

}
[vh]

∣∣∣∣≤C

(
Ca

∑
ek∈ΓI

∫
ek

∣∣∣∣χ∂χ∂ν
∣∣∣∣ |[vh]| + Ca

∑
ek∈ΓI

∫
ek

∣∣∣∣χ∂η

∂ν

∣∣∣∣ |[vh]|

+ Ca

∑
ek∈ΓI

∫
ek

∣∣∣∣η ∂χ∂ν
∣∣∣∣ |[vh]|+Ca

∑
ek∈ΓI

∫
ek

∣∣∣∣η ∂η∂ν
∣∣∣∣ |[vh]|

)
.(4.25)

Using Hölder’s inequality, the inverse inequality (2.8), the trace inequalities (2.4)–
(2.5), and (2.1), the first term on the right-hand side of (4.25) is estimated as∑
ek∈ΓI

∫
ek

∣∣∣∣χ∂χ∂ν
∣∣∣∣ |[vh]| ≤ C

∑
ek∈ΓI

(
|ek|β/2
pk

‖χ‖L4(ek)‖∇χ‖L4(ek)

(∫
ek

p2
k

|ek|β
[vh]2

)1/2
)

≤ C
∑

ek∈ΓI

|ek|β/2−1/4

p
1/2
k

‖χ‖L4(ek)‖∇χ‖L2(ek)

(∫
ek

p2
k

|ek|β
[vh]2

)1/2

≤ C

Nh∑
i=1

∑
ek∈∂Ki

p
1/2
k

|ek|1−β/2
‖∇χ‖L2(Ki)

(∫
ek

p2
k

|ek|β
[vh]2

)1/2

(
‖χ‖4

L4(Ki)
+ hi‖χ‖3

L6(Ki)
‖∇χ‖L2(Ki)

)1/4

≤ C

(
max

1≤i≤Nh

pi

h2−β
i

)1/2

|||χ|||2 |||vh|||.(4.26)

Similarly, we use Hölder’s inequality, (2.1), the trace inequality (2.4), and Lemma 2.1
to estimate the second term on the right-hand side of (4.25) as

∑
ek∈ΓI

∫
ek

∣∣∣∣χ∂η

∂ν

∣∣∣∣ |[vh]| ≤ C
∑

ek∈ΓI

(
|ek|β/2
pk

‖χ‖L4(ek)‖∇η‖L4(ek)

(∫
ek

p2
k

|ek|β
[vh]2

)1/2
)

≤ C

Nh∑
i=1

∑
ek∈∂Ki

|ek|β/2−1/2

pk

(
‖χ‖4

L4(Ki)
+ hi‖χ‖3

L6(Ki)
‖∇χ‖L2(Ki)

)1/4

(
‖∇η‖4

L4(Ki)
+ hi‖∇η‖3

L6(Ki)
‖∇2η‖L2(Ki)

)1/4
(∫

ek

p2
k

|ek|β
[vh]2

)1/2

≤ C

Nh∑
i=1

∑
ek∈∂Ki

h
β/2−1/2
i

pk

(
h2
i

p2
i

‖u‖4
H2(Ki)

+ hi
hi

pi
‖u‖4

H2(Ki)

)1/4

(
‖χ‖4

L4(Ki)
+ hi‖χ‖3

L6(Ki)
‖∇χ‖L2(Ki)

)1/4
(∫

ek

p2
k

|ek|β
[vh]2

)1/2

≤ C‖u‖H2(Ω)

(
hβ/2

p3/2
+

hβ/2

p5/4

)
|||χ||| |||vh|||.(4.27)
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For the third term on the right-hand side of (4.25), apply Hölder’s inequality, the
trace inequalities (2.4)–(2.5), and Lemma 2.1 to find that

∑
ek∈ΓI

∫
ek

∣∣∣∣η ∂χ∂ν
∣∣∣∣ |[vh]| ≤ C

∑
ek∈ΓI

(
|ek|β/2
pk

‖η‖L4(ek)‖∇χ‖L4(ek)

(∫
ek

p2
k

|ek|β
[vh]2

)1/2
)

≤ C

Nh∑
i=1

∑
ek∈∂Ki

|ek|β/2−1/2

p
1/2
k

‖∇χ‖L2(ek)

(∫
ek

p2
k

|ek|β
[vh]2

)1/2

(
‖η‖4

L4(Ki)
+ hi‖η‖3

L6(Ki)
‖∇η‖L2(Ki)

)1/4

≤ C‖u‖H2(Ω)

(
h1/2+β/2

p
+

h1/2+β/2

p3/4

)
|||χ||| |||vh|||.(4.28)

For the last term on the right-hand side of (4.25), we use an argument similar to that
of (4.28) to obtain

∑
ek∈ΓI

∫
ek

∣∣∣∣η ∂η∂ν
∣∣∣∣ |[vh]| ≤ C

∑
ek∈ΓI

(
|ek|β/2
pk

‖η‖L4(ek)‖∇η‖L4(ek)

(∫
ek

p2
k

|ek|β
[vh]2

)1/2
)

≤ C

Nh∑
i=1

∑
ek∈∂Ki

|ek|β/2−1/2

pk

(
‖η‖4

L4(Ki)
+ hi‖η‖3

L6(Ki)
‖∇η‖L2(Ki)

)1/4

(
‖∇η‖4

L4(Ki)
+ hi‖∇η‖3

L6(Ki)
‖∇2η‖L2(Ki)

)1/4
(∫

ek

p2
k

|ek|β
[vh]2

)1/2

≤ C‖u‖H2(Ω)

(
hβ/2

p3/2
+

hβ/2

p5/4

)
|||η||| |||vh|||.(4.29)

We substitute the estimates (4.26)–(4.29) into (4.25). Since β ≥ 1, we obtain

∑
ek∈ΓI

∫
ek

∣∣∣∣ζ ∂ζ∂ν
∣∣∣∣ |[vh]| ≤ CCa

(
max

1≤i≤Nh

pi
hi

)1/2

|||χ|||2 |||vh|||

+ CCah
1/2‖u‖H2(Ω)(|||χ||| + |||η|||)|||vh|||.(4.30)

In a similar way, we find the following estimates for the third, fourth, and last terms
on the right-hand side of (4.18):

∑
ek∈ΓI

∫
ek

∣∣∣∣ζ ∂vh∂ν

∣∣∣∣ |[ζ]| ≤ CCa

(
max

1≤i≤Nh

pi
hi

)1/2

|||χ|||2 |||vh|||

+ CCah
1/2‖u‖H2(Ω)(|||χ||| + |||η|||)|||vh|||,(4.31)

Nh∑
i=1

∫
Ki

|(ãuu(z)∇u)ζ2 · ∇vh| ≤ CCa|||χ|||2 |||vh|||

+ CCah
1/2‖u‖H1(Ω)|u|W 1

∞(Ω)(|||χ||| + |||η|||)|||vh|||,(4.32)
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and∑
ek∈Γ

∫
ek

∣∣∣∣{(ãuu(z)
∂u

∂ν

)
ζ2

}
[vh]

∣∣∣∣ ≤ CCa|||χ|||2 |||vh|||

+ CCah
1/2‖u‖H1(Ω)|u|W 1

∞(Ω)(|||χ||| + |||η|||)|||vh|||.(4.33)

Substituting the estimates (4.24) and (4.30)–(4.33) into (4.18), we complete the rest
of the proof.

Lemma 4.3. Let β ≥ 1 and z ∈ Dp(Th). Set y = Shz. Then there exists a
positive constant C which is independent of h and p such that

|||Ihu− y||| ≤ CCa

[(
max

1≤i≤Nh

pi
hi

)1/2

|||Ihu− z|||2 + Cuh
1/2|||Ihu− z|||

]
+ CCa

[
(1 + Cuh

1/2)|||Ihu− u|||+
]
.

Proof. Let χ = Ihu − z, η = Ihu − u, and ξ = Ihu − y. Set vh = ξ in (4.16).
Then for the first term on the right-hand side of (4.16), use Lemma 3.3 to obtain

|B̃(u; η, ξ)| ≤ C|||η|||+ |||ξ|||.(4.34)

Set vh = ξ in Lemma 4.2 to arrive at

|F(z; z − u, ξ)| ≤ CCa

(
max

1≤i≤Nh

pi
hi

)1/2

|||χ|||2 |||ξ|||(4.35)

+ CCaCuh
1/2 (|||χ||| + |||η|||) |||ξ|||.

Substituting the estimates (4.34)–(4.35) into (4.16) and using the fact that |||η||| ≤
|||η|||+, we obtain

|B̃(u; ξ, ξ) ≤ CCa

[(
max

1≤i≤Nh

pi
hi

)1/2

|||χ|||2 + Cuh
1/2 (|||χ||| + |||η|||) + |||η|||+

]
|||ξ|||

≤ CCa

[(
max

1≤i≤Nh

pi
hi

)1/2

|||χ|||2 + Cuh
1/2|||χ|||

]
|||ξ|||

+ CCa(1 + Cuh
1/2)|||η|||+ |||ξ|||.

Then using the G̊arding inequality, that is, Lemma 3.2, we obtain

C1|||ξ||2 − C2‖ξ‖2 ≤ B̃(u; ξ, ξ)

≤ CCa

[(
max

1≤i≤Nh

pi
hi

)1/2

|||χ|||2 + Cuh
1/2|||χ|||

]
|||ξ|||

+ CCa

[
(1 + Cuh

1/2)|||η|||+
]
|||ξ|||,

and hence

|||ξ||| ≤ CCa

[(
max

1≤i≤Nh

pi
hi

)1/2

|||χ|||2 + Cuh
1/2|||χ|||

]
(4.36)

+ CCa

[
(1 + Cuh

1/2)|||η|||+
]

+ C‖ξ‖.
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In order to complete the proof of the lemma, it is now sufficient to obtain an estimate
for ‖ξ‖. Setting q = ξ and vh = ξ in Lemma 3.5, it follows that

‖ξ‖2 = B̃(u; Ihu− y, φh) = B̃(u; Ihu− u, φh) + F(z; z − u, φh)

≤ CCa

[(
max

1≤i≤Nh

pi
hi

)1/2

|||χ|||2 + Cuh
1/2|||χ||| + (1 + Cuh

1/2)|||η|||+

]
|||φh|||.

Therefore, using the fact from Lemma 3.5 that |||φh||| ≤ C‖ξ‖, we obtain

‖ξ‖ ≤ CCa

[(
max

1≤i≤Nh

pi
hi

)1/2

|||χ|||2 + h1/2Cu|||χ||| + (1 + Cuh
1/2)|||η|||+

]
.(4.37)

We combine inequalities (4.36) and (4.37) to complete the rest of the proof.
Theorem 4.4. Let β = 1. Then, for sufficiently small h, there is a δ = δ(h, p)

such that the map Sh maps Oδ(Ihu) into itself.
Proof. Let z ∈ Oδ(Ihu) and set y = Shz. Choose δ = 1

hε |||Ihu − u|||+ for some
0 < ε ≤ 1/4. Then using the fact that z ∈ Oδ(Ihu), and using Lemma 3.4 with
si ≥ 2, pi ≥ 1 and (4.15), we obtain(

max
1≤i≤Nh

pi
hi

)1/2

|||Ihu− z|||2 ≤
(

max
1≤i≤Nh

pi
hi

)1/2

δ2

≤
(

max
1≤i≤Nh

pi
hi

)1/2
1

hε
|||Ihu− u|||+ δ

≤ C
1

hε

(
max

1≤i≤Nh

pi
hi

)1/2
[

Nh∑
i=1

h2
i

pi
‖u‖2

H2(Ki)

]1/2

δ

≤ C
1

hε

(
max

1≤i≤Nh

pi
hi

)1/2 (
max

1≤i≤Nh

h2
i

pi

)1/2

‖u‖H2(Ω) δ

≤ CCQCuh
1/2−ε δ.(4.38)

We substitute (4.38) in Lemma 4.3 to obtain

|||Ihu− y||| ≤ CCa

(
CQCuh

1/2−ε δ + Cuh
1/2δ + (1 + Cuh

1/2)hεδ
)

(4.39)

≤ CCa

(
CQCuh

1/2−ε + Cuh
1/2 + (1 + Cuh

1/2)hε
)

δ.

Choose h small so that CCa

(
CQCuh

1/2−ε + Cuh
1/2 + (1 + Cuh

1/2)hε
)
≤ 1, and hence

Sh maps Oδ(Ihu) into itself. This completes the rest of the proof.
Theorem 4.5. Let β = 1. There is a δ = δ(h, p) > 0 and a positive constant C

such that the following holds for any given z1, z2 ∈ Oδ(Ihu) and 0 < ε ≤ 1
4 :

|||Shz1 − Shz2||| ≤ CCaCQCuh
ε |||z1 − z2|||.

Proof. Set y1 = Shz1 and y2 = Shz2. Using the definition (4.16) of Sh, it is clear
that

B̃(u; y2 − y1, vh) = F(z1; z1 − u, vh) −F(z2; z2 − u, vh).(4.40)

Choose δ = 1
hε |||η|||+ for some 0 < ε ≤ 1/4 with η = u− Ihu. Set χ = z1 − z2. Using

Taylor’s formulae (2.4)–(2.5) and (4.18), we rewrite the first terms from each of the
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terms on the right-hand side of (4.40) on each Ki as

ãuu(z1)(z1 − u)2 − ãuu(z2)(z2 − u)2 = a(z1) − a(z2) + au(u)(z2 − z1)

= a(z1) − a(z2) − au(z2)χ + (au(z2) − au(u))χ

= R̃(z1, z2)χ
2 + ãuu(z2)(z2 − u)χ,

where R̃(z1, z2) =
∫ 1

0
(1− t)auu(z1 + t[z1 − z2])dt. Similarly, other terms on the right-

hand side of (4.40) can be rewritten in a similar fashion. Now, an argument similar
to that of Lemma 4.2 implies that

|F(z1; z1 − u, vh) −F(z2; z2 − u, vh)| ≤ CCa

(
max

1≤i≤Nh

pi
hi

)1/2 [
|||χ|||2 |||vh|||

+ |||z1 − Ihu||| |||χ||| |||vh||| + |||Ihu− z2||| |||χ||| |||vh|||
]

≤ CCaCQCuh
ε |||χ||| |||vh|||.(4.41)

We set vh = (y2 − y1) in (4.40) and (4.41). Then, using Lemmas 3.2 and 3.5, we
obtain

|||y1 − y2||| ≤ CCaCQCuh
ε |||z1 − z2|||,

and this completes the proof.
For sufficiently small h, we deduce from Theorem 4.5 that there is a δ > 0 such

that the map Sh : Oδ(Ihu) → Oδ(Ihu) is continuous. Hence, using Theorems 4.4 and
4.5 and Brouwer’s fixed point theorem, we conclude for small h that there exists a
uh ∈ Oδ(Ihu) such that Shuh = uh. Then, from Theorem 4.5, it is clear that uh is the
unique fixed point of Sh. Hence, we have proved that there exists a unique solution
uh to problem (4.4).

4.3. A priori error estimates. Note that, from (4.39), uh satisfies

|||Ihu− uh||| ≤ CCa

(
CQCuh

1/2−ε + Cuh
1/2 + (1 + Cuh

1/2)hε
)

δ.

Since δ = 1
hε |||η|||+ for any 0 < ε ≤ 1/4, we obtain

|||Ihu− uh||| ≤ CCa

(
CQCuh

1/2−ε + Cuh
1/2 + (1 + Cuh

1/2)hε
) 1

hε
|||η|||+

≤ CCaCQCu|||η|||+.(4.42)

Using Lemma 3.4, estimate (4.42), and a triangle inequality, we have obtained the
following estimate which is optimal in h and suboptimal in p.

Theorem 4.6. Let β = 1. Then, for sufficiently small h, there exists a constant
C = C(α,M) which is independent of h and p such that the solution uh of the problem
(4.4) satisfies

|||u− uh||| ≤ CCaCQCu

(
Nh∑
i=1

h2μi−2
i

p2si−3
i

‖u‖2
Hsi (Ki)

)1/2

,

where μi = min{pi + 1, si}, and Ca, CQ, and Cu are as in (4.8), (4.14), and (4.17),
respectively.

Remark 4.1. Note that the estimate obtained in Theorem 4.6 is optimal in h and
suboptimal in p. However, this results leads to precisely the same h-optimal and p-
suboptimal rate of convergence in the broken H1-norm as in the case of linear elliptic
problem, when it is approximated by the NIPG method [23, Theorem 3.1], [16].
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4.4. Optimal error estimates in the broken energy norm and the L2-
norm, when u ∈ Hs

p(Ω), s ≥ 2. In the following, with the additional assumptions
on the mesh and g, we prove optimal error estimates in the broken energy norm as
well as in the L2-norm. Therefore, along with Assumption Q, we assume that Th is
a regular subdivision of Ω into triangles or rectangles and Dp(Th) = D∗

p(Th). We also
assume that there is a v ∈ D∗

p(Th) such that g = v|∂Ω.
We note from [23, pp. 908–913] that by using a continuous interpolant Ic

hu ∈
Dp(Th) ∩ C̄0(Ω) of u instead of Ihu, which may be discontinuous across the edges
in ΓI , the optimal rate of convergence can be recovered. Since the construction of
Ic
h is not discussed in [23], we present below the results related to the construction

of Ic
h. The idea of constructing Ic

hu ∈ D∗
p(Th) ∩ C0(Ω̄) is to modify the sequence

uhi
p ∈ D∗

p(Th) in Lemma 2.1 by adding suitable piecewise polynomials on each Ki.
For more on the construction of Ic

h, we refer to [5, Theorem 4.1], [6, Theorem 4.6], [1,
Theorem 4], and [2, Theorem 3]. Following these constructions, we prove the following
lemma.

Lemma 4.7. Let Th be a regular subdivision. Then, for a given φ ∈ Hs
p(Ω), s ≥ 2,

there exists a positive constant CAc (depending on s but independent of φ, p, and h)
and an Ic

hφ ∈ D∗
p(Th) ∩ C0(Ω̄) such that for all Ki and ek

(i) Ic
hφ|∂Ω = φ|∂Ω;

(ii) for any 0 ≤ l ≤ s and 0 ≤ l ≤ 2,

‖φ− Ic
hφ‖Hl(Ki) ≤ CAc

hμ−l
i

ps−l−δ1

⎛⎝ ∑
Kj∈K∗

i

‖φ‖2
Hs(Kj)

⎞⎠1/2

,

where δ1 = 0 if l = 0, 1 and δ1 = 1 if l = 2;
(iii) for s > l + 1

2 and l = 0, 1,

|φ− Ic
hφ|Hl(ek) ≤ CAc

h
μ−l−1/2
i

ps−l−1/2−δ2

⎛⎝ ∑
Kj∈K∗

i

‖φ‖2
Hs(Kj)

⎞⎠1/2

,

where δ2 = 0 if l = 0 and δ2 = 1/2 if l = 1;
(iv) for 0 ≤ l ≤ s− 1 + 2/r and l = 0, 1,

‖φ− Ic
hφ‖W l

r(Ki) ≤ CAc

h
μ−l−1+2/r
i

ps−l−1+2/r

⎛⎝ ∑
Kj∈K∗

i

‖φ‖2
Hs(Kj)

⎞⎠1/2

,

where μ = min(s, p + 1), K∗
i = {Kj : |∂Ki ∩ ∂Kj | > 0}, and ek is an edge on ∂Ki.

Remark 4.2. Note that Assumption P(1) implies that the cardinality of K∗
i is

bounded by Nκ for all i.
Proof of Lemma 4.7. Statement (i) in the lemma is proved in [6, Theorem 4.6]. For

0 ≤ l ≤ 1, the approximation property in (ii) is proved in [2, Theorem 3], [6, Theorem
4.6]. Using the inverse inequality (2.7) and Lemma 2.1, the proof of property (ii) for
l = 2 is as follows:

‖φ− Ic
hφ‖H2(Ki) ≤ ‖φ− Ihφ‖H2(Ki) + ‖Ihφ− Ic

hφ‖H2(Ki)

≤ ‖φ− Ihφ‖H2(Ki) + C
p2

hi
‖Ihφ− Ic

hφ‖H1(Ki)
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≤ ‖φ− Ihφ‖H2(Ki) + C
p2

hi
‖φ− Ihφ‖H1(Ki) +

p2

hi
‖φ− Ic

hφ‖H1(Ki)

≤ C
hμ−2
i

ps−3

⎛⎝ ∑
Kj∈K∗

‖φ‖2
Hs(Kj)

⎞⎠1/2

.

Then, using the trace inequality (2.4), we deduce property (iii) of the lemma. Fi-
nally, using arguments similar to those of [2, Theorem 3], property (iv) can be easily
proved.

Remark 4.3. The approximation property (ii) for l = 2 and property (iii) for
l = 1 are not optimal in terms of p. But as we see in our next analysis, these properties
do not affect the accuracy of the approximation uh.

Lemma 4.8. Let Th be a regular subdivision and let Dp(Th) = D∗
p(Th). Then, for

any β ≥ 1 and given any φ ∈ Hs
p(Ω), s ≥ 2, there exists a constant C independent of

h and p such that

|||φ− Ic
hφ|||+ ≤ C

(
Nh∑
i=1

h2μ−2
i

p2s−2
‖φ‖2

Hs(Ki)

)1/2

,(4.43)

where μ = min{p + 1, s}.
Proof. Let η∗ = φ − Ic

hφ. Since Ic
hφ ∈ D∗

p(Th) ∩ C0(Ω̄) and Ic
hφ|∂Ω = φ|∂Ω, the

jump [φ− Ic
hφ] = 0 on each ek ∈ Γ. Hence, using (2.3) and Lemma 4.7, we obtain

|||φ− Ic
hφ|||2+ =

Nh∑
i=1

∫
Ki

|∇η∗|2 +
∑
ek∈Γ

∫
ek

|ek|β
p2

{
∂η∗
∂ν

}2

≤ C

Nh∑
i=1

∑
Kj∈K∗

i

(
h2μ−2
i

p2s−2
‖φ‖2

Hs(Kj)
+

hβ
i

p2

h2μ−3
i

p2s−4
‖φ‖2

Hs(Kj)

)

≤ C

Nh∑
i=1

(
h2μ−2
i

p2s−2
‖φ‖2

Hs(Ki)
+

h2μ−2
i

p2s−2
‖φ‖2

Hs(Ki)

)
.

This completes the rest of the proof.
Theorem 4.9. Let Th be a regular subdivision and let Dp(Th) = D∗

p(Th). Suppose
that u ∈ Hs

p(Ω), s ≥ 2. Then, for any β ≥ 1 and for sufficiently small h, there exists
a constant C = C(α,M) which is independent of h and p such that the solution uh of
problem (4.4) satisfies

|||u− uh||| ≤ CCaCQCu

(
Nh∑
i=1

h2μ−2

p2s−2
‖u‖2

Hs(Ki)

)1/2

,

where μ = min{p + 1, s}, and Ca, CQ, and Cu are as in (4.8), (4.14), and (4.17),
respectively.

Proof. Under the hypotheses on the mesh, there is an Ic
hφ ∈ D∗

p(Th)∩C0(Ω̄) such
that Ic

hφ|∂Ω = φ|∂Ω. Hence, the jump [φ − Ic
hφ] = 0 on each ek ∈ Γ. Then, using

Lemmas 3.2 and 4.7, it is easy to prove Lemma 3.5 for any β ≥ 1. Now, note that
estimates (4.27) and (4.29) in Lemma 4.2 depend on the approximation property (ii)
for l = 2. Though there is a suboptimality in this property, we still obtain the results
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in Lemma 4.2 by replacing Ihu by Ic
hu and for any β ≥ 1. Below, we only indicate the

changes to be made in the text of the proof of Lemma 4.2. We now consider the term
on the left-hand side of (4.27) with η = u−Ic

hu. Then, using Hölder’s inequality, the
trace inequality (2.4), and Lemma 4.7, we estimate this term as follows:

∑
ek∈ΓI

∫
ek

∣∣∣∣{χ∂η

∂ν

}
[vh]

∣∣∣∣ ≤ C
∑

ek∈ΓI

(
|ek|β/2

p
‖χ‖L4(ek)‖∇η‖L4(ek)

(∫
ek

p2

|ek|β
[vh]2

)1/2
)

≤ C

Nh∑
i=1

∑
ek∈∂Ki

|ek|β/2−1/2

p

(
‖χ‖4

L4(Ki)
+ hi‖χ‖3

L6(Ki)
‖∇χ‖L2(Ki)

)1/4

(
‖∇η‖4

L4(Ki)
+ hi‖∇η‖3

L6(Ki)
‖∇2η‖L2(Ki)

)1/4
(∫

ek

p2

|ek|β
[vh]2

)1/2

≤ C

Nh∑
i=1

∑
ek∈∂Ki

hβ/2−1/2

p

(
h2

p2
‖u‖4

H2(Ki)
+ h

h

p

1

p−1
‖u‖4

H2(Ki)

)1/4

(
‖χ‖4

L4(Ki)
+ hi‖χ‖3

L6(Ki)
‖∇χ‖L2(Ki)

)1/4
(∫

ek

p2

|ek|β
[vh]2

)1/2

≤ C‖u‖H2(Ω)

(
hβ/2

p3/2
+

hβ/2

p

)
|||χ||| |||vh|||.(4.44)

Similarly, a replacement of Ihu by Ic
hu in Lemma 4.3 and an application of Lemma

4.8 yield the proofs of Theorems 4.4 and 4.5 for any β ≥ 1. Hence, the estimate (4.42)
holds for any β ≥ 1 with η = u− Ic

hu. Then an application of Lemma 4.8 completes
the rest of the proof.

Now, we proceed to derive the L2-norm error estimate. Since the SIPG method
is adjoint consistent, one can expect optimal L2-norm error estimates in terms of h.
But for the NIPG method, the bilinear form is not adjoint consistent. In general, it
may be difficult to prove the optimal L2 error estimate in terms of h. However, if
u ∈ Hs

p(Ω), s ≥ 2, it is possible to obtain optimal L2-norm error estimates in terms of
both h and p by increasing the penalty on the uniform regular subdivision. Assume
that the hypotheses of Theorem 4.9 hold. Of course, these assumptions are not
necessary to derive optimal L2-norm error estimate in terms of h for the SIPG method.
Below, we appeal to the Aubin–Nitsche duality argument to estimate ‖u− uh‖.

Theorem 4.10. Let a ∈ C2
b (Ω̄ × R) and u ∈ W 1

∞(Ω). Suppose that β ≥ 3 when
θ = −1, and β ≥ 1 when θ = 1. Further, assume that the hypotheses of Theorem 4.9
hold. Then there exists a constant C = C(α, M) such that for small h

‖u− uh‖ ≤ CCQCaC
2
u

hμ

ps
‖u‖s,h,

where μ = min{p + 1, s}, and Ca, CQ, and Cu are as in (4.8), (4.14), and (4.17),
respectively.

Proof. Our assumptions on a and u imply that there is a unique solution φ ∈
H2(Ω) to the following linear elliptic problem:

−∇ · (a(u)∇φ) + (au(u)∇u) · ∇φ = e on Ω,

φ = 0 on ∂Ω,
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and φ satisfies the following elliptic regularity (see [15, Lemma 9.17]):

‖φ‖H2(Ω) ≤ C‖e‖L2(Ω).(4.45)

Note that

‖e‖2 = B(u; e, φ) +

∫
Ω

(au(u)∇u) · e∇φdx + (θ − 1)
∑
ek∈Γ

∫
ek

{
a(u)

∂φ

∂ν

}
[e].(4.46)

The first term on the right-hand side of (4.46) is rewritten as

B(u; e, φ) = B(u;u, φ) −B(uh;uh, φ) + B(uh;uh, φ) −B(u;uh, φ)

= (B(u;u, φ− χ) −B(uh;uh, φ− χ)) + (B(uh;uh, φ) −B(u;uh, φ))

= I + II,(4.47)

where χ = Ic
hφ such that χ|∂Ω = 0. For the first term on the right-hand side of (4.47),

we note that

I = B(u;u, φ− χ) −B(uh;u, φ− χ) + B(uh;u, φ− χ) −B(uh;uh, φ− χ)

=

Nh∑
i=1

∫
Ki

(a(u)− a(uh))∇u · ∇(φ−χ) +

Nh∑
i=1

∫
Ki

(a(uh)− a(u))∇(u−uh) · ∇(φ−χ)

−
∑
ek∈Γ

∫
ek

{
(a(uh)− a(u))

∂(φ− χ)

∂ν

}
[u−uh] +

Nh∑
i=1

∫
Ki

a(u)∇(u−uh) · ∇(φ−χ)

−
∑
ek∈Γ

∫
ek

{
a(u)

∂(φ− χ)

∂ν

}
[u− uh].(4.48)

Since u ∈ W 1,∞(Ω), we use the Cauchy–Schwarz inequality, Lemma 4.8, to bound the
first and fourth terms on the right-hand side of (4.48) as∣∣∣∣∣

Nh∑
i=1

∫
Ki

(a(u) − a(uh))∇u · ∇(φ− χ)

∣∣∣∣∣ ≤ Cu‖e‖ ‖φ− χ‖H1(Ω)

≤ CCu
h

p
‖e‖ ‖φ‖H2(Ω)(4.49)

and ∣∣∣∣∣
Nh∑
i=1

∫
Ki

a(u)∇(u− uh) · ∇(φ− χ)

∣∣∣∣∣ ≤ M |||e||| ‖φ− χ‖H1(Ω)

≤ C
h

p
|||e||| ‖φ‖H2(Ω).(4.50)

Now, using Hölder’s inequality and Lemmas 4.8 and 2.5, we estimate the second term
on the right-hand side of (4.48) as∣∣∣∣∣

Nh∑
i=1

∫
Ki

(a(uh) − a(u))∇(uh − u) · ∇(φ− χ)

∣∣∣∣∣ ≤ C ‖e‖L3(Ω)|||e||| ‖φ− χ||W 1
6 (Ω)

≤ C |||e|||2 ‖φ‖H2(Ω).(4.51)
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Next, using arguments similar to those of (4.44), we bound the third term on the
right-hand side of (4.48) as∣∣∣∣∣∑
ek∈Γ

∫
ek

{
(a(uh)− a(u))

∂(φ− χ)

∂ν

}
[u− uh]

∣∣∣∣∣≤ CCa

∑
ek∈Γ

|ek|β/2
pk

‖e‖L4(ek)|φ− χ|W 1
4 (ek)

(∫
ek

p2
k

|ek|β
[e]2ds

)1/2

≤ CCa|||e|||2 ‖φ‖H2(Ω).(4.52)

Then, using Lemma 4.7, the fifth term on the right-hand side of (4.48) is estimated
as ∣∣∣∣∣∑

ek∈Γ

∫
ek

{
a(u)

∂(φ− χ)

∂ν

}
[u− uh]

∣∣∣∣∣ ≤ C
hβ/2+1/2

p
|||e||| ‖φ‖H2(Ω).(4.53)

Hence using (4.45), we obtain, for any β ≥ 1,

|I| ≤ CCuCa

(
|||e|||2 +

h

p
|||e|||| + ‖e‖

)
‖e‖.(4.54)

For the second term in (4.47), that is, II, we note that [u] = 0 on ek ∈ ΓI . Thus,

II =

Nh∑
i=1

∫
Ki

(a(uh) − a(u))∇uh · ∇φ−
∫

ΓI

{
((a(uh) − a(u))

∂φ

∂ν

}
[uh − u]

=

Nh∑
i=1

∫
Ki

(a(uh) − a(u))∇(uh − u) · ∇φ +

Nh∑
i=1

∫
Ki

(a(uh) − a(u))∇u · ∇φ

−
∫

ΓI

{
((a(uh) − a(u))

∂φ

∂ν

}
[uh − u].(4.55)

Use Hölder’s inequality, the Sobolev imbedding theorem, and Lemma 2.5 to estimate
the first term on the right-hand side of (4.55) as∣∣∣∣∣

Nh∑
i=1

∫
Ki

(a(uh) − a(u))∇(uh − u) · ∇φ

∣∣∣∣∣ ≤ Ca‖e‖L3(Ω)|e|1,h‖φ||W 1
6 (Ω)

≤ CCa|||e|||2 ‖φ‖H2(Ω).(4.56)

Now for the third term on the right-hand side of (4.55), using Hölder’s inequality, the
trace inequality (2.4), and Lemma 2.5, we arrive at∣∣∣∣∣∑
ekΓI

∫
ek

{
((a(uh)− a(u))

∂φ

∂ν

}
[uh −u]

∣∣∣∣∣≤CCa

∑
ekΓI

∫
ek

∣∣∣∣e∂φ∂ν
∣∣∣∣|[e]|

≤CCa

∑
ekΓI

|ek|β/2
pk

‖e‖L4(ek)‖φ‖W 1
4 (ek)J 1,β(e, e)1/2

≤CCa
hβ/2−1/2

p
|||e|||2 ‖φ‖H2(Ω).(4.57)
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We rewrite the second term on the right-hand side of (4.55) together with the second
term on the right-hand side of (4.46) as

Nh∑
i=1

∫
Ki

(a(uh) − a(u) + au(u)(u− uh))∇u · ∇φ =

Nh∑
i=1

∫
Ki

ãuu(uh)(u− uh)2∇u · ∇φ,

and then we use Lemma 2.5 to obtain∣∣∣∣∣
Nh∑
i=1

∫
Ki

ãuu(uh)(u− uh)2∇u · ∇φ

∣∣∣∣∣ ≤ CaCu

∣∣∣∣∣
Nh∑
i=1

∫
Ki

(u− uh)2 · ∇φ

∣∣∣∣∣
≤ CCaCu|||e|||2 ‖φ‖H2(Ω).(4.58)

Hence using (4.45), for any β ≥ 1 we obtain

|II| ≤ CCuCa|||e|||2 ‖e‖.(4.59)

For θ = 1, the third term on the right-hand side of (4.46) becomes zero. For θ = −1,
using the trace inequality (2.4) and (4.45), the third term on the right-hand side of
(3.10) is estimated as

∑
ek∈Γ

∫
ek

{
a(u)

∂φ

∂ν
[e]

}
≤ C

∑
ek∈Γ

(∫
ek

|ek|β
p2
k

∣∣∣∣∂φ∂ν
∣∣∣∣2
)1/2 (∫

ek

p2
k

|ek|β
[e]2

)1/2

≤ C
hβ/2−1/2

p
|||e||| ‖e‖.(4.60)

We combine the estimates (4.54)–(4.60) to obtain

‖u− uh‖ ≤ C

(
|||u− uh||| +

h

p
+ |θ − 1|h

β/2−1/2

p

)
|||u− uh|||.

Using Theorem 4.9 completes the rest of the proof.
Remark 4.4. In the proof of Lemma 4.2 and the subsequent results in section 4,

we have assumed that the range of ∂la
∂ul (x, v), x ∈ Ω̄, v ∈ R, l = 0, 1, 2, is a compact

set, say [m,M ] ⊂ R. However, if u ∈ H5/2(Ω), we note that asymptotically only the
values of v ∈ [mu − δ∗,Mu + δ∗] ⊂ R, where 0 < δ∗ < 1, mu = inf{u(x) : x ∈ Ω̄}, and
Mu = sup{u(x) : x ∈ Ω̄}, are considered to derive the proof of Lemma 4.2 and the
subsequent results. To be more precise, the terms ãu(z) and ãuu(z), z ∈ Oδ(Ihu),
in (4.18) (see the estimates (4.19)–(4.33)), can be estimated as follows. Since z ∈
Oδ(Ihu), where δ = h−ε|||u− Ihu|||+, 0 < ε ≤ 1/4, using the inverse inequality (2.6)
and Lemmas 2.5 and 2.1, we find that

‖z − u‖L∞(Ω) ≤ ‖z − Ihu‖L∞(Ω) + ‖Ihu− u‖L∞(Ω)

≤ C

(
max

1≤i≤Nh

pi
hi

)
‖z − Ihu‖L2(Ω) + ‖Ihu− u‖L∞(Ω)

≤ C

(
max

1≤i≤Nh

pi
hi

)
|||z − Ihu||| + ‖Ihu− u‖L∞(Ω)

≤ Ch−ε

(
max

1≤i≤Nh

pi
hi

)
|||u− Ihu|||+ + ‖Ihu− u‖L∞(Ω)
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≤ Ch−ε

(
max

1≤i≤Nh

pi
hi

)(
Nh∑
i=1

h3
i

p2
i

‖u‖2
H5/2(Ki)

)1/2

+ C
h

p
‖u‖H2(Ω)

≤ Ch−ε

(
max

1≤i≤Nh

pi
hi

)(
max

1≤i≤Nh

h
3/2
i

pi

)
‖u‖H5/2(Ω) + C

h

p
‖u‖H2(Ω)

≤ Ch1/2−ε‖u‖H5/2(Ω).(4.61)

Therefore, for sufficiently small h, ‖z‖L∞(Ω) ≤ δ∗ + ‖u‖L∞(Ω), where 0 < δ∗ < 1.
Now, since the nonlinear functions au and auu are continuous, they map the compact
set [mu − δ∗,Mu + δ∗] into a compact set in R, and hence the results in Lemma
4.2 and the subsequent results in section 4 remain valid when a(v), au(v), and
auu(v) are bounded for bounded u. Finally, we remark that when u ∈ H2(Ω),
it may be possible to show the boundedness of a(v) and its derivatives for v ∈
[mu − δ∗,Mu + δ∗] ⊂ R by using better inverse inequalities, say in the first line
of (4.61), applying ‖z − Ihu‖L∞(Ki) ≤ Cp

1/2
i h

−1/4
i ‖z − Ihu‖L8(Ki) (see [20, p. 916]),

and using the Poincaré inequality in Lemma 2.5 to complete the estimate (4.61).

5. Numerical experiments. In this section, we discuss the performance of
the proposed NIPG and SIPG methods for the numerical approximation of the quasi-
linear elliptic problem (4.1)–(4.2). For this, we consider the following nonlinear elliptic
problem:

−∇ · ((1 + u)∇u) = f in Ω,

u = 0 on ∂Ω,

where Ω = (0, 1) × (0, 1) and f is taken in such a way that the exact solution is
u = x(1 − x)y(1 − y). We divide Ω into regular uniform triangles. The stabilization
parameter σk, appearing in the penalty term J σ,β , is taken as follows: σk = 10 for all
ek. We investigate the convergence of NIPG (θ = −1) and SIPG(θ = 1) on a sequence
of uniform triangular meshes for each of p = 1, 2, and 3, where p = pi for 1 ≤ i ≤
Nh. Similarly, we also investigate the convergence of both methods by enriching the
polynomial degree p on a fixed mesh.

Convergence in the broken H1-norm. We set β = 1 for both the NIPG and
SIPG methods. In Figure 2, we plot the broken H1-norm of the error against the
mesh function h for polynomial degrees p = 1, 2, and 3. Here, we observe that for
each p, |||u− uh||| converges to zero at the rate O(hp) as the mesh is refined. These
experiments illustrate the theoretical results obtained in Theorem 4.6. In Figure 3,
we present the convergence of the broken H1-norm of the error as the degree of the
polynomials increases on a fixed mesh.

Convergence in the L2-norm. According to Theorem 4.10, the NIPG method
gives optimal L2 order of convergence, provided the jump term is superpenalized. We
take β = 3 when θ = −1. Since the SIPG method is optimal in the L2-norm, we
take β = 1 when θ = 1. We investigate the theoretical results obtained in Theorem
4.10 by performing the experiments with the above values of β. In Figure 4, we
plot the L2-norm of the error against the mesh function h for polynomial degrees
p = 1, 2, and 3. We note that for each p, ‖u − uh‖ converges to zero at the rate
O(hp+1) as the mesh is refined. The convergence lines are almost the same for both
the NIPG and SIPG methods. These results show that the NIPG method exhibits
an optimal order of convergence in the L2-norm on a regular mesh by imposing the
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superpenalty. In Figure 5, we also plot the L2-norm of the error against the degree of
the polynomial p on a fixed mesh. The L2-norm of the error converges exponentially
to zero as p increases. These experiments illustrate the theoretical results obtained in
Theorem 4.10.

6. Conclusions. In this paper, we have discussed hp-discontinuous Galerkin
finite element methods (SIPG and NIPG) for approximating the solutions of nonlinear
elliptic boundary value problems of nonmonotone type on a bounded domain in R

2.
Using Brouwer’s fixed point theorem, we have shown that the discrete problem has a
solution under an hp-quasi-uniformity condition on the mesh. Further, using Lipschitz
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continuity of the discrete solution map, uniqueness of the discrete solution is also
proved. We have proved error estimates in a broken H1-norm, which are optimal in
h and suboptimal in p. These results lead to precisely the same h-optimal and mildly
p-suboptimal rates of convergence as in the case of linear elliptic boundary value
problems using NIPG methods; see [23], [16]. Further, an optimal error estimate
in the L2-norm on a regular mesh is established by imposing a superpenalty. The
results of this article can be easily extended to problems in three space dimensions
by making appropriate changes in the analysis. Moreover, it is not difficult to extend
our analysis to the problem −∇ · (a(u)∇u) + f(u) = 0, where f(u) ∈ C2

b (Ω̄ × R).
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With appropriate modifications in the analysis, it is possible to extend the theoretical
results of this article to problem (4.1)–(4.2) when a(u) is a bounded uniformly positive-
definite matrix.
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A CARDINAL FUNCTION ALGORITHM FOR COMPUTING
MULTIVARIATE QUADRATURE POINTS∗

MARK A. TAYLOR† , BETH A. WINGATE‡ , AND LEN P. BOS§

Abstract. We present a new algorithm for numerically computing quadrature formulas for arbi-
trary domains which exactly integrate a given polynomial space. An effective method for constructing
quadrature formulas has been to numerically solve a nonlinear set of equations for the quadrature
points and their associated weights. Symmetry conditions are often used to reduce the number of
equations and unknowns. Our algorithm instead relies on the construction of cardinal functions and
thus requires that the number of quadrature points N be equal to the dimension of a prescribed
lower dimensional polynomial space. The cardinal functions allow us to treat the quadrature weights
as dependent variables and remove them, as well as an equivalent number of equations, from the
numerical optimization procedure. We give results for the triangle, where for all degrees d ≤ 25, we
find quadrature formulas of this form which have positive weights and contain no points outside the
triangle. Seven of these quadrature formulas improve on previously known results.

Key words. multivariate integration, quadrature, cubature, Fekete points, spectral methods,
triangle, polynomial approximation
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1. Introduction. Gauss quadrature points, and related points such as Gauss–
Lobatto, are commonly used in numerical methods which rely on both accurate high-
order polynomial interpolation and quadrature properties. They are heavily relied on
by the diagonal-mass-matrix spectral element method, which has been very successful
in geophysical applications dominated by wave propagation [17, 15, 10, 11, 30].

Gauss quadrature points are known only for tensor-product domains such as the
line, square and cube. It is unclear how to find Gauss-like points for non–tensor-
product domains like triangles or tetrahedrons, which makes it difficult to extend the
diagonal-mass-matrix spectral element method to these domains. There are two gener-
alizations that have been studied in some detail. The first involves searching for points
in these domains with optimal interpolation properties by minimizing the Lebesgue
constant [3, 14, 29]. For high polynomial degree, some of the best results have been
obtained for Fekete points, which can be computed in a natural way with a cardinal
function algorithm [29]. Cardinal functions, or Lagrange interpolating polynomials,
are those which have the value 1 at one of the points and 0 at the remaining points.
The second generalization involves searching for points in the domain of interest which
give an optimal quadrature formula for the integral of polynomials over the domain.
Here we consider a set of N points {z1, z2, . . . , zN} and weights {w1, w2, . . . , wN}
to be a quadrature formula of strength d if the quadrature approximation for a
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domain Ω, ∫
Ω

g(ξ) dξ �
N∑
j=1

wjg(zj),

is exact for all polynomials g up to degree d. Among all quadrature formulas of
strength d, the optimal formulas are those with the fewest possible points N . In
this work, we describe an algorithm for computing near-optimal quadrature formulas
which is motivated by the Fekete point algorithm and relies heavily on the construction
of cardinal functions.

The quadrature problem has been extensively studied independently of spectral
element applications and has a long history of both theoretical and numerical devel-
opment. For a recent review, see [4, 20, 7, 5]. An on-line database containing many
of the best-known quadrature formulas is described in [6]. Many of those results were
republished in the book [25], where they are available on the included CD-ROM.

One successful approach for numerically finding quadrature formulas dates to [21].
A generalized version was used recently in [31]. Newton’s method is used to solve the
nonlinear system of algebraic equations for the quadrature weights and locations of the
points. Symmetry is used to reduce the complexity of the problem. If the quadrature
points are invariant under the action of a group G, then the number of equations can
be reduced to the dimension of the subspace of Pd invariant under G.

Motivated by the cardinal function Fekete point algorithm [29], we propose a new
method to reduce the complexity of the quadrature problem: we look for quadrature
formulas that have the same number of points as the dimension of a lower dimensional
polynomial space. We can then construct a cardinal function basis for this lower
dimensional space, make use of the interpolatory quadrature formulas, and derive a
remarkable expression analytically relating the variation in the quadrature weights to
the variation of the quadrature points. The net result is a significant reduction in the
number of equations and unknowns. Symmetry can still be used to further reduce the
complexity of the problem if needed. We then apply this algorithm to the triangle,
where we are able find optimal quadrature sets of strength 9 through 25, subject only
to the cardinal function constraint without imposing any symmetry constraints on
the solutions.

2. Orthogonal polynomials. We first define our notation and describe the
basis that will be used to represent cardinal functions. Let Ω be a domain in �n, with
ξ an arbitrary point in Ω. Let Pd be the finite dimensional vector space of polynomials
in the Cartesian components of ξ of at most degree d, and let N = dimPd. As an
example, if Ω is the right triangle, then

Pd = span{ξn1 ξm2 ,m + n ≤ d},
where ξ = (ξ1, ξ2) ∈ �2 and N = 1

2 (d + 1)(d + 2).
Our algorithm requires working with a cardinal function basis for Pd. The most

practical way to compute cardinal functions numerically is to work instead with their
expansions in terms of an orthogonal, easily computed basis for Pd. We denote this
basis by {gi(ξ), i = 1, . . . , N}. For simplicity, we require that g1(ξ) = 1. Then since
the remaining basis functions are orthogonal to the constant function, we have∫

Ω

gi dξ =

{
|Ω| for i = 1,

0 for i > 1,
(2.1)

where |Ω| is the area of Ω and dξ represents the uniform area measure.
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For this work, all of our numerical calculations were performed in the right trian-
gle. In the triangle there are several suitable choices of orthogonal basis functions. We
use the Proriol polynomials {gm,n} [22, 18, 8]. The indexes m and n specify the top
degree in each coordinate. Here we convert this traditional double index (m,n) into a
single index by i = (m+n+1)(m+n+2)/2−m, so that Pd = span{gi, i = 1, . . . , N}.
Recurrence relations to evaluate these polynomials and their derivatives are given in
[24].

3. Cardinal functions and quadrature points. We now describe the proce-
dure we use to compute cardinal functions defined by a set of N points

z = {z1, z2, . . . , zN},

where each zi is a point in Ω. If the points are nondegenerate, the cardinal functions
can be defined uniquely as the polynomials in ξ which belong to Pd and satisfy

φi(ξ; z) =

{
1 if ξ = zi,

0 if ξ = zj , j �= i.
(3.1)

The cardinal functions depend implicitly on the defining points, and thus we include
a second argument of z. To evaluate cardinal functions numerically, we first express
them in terms of the orthogonal basis {gm},

φi(ξ; z) =
∑
m

φ̂m
i gm(ξ).(3.2)

The expansion coefficients φ̂m
i are computed by evaluating (3.2) at the points zj and

solving the N ×N linear system

φi(zj ; z) =
∑
m

φ̂m
i gm(zj).

If reasonable care is used, the points {zj} can be chosen so that the system is well con-
ditioned and easily inverted by Gaussian elimination. The resulting cardinal functions
form a basis for Pd.

Following conventional spectral method techniques, we evaluate cardinal functions
at an arbitrary point ξ by simply evaluating the gm(ξ) (via recurrence relations)
and summing the series in (3.2). Derivatives of cardinal functions with respect to
ξ are evaluated in a similar fashion, by first evaluating the derivatives of gm after
differentiating (3.2).

The interpolatory quadrature formula for Pd can be constructed at these points
by solving the system

N∑
j=1

wjφi(zj ; z) =

∫
Ω

φi dξ ∀φi, i = 1, . . . , N.

Making use of (2.1) and (3.1), the solution of this system is given by

wi =

∫
Ω

φi dξ = |Ω|φ̂1
i .(3.3)
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By construction, the interpolatory quadrature weights and the points {zi} give a
quadrature formula which exactly integrates our N cardinal functions {φi}. Since
Pd = span{φi}, we have

N∑
j=1

wjg(zj) =

∫
Ω

g dξ ∀g ∈ Pd.

Thus any set of N nondegenerate points {zj} will yield a quadrature formula for Pd,
with uniquely determined quadrature weights. The problem now is to find the N
points which integrate all of Pd+e for the largest possible e.

4. Derivatives of cardinal functions with respect to z. In the algorithm
that follows, we will also need to compute the derivative of a cardinal function φi with
respect to the points zj used to define φi. For this we use the following result (which
was also derived independently in [23]).

Theorem 4.1. For cardinal functions defined by (3.1), we have the vector valued
equation

∂φi

∂zj
(ξ; z) = −φj(ξ; z)

∂φi

∂ξ
(zj ; z)(4.1)

by which we mean

∂

∂(zi)k
φi(ξ; z) = −φi(ξ; z)

∂φi

∂ξk
(zi; z), k = 1 . . . n,

where (zi)k is the kth coordinate of the point zi ∈ �n, and ξk is the kth coordinate of
the point ξ ∈ �n.

Proof. Consider the derivative with respect to (zi)k,

∂

∂(zj)k
φi(ξ; z) = lim

h→0

φi(ξ; (z\zj) ∪ {zj + hek}) − φi(ξ; z)

h
,

where ek denotes the standard unit direction vector in the kth coordinate. But the
difference

φi(ξ; (z\zj) ∪ {zj + hek}) − φi(ξ; z)

is zero at the points of z\zj , as is φj(ξ; z), and hence by uniqueness,

φi(ξ; (z\zj) ∪ {zj + hek}) − φi(ξ; z) = Cφj(ξ; z)

for some constant C.
To evaluate C, first suppose that j �= i. Then evaluate at ξ = zj + hek to obtain

(for sufficiently small h)

0 − φi(zj + hek; z) = Cφj(zj + hek; z)

so that

C = −φi(zj + hek; z)

φj(zj + hek; z)
.
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Hence,

∂

∂(zj)k
φi(ξ; z) = lim

h→0
− φi(zj + hek; z)

hφj(zj + hek; z)
φj(ξ; z)

=
φj(ξ; z)

φj(zj ; z)
lim
h→0

0 − φi(zj + hek; z)

h

=
φj(ξ; z)

φj(zj ; z)
lim
h→0

φi(zj ; z) − φi(zj + hek; z)

h

= −φj(ξ; z)

1

∂φi

∂ξk
(zj ; z)

= −φj(ξ; z)
∂φi

∂ξk
(zj ; z).

Similarly, if j = i, we evaluate at ξ = ai + hek to obtain

C =
1 − φi(zi + hek; z)

φi(zi + hek; z)

=
φi(zi; z) − φi(zi + hek; z)

φi(zi + hek; z)

so that

∂

∂(zi)k
φi(ξ; z) = −φi(ξ; z)

∂φi

∂ξk
(zi; z).

Thus the derivative of the ith cardinal function with respect to the jth quadra-
ture point is given by the jth cardinal function times a term independent of ξ and
involving only the conventional derivative. The later term can be easily evaluated by
differentiating (3.2).

Using (3.3) and (4.1), we can also derive a similar relation showing that the
derivative of the ith weight with respect to the jth quadrature point is given by the
jth weight times the same term that appears in (4.1):

∂wi

∂zj
= −

∫
Ω

φj(ξ; z)
∂φi

∂ξ
(zj ; z) dξ = −wj

∂φi

∂ξ
(zj ; z).(4.2)

5. A cardinal function algorithm for computing quadrature points for
Pd+e. We now describe an iterative method for improving an initial set of N quadra-
ture points z. In order to integrate a space larger than Pd, we need to find quadrature
points which satisfy the nonlinear equation∑

i

wigm(zi) =

∫
Ω

gm dξ ∀gm ∈ Pd+e(5.1)

for some e > 0. By using the interpolatory quadrature weights given by (3.3), we
automatically integrate all of Pd; thus we need only satisfy the equations for the basis
functions in Pd+e which are not in Pd:∑

i

wigm(zi) = 0 ∀gm : d < degree gm ≤ d + e
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and we have replaced the integral on the left-hand side of (5.1) by 0 by virtue of (2.1).
Define

Fm =
∑
i

wigm(zi)

and F = {Fm : d < degree gm ≤ d + e}. Note that since the weights are determined
by z, we can treat F as a function solely of z. Then (5.1) is equivalent to F = 0,
which can be solved using Newton’s method:

∂z

∂t
= − (∇F )

−1
F.

The gradient of F is not necessarily square. In order to invert ∇F we restrict
ourselves to the underdetermined case and use the pseudoinverse for (∇F )

−1
. If ∇F is

of full rank, many solutions exist and this approach gives the minimum norm solution,
while in the rank-deficient case it will give the minimum norm least-squares solution
[12]. To ensure that the system is underdetermined, we chose e so that there are fewer
equations than degrees of freedom in the problem. There is one degree of freedom for
each coordinate of each point in �n, for a total of n dimPd. The number of equations
is given by dimPd+e − dimPd. Thus the degrees-of-freedom constraint is given by
dimPd+e ≤ (n + 1) dimPd = (n + 1)N .

Using (4.2), the components of the gradient of F are given by

∂Fm

∂zj
=

∑
i

(
wi

∂gm(zi)

∂zj
+

∂wi

∂zj
gm(zi)

)
(5.2)

= wj
∂gm
∂ξ

(zj) − wj

∑
i

∂φi

∂ξ
(z, zj)gm(zi).

Comparing this approach to the traditional Newton method for quadrature, such as
in [31], we see that the use of the interpolatory quadrature weights has removed the
weights from the iteration and thus reduced the number of unknowns by N . Since
these weights exactly integrate Pd, we have also reduced the number of equations by
N . The only increase in complexity is the addition of the term involving the derivative
of the weights with respect to the quadrature points. But this term is easy to evaluate
by virtue of (4.2).

If symmetry is imposed on the quadrature points, then additional reductions in
the number of equations and unknowns are possible, as in [21]. However, for the
results presented in this paper we typically do not impose any symmetry constraints.

6. Practical considerations. In practice, Newton’s method to solve F = 0 is
used only to accelerate the convergence of a slower, more robust algorithm. We first
use the steepest descent algorithm to minimize

∑
m F 2

m. This algorithm simply moves
the points in the direction of steepest descent given by ∇(

∑
m F 2

m):

∂zj
∂t

= −2
∑
m

Fm
∂Fm

∂zj
.

Once this algorithm has found a possible quadrature formula, we switch to Newton’s
method and iterate until the sequence converges. If the iteration fails to converge,
then another initial condition is chosen and the procedure is repeated.
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When the steepest descent algorithm is used in such a large (N) dimensional
space, it can be expected to find only local minimums, most of which will not represent
solutions of F = 0. This makes the success of the algorithm highly dependent on the
initial condition. Here we will present numerical results for the triangle, where theory
offers some guidance as to how to choose initial conditions. Our procedure is the
same as that used in [29]. We choose a distribution of points so that their density
approximates the extremal measure μ from pluripotential theory [16]. The extremal
measure has been connected to the distribution of both quadrature points and Fekete
points. For the right triangle ξ1 ≥ 0, ξ2 ≥ 0, and ξ1 + ξ2 ≤ 1 the extermal measure is
given in [1] as

μ(ξ) =
1√

ξ1ξ2(1 − ξ1 − ξ2)
.

It is conjectured that μ is the density of quadrature points with positive weights as
the limit N goes to infinity, and it was recently shown that this limit is bounded below
by cμ for some constant c [19]. The same conjecture has also been made for Fekete
points [26], where it is known that their density, in the limit as N goes to infinity, is
bounded above by cμ [27].

To distribute a finite set of points to approximate μ(ξ), we first assume the points
lie in a nested family of triangles. We then compute a nested family of triangular
shells, each with an area (using the measure μ(ξ)dξ) proportional to the number of
points we have decided to place in that shell. If there are k points to be placed in
a given shell, we break that shell into k quadrilateral pieces, all with the same area,
and place one point in the center of each piece. For a given number of points, there
are a variety of configurations which can be generated by altering the number of
points within each shell and the number of shells. The cardinal function algorithm is
extremely sensitive to the initial condition, so many of these initial conditions must
be tried to find an optimal solution.

7. Results. Our results for the triangle are summarized in Table 1. Except for
quadrature formulas associated with d = 3 and d = 4, we were able to obtain the

Table 1

Quadrature points computed with the cardinal function algorithm. In all cases, the quadrature
weights are positive and the points are not outside the triangle. Solutions which are not D3 sym-
metric are denoted by asym. Solutions which improve upon previously published results are denoted
by new.

Degree of cardinal Number of Degree of exact
functions (d) points (N) integration (d+e) Error Notes

1 3 2 4.4 ×10−16

2 6 4 9.7 ×10−16

3 10 5 1.7 ×10−14

4 15 7 2.1 ×10−14

5 21 9 2.8 ×10−14

6 28 11 4.7 ×10−15 asym
7 36 13 2.2 ×10−14 asym,new
8 45 14 1.8 ×10−15

9 55 16 8.6 ×10−15 asym,new
10 66 18 3.3 ×10−14 asym,new
11 78 20 2.8 ×10−14 asym,new
12 91 21 2.9 ×10−14 new
13 105 23 3.3 ×10−14 new
14 120 25 4.3 ×10−14 asym,new
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optimal solution (fewest number of points) subject to the cardinal function constraint
on the number of points and the degrees-of-freedom constraint:

N = dimPd,(7.1)

dimPd+e ≤ 3N.(7.2)

All the quadrature points have positive weights and no points lie outside the triangle,
although neither of these properties is in any way guaranteed by the cardinal function
algorithm. Thus the solutions for d > 4 are the best that this algorithm could attain.
The truly optimal quadrature points (those with the fewest points for a given strength)
would have to be found with a more sophisticated algorithm.

The errors presented in Table 1 are the max norm of the quadrature error over
all the orthonormal basis functions:

max
gm,n∈Pd+e

∣∣∣∣∣∑
i

wigm,n(zi) −
∫

Ω

gm,n dξ

∣∣∣∣∣
with normalization

∫
Ω
g2
m,n dξ = |Ω|. Many of the quadrature sets are invariant under

the symmetry group of rotations and reflections of the triangle, D3. The solutions
which do not have this symmetry are denoted with asym in the table.

Quadrature formulas denoted by new in the table represent formulas which im-
prove upon the best previously published results, as taken from the extensive database
described in [6] and the quadrature points presented in [31] (which were included in
the database as of this writing). The new solutions for integration degree d + e from
18 to 25 have fewer points than the previously published results. For d + e = 13 and
16, the results presented here have the fewest points among formulas with positive
weights and no points outside the triangle. For d + e = 13, the previous result with
the fewest quadrature points has N = 36, but some of those points are outside the
triangle and not all the weights are positive [2]. For d + e = 16, previous results
include formulas with 52 points, some of which are outside the triangle [9], and 55
points, some of which have negative weights [13].

In Table 2, we summarize the results for the triangle from [6], [31], and the
cardinal function algorithm.

The coordinates of the points for the first four new quadrature formulas are given
in Appendix A. The coordinates for all the formulas in the table are available elec-
tronically from [28]. Plots for the first four of these quadrature points are shown in
Figure 1. In the figure, the right triangle has been mapped linearly to the equilateral
triangle in order to make the asymmetry in the points more visible.

8. Summary. We have presented a cardinal function algorithm for computing
multivariate quadrature points. The key ideas involve the use of the interpolatory
quadrature weights expressed as integrals of cardinal functions and a formula relat-
ing the derivatives of cardinal functions with respect to zi (their defining points) to
conventional derivatives in ξ. These two ideas allow us to reduce the number of equa-
tions and number of unknowns by N , while still retaining analytic expressions for the
gradients necessary to apply steepest decent or Newton iterations. The algorithm was
applied to the triangle, where optimal (in the sense of (7.1) and (7.2)) formulas were
constructed for integrating polynomials up to degree 25. Seven of these quadrature
formulas improve on previously known results. Of these new formulas, 5 out of 7 are
asymmetric. It remains an open question whether symmetric formulas can be found
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Table 2

Comparisons of known quadrature formula for the triangle. The column labeled Cools gives the
results collected in [6]. The column labeled Wandzura and Xiao gives the results from [31]. Formulas
with negative weights or points that lie outside the triangle are denoted with a †.

Degree Number of points (N)
of exact Cools Wandzura and Cardinal function

integration Xiao algorithm
2 3 3 3
3 4 6
4 6 6 6
5 7 7 10
6 10† 12
7 12 15 15
8 15† 16
9 19 19 21
10 22† 25
11 27† 28 28
12 33 36
13 36† 40 36
14 42 46 45
15 48† 54
16 52† 58 55
17 61 66
18 67† 73 66
19 73 82
20 79† 85 78
21 93 91
22 100
23 106 105
24 118
25 126 120
26 138
27 145
28 154
29 166
30 175

of equal strength and, if not, what is the minimum amount of asymmetry required to
obtain a given strength.

By construction, the number of points required for each quadrature formula is
given by N = dimPd for some d, meaning they can also be used for interpolation in
Pd. This is a useful property for many finite element methods. These discretizations
commonly result in equations for functions which are assumed (within each triangular
element) to be in the space Pd.

To apply the algorithm to other domains and more than two dimensions requires
only the knowledge of an orthogonal basis of polynomials and the ability to evaluate
the basis functions at arbitrary points. The use of cardinal functions requires that
N = dimPd. This constraint can be relaxed by replacing Pd with any subspace
P ′ ⊂ Pd+e. The algorithm is unmodified other than that one needs to compute
cardinal functions and interpolatory weights for the space P ′ instead of Pd.

Appendix A. Tables of quadrature points. We now list the coordinates
of the first four quadrature formulas marked with new in Table 1. Coordinates for
all formulas are available electronically in [28]. For each line, we give the first two
barycentric coordinates of each point (equivalent to the x and y coordinates after
an equilateral triangle is linearly mapped to the unit right triangle x ≥ 0, y ≥ 0,
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Fig. 1. Quadrature points for the triangle which, from left to right and top to bottom, exactly
integrate polynomials of degree 13, 16, 18, and 20. No points are outside the triangle, and all
quadrature weights are positive.

and x + y ≤ 1) followed by the associated quadrature weight. The third barycentric
coordinate is defined such that the sum of all three coordinates is one.

Tables of points
integration degree=13 N=36:

0.0242935351590 0.9493059293846 0.0166240998757

0.0265193427722 0.0242695130640 0.0166811699778

0.9492126023551 0.0265067966437 0.0166830569067

0.0033775763749 0.4767316412363 0.0175680870083

0.4757672298101 0.5198921829102 0.0184474661845

0.5190783193471 0.0055912706202 0.0197942410188

0.8616839745321 0.0133996048618 0.0203540395855

0.1249209759926 0.8613054321334 0.0206852863940

0.0138565453861 0.1247733717358 0.0208271366086

0.0211887064222 0.8438438351223 0.0317819778279

0.8432296787219 0.1354563645830 0.0320472035241

0.1354231797865 0.0213482820656 0.0320607681146

0.3088853510679 0.0221919663014 0.0430765959183

0.6685057595169 0.3089012879389 0.0438473415339

0.0226545012557 0.6691709943321 0.0439209672733

0.2808515408772 0.6924718155106 0.0479951923691

0.6922446749051 0.0268723345026 0.0483806260733

0.0268617447119 0.2810093973222 0.0484867423375

0.1141778485470 0.7973581413586 0.0556964488024

0.7974807922061 0.0879806508791 0.0561026364356

0.0892807293894 0.1145020561128 0.0565190123693

0.1052487892455 0.6686904119922 0.0689289890670

0.6663022280740 0.2275051631832 0.0717213336089

0.2307803737547 0.1054572561221 0.0727453920976

0.1705059157540 0.5174064398658 0.0788807336737

0.5086593973043 0.3170523855209 0.0810114345512

0.3141823862281 0.1810706361659 0.0825725299055

0.4617460817864 0.4678594539804 0.0842044567330

0.0693087496081 0.4622856042085 0.0843585533305

0.4651955259268 0.0724357805669 0.0851969868488

0.2578625857893 0.6131395039177 0.0902845328052

0.6112627766779 0.1300360834609 0.0914283143485

0.1305182135934 0.2581713828884 0.0916279065409

0.4281437991828 0.2362005969817 0.1025573374896

0.3356995783730 0.4311026308588 0.1033159661413

0.2305424298836 0.3456013949376 0.1035854367193

integration degree=16 N=55:

1.0000000000000 0.0000000000000 0.0006202599851

0.0000000000000 1.0000000000000 0.0006315174712

0.0000000000000 0.0000000000000 0.0007086601559

0.9398863583577 0.0049848744634 0.0055163716168

0.0543806683058 0.9386405618617 0.0062692407656

0.0093940049164 0.0526424462697 0.0078531408826

0.0164345086362 0.9469035517351 0.0094551483864
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0.9469487269862 0.0363373677167 0.0097824511271
0.0426604005768 0.0151224541799 0.0099861643489
0.0122269495439 0.8693773510664 0.0137553818816
0.8673696521047 0.1204917285774 0.0140979178040
0.8456744021389 0.0157763967870 0.0149646864337
0.1395759632103 0.8448120870375 0.0156097503612
0.1317821743231 0.0135009605584 0.0157683693348
0.0157955126300 0.1455274938536 0.0175794546383
0.7365462884436 0.0155697540908 0.0204113840270
0.0139688430330 0.7379836894450 0.0209562878616
0.2547895186039 0.7297615689771 0.0210713412998
0.7316386522555 0.2543076683315 0.0217646760202
0.0157253728951 0.2696239795791 0.0222288408699
0.2662302843647 0.0144783956308 0.0224186693682
0.8673504065214 0.0591679410400 0.0230122616993
0.0741493666957 0.8634782575061 0.0236813902500
0.0159285948360 0.4191238955238 0.0257464643368
0.0156061028068 0.5809222921146 0.0257956801608
0.5910094817484 0.0159251452651 0.0258072327610
0.4034771496889 0.5806700368104 0.0260343232059
0.5694745628526 0.4149495146302 0.0265768141609
0.0678493700650 0.0761218678591 0.0265784761831
0.4265968590272 0.0157509692312 0.0267532329238
0.0670982507890 0.7741898312421 0.0375787806641
0.7528310231480 0.0819119495639 0.0383065894195
0.7753727783557 0.1577128457292 0.0384849695025
0.1689073157787 0.7503943099742 0.0389619825852
0.1687335832919 0.0708311507268 0.0394604111547
0.0821244708436 0.1762996626771 0.0412364778098
0.6288705363345 0.0807744953317 0.0512872438483
0.0811413015266 0.3054373589776 0.0516405641935
0.2969112065080 0.6227485988871 0.0518230042269
0.0767542314171 0.6247247149546 0.0528527988181
0.6223022333845 0.3011485821166 0.0538505573027
0.3103786288051 0.0779098365079 0.0541895329319
0.0819218215187 0.4603633038351 0.0584737146444
0.4717022665013 0.0821554006797 0.0592863168363
0.4546603415250 0.4637565033890 0.0594358276749
0.1701091339237 0.6422277808188 0.0631800255863
0.6406004329487 0.1898293537256 0.0632926845153
0.1912267583717 0.1739955685343 0.0640707361772
0.1885315767070 0.4798914070406 0.0812040595918
0.4772929957691 0.3348356598119 0.0814437513530
0.3126974621760 0.4957972197259 0.0814679201241
0.4961225945946 0.1927553668904 0.0815050548084
0.1928805312867 0.3161015807261 0.0815164664939
0.3360041453816 0.1894892801290 0.0816931059623
0.3337280550848 0.3343571021811 0.0923218334531
integration degree=18 N=66:
0.0116731059668 0.9812565951289 0.0025165756986
0.9810030858388 0.0071462504863 0.0025273452007
0.0106966317092 0.0115153933376 0.0033269295333
0.9382476983551 0.0495570591341 0.0081503492125
0.0126627518417 0.9370123620615 0.0086135525742
0.0598109409984 0.0121364578922 0.0087786746179
0.0137363297927 0.0612783625597 0.0097099585562
0.9229527959405 0.0141128270602 0.0102466211915
0.0633107354993 0.9220197291727 0.0108397688341
0.0117265100335 0.1500520475229 0.0129385390176
0.1554720587323 0.8325147121589 0.0136339823583
0.8343293888982 0.0125228158759 0.0138477328147
0.8501638031957 0.1371997508736 0.0139421540105
0.0128816350522 0.8477627063479 0.0144121399968
0.1510801608959 0.0136526924039 0.0153703455534
0.0101917879217 0.5770438618345 0.0162489802253
0.2813372399303 0.7066853759623 0.0169718304280
0.7124374628501 0.0124569780990 0.0170088532421
0.2763025250863 0.0121741311386 0.0170953520675
0.0109658368561 0.4194306712466 0.0173888854559
0.4289110517884 0.5599616067469 0.0174543962439
0.4215420555115 0.0116475994785 0.0178406757287
0.5711258590444 0.0118218313989 0.0178446863879
0.5826868270511 0.4057889581177 0.0179046337552
0.0130567806713 0.2725023750868 0.0181259756201

0.0130760400964 0.7224712523233 0.0184784838882
0.7263437062407 0.2602984019251 0.0185793564371
0.0687230068637 0.0631417277210 0.0203217151777
0.8652302101529 0.0720611837338 0.0213771661809
0.0648599071037 0.8590433543910 0.0231916854098
0.1483494943362 0.7888788352240 0.0274426710859
0.0624359898396 0.1493935499354 0.0290301922340
0.7871369011735 0.0656382042757 0.0294522738505
0.0519104921610 0.5255635695605 0.0299436251629
0.1543129927444 0.0716383926917 0.0307026948119
0.2617842745603 0.0621479485288 0.0325263365863
0.7667257872813 0.1658211554831 0.0327884208506
0.2582103676627 0.6800119766139 0.0331234675192
0.0679065925147 0.7571515437782 0.0346167526875
0.5293578274804 0.4121503841107 0.0347081373976
0.0666036150484 0.2612513087886 0.0347372049404
0.0585675461899 0.3902236114535 0.0348528762454
0.0644535360411 0.6373626559761 0.0348601561186
0.6748138429151 0.0637583342061 0.0355471569975
0.3914602310369 0.5503238090563 0.0360182996383
0.6487701492307 0.2836728360263 0.0362926285843
0.3946498220408 0.0605175522554 0.0381897702083
0.5390137151933 0.0611990176936 0.0392252800118
0.1627895082785 0.6861322141035 0.0482710125888
0.6812436322641 0.1567968345899 0.0489912121566
0.1542832878020 0.1667512624020 0.0497220833872
0.2522727750445 0.2504803933395 0.0507065736986
0.2547981532407 0.4994090649043 0.0509771994043
0.1485580549194 0.5756023096087 0.0521360063667
0.2930239606436 0.5656897354162 0.0523460874925
0.2808991272310 0.1437921574248 0.0524440683552
0.4820989592971 0.2518557535865 0.0527459644823
0.5641878245444 0.1462966743153 0.0529449063728
0.1307699644344 0.4489577586117 0.0542395594501
0.1479692221948 0.3001174386829 0.0543470203419
0.5638684222946 0.2813772089298 0.0547100548639
0.4361157428790 0.4252053446420 0.0557288345913
0.3603263935285 0.2599190004889 0.0577734264233
0.4224188334674 0.1453238443303 0.0585393781623
0.3719001833052 0.3780122703567 0.0609039250680
0.2413645006928 0.3847563284940 0.0637273964449
integration degree=20 N=78:
0.0089411337112 0.0086983293702 0.0021744545399
0.9792622629807 0.0102644133744 0.0028987135265
0.0105475382112 0.9785514202515 0.0030846029337
0.0023777061947 0.0636551098604 0.0034401633104
0.0630425115795 0.0041506347509 0.0041898472012
0.9308422496730 0.0048053482263 0.0044738051498
0.0629076555490 0.9316790069481 0.0047054420814
0.9315962246381 0.0626264881801 0.0048867935750
0.0061951689415 0.9293587058564 0.0051927643369
0.0287125819237 0.0310202122997 0.0074073058981
0.9293844478305 0.0342152968219 0.0079755410301
0.0375457566621 0.9257868884669 0.0083550522910
0.0086895739064 0.1584971251510 0.0096166660864
0.1547597053965 0.8363606657688 0.0096318257850
0.8331025294185 0.0089257244824 0.0098577460758
0.8374231073526 0.1529167304078 0.0102657880301
0.1559362505234 0.0094966240058 0.0103188103111
0.0098599642095 0.8342211493596 0.0106291001630
0.4055873733289 0.0074389302008 0.0106881306895
0.5964727898618 0.3956330809311 0.0106969021010
0.0080747800416 0.4031319425903 0.0109026461714
0.0075073977721 0.5851609594681 0.0109899783575
0.3936764519237 0.5974896592899 0.0113423055229
0.5846530726212 0.0087250464968 0.0120535642930
0.4870804112120 0.0202129229912 0.0139619193821
0.2683512811785 0.7202340088668 0.0141147991536
0.7223956288748 0.2662399366456 0.0141930347046
0.2716826742357 0.0112882698808 0.0144212676268
0.0112580842046 0.7169695963325 0.0144704346855
0.0115034734370 0.2740067110166 0.0144949769872
0.7140525900564 0.0113511560497 0.0145386775694
0.4902871053112 0.4936491841468 0.0145964190926
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0.0201423425209 0.4832573459601 0.0147314578466
0.0361107464859 0.0935679501582 0.0167463963304
0.8607998819851 0.0397379067075 0.0168955500458
0.1005891526001 0.8586343419352 0.0169422662884
0.0918740717058 0.0395513001973 0.0173070172095
0.8604888296191 0.0966224057079 0.0174524546493
0.0439842178673 0.8561886349107 0.0177217222159
0.2011017606735 0.7449115835626 0.0282824024023
0.7449993726263 0.0536865638166 0.0284996712488
0.0532186641310 0.1963754275935 0.0285005646539
0.7453984647401 0.1982065805550 0.0300647223478
0.1957289932876 0.0555713833156 0.0302031277082
0.1092532057988 0.6100036182413 0.0303987136077
0.0567625702001 0.7409121894959 0.0305668796074
0.0483837933475 0.6075135660978 0.0306067413002
0.1080612809760 0.1122081510437 0.0309330068201
0.6185605900991 0.2698753703035 0.0309773820835
0.7721296013497 0.1114117395333 0.0313146250545
0.6115734801133 0.3389367677931 0.0313573493392
0.3381326103376 0.0494693938787 0.0314320469287
0.1173084128254 0.7696451309795 0.0315182143894
0.2674551260596 0.1115718808154 0.0324248137985
0.6542100160026 0.1906548314700 0.0347512152386

0.0538297481158 0.3358616826849 0.0350393454927
0.1848840324117 0.1551831523851 0.0350717420310
0.3376267104744 0.6081402596294 0.0352129215334
0.6067102034499 0.0542632795598 0.0352615504981
0.4612614085496 0.0688176670722 0.0366403220343
0.1525465365671 0.6510240845749 0.0367733107670
0.0700582543543 0.4661904392742 0.0371675662937
0.4704201379032 0.4634826455353 0.0373371571606
0.1216461693746 0.2381494875516 0.0403973346588
0.6371404052702 0.1238399384513 0.0413580040638
0.2379904515119 0.6370216452326 0.0421957791870
0.1483929857177 0.4894188577780 0.0495451004037
0.3598069571550 0.1452880866253 0.0500419261141
0.4941441055095 0.3610216383818 0.0505794587115
0.1440630687981 0.3513508341887 0.0520037210188
0.5019764440004 0.1435491663293 0.0521533567886
0.3555423834298 0.5016491599502 0.0524899152358
0.2443439540771 0.2406052129104 0.0599159762516
0.2437064989342 0.5109017277055 0.0599609997426
0.5122200807321 0.2452737973543 0.0599915272129
0.2526038315178 0.3700319555094 0.0634133183449
0.3759895652851 0.2505406611631 0.0635311861108
0.3729077987144 0.3753750277549 0.0637206605672
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[25] P. Šoĺin, K. Segeth, and I. Doležel, Higher-Order Finite Element Methods, Chapman &
Hall/CRC Press, Boca Raton, FL, 2004.

[26] C. C. T. Bloom, L. Bos, and N. Levenberg, Polynomial interpolation of holomorphic func-
tions in c and cn, Rocky Mountain J. Math., 22 (1992), pp. 441–470.

[27] B. A. Taylor, private communication, 1998.
[28] M. A. Taylor, B. A. Wingate, and L. P. Bos, Several new quadrature for-

mulas for polynomial integration in the triangle, 2005; available online from
http://www.arxiv.org/abs/math.NA/0501496.

[29] M. A. Taylor, B. A. Wingate, and R. Vincent, An algorithm for computing Fekete points
in the triangle, SIAM J. Numer. Anal., 38 (2000), pp. 1707–1720.

[30] S. Thomas and R. Loft, The NCAR spectral element climate dynamical core: Semi-implicit
Eulerian formulation, J. Sci. Comput., 25 (2005), pp. 307–322.

[31] S. Wandzura and H. Xiao, Symmetric quadrature rules on a triangle, Comput. Math. Appl.,
45 (2003), pp. 1829–1840.



SIAM J. NUMER. ANAL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 45, No. 1, pp. 206–222

BPX-TYPE PRECONDITIONERS FOR SECOND AND FOURTH
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Abstract. We develop two Bramble–Pasciak–Xu-type preconditioners for second (resp., fourth)
order elliptic problems on the surface of the two-sphere. To discretize the second order problem we
construct C0 linear elements on the sphere, and for the fourth order problem we construct C1 finite
elements of Powell–Sabin type on the sphere. The main reason these BPX preconditioners work
depends on this particular choice of basis. We prove optimality and provide numerical examples.
Furthermore we numerically compare the BPX preconditioners with the suboptimal hierarchical basis
preconditioners.
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1. Introduction. The aim of the present paper is the development of two
Bramble–Pasciak–Xu (BPX) [7] preconditioners for second (resp., fourth) order el-
liptic problems on the two-dimensional sphere. Such problems arise from several
applications in physical geodesy, oceanography, and meteorology [8], and they are
even of interest for the graphics community, since surface meshes are often param-
eterized by using so-called harmonic weights, which correspond to a finite element
discretization of the Laplace–Beltrami operator; see, e.g., [1] and references therein.

The geometry of the sphere is a major obstacle in constructing suitable approx-
imation spaces for solving partial differential equations. Often a transformation into
spherical coordinates is used which gives rise to singularities at the “poles” of the
sphere. This complication is induced by the spherical coordinate system itself. There-
fore, an important point in our method is the use of homogeneous polynomials in
R

3 that allows us to stick with Cartesian coordinates; hence the “pole problem” is
avoided. In order to develop the theory we shall restrict ourselves to the following
two most simple equations:

(1.1) −ΔSu = f on S,

and

(1.2) Δ2
Su = f on S,

where ΔS is the Laplace–Beltrami operator on the two-sphere S. In order to work
with Cartesian coordinates we write the Laplace–Beltrami operator in terms of the
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tangential gradient

∇Su := ∇u− (n · ∇u)n,

with n the outward normal to S. The Laplace–Beltrami operator on S can now be
defined as

ΔS := ∇S · ∇S .

We use C0 continuous piecewise linear spherical polynomials to discretize the varia-
tional problem

(1.3)

∫
S

∇Su∇Sv dω =

∫
S

fv dω for all v ∈ H1(S)

corresponding to (1.1), and C1 continuous piecewise quadratic spherical polynomials
to discretize the variational problem

(1.4)

∫
S

ΔSuΔSv dω =

∫
S

fv dω for all v ∈ H2(S)

corresponding to (1.2). For every f ∈ L2(S) with
∫
S
f dω = 0 there exist a weak

solution u ∈ H1(S) of (1.3) and a weak solution u ∈ H2(S) of (1.4). In both cases u
is unique up to a constant; see, e.g., [5, 16].

So let m ∈ {1, 2}, and suppose V ⊂ Hm(S) is a space of conforming Cm−1 finite
elements defined on a spherical triangulation of S with mesh size h. Define a(u, v) as
the bilinear form induced by (1.3) (resp., (1.4)) given m = 1 (resp., m = 2), and let
A denote the positive definite self-adjoint operator on V defined by

(1.5) a(u, v) = (Au, v), v ∈ V,

where (·, ·) denotes the inner product of L2(S). Then we have to solve the linear
operator equation

(1.6) Au = b

for some u ∈ V , where b ∈ V is defined by (b, v) = (f, v), v ∈ V . The conjugate
gradient method is a very efficient solver for large linear systems arising from problems
such as (1.6). However, because of stability reasons, it is necessary that these systems
have been suitably preconditioned. It is a known fact (see, e.g., [12]) that if for some
constants 0 < γ,Γ < ∞ and some invertible operator C

(1.7) γ(C−1u, u) ≤ a(u, u) ≤ Γ(C−1u, u), u ∈ V,

then the spectral condition number κ(C1/2AC1/2) is bounded by Γ/γ.
Let us represent the operator A by the stiffness matrix AΦ := (a(φi, φj))i,j∈I with

respect to some typical nodal basis Φ := {φi : i ∈ I} of V . Then it is known that
κ(AΦ) = O(h−2) for problem (1.3) and κ(AΦ) = O(h−4) for problem (1.4). In order
to precondition the system

(1.8) AΦy = bΦ, (bΦ)i := (f, φi), i ∈ I,

one can perform a change of basis. So let Ψ = {ψi : i ∈ I} be another basis of V ,
and let L be the transfer matrix between the two bases. Then

AΨ = LTAΦL,

which suggests the use of C = LLT as preconditioner for the nodal basis discretization.
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Several approaches exist to construct a suitable preconditioner, such as the hi-
erarchical basis (HB) preconditioner [31] and the closely related BPX preconditioner
[7]. The growth rate of the condition numbers was shown to be logarithmic in the
size of the problem for the HB preconditioner [31] and uniformly bounded for the
BPX preconditioner in [12, 27]. Originally, these results were formulated for second
order problems on two-dimensional planar domains, but they could also be estab-
lished for fourth order problems on the plane [13, 20, 26]. Recently, we constructed
an HB preconditioner for fourth order elliptic problems on the surface of the sphere
in [23]. The growth rate of the condition number was shown to be logarithmic which
is, as expected, similar to the planar case. It is the aim of the present paper to prove
optimality of a BPX preconditioner for problems (1.3) and (1.4), independent of the
discretization, and to give numerical evidence of this optimality. We emphasize that
the crucial steps in the optimality proof depend on the particular choice of basis and,
thus, are not valid for arbitrary C0 or C1 finite element constructions on the sphere.
For both problems we explicitly construct a suitable basis that is easy to implement.

The outline of the remaining sections is as follows. In section 2, we introduce the
C0 continuous piecewise linear and C1 continuous piecewise quadratic spherical poly-
nomials that will be used to discretize problem (1.3) (resp., (1.4)). The corresponding
BPX preconditioners are constructed in section 3, and we prove their optimality. Fi-
nally, in section 4 we conclude with some numerical experiments that confirm the
theory with small absolute condition and iteration numbers.

We finish this introduction with a note about notation. We always mean by a ∼ b
that a � b and a � b hold, where a � b means that a can be bounded by a constant
multiple of b uniformly in any parameters on which a,b may depend, and a � b means
b � a.

2. Suitable elements on the sphere. In a series of papers [2, 3, 4], Alfeld,
Neamtu, and Schumaker develop spline spaces on triangulations on the sphere anal-
ogous to the classical spline spaces on planar triangulations. The idea is to work
with homogeneous Bernstein–Bézier polynomials in R

3 which are then restricted to
the sphere. A function f defined on R

3 is homogeneous of degree d provided that
f(αv) = αdf(v) for all real α and all v ∈ R

3. The space Hd of trivariate polyno-
mials of degree d that are homogeneous of degree d is a

(
d+2
2

)
dimensional subspace

of the space of trivariate polymials of degree d. Let {v1, v2, v3} be a set of linearly
independent unit vectors in R

3. We call

T := {v ∈ R
3 | v = b1(v)v1 + b2(v)v2 + b3(v)v3 with bi(v) ≥ 0}

the trihedron generated by {v1, v2, v3}. Each v ∈ R
3 can be written in the form

(2.1) v = b1(v)v1 + b2(v)v2 + b3(v)v3,

and we call b1(v), b2(v), b3(v) the trihedral coordinates of v with respect to T . Given
an integer d ≥ 0, the homogeneous Bernstein basis polynomials of degree d on T are
the polynomials

Bd
ijk(v) :=

d!

i!j!k!
b1(v)

ib2(v)
kb3(v)

k, i + j + k = d,

and they form a basis for Hd. We define a spherical triangle as the restriction of a
trihedron T to the unit sphere S. The restrictions of the trihedral coordinates (2.1)
to a spherical triangle with vertices v1, v2, and v3 are called spherical barycentric
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coordinates. Any homogeneous polynomial p of degree d and its restriction to a
spherical triangle τ has a Bernstein–Bézier representation with respect to τ :

(2.2) p(v) :=
∑

i+j+k=d

cijkB
d
ijk(v),

where the coefficients cijk are the Bézier ordinates.
Homogeneous polynomials in their Bernstein–Bézier representation can be evalu-

ated efficiently using the classical de Casteljau algorithm:

p(v) = cd000(v),

where for 1 ≤ l ≤ d

c0ijk(v) := cijk,

clijk(v) := b1(v)c
l−1
i+1,j,k + b2(v)c

l−1
i,j+1,k + b3(v)c

l−1
i,j,k+1, i + j + k = d− l.

Also continuity conditions can be expressed analogously to the classical bivariate case.
Let T and T̃ be trihedra with vertices {v1, v2, v3} and {v4, v2, v3}. A necessary and
sufficient condition for p and p̃ to be Cr continuous across the common boundary is

(2.3) c̃ijk = ci0jk(v4), i = 0, 1, . . . , r, i + j + k = d.

We write Hd(Ω) for the restriction of Hd to any subset Ω of the unit sphere S,
and refer to Hd(Ω) as the space of spherical polynomials of degree d. Similarly, we
write Hd(H) for the restriction of Hd to any hyperplane H in R

3\{0}. This is just the
well-known space of bivariate polynomials. All these spaces have the same dimension(
d+2
2

)
. Let Δ be a conforming spherical triangulation of Ω ⊂ S. Then we define the

space of spherical splines of degree d and smoothness r associated with Δ to be

Sr
d(Δ) := {s ∈ Cr(S) : s|τ ∈ Hd(τ), τ ∈ Δ},

where s|τ denotes the restriction of s to the spherical triangle τ .

2.1. C0 linear elements on the sphere. The C0 continuous piecewise linear
spherical polynomials that we describe here are a natural extension of the well-known
linear elements introduced by Courant [10]. However, our approach differs signifi-
cantly from previous constructions (e.g., [6, 16]); see Remark 2.4. Suppose that we
are given an initial triangulation Δ0 of S and that

Δ0 ⊂ Δ1 ⊂ · · · ⊂ Δj ⊂ · · · , j = 0, 1, . . . ,

is a sequence of dyadically refined triangulations obtained by subdividing the triangles
at level j (i.e., the triangles of Δj) into 4 congruent subtriangles of level j + 1. This
refinement is regular; i.e. the minimum angle condition is satisfied and

diam τ ∼ 2−j , τ ∈ Δj , j = 0, 1, . . . .

For each j = 0, 1, . . . we define vi,j , i = 1, . . . , Nj , as the vertices of the triangulation
Δj . We create suitable basis functions for the nested spherical spline spaces

S0
1(Δ0) ⊂ S0

1(Δ1) ⊂ · · · ⊂ S0
1(Δj) ⊂ · · · , j = 0, 1, . . . ,
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Fig. 2.1. Graph of (φi,j(v) + 1)v with v ∈ S and φi,j the spherical Courant element.

and this approach allows us to point out a strong connection with the classical Courant
elements on the plane.

So let us define a nodal basis for S0
1(Δj) by solving the following interpolation

problem: find functions φi,j ∈ S0
1(Δj), i = 1, . . . , Nj , such that φi,j(vk,j) = δi,k.

Obviously this interpolation problem has a unique solution. If we restrict the spline
φi,j to any spherical triangle τ in Δj , we get a spherical Bernstein–Bézier polynomial
(2.2) of degree d = 1. The interpolation problem determines the three Bézier ordinates
cijk in (2.2) (with d = 1) in a unique way. If the spherical triangle τ does not contain
vertex vi,j , then the three Bézier ordinates equal zero, and hence φi,j has local support.
If τ contains vertex vi,j , then the Bézier ordinate that is associated with this vertex
takes the value 1, and the other two Bézier ordinates take the value 0. It is easily
checked that the continuity conditions (2.3) for r = 0 are satisfied. Figure 2.1 shows
the spherical Courant element.

We can look at each spherical basis function φi,j as the restriction of a trivariate
homogeneous function to the sphere S. In particular, let f be any spherical function
and let d ∈ N; then we define (f)d as its homogeneous extension of degree d, i.e.,

(2.4) (f)d(v) := |v|df
(

v

|v|

)
, v ∈ R

3 \ {0}.

If we restrict the homogeneous extension of degree 1 of φi,j to the sphere S, we recover
φi,j , i.e., φi,j ≡ (φi,j)1|S . Moreover, we even have the following theorem.

Theorem 2.1. The restriction of (φi,j)1 to the tangent plane touching S at vi,j
is a classical bivariate Courant element defined on this tangent plane centered around
the vertex vi,j.

Proof. First we define the radial projection RT from any plane T that is tangent
to S onto S by

(2.5) RT v := v :=
v

|v| ∈ S, v ∈ T,

where |v| denotes the Euclidean norm of v. Let Ti,j be the tangent plane touching
S at vertex vi,j ∈ Δj . Because the mapping RTi,j is one-to-one, the inverse R−1

Ti,j
is

well defined. Define Δi,j as the 1-ring of vertex vi,j in Δj . Let Δi,j be the image
of Δi,j under R−1

Ti,j
. Since great circles are mapped onto straight lines under R−1

Ti,j
,

Δi,j consists of planar neighboring triangles with one common vertex vi,j . The spline
space S0

1(Δi,j) is just the well-known bivariate linear spline space on the triangulation
Δi,j . Let τ be a spherical triangle in Δi,j and denote its vertices by v1, v2, v3. Let
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T be the trihedron generated by {v1, v2, v3}. Then for some a ∈ {1, 2, 3} we have
va = vi,j (since τ ∈ Δi,j) and

(φi,j)1(w) = ba(w)i, w ∈ T ,

with (b1, b2, b3) the trihedral coordinates of w with respect to T . Consequently,
(φi,j)1 equals zero at the vertices of Δi,j , except that for vertex vi,j ∈ Δi,j we get
(φi,j)1(vi,j) = 1. Since φi,j = (φi,j)1|S , we have φi,j |τ ∈ H1(S). Let τ be the image
of τ under R−1

Ti,j
. We find that (φi,j)1|τ ∈ H1(τ) and thus (φi,j)1|Ti,j

∈ S0
1(Δi,j). This

proves that (φi,j)1|Ti,j is just the well-known classical bivariate Courant element.
This idea can be exploited to extend several properties of the classical Courant

elements to the spherical elements φi,j , such as

0 ≤ φi,j(v) ≤ 1, v ∈ S.

The following lemma is obvious.
Lemma 2.2 (Riesz L∞-stability). The nodal basis functions {φi,j | i = 1, . . . , Nj}

satisfy ∥∥∥∥∥∥
Nj∑
i=1

ci,jφi,j

∥∥∥∥∥∥
L∞

∼ max
i

|ci,j |.

Proof. There exist a triangle τ ∈ Δj and a point v ∈ τ such that∥∥∥∥∥∥
Nj∑
i=1

ci,jφi,j

∥∥∥∥∥∥
L∞

=

∣∣∣∣∣∣
Nj∑
i=1

ci,jφi,j(v)

∣∣∣∣∣∣ ≤ max
i

|ci,j |
∑

i|vi,j∈τ

‖φi,j‖L∞ � max
i

|ci,j |.

The other inequality follows from |ck,j | = |
∑Nj

i=1 ci,jφi,j(vk,j)| ≤ ‖
∑Nj

i=1 ci,jφi,j‖L∞ .
This completes the proof.

To derive the optimality of the BPX preconditioner we will need the following
theorem.

Theorem 2.3 (Riesz Lp-stability). For any 1 < p < ∞ we have∥∥∥∥∥∥
Nj∑
i=1

ci,jφi,j

∥∥∥∥∥∥
p

Lp

∼ 2−2j

Nj∑
i=1

|ci,j |p.

Proof. Since we have already established Riesz L∞-stability of the basis (Lemma
2.2), the proof is identical to the corresponding proof for the classical Courant elements
on the plane from [10].

Remark 2.4. There exist other constructions of C0 spherical finite elements in
the literature. In [16] problem (1.1) is discretized by approximating the sphere S by a
polyhedron Sh. Then linear elements on the surface Sh are used. In [6] spherical linear
elements are created, but another definition for spherical barycentric coordinates is
used. In [6] the spherical barycentric coordinates are required to form a partition of
unity, and therefore they inevitably fail to have many of the important properties that
the spherical barycentric coordinates of [2] have. The optimality proof of the BPX
preconditioner that we give in section 3 works only for our construction.
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Fig. 2.2. The spherical Powell–Sabin macroelement.

2.2. C1 Powell–Sabin elements on the sphere. In general, maintaining C1

continuity conditions (2.3) between neighboring triangles results in nontrivial relations
and is not always possible for arbitrary given triangulations; see, e.g., [17]. Therefore,
to overcome this problem, we will focus on the Powell–Sabin 6-split of a triangu-
lation. Starting from an arbitrary spherical triangulation Δ, we introduce further
substructures by subdividing each triangle of Δ into 6 subtriangles in a prescribed
way. Because of the special structure of this refined triangulation one introduces suf-
ficient degrees of freedom to maintain overall C1 continuity. The Powell–Sabin 6-split
is obtained as follows:

1. Define for each triangle τk in Δ an interior point zk such that if two triangles
τk and τl have a common edge (circle segment), then the arc that joins zk
and zl intersects this common edge (circle segment) at a point rkl between
its vertices. The arc between two points on S is defined as the circle segment
connecting these two points obtained as the intersection of S with a plane
passing through the two points and the origin.

2. Join the points zk to the vertices of τk.
3. For each edge (circle segment) of τk

• that belongs to the boundary ∂Ω, join zk to some point of the edge,
• that is common to a triangle τl, join zk to rkl.

Figure 2.2 shows the split of one triangle. We will refer to this new triangulation
as ΔPS . The spline space S1

2(ΔPS) of piecewise quadratic C1 spherical polynomials
over ΔPS will be called the space of spherical Powell–Sabin (PS) splines. Let gi and
hi be independent unit vectors lying in the tangent plane of S at the vertices vi,
i = 1, . . . , N , of the triangulation Δ. The following interpolation problem can be
considered for spherical PS splines. Given any set of values (αi, βi, γi), i = 1, . . . , N ,
find s(v) ∈ S1

2(ΔPS) such that

(2.6) s(vi) = αi,
∂s(vi)

∂gi
= βi,

∂s(vi)

∂hi
= γi,

for all i = 1, . . . , N . Maes and Bultheel [23] have shown that this interpolation
problem has a unique solution, and hence the classical result of [28] can be extended
to spherical domains; i.e., the dimension of the spherical spline space S1

2(ΔPS) equals
3N .
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Fig. 2.3. Principle of
√

3 subdivision. Applying the
√

3 subdivision twice results in triadic
subdivision.

In order to create nested spherical PS spline spaces

S1
2(ΔPS

0 ) ⊂ S1
2(ΔPS

1 ) ⊂ S1
2(ΔPS

2 ) ⊂ · · ·

it is sufficient that we find a refinement procedure that yields nested sequences

ΔPS
0 ⊂ ΔPS

1 ⊂ ΔPS
2 ⊂ · · · ,(2.7)

{vi ∈ Δ0} ⊂ {vi ∈ Δ1} ⊂ {vi ∈ Δ2} ⊂ · · · .

It was pointed out by Vanraes et al. [30] that applying a
√

3 refinement scheme yields
nested PS spline spaces. Applying the

√
3 scheme twice yields a triadic scheme. The√

3 scheme was first introduced by Kobbelt [19] and Labsik and Greiner [21]. Instead
of splitting each edge in Δ0 and performing a 1-to-4 split for each triangle (dyadic
refinement), we compute a new vertex for each triangle and retriangulate the old and
new vertices. Figure 2.3 shows the principle. Note that the new edges in Δ1 coincide
with the lines of the PS 6-split ΔPS

0 . In the new triangles new interior points must
be chosen on the one line of the new PS 6-split ΔPS

1 that is already fixed, that is, the
original edge that crosses the triangle.

Remark 2.5. Although the
√

3 refinement is applicable to arbitrary (spherical)
triangulations, it is not rigorously proven whether the corresponding sequence (2.7)
satisfies the minimum angle condition and whether

diam τ ∼
√

3
−j

, τ ∈ ΔPS
j , j = 0, 1, . . . .

In our mathematical analysis we will always assume that we are given a nested se-
quence (2.7) that is regular. By using a PS 12-split as in [26] instead of the PS 6-split
one can obtain a provably regularly refined sequence of PS spline spaces by applying
dyadic refinement. However, we opt for the PS 6-split because the construction of
the corresponding basis functions is less complicated, certainly on the sphere, and
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Fig. 2.4. Graphs of (Bk
i,j(v) + 1)v with v ∈ S for k = 1, 2, 3 with Bk

i,j the spherical Hermite
PS basis function.

because the
√

3 refinement is a topologically slower refinement than the dyadic refine-
ment; thus we have more levels of resolution if a prescribed target complexity of the
PS spline space must not be exceeded.

With each vertex vi,j ∈ Δj we associate two directions gi,j and hi,j such that the
set (vi,j , gi,j , hi,j) forms an orthonormal basis for R

3. For instance, suppose that vi,j
has spherical coordinates (cos θ sinφ, sin θ sinφ, cosφ), θ ∈ [0, 2π], φ ∈ [0, π]; then take
gi,j = (cos θ cosφ, sin θ cosφ,− sinφ) and hi,j = (− sin θ, cos θ, 0). Let us introduce the
functionals

λ1
i,j(f) := f(vi,j), λ2

i,j(f) :=
∂f(vi,j)

∂gi,j
, λ3

i,j(f) :=
∂f(vi,j)

∂hi,j
, f ∈ C1(S).

Then we construct a nodal basis for S1
2(ΔPS

j ) by solving the following interpolation

problems of the form (2.6): find functions Bk
i,j ∈ S1

2(ΔPS
j ), k = 1, 2, 3, i = 1, . . . , Nj ,

such that

λ1
m,j(B

k
i,j) =

√
3
−j

δk,1δi,m,

λ2
m,j(B

k
i,j) = δk,2δi,m,(2.8)

λ3
m,j(B

k
i,j) = δk,3δi,m

for all m = 1, . . . , Nj . Note that these basis functions satisfy Bk
i,j ≡ (Bk

i,j)2|S ; i.e. the

spherical basis function Bk
i,j is equal to the restriction of its homogeneous extension

(2.4) of degree 2 to the sphere S. If we restrict (Bk
i,j)2 to the tangent plane touching

S at vi,j , we get the corresponding planar Hermite basis function of [29] defined on
this tangent plane. The proof is similar to the proof of Theorem 2.1. A detailed proof
in a more general setting can be found in [23, Theorem 4.1]. Figure 2.4 shows the
three spherical Hermite PS basis functions that are associated with one vertex.

We now show some stability properties of the nodal basis (2.8) that will be useful
in the optimality proof of the BPX preconditioner.

Lemma 2.6 (Riesz L∞-stability). The nodal basis defined by (2.8) satisfies∥∥∥∥∥∥
Nj∑
i=1

3∑
k=1

cki,jB
k
i,j

∥∥∥∥∥∥
L∞

∼
√

3
−j

max
i,k

|cki,j |.

Proof. First we note that this result is well known for the classical bivariate
Hermite basis of PS type on planar triangulations. Indeed, the inequality � can be
shown using the Markov inequality for polynomials [9], and the inequality � can be
deduced, for instance, from the work in [29, section 6.2]. This result for the bivariate
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planar setting can be extended easily to the spherical setting by exploiting the fact
that the restriction of (Bk

i,j)2 to the tangent plane touching S at vi,j is a classical
bivariate Hermite basis function. For a detailed proof, see [23, Corollary 4.2].

Theorem 2.7 (Riesz Lp-stability). If s is in S1
2(ΔPS

j ), then for any 1 < p < ∞
we have

‖s‖pLp
∼

√
3
−2j

⎛⎝ Nj∑
i=1

|λ1
i,j(s)|p +

√
3
−jp

Nj∑
i=1

3∑
k=2

|λk
i,j(s)|p

⎞⎠ .

Proof. Using the Markov inequality for spherical polynomials [25, Prop. 4.3], we

infer that |λk
i,j(s)| �

√
3
j‖s‖L∞(τi) for k = 2, 3 with τi ∈ ΔPS

j such that vi,j ∈ τi.
By mapping τi to a standard reference triangle and using the fact that all norms on
the finite-dimensional space of polynomials are equivalent, we find that ‖s‖L∞(τi) �
√

3
2j/p‖s‖Lp(τi), which implies

√
3
−2j

⎛⎝ Nj∑
i=1

|λ1
i,j(s)|p +

√
3
−jp

Nj∑
i=1

3∑
k=2

|λk
i,j(s)|p

⎞⎠ �
Nj∑
i=1

3∑
k=1

‖s‖pLp(τi)
� ‖s‖pLp

.

The other inequality follows from the observation that

|s(v)|p =

∣∣∣∣∣∣
Nj∑
i=1

(
√

3
j
λ1
i,j(s)B

1
i,j(v) +

3∑
k=2

λk
i,j(s)B

k
i,j(v)

)∣∣∣∣∣∣
p

�
Nj∑
i=1

(
√

3
jp|λ1

i,j(s)|p|B1
i,j(v)|p +

3∑
k=2

|λk
i,j(s)|p|Bk

i,j(v)|p
)
,

which holds because at any v ∈ S there are at most nine nonzero basis functions. We
find that

‖s‖pLp
�

Nj∑
i=1

(
√

3
jp|λ1

i,j(s)|p
∫
S

|B1
i,j(v)|pdv +

3∑
k=2

|λk
i,j(s)|p

∫
S

|Bk
i,j(v)|pdv

)

�
√

3
−2j

⎛⎝ Nj∑
i=1

|λ1
i,j(s)|p +

√
3
−jp

Nj∑
i=1

3∑
k=2

|λk
i,j(s)|p

⎞⎠ ,

where we have used that ‖Bk
i,j‖L∞ �

√
3
−j

, which follows from the Riesz L∞-stability
of the basis (Lemma 2.6).

3. Construction of the BPX preconditioners. In this section we construct
BPX preconditioners for problems (1.3) and (1.4) and prove that these preconditioners
are optimal. Let m ∈ {1, 2}, and let ρ ∈ R be a scaling factor. If m equals 1, we
define Sj as the spline space S0

1(Δj), we set the scaling factor ρ equal to 2, and we
solve problem (1.3). If m equals 2, we define Sj as the spline space S1

2(ΔPS
j ) and we

set the scaling factor ρ equal to
√

3, leading to problem (1.4).
Let Qj , j = 0, 1, . . . , be a sequence of projectors on Sj which are orthogonal with

respect to the inner product (·, ·), and let Q−1 ≡ 0. Let Ω be a subset of the sphere
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S, and let Hm(Ω), Hm(S) be the spherical Sobolev spaces as defined in [22, 25]. We
prove the following theorem.

Theorem 3.1. Suppose s ∈ SJ . Then

(3.1) ‖s‖2
Hm(S) ∼

J∑
j=0

ρ2mj ‖(Qj −Qj−1)s‖2
L2(S) .

Proof. Let Ω be a subset of S such that diam(Ω) ≤ 1. Let TΩ be the tangent plane
touching S at rΩ, with rΩ the center of a spherical cap of smallest possible radius
containing Ω. Here a spherical cap is defined as the region of a sphere which lies on
one side of a given plane that intersects with the sphere. Recall the definition of the
radial projection RTΩ from (2.5). Let Ω be the image of Ω under R−1

TΩ
and define

Hm(Ω) as the usual Sobolev space on domains in R
2. Let (s)m be the homogeneous

extension (2.4) of degree m of s, and define s as the restriction of (s)m to Ω. The
norm equivalence ‖s‖Hm(Ω) ∼ ‖s‖Hm(Ω) holds; see Lemma 3.2 in [25]. Furthermore,

we also have ‖s‖L2(Ω) ∼ ‖s‖L2(Ω); see Lemma 3.1 in [25]. Now let s =
∑J

j=0 sj with

each sj ∈ Sj . Then it follows from the theory of homogeneous polynomials [2, 3]

that (s)m =
∑J

j=0(sj)m; hence s =
∑J

j=0 sj with sj the restriction of (sj)m to Ω.

Furthermore, each sj is a member of the planar spline space Sj which is defined as
S0

1(R−1
TΩ

(Δj |Ω)) for m = 1 and as S1
2(R−1

TΩ
(ΔPS

j |Ω)) for m = 2. Proposition 2 in [26]
claims that

‖s‖2
Hm(Ω) ∼ inf

J∑
j=0

ρ2mj ‖sj‖2
L2(Ω) ,

where the infimum must be taken with respect to all admissible representations∑J
j=0 sj of s. From the norm equivalences above, we get

(3.2) ‖s‖2
Hm(Ω) ∼ inf

J∑
j=0

ρ2mj ‖sj‖2
L2(Ω) .

Now consider a finite collection of domains Ωk with diam(Ωk) ≤ 1, covering S. Equa-
tion (3.2) is valid for each subdomain Ωk. Furthermore, we have the equivalences

‖sj‖2
L2(S) ∼

∑
k ‖sj‖

2
L2(Ωk) and ‖s‖2

Hm(S) ∼
∑

k ‖s‖
2
Hm(Ωk) . Hence,

‖s‖2
Hm(S) ∼ inf

J∑
j=0

ρ2mj ‖sj‖2
L2(S) ,

which immediately implies (3.1); see [15, 26].
Remark 3.2. Proposition 2 in [26] is formulated in terms of C1 finite elements,

but it is clear that a similar result holds for C0 finite elements (with obvious modifi-
cations).

In view of (1.7) let us define the self-adjoint positive definite operator C−1
J on SJ

by

(3.3) (C−1
J u, v) =

J∑
j=0

ρ2mj((Qj −Qj−1)u, (Qj −Qj−1)v),
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and let AJ be the operator defined by (1.5) for V = SJ . By Poincaré’s inequality on
S, we have

(3.4) a(u, u) ∼ ‖u‖2
Hm(S)

under the constraint
∫
S
u dω = 0. Then Theorem 3.1 and (1.7) imply that

(3.5) κ(C
1/2
J AJC

1/2
J ) = O(1)

under the constraint that we fix the solution u of (1.3), (1.4) such that
∫
S
u dω = 0.

We now replace CJ by a spectrally equivalent and computationally simpler pre-
conditioner ĈJ given by

(3.6) ĈJ :=

J∑
j=0

Nj∑
i=1

(·, φi,j)φi,j

for problem (1.3) and by

(3.7) ĈJ :=

J∑
j=0

Nj∑
i=1

3∑
k=1

(·, Bk
i,j)B

k
i,j

for problem (1.4). We say that two operators A and B are spectrally equivalent if

(Av, v)

(v, v)
∼ (Bv, v)

(v, v)
.

Note that, by (3.3), we have

(3.8) C−1
J :=

J∑
j=0

ρ2mj(Qj −Qj−1).

Indeed, by the L2-orthogonality of the operators Qj we find

(C−1
J u, v) =

⎛⎝ J∑
j=0

ρ2mj(Qj −Qj−1)u, v

⎞⎠
=

⎛⎝ J∑
j=0

ρ2mj(Qj −Qj−1)u,

J∑
j=0

(Qj −Qj−1)v

⎞⎠
=

J∑
j=0

ρ2mj((Qj −Qj−1)u, (Qj −Qj−1)v).

Let us focus on the biharmonic problem (1.4); i.e., take m = 2. By the orthogonality
of the projectors Qj , one finds from (3.8) that

CJ =

J∑
j=0

√
3
−4j

(Qj −Qj−1).
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Because of the decaying scaling factors we are allowed to replace CJ by the spectrally
equivalent operator

C̃J :=

J∑
j=0

√
3
−4j

Qj .

From Theorem 2.7, we have the Riesz L2-stability

(3.9)

∥∥∥∥∥∥
Nj∑
i=1

3∑
k=1

cki,jB
k
i,j

∥∥∥∥∥∥
2

L2

∼
√

3
−4j

Nj∑
i=1

3∑
k=1

|cki,j |2,

and by the Riesz representation theorem this implies the existence of a dual or
biorthogonal basis {B̃k

i,j} such that

(3.10)

∥∥∥∥∥∥
Nj∑
i=1

3∑
k=1

cki,jB̃
k
i,j

∥∥∥∥∥∥
2

L2

∼
√

3
4j

Nj∑
i=1

3∑
k=1

|cki,j |2.

The orthogonal projector Qj has the representation

Qjf =

Nj∑
i=1

3∑
k=1

(f, B̃k
i,j)B

k
i,j .

Hence,

(Qjf, f) = (Qjf,Qjf) = ‖Qjf‖2
L2

∼
√

3
4j

Nj∑
i=1

3∑
k=1

|(f,Bk
i,j)|2 = (Q̂jf, f),

with

Q̂j :=
√

3
4j

Nj∑
i=1

3∑
k=1

(·, Bk
i,j)B

k
i,j ,

which shows that ĈJ defined in (3.7) is spectrally equivalent to CJ such that, by (3.5),

κ(Ĉ
1/2
J AJ Ĉ

1/2
J ) = O(1).

The optimality of the preconditioner defined in (3.6) for problem (1.3) can be derived
analogously using Theorem 2.3. We have thus proved the main result of this paper.

Theorem 3.3. The BPX preconditioners given by

J∑
j=0

Nj∑
i=1

(·, φi,j)φi,j and

J∑
j=0

Nj∑
i=1

3∑
k=1

(·, Bk
i,j)B

k
i,j

yield uniformly bounded condition numbers for problem (1.3) (resp., (1.4)).
Corollary 3.4. Any basis of the general form in [23] which is stable in the

sense of Theorem 2.7 gives rise to an optimal BPX preconditioner for (1.4).
Remark 3.5. In the paper [18] Griebel shows that the conjugate gradient method

for the semidefinite system that arises from the Galerkin scheme using the nodal basis
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functions of the finest level and of all coarser levels of discretization is equivalent to
the BPX-preconditioned conjugate gradient method for the linear system that arises
from the Galerkin scheme using only the nodal basis functions of the finest level. In
our numerical experiments we take the approach of the semidefinite system using the
nodal basis functions at all resolution levels. For details on efficient implementation
we refer to [18].

Remark 3.6. The above derivation depends heavily on the use of a biorthogonal
basis. Its existence is guaranteed by the Riesz representation theorem. Note the

weight change from
√

3
−4j

in (3.9) for the finite element basis to
√

3
4j

in (3.10) for the
biorthogonal basis. For properties of Riesz bases in connection with biorthogonality
and multiresolution we refer the reader to [14].

4. Numerical results. In this section we provide the results of numerical ex-
periments illustrating the optimality of the BPX preconditioners developed in the
earlier sections. We also compare the results of the BPX preconditioners with those
obtained using the corresponding hierarchical preconditioners which are suboptimal.

The first problem that we solve is given by

(4.1) −ΔSu = 2x on S,

and the exact solution u equals x, which can easily be checked since spherical har-
monics are eigenfunctions of the Laplace–Beltrami operator on S [24]. To discretize
problem (4.1) we use the basis functions φi,j . We start from an almost uniform tri-
angulation Δ0 by projecting the twelve vertices of the regular icosahedron onto the
sphere. These twelve points define a mesh consisting of twenty equal spherical trian-
gles; cf. [6]. The finer triangulations Δj are constructed by subdividing the triangles
of the previous coarser triangulation into four equal subtriangles. Hence the dimen-
sion of the spline space increases like 2 + 10 · 4j with the refinement level j. Inner
products of the form (∇Sφi1,j ,∇Sφi2,j) will have to be computed. Hereto, we use a
third order Gaussian quadrature formula on a triangle; see also [4, Prop. 4.1].

The second problem that we solve is given by

(4.2) Δ2
Su = 36xy on S,

and the exact solution u equals xy. In order to discretize (4.2) we have to compute
inner products of the form (ΔSB

k1
i1,j

,ΔSB
k2
i2,j

). Since the basis functions Bk
i,j are

piecewise quadratic polynomials, we can use the formula

ΔSB
k
i,j(v) = ΔBk

i,j(v) − 6Bk
i,j(v), v ∈ S,

with Δ the usual Laplace operator on R
3; see [24]. Then, to evaluate the inner

products, we use again a third order Gaussian quadrature formula on a triangle. We
show results for the

√
3 refinement procedure where we start from the same quasi-

uniform triangulation Δ0 as in the first problem (4.1). The dimension of the spline
space increases like 6 + 30 · 3j with the refinement level j.

Note that the solution u in (4.1) and (4.2) is unique only up to a constant. From [2,
Prop. 7.2] we find that constant functions on the sphere are contained in the spherical
PS spline space S1

2(ΔPS
j ) but not in the spherical piecewise linear spline space S0

1(Δj).

Hence, the stiffness matrix corresponding to the nodal basis {Bk
i,j} will have one zero

eigenvalue with an eigenvector corresponding to the constant function. The stiffness
matrix corresponding to the nodal basis {φi,j} will have an eigenvalue of O(h2) with an
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Table 4.1

Iteration history for problem (4.1).

BPX HB
dim J κ residual #iter κ residual #iter
42 1 3.1 2.4897e-05 12 7.6 2.4974e-05 17
162 2 3.7 1.6766e-05 9 10.7 1.9546e-05 16
642 3 4.6 4.7350e-06 11 15.2 8.6198e-06 20
2562 4 5.5 4.5474e-06 11 22.2 5.2361e-06 22
10242 5 6.2 1.6705e-06 12 31.9 3.0622e-06 23
40962 6 6.7 1.0193e-06 12 44.9 1.4750e-06 25
163842 7 7.0 6.2720e-07 12 60.9 6.5043e-07 26
655362 8 7.4 1.6451e-07 13 84.2 3.4960e-07 24

Table 4.2

Iteration history for problem (4.2).

BPX HB
dim J κ residual #iter κ residual #iter
96 1 51.0 3.0555e-11 10 60.7 1.5555e-03 5
276 2 65.7 8.7509e-04 7 82.0 4.9572e-04 9
816 3 79.5 3.9398e-04 8 103.7 5.4025e-04 15
2436 4 88.4 2.6345e-04 11 123.6 2.5576e-04 20
7296 5 96.8 1.7065e-04 11 152.0 1.8184e-04 26
21876 6 103.4 8.9656e-05 13 192.1 1.0873e-04 31
65616 7 107.7 5.0634e-05 13 237.0 6.3035e-05 36
196836 8 110.2 3.2635e-05 14 310.7 3.5946e-05 44

eigenvector that approximates the constant function up to discretization error O(h2)
with respect to the L2-norm. Note that the condition numbers that we compute are
given by κ(C1/2AC1/2) = λmax/λmin, where λmax denotes the largest eigenvalue of
C1/2AC1/2 and λmin its smallest nonzero eigenvalue. For obvious reasons we also omit
the smallest eigenvalue of O(h2) for the Poisson equation. Note that, from Theorem
3.3 and Remark 3.5, the BPX preconditioner uses all nodal basis functions on all
levels. For each redundant basis function we will get a zero eigenvalue.

Tables 4.1 and 4.2 show the results. We have used a nested iteration conjugate
gradient method to solve the problem; i.e., by means of an outer iteration loop going
from a coarse resolution level to the finest resolution level we compute the solution to
(4.1) or (4.2) at each level with the BPX-preconditioned conjugate gradient method
and we use the solution obtained at the previous coarser level as an initial guess. At
each level we stop the conjugate gradient iteration if the Hm-norm of the residual is
proportional to the discretization error which is of O(h). In [11] arguments are given
for the fact that nested iteration is an asymptotically optimal method in the sense
that it provides the solution u at the finest resolution level J up to discretization error
in an overall number of O(NJ) operations, provided that an optimal preconditioner
is used.

Each table has the same setup. The first column shows the dimension of the
spline space, and the second column contains the resolution level J . Then we dis-
tinguish between the results for the BPX preconditioner and the results for the HB
preconditioner. For each preconditioner we display the spectral condition number κ
of the system matrix for the linear system of equations that is solved. Moreover, we
show the Hm-norm of the residuals corresponding to the approximate solution, and
the number of iterations that are needed on this level to reach discretization error
accuracy.
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Remark 4.1. Computing the Hm-norm of the residual is easy. Let us concentrate
on problem (1.2). We have that

‖uJ − u‖2
H2 ∼ ‖AuJ − b‖2

(H2)′

=

∥∥∥∥∥∥
J∑

j=0

Nj∑
i=1

3∑
k=1

〈Bk
i,j , A(uj − u)〉B̃k

i,j

∥∥∥∥∥∥
2

(H2)′

∼
J∑

j=0

Nj∑
i=1

3∑
k=1

|〈Bk
i,j , A(uj − u)〉|2

=

J∑
j=0

Nj∑
i=1

3∑
k=1

∣∣〈Bk
i,j , Auj〉 − 〈Bk

i,j , b〉
∣∣2 .

Here {B̃k
i,j} is the dual frame to {Bk

i,j}. The first equivalence is due to the ellipticity of
the operator A. The second equivalence is because the dual frame is a Riesz frame for
the dual function space

(
H2

)′
. The last expression is just the l2-norm of the residual

of the system (1.8) with respect to the frame {Bk
i,j} (see also Remark 3.5). This

trick works only for elliptic partial differential equations, because the first equivalence
above makes use of the ellipticity condition (3.4).

REFERENCES
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SUPERCONVERGENCE FOR CONTROL-VOLUME MIXED FINITE
ELEMENT METHODS ON RECTANGULAR GRIDS∗

THOMAS F. RUSSELL† , MARY F. WHEELER‡ , AND IVAN YOTOV§

Abstract. We consider control-volume mixed finite element methods for the approximation
of second-order elliptic problems on rectangular grids. These methods associate control volumes
(covolumes) with the vector variable as well as the scalar, obtaining local algebraic representation of
the vector equation (e.g., Darcy’s law) as well as the scalar equation (e.g., conservation of mass). We
establish O(h2) superconvergence for both the scalar variable in a discrete L2-norm and the vector
variable in a discrete H(div)-norm. The analysis exploits a relationship between control-volume
mixed finite element methods and the lowest order Raviart–Thomas mixed finite element methods.
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1. Introduction. We consider the second-order elliptic problem in a domain
Ω ⊂ R

d, d = 2 or 3, written as a first-order system

u = −K∇p in Ω,(1.1)

∇ · u = f in Ω,(1.2)

u · n = 0 on ∂Ω.(1.3)

The above equations model single-phase flow in porous media, where p is the fluid
pressure, the vector u is the Darcy velocity, K is a symmetric uniformly positive
definite and bounded diagonal tensor, representing the rock permeability divided by
the fluid viscosity, n is the outward unit normal to ∂Ω, and f is the source term
satisfying the compatibility condition∫

Ω

f dx = 0.

The choice of homogeneous Neumann boundary condition corresponds to an imper-
meable boundary, which is the typical physical situation.

In this paper we consider discretizations for (1.1)–(1.3) based on control-volume
mixed finite element methods (CVMFEM) and establish O(h2) superconvergence for
the pressure and velocity in a discrete L2-norm and H(div)-norm, respectively. Most
of the arguments can be extended to Dirichlet boundary conditions. However, some
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loss of superconvergence occurs on the boundary in that case. Global O(h) conver-
gence has been shown by Chou et al. [9, 10]; here we obtain the O(h2) rate suggested
by various numerical results (e.g., [8, 19, 24, 22]). Superconvergence is proved by
O(h2) estimates of the differences between the scalar and vector discrete solutions
and appropriate projections of the exact solutions.

CVMFEM, first introduced in [8], can be viewed as a type of mixed covolume
method [9, 10, 11]. CVMFEM are closely related to the Raviart–Thomas mixed finite
element methods (MFEM) [27, 7, 28], cell-centered finite difference (CCFD) methods
[29, 30, 4], mimetic finite difference (MFD) methods [5, 21, 6], and multipoint flux
approximation (MPFA) methods [1, 17]. Some of these relationships are explored in
detail in [22].

Like MFEM, CVMFEM are designed to provide simultaneous (accurate) approxi-
mations of pressure and velocity, and local mass conservation,

∫
Q
∇·uh =

∫
Q
f on each

finite element Q, where uh is the computed velocity. These properties can be difficult
to obtain when K is heterogeneous (in particular, discontinuous) and/or anisotropic,
especially when it incorporates irregular geological features. The methods listed above
seek to accomplish this for flow in porous media, among other applications.

Unlike MFEM, CVMFEM have vector control volumes (covolumes) that give
rise to a local discrete Darcy law analogous to (1.1). An engineer measuring the
permeability of a core sample will typically impose a pressure at each end and observe
the flux through the core. The discrete CVMFEM control volume that corresponds
to the discrete flux unknown through a face, consisting of the two adjacent halves of
the elements on either side of the face (see Figure 1), plays the role of this core, with
the element pressures representing the imposed pressures at the ends. The vector
test function associated with the control volume is essentially a piecewise-constant
vector field, similar to a unit vector in the control volume and a zero vector outside
it. The algebraic equation produced by this test function is the local discrete Darcy
law. Thus, CVMFEM represent both physical principles in (1.1)–(1.3) locally.

In MFEM, the test vector belongs to the vector trial space and therefore has
a continuous normal component. Because the test and trial spaces are the same,
the mass matrix is symmetric and positive definite (SPD). In CVMFEM, the normal
component of the test vector is discontinuous at the ends of the control volume, and
can also be discontinuous at the element face for general distorted grids. If K is
elementwise constant and the elements are affine (parallelograms in two dimensions),
the mass matrix is SPD, despite the distinct test and trial spaces; in general, it is not
symmetric, but symmetry can be restored by appropriate numerical integration [19].

On a uniform grid with constant K, the lowest-order Raviart–Thomas MFEM,
denoted RT0, yields a tridiagonal mass matrix with weights 1/6, 2/3, 1/6, and the
basic CCFD results in a diagonal mass matrix. As will be seen below, CVMFEM
leads to weights 1/8, 3/4, 1/8. These are all of the form c, 1 − 2c, c, where c = 0
(CCFD), 1/6 (MFEM), or 1/8 (CVMFEM). In [19], some heuristic reasons to favor
c = 1/8 are presented: on a uniform grid, the second-order truncation error term is
half that of c = 0 and c = 1/6; on a nonuniform grid, only c = 1/8 matches one-sided
compact finite differences, avoiding any first-order local truncation error; in terms
of Fourier modes, the ratio of the discrete eigenvalue to the continuous eigenvalue is
generally closer to 1 for c = 1/8. Numerical results in [22] for homogeneous K show
second-order convergence for both MFEM and CVMFEM; on orthogonal grids, the
flux error for CVMFEM improves on that of MFEM by a factor of approximately 2.6;
on the distorted grids used, CVMFEM is worse by a factor of about 1.3.
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The rest of the paper is organized as follows. In the next section we recall the
Raviart–Thomas MFEM for (1.1)–(1.3). Section 3 describes the CVMFEM and its
relation to the Raviart–Thomas MFEM. Superconvergence for the velocity is estab-
lished in section 4. Section 5 is devoted to superconvergence for the pressure.

2. Mixed finite element methods. We will make use of the following standard
notation. For a subdomain G ⊂ R

d, the L2(G) inner product (or duality pairing) for
scalar and vector valued functions is denoted by (·, ·)G. We denote the norm in the
Sobolev space W k

p (G), k ∈ R, 1 ≤ p ≤ ∞ [2], by ‖ · ‖k,p,G. Let ‖ · ‖k,G be the norm

of the Hilbert space Hk(G) = W k
2 (G). We omit G in the subscript if G = Ω. For a

section of a subdomain boundary S ⊂ R
d−1 we write 〈·, ·〉S and ‖ · ‖0,S for the L2(S)

inner product (or duality pairing) and norm, respectively.
The mixed variational formulation, which is the basis for the MFEM is as follows.

Find u ∈ V and p ∈ W such that

(K−1u,v) = (p,∇ · v), v ∈ V,(2.1)

(∇ · u, w) = (f, w), w ∈ W,(2.2)

where

V = {v ∈ H(div; Ω) : v ·n = 0 on ∂Ω}, W = L2
0(Ω) =

{
w ∈ L2(Ω) :

∫
Ω

w dx = 0

}
,

and

H(div; Ω) = {v : v ∈ (L2(Ω))2, ∇ · v ∈ L2(Ω)}

with a norm

‖v‖V = (‖v‖2 + ‖∇ · v‖2)1/2.

We assume that Ω can be exactly covered by a rectangular-type finite element
partition Th. Let Vh × Wh ⊂ V × W be the lowest-order Raviart–Thomas (RT0)
mixed finite element spaces on Th [27]. More precisely, for all Q ∈ Th,

Vh(Q) = {v = (a1+b1x, a2+b2y, a3+b3z)
T on Q}, Wh(Q) = {w = constant on Q},

Vh = {v ∈ V : v|Q ∈ Vh(Q) ∀Q ∈ Th}, Wh = {w ∈ W : w|Q ∈ Wh(Q) ∀Q ∈ Th},

where the third component of v should be removed if d = 2. The degrees of freedom
of Vh are the constant normal components on the sides. If these are continuous, then
v ∈ H(div; Ω). Key properties of the RT0 spaces are

∇ · Vh = Wh(2.3)

and the existence of an interpolation operator Π : (H1(Ω))d → Vh (see [27, 7]) such
that for q ∈ (H1(Ω))2

(∇ · (Πq − q), w) = 0 ∀w ∈ Wh(2.4)

and which satisfies the continuity and approximation properties

‖Πq‖V ≤ C‖q‖1,(2.5)

‖q − Πq‖0 ≤ Ch|q|1.(2.6)
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Fig. 1. Computational grid and control volumes.

The MFEM for approximating (2.1)–(2.2) is as follows. Find ũh ∈ Vh, p̃h ∈ Wh

such that

(K−1ũh,v) = (p̃h,∇ · v), v ∈ Vh,(2.7)

(∇ · ũh, w) = (f, w), w ∈ Wh.(2.8)

It has been shown in [27] that (2.7)–(2.8) has a unique solution and

‖p− p̃h‖W + ‖u − ũh‖V = O(h).

A number of authors have studied superconvergence for the above method or the
closely related CCFD method [25, 14, 30, 15, 16, 18, 4] and have shown results of the
form

|||p− p̃h|||W + |||u − ũh|||V = O(h2),

where ||| · |||W and ||| · |||V are discrete norms defined in (4.8) and (4.9) below (or
some variants of them). The goal of this paper is to obtain similar superconvergence
results for the CVMFEM.

3. Control volume mixed finite element methods. Denote the elements of
Th by Qi,j for d = 2 or by Qi,j,k for d = 3; see Figure 1 for d = 2. For simplicity, in
most of the paper we will use the notation and present the arguments for d = 2. The
case d = 3 is a trivial extension.

The center of Qi,j is denoted by ci,j . The midpoints of the left and right edges are
denoted by ci−1/2,j and ci+1/2,j , respectively, with similar notation for the bottom
and top edges. With each edge we associate a control volume, where Darcy’s law
(1.1) is approximated. In particular, letting ci+1/2,j = (xi+1/2, yj), ci,j = (xi, yj),
etc., define

Qi+1/2,j := (xi, xi+1) × (yj−1/2, yj+1/2) ∩ Ω,(3.1)

Qi,j+1/2 := (xi−1/2, xi+1/2) × (yi, yi+1) ∩ Ω.(3.2)
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The control volumes Qi+1/2,j and Qi,j+1/2 are referred to as v1-volumes and v2-
volumes, respectively. The control volumes that have at least one edge on ∂Ω are
called border volumes.

Define the velocity test space

Yh = {(v1
h, v

2
h) : v1

h|Qi+1/2,j
= constant ∀Qi+1/2,j , v

1
h = 0 on border v1-volumes

v2
h|Qi,j+1/2

= constant ∀Qi,j+1/2, v
2
h = 0 on border v2-volumes}.

Thus, for example, the basis function yi+1/2,j ∈ Yh associated with ci+1/2,j is
the vector (χi+1/2,j , 0), i.e., (1, 0) on Qi+1/2,j , (0, 0) elsewhere. To see the form of the
associated algebraic equation, write (1.1) as K−1u +∇p = 0, form the inner product
with yi+1/2,j , and integrate∫ xi+1

xi

∫ yj+1/2

yj−1/2

(K1)−1u1 dy dx +

∫ yj+1/2

yj−1/2

(p(xi+1, y) − p(xi, y)) dy = 0,

where u = (u1, u2) and K = diag(K1,K2). Suppose that K is elementwise constant
on Qi,j and Qi+1,j . Taking u = vi−1/2,j ,vi+1/2,j ,vi+3/2,j ∈ Vh, the usual RT0 vector
basis functions, we obtain the tridiagonal mass-matrix coefficients

1/8 (K1
i,j)

−1hx
i h

y
j , 3/8 (K1

i,j)
−1hx

i h
y
j + 3/8 (K1

i+1,j)
−1hx

i+1h
y
j , 1/8 (K1

i+1,j)
−1hx

i+1h
y
j ,

where hx and hy are the element dimensions. For homogeneous K and a uniform
grid, this reduces to 1/8, 3/4, 1/8, as noted above.

3.1. Variational formulation for CVMFEM. Following [9], define the bi-
linear forms a(·, ·) : (L2(Ω))d × (L2(Ω))d → R, b(·, ·) : Yh × H1(Ω) → R, and
c(·, ·) : H(div; Ω) × L2(Ω) → R as follows:

a(u,v) := (K−1u,v),

b(v, p) :=
∑
i,j

〈p, (v1, 0)T · n〉∂Qi+1/2,j
+
∑
i,j

〈p, (0, v2)T · n〉∂Qi,j+1/2
,

c(u, w) := (∇ · u, w).

Lemma 3.1. If (u, p) ∈ H(div; Ω)×H1(Ω) solves (1.1)–(1.3), then (u, p) satisfies
the variational formulation

a(u,v) + b(v, p) = 0, v ∈ Yh,(3.3)

c(u, w) = (f, w), w ∈ Wh.(3.4)

Proof. Equation (1.1) implies, for v ∈ Yh,

(K−1u,v) = (−∇p,v) =
∑
i,j

(−∇p, (v1, 0)T )Qi+1/2,j
+
∑
i,j

(−∇p, (0, v2)T )Qi,j+1/2

= −
∑
i,j

〈p, (v1, 0)T · n〉∂Qi+1/2,j
−
∑
i,j

〈p, (0, v2)T · n〉∂Qi,j+1/2
,

giving (3.3). Equation (3.4) follows trivially from (1.2).
The CVMFEM may be formulated as follows. Find (uh, ph) ∈ Vh×Wh such that

a(uh,v) + b(v, ph) = 0, v ∈ Yh,(3.5)

c(uh, w) = (f, w), w ∈ Wh.(3.6)
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Note that (3.5) is a Petrov–Galerkin FEM, since the test functions differ from the
trial functions. We next recall the transfer operator γh : Vh → Yh, introduced in [9].
Define, for all v ∈ Vh,

γhv =

⎛⎝∑
i,j

v1(ci+1/2,j)χi+1/2,j ,
∑
i,j

v2(ci,j+1/2)χi,j+1/2

⎞⎠ .

It has been shown in [9] that for constants α > 0 and C independent of h,

b(γhv, w) = −c(v, w) ∀ v ∈ Vh, w ∈ Wh,(3.7)

a(v, γhv) ≥ α‖v‖2
0 ∀ v ∈ Vh,(3.8)

‖γhv‖0 ≤ C‖v‖0.(3.9)

4. Velocity superconvergence analysis. In this section we establish super-
convergence for the velocity in the CVMFEM. In the treatment of the permeability
K we will make use of the following piecewise smooth space. Let Wα

Th
consist of

functions ϕ such that ϕ|Q ∈ Wα(Q) for all Q ∈ Th and ‖ϕ‖α,Q is uniformly bounded,
independently of h. Let

|||ϕ|||α = max
Q∈Th

‖ϕ‖α,Q.

Subtracting (3.5)–(3.6) from (3.3)–(3.4) gives the error equations

a(u − uh,v) + b(v, p− ph) = 0, v ∈ Yh,(4.1)

c(u − uh, w) = 0, w ∈ Wh.(4.2)

We first note that (4.2) implies

0 = c(u − uh, w) = (∇ · (u − uh), w) = (∇ · (Πu − uh), w) ∀w ∈ Wh

using (2.4). Therefore, using (2.3),

∇ · (Πu − uh) = 0.(4.3)

Let Ph be the L2-orthogonal projection onto Wh, satisfying for any ϕ ∈ L2(Ω)

(ϕ− Phϕ,w) = 0 ∀w ∈ Wh.(4.4)

Taking v = γh(Πu − uh) and w = Php− ph in (4.1)–(4.2) implies

a(Πu − uh, γh(Πu − uh))

= −a(u − Πu, γh(Πu − uh)) − b(γh(Πu − uh), p− ph),(4.5)

c(Πu − uh, Php− ph) = 0.(4.6)

The second term on the right in (4.5) can be manipulated as follows:

b(γh(Πu − uh), p− ph) = b(γh(Πu − uh), p− Php) + b(γh(Πu − uh), Php− ph)

= b(γh(Πu − uh), p− Php) − c(Πu − uh, Php− ph)

= b(γh(Πu − uh), p− Php),



SUPERCONVERGENCE FOR CONTROL-VOLUME MIXED METHODS 229

using (3.7) and (4.6) in the last equality. Therefore (4.5) gives

a(Πu − uh, γh(Πu − uh)) = −a(u − Πu, γh(Πu − uh)) − b(γh(Πu − uh), p− Php).
(4.7)

Lemma 4.4 implies that

|a(u − Πu, γh(Πu − uh)| ≤ Ch2|||K−1|||1,∞‖u‖2‖Πu − uh‖0.

Using (4.3), Lemma 4.5 gives

|b(γh(Πu − uh), p− Php)| ≤ Ch2‖p‖3‖Πu − uh‖0.

With the above two bounds and (3.8), (4.7) implies the following superconvergence
result.

Theorem 4.1. For the CVMFEM approximation (uh, ph), there exists a constant
C independent of h such that

‖Πu − uh‖0 ≤ Ch2|||K−1|||1,∞(‖u‖2 + ‖p‖3).

Remark 4.1. The velocity superconvergence result of Theorem 4.1 and the pres-
sure superconvergence bound of Theorem 5.1 require global smoothness of u and p.
There are practical cases when the solution is locally smooth on a given region but
possesses reduced regularity globally, such as aquifers with faults or multiple rock lay-
ers. Such cases could be treated by establishing interior and negative norm bounds,
using techniques developed in [26, 14].

The above result immediately implies superconvergence for the velocity in an L2

sense along the Gaussian lines. Consider an element Q = [a1, b1] × [a2, b2]. Following
[18, 16], for a vector q = (q1, q2) define

|||q1|||21,Q = (b2 − a2)

∫ b1

a1

∣∣∣∣q1 (x1,
a2 + b2

2

)∣∣∣∣2 dx1,

|||q2|||22,Q = (b1 − a1)

∫ b2

a2

∣∣∣∣q2 (a1 + b1
2

, x2

)∣∣∣∣2 dx2,

|||q|||2 =

2∑
i=1

∑
Q∈Th

|||qi|||2i,Q.

Note that for q ∈ Vh, |||q||| = ‖q‖0.
Corollary 4.2. There exists a constant C independent of h such that

|||u − uh||| ≤ Ch2|||K−1|||1,∞(‖u‖2 + ‖p‖3).

Proof: It was shown in [16] that

|||u − Πu||| ≤ Ch2|u|2,

where | · |2 denotes the H2-seminorm. Also, using Theorem 4.1,

|||Πu − uh||| = ‖Πu − uh‖0 ≤ Ch2|||K−1|||1,∞(‖u‖2 + ‖p‖3).
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The assertion of the corollary follows from the above two bounds and the triangle
inequality.

It is also easy to see that ∇ · (u− uh) is superconvergent at the midpoints of the
elements. Define, for a scalar function g,

|||g||| =

⎛⎝∑
i,j

|Qi,j |g(ci,j)2
⎞⎠1/2

.(4.8)

Using (4.3) and (2.4),

|||∇ · (u − uh)||| = |||∇ · (u − Πu)||| = |||∇ · u − ∇̂ · u||| ≤ Ch2‖∇ · u‖2,∞,

where the last inequality follows from Lemma 4.6. Defining

|||q|||2V = |||q|||2 + |||∇ · q|||2,(4.9)

the above results can be summarized as follows.
Corollary 4.3. There exists a constant C independent of h such that

|||u − uh|||V ≤ Ch2(‖u‖2 + ‖∇ · u‖2,∞ + ‖p‖3).(4.10)

We next proceed with the three lemmas needed in the proof of Theorem 4.1.
Lemma 4.4. There exists a constant C independent of h such that, for all v ∈ Vh,

|a(u − Πu, γhv)| ≤ Ch2|||K−1|||1,∞‖u‖2‖v‖0.

Proof. We first show that if q ∈ (P1(Q))2, where Pk is the space of polynomials
of degree ≤ k, then∫

Q

(q − Πq)γhv dx dy = 0 ∀v ∈ Vh, Q ∈ Th.(4.11)

The argument follows the proof of Lemma 3.1 in [16]. Let Q = [a, b] × [c, d] and let
L1(x) and L̃1(y) be the linear Legendre polynomials on [a, b] and [c, d], respectively.
It is easy to see that any q ∈ (P 1(Q))2 can be decomposed into

q(x, y) = q̄(x, y) + (αL̃1(y), βL1(x))T ,

where q̄ ∈ Vh(Q). Since q̄ − Πq̄ = 0, it is enough to establish (4.11) for q(x, y) =
(αL̃1(y), βL1(x))T . It is shown in [16] that in this case Πq = 0. Therefore∫

Q

(q − Πq)γhv dx dy =

∫
Q

qγhv dx dy

=

∫
Q

(αL̃1(y)(γhv)1(x, y) + βL1(x)(γhv)2(x, y)) dx dy = 0,

using that for any fixed x0 ∈ [a, b], (γhv)1(x0, y) ∈ P0[c, d], that for any fixed y0 ∈
[c, d], (γhv)2(x, y0) ∈ P0[a, b], and the orthogonality properties of L1(x) and L̃1(y).

We now have

a(u − Πu, γhv) = (K−1(u − Πu), γhv)

=
∑
Q∈Th

[K−1
Q (u − Πu, γhv)Q + ((K−1 −K−1

Q )(u − Πu), γhv)Q],
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where K−1
Q is the value of K−1 at the center of Q. Therefore

|a(u − Πu, γhv)| ≤ C‖K−1‖0,∞
∑
Q∈Th

|(u − Πu, γhv)Q|

+ Ch|||K−1|||1,∞‖u − Πu‖0‖γhv‖0.

(4.12)

Using (4.11), an application of the Bramble–Hilbert lemma [12] implies

|(u − Πu, γhv)Q| ≤ Ch2|u|2,Q‖γhv‖0,Q,

which combined with (4.12), (2.6), and (3.9) completes the proof.
Lemma 4.5. There exists a constant C independent of h such that for all v ∈ Vh,

|b(γhv, p− Php)| ≤ Ch2‖p‖3‖v‖V.

Proof. Let ei+1/2,j = ∂Qi+1/2,j ∩Qi,j and ei,j+1/2 = ∂Qi,j+1/2 ∩Qi,j . Note that
in the sums in

b(γhv, p− Php)

=
∑
i,j

〈p− Php, ((γhv)1, 0)T · n〉∂Qi+1/2,j
+
∑
i,j

〈p− Php, (0, (γhv)2)T · n〉∂Qi,j+1/2
,

every edge ei+1/2,j and ei,j+1/2 appears twice (from the two neighboring covolumes).

Using that ∂v1

∂x and ∂v2

∂y are constants on each element Qi,j , we have

b(γhv, p− Php)

=
∑
i,j

(
hx
i

∂v1

∂x

∫
ei+1/2,j

(p− Php) dy + hy
j

∂v2

∂y

∫
ei,j+1/2

(p− Php) dx

)

=
∑
i,j

(
∂v1

∂x

(
hx
i

∫
ei+1/2,j

p dy −
∫
Qi,j

p dxdy

)

+
∂v2

∂y

(
hy
j

∫
ei,j+1/2

p dx−
∫
Qi,j

p dxdy

))
(4.13)

=
∑
i,j

((
p,

∂v1

∂x

)
Qi,j ,Mx

−
(
p,

∂v1

∂x

)
Qi,j

+

(
p,

∂v2

∂y

)
Qi,j ,My

−
(
p,

∂v2

∂y

)
Qi,j

)
,

where (·, ·)Q,Mx is the quadrature rule on Q which uses the midpoint rule in x and
exact integration in y, and (·, ·)Q,My uses exact integration in x and the midpoint
rule in y. Since the midpoint rule is exact for linear polynomials, the Peano kernel
theorem [13, Theorem 3.7.1] implies(

p,
∂v1

∂x

)
Qi,j ,Mx

−
(
p,

∂v1

∂x

)
Qi,j

=

∫
Qi,j

ϕ(x)
∂2p

∂x2
(x, y)

∂v1

∂x
dxdy

=

∫
Qi,j

ϕ(x)
∂2p

∂x2
(x, y)∇ · v dxdy −

∫
Qi,j

ϕ(x)
∂2p

∂x2
(x, y)

∂v2

∂y
dxdy ≡ T1 + T2,(4.14)

where

ϕ(x) =

{
(x− xi−1/2)

2/2, xi−1/2 ≤ x ≤ xi,
(x− xi+1/2)

2/2, xi ≤ x ≤ xi+1/2.
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For the first term we have

|T1| ≤ Ch2‖p‖2,Qi,j‖∇ · v‖0,Qi,j .(4.15)

Integrating by parts in T2 gives

T2 =

∫
Qi,j

ϕ(x)
∂3p

∂x2∂y
(x, y)v2(x, y) dxdy

−
(∫

ei,j,t

−
∫
ei,j,b

)
ϕ(x)

∂2p

∂x2
(x, y)v2(x, y) dx ≡ T2,1 + T2,2,(4.16)

where ei,j,t and ei,j,b are the top and the bottom edge of Qi,j , respectively. For T2,1

we have

|T2,1| ≤ Ch2‖p‖3,Qi,j‖v‖0,Qi,j .(4.17)

For T2,2 we notice that v2 is continuous across horizontal edges and the assumed

regularity of p(x, y) implies that the trace of ∂2p
∂x2 is well defined. When summing over

all elements, each edge integral will appear twice from the expressions for the two
neighboring elements, with opposite signs. Therefore∑

i,j

T2,2 = 0.(4.18)

Combining (4.14)–(4.18) implies

∑
i,j

((
p,

∂v1

∂x

)
Qi,j ,Mx

−
(
p,

∂v1

∂x

)
Qi,j

)
≤ Ch2‖p‖3‖v‖V.

The second error term in (4.13) can be bounded in a similar way. Note that for d = 3,
a similar argument goes through with two terms analogous to T2.

Lemma 4.6. For all g ∈ W 2
∞ there exists a constant C independent of h such

that

|||g − Phg||| ≤ Ch2‖g‖2,∞.

Proof. Let Q ∈ Th. The Taylor expansion with integral remainder about the
midpoint (x0, y0) of Q gives for any (x, y) ∈ Q

g(x, y) = g(x0, y0) + (x− x0)
∂g

∂x
(x0, y0) + (y − y0)

∂g

∂y
(x0, y0) + R(x, y),

where |R(x, y)| ≤ Ch2‖g‖2,∞,Q. Integrating the above equation over Q and using
that

∫
Q
g =

∫
Q
Phg gives

|Q|(Phg(x0, y0) − g(x0, y0)) =

∫
Q

R(x, y) dxdy,

which implies

|Phg(x0, y0) − g(x0, y0)| ≤ Ch2‖g‖2,∞,Q.

The statement of the lemma now follows from the definition (4.8) of ||| · |||.
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5. Pressure superconvergence analysis. In this section we employ a duality
argument to derive superconvergence for the pressure at the cell centers. We will
make use of the following continuity property of Π [23, 3]. For any ε > 0,

‖Πq‖0 ≤ C(‖q‖ε + ‖∇ · q‖0).(5.1)

Consider the auxiliary problem

−∇ ·K∇ϕ = Php− ph in Ω,(5.2)

−K∇ϕ · n = 0 on ∂Ω,

which is well posed since
∫
Ω
Php =

∫
Ω
ph = 0. Elliptic regularity [20] implies that

there exists ε > 0 such that

‖ϕ‖1+ε ≤ C‖Php− ph‖0.(5.3)

Note that (5.3) holds for L-shaped domains. Let φ = −K∇ϕ. We have

‖Php− ph‖2
0 = (Php− ph,∇ · φ) = (Php− ph,∇ · Πφ) = c(Πφ, Php− ph)

= −b(γhΠφ, Php− ph) = −b(γhΠφ, Php− p) − b(γhΠφ, p− ph)

= −b(γhΠφ, Php− p) + a(u − uh, γhΠφ),(5.4)

using (4.1) with v = γhΠφ. By Lemma 4.5,

|b(γhΠφ, Php− p)| ≤ Ch2‖p‖3‖Πφ‖V
≤ Ch2‖p‖3(‖φ‖ε + ‖∇ · φ‖0) ≤ Ch2|||K|||ε,∞‖p‖3‖Php− ph‖0

using (5.1), (5.3), and that ‖∇·Πφ‖0 ≤ ‖∇·φ‖0, which follows from ∇·Πφ = Ph∇ · φ.
For the last term in (5.4) we write

|a(u − uh, γhΠφ)| = |a(u − Πu, γhΠφ) + a(Πu − uh, γhΠφ)|
≤ C(h2|||K−1|||1,∞‖u‖2‖Πφ‖0 + ‖K−1‖0,∞‖Πu − uh‖0‖γhΠφ‖0)

≤ Ch2|||K−1|||1,∞(‖u‖2 + ‖p‖3)‖Πφ‖0

≤ Ch2|||K|||ε,∞|||K−1|||1,∞(‖u‖2 + ‖p‖3)‖Php− ph‖0

using Lemma 4.4, Theorem 4.1, (3.9), (5.1), (5.3), and (5.2). A combination of (5.4)
and the above two bounds gives the following pressure superconvergence result.

Theorem 5.1. For the CVMFEM approximation (uh, ph), there exists a constant
C independent of h such that

‖Php− ph‖0 ≤ Ch2|||K|||ε,∞|||K−1|||1,∞(‖u‖2 + ‖p‖3).

It is now easy to obtain superconvergence for the pressure at the midpoints of
the elements. Let |||w|||W = |||w|||, where |||w||| is defined in (4.8), and note that
|||w|||W = ‖w‖0 for all w ∈ Wh.

Corollary 5.2. There exists a constant C independent of h such that

|||p− ph|||W ≤ Ch2|||K|||ε,∞|||K−1|||1,∞(‖u‖2 + ‖p‖2,∞ + ‖p‖3).

Proof. The result follows immediately from the triangle inequality

|||p− ph|||W ≤ |||p− Php|||W + |||Php− ph|||W ,

Lemma 4.6, and Theorem 5.1.
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Abstract. Interval methods for verified integration of initial value problems (IVPs) for ODEs
have been used for more than 40 years. For many classes of IVPs, these methods are able to compute
guaranteed error bounds for the flow of an ODE, where traditional methods provide only approx-
imations to a solution. Overestimation, however, is a potential drawback of verified methods. For
some problems, the computed error bounds become overly pessimistic, or the integration even breaks
down. The dependency problem and the wrapping effect are particular sources of overestimations in
interval computations. Berz and his coworkers have developed Taylor model methods, which extend
interval arithmetic with symbolic computations. The latter is an effective tool for reducing both
the dependency problem and the wrapping effect. By construction, Taylor model methods appear
particularly suitable for integrating nonlinear ODEs. We analyze Taylor model based integration of
ODEs and compare Taylor model methods with traditional enclosure methods for IVPs for ODEs.
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1. Introduction. The numerical solution of initial value problems (IVPs) for
ODEs is one of the fundamental problems in scientific computation. Today, there are
many well-established algorithms for approximate solution of IVPs. However, tradi-
tional integration methods usually provide only approximate values for the solution.
Precise error bounds are rarely available. The error estimates, which are sometimes
delivered, are not guaranteed to be accurate and are sometimes unreliable.

In contrast, reliable integration computes guaranteed bounds for the flow of an
ODE, including all discretization and roundoff errors in the computation. Originated
by Moore in the 1960s [33], interval computations are a particularly useful tool for
this purpose. There is a vast literature on interval methods for verified integration
[6, 8, 9, 10, 12, 19, 21, 22, 24, 29, 31, 32, 33, 35, 36, 37, 38, 39, 40, 44, 45, 46, 47], but
there are still many open questions. The results of interval arithmetic computations
are often impaired by overestimation caused by the dependency problem and by the
wrapping effect. In verified integration, overestimation may degrade the computed
enclosure of the flow, enforce miniscule step sizes, or even bring about premature
abortion of an integration.

Berz and his coworkers have developed Taylor model methods, which combine
interval arithmetic with symbolic computations [2, 5, 25, 27, 28]. In Taylor model
methods, the basic data type is not a single interval, but a Taylor model U := pn(x)+i
consisting of a multivariate polynomial pn(x) of order n in m variables, and a remain-
der interval i. In computations that involve U , the polynomial part is propagated
by symbolic calculations wherever possible and thus not significantly affected by the
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dependency problem or the wrapping effect. Only the interval remainder term and
polynomial terms of order higher than n, which are usually small, are bounded using
interval arithmetic.

Taylor model arithmetic is an extension of interval arithmetic with a comprehen-
sive variety of applicable enclosure sets. Nevertheless, there has been some debate
about the usefulness and the limitations of Taylor model methods [42]. To some
extent, this may be due to the sometimes cursory description of technical details of
Taylor model arithmetic, which may be obvious to the experts of Taylor models, but
which are less trivial to others.

The motivation of this paper is to analyze Taylor model methods for the verified
integration of ODEs and to compare these methods with existing interval methods.
Taylor models are better suited for integrating ODEs than interval methods when-
ever richness in available enclosure sets and reduction of the dependency problem is
an advantage. This is usually the case for IVPs for nonlinear ODEs, especially in
combination with large initial sets or with large integration domains. Although pa-
rameter intervals or initial sets can be handled by subdivision, this approach is only
practical in low dimensions.

The advantage of Taylor model methods is less obvious for linear ODEs, where
interval methods should perform equally well. Nevertheless, we include a discussion
of Taylor model methods for linear ODEs in this paper for two reasons. First, the
discussion is simpler for linear ODEs than for nonlinear ones. Second, if Taylor model
methods failed on linear ODEs, they would likely fail on nonlinear ODEs as well.
However, some of the most advantageous properties of Taylor models take effect only
on nonlinear problems. We use a simple nonlinear model problem to illustrate these
advantages.

The paper is structured as follows. In the next section, basic concepts of interval
arithmetic and Taylor model methods are reviewed. Interval methods for ODEs are
presented in section 3. The naive Taylor model method is described in section 4, which
is followed by a discussion of Taylor model methods for linear ODEs. A nonlinear
model problem is used to explain preconditioned Taylor model methods for ODEs in
section 6. In the last section, numerical examples for linear ODEs are given.

2. Preliminaries.

2.1. Interval arithmetic. Interval arithmetic [1, 14, 33, 41] is a powerful tool
for verified computations. In interval arithmetic, operations between intervals are em-
ployed to calculate guaranteed bounds for continuous problems with a finite number
of basic arithmetic operations. We assume that the reader is familiar with real inter-
val arithmetic and floating-point interval arithmetic. The latter is based on a screen
of floating-point numbers. Rigor of a computation is achieved by enclosing real num-
bers by floating-point intervals (that is, intervals with floating-point upper and lower
bounds) and by performing all calculations with directed rounding according to the
rules of interval arithmetic [20]. Successful software implementations of floating-point
interval arithmetic have for example been given in [3, 17, 18].

The set of compact real intervals is denoted by

IR = {x = [x, x] | x, x ∈ R, x ≤ x }.

A real number x is identified with a point interval x = [x, x]. The midpoint and
the width of an interval x are denoted by m(x) := (x + x)/2 and w(x) := x − x,
respectively. The set of all m-dimensional interval vectors is denoted by IR

m. In this
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paper, intervals are denoted by boldface. Lower-case letters are used for denoting
scalars and vectors. Matrices are denoted by upper-case letters.

2.2. Dependency problem and wrapping effect. Interval methods are some-
times affected by overestimation, whence the computed error bounds may be overly
pessimistic. Overestimation is often caused by the dependency problem, that is, the
failure of interval arithmetic to identify different occurrences of the same variable.
For example, the range of f(x) := x/(1 + x) on x = [1, 2] is [1/2, 2/3], but interval
arithmetic evaluation yields

x

1 + x
=

[1, 2]

[2, 3]
=

[
1

3
, 1

]
.

In general, the dependency problem is not easily removed. To diminish overestimation,
alternative evaluation schemes, such as centered forms [33], have been developed. A
discussion of computer methods for the range of functions is given in [43].

A second source of overestimation is the wrapping effect, which appears when
intermediate results of a computation are enclosed by intervals. The wrapping effect
was first observed by Moore in 1965 [32]; a recent analysis has been given by Lohner
[23].

2.3. Taylor model arithmetic. For reducing both the dependency problem
and the wrapping effect, interval arithmetic has been extended with symbolic com-
putations. Symbolic-numeric computations have been proposed under various names
since the 1980s [11, 16, 25]. Early implementations in software were also given [11, 15],
but to the authors’ knowledge, these packages have not been widely distributed and
are not available today.

Starting in the 1990s, Berz and his group developed a rigorous multivariate Taylor
arithmetic [2, 25, 28]. In these references, a Taylor model is defined in the following
way. Let f : D ⊂ R

m → R be a function that is (n + 1) times continuously differen-
tiable in an open set containing the box x. Let x0 be a point in x, let pn denote the
nth order Taylor polynomial of f around x0, and let i be an interval such that

f(x) ∈ pn(x− x0) + i for all x ∈ x.(2.1)

Then the pair (pn, i) is called an nth order Taylor model of f around x0 on x.
This original definition of a Taylor model is useful for computations in exact

arithmetic, but it must be extended for floating-point computations. For example,
there is no Taylor model of ex ≈ 1+x+(1/2)x2+(1/6)x3+ . . . of order n ≥ 3 in IEEE
754 floating-point arithmetic, since the coefficient of x3 is not exactly representable as
a floating-point number. In [29], instead of the Taylor polynomial of f , an arbitrary
polynomial pn with floating-point coefficients is used in (2.1), but the definition of
a Taylor model in [29] assumes that the width of i is of order O

(
‖w(x)‖n

)
. In this

paper, such an assumption on the width of i is not required.
We use calligraphy letters for denoting Taylor models:

U := pn(x) + i, x ∈ x,

where x ∈ IR
m, i ∈ IR are intervals, and pn is an m-variate polynomial of order n.

x is called the domain interval of U , and i is its remainder interval. A Taylor model
is the set of all m-variate continuous functions f such that

f(x) ∈ pn(x) + i
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holds for all x ∈ x. Evaluating U for all x ∈ x, we obtain the range of U :

Rg (U) := {z = p(x) + ι | x ∈ x, ι ∈ i}.

Example 2.1. Taylor models of ex and cosx. Let x := [− 1
2 ,

1
2 ] and x0 := 0. Then

Taylor’s theorem is a natural starting point for constructing Taylor models. We have

ex = 1 + x +
1

2
x2 +

1

6
x3eξ, cosx = 1 − 1

2
x2 +

1

6
x3 sin ξ, x, ξ ∈ x,

from which we derive Taylor models for f1(x) := ex and f2(x) := cosx:

U1(x) := 1 + x + 1
2x

2 + [−0.035, 0.035], U2(x) := 1 − 1
2x

2 + [−0.010, 0.010], x ∈ x,

respectively.
Taylor model arithmetic has been defined in [2, 25, 28]. We use the same arith-

metic rules, even though our Taylor models differ slightly from the Taylor models
defined in these references. The difference affects only the function set that is defined
by a Taylor model.

In computations that involve a Taylor model U , the polynomial part is propa-
gated by symbolic calculations wherever possible. In floating-point computations, the
roundoff errors of the symbolic operations are rigorously estimated and the estimate
is added to the remainder interval of the final result. This part of the computation is
hardly affected by the dependency problem or the wrapping effect. Only the interval
remainder term and polynomial terms of order higher than n (which in applications
are usually small) are processed according to the rules of interval arithmetic.

Example 2.2. Multiplication of two univariate Taylor models of order 2. Let
x := [− 1

2 ,
1
2 ] and

U1(x) := 1 + x + 1
2x

2 + [−0.035, 0.035], U2(x) := 1 − 1
2x

2 + [−0.010, 0.010],

where x ∈ x. For all x ∈ x, it holds that

U1(x) · U2(x) ⊆ (1 + x + 1
2x

2)(1 − 1
2x

2) +
(

1
2 + 1

2 (1 + x)2
)
[−0.010, 0.010]

+(1 − 1
2x

2)[−0.035, 0.035] + [−0.035, 0.035] · [−0.010, 0.010]

⊆ (1 + x) − 1
2x

3 − 1
4x

4 + [0.625, 1.625] · [−0.010, 0.010] + [0.875, 1] · [−0.035, 0.035]
+[−0.004, 0.004]

⊆ 1 + x− [−0.063, 0.063] − [−0.016, 0.016] + [−0.202, 0.202] = 1 + x
+[−0.281, 0.281],

so we may define

U1(x) · U2(x) := 1 + x + [−0.281, 0.281].

This product is a Taylor model for the function ex cosx, x ∈ x:

ex cosx ∈ 1 + x + [−0.281, 0.281], x ∈ x.

In Example 2.2, direct interval evaluation for computing the remainder interval
of the product has been used for simplicity. Due to the dependency problem, this
does not always yield optimal bounds. More accurate estimation schemes have been
proposed in [30].
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Compositions U1 ◦U2 of Taylor models are evaluated in a similar way as products;
◦ denotes the composition operator for functions, namely,

(f ◦ g)(x) = f
(
g(x)

)
.

Example 2.3. Composition of two univariate Taylor models of order 2. Let x :=
[− 1

2 ,
1
2 ] and

U1(x) := 1 + x + 1
2x

2 + [−0.035, 0.035], U2(x) := 1 − 1
2x

2 + [−0.010, 0.010],

where x ∈ x. It is tempting to compute the composition U1 ◦ U2 in the following
manner:

U1(x) ◦ U2(x) ⊆ 1 + (1 − 1
2x

2 + [−0.010, 0.010]) + 1
2 (1 − 1

2x
2 + [−0.010, 0.010])2

+[−0.035, 0.035]

⊆ 2 − 1
2x

2 + [−0.045, 0.045] + 1
2 (1 − x2 + 1

4x
4 + [−0.020, 0.020] − x2[−0.010, 0.010]

+[−0.001, 0.001])

⊆ 5
2 − x2 + 1

8x
4 − x2[−0.005, 0.005] + [−0.056, 0.056]

⊆ 5
2 − x2 + [0, 0.008] − [−0.002, 0.002] + [−0.056, 0.056] = 5

2 − x2 + [−0.058, 0.066].

Hence, we may define

U1(x) ◦ U2(x) :=
5

2
− x2 + [−0.058, 0.066].(2.2)

However, the above computation does not yield a Taylor model for ecos x for all
x ∈ x. Evaluating (2.2) at x = 0, we obtain

U1(0) ◦ U2(0) = [2.442, 2.566] �� e = ecos 0.

The reason for this failure lies in the range of U2, which is not contained in x. Com-
positions of Taylor models are indeed computed as above, but it is required that the
domain of U1 contains the range of U2.

In our example, it suffices to compute the remainder term for the exponential
function on the interval [−1, 1]. Using Lagrange’s representation of the remainder
term, we have

eξ

3!
x3 ∈

[
−e

6
,
e

6

]
⊆ [−0.454, 0.454] for all ξ ∈ [−1, 1] and all x ∈ [−1, 1].

Using [−0.454, 0.454] instead of [−0.035, 0.035] in the derivation of (2.2) yields

U1(x) ◦ U2(x) :=
5

2
− x2 + [−0.477, 0.485],

which is a verified enclosure of U1(x) ◦ U2(x) for all x ∈ x. Note that it is still not a
verified enclosure for all x ∈ [−1, 1]. The latter requires that the interval term of U2

is also computed for x ∈ [−1, 1].
A Taylor model vector is a vector with Taylor model components. When no

ambiguity arises, we call a Taylor model vector simply a Taylor model. Arithmetic
operations for Taylor model vectors are defined componentwise.
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2.3.1. Floating-point Taylor model arithmetic. On a computer with
floating-point arithmetic, a Taylor model is defined by a polynomial with machine
representable coefficients and a suitable remainder interval that takes account for the
roundoff errors. These roundoff errors can occur

• when a function is represented by a Taylor model, or
• when operations between Taylor models are executed.

Example 2.4. Addition of two univariate floating-point Taylor models. For sim-
plicity, we use Taylor models of order 1 and a floating-point number system with a
mantissa of four decimal digits. Let

x := [−1, 1], f1(x) := 1 + x +
1

8
x2, x ∈ x, f2(x) := 1 +

1

3
x, x ∈ x.

Then linear Taylor models for f1 and f2 are given by

U1(x) := 1 + x + [0, 0.125], U2(x) := 1 + 0.3333x + [−0.0001, 0.0001], x ∈ x.

For j = 1, 2, the inclusion condition

fj(x) ∈ Uj(x) for all x ∈ x

does not define U1 and U2 uniquely. For example,

Ũ1(x) := 1 + x + [−0.125, 0.125], x ∈ x,

is also a valid, but less accurate, Taylor model for f1.
A Taylor model for f1+f2 is obtained by performing U1+U2 with suitable outward

rounding. The interval bound for the roundoff error in x + 0.3333x depends on the
domain x.

U1(x) + U2(x) ⊆ 2 + (x + 0.3333x) + [−0.0001, 0.1251]

⊆ 2 + (1.333x + [−0.0003, 0.0003]) + [−0.0001, 0.1251]

= 2 + 1.333x + [−0.0004, 0.1254].

A software implementation of Taylor model arithmetic has been developed by Berz
and Makino [3, 26] in the COSY INFINITY package [4]. Using COSY INFINITY,
Taylor models have been applied with success to a variety of problems, including
global optimization [34], verified multidimensional integration [7], and the verified
solution of ODEs and DAEs [6, 13].

2.4. Representation of intervals by Taylor models. For a given vector
c ∈ R

m and a given diagonal matrix C ∈ R
m×m with nonnegative diagonal elements,

the range of the Taylor model vector

U := c + Cx, x ∈ x,(2.3)

is an m-dimensional interval vector. Vice versa, each interval vector z ∈ IR
m can be

represented by a Taylor model vector of the form (2.3). There is freedom of choice in
selecting c, C, and x. A convenient choice is

c = m(z), C = diag

(
1

2
w(z)

)
, x = [−1, 1]m,

where [−1, 1]m denotes an interval vector with [−1, 1] in each component.
Example 2.5. Let z = ([1, 2], [−2, 2])T . Then we have

z = Rg

((
3
2
0

)
+

(
1
2 0
0 2

)(
x
y

))
,

(
x
y

)
∈ [−1, 1]2.
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3. Interval methods for ODEs.

3.1. Interval IVPs. We consider the smooth interval IVP

u′ = f(t, u), u(t0) ∈ u0, t ∈ t = [t0, tend],(3.1)

where f : R×R
m → R

m is a sufficiently smooth function, u0 ∈ IR
m is a given interval

vector in the space variables, and tend > t0 is a given endpoint of the time interval.
(The case tend < t0 is handled similarly.)

While the ODE is defined in the traditional way, the initial value is allowed to vary
in the interval u0. In applications, this variability is used for modeling uncertainties
in initial conditions. For each u0 ∈ u0, the point IVP

u′ = f(t, u), u(t0) = u0

has a classical solution, which is denoted by u(t; t0, u0). In the following, we assume
that u(t; t0, u0) exists and is bounded for all t ∈ t and for all u0 ∈ u0.

Our goal when solving (3.1) is to calculate bounds on the flow of the interval IVP.
For each t ∈ t, we wish to calculate an interval u(t) such that

u(t; t0, u0) ∈ u(t)

holds for all u0 ∈ u0. The tube u(t), t ∈ t, then contains all solutions of u′ = f(t, u)
that emerge from u0.

3.2. Interval methods for IVPs. All enclosure methods for ODEs that we are
aware of subdivide the domain of integration into subintervals. At each grid point,
the flow of the given ODE is enclosed by a set with a certain geometric structure,
for example, an m-dimensional rectangle. In the general case, the shape of the flow
has a different geometry, so that the flow is wrapped by some larger set, which serves
as the initial set for the next time step. To maintain the validity of the method,
all solutions of the ODE emerging from the increased initial set must be enclosed in
subsequent time steps. The method thus picks up additional solutions of the ODE
(that is, solutions not emerging from the original initial set) during the integration
process. If the accumulated flow becomes too large, the method may break down
because it can no longer compute a sufficiently tight enclosure. It is essential for any
verified integration method to minimize the excess introduced by the wrapping of
intermediate enclosures of the flow.

In Moore’s direct interval method [31, 32, 33], the widths of the enclosures at
subsequent time steps are always increasing, even for shrinking flows. For linear
autonomous ODEs, the direct interval method is only suited for pure contractions. If
the flow is rotated, the rotation of the initial set usually provokes exponential growth
of the widths of the computed interval enclosures.

In the parallelepiped method [32, 33, 12, 21], the flow of the ODE at intermediate
time steps is enclosed by parallelepipeds instead of rectangular boxes. This choice is
motivated by the shape of the flow of a linear ODE with interval initial values, which
is a parallelepiped at any time. For this problem, the only source of overestimation
is the remainder interval accounting for the discretization error and the accumulated
roundoff errors, if the computation is performed in floating-point arithmetic. These
quantities must be enclosed by the final parallelepiped enclosure, but the wrapping
affects only small quantities. The algebraic crux of the parallelepiped method is the
verified inversion of certain matrices Aj [21, 36], which often tend to become singular
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after some time steps, so that the method breaks down either due to excessive wrap-
ping or because the verified matrix inversion is no longer feasible. Hence, breakdown
of the parallelepiped method is a rule rather than an exception.

To preserve good condition numbers in the matrices Aj , Lohner [21] developed
the QR method. His idea was to stabilize the iteration by orthogonalization of the
matrices, so that the algebraic problem of inverting the matrices is reduced to taking
the transpose.

Various other interval methods have been proposed to fight the wrapping effect,
and there are several techniques which are effective in reducing overestimation of the
flow for some problem classes [12, 19, 21, 32, 33]. Nevertheless, the ability of interval
methods to minimize wrapping is limited by the fact that interval-based enclosure
sets are convex. If the flow is a nonconvex set, as may arise for nonlinear ODEs, any
interval wrap must be at least as large as the convex hull of the flow.

4. Taylor model methods for ODEs. Taylor model methods use multivariate
polynomials in the initial values plus a small interval remainder term to represent
the flow of an IVP. Thus, it is possible to work with nonlinear boundary curves,
including nonconvex enclosure sets for crescent-shaped or twisted flows. For nonlinear
ODEs, this increased flexibility in admissible boundary curves is an intrinsic advantage
of Taylor model methods over traditional interval methods, making Taylor model
methods very effective in some cases in reducing the wrapping effect.

We refer to the recent paper of Makino and Berz [29] for the general description of
Taylor model methods for ODEs. Our intention here is to explain the fundamental dif-
ference between interval methods and Taylor model methods with a simple nonlinear
example.

4.1. Quadratic model problem. We consider the quadratic model problem

u′ = v, u(0) ∈ [0.95, 1.05],

v′ = u2, v(0) ∈ [−1.05,−0.95],
(4.1)

where the differentiation is with respect to t. In an interval method, one would use
interval initial values u0 = [0.95, 1.05] and v0 = [−1.05,−0.95]. In the Taylor model
method, the initial set is described by parameters, which we call a and b, and which
we choose in the interval [−0.05, 0.05]. The initial conditions of the IVP (4.1) at t = t0
are thus given by

u0(a, b) := 1 + a, a ∈ a := [−0.05, 0.05],

v0(a, b) := −1 + b, b ∈ b := [−0.05, 0.05].

For illustration, we use order n = 3 and step size h = 0.1 in the Taylor model
integration of (4.1). All numbers are displayed here rounded to six decimal digits.
In each integration step, the multivariate Taylor series (with respect to t, a, and b)
of the solution of (4.1) is employed. The third-order Taylor polynomial serves as an
approximate solution. The truncation error of the series is enclosed by a suitable
remainder interval.

The first integration step consists of integrating the IVP

u′ = v, u(0) = 1 + a,

v′ = u2, v(0) = −1 + b
(4.2)
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for 0 ≤ t ≤ h. We use the Picard iteration to calculate a multivariate Taylor polyno-
mial approximation of the solution to (4.2). Using the initial approximations

u(0)(τ, a, b) = 1 + a,

v(0)(τ, a, b) = −1 + b

(τ is time), the first step of the Picard iteration yields

u(1)(τ, a, b) = u0(a, b) +

∫ τ

0

v(0)(s, a, b) ds = 1 + a− τ + bτ,

v(1)(τ, a, b) = v0(a, b) +

∫ τ

0

(
u(0)(s, a, b)

)2

ds = −1 + b + τ + 2aτ + a2τ.

After two more Picard iterations (and omitting the higher order terms), we obtain
the third order Taylor polynomials

u(3)(τ, a, b) = 1 + a− τ + bτ +
1

2
τ2 + aτ2 − 1

3
τ3,

v(3)(τ, a, b) = −1 + b + τ + 2aτ − τ2 + a2τ − aτ2 + bτ2 +
2

3
τ3,

as multivariate approximations to the solution of (4.2). For a verified enclosure of the
flow, the Taylor polynomials have to be furnished with suitable remainder bounds.
Their derivation is based on a fixed point iteration [24]. Intervals i0 and j0 are sought
such that the inclusions

u0 +

∫ τ

0

(
v(3)(s, a, b) + j0

)
ds ⊆ u(3)(τ, a, b) + i0,

v0 +

∫ τ

0

(
u(3)(s, a, b) + i0

)2

ds ⊆ v(3)(τ, a, b) + j0

simultaneously hold for all a ∈ a, for all b ∈ b, and for all τ ∈ [0, 0.1]. For the details
of the computation of the remainder interval, we refer to [24]. In our example, these
inclusions are fulfilled, for example, for

i0 = [−5.09307E-5, 7.86167E-5] and j0 = [−1.75707E-4, 1.60933E-4].

An enclosure of the flow of the IVP (4.2) for t ∈ [0, 0.1] is given by the Taylor models

Ũ1(τ, a, b) := 1 + a− τ + bτ +
1

2
τ2 + aτ2 − 1

3
τ3 + i0,

Ṽ1(τ, a, b) := −1 + b + τ + 2aτ − τ2 + a2τ − aτ2 + bτ2 +
2

3
τ3 + j0,

where a, b ∈ [−0.05, 0.05], τ ∈ [0, 0.1], and t = τ .

Evaluating Ũ1 and Ṽ1 at τ = h = 0.1, we obtain the enclosure of the flow at
t1 = 0.1 (Taylor models are of order at most 2 in the space variables):

U1(a, b) := Ũ1(0.1, a, b) = 0.904667 + 1.01a + 0.1b + i0,

V1(a, b) := Ṽ1(0.1, a, b) = −0.909333 + 0.19a + 1.01b + 0.1a2 + j0,
(4.3)
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which is the initial set for the second integration step. The latter is performed with
a slight modification. We do not use the interval remainder terms in U1 and V1 when
computing the polynomial part of the Taylor model in the space and time variables.
The Picard iteration is again performed for τ ∈ [0, 0.1], with initial approximations

u(0)(τ, a, b) = 0.904667 + 1.01a + 0.1b,

v(0)(τ, a, b) = −0.909333 + 0.19a + 1.01b + 0.1a2.

After three iterations (and again omitting higher order terms), we obtain

u(3)(τ, a, b) = 0.904667 + 1.01a + 0.1b− 0.909333τ + 0.19aτ + 1.01bτ + 0.409211τ2

+ 0.1a2τ + 0.913713aτ2 + 0.0904667bτ2 − 0.274215τ3,

v(3)(τ, a, b) = −0.909333 + 0.19a + 1.01b + 0.818422τ + 0.1a2 + 1.82743aτ

+ 0.180933bτ − 0.822644τ2

+ 1.0201a2τ + 0.202abτ + 0.01b2τ − 0.74654aτ2 + 0.82278bτ2

+ 0.522429τ3.

To compute the interval remainder term, we must find intervals i1 and j1 fulfilling
the inclusions

U1(a, b) +
∫ τ

0

(
v(3)(s, a, b) + j1

)
ds ⊆ u(3)(τ, a, b) + i1,

V1(a, b) +
∫ τ

0

(
u(3)(s, a, b) + i1

)2
ds ⊆ v(3)(τ, a, b) + j1

(4.4)

for all a, b ∈ [−0.05, 0.05] and for all τ ∈ [0, 0.1]. (Note that i0 and j0 are contained
in U1 and V1, respectively, from (4.3).) Suitable remainder intervals are, for example,

i1 = [−1.12850E-4, 1.65751E-4], j1 = [−3.31917E-4, 3.24724E-4].

Thus, the flow of the IVP (4.2) for t ∈ [0.1, 0.2] is contained in the Taylor models

Ũ2(τ, a, b) = u(3)(τ, a, b) + i1,

Ṽ2(τ, a, b) = v(3)(τ, a, b) + j1,

where a, b ∈ [−0.05, 0.05], τ ∈ [0, 0.1], t = τ + 0.1.
Evaluating at τ = 0.1, we obtain the enclosure of the flow at t2 = 0.2 (Taylor

models are of order at most 2 in the space variables):

U2(a, b) := Ũ2(0.1, a, b) = 0.817551 + 1.03814a + 0.201905b + 0.01a2 + i1,

V2(a, b) := Ṽ2(0.1, a, b) = −0.835195 + 0.365277a + 1.03632b

+ 0.20201a2 + 0.0202ab + 0.001b2 + j1.

For larger values of t, the integration can be continued as in the second integration
step described above.

Remark 4.1.
1. The sets (Uj ,Vj) containing the flow of the IVP (4.2) generally become more

and more irregular for increasing j. Integration over a larger domain is shown
in Figure 6.1.
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2. In the above calculations, the polynomial parts of the Taylor models are
independent of the initial domain intervals for a and b and independent of
the step size h, but the interval remainder bounds are not.

3. The order of the method refers to the order of the multivariate Taylor poly-
nomials with respect to space and time variables that are calculated in the
integration step. When the initial sets are defined by linear functions in a and
b, then it follows by induction that the maximum order of the polynomials
representing the flow at the grid points (obtained after evaluating t) is always
at least one less than the order of the method.

In the above example, we have used the so-called naive Taylor model integra-
tion method to illustrate the qualitative difference of interval methods and Taylor
model methods for solving IVPs. For practical computations, the naive Taylor model
method is not very useful. The interval remainder terms are propagated as in the
direct interval method. The inclusion (4.4) implies that the diameters of the interval
remainder terms are nondecreasing. Often, these diameters grow exponentially, and
the method breaks down early. More advanced Taylor model integration methods are
discussed in the next section. For clarity, we summarize the major steps of the naive
Taylor model method as Algorithm 4.1.

Algorithm 4.1 (naive Taylor model method)

Let the initial set be given as a Taylor model vector in m space variables.

For j := 0, 1 . . . , jmax − 1:

1. Compute the Taylor polynomial pn (of dimension m in m + 1 variables) of the
solution of the j + 1st time step, using Picard iteration.

2. Compute a remainder interval vector i, using Schauder’s fixed point theorem (via
interval iteration based on Picard iteration).

3. Evaluate Ũ = pn + i at tj+1. The resulting m-dimensional Taylor model U contains
the flow of the IVP and serves as initial set for the next time step.

4.2. Shrink wrapping and preconditioning. For successful integration over
long time spans, sophisticated treatment of the interval terms is required. For this
purpose, Berz and Makino invented two schemes which they call shrink wrapping and
preconditioning. Shrink wrapping is a method to absorb the interval remainder term
into the symbolic part of the Taylor model. From a geometric viewpoint, it resem-
bles the parallelepiped method. Shrink wrapping uses the same linear map as the
parallelepiped method so that it has the same limitations when this map becomes ill-
conditioned. Preconditioning aims at maintaining a small condition number for the
shrink wrapping map. Thus it stabilizes the integration process, like the QR interval
method does.

For clarity of the presentation, we describe shrink wrapping and preconditioning
for the special case of linear autonomous ODEs. The generalization to nonlinear
ODEs is straightforward. We refer to [29] for the details.

5. Taylor model methods for linear ODEs. For a linear ODE, the flow
of an interval IVP is a parallelepiped for all time, so Taylor models seem to have
no obvious advantage over interval methods. On the other hand, if Taylor model
methods failed on linear ODEs, they would probably not be effective for nonlinear
ODEs. The purpose of this section is to show that they can be as good as interval
methods for linear ODEs.
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We consider the linear autonomous ODE

u′ = B u,
u(0) = U0,

(5.1)

where B is a given real matrix, x is a given interval vector, and U0 = pn(x), x ∈ x,
is a Taylor model vector with zero remainder interval describing the initial set. x is
used to denote the vector of the space variables. We assume that the enclosure step
in the Taylor model method is feasible with some constant step size h > 0 and some
order n ∈ N.

5.1. Naive Taylor model method. In the first integration step, Picard itera-
tion of order n is used to compute the multivariate Taylor polynomial

u1,n := Pn(tB) pn(x), where Pn(tB) :=

n∑
k=0

(tB)k

k!
.

Introducing T := Pn(hB), the verification step consists of finding an interval vector
i1 such that

pn(x) +

∫ h

0

B
(
Pn(τB) pn(x) + i1

)
dτ ⊆ Pn(hB) pn(x) + i1 = Tpn(x) + i1

holds for all x ∈ x (see, for example, [24, Ch. 6]). At t1 = h, the flow of the IVP (5.1)
is then enclosed by the Taylor model

U1 := T pn(x) + i1.

Subsequent integration steps are performed in the same manner, but with a slight
modification in the verification step. In the jth integration step, j ≥ 2, ij is sought
such that the inclusion

T j−1pn(x) + ij−1 +

∫ h

0

B
(
Pn(τB)T j−1pn(x) + ij

)
dτ ⊆ T jpn(x) + ij

is fulfilled for all x ∈ x. Letting

Uj := T Uj−1 + ij , j = 1, 2, . . . ,

the naive Taylor model method for (5.1) consists of the iteration

Uj = T j U0 +

j∑
k=1

(T◦)j−kik, j = 1, 2, . . . ,(5.2)

where

(T◦)0x := x, (T◦)kx := T ·
(
(T◦)k−1x

)
, k ∈ N.

Apart from the different computation of the remainder interval, for the initial
value problem (5.1), the naive Taylor model method (5.2) coincides with the direct
interval method that occurs in [36]. Hence, the naive Taylor model method (5.2) has
the same divergence property as the direct interval method, for which it was shown
in [36] that after j steps we have

w
(
(T◦)j−1i1

)
= |T | j−1 w(i1)
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(for A = (aij), we denote by |A| the matrix with components |aij | ). The key point
here is that the spectral radius of |T | j−1 may be much larger than the spectral radius
of T j−1, which describes the natural error growth of a point method. If this is the
case, the error bounds for the naive Taylor model method may be much larger than
the true error.

5.2. Naive Taylor model method with shrink wrapping. Berz and Makino
[29] defined shrink wrapping as a method for absorbing the interval part of the Taylor
model into the polynomial part by modifying the polynomial coefficients. The set
defined by the sum of the given polynomial and interval is wrapped by a set defined by
a pure polynomial. The new set may be larger than the initial set, but it is less prone
to the dependency problem and to the wrapping effect in succeeding calculations.

In the verified integration of ODEs, shrink wrapping is usually applied to the
Taylor model enclosures of the flow at the grid points, before continuing the inte-
gration. In practical computations, shrink wrapping is performed when the size of
the interval remainder term exceeds some heuristically chosen bound. After shrink
wrapping, the initial set of the subsequent integration step is purely symbolic, which
removes the dependency problem and simplifies the verification step. The success of
the Taylor model based integration method depends on the successful reduction of
the excess introduced in the shrink wrapping process.

The process of applying shrink wrapping to a Taylor model vector

U := p(x) + i, x ∈ x,

is described in [29]. Here, we outline only its four basic steps. First, let Ũ denote
the Taylor model that is obtained when the constant part of p is removed. Second,
multiply Ũ by the inverse of the matrix associated with its linear part and obtain
the Taylor model Û . Third, estimate the nonlinear part of Û , its Jacobian, and the
interval term of Û to obtain the shrink wrap factor q ≥ 1. Fourth, multiply the
polynomial part of Ũ with q and add the constant part of U .

We illustrate shrink wrapping with the following nonlinear example. For clarity,
we use two scalar Taylor models U and V instead of a Taylor model vector. The
symbolic variables are denoted by a and b (instead of the vector x).

Example 5.1. Absorption of the interval part into the symbolic part of a Taylor
model. We consider the Taylor model vector (U ,V)T , where

U(a, b) := 2 + 4a + 1
2a

2 + [−0.2, 0.2],

V(a, b) := 1 + 3b + ab + [−0.1, 0.1],

}
a, b ∈ [−1, 1].(5.3)

The set defined by (5.3) is shown in Figure 5.1. Following the above outline, we obtain

Ũ(a, b) = 4a + 1
2a

2 + [−0.2, 0.2],

Ṽ(a, b) = 3b + ab + [−0.1, 0.1].
(5.4)

The matrix associated with the linear part of the Taylor model (5.4) is

C :=

(
4 0
0 3

)
.

Multiplying (5.4) with C−1, we have

Û(a, b) = a + 1
8a

2 + [−0.05, 0.05],

V̂(a, b) = b + 1
3ab + [−0.034, 0.034].
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Estimating the nonlinear part and the interval terms as described in [29], we compute
numbers s, t, and d satisfying

s ≥
∣∣∣∣18a2

∣∣∣∣ , s ≥
∣∣∣∣13ab

∣∣∣∣ for all a, b ∈ [−1, 1],

t ≥
∣∣∣∣14a

∣∣∣∣ , t ≥
∣∣∣∣13b

∣∣∣∣ , t ≥
∣∣∣∣13a

∣∣∣∣ for all a, b ∈ [−1, 1],

d ≥ 0.05, d ≥ 0.034.

These conditions are fulfilled for s = t = 1
3 and d = 0.05, from which we deduce the

shrink wrap factor [29]

q = 1 + d · 1

(1 − t)(1 − s)
=

89

80
.

The final Taylor model after shrink wrapping is

Usw(a, b) := 2 +
89

20
a +

89

160
a2,

Vsw(a, b) := 1 +
287

80
b +

89

80
ab.

(5.5)

As Figure 5.1 shows, the set defined by (5.3) is contained in the set defined by (5.5).
Applying shrink wrapping in the linear model problem (5.1) is rather simple. For

simplicity, let us assume that shrink wrapping is performed in every integration step.
Then we must compute [29] qj := 1 + dj/2, where

dj := ‖w
(
(T j)−1ij

)
‖∞ .

If T is sufficiently well-conditioned, and if the interval terms are sufficiently small, then
the factors dj are almost zero, and shrink wrapping is feasible for many integration
steps.

The naive Taylor model method with shrink wrapping resembles the parallelepiped
method. By multiplying the nonconstant coefficients of the Taylor polynomial, for lin-
ear autonomous ODEs the interval term is absorbed as in the parallelepiped method.

Fig. 5.1. Sets of the Taylor models before (see (5.3)) and after shrink wrapping (see (5.5)).
The dotted line is the boundary of the set that is described by the polynomial of the original Taylor
model. The white area is the set described by the original Taylor model, including the interval term.
The excess area introduced by shrink wrapping is shaded in grey.
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While T j is well-conditioned, dj is small, and so is the excess area. On the other
hand, qj (and the excess area) becomes large if T j becomes ill conditioned, which
is eventually the case if T has eigenvalues of different magnitude. In this case the
integration breaks down due to the growth of the Taylor polynomial coefficients.

The naive Taylor model method with shrink wrapping is outlined as Algorithm
5.1.

Algorithm 5.1 (naive Taylor model method with shrink wrapping)

Let the initial set be given as a Taylor model vector in m space variables.

For j := 0, 1 . . . , jmax − 1:

1. Compute the m-dimensional Taylor model U = pn + i (containing the flow of the
IVP at tj+1) as in the naive Taylor model method.

2. Absorb i into pn by shrink wrapping.

3. Continue the integration with the modified polynomial as the initial set for the
next time step.

5.3. Preconditioned Taylor models. We showed in the previous section that
shrink wrapping has the same limitations as the parallelepiped method in traditional
interval arithmetic. To make Taylor model based integration successful for a larger
class of IVPs, some stabilization process similar to the QR interval method is required.
For restoring good condition numbers of the maps defined by the linear parts of the
Taylor models in the integration process, Berz and Makino developed preconditioned
Taylor models [29].

In the naive Taylor model method with or without shrink wrapping, the flow of
the ODE u′ = f(t, u) is represented by a single Taylor model at each grid point. In the
preconditioned Taylor model method, the flow of the ODE at t = tj is represented
by a composition of a left and a right Taylor model

Ul ◦ Ur = (pl,j + il,j) ◦ (pr,j + ir,j).

Definition 5.2. The composition

U(x) :=
(
pl(x) + il

)
◦
(
pr(x) + ir

)
(5.6)

of two Taylor models

Ul(x) := pl(x) + il, x ∈ xl,

Ur(x) := pr(x) + ir, x ∈ xr,

is called a preconditioned Taylor model if

Rg (Ur) ⊆ xl.(5.7)

The range enclosure condition (5.7) is essential in verified integration with pre-
conditioned Taylor models (see discussion below). The factorization into a left and
a right Taylor model is not unique. Two preconditioned Taylor models of the form
(5.6) can have the same domain z and the same range, but different polynomials and
remainder intervals. In verified integration, preconditioning is used to replace some
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representation of the flow at an intermediate grid point by a different set of initial
values that is more suitable for continuing the integration. Here preconditioning is
essentially a substitution in space variables. In the continuation of the integration,
the right Taylor model is not involved at all. The following theorem is a reformulation
of a proposition given without a proof by Makino and Berz [29].

Theorem 5.3. If the initial set of an IVP is given by a preconditioned Taylor
model, then integrating the flow of the ODE acts only on the left Taylor model.

For better understanding of this theorem, which is the key point of the precon-
ditioned integration method, we present first a formal proof, then an example with
symbolic integration, and finally a numerical example.

Proof. The space variables are parameters in the integration with respect to time.
If F (x, t) is a primitive of f(x, t), that is, if∫

f(x, t) dt = F (x, t),

then substituting x = g(u) does not affect F :∫
f(g(u), t) dt = F (g(u), t).

Preconditioned integration uses x = (pl,j + il,j) and g(u) = (pr,j + ir,j).
Example 5.4. Preconditioned symbolic integration over two time steps. We con-

sider the IVP

x′ = x(x + y), x(0) = 1 + a,

y′ = −x(x + y), y(0) = −1 + b.

Its unique solution is

x(t) = (1 + a)e(a+b)t,

y(t) = a + b− (1 + a)e(a+b)t,

so that at t = 1,

x(1) = (1 + a)ea+b, y(1) = a + b− (1 + a)ea+b.

To continue the integration, we use the IVP

u′ = u(u + v), u(0) = α,

v′ = −u(u + v), v(0) = β,

and obtain

u(1) = αeα+β , v(1) = α + β − αeα+β .

Due to the substitution rule, u(1) = x(2) and v(1) = y(2). Indeed, letting

α = (1 + a)ea+b,

β = a + b− (1 + a)ea+b,

we obtain

u(1) = (1 + a)e2(a+b) = x(2),

v(1) = (a + b) − (1 + a)e2(a+b) = y(2).
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The same variable substitution as in Example 5.4 is applied when the initial set
for an ODE is given by some preconditioned Taylor model Ul ◦ Ur. To compute an
enclosure of the flow, it suffices to integrate the given ODE for the initial values
defined by Rg (Ul), and to compose the integrated Taylor model with Ur. If higher
order terms appear in the composition process, they are included in the remainder
interval of the result, as in Example 2.2.

In practice, preconditioning is used to replace the integrated preconditioned flow
at the end of the jth integration step,(∮

Ul,j

)
◦ Ur,j

(where
∮
U denotes integrated flow with respect to the given ODE), by a different

preconditioned Taylor model

Ul,j+1 ◦ Ur,j+1.

The initial set for the (j+1)st integration step is defined by Rg (Ul,j+1). The method
is successful if

• the amount of overestimation in the wrapping of
(∮

Ul,j

)
◦ Ur,j by Ul,j+1 ◦

Ur,j+1 is sufficiently small, and if

• Rg (Ul,j+1) is better suited for continuing the integration than
∮
Ul,j . For

example, preconditioning can be used to reduce the condition number of
certain matrices that control the propagation of the global error (see example
below) or to reduce the number of nonzero elements in the polynomial part
of the left Taylor model.

In Lohner’s QR method, an ill-conditioned parallelepiped is wrapped by some well-
conditioned m-dimensional rectangle. For preconditioning Taylor models, a large
variety of well-conditioned wraps is conceivable. The optimal choice is still an open
question for future research.

One important aspect of preconditioned integration is the computation of the
remainder bounds in the Picard iteration. If the initial set is given by (5.6), the
validity of the enclosure is already guaranteed if the remainder intervals hold for
x ∈ Rg (Ur). In practice, the remainder bounds are calculated for x ∈ x, a larger set
and a potential source of overestimation. In practical computations, overestimation
(loss of accuracy) is usually converted to costs (increase of computation time). A
common strategy is to limit the admissible size of the remainder intervals by some
prescribed bound. Using a larger initial set then has the effect of reducing step sizes
and increasing overall computation time.

A simple choice for the left Taylor model (the initial set) in each integration
step is a well-conditioned linear map (a parallelepiped). The following description
of preconditioned integration is a simplified version of the presentation in [29]. We
consider the linear autonomous IVP

u′ = B u,

u(0) = u0 = c0 + C0x,
(5.8)

where B is a real matrix, c0 is a real vector, C0 is a diagonal matrix, and x is contained
in [−1, 1]m. The initial set is given by a Taylor model vector of the form (2.3). A
suitable preconditioned Taylor model for this initial set is

pl,0(x) = c0 + C0x, il,0 = 0, pr,0(x) = x, ir,0 = 0.
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We assume that the flow at tj is given by the preconditioned Taylor model

Uj := (pl,j + il,j) ◦ (pr,j + ir,j) = (cl,j + Cl,j x + il,j) ◦ (cr,j + Cr,j x + ir,j),

where cl,j and cr,j are real vectors, and Cl,j and Cr,j are real matrices. Using the
matrix T from section 5.1, the flow after integration is given by

Uj+1 := (Tcl,j + TCl,j x + il,j+1) ◦ (pr,j + ir,j).

For cl,j+1 := Tcl,j and any nonsingular matrix Cl,j+1, the preconditioned Taylor
model Uj+1 can be rewritten as

Uj+1 = (Tcl,j + Cl,j+1 x + [0, 0]) ◦
{[

C−1
l,j+1TCl,j x + C−1

l,j+1il,j+1

]
◦ (pr,j + ir,j)

}
= (cl,j+1 + Cl,j+1 x + [0, 0]) ◦

{[
C−1

l,j+1TCl,j x + C−1
l,j+1il,j+1

]
◦(cr,j + Cr,j x + ir,j)

}
= (cl,j+1 + Cl,j+1 x + [0, 0]) ◦

{
C−1

l,j+1TCl,j (cr,j + Cr,j x + ir,j) + C−1
l,j+1il,j+1

}
= (cl,j+1 + Cl,j+1 x + [0, 0])

◦
{
C−1

l,j+1TCl,j cr,j + C−1
l,j+1TCl,jCr,j x + C−1

l,j+1TCl,j ir,j + C−1
l,j+1il,j+1

}
=: (cl,j+1 + Cl,j+1 x + [0, 0]) ◦ (cr,j+1 + Cr,j+1 x + ir,j+1).

The interval term ir,j in the preconditioned Taylor model integration of (5.8) is prop-
agated as the interval term in the parallelepiped and QR interval iteration, if Cl,j+1

is chosen as in those methods. For Cl,j+1 = TCl,j , the parallelepiped method is ob-
tained, for TCl,jPj = QjRj (where Pj is a permutation matrix for sorting the columns
of TCl,j) and Cl,j+1 = Qj , the QR method. Numerical examples confirming these
relations are presented in section 7.

For nonlinear ODEs, the nonlinear terms in the left Taylor model can be shifted to
the right Taylor model in the same manner [29]. However, the resulting Taylor model
methods then differ from the corresponding interval methods. First, the symbolic
parts of the composed Taylor models describe nonlinear enclosures sets of the flow,
which need not be convex, in contrast to interval methods. Second, the nonlinear
terms in the left Taylor models then also act on the interval terms in the right Taylor
models. An analysis of the resulting interval propagation will be the subject of future
research.

6. Preconditioned quadratic example. We now demonstrate QR precon-
ditioned Taylor model integration for the quadratic model problem of section 4.1,
namely,

u′ = v, u(0) ∈ [0.95, 1.05],

v′ = u2, v(0) ∈ [−1.05,−0.95].

In each integration step, the left Taylor models are constructed via a QR factorization
of the linear parts of the integrated Taylor models of the previous integration step. As
in the naive integration of this IVP in section 4.1, order n = 3 and step size h = 0.1
are used, and all numbers are displayed rounded to six decimal digits.
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In the first integration step, the initial set is described by the left Taylor model
in space variables at t0. The right Taylor model at t0 is the identity map in space
variables. Hence, the first integration step is performed as in the naive Taylor model
method (cf. section 4.1), and we obtain the integrated left Taylor models (4.3), namely,

Ũl,1(a, b) := 0.904667 + 1.01a + 0.1b + ĩ0,

Ṽl,1(a, b) := −0.909333 + 0.19a + 1.01b + 0.1a2 + j̃0,

}
a, b ∈ [−0.05, 0.05],

where

ĩ0 = [−5.09307E-5, 7.86167E-5], j̃0 = [−1.75707E-4, 1.60933E-4].

For reasons that will soon become clear, we normalize the domain such that a and b
are contained in [−1, 1]. Doing so (without changing the names of the variables), we
have

Ũl,1(a, b) := 0.904667 + 0.0505a + 0.005b + ĩ0,

Ṽl,1(a, b) := −0.909333 + 0.0095a + 0.0505b + 0.00025a2 + j̃0,

}
a, b ∈ [−1, 1].

So far, the right Taylor models have been unaffected by the integration process.
Before continuing the integration, however, we precondition the left Taylor models.
We extract the linear parts of Ũl,1 and Ṽl,1, and obtain the matrix Cl,1, from which
we compute a QR factorization.

Cl,1 :=

(
0.0505 0.005

0.0095 0.0505

)
=

(
0.982762 −0.184876

0.184876 0.982762

)
·
(

0.0513858 0.0142500

0 0.0487051

)
=: QR.

The left Taylor models in the second integration step are built from the constant
terms of Ũl,1 and Ṽl,1 and from Q. Thus we get

U l,1(a, b) := 0.904667 + 0.982762a− 0.184876b,

V l,1(a, b) := −0.909333 + 0.184876a + 0.982762b.

The nonlinear term 0.00025a2 in Ṽl,1 and the interval terms ĩ0, j̃0 are collected
in the right Taylor models, which are multiplied by QT . We obtain

QT ·
(

0

0.00025a2

)
=

(
0.0000462190a2

0.000245691a2

)

and (
i0

j0

)
:= QT ·

(
ĩ0

j̃0

)
=

(
[−8.25368E-5, 1.07014E-4]

[−1.87213E-4, 1.67575E-4]

)
,

which yields

Ur,1(a, b) := 0.0513858a + 0.0142500b + 0.0000462190a2 + i0,

Vr,1(a, b) := 0.0487051b + 0.000245691a2 + j0,

}
a, b ∈ [−1, 1].
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Before we can continue the integration, we must further modify the preconditioned
Taylor models. This is probably the most surprising part of the algorithm. It is also
crucial for the validity of the method. After the first time step, the flow of the IVP
is contained in the composition of the left and right Taylor models. For continuing
the integration, we want to drop the right Taylor model. On one hand, this is only
feasible if the left Taylor model contains the flow of the IVP. On the other hand, the
set defined by the left Taylor model should not be much larger than the current flow,
because that would mean large overestimation. There are two potential solutions for
ensuring the desired inclusion property. We can modify the domain of the independent
variables, or we may modify the left Taylor model by an additional transformation.
We describe both alternatives in the following.

The starting point of the transformation is the range of the right Taylor model.
We have

Rg
(
Ur,1

)
⊆ 0.0513858 · [−1, 1] + 0.0142500 · [−1, 1] + 0.0000462190 · [0, 1]

+[−8.25368E-5, 1.07014E-4]

= [−0.0657183368, 0.065789033] ⊆ [−0.0657183, 0.0657890],

Rg
(
Vr,1

)
⊆ 0.0487051 · [−1, 1] + 0.000245691 · [0, 1] + [−1.87213E-4, 1.67575E-4]

= [−0.048892151, 0.049118366] ⊆ [−0.0488922, 0.0491184].

Thus we may continue the integration with the initial set for the second time step
given by

Ûl,1(a, b) := 0.904667 + 0.982762a− 0.184876b,

V̂l,1(a, b) := −0.909333 + 0.184876a + 0.982762b,

}
a ∈ [−0.0657183, 0.0657890],

b ∈ [−0.0488922, 0.0491184]

(unchanged polynomials, but modified domain).
Alternatively, we can apply a linear transformation on the left and the right Taylor

models by a scaling matrix [29]. It is convenient here to denote the linear map (that
is, a linear Taylor model S with zero constant part and zero interval remainder term)
associated with a matrix S by the matrix itself. First note that for any nonsingular
matrix S,

(U l,1,V l,1) ◦ (Ur,1,Vr,1) = (U l,1,V l,1) ◦ (S ◦ S−1) ◦ (Ur,1,Vr,1)

⊆ ((U l,1,V l,1) ◦ S) ◦ (S−1 ◦ (Ur,1,Vr,1)),

where the subset property is induced by the subdistributivity law of interval arithmetic
[1, p. 3]. Letting

S :=

(
0.0657890 0

0 0.0491184

)
,

we obtain

(U l,1,V l,1) ◦ S =

(
0.904667
−0.909333

)
+

(
0.982762 −0.184876
0.184876 0.982762

)(
0.0657890 0

0 0.0491184

)(
a
b

)

=

(
0.904667
−0.909333

)
+

(
0.0646550 −0.00908081
0.0121628 0.0482716

)(
a
b

)
.
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Since S has been determined such that the range of each component of S−1◦(Ur,1,Vr,1)
is contained in [−1, 1], it is feasible to continue the integration with the left Taylor
models

Ul,1(a, b) := 0.904667 + 0.0646550a− 0.00908081b,

Vl,1(a, b) := −0.909333 + 0.0121628a + 0.0482716b,

}
a, b ∈ [−1, 1]

as initial set for the second time step (modified polynomials, but original domain).
The corresponding right Taylor models are

(
Ur,1

Vr,1

)
:= S−1 ◦ (Ur,1,Vr,1)

=

(
15.2001 0

0 20.3590

)(
0.0513858a + 0.01425b + 0.000046219a2 + i0

0.0487051b + 0.000245691a2 + j0

)

=

(
0.781070a + 0.216602b + 0.000702534a2 + [−0.00125457, 0.00162662]

0.991586b + 0.00500202a2 + [−0.00381146, 0.00341165]

)
.

Remark 6.1. From a mathematical viewpoint, modification of the domain or of the
polynomials are equivalent approaches for factorizing preconditioned Taylor models,
but maintaining the integration domain via the scaling matrices is advantageous for
the software implementation of the method, because it simplifies the estimation of
the higher order terms in the integration step.

In the second integration step, we use the initial set defined by Ul,1 and Vl,1.
Proceeding as before, we obtain the integrated left Taylor models (for a, b ∈ [−1, 1])

Ũl,2(a, b) := 0.817551 + 0.0664561a− 0.00433580b + ĩ1,

Ṽl,2(a, b) := − 0.835195 + 0.0233831a + 0.0471479b

+ 0.000418026a2 − 0.000117424ab + 0.00000824612b2 + j̃1,

where

ĩ1 = [−5.72276E-5, 9.15947E-5], j̃1 = [−1.80914E-4, 1.80850E-4].

Finally, the flow at t2 is made up by the composition of the integrated left Taylor
models and the previous right Taylor models. We have

U2(a, b) := Ũl,2(Ur,1(a, b),Vr,1(a, b)) = 0.817551 + 0.0519069a + 0.0100952b

+ 0.000025a2 + [−3.48708E-4, 4.09534E-4],

V2(a, b) := Ṽl,2(Ur,1(a, b),Vr,1(a, b)) = −0.835195 + 0.0182638a + 0.0518160b

+ 0.000507287a2− 0.0000505ab− 0.0000025b2+ [−4.38606E-4, 4.28392E-4],

where a, b ∈ [−1, 1].
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Algorithm 6.1 (QR preconditioned Taylor model method)

Let the initial set be given as a preconditioned Taylor model vector Ul,0 ◦ Ur,0 in
m space variables, with Ur,0 the identity map and symbolic variables in [−1, 1].

For j := 0, 1 . . . , jmax − 1:

1. Integrate Ul,j (containing the flow of the IVP at tj) as in the naive Taylor model
method. Denote the integrated left Taylor model (containing the flow of the IVP

at tj+1) by Ũl,j+1. The flow is also contained in Ũl,l+1 ◦ Ur,j .

2. Replace Ũl,j+1 ◦ Ur,j by Ul,j+1 ◦ Ur,j+1:

(i) Compute the QR factorization of the linear part of Ũl,j+1.

(ii) Shift all but the constant part of Ũl,j+1 to Ur,j . Make Q the linear part of

Ũl,j+1. Apply Q−1 on Ur,j .

(iii) Bound the range of the new Ur,j .

(iv) Apply a scaling matrix Sj+1 on Ur,j such that each component of the
range of Ur,j+1 := S−1

j+1 ◦ Ur,j is contained in [−1, 1] and spans [−1, 1]
approximately.

(v) Set Ul,j+1 := Ũl,j+1 ◦ Sj+1.

Compared with the naive Taylor model integration performed in section 4.1, the
polynomial coefficients are identical except for roundoff errors. This does not invali-
date the computations, since all roundoff errors are rigorously bounded by the interval
terms. Even though preconditioned integration is the superior method with respect
to accuracy in the long run, the interval terms after two integration steps are larger
here. The advantage of preconditioning becomes apparent only after several inte-
gration steps (see section 6.1). Algorithm 6.1 summarizes the preconditioned Taylor
model method with domain normalization.

6.1. Numerical comparison with the QR interval method. Finally, we
compare the performance of Lohner’s software AWA [21] with the COSY INFINITY
integrator written by Makino. We use the quadratic model IVP (4.1) for the compari-
son. For the computation, Taylor expansions of order 18 were used in both programs.
In both programs, the QR method (QR preconditioning) is used. The computed
enclosure sets are shown in Figure 6.1.

In the left picture, integration is performed in the time interval [0, 2.8]. In the
beginning, the enclosures from AWA (rectangular boxes) and COSY INFINITY (non-
linear sets) are of similar quality. Near the end of the integration domain, the enclo-
sures from AWA start exploding. While AWA aborts integration at t = 3.75, COSY
INFINITY is able to continue the integration much longer (right picture; enclosures
of AWA are not shown). We attribute this to the ability of Taylor model methods to
use nonconvex enclosure sets of the flow.

This example shows that Taylor model methods may perform much better than
interval methods on some problems, but this is not always the case. For some prob-
lems, interval methods can be as effective. Moreover, if they succeed, interval meth-
ods are often faster than Taylor model methods, because symbolic computations with
multivariate polynomials are expensive.
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Fig. 6.1. Integration of quadratic model IVP with AWA and COSY INFINITY for t ∈ [0, 2.8]
(left), and with COSY INFINITY for t ∈ [0, 6] (right). Enclosures of the flow are shown for
tk = 0.4k, k = 0, 1, . . . . The solid line in each picture belongs to the approximate solution that was
computed with a Runge–Kutta method (for the model ODE with point initial values).

7. Linear numerical examples. We compare interval methods and Taylor
model methods for the linear autonomous ODE

u′ = B u,

where B is a real 3 × 3 matrix. Numerical results are displayed for three different
choices of B. In all examples, the initial values

u0 =

⎛⎝ [0.999, 1.001]
[0.999, 1.001]
[0.999, 1.001]

⎞⎠
were used. The computations were performed with AWA and with the COSY
INFINITY integrator. In all examples, order 12 was chosen for the Taylor poly-
nomial. Using lower orders (6 and 9 were tested) gave less accurate results, and using
higher orders (15 was tested) increased the computation times but not the accuracy
of the results. For integration with COSY INFINITY, the minimal step size was set
to 0.25.

In the tables, the following notation is used.
• AWA iv, AWA pe, and AWA QR denote the direct interval method, the

parallelepiped method, and the QR method, respectively.
• TM na, TM sw, and TM QR denote the naive Taylor model method without

shrink wrapping, the naive Taylor model method with shrink wrapping, and
the Taylor model method with QR preconditioning, respectively.

The observed performance of the methods is in agreement with the theoretical con-
siderations in this paper. Naive Taylor model integration without shrink wrapping
performs as the direct interval method (except for Example 1), naive Taylor model
integration with shrink wrapping like the parallelepiped method, and QR precondi-
tioned Taylor model integration similar to the QR method.

We call two matrices A and B floating-point similar if A is obtained from B by
a similarity transform executed in floating-point arithmetic. Floating-point similar
matrices are denoted by A ≈ B. Intervals are sometimes displayed using a short
notation with upper and lower indexes. For example, 1.47301

5593E-001 denotes the interval
[0.145593,0.147301].
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Table 7.1

Numerical results for Example 7.1.

Method tend Steps y1(tend)

AWA iv 100 216 1.47301
5593E-001

AWA pe 52.6 131 aborted

AWA QR 100 216 1.47301
5593E-001

TM na 100 391 [−2.378E+26, 2.378E+26]

TM sw 100 272 [−2.282E+112, 2.282E+112]

TM QR 100 122 1.47301
5593E-001

Example 7.1. Pure contraction (see Table 7.1).

B =

⎛⎝ −0.4375 0.0625 −0.2651650429
0.0625 −0.4375 −0.2651650429

−0.2651650429 −0.2651650429 −0.375

⎞⎠ ≈

⎛⎝−1
2 0 0

0 − 3
4 0

0 0 0

⎞⎠
B has three distinct real eigenvalues so that B describes a contraction without

rotation. For such problems, the parallelepiped method is not well suited, because
the matrices Aj , which have to be inverted, become nearly singular. The interval
method breaks down, and the corresponding naive Taylor model method with shrink
wrapping computes a practically useless enclosure of the solution.

The direct interval method succeeds here. We also would have expected the naive
Taylor model method without shrink wrapping to succeed. While the reason for its
failure is not clear, it provides further evidence for our judgement that this method is
not very effective. Both the QR interval method and the QR preconditioned Taylor
model method succeed here.

Table 7.2

Numerical results for Example 7.2.

Method t Steps y1(tend)

AWA iv 76.5 393 aborted

AWA pe 100 449 1.49522
222E+000

AWA QR 100 449 1.49522
222E+000

TM na 100 396 [−1.517E+45, 1.517E+45]

TM sw 100 343 1.49522
222E+000

TM QR 100 343 1.49522
222E+000

Example 7.2. Pure rotation (see Table 7.2).

B =

⎛⎝ 0 −0.7071067810 −0.5
0.7071067810 0 0.5

0.5 −0.5 0

⎞⎠ ≈

⎛⎝ 0 −1 0
1 0 0
0 0 0

⎞⎠
B has eigenvalues ±i and 0. The flow of this IVP is a rotating interval box. As

expected, the direct interval method and the naive Taylor model method fail, whereas
the parallelepiped method and the naive Taylor model method with shrink wrapping
(and also the QR based methods) succeed.
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Table 7.3

Numerical results for Example 7.3.

Method t Steps y1(tend)

AWA iv 85.5 507 aborted

AWA pe 75.2 404 aborted

AWA QR 100 516 1.34862
592E+000

TM na 100 397 [−1.605E+55, 1.605E+55]

TM sw 100 357 [−3.566E+106, 3.566E+106]

TM QR 100 362 1.34862
592E+000

Example 7.3. Contraction and rotation (see Table 7.3).

B =

⎛⎝ −0.125 −0.8321067810 −0.3232233048
0.5821067810 −0.125 0.6767766952
0.6767766952 −0.3232233048 −0.25

⎞⎠ ≈

⎛⎝ 0 −1 0
1 0 0
0 0 − 1

2

⎞⎠
In our last example, B has eigenvalues ±i and −1/2, so contraction and rotation

are combined. Here, the direct interval method and the naive Taylor model method are
bound to fail because of the rotation, whereas the contraction causes the parallelepiped
method and the Taylor model method with shrink wrapping to fail.

Only the QR based methods can successfully deal with both contraction and rota-
tion of the initial set. For these methods, the overestimation of the final flow is hardly
noticeable. This agrees with the general observation that the QR decomposition is a
very effective tool in fighting the wrapping effect, both for the interval method and
for the preconditioned Taylor model method.

Conclusion. We have compared traditional enclosure methods with Taylor model
based integration. For the verified solution of initial value problems for ODEs, we have
shown how Taylor model methods benefit from symbolic computations. Increased
flexibility in admissible boundary curves of enclosures is an intrinsic advantage over
traditional interval methods, and not only for the solution of ODEs. In future re-
search, we hope to contribute to the further development and increased use of Taylor
model methods.
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Abstract. We bound the condition number of the Jacobian in pseudo-arclength continuation
problems, and we quantify the effect of this condition number on the linear system solution in a
Newton-GMRES solve. Pseudo-arclength continuation solves parameter dependent nonlinear equa-
tions G(u, λ) = 0 by introducing a new parameter s, which approximates arclength, and viewing the
vector x = (u, λ) as a function of s. In this way simple fold singularities can be computed directly
by solving a larger system F (x, s) = 0 by simple continuation in the new parameter s. It is known
that the Jacobian Fx of F with respect to x = (u, λ) is nonsingular if the path contains only regular
points and simple fold singularities. We introduce a new characterization of simple folds in terms of
the singular value decomposition, and we use it to derive a new bound for the norm of F−1

x . We
also show that the convergence rate of GMRES in a Newton step for F (x, s) = 0 is essentially the
same as that of the original problem G(u, λ) = 0. In particular, we prove that the bounds on the
degrees of the minimal polynomials of the Jacobians Fx and Gu differ by at most 2. We illustrate
the effectiveness of our bounds with an example from radiative transfer theory.

Key words. pseudo-arclength continuation, singularity, GMRES, singular vectors, eigenvalues,
rank-one update, turning point, simple fold, fold point, limit point
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1. Introduction. Numerical continuation is the process of solving systems of
nonlinear equations G(u, λ) = 0 for various values of a real parameter λ. Here u ∈ RN ,
λ is a real scalar, and G : RN+1 → RN . An obvious approach for implementing nu-
merical continuation, called parameter continuation [11, 13, 19], traces out a solution
path by repeatedly incrementing λ until the desired value of λ is reached. In each
such iteration, the current solution u is used as an initial iterate for the next value of
λ. Although parameter continuation is simple and intuitive, it fails at points (u, λ)
where the Jacobian Gu is singular. In this paper we consider singularities which are
simple folds.

The standard way to remedy the failure of parameter continuation at simple folds
is to reparameterize the problem by introducing an approximate arclength parameter,
s, so that both u and λ depend on s. This idea, known as pseudo-arclength continu-
ation [11, 13, 19], introduces a new parameter s and treats the vector x = (u, λ) as a
function of s. We then solve a new system F (x, s) = 0 by parameter continuation in s.
In order for this approach to succeed, the Jacobian Fx of F must be nonsingular. It is
known that Fx is nonsingular at simple folds and points where Gu is nonsingular [13].
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Our first goal (section 3) is to quantify this nonsingularity. To this end we provide
a new characterization of simple folds in terms of the singular value decomposition
(SVD) of Gu. From the SVD, we derive a new bound for ‖F−1

x ‖2. This bound can
be used to limit the arclength step in Newton’s method. As a byproduct we obtain
a refinement of Weyl’s monotonicity theorem [23] for the smallest eigenvalue of a
symmetric positive semidefinite matrix (section 3.1).

We also examine in section 4 how the conditioning of Fx affects the convergence
of the inner GMRES [26] iteration in a Newton-GMRES solver [2, 3, 14, 15]. We
show that the eigenvalue clustering of the Jacobian Fx in the reformulated problem
is not much different from that of the Jacobian Gu in the original problem. This
implies [4, 17] that the convergence speed of GMRES, when used as a linear solver
for the Newton step, is not degraded when parameter continuation is replaced by
pseudo-arclength continuation.

Finally, in section 5, we illustrate our findings with a numerical example from
radiative transfer theory.

2. Background. We briefly review theory and algorithms for solving numerical
continuation problems G(u, λ) = 0, where λ ∈ R, u ∈ RN , and G : RN+1 → RN .
We discuss parameter continuation in section 2.1 and pseudo-arclength continuation
in section 2.2. We use the abbreviations

Gu ≡ ∂G

∂u
, Gλ ≡ ∂G

∂λ
.

2.1. Simple parameter continuation. Parameter continuation [11, 13, 19] is
the simplest method for solving G(u, λ) = 0. The idea is to start at a point λ = λinit

and solve G(u, λ) = 0 for u(λ), say, by Newton’s method. Use the solution u(λ) as the
initial iterate to solve the next problem G(u, λ+ dλ) = 0. Algorithm paramc below
is a simple implementation of parameter continuation from λinit to λend = λinit+ndλ
where n denotes the maximum number of continuation iterations.

paramc(u,G, λinit, λend, dλ)

Set λ = λinit, u0 = u
while λ ≤ λend do

Solve G(u, λ) = 0 with u0 as the initial iterate to obtain u(λ)
u0 = u(λ)
λ = λ + dλ

end while

Corollary 2.1 is a consequence of the implicit function theorem [13, 22] and states
that parameter continuation, as realized in Algorithm paramc, will succeed near a
solution at which Gu is nonsingular. Parameter continuation may fail if the arc of
solutions contains singular points, i.e., solutions at which Gu is singular.

Corollary 2.1. Let G be Lipschitz continuously differentiable, G(u0, λ0) =
0, and Gu(u0, λ0) be nonsingular. Then there is δ > 0, which depends only on
‖G−1

u (u0, λ0)‖ and the Lipschitz constants of Gu and Gλ, such that if |λ − λ0| < δ
then Newton’s method with initial iterate u0 converges q-quadratically to the solution
u(λ) of G(u, λ) = 0, i.e.,

‖un+1 − u(λ)‖ = O(‖un − u(λ)‖2),(2.1)
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where, for n ≥ 0,

un+1 = un −Gu(un, λ)−1G(un, λ).

Proof. Define the Lipschitz constant

‖Gu(u, λ) −Gu(v, μ)‖ ≤ γG(‖u− v‖ + |λ− μ|).

Differentiating G(u, λ) = 0 with respect to λ gives

du/dλ = −G−1
u Gλ.

The implicit function theorem implies that there is δ1 such that if

|λ− λ0| ≤ δ1

then there is a solution arc u(λ) defined for |λ− λ0| ≤ δ1. Since G−1
u Gλ is Lipschitz

continuous, there is γu, which depends only on ‖G−1
u (u0, λ0)‖ and the Lipschitz

constants of Gu and Gλ, such that

‖du/dλ‖ = ‖G−1
u Gλ‖ ≤ γu.

A lower bound for the radius of the ball of attraction for the Newton iteration is
[14]

1

2γG‖G−1
u (u0, λ0)‖

,

so choosing

δ = min

(
δ1,

1

2γuγG‖G−1
u (u0, λ0)‖

)
completes the proof.

The implicit function theorem and Corollary 2.1 fail near most singular points.
Our objective in this paper is to investigate the simplest class of singular points at
which the implicit function theorem fails.

2.2. Pseudo-arclength continuation. Pseudo-arclength continuation [11, 13,
19] avoids the problems of Algorithm paramc at singular points by using an approx-
imation of arclength parameterization. The curve in Figure 5.1, for instance, has a
singularity with respect to the parameter λ. If we choose arclength s as the parameter
λ, and x = (uT , λ)T in place of u, we can compute the curve with simple parameter
continuation. The curve in Figure 5.1 has a simple fold, which is the singularity of
interest for this paper. Formally, a simple fold (or fold point, turning point, or limit
point) is defined as follows [5, 13, 20, 24].

Definition 2.2. A solution (u0, λ0) of G(u, λ) = 0 is a simple fold if
• dim(Ker(Gu(u0, λ0))) = 1 and
• Gλ(u0, λ0) �∈ Range(Gu(u0, λ0)).

To develop a pseudo-arclength continuation method, we assume that x depends
smoothly on s. Then one can differentiate G(u, λ) = 0 with respect to s and obtain

dG(u(s), λ(s))

ds
= Guu̇ + Gλλ̇ = 0.(2.2)
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Equivalently, one can differentiate G(x) = 0 and obtain Gxẋ = 0. Here, ẋ denotes
the derivative with respect to s. Since s is arclength in the Euclidean norm,

‖ẋ‖2 = ‖u̇‖2 + |λ̇|2 = 1.(2.3)

Having introduced a new parameter s, one adds an equation to G(u, λ) = 0 so that
the number of equations equals the number of unknowns. To do this one introduces
the extended system

F (x, s) =

(
G(x)

N (x, s)

)
=

(
0
0

)
.(2.4)

The normalization equation N = 0 is an approximation of (2.3) where

N (x, s) = ẋT
0 (x− x0) − (s− s0) = 0.(2.5)

Equation (2.5) says that the new point on the path lies on a hyperplane orthogo-
nal to the tangent vector through the current point x0, and the intersection of that
hyperplane with the tangent vector is a distance ds = s− s0 from x0.

While we prove our results using the normalization (2.5), the bounds also apply to
other normalizations [7, 11, 13, 25, 27], which are asymptotically equivalent to (2.5).

Given a known point (x0, s0), the pseudo-arclength continuation method incre-
ments arclength by ds, and solves (2.4) with the normalization (2.5) by Newton’s
method with initial iterate x0. Algorithm psarc is a simple implementation of pseudo-
arclength continuation.

psarc(u, F, send, ds)

Set s = 0, x0 = (uT
0 , λ0)

T

while s ≤ send do
Approximate ẋ
Solve F (x, s) = 0 with fixed s and x0 as the initial iterate to obtain x(s)
x0 = x(s)
s = s + ds

end while

Since pseudo-arclength continuation is just simple parameter continuation applied
to F with s as the parameter, Corollary 2.1 gives conditions for the convergence of
Newton’s method in pseudo-arclength continuation, and we restate the corollary in
terms of F for completeness.

Corollary 2.3. Let the assumptions of Corollary 2.1 hold for F . Then there
is δ > 0, which depends only on ‖F−1

x (x0, s0)‖ and the Lipschitz constants of Fx and
x, such that if |s − s0| < δ then Newton’s method with initial iterate x0 converges
q-quadratically to the solution.

One consequence of Corollary 2.3 is that a bound on ‖F−1
x ‖ is an important factor

in bounding the arclength step. In the next section we present the main result of this
paper, a new bound on ‖F−1

x ‖.
3. Nonsingularity of Fx. For a solution x0 = (u0, λ0) to G(u, λ) = 0, we

present an upper bound on ‖F−1
x (x0, s0)‖ in the case that

• Gu(u0, λ0) is nonsingular or
• (u0, λ0) is a simple fold of G(u, λ) = 0.
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In order to derive the bound, we introduce a new characterization of simple folds,
which is based on the SVD of Gu. We prove the bound in section 3.2. In section 3.1
we refine Weyl’s monotonicity theorem for the smallest eigenvalue of a symmetric
positive semidefinite matrix, which we need for the proof.

Let

Gu(u, λ) = UΣV T

be an SVD of Gu(u, λ), where

Σ = diag(σ1, σ2, . . . , σN ), σ1 ≥ σ2 ≥ · · · ≥ σN , uN ≡ UeN ,

and eN is the last column of the N × N identity matrix. The trailing column uN

of U is a left singular vector associated with the smallest singular value σN . When
necessary, we will make the dependence on λ or u explicit, by writing, for example,
σN (u, λ) or uN (u, λ).

Since the singular values are continuous functions of the elements in Gu(u, λ),
they are also continuous in λ. If

σN−1 ≥ σ̄ > 0

for all (u, λ) then the nullity of Gu(u, λ) is at most one. If in addition σN = 0 then
uN spans the left nullspace of Gu(u, λ). From the direct sum

Ker(GT
u (u0, λ0)) ⊕ Range(Gu(u0, λ0)) = RN

we see that Gλ(u0, λ0) is not in the Range (Gu(u0, λ0)) if and only if Gλ(u0, λ0)
TuN �=

0. Hence we have a new, equivalent definition of a simple fold.
Definition 3.1 (simple fold via SVD). Let (u0, λ0) be a solution of G(u, λ) = 0,

and let uN (u0, λ0) be a left singular vector of Gu(u0, λ0) associated with σN .
Then (u0, λ0) is a simple fold if
• σN−1(u0, λ0) > 0,
• σN = 0, and
• uN (u0, λ0)

TGλ(u0, λ0) �= 0.
We will use Definition 3.1 to motivate the assumptions in Theorem 3.2. Suppose

(u0, λ0) is a regular point (Gu nonsingular) or a simple fold. Since G is Lipschitz
continuously differentiable, we can, by requiring uT

N (λ0)uN (λ) > 0, for example, define
uN as a continuous function of u and λ. Hence Gλ(u, λ)TuN (u, λ) is a continuous
function of (u, λ). So there is α > 0 such that for all (u, λ) sufficiently near (u0, λ0),

max

(
σN (u, λ)2, |uN (u, λ)TGλ(u, λ)|2 gap

gap + ξ2

)
≥ α > 0,(3.1)

where

gap ≡ σN−1(u, λ)2 − σN (u, λ)2(3.2)

and

ξ ≡ |uN (u, λ)TGλ(u, λ)| + ‖(I − uN (u, λ)uN (u, λ)T )Gλ(u, λ)‖.(3.3)

Inequality (3.1) is a way to quantify the statement that all points on a solution
arc are either regular points or simple folds by saying that either σN > 0 (regular
point) or the conditions in Definition 3.1 hold.
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The main result of this paper is the following theorem.
Theorem 3.2. Let Ω̄ be the closure of an open subset Ω ∈ RN+1, and let

G be continuously differentiable in Ω̄. Let x0 = (u0, λ0) in Ω̄ be a solution to
G(u0, λ0) = 0, and N (x0, s0) = 0 with ‖ẋ0‖ = 1. Let τ ≥ 0 be such that
‖Gu(u0, λ0)u̇0 + Gλ(u0, λ0)λ̇0‖ ≤ τ .

Assume that for all (u, λ) in Ω̄ there exists α > 0 such that

σN−1(u, λ) > 0 and max

(
σN (u, λ)2, |uN (u, λ)TGλ(u, λ)|2 gap

gap + ξ2

)
≥ α,

where gap and ξ are defined by (3.2) and (3.3).
If τ < α, then for all x = (u, λ) in Ω̄, the smallest singular value σmin(Fx) of the

Jacobian Fx of F (x, s) is bounded from below with

σmin(Fx) ≥

√
1 − τ max

{
1

α
, 1

}
.

We postpone the proof of Theorem 3.2 until section 3.1 in order to derive an
auxiliary result first.

3.1. Lower bound for the smallest eigenvalue. We derive a lower bound for
the smallest eigenvalue of the rank-one update A+ yyT , where A is a real symmetric
positive semidefinite matrix of order N , and y is a real N × 1 vector.

Let β1 ≥ · · · ≥ βN ≥ 0 be the eigenvalues of A. Weyl’s monotonicity theorem
[23, Theorem (10.3.1)] implies bounds for the smallest eigenvalue of A + yyT :

βN ≤ λmin(A + yyT ) ≤ βN−1.

Intuitively one would expect that λmin(A+yyT ) is larger if y is close to an eigenvector
of βN . We confirm this by deriving lower bounds for λmin(A+ yyT ) that incorporate
the contribution of y in the eigenspace of βN .

Theorem 3.3. Let A be an N ×N real symmetric positive semidefinite matrix,
uN an eigenvector of A associated with βN , ‖uN‖ = 1, and y �= 0 a real N × 1 vector.
Set yN ≡ uT

Ny. Then

λmin(A + yyT ) ≥ max

{
βN , y2

N

gap

gap + ξ2

}
,(3.4)

where gap ≡ βN−1 − βN and ξ ≡ |yN | +
√
‖y‖2 − y2

N .
Proof. We first show that

λmin(A + yyT ) ≥ min

{
βN + y2

N

gap

gap + ξ2
, βN−1

y2
N

ξ2

}
(3.5)

is a lower bound for λmin(A + yyT ) = min‖x‖=1 x
T (A + yyT )x.

Let

A = U

⎛⎜⎝β1

. . .

βN

⎞⎟⎠UT
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be an eigendecomposition of A, and x be any real vector with ‖x‖ = 1. Partition

UTx =

(
x̄
xN

)
, UT y =

(
ȳ
yN

)
so that ξ = |yN | + ‖ȳ‖. Then

xT (A + yyT )x ≥ βN−1‖x̄‖2 + βNx2
N + (yTx)2.

If ‖x̄‖ ≥ |yN |/ξ then

xT (A + yyT )x ≥ (βN−1y
2
N )/ξ2,

which proves the second part of the bound in (3.5).
If ‖x̄‖ < |yN |/ξ then |yN |−‖x̄‖ξ > 0, and it makes sense to use |xN | ≥ 1−‖x̄‖ in

|yTx| = |yNxN + ȳT x̄| ≥ |yNxN | − ‖x̄‖‖ȳ‖ ≥ |yN | − ‖x̄‖ξ.

Hence

xT (A + yyT )x ≥ βN−1‖x̄‖2 + βNx2
N + (yTx)2 ≥ βN + y2

N + (gap + ξ2)‖x̄‖2 − 2ξ‖x̄‖|yN |.

This is a function of ‖x̄‖ which has a minimum at ‖x̄‖ = |yN |ξ/(gap + ξ2). Hence

xT (A + yyT )x ≥ βN + y2
N

gap

gap + ξ2
,

which proves the first part of the bound in (3.5).
With the help of (3.5) we now show the desired bound (3.4). Weyl’s theorem [23,

Theorem (10.3.1)] implies λmin(A + yyT ) ≥ βN , which proves the first part of the
bound in (3.4). For the second part of the bound in (3.4), we use the fact that the
eigenvalues of A are nonnegative; hence βN−1 ≥ gap and

βN−1

ξ2
≥ gap

gap + ξ2
.

Substituting this into (3.5) gives the second part of the bound in (3.4):

min(A + yyT ) ≥ min

{
βN + y2

N

gap

gap + ξ2
, y2

N

βN−1

ξ2

}
≥ min

{
βN + y2

N

gap

gap + ξ2
, y2

N

gap

gap + ξ2

}
= y2

N

gap

gap + ξ2
.

The quantity gap in Theorem 3.3 is the absolute gap between the smallest and
next smallest eigenvalues, and ξ is an approximation for ‖y‖ since ‖y‖ ≤ ξ ≤

√
2‖y‖.

The theorem shows that λmin(A + yyT ) is likely to be larger if y has a substantial
contribution in the eigenspace of βN .

Now we are in a position to complete the proof of Theorem 3.2.

3.2. Proof of Theorem 3.2. Define the residual

r ≡ Gu(u0, λ0)u̇0 + Gλ(u0, λ0)λ̇0.

Letting Gu = Gu(u, λ), Gλ = Gλ(u, λ), and Fx = Fx(x, s), we have

FxF
T
x =

(
Gu Gλ

u̇T
0 λ̇0

)(
GT

u u̇0

GT
λ λ̇0

)
=

(
GuG

T
u + GλG

T
λ r

rT 1

)
.
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The eigenvalues of FxF
T
x are the squares of the singular values of Fx. Applying

Theorem 3.3 to GuG
T
u + GλG

T
λ with A = GuG

T
u , y = Gλ, βN = σN (u, λ)2, βN−1 =

σ2
N−1(u, λ), and gap = σN−1(u, λ)2 − σN (u, λ)2 shows λmin(GuG

T
u + GλG

T
λ ) ≥ α.

Hence we can write (
GuG

T
u + GλG

T
λ 0

0 1

)−1

FxF
T
x = I + E,

where ‖E‖ ≤ τ max
{

1
α , 1

}
. If τ < min{α, 1} then ‖E‖ < 1, I +E is nonsingular, and

1

‖(FxFT
x )−1‖ ≥ 1 − τ max

{
1

α
, 1

}
.

4. Newton-GMRES and eigenvalue clustering. This section discusses the
performance of the inner GMRES iteration in the context of continuation with a
Newton-GMRES nonlinear solver. Theorem 3.2 gives bounds on the smallest singular
value of Fx in terms of the singular values of Gu. These lower bounds lead to bounds
on the condition number of Fx. While the results in the previous section address
conditioning, they do not directly translate into the performance of iterative methods
[12, 14, 30], especially in the nonnormal case. However, we can go further to see
that the eigenvalue clustering properties of the matrix Fx do not stray far from those
of Gu.

Suppose the eigenvalues of Gu are nicely clustered (in the sense of [4, 17]). Even
in the singular case, this would mean that the zero eigenvalue of Gu is an “outlier.”
We seek to show that adding the row and column does not significantly increase the
number of outliers, and that we can then use the estimates in [4, 17].

The idea is that [16]

Gu = I + K(u) + E,(4.1)

where Ku is a low-rank operator, say, of rank p, and E is small. We then want to write
Fx in the same way, and then compare the number of outliers by comparing the ranks
of the K-terms. The assumption that (4.1) holds is clearly valid if Gu is a compact
perturbation of the identity; examples of this are nonlinear integral equations as well
as the compact maps which are implicitly defined by the time-steppers as described
in [1, 9, 10, 18, 28, 29].

Assume that E is small enough so that the eigenvalues of I − K are “outliers”
in the sense of [4]. Since the degree of the minimal polynomial of I − K is at most
p + 1, we have a bound for the sequence of residuals {rl} of the GMRES iteration of
the form

‖rp̂+k‖ ≤ C‖E‖k‖r0‖,(4.2)

where p̂ ≤ p + 1 GMRES iterations are needed to remove the contribution of the
outlying eigenvalues.

Theorem 4.1 states that the spectral properties of Fx are similar to those of Gu.

Theorem 4.1. Let the assumptions of Theorem 3.2 hold. Assume that (4.1)
holds with rank(K(u)) = p. Then there is K(u) having rank at most p + 2 such that

‖Fx − I −K(u)‖ ≤ ‖E‖.
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Proof. We write [16]

Fx = I(N+1)×(N+1) +

(
K Gλ

u̇T λ̇

)
+

(
E 0
0 0

)
.

The range of

K =

(
K Gλ

u̇T λ̇

)
is (

Range(K)
0

)
+ span

{(
Gλ

0

)}
+ span

{(
0
1

)}
,

and hence the rank of K is at most p + 2.
So, while the eigenvalues may change, we have not increased the degree of the

minimal polynomial of the main term (K versus K) beyond p+3. Hence, the methods
of [4] can be applied to obtain a bound like (4.2) with p̂ ≤ p + 3.

5. Example: Chandrasekhar H -equation. We now present an example of a
solution path containing a simple fold. The equation of interest is called the Chan-
drasekhar H-equation [6, 14, 21] from radiative transfer theory:

H(μ) = 1 −
(
c

2

∫ 1

0

H(ν)
dνμ

μ + ν

)−1

.(5.1)

The goal is to compute H(μ) for μ ∈ [0, 1] as a function of c. There is a simple
fold at c = 1 [21], and the same analysis shows that this is also the case for any
discretization of the equation which uses a quadrature rule that integrates constant
functions exactly.

In this section we use a Newton-GMRES version of pseudo-arclength continua-
tion [8], fixing the step in arclength to ds = .02, using a secant predictor [13], and
beginning the continuation at c = 0, where H = 1 is the solution. The vector with
components all equal to one is the solution of the discrete problem as well. We dis-
cretize the integral with the composite midpoint rule using 200 nodes. A consequence
of this discretization is that all scalar products of discretized functions in the GMRES
solves were scaled by 1/200. Because we do this, all the singular value results will
converge as the quadrature rule is refined.

Figure 5.1 is a plot of ‖H‖1 against c. A fixed value of ds, as we use here, causes
problems as the L1 norm of H increases. The reason for this is that the solution
develops very large derivatives, and the predictor becomes very poor. We stopped the
continuation at c = .9 on the upper branch for that reason.

For this example we can also compute the L1 norm as a function of c analytically,
and verify the results in Figure 5.1. We can rewrite (5.1) as

H(μ) = 1 +
c

2

∫ 1

0

H(μ)H(ν)
dνμ

μ + ν
.(5.2)

Integrating (5.2) with respect to μ yields

‖H‖1 = 1 +
c

2

∫ 1

0

∫ 1

0

H(μ)H(μ)μdμ dν

μ + ν
= 1 +

c

4
‖H‖2

1,
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Fig. 5.1. ‖H‖1 as a function of c.

and so

‖H‖1 =
1 ±

√
1 − c

c/2
.(5.3)

As a demonstration of the result in section 3, we calculate the smallest singular
value of the Jacobian matrix associated with the augmented system for the H-equation
with each continuation iteration. We used the MATLAB svds command for this. In
the language of section 3, we find σmin(F(H,c)) for various c where F(H,c) denotes the
Jacobian of (

G(H, c)
N (H, c, s)

)
.

Figure 5.2 shows that the smallest singular value of F(H,c) for each c stays away from
zero keeping F(H,c) nonsingular, even at the simple fold (c = 1).

It is interesting to compare Figure 5.2 with a plot of the smallest singular value of
GH , which we can also compute on the path. In Figure 5.3, one can see the singularity
at c = 1 and also see that GH is becoming more and more poorly conditioned as the
L1 norm of H increases.

The consequences of the remarks in section 4 are that for a problem like the H-
equation, which is a nonlinear compact fixed point problem, the number of GMRES
iterations per Newton step should be bounded. One must take this expectation with a
grain of salt because as one moves along the path, the norm of the solution increases,
and so the number of outliers may increase slowly. The observations we present
illustrate this.

In Figure 5.4 we plot the average number of GMRES iterations per Newton iter-
ation as a function of c. The lower curve corresponds to the continuation from c = 0
to c = 1, and the upper from c = 1 to c = .3. The computation in this figure was done
for pseudo-arclength continuation, which we compare with parameter continuation in
Figure 5.5. As one moves further on the path, the predictor becomes less effective,
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Fig. 5.2. σmin(F(H,c)) as a function of c.
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Fig. 5.3. σmin(GH) as a function of c.

and the number of Newton iterations increases. The predictor is also different for the
first two points on the path, because we do not have the data we need to build the
secant predictor before we have computed two points. The initial point for c = 0 is
the vector with 1 in each component, which is the solution, so the plots begin with
the first nonzero value of c.

Figure 5.5 is the result of a simple parameter continuation for each of the upper
and lower branches. The lower curve is for values of c ∈ [.3, .9], where the problem
is quite easy. The linear solver takes fewer GMRES iterations per Newton iteration
on this branch, and we observe that the difference in linear iterations from the lower
branch in Figure 5.4 is at most 1, consistent with the theory. On the upper branch,
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Fig. 5.4. Krylov’s per Newton: Pseudo-arclength continuation.
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Fig. 5.5. Krylov’s per Newton: Parameter continuation in c.

where c ∈ [.3, .9], the performance of parameter continuation is significantly worse
than that of pseudo-arclength continuation, and the linear solver performs significantly
less well in the parameter continuation solver. This is consistent with the singular
value results in Figure 5.3.

6. Conclusion. For simple fold singularities, we have given new bounds on the
conditioning of the extended system of nonlinear equations that arise in pseudo-
arclength continuation. The two bounds are a lower estimate on the smallest singular
value of the Jacobian of the extended system, and an upper bound on the number
of eigenvalues that lie outside a cluster of eigenvalues for the Jacobian of the origi-
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nal system. The latter of these two bounds implies an upper bound on the number
of GMRES iterations needed to achieve a certain termination criterion (4.2). We
illustrate the bounds with a numerical experiment.
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Abstract. In this paper we analyze the approximation by standard piecewise linear finite
elements of a nonhomogeneous Neumann problem in a cuspidal domain. Since the domain is not
Lipschitz, many of the results on Sobolev spaces, which are fundamental in the usual error analysis,
do not apply. Therefore, we need to work with weighted Sobolev spaces and to develop some new
theorems on traces and extensions. We show that, in the domain considered here, suboptimal order
can be obtained with quasi-uniform meshes even when the exact solution is in H2, and we prove
that the optimal order with respect to the number of nodes can be recovered by using appropriate
graded meshes.
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1. Introduction. The finite element method has been widely analyzed in its
different forms for all kind of partial differential equations. However, as far as we
know, all analyses are restricted to the case of polygonal or smooth domains, and no
results have been obtained for the case in which the domain is nonLipschitz, with the
exception of the well-known fracture problems.

The goal of this paper is to initiate the analysis of finite element approximations
in nonLipschitz domains. As a first step in this direction we consider a model problem
in a plane domain with an external cusp.

Several difficulties arise in this problem because many of the results on Sobolev
spaces, which are fundamental in the analysis of partial differential equations in vari-
ational form, do not apply. For example, the standard trace theorems do not hold
in this case, and this fact makes the analysis of nonhomogeneous Neumann problems
more difficult.

Given α > 1, let Ω ⊂ R
2 be the domain defined by

Ω = {(x, y) : 0 < x < 1, 0 < y < xα},

and let Γ = Γ1 ∪ Γ2 ∪ Γ3 be its boundary, with

Γ1 = {0 ≤ x ≤ 1, y = 0}, Γ2 = {x = 1, 0 ≤ y ≤ 1}, and Γ3 = {0 ≤ x ≤ 1, y = xα}

(see Figure 1).
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Fig. 1. Cuspidal domain.

Some of our arguments require that α < 3, and so our main result will be valid
under this restriction.

Our model problem is ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Δu = f in Ω,

∂u

∂ν
= g on Γ3,

∂u

∂ν
= 0 on Γ1,

u = 0 on Γ2,

(1.1)

where ν denotes the outside normal.
A natural way to approximate the solution of problem (1.1) is to replace Ω with a

polygonal domain and to use the standard linear finite element method. It is known
that, under appropriate conditions on the data, the solution of this problem is in
H2(Ω) (see [1]). Therefore, based on the experience of and theory for smooth domains,
one would expect that the optimal order of convergence could be obtained by using
quasi-uniform meshes. However, numerical examples show that this is not the case
(see section 2). The reason for this behavior seems to be the fact that the solution
cannot be extended to an H2 function on the polygonal domain approximating the
original domain. Indeed, it is known that the standard extension theorems in Sobolev
spaces do not apply for our domain (see, for example, [12]).

We will show that the optimal order with respect to the number of nodes in
the H1 norm can be recovered by using appropriate graded meshes. To obtain this
result, we will first prove an extension theorem for the domain Ω which shows that
the solution of problem (1.1) can be extended to a function in a weighted H2 space,
with the weight being a power of the distance to the cuspidal point.

The rest of the paper is organized as follows. In section 2 we introduce the
finite element approximation of our problem and show that the use of quasi-uniform
meshes can give bad results. Section 3 deals with some extension and trace theorems
in weighted Sobolev spaces that we need for our error analysis. Finally, in section 4
we prove that optimal order approximations are obtained by using appropriate graded
meshes.

2. Finite element approximations. In this section we introduce the finite
element approximation of our model problem and show that, if the meshes are quasi
uniform, the approximation may be of suboptimal order even when the exact solution
is in H2(Ω).
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Introducing the space

V = {v ∈ H1(Ω) : v|Γ2 = 0},

we see that the weak form of problem (1.1) is to find u ∈ V such that∫
Ω

∇u · ∇v =

∫
Ω

fv +

∫
Γ3

gv ∀v ∈ V.(2.1)

The following existence and regularity results have been proved in [1]. Define
z(t) := g(t, tα). If f ∈ L2(Ω) and z t−

α
2 ∈ L2(0, 1), this problem has a unique

solution. If in addition we assume that z′ t1−
α
2 ∈ L2(0, 1), the solution is in H2(Ω)

and there exists a constant C such that

‖u‖H2(Ω) ≤ C
{
‖f‖L2(Ω) + ‖z t−α

2 ‖L2(0,1) + ‖z′ t1−α
2 ‖L2(0,1)

}
.(2.2)

To approximate the solution of (1.1) we replace Ω with a polygonal domain Ωh

and use the standard linear finite element method. We will construct Ωh in such a
way that Ω ⊂ Ωh and the nodes on Γh, the boundary of Ωh, are also on Γ.

Let {Th} be a family of triangulations of Ωh satisfying the maximum angle con-
dition. Associated with {Th} we have the finite element space

Vh = {v ∈ H1(Ωh) : v|Γ2
= 0 and v|T ∈ P1 ∀ T ∈ Th},

where P1 denotes the space of linear polynomials.
Denote by Γ3,h the part of Γh approximating Γ3 and by Ih the piecewise linear

interpolation at the endpoints of the segments which lie on Γ3,h.
Then, our discrete problem is to find uh ∈ Vh such that∫

Ωh

∇uh · ∇v =

∫
Ω

fv +

∫
Γ3,h

Ih(gv) ∀v ∈ Vh.(2.3)

Observe that the discrete problem corresponds to a boundary problem on Ωh if
we consider f as being extended by zero outside Ω.

One could think that, when the solution is in H2(Ω), the numerical approximation
obtained with quasi-uniform meshes would be of optimal order. However, the following
example shows that this is not the case.

Example 2.1. Consider

f(x, y) = s(s− 1)(1 + y2/2)xs−2 + xs − 1

and

z(t) = g(t, tα) =
−sαtα+s−2(1 + t2α/2) + (1 − ts)tα√

1 + α2t2(α−1)
.

Then, the solution of (1.1) is

u(x, y) = (1 − xs)(1 + y2/2),

and an easy calculation shows that u ∈ H2(Ω) whenever s > 3−α
2 .

We take α = 2, and different values of s, with 1
2 < s < 1, and solve problem (2.3)

by using quasi-uniform meshes. Table 1 shows the order of the error in the H1 norm
in terms of number of nodes and in terms of mesh size.

The reason for this behavior seems to be the fact that the solution cannot be ex-
tended to an H2 function on Ωh. Indeed, it is well known that the standard extension
theorems in Sobolev spaces do not apply for our domain (see, for example, [12]).
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Table 1

H1 order using quasi-uniform meshes for α = 2.

Value of s Order in number of nodes Order in h
0.55 0.324 0.626
0.6 0.335 0.647
0.65 0.347 0.671
0.7 0.362 0.698
0.75 0.380 0.733
0.8 0.404 0.781
0.85 0.440 0.849
0.9 0.491 0.948
0.95 0.545 1.053

3. Extension and trace theorems. The standard results on extensions and
restrictions in Sobolev spaces do not apply for domains with external cusps. In this
section we prove some weaker results using weighted norms.

First, we develop an extension theorem in a weighted Sobolev space for H2(Ω)
functions with a vanishing normal derivative on Γ1. In particular, our theorem ap-
plies to solutions of (1.1) which, in view of (2.2), are in H2(Ω) under appropriate
assumptions on the data.

Second, we prove a trace theorem for functions in H1(Ω) which will be useful for
estimating the error due to the approximation of the nonhomogeneous Neumann-type
boundary condition.

Given a domain D ⊂ R
2 we introduce the weighted Sobolev space

H2
α(D) =

{
v : r

α−1
2 Dγv ∈ L2(D) ∀ γ , |γ| ≤ 2

}
,

where r =
√
x2 + y2, and its natural norm

‖v‖2
H2

α(D) =
∑
|γ|≤2

‖r
α−1

2 Dγv‖2
L2(D).

Our argument proceeds in two steps. First, we extend the given function to the
Lipschitz domain

D := {(x, y) ∈ R
2 : −x < y < xα , 0 < x < 1}

(see Figure 2) in such a way that the extension belongs to H2
α(D). Then, we ap-

ply known theorems for weighted Sobolev spaces on Lipschitz domains to obtain an
extension which belongs to H2

α(R2).
We call W the subspace of H2(Ω) defined by

W =

{
u ∈ H2(Ω) :

∂u

∂ν
= 0 on Γ1

}
.

Lemma 3.1. Given u ∈ W there exists a function ũ ∈ H2
α(D) such that ũ|Ω = u

and

‖ũ‖H2
α(D) ≤ C‖u‖H2(Ω).

Proof. We extend u in the following way. Given (x, y) ∈ D with y ≤ 0, let
η = −xα−1y. Observe that (x, η) ∈ Ω, and therefore we can define{

ũ(x, y) = u(x, y) for (x, y) ∈ Ω,

ũ(x, y) = u(x, η) for (x, y) ∈ D \ Ω.



FINITE ELEMENTS IN A NONLIPSCHITZ DOMAIN 281

Ω 

T
L
 

T
U

 

D 

Fig. 2.

To simplify notation define TL := D \ Ω.
We claim that ũ ∈ H2

α(TL). Observe first that for (x, y) ∈ TL we have x ∼ r, and
therefore we can replace the weight rα−1 with xα−1 in our estimates.

By a change of variables we obtain∫
TL

ũ2(x, y)xα−1dxdy =

∫
Ω

u2(x, η)dxdη = ‖u‖2
L2(Ω).

Now, for (x, y) ∈ TL we have

∂ũ

∂x
(x, y) =

∂u

∂x
(x, η) − ∂u

∂η
(x, η)(α− 1)xα−2y

and

∂ũ

∂y
(x, y) = −∂u

∂η
(x, η)xα−1.

Then, recalling that η = −xα−1y, we obtain∫
TL

(
∂ũ

∂x

)2

xα−1dxdy ≤ C

{∫
Ω

(
∂u

∂x

)2

dxdη +

∫
Ω

(
∂u

∂η

)2 (η
x

)2

dxdη

}
but, since (x, η) ∈ Ω, we have η

x ≤ xα−1 ≤ 1, and then∫
TL

(
∂ũ

∂x

)2

xα−1dxdy ≤ C‖∇u‖2
L2(Ω).

Analogously we get ∫
TL

(
∂ũ

∂y

)2

xα−1dxdy ≤ C‖∇u‖2
L2(Ω).

Bounds for the second derivatives of ũ follow similarly. For instance, we have

∂2ũ

∂x2
(x, y) =

∂2u

∂x2
(x, η) − 2(α− 1)

∂2u

∂η∂x
(x, η)xα−2y

− ∂2u

∂η2
(x, η)(α− 1)2x2(α−2)y2 − ∂u

∂η
(x, η)(α− 2)(α− 1)xα−3y,

and hence,∫
TL

(
∂2ũ

∂x2

)2

xα−1dxdy ≤ C

{∫
Ω

(
∂2u

∂x2

)2

dxdη +

∫
Ω

(
∂2u

∂η∂x

)2 (η
x

)2

dxdη

+

∫
Ω

(
∂2u

∂η2

)2 (η
x

)4

dxdη +

∫
Ω

(
∂u

∂η

)2 ( η

x2

)2

dxdη

}
.
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Now, the first three terms on the right-hand side can be bounded by using again that
η
x ≤ 1. For the last term we have∫

Ω

(
∂u

∂η

)2 ( η

x2

)2

dxdy ≤
∫ 1

0

∫ xα

0

(
∂u

∂η

)2
1

η2
dηdx ≤ C

∫ 1

0

∫ xα

0

(
∂2u

∂η2

)2

dηdx,

where the last inequality follows from the Hardy inequality [10] and the fact that
∂u
∂η (x, 0) = 0. Hence, ∫

TL

(
∂2ũ

∂x2

)2

xα−1dxdy ≤ C|u|2H2(Ω).

In a similar way we can show that∫
TL

(
∂2ũ

∂y∂x

)2

xα−1dxdy ≤ C|u|2H2(Ω)

and ∫
TL

(
∂2ũ

∂y2

)2

xα−1dxdy ≤ C|u|2H2(Ω),

where | · |H2(Ω) denotes the H2-seminorm in Ω.
Therefore, we have proved that ũ ∈ H2

α(TL) and that

‖ũ‖H2
α(TL) ≤ C‖u‖H2(Ω).

On the other hand, using that ∂u
∂ν = 0 on Γ1, it is easy to see that ũ ∈ H2

α(D), thus
concluding the proof.

Now, using known extension theorems for weighted Sobolev spaces on Lipschitz
domains due to Chua [6], we can extend functions in W to H2

α(R2).
Theorem 3.1. If α < 3 and u ∈ W , there exists a function ũ ∈ H2

α(R2) such
that ũ|Ω = u and

‖ũ‖H2
α(R2) ≤ C‖u‖H2(Ω).

Proof. In view of Lemma 3.1 we have only to show that for v ∈ H2
α(D) there

exists an extension ṽ ∈ H2
α(R2) such that

‖ṽ‖H2
α(R2) ≤ C‖v‖H2

α(D).

But this follows immediately from the results in [6] because, for 1 < α < 3, our weight
belongs to the class considered in that paper (the Muckenhoupt class A2) [7, page
145].

In the rest of this section we prove a trace theorem for functions in H1(Ω). In [1]
it was proved that

‖u‖L2(Γ) ≤ C(‖ux−α
2 ‖L2(Ω) + ‖∇ux

α
2 ‖L2(Ω)).(3.1)

Our trace theorem is a consequence of this result and the known imbedding the-
orem

H1(Ω) ⊂ Lr(Ω) for 2 ≤ r ≤ 2(α + 1)

α− 1
,(3.2)

which is a particular case of the results given in [2].
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Theorem 3.2. Let u ∈ H1(Ω).
(1) If α < 2, then u ∈ L2(Γ) and ‖u‖L2(Γ) ≤ C‖u‖H1(Ω).

(2) If α ≥ 2, then xβu ∈ L2(Γ) and ‖xβu‖L2(Γ) ≤ C‖u‖H1(Ω) ∀β > α/2 − 1.
Proof. Part (1) was proved in [1]. Therefore, we will prove only (2) here.
Using (3.1) for the function xβu we have

‖xβu‖L2(Γ) ≤ C(‖xβux−α
2 ‖L2(Ω) + ‖∇(xβu)x

α
2 ‖L2(Ω)).

It is easy to see that the second term on the right-hand side is bounded by ‖u‖H1(Ω)

because α ≥ 2 and β > α/2 − 1. Then, it is enough to show that

‖xβux−α
2 ‖L2(Ω) ≤ ‖u‖H1(Ω).(3.3)

Using the Hölder inequality we have∫
Ω

u2x2β−α ≤
(∫

Ω

u2q

) 1
q
(∫

Ω

x(2β−α) q
q−1

) q−1
q

.

Choosing q = r/2 with r = 2(α + 1)/(α− 1) and using the imbedding theorem (3.2)
we obtain

‖xβux−α
2 ‖L2(Ω) ≤

(∫
Ω

x(2β−α) q
q−1

) q−1
2q

‖u‖H1(Ω).

But ∫
Ω

x(2β−α) q
q−1 =

∫
Ω

x(2β−α)α+1
2 < ∞

because β > α/2 − 1, and therefore (3.3) holds.

4. Optimal approximations using graded meshes. In this section we obtain
error estimates in H1 of quasi-optimal order (i.e., optimal up to a logarithmic factor)
with respect to the number of nodes by using appropriate graded meshes.

Finite element methods using graded meshes of the type considered here have
been analyzed for problems with corner-type singularities in [3, 4, 9]. In [4, 9] the
error estimates were obtained under the classic regularity condition on the meshes (the
minimum angle condition). This hypothesis has been relaxed in [3], where the author
obtained error estimates under the maximum angle condition. This generalization
is very important for our problem because we cannot avoid small angles in those
elements which are near the cusp.

Consider 1 < α < 3 and define γ = (α − 1)/2. Let Ωh be an approximating
polygon and Th a triangulation of it, where h > 0 is a parameter that goes to 0.
For each T ∈ Th we denote by hT its diameter and by βT its maximum angle. We
assume that there exist positive constants σ and β < π, independent of h, such that
the following hypotheses hold:

(1) βT < β for all T ∈ Th (the maximal angle condition).

(2) hT ∼ σ h
1

1−γ if (0, 0) ∈ T .
(3) hT ≤ σ h infT xγ if (0, 0) /∈ T .
Since we know that the solution of our problem has an extension ũ ∈ H2

α(Ωh),
we are interested in interpolation error estimates for functions in this space. We call
Πv ∈ Vh the piecewise linear Lagrange interpolation of v.
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Theorem 4.1. If v ∈ H2
α(Ωh) and the family of triangulations satisfies conditions

(1), (2), and (3), there exists a constant C depending only on β, σ, and α such that

‖v − Πv‖H1(Ωh) ≤ Ch‖v‖H2
α(Ωh).

Proof. The proof follows as in [9, page 392] but using the error estimates obtained
by Apel under the maximum angle condition (see Theorem 2.4 in [3, page 63]).

Now we introduce some notation which will be used in the rest of this section.
We denote by Γj

3,h, 1 ≤ j ≤ n, the edges on the boundary of Ωh, by (xj−1, x
α
j−1) and

(xj , x
α
j ) their endpoints with x0 = 0 and xn = 1, and by Γj

3 the part on Γ3 with the

same endpoints. Let Ωj
h be the region bounded by Γj

3 and Γj
3,h.

In addition to assumptions (1), (2), and (3) we will need for our error analysis
the following hypothesis on the meshes:

(H) For 1 ≤ j ≤ n the region Ωj
h is contained in only one triangle.

We denote by Tj the triangle containing Ωj
h and by hj its diameter (see Figure

3).
It can be seen from our hypotheses that there exists a constant C, independent

of h, such that, for 2 ≤ j ≤ n,

xj ≤ Cxj−1.(4.1)

In fact, from (H) we have xj − xj−1 ≤ C|Γj
3,h| for some constant C depending only

on α. Then, xj − xj−1 ≤ Chj , and therefore from assumption (3) we have

xj ≤ xj−1

(
1 + Chxγ−1

j−1

)
,

and since j ≥ 2, xj−1 ≥ x1 ∼ h1/(1−γ) by assumption (2), we obtain (4.1).
We will show below that meshes satisfying all our assumptions can indeed be

constructed.
The next lemma deals with the error arising from the approximation of the domain

by polygonal domains. We will work with an extension ũ of the solution u of (1.1).
Since u ∈ W we know from Theorem 3.1 that there exists ũ ∈ H2

α(R2) such that
ũ|Ω = u and

‖ũ‖H2
α(R2) ≤ C‖u‖H2(Ω).(4.2)
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We will use the well-known imbedding H1(D) ⊂ Lp(D) for planar Lipchitz do-
mains and 1 ≤ p < ∞ and use the explicit dependence on p of the constant in the
continuity of this inclusion (see, for example, [8]), namely,

‖v‖Lp(D) ≤ C
√
p ‖v‖H1(D).(4.3)

Lemma 4.1. If 1 < α < 3, then there exists a constant C, which depends only on
α, β, and σ, such that

‖∇ũ‖L2(Ωh\Ω) ≤ Ch
√

log(1/h) ‖u‖H2(Ω).

Proof. Clearly, for every h, the polygonal domain Ωh is contained in the triangle

TU = {0 ≤ x ≤ 1, 0 ≤ y ≤ x}

(see Figure 2). Writing ∫
TU

|v|p =

∫
TU

|v|pxp(α−1
2 )x−p(α−1

2 )

and applying the Hölder inequality with 2/p and its dual exponent, we obtain

‖v‖Lp(TU ) ≤ C‖vx
α−1

2 ‖L2(TU )

for any function v and 1 ≤ p < 4
α+1 . Therefore, using (4.2) we conclude that ũ ∈

W 2,p(TU ) and that

‖ũ‖W 2,p(TU ) ≤ C‖u‖H2(Ω).(4.4)

As a consequence, we obtain that, for β > α−1
2 , ∇ũ xβ ∈ H1(TU ) and

‖∇ũ xβ‖H1(TU ) ≤ C‖u‖H2(Ω).(4.5)

Indeed, since ũ ∈ H2
α(R2), we already know that ∇ũ xβ ∈ L2(TU ), and so we have

only to see that the first derivatives of ∇ũ xβ belong to L2(TU ). But, taking the
derivative of ∇ũ xβ and using again that ũ ∈ H2

α(R2), we see that it remains only to
prove that ∇ũ xβ−1 ∈ L2(TU ).

Now, from (4.4) and a well-known Sobolev imbedding theorem we obtain that
∇ũ ∈ Lp∗

(TU ) for 1 ≤ p < 4
α+1 and p∗ = 2p

2−p . Moreover,

‖∇ũ‖Lp∗ (TU ) ≤ C‖u‖H2(Ω).

Therefore, applying the Hölder inequality with p∗/2 and its dual exponent q, we have∫
TU

|∇ũ|2x2(β−1) ≤ ‖∇ũ‖2
Lp∗ (TU )‖x

2(β−1)‖Lq(TU ),

but since β > α−1
2 , it is possible to choose p < 4

α+1 such that ‖x2(β−1)‖Lq(TU ) is finite,
thus concluding the proof of (4.5).

Now, let β > α−1
2 and 2 ≤ p < ∞, to be chosen below. Applying the Hölder

inequality for p/2 and its dual exponent q, we have∫
Ωh\Ω

|∇ũ|2 ≤
(∫

Ωh\Ω
|∇ũ|p xβp

) 2
p
(∫

Ωh\Ω
x−2βq

) 1
q

,(4.6)
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and therefore, from the Sobolev imbedding (4.3) and (4.5), we obtain∫
Ωh\Ω

|∇ũ|2 ≤ C

q − 1
‖u‖2

H2(Ω)

(∫
Ωh\Ω

x−2βq
) 1

q

(4.7)

for q → 1. Then, we have to estimate∫
Ωh\Ω

x−2βq =

N∑
j=1

∫
Ωj

h

x−2βq.(4.8)

Since γ = α−1
2 and 1 < α < 3 we can choose β and q > 1 such that

γ < β < min{2γ, 1} and βq < min{2γ, 1}.

Let us estimate each term in the right-hand side of (4.8). Since Ω1
h ⊂ T1 we have∫

Ω1
h

x−2βq ≤
∫
T1

x−2βq.

Hence, using now that h1 ≤ σ h
1

1−γ , we obtain∫
T1

x−2βq ≤ Ch
2(γ+1−βq)
1 ≤ Ch2 γ+1−βq

1−γ ,

and therefore ∫
T1

x−2βq ≤ Ch2

because qβ < 2γ.
On the other hand, we have∑

j>1

∫
Ωj

h

x−2βq ≤
∑
j>1

x−2βq
j−1 |Ωj

h|,

but by using the well-known error formula for the trapezoidal rule, we obtain

|Ωj
h| ≤ Ch3

jx
α−2
j−1 = Ch3

jx
2γ−1
j−1 ,

where in the case α > 2 we have used (4.1). Therefore, since hj ≤ σhxγ
j−1, we have∑

j>1

∫
Ωj

h

x−2βq ≤ C
∑
j>1

x−2βq+2γ−1
j−1 h3

j ≤ Ch2
∑
j>1

x−2βq+4γ−1
j−1 hj

≤ Ch2

∫ 1

0

x−2βq+4γ−1,

where we have used again (4.1). But the last integral is finite because βq < 2γ.
Moreover, it is bounded by a constant which remains bounded when q → 1.

Therefore, summing up the estimates obtained, it follows from (4.7) that

‖∇ũ‖L2(Ωh\Ω) ≤
C√
q − 1

‖u‖H2(Ω)h
1
q

with a constant C which does not blow up when q → 1.
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The proof concludes with a standard extrapolation argument taking

q =
2 log(1/h)

2 log(1/h) − 1
.

Now, we want to estimate the error arising in the numerical integration of the
boundary term. With this goal we introduce an extension g̃ of the function g to Γ3,h.
The procedure is similar to that used in [5]. Calling φ(t) = (t, tα) we define g̃ on each
Γj

3,h as

g̃(ψj(t)) := g(φ(t)) = z(t), xj−1 ≤ t ≤ xj ,

where

ψj(t) = (t, tα + δj(t))

with

δj(t) =
xα
j − xα

j−1

xj − xj−1
(t− xj−1) + xα

j−1 − tα.

The following lemma gives some estimates for the functions δj and their deriva-
tives that will be useful in our error analysis.

Lemma 4.2. There exists a constant C, which depends only on α, such that
(i) |δ1(t)| ≤ 2hα

1 and |δ′1(t)| ≤ Chα−1
1 .

(ii) |δj(t)| ≤ Ch2
jx

α−2
j and |δ′j(t)| ≤ Chjx

α−2
j , 2 ≤ j ≤ n.

Proof. The estimates in (i) follow immediately from δ1(t) = xα−1
1 t−tα, 0 ≤ t ≤ x1,

and x1 ≤ h1. Consider now 2 ≤ j ≤ n. Since δj(xj−1) = δj(xj) = 0, δ′j vanishes at
some point in the interval (xj−1, xj), and therefore

|δ′j(t)| ≤ C(xj − xj−1)x
α−2
j ,

where we have used (4.1) to bound δ′′ in the case α < 2. So, the second part of (ii)
follows from xj − xj−1 ≤ hj . Finally, the bound for δj follows immediately from the
bound for its derivative using again that δj(xj−1) = 0 and xj − xj−1 ≤ hj .

Observe that if we apply a standard trace result in the polygonal domain Ωh, the
constant depends on h. However, since Γ3,h approximates Γ3, a trace theorem with
a constant independent of h can be derived from Theorem 3.2. This is the object of
the next lemma.

Lemma 4.3. There exists a constant C independent of h such that, for all v ∈ Vh,

‖xrv‖L2(Γ3,h) ≤ C ‖v‖H1(Ωh)

for r > α/2 − 1 if α ≥ 2 and r = 0 if α < 2.
Proof. Since hj ≤ Cxj , it follows from (ii) of Lemma 4.2 that

|δj(t)| ≤ Cxα−1
j hj .

Then, since v is linear in each triangle, we have∫
Γj

3,h

v2x2r =

∫ xj

xj−1

∣∣∣∣v(φ(t)) + δj(t)
∂v

∂y
(φ(t))

∣∣∣∣2 t2r|ψ′
j(t)|

≤ C

∫ xj

xj−1

|v(φ(t))|2t2r|ψ′
j(t)| + C

∫ xj

xj−1

∣∣∣∣∂v∂y |Γj
3

∣∣∣∣2 |δj(t)|2t2r|ψ′
j(t)|.
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Since

ψj(t) =

(
t,
xα
j − xα

j−1

xj − xj−1
(t− xj−1) + xα

j−1

)
,

it follows that |ψ′
j(t)| ∼ |φ′(t)| ∼ C, and thus

∫
Γj

3,h

v2x2r ≤ C‖xrv‖2
0,Γj

3

+ Ch3
jx

2α−2+2r
j

∣∣∣∣∂v∂y |Γj
3

∣∣∣∣2 .(4.9)

If j = 1, we have ∣∣∣∣∂v∂y |Γ1
3

∣∣∣∣2 ∼
∥∥∥∥∂v∂y

∥∥∥∥2

L2(T1)

h−1−α
1 ,

and using that h1 ∼ x1 we obtain

‖xrv‖2
L2(Γ1

3,h) ≤ C‖xrv‖2
L2(Γ1

3)
+ Chα+2r

1

∥∥∥∥∂v∂y
∥∥∥∥2

L2(T1)

,

while if j > 1 we have ∣∣∣∣∂v∂y |Γj
3

∣∣∣∣2 ∼
∥∥∥∥∂v∂y

∥∥∥∥2

0,Tj

h−2
j x1−α

j ,

and then

‖xrv‖2
L2(Γj

3,h) ≤ C‖xrv‖2
L2(Γj

3)
+ Chjx

α−1+2r
j

∥∥∥∥∂v∂y
∥∥∥∥2

L2(Tj)

.

Therefore, for every j we have

‖xrv‖2
L2(Γj

3,h) ≤ C

(
‖xrv‖2

L2(Γj
3)

+

∥∥∥∥∂v∂y
∥∥∥∥2

L2(Tj)

)
, j = 1, . . . , n,

and the lemma follows by summing up the previous inequalities for j = 1, . . . , n and
using Theorem 3.2.

Lemma 4.4. There exists a constant C independent of h such that, for all v ∈ Vh,
(i) if α < 2 and z′ ∈ L2(0, 1),∣∣∣∣∣

∫
Γ3

gv −
∫

Γ3,h

Ih(gv)

∣∣∣∣∣ ≤ Ch‖z′‖L2(0,1)‖v‖H1(Ωh).

(ii) if 2 ≤ α < 3 , β > α/2 − 1, and z′t−β ∈ L2(0, 1),∣∣∣∣∣
∫

Γ3

gv −
∫

Γ3,h

Ih(gv)

∣∣∣∣∣ ≤ Ch‖z′ t−β‖L2(0,1)‖v‖H1(Ωh).
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Proof. First, we observe that since g and g̃ agree at the nodes on Γ3 ∩ Γ3,h, we
have ∣∣∣∣∣

∫
Γ3

gv −
∫

Γ3,h

Ih(gv)

∣∣∣∣∣ =

∣∣∣∣∣
∫

Γ3

gv −
∫

Γ3,h

g̃v +

∫
Γ3,h

(g̃v − Ih(g̃v))

∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣∣
∫

Γj
3

gv −
∫

Γj
3,h

g̃v

∣∣∣∣∣ +

n∑
j=1

∫
Γj

3,h

|g̃v − Ih(g̃v)|

=: I + II.(4.10)

For any v ∈ Vh, we have

I =

n∑
j=1

∣∣∣∣∣
∫

Γj
3

gv −
∫

Γj
3,h

g̃v

∣∣∣∣∣ ≤
n∑

j=1

∫ xj

xj−1

|z(t)|
∣∣v(φ(t))|φ′(t)| − v(ψj(t))|ψ′

j(t)|
∣∣

≤
n∑

j=1

∫ xj

xj−1

|z(t)| |v(φ(t)) − v(ψj(t))| |φ′(t)|

+

n∑
j=1

∫ xj

xj−1

|z(t)||v(ψj(t))|
∣∣|φ′(t)| − |ψ′

j(t)|
∣∣

≤
n∑

j=1

∫ xj

xj−1

|z(t)|
∣∣∣∣∂v∂y |Γj

3

∣∣∣∣ |δj(t)| |φ′(t)|

+ C

∫ xj

xj−1

|z(t)||v(ψj(t))|
∣∣δ′j(t)∣∣

=:
n∑

j=1

Aj + Bj

and

II =

n∑
j=1

∫
Γj

3,h

|g̃v − Ih(g̃v)| ≤
n∑

j=1

∫ xj

xj−1

|z(t)v(ψj(t)) − Ih(z(v ◦ ψj))(t)| |ψ′
j(t)|.

Let

wj(t) = (z(t) − z̄j)v(ψj(t)), t ∈ Ij , j = 1, . . . , n,

where z̄j , j = 1, . . . , n, are constants to be chosen below. It follows that

II ≤ C

n∑
j=1

∫ xj

xj−1

|wj(t) − Ihwj(t)| ≤ C

n∑
j=1

hj

∫ xj

xj−1

|w′
j(t)|,

where we have used a standard L1 interpolation error estimate. Since, for t ∈ Ij ,

|w′
j(t)| ≤ |z′(t)||v(ψj(t))| + |z(t) − z̄j |

∣∣∣∣∂v∂x (ψj(t)) +
∂v

∂y
(ψj(t))

xα
j − xα

j−1

xj − xj−1

∣∣∣∣
≤ |z′(t)||v(ψj(t))| + C|z(t) − z̄j ||∇v(ψj(t))|,

thus,

II ≤ C

n∑
j=1

hj

(∫ xj

xj−1

|z′(t)||v(ψj(t))| +
∫ xj

xj−1

|z(t) − z̄j ||∇v(ψj(t))|
)
.
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Clearly, since hj ≤ h for any j = 1, . . . , n it follows that

II ≤ Ch

n∑
j=1

(∫ xj

xj−1

|z′(t)||v(ψj(t))| +
∫ xj

xj−1

|z(t) − z̄j ||∇v(ψj(t))|
)

=: Ch

n∑
j=1

Cj + Dj .

Now, we consider the case α < 2 and we prove the result given in (i).
For j = 1, using (i) of Lemma 4.2 and that

|∇v(φ(t))| ∼ ‖∇v‖L2(T1)h
−α+1

2
1 , t ∈ I1, v ∈ Vh,(4.11)

we obtain, for β = max{0, 3
2 − α},

A1 ≤ Ch
α+ 1

2+β
1 ‖zt−β‖L2(I1)|∇v|T1 | ≤ Ch

α
2 +β
1 ‖zt−β‖L2(I1)‖∇v‖L2(T1)

≤ Ch(α
2 +β) 2

3−α ‖zt−β‖L2(I1)‖∇v‖L2(T1).

Hence, since α < 2, then
(
α
2 + β

)
2

3−α ≥ 1, and therefore,

A1 ≤ Ch‖zt−β‖L2(I1)‖∇v‖L2(T1).(4.12)

Similary, for β = max{0, 5
2 − 3

2α} we have

B1 ≤ Chα+β−1
1 ‖zt−β‖L2(I1)‖v‖L2(Γ1

3,h) ≤ h(α+β−1) 2
3−α ‖zt−β‖L2(I1)‖v‖L2(Γ1

3,h)

≤ Ch‖zt−β‖L2(I1)‖v‖L2(Γ1
3,h).

For j > 1, using (ii) of Lemma 4.2 and that

|∇v(φ(t))| ∼ h−1
j x

1−α
2

j ‖∇v‖L2(Tj), t ∈ Ij ,(4.13)

since hj ≤ Chx
α−1

2
j , we have, for β = max{0, 3

2 − α},

Aj ≤ Ch2
jx

α+β− 3
2

j ‖zt−β‖L2(Ij)|∇v|Tj | = Chjx
β+α

2 −1
j ‖zt−β‖L2(Ij)‖∇v‖L2(Tj)

≤ Chx
β+α− 3

2
j ‖zt−β‖L2(Ij)‖∇v‖L2(Tj)

≤ Ch‖zt−β‖L2(Ij)‖∇v‖L2(Tj).(4.14)

Similarly, for j > 1 and β = max{0, 5
2 − 3

2α}, applying the Cauchy–Schwarz
inequality we have that

Bj ≤ Chjx
α−2+β
j ‖zt−β‖L2(Ij)‖v‖L2(Γj

3,h) ≤ Chx
3
2α−

5
2+β

j ‖zt−β‖L2(Ij)‖v‖L2(Γj
3,h)

≤ Ch‖zt−β‖L2(Ij)‖v‖L2(Γj
3,h).(4.15)

So, since 3
2 − α < 5

2 − 3
2α, if we take β = max{0, 5

2 − 3
2α}, we obtain for any j∣∣∣∣∣

∫
Γj

3

gv −
∫

Γj
3,h

g̃v

∣∣∣∣∣ ≤ Ch‖zt−β‖L2(Ij)

(
‖∇v‖L2(Tj) + ‖v‖L2(Γj

3,h)

)
,(4.16)



FINITE ELEMENTS IN A NONLIPSCHITZ DOMAIN 291

and adding for j = 1, . . . , n, we have

I ≤ Ch‖zt−β‖L2(0,1)

(
‖∇v‖L2(Ωh) + ‖v‖L2(Γ3,h)

)
.

Now, since z(0) = 0 and β < 1, by using the Hardy inequality

‖zt−β‖L2(0,1) ≤ C‖z′‖L2(0,1)(4.17)

and Lemma 4.3 for the case α < 2, we conclude that

I ≤ Ch‖z′‖L2(0,1)‖v‖H1(Ωh).(4.18)

On the other hand, we have that for all j ≥ 1,

Cj =

∫ xj

xj−1

|z′(t)||v(ψj(t))| ≤ ‖z′‖L2(Ij)
‖v‖L2(Γj

3,h) .(4.19)

Taking z̄j = 1
xj−xj−1

∫ xj

xj−1
z, it follows from the Poincaré inequality that

‖z − z̄j‖L2(Ij) ≤ Chj‖z′‖L2(Ij).

Then, using (4.11) for j = 1 and (4.13) for j > 1, we obtain

D1 ≤ Ch
1−α

2
1 ‖z′‖L2(I1)‖∇v‖L2(T1) ≤ Ch

2−α
3−α ‖z′‖L2(I1)‖∇v‖L2(T1),

Dj ≤ Ch
1
2
j x

1−α
2

j ‖z′‖L2(Ij)‖∇v‖L2(Tj) ≤ Ch
1
2 ‖z′‖L2(Ij)‖∇v‖L2(Tj), j > 1,

and therefore

Dj ≤ C‖z′‖L2(Ij)‖∇v‖L2(Tj) ∀j ≥ 1.(4.20)

So, adding inequalities (4.19) and (4.20) for j = 1, . . . , n, we have that

II ≤ Ch
(
‖z′‖L2(0,1) ‖v‖L2(Γ3,h) + ‖z′‖L2(0,1)‖∇v‖L2(Ωh)

)
,

and using Lemma 4.3 again we conclude that

II ≤ Ch‖z′‖L2(0,1)‖v‖H1(Ωh).(4.21)

From this inequality, (4.18), and (4.10) the proof of (i) concludes.
Now, consider the case α ≥ 2. By the same arguments used in the previous case

we have

A1 ≤ Ch
α+ 1

2
1 ‖z‖L2(I1)|∇v|T1 | ≤ Ch

α
2
1 ‖z‖L2(I1)‖∇v‖L2(T1),

≤ Ch
α

3−α ‖z‖L2(I1)‖∇v‖L2(T1),

but α
3−α ≥ 1, so

A1 ≤ Ch‖z‖L2(I1)‖∇v‖L2(T1).(4.22)

For j > 1,

Aj ≤ Ch2
jx

α− 3
2

j ‖z‖L2(Ij)|∇v|Tj
| ≤ Chjx

α
2 −1
j ‖z‖L2(Ij)‖∇v‖L2(Tj)

≤ Chx
α− 3

2
j ‖z‖L2(Ij)‖∇v‖L2(Tj) ≤ Ch‖z‖L2(Ij)‖∇v‖L2(Tj).(4.23)
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Similarly, for any β ≥ 0 we have

B1 ≤ Chα−1
1 ‖zt−β‖L2(I1)‖vxβ‖L2(Γ1

3,h) ≤ h(α−1) 2
3−α ‖zt−β‖L2(I1)‖vxβ‖L2(Γ1

3,h)

≤ Ch‖zt−β‖L2(I1)‖vxβ‖L2(Γ1
3,h)(4.24)

and

Bj ≤ Chjx
α−2
j ‖zt−β‖L2(Ij)‖vxβ‖L2(Γj

3,h) ≤ Chx
3
2α−

5
2

j ‖zt−β‖L2(Ij)‖vxβ‖L2(Γj
3,h)

≤ Ch‖zt−β‖L2(Ij)‖vxβ‖L2(Γj
3,h).(4.25)

Thus, adding inequalities (4.22), (4.23), (4.24), and (4.25) for j = 1, . . . , n we conclude
that for any β ≥ 0,

I ≤ Ch
(
‖z‖L2(0,1)‖∇v‖L2(Ωh) + ‖zt−β‖L2(0,1)‖vxβ‖L2(Γ3,h)

)
.

Taking α
2 − 1 < β < 1 and using the Hardy inequality (4.17) and our trace result for

the case 2 ≤ α < 3, we obtain

I ≤ Ch‖z′‖L2(0,1)‖v‖H1(Ωh).(4.26)

On the other hand, for any j and α
2 − 1 < β < 1 it follows that

Cj ≤ ‖z′t−β‖L2(Ij)‖vxβ‖L2(Γj
3,h),

and by using (4.11) for j = 1 and (4.13) for j > 1 we get

Dj ≤ C‖z′‖L2(Ij)‖∇v‖L2(Tj), j ≥ 1.

Therefore, we conclude that for α
2 − 1 < β < 1,

II ≤ Ch
(
‖z′t−β‖L2(0,1)‖vxβ‖L2(Γ3,h) + ‖z′‖L2(0,1)‖∇v‖L2(Ωh)

)
.

Hence, using Lemma 4.3 again we obtain

II ≤ Ch‖z′t−β‖L2(0,1)‖v‖H1(Ωh),(4.27)

and thus, using (4.26) and (4.27) in (4.10), we conclude the proof of (ii).
We can now prove our main theorem, which gives quasi-optimal error estimates

in H1 for the piecewise linear approximation on appropriate graded meshes.
Theorem 4.2. Let u be the solution of (2.1), and let uh ∈ Vh be its finite element

approximation using the mesh Th. Assume α < 3, f ∈ L2(Ω), z t−
α
2 ∈ L2(0, 1), and

z′t−r ∈ L2(0, 1), with r = 0 when α < 2 and r > α/2 − 1 when α ≥ 2.
If the family of meshes satisfies (1), (2), (3), and (H), then there exists a constant

C depending only on α, β, and σ such that

‖u− uh‖H1(Ω) ≤ Ch
√

log(1/h)
{
‖f‖L2(Ω) + ‖z t−(α/2)‖L2(0,1) + ‖z′ t−r‖L2(0,1)

}
.

Proof. In view of (2.2) and since r > α/2 − 1, it is enough to prove

‖u− uh‖H1(Ω) ≤ Ch
√

log(1/h)
{
‖u‖H2(Ω) + ‖z′ t−r‖L2(0,1)

}
.
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Since Ω ⊂ Ωh, we have

‖u− uh‖H1(Ω) ≤ ‖ũ− uh‖H1(Ωh),

and therefore it is enough to prove that

‖ũ− uh‖H1(Ωh) ≤ Ch
√

log(1/h)
{
‖u‖H2(Ω) + ‖z′ t−r‖L2(0,1)

}
.(4.28)

Using the Poincaré inequality, we have

‖ũ− uh‖2
H1(Ωh) ≤ C|ũ− uh|2H1(Ωh)

= C

[∫
Ωh

∇(ũ− uh) · ∇(ũ− Πũ) +

∫
Ωh

∇(ũ− uh) · ∇(Πũ− uh)

]
,

(4.29)

but we know from (4.2) and Theorem 4.1 that

|ũ− Πũ|H1(Ωh) ≤ Ch‖ũ‖H2
α(Ωh) ≤ Ch‖u‖H2(Ω).(4.30)

Thus, for the first term in (4.29), using the Young inequality, we have∫
Ωh

∇(ũ− uh) · ∇(ũ− Πũ) ≤ ε|ũ− uh|2H1(Ωh) + Cεh
2‖u‖2

H2(Ω)(4.31)

with ε to be chosen below.
Then, we have only to estimate the second term of (4.29). To simplify notation

we introduce wh := Πũ− uh. From (2.1) and (2.3) we have∫
Ωh

∇(ũ− uh) · ∇wh =

∫
Ω

∇(ũ− uh) · ∇wh +

∫
Ωh\Ω

∇(ũ− uh) · ∇wh

=

∫
Ω

∇u · ∇wh +

∫
Ωh\Ω

∇ũ · ∇wh −
∫

Ωh

∇uh · ∇wh

=

∫
Ωh\Ω

∇ũ · ∇wh +

∫
Γ3

gwh −
∫

Γ3,h

Ih(gwh).

Then, from Lemmas 4.1 and 4.4, using (4.2) and again the Young inequality we obtain

∫
Ωh

∇(ũ− uh) · ∇wh ≤ Cεh
2 log 1/h

{
‖u‖2

H2(Ω) + ‖z′ t−r‖2
L2(0,1)

}
+ ε|wh|2H1(Ωh).

(4.32)

Hence, from (4.30)

|wh|2H1(Ωh) ≤ 2(|Πũ− ũ|2H1(Ωh) + |ũ− uh|2H1(Ωh))

≤ Ch2‖u‖2
H2(Ω) + 2|ũ− uh|2H1(Ωh).(4.33)

Therefore, from (4.31), (4.32), and (4.33) we get

|ũ− uh|2H1(Ωh)

≤ Cεh
2‖u‖2

H2(Ω) + Cεh
2 log 1/h

{
‖u‖2

H2(Ω) + ‖z′ t−r‖2
L2(0,1)

}
+ Cε|ũ− uh|2H1(Ωh),

and so the result follows by choosing ε small enough and using the estimates given in
(2.2).
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Fig. 4. Graded mesh with α = 2 and n = 3.

Table 2

H1 order using graded meshes for α = 2.

Value of s Order in number of nodes Order in h
0.55 0.588 1.054
0.6 0.585 1.049
0.65 0.584 1.047
0.7 0.584 1.046
0.75 0.584 1.047
0.8 0.585 1.048
0.85 0.586 1.049
0.9 0.586 1.051
0.95 0.587 1.052

Now we show that meshes satisfying the hypotheses (1)–(3) and (H) can be con-
structed. To define the mesh Th, with h = 1/n we use the following method given in
[9, page 393] and [11].

1. Introduce the partition of the interval (0, 1) given by

xj =

(
j

n

) 2
3−α

0 ≤ j ≤ n.

2. Take the points (xj , 0) in Γ1, (xj , x
α
j ) in Γ3, and for j > 1, divide each of

the vertical lines {(xj , y) : 0 ≤ y ≤ xα
j } uniformly into subintervals such that

each has length ∼ xj − xj−1.
Figure 4 shows an example of one of these meshes.

If N is the number of nodes in the partition Th, it can be proved that h2 ∼ 1/N
[9, page 393], [11]. Therefore, using these meshes we have the following error estimate
in terms of the number of nodes:

‖u− uh‖H1(Ω) ≤ C

√
logN

N

{
‖f‖L2(Ω) + ‖z t−α

2 ‖L2(0,1) + ‖z′ t−r‖L2(0,1)

}
.

Observe that this estimate is quasi optimal. Indeed, up to the logarithmic factor, the
order with respect to the number of nodes is the same as that obtained for a smooth
problem using quasi-uniform meshes.

Table 2 shows the numerical results obtained with these graded meshes for exam-
ple (2.1).
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TWO-SCALE BOOLEAN GALERKIN DISCRETIZATIONS FOR
FREDHOLM INTEGRAL EQUATIONS OF THE SECOND KIND∗
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Abstract. In this paper, some two-scale Boolean Galerkin discretizations are proposed and ana-
lyzed for a class of Fredholm integral equations of the second kind in multidimensions. It is shown by
both theory and numerics that this type of multiscale discretization algorithm not only significantly
reduces the number of degrees of freedom but also produces very accurate approximations.

Key words. Boolean Galerkin discretization, Fredholm integral equation, multidimension, two-
scale

AMS subject classification. 65R20

DOI. 10.1137/050633007

1. Introduction. It is known that it is a very challenging task to solve an inte-
gral equation in multidimensions by using the standard Galerkin discretizations, due
to the fact that the resulting linear algebraic systems of integral equations involve
dense matrices. However, integral equations of the second kind with smooth kernels
in multidimensions have important applications in many areas such as physics, engi-
neering, and finance; see, e.g., [3, 9, 14, 18, 19, 25, 26] and the references cited therein.
Hence, an accurate and economic numerical scheme for solving an integral equation in
multidimensions is highly desired. In this paper, we propose and analyze some two-
scale finite element discretizations for solving multidimensional integral equations of
the second kind with smooth kernels. These discretizations are nothing but several
coupled standard Galerkin discretizations of two scales. The approximations obtained
from the coupled two-scale discretizations have almost the same approximation ac-
curacy, but the computational cost is reduced significantly, as compared with the
standard Galerkin approximations. Moreover, it may be significant that this kind of
discretization can be carried out in parallel.

We now use the three-dimensional case as an example to demonstrate the key
idea of our discretizations. Let Rh1,h2,h3

u be the standard Galerkin approximation
to the exact solution u of an equation on a uniform cuboid grid with mesh size h1 in
the x-direction, h2 in the y-direction, and h3 in the z-direction, respectively. Then,
a two-scale Boolean Galerkin approximation to u, which is a linear combination of
different standard Galerkin approximations over two scales meshes, is constructed as
follows:

Bh
H,H,Hu = Rh,H,Hu + RH,h,Hu + RH,H,hu− 2RH,H,Hu.
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For this new approximation Bh
H,H,Hu, we may establish the estimation (see Theo-

rem 3.1)

‖Bh
H,H,Hu− uh,h,h‖0,2 = O(h + H2)

if the piecewise constant functions are used as the approximate spaces and the exact
solution u is smooth. Consequently, for example, we obtain an asymptotically optimal
approximation Bh

H,H,Hu in parallel with only O(h−2) degrees of freedom when H =

O(
√
h) is taken, while the degrees of freedom for uh,h,h are of O(h−3).
The two-scale Boolean Galerkin approximation studied in this paper is closely

related to the multiscale Boolean interpolation which is first constructed in [10]. This
multiscale Boolean technique is originally applied in [12] to reduce computational
complexity in the numerical solution of partial differential equations (see also [4, 5,
6, 15, 20, 21, 22]). In the context of solving integral equations, the one-scale Boolean
sum technique is used in [13] in conjunction with the degenerate kernel scheme to
achieve a higher order of convergence and in [26] in designing a fast multiscale Boolean
approximation scheme to get fast approximations. This multiscale Boolean technique
is also analogous to the sparse grid method and the multiparameter extrapolation
method discussed in [2, 11, 23, 28, 29]. Indeed, the sparse grid method may be viewed
as an implicit version of the multiscale Boolean method in [4, 5, 6, 12, 20, 21, 22].
Instead of the multiscale Boolean technique, in the current work, we adopt a two-scale
Boolean approach. Very recently, the two-scale Boolean discretization idea has been
introduced to numerical partial differential equations in [16, 17]. It is shown that the
two-scale Boolean approach is more flexible than the multiscale Boolean technique,
which is a key for us to introduce the multiscale techniques to nonlinear problems [16].
Moreover, since the two-scale finite element approximations are computed on regular
meshes, existing solvers can be used without any need for an explicit discretization
on a sparse grid.

The rest of the paper is organized as follows. In section 2, some preliminary
materials are provided. In section 3, three two-scale Boolean Galerkin discretizations
are proposed and analyzed for solving multidimensional integral equations of the
second kind. In section 4, several numerical experiments, which support our theory,
are reported. Finally, in section 5, some concluding remarks are presented.

2. Preliminaries. We begin with the definition of notation. Let � = (0, 1)d(d ≥
2) be the unit cube in R

d. We use W s,p(�) to denote the standard Sobolev spaces
of functions whose derivatives of order less than or equal to s are in Lp(�). We
denote by N0 the set of all nonnegative integers. For a function v ∈ W s,p(�), a point
x = (x1, x2, . . . , xd) ∈ �, and an index α = (α1, α2, . . . , αd) ∈ N

d
0, we let

(Dαw)(x) =

(
∂α1

∂xα1
1

· · · ∂
αdw

∂xαd

d

)
(x).

The norms and seminorms for the space W s,p(�) are defined by

‖w‖s,p =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎝ ∑
|α|≤s

‖Dαw‖pp

⎞⎠
1
p

if 1 ≤ p < ∞,

max
|α|≤s

‖Dαw‖∞ if p = ∞
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and

|w|s,p =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎝ ∑
|α|=s

‖Dαw‖pp

⎞⎠
1
p

if 1 ≤ p < ∞,

max
|α|=s

‖Dαw‖∞ if p = ∞,

respectively (see, e.g., [1, 8]). When p = 2, we let Hs(�) = W s,p(�), ‖ · ‖s = ‖ · ‖s,p,
and ‖ · ‖ = ‖ · ‖0, and we use (·, ·) for the standard L2(�) inner product. We will also
use the negative norm ‖ · ‖−1, which is defined for w ∈ H−1(�) = (H1(�))∗ by

‖w‖−1 = sup
φ∈H1(�)

(w, φ)

‖φ‖1
.

Throughout this paper, we shall use the letter C to denote a generic positive constant
which may stand for different values at its different occurrences.

2.1. Interpolation and L2-projection. The purposes of this subsection are
to describe the multidimensional tensor product interpolation and L2-projection op-
erators. To this end, we first define the interpolation and L2-projection operators in
one dimension. Due to the higher-dimensional nature of these integral equations, we
will use the spaces of the piecewise constant functions as our approximate ones. For
a positive integer n we let Zn = {1, 2, . . . , n}. Let Th((0, 1)) be a mesh of the interval
(0, 1) with the mesh size h ∈ [0, 1), i.e.,

Th((0, 1)) = {(xi−1, xi) : i ∈ Zn, x0 = 0, xn = 1} ,

h = max{xi − xi−1 : i ∈ Zn}.

We use ∂2Th((0, 1)) to denote the set of the midpoints of the subintervals in the mesh
Th((0, 1)), namely,

∂2Th((0, 1)) =

{
xi−1 + xi

2
: i ∈ Zn

}
.

Define the space of piecewise constant functions in L∞((0, 1)) by setting

Sh((0, 1)) = {v ∈ L∞((0, 1)) : v |τ is constant, τ ∈ Th((0, 1))}.

Let Ih : C((0, 1)) → Sh((0, 1)) be the Lagrange interpolation and Ph : L2((0, 1)) →
Sh((0, 1)) be the L2-projection operator defined by

(Ihw)(t) = w(t) ∀t ∈ ∂2Th((0, 1)), ∀w ∈ C((0, 1))

and ∫ 1

0

(Phw − w)(t)v(t)dt = 0 ∀v ∈ Sh((0, 1)), ∀w ∈ L2((0, 1)),

respectively.
We next describe the multidimensional notation. For h = (h1, . . . , hd), where

hj ∈ [0, 1), construct a mesh of the unit cube � in R
d by

Th(�) = Th1((0, 1)) × · · · × Thd((0, 1))
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with the associated space of piecewise constant functions on � by

Sh(�) = Sh1((0, 1)) ⊗ · · · ⊗ Shd((0, 1)).

We remark that Sh(�) is the tensor product space of the spaces of piecewise constant
functions on the interval (0, 1). The interpolation operator Ih from C(�) onto Sh(�)
is constructed by

Ih = Ih1 ◦ · · · ◦ Ihd
,

while the L2-projection operator Ph from L2(�) onto Sh(�) is set to be

Ph = Ph1 ◦ · · · ◦ Phd
.

It is easy to prove by definition that for every w ∈ L2(�), there holds

(w − Phw, v) = 0 ∀ v ∈ Sh(�).(2.1)

For α = (α1, α2, . . . , αd) ∈ N
d
0, we set

|α| = α1 + · · · + αd,

hα = hα1
1 · · ·hαd

d

and

hα = (h1α1, . . . , hdαd).

We define the order α ≤ β for the elements α, β ∈ {0, 1}d by αi ≤ βi for all i ∈ Zd.
Furthermore, we denote 0 = (0, . . . , 0) ∈ R

d and e = (1, . . . , 1) ∈ R
d and for i ∈

Zd, êi = e − ei and ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
d whose ith component is one and

zero otherwise.
We also need the notion of the mixed Sobolev space (see [16, 21, 22, 26]) defined

for α ∈ {0, 1}d and 1 ≤ p ≤ ∞ by

Wα,p
mix(�) = {w ∈ Lp(�) : Dβw ∈ Lp(�) ∀ β with 0 ≤ β ≤ α}

with the associated norm given for w ∈ Wα,p
mix(�) by

‖w‖Wα,p
mix

=

⎛⎝ ∑
0≤β≤α

‖Dβw‖2
0,p

⎞⎠
1
2

.

In particular, we denote

Hα(�) = Wα,2
mix(�).

In our discussion, we will also need the space

H1,2(�) =

{
w ∈ H1(�) :

∂2w

∂xi∂xj
∈ L2(�), i, j = 1, . . . , d, i �= j

}
(2.2)

with norm

‖w‖H1,2 = ‖w‖1 +

d∑
i,j=1
i�=j

∥∥∥∥ ∂2w

∂xi∂xj

∥∥∥∥ .
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It is seen that for all i ∈ Zd, there holds

‖w − Pheiw‖−1 + hi‖w − Pheiw‖ + hi‖w − Iheiw‖ ≤ Ch2
i ‖Deiw‖ ∀ w ∈ Hei(�).

(2.3)

Consequently, if w ∈ H1(�), then

‖w − Phw‖−1 + max{h1, . . . , hd}(‖w − Phw‖ + ‖w − Ihw‖)

≤ C max{h2
1, . . . , h

2
d}‖w‖1.(2.4)

It can be verified that for any 0 ≤ α, β ≤ e with α + β ≤ e, there holds the
identity that for every w ∈ Hα(�)

DαIhβw = IhβD
αw,(2.5)

DαPhβw = PhβD
αw.(2.6)

Thus from the above basic properties of Ph, we have the following proposition.
Proposition 2.1. Assume that 0 ≤ α ≤ e with |α| ≥ 2. If w ∈ H1,2(�), then∥∥∥∥∥∥
∏

0≤β≤α,|β|=1

(I − Phβ)w

∥∥∥∥∥∥
−1

+ max
i∈Zd

hi

∥∥∥∥∥∥
∏

0≤β≤α,|β|=1

(I − Phβ)w

∥∥∥∥∥∥ ≤ C max
i∈Zd

h3
i ‖w‖H1,2 ,

where I is the identity operator.
Given τ ∈ (0, 1), let whα+τβ ∈ Shα+τβ(�)(0 ≤ α, β ≤ e and α + β = e), and set

δατ wh =
∏
αi �=0

δei
τ wh,

where

δei
τ wh = wh − whêi+τei

, i ∈ Zd.

If d = 2 and h = (h1, h2), for instance, then

δ(1,0)
τ wh1,h2

= wh1,h2
− wτ,h2

,

δ(1,1)
τ wh1,h2 = wh1,h2

− wh1,τ − wτ,h2 + wτ,τ .

Given h,H ∈ (0, 1), let wHe ∈ SHe(�), whe ∈ She(�), and whα+Hβ ∈ Shα+Hβ(�)
(0 ≤ α, β ≤ e, α + β = e), and define

Bh
Hwhe = wHe −

d∑
i=1

δei

h wHe.

Proposition 2.2. Let i ∈ Zd. If w ∈ Hei(�), then

‖δei

H Ihw‖ + ‖δei

HPhw‖ ≤ C max{hi, H}‖Deiw‖(2.7)

and

‖δei

HPhw‖−1 ≤ C max{h2
i , H

2}‖Deiw‖.(2.8)
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Proof. The estimate (2.7) follows directly from the definition of δei

H and (2.3). We
now prove (2.8). For φ ∈ H1(�), since

((Ph − Phêi+Hei
)w,PHei

Phêi
φ) = 0

and since there holds

‖(I − PHei
)Phêi

φ‖ ≤ CH‖DeiPhêi
φ‖ ≤ CH‖Phêi

Deiφ‖ ≤ CH‖φ‖1,

we conclude that

|((Ph − Phêi+Hei
)w, φ)| = |((Ph − Phêi+Hei

)w,Phêi
φ)|

= |((Ph − Phêi+Hei
)w, (I − PHei)Phêi

φ)| ≤ CH‖(Ph − Phêi+Hei
)w‖‖φ‖1,

which ensures that

‖(Ph − Phêi+Hei
)w‖−1 ≤ CH(‖(Phêi

− Phêi+hiei
)w‖ + ‖(Phêi

− Phêi+Hei
)w‖).

Using the estimation

‖(Phêi
− Phêi+τei

)w‖ ≤ Cτ‖Deiw‖

for τ ∈ {hi, H}, we then have (2.8). This completes the proof.
From Proposition 2.2, we immediately obtain the following proposition.
Proposition 2.3. If w ∈ H1,2(�), then

‖Bh
HIhew − Ihew‖ + ‖Bh

HPhew − Phew‖ ≤ C max{h2
i , H

2}‖w‖H1,2(2.9)

and

‖Bh
HPhew − Phew‖−1 ≤ C max{h3

i , H
3}‖w‖H1,2 .(2.10)

Proof. For wτ = Iτw or Pτw when τ = (τ1, τ2, . . . , τd), we have

whe = wHe +

d∑
|α|=1

(−1)|α|δαhwHe.

Thus we obtain

Bh
Hwhe − whe = −

d∑
|α|=2

(−1)|α|δαhwHe,(2.11)

which together with Proposition 2.2 completes the proof.

2.2. The standard Galerkin approximation. Suppose that the kernel k ∈
L2(� × �). Then the operator K : L2(�) → L2(�) defined by

(Ku)(x) =

∫
�

k(x, y)u(y)dy, x ∈ �, u ∈ L2(�),

is a compact integral operator (see, e.g., page 277 of [27]). Consider the Fredholm
integral equation of the second kind

u + Ku = f,(2.12)
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where u ∈ L2(�) is the unknown and f ∈ L2(�) is a given function. We assume
that −1 is not an eigenvalue of K; namely, the inverse operator (I +K)−1 exists as a
bounded operator on L2(�). In other words, (2.12) has a unique solution u in L2(�)
satisfying

‖u‖ ≤ C‖f‖.

The standard Galerkin projection Rh : L2(�) → Sh(�) is defined by

((I + K)(Rhu− u), v) = 0 ∀ v ∈ Sh(�),(2.13)

namely,

(I + PhK)Rhu = Ph(u + Ku).(2.14)

Associated with K and Rh, we may define K∗ : L2(�) → L2(�) by

(K∗u)(x) =

∫
�

k(y, x)u(y)dy, x ∈ �, u ∈ L2(�),

and R∗
h : L2(�) → Sh(�) by

((I + K∗)(R∗
hu− u), v) = 0 ∀ v ∈ Sh(�).

It is seen that both (I + K)−1 and (I + K∗)−1 exist as bounded operators on
H1(�) if k ∈ H1(� × �) (see, e.g., [24]).

In the next proposition, we provide some standard estimates for the standard
Galerkin projections Rhu and R∗

hu for any u ∈ He(�) (see, e.g., [7, 14, 24, 26]).
Proposition 2.4. If k ∈ L2(� × �) and u ∈ H1(�), then

‖u−Rhu‖ + ‖u−R∗
hu‖ ≤ C inf

v∈Sh(�)
‖u− v‖ ≤ C max{h1, . . . , hd}‖u‖1.(2.15)

For the Galerkin approximation uh ≡ Rhu to the exact solution u of (2.12), we
define the iterated Galerkin approximation by

ũh = f −Kuh.(2.16)

The following estimation is also classic and can be found in the literature (see,
e.g., [24, 26]).

Proposition 2.5. If k ∈ H1(� × �), then

‖u− uh‖−1 + ‖u− ũh‖ ≤ C max{h1, . . . , hd}‖u− uh‖.

In our analysis, we need the following two results.
Proposition 2.6. Assume that u ∈ Hei(�)(i ∈ Zd). If k ∈ H1(� × �), then

‖DeiRhêi
u‖ ≤ C(‖Deiu‖ + ‖u‖).(2.17)

Proof. It is obtained from (2.14) that

Dei(I + Phêi
K)Rhêi

u = DeiPhêi
(I + K)u,

which together with (2.6) leads to

DeiRhêi
u = Phêi

(Dei(I + K)u−DeiKRhêi
u) .
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Hence from

‖Phêi
u‖ + ‖Rhêi

u‖ ≤ C‖w‖,

we arrive at (2.17). This completes the proof.

Proposition 2.7. Assume that u ∈ Hei(�)(i ∈ Zd).

(1) If k ∈ L2(� × �), then

‖δei

HRhu‖ ≤ C max{hi, H}‖Deiu‖.(2.18)

(2) If k ∈ H1(� × �), then

‖δei

HRhu‖−1 ≤ C max{h2
i , H

2}‖Deiu‖.(2.19)

Proof. The estimate (2.18) can be obtained directly from (2.15). It remains to
prove (2.19).

Because of the triangle inequality

‖δei

HRhu‖−1 ≤ ‖Rhu−Rhêi
u‖−1 + ‖Rhêi

u−Rhêi+Hei
u‖−1,(2.20)

we shall estimate ‖Rhu−Rhêi
u‖−1 and ‖Rhêi

u−Rhêi+Hei
u‖−1.

To this end, for any φ ∈ H1(�), we let

ψ = R∗
hêi

(I + K∗)−1φ.

Since Proposition 2.6 is also true when Rhêi
is replaced by R∗

hêi
, we have

‖DeiR∗
hêi

(I + K∗)−1φ‖ ≤ C(‖Dei(I + K∗)−1φ‖ + ‖(I + K∗)−1φ‖),

which together with (see, e.g., [24])

‖(I + K∗)−1φ‖1 ≤ C‖φ‖1

yields

‖Deiψ‖ ≤ C‖φ‖1.(2.21)

Note that Pτei
ψ ∈ Shêi+τei(�) for τ = hi or H, we obtain

((Rhêi+τei
−Rhêi

)u, φ) = ((Rhêi+τei
−Rhêi

)u, (I + K∗)ψ)

= ((I + K)(Rhêi+τei
−Rhêi

)u, ψ)

= ((I + K)(Rhêi+τei
−Rhêi

)u, (I − Pτei)ψ) .

Since (2.18) is also true when H is replaced by hi, it follows from using (2.18) and
the approximation property of Sτei(�) that

|((Rhêi+τei
−Rhêi

)u, φ)| ≤ Cτ2‖Deiu‖‖Deiψ‖ ≤ Cτ2‖Deiu‖‖φ‖1,

which leads to (2.19).
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3. The two-scale Boolean Galerkin approximation. This section is devoted
to designing and analyzing the two-scale Boolean Galerkin approximation method for
solving (2.12). Suppose that k ∈ H1(� × �).

Given H ∈ (0, 1), we assume that H � h and TH((0, 1)) ⊂ Th((0, 1)). Then the
two-scale Boolean Galerkin approximation and the two-scale Boolean iterated Galerkin
approximation are constructed as follows:

Bh
Heu =

d∑
i=1

RHêi+hei
u− (d− 1)RHeu,

B̃h
Heu =

d∑
i=1

R̃Hêi+hei
u− (d− 1)R̃Heu.

For instance, when d = 3, we have

Bh
H,H,Hu = Bh

Heu = Rh,H,Hu + RH,h,Hu + RH,H,hu− 2RH,H,Hu,

B̃h
H,H,Hu = B̃h

Heu = R̃h,H,Hu + R̃H,h,Hu + R̃H,H,hu− 2R̃H,H,Hu,

where R̃h,k,lu = f −Kuh,k,l. We want to discuss the superclose property of the two-
scale Boolean Galerkin approximation Bh

Heu and investigate the superconvergence
property of the Boolean iterated Galerkin approximation B̃h

Heu.
To analyze the error of the two-scale Boolean Galerkin approximations, we need

to establish some estimates for the standard Galerkin projection. First, we need the
following conclusions for the L2-projection.

Lemma 3.1. For i ∈ Zd, set

g = Phei(I + K)(I − Phei)u.(3.1)

If u ∈ Hei(�), then

‖g‖ + hi‖Dejg‖ ≤ Ch2
i ‖Deiu‖ ∀j ∈ Zd \ {i}.(3.2)

Proof. For v ∈ Shei(�), we set

φ = (I + K)∗v.

Therefore, using the definition of g, we conclude that

(g, v) = ((I + K)(I − Phei)u, v) = ((I − Phei)u, φ) .

Noting that there holds the identity (I − Phei)
2 = I − Phei and noting that the

operator I − Phei is self-adjoint, it follows that

(g, v) = ((I − Phei)u, (I − Phei)φ) .

The fact that

v = Pheiv ∀v ∈ Shei(�)

implies

(g, v) = ((I − Phei
)u, (I − Phei

)K∗v) ∀v ∈ Shei(�).
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Consequently,

|(g, v)| ≤ Ch2
i ‖Deiu‖‖v‖ ∀v ∈ Shei(�).

Choosing v = g in the last inequality produces

‖g‖ ≤ Ch2
i ‖Deiu‖.

Finally, from Phei(I − Phei) = 0, we obtain

Dejg = DejPhei
K(I − Phei

)u = PheiD
ejK(I − Phei)u

if j ∈ Zd \ {i}. Hence we have

‖Dejg‖ ≤ C‖(I − Phei)u‖, j ∈ Zd \ {i},

which together with (2.3) leads to

‖Dejg‖ ≤ Chi‖Deiu‖.

This completes the proof.
Using Lemma 3.1, we then obtain the following proposition.
Proposition 3.1. Suppose that u ∈ Hei(�)(i ∈ Zd). Then there exists a function

ψ ∈ Hei(�) satisfying

Rh((I − Phei)u) = Rhψ(3.3)

and

‖ψ‖ + hi‖Dejψ‖ ≤ Ch2
i ‖Deiu‖ ∀j ∈ Zd \ {i}.(3.4)

Proof. Set g = Phei(I +K)(I − Phei)u. Then from Lemma 3.1, we conclude that

‖g‖ + hi‖Dejg‖ ≤ Ch2
i ‖Deiu‖ ∀j ∈ Zd \ {i}.(3.5)

If ψ = (I + K)−1g, then ψ ∈ Hei(�) satisfies (3.3) (see [24]) and has the estimates

‖ψ‖ ≤ C‖g‖,(3.6)

‖Dejψ‖ ≤ C(‖Dejg‖ + ‖g‖) ∀j ∈ Zd \ {i}.(3.7)

Combining (3.5), (3.6), and (3.7), we get (3.4).
Now we turn to studying the hierarchical surplus, the difference between the

two-scale Boolean Galerkin and the standard Galerkin approximations.
Proposition 3.2. Suppose that τ ∈ {h,H}d, i, j ∈ Zd, and i �= j. If u ∈ H1(�),

then

‖δej

h Rτ (I − Pτei)u‖ ≤ CH2‖u‖1(3.8)

and

‖δej

h Rτ (I − Pτei
)u‖−1 ≤ CH3‖w‖1.(3.9)

Proof. Let ψ ∈ H1(�) satisfy (3.3) when h is replaced by τ . By Propositions 3.1
and 2.7, we have

‖δej

h Rτ (I − Pτei)u‖ = ‖δej

h Rτψ‖ ≤ CH‖Dejψ‖ ≤ CH2‖u‖1
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and

‖δej

h Rτ (I − Pτei
)u‖−1 = ‖δej

h Rτψ‖−1 ≤ CH2‖Dejψ‖ ≤ CH3‖u‖1.

Next, we estimate the error of the two-scale Boolean Galerkin approximation.
Theorem 3.1. If u ∈ H1,2(�), then

‖Bh
Heu−Rheu‖ ≤ CH2‖u‖H1,2

and

‖Bh
Heu−Rheu‖−1 ≤ CH3‖u‖H1,2 .

Consequently,

‖u−Bh
Heu‖ ≤ C(h + H2)‖u‖H1,2

and

‖u−Bh
Heu‖−1 ≤ C(h2 + H3)‖u‖H1,2 .

Proof. For whe ∈ She(�), define

δHwhe = Bh
Hwhe − whe.

Then (2.11) implies

δHwhe = −
d∑

|β|=2

(−1)|β|δβhwHe.(3.10)

From the identity

I − Ph = −
∑

0≤α≤e,|α|≥1

(−1)|α|
∏

0≤β≤α,|β|=1

(I − Phβ),

we obtain

‖δHRheu‖ ≤ ‖δHRhePheu‖ +
∑

0≤α≤e,|α|≥1

∥∥∥∥∥∥δHRhe

∏
0≤β≤α,|β|=1

(I − Phβ)u

∥∥∥∥∥∥
or

‖δHRheu‖ ≤ ‖δHPheu‖ +
∑

0≤α,|α|=1

‖δHRhe(I − Phα)u‖

+
∑

0≤α≤e,|α|≥2

∥∥∥∥∥∥δHRhe

∏
0≤β≤α,|β|=1

(I − Phβ)u

∥∥∥∥∥∥ .
Using the stability

‖Rhw‖ + ‖Phw‖ ≤ C‖w‖ ∀w ∈ L2(�),
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we can then estimate the term

∑
0≤α≤e,|α|≥2

∥∥∥∥∥∥δHRhe

∏
0≤β≤α,|β|=1

(I − Phβ)u

∥∥∥∥∥∥
as follows:

∑
0≤α≤e,|α|≥2

∥∥∥∥∥∥δHRhe

∏
0≤β≤α,|β|=1

(I − Phβ)u

∥∥∥∥∥∥
≤ C

∑
0≤α≤e,|α|≥2

max
τ∈{h,H}d

∥∥∥∥∥∥
∏

0≤β≤α,|β|=1

(I − Pτβ)u

∥∥∥∥∥∥ ,
while the identity

∑
0≤α,|α|=1

δHRhe(I − Phα) = −
∑

0≤α,|α|=1

d∑
|β|=2

(−1)|β|δβhRHe(I − PHα),

which can be derived directly from (3.10), leads to∥∥∥∥∥∥
∑

0≤α,|α|=1

δHRhe(I − Phα)u

∥∥∥∥∥∥ ≤ C max
τ∈{h,H}d

∑
i,j∈Zd,i �=j

‖δej

h Rτ (I − Pτei
)u‖.

Hence we have

‖δHRheu‖ ≤ ‖δHPheu‖ + C
∑

i,j∈Zd,i �=j

‖δej

h RHe(I − PHei
)u‖

+ C
∑

0≤α≤e,|α|≥2

max
τ∈{h,H}d

∥∥∥∥∥∥
∏

0≤β≤α,|β|=1

(I − Pτβ)u

∥∥∥∥∥∥ .
Finally, we prove the first estimate of this theorem from the above estimate and
Propositions 2.1, 2.3, and 3.2. The second estimate can be proved similarly.

As for the two-scale Boolean iterated Galerkin approximation B̃h
Heu, we obtain

the following theorem.
Theorem 3.2. If u ∈ H1,2(�), then

‖B̃h
Heu− R̃heu‖ ≤ CH3‖u‖H1,2 .

Consequently,

‖u− B̃h
Heu‖ ≤ C(h2 + H3)‖u‖H1,2 .

Proof. By the definition of R̃heu and Bh
Heu, we have the identity

B̃h
Heu− R̃heu = −K(Bh

Heu−Rheu).

Hence we obtain

‖B̃h
Heu− R̃heu‖ = ‖ −K(Bh

Heu−Rheu)‖
≤ C‖Bh

Heu−Rheu‖−1 ≤ CH3‖u‖H1,2 .



308 FANG LIU AND AIHUI ZHOU

This completes the proof.
Finally, we construct a defect correction approximation RHeu+B̃h

Heu−RHeB̃
h
Heu,

for which we have the following theorem.
Theorem 3.3. If u ∈ H1,2(�), then

‖u−RHeu− B̃h
Heu + RHeB̃

h
Heu‖ ≤ CH(h2 + H3)‖u‖H1,2 .(3.11)

Proof. From the definition of B̃h
H,H,Hu, we get

(I −RHe)(u− B̃h
Heu) = −(I −RHe)K(u−Bh

Heu).

Thus, Proposition 2.4 and Theorem 3.2 yield

‖(I −RHe)(u− B̃h
Heu)‖ ≤ CH‖ −K(u−Bh

Heu)‖1

≤ CH‖u−Bh
Heu‖−1 ≤ CH(h2 + H3)‖u‖H1,2 .

Noting that u−RHeu− B̃h
Heu+RHeB̃

h
Heu is nothing but (I −RHe)(u− B̃h

Heu), we
conclude that (3.11) is valid.

4. Numerical experiments. In this paper, we have presented and analyzed
three two-scale finite element discretizations for a class of Fredholm integral equa-
tions. It is perhaps a little too much of an undertaking to carry out and report
numerical experiments for less smooth solutions in the current work, since there are
some practical issues that need to be taken into account carefully. For illustration,
we choose to report some two- and three-dimensional numerical experiments only for
smooth solutions.

In two-dimensional examples, we use four piecewise constant finite elements that
are of mesh sizes h×H, H × h, H ×H, and h× h, respectively. Our two-scale finite
element approximation is denoted by Bh

H,Hu = Rh,Hu + RH,hu − RH,Hu. In three-
dimensional cases, we use five piecewise constant finite elements that are of mesh sizes
h×H ×H, H ×h×H, H ×H ×h, H ×H ×H, and h×h×h, respectively. The two-
scale finite element approximation is constructed by Bh

H,H,Hu = Rh,H,Hu+RH,h,Hu+

RH,H,hu − 2RH,H,Hu. In all of our numerical experiments, we choose h = H2. Our
numerical experiments are carried out on SGI Origin 3800 at the State Key Laboratory
of Scientific and Engineering Computing, Chinese Academy of Sciences.

Example 1. Consider an integral equation of the second kind in R
2:

u(x1, x2) +

∫ 1

0

∫ 1

0

x1x2 exp(y1 + y2)u(y1, y2)dy1dy2 = exp(−x1 − x2) in �(4.1)

with an exact solution u = exp(−x1 − x2) − 1
2x1x2, where � = (0, 1)2.

It is observed from Table 1 that not only does the two-scale finite element approx-
imation Bh

H,Hu have a high accuracy, but also the number of the degrees of freedom

for obtaining Bh
H,Hu is only of O(1/h×1/H) = O(h−3/2), while that for the standard

finite element solution Bh,hu is of O(h−2) when h = H2. For instance, the accuracy
of the two-scale finite element approximation Bh

H,Hu with 1,000 degrees of freedom
is asymptotically the same as that of the standard finite element solution Rh,hu with
10,000 degrees of freedom. The numerical results, stated in Table 1, support our
theory (see Theorem 3.1). Hence Bh

H,Hu is a much better solution in terms of com-
putational cost. Moreover, we can carry out the major computation in parallel. As a
result, the computational scale is reduced and the computational time is saved.
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Table 1

Example 1: L2-estimates for Bh
H,Hu.

1
h
× 1

H
‖Bh

H,Hu−Rh,hu‖ ‖u−Rh,hu‖
4×2 0.00318054 0.06741261
16×4 0.00096040 0.01687140
64×8 0.00024886 0.00421813
81×9 0.00019709 0.00333285

100×10 0.00015991 0.00269961

Table 2

Example 1: L2-estimates for B̃h
H,Hu.

1
h
× 1

H
‖B̃h

H,Hu− R̃h,hu‖ ‖u− R̃h,hu‖
4×2 0.00011373 0.00325378
16×4 0.00001086 0.00020183
64×8 0.00000074 0.00001260
81×9 0.00000046 0.00000787

100×10 0.00000030 0.00000516

It is shown from Theorem 3.1 that the iterated Galerkin approximation R̃h,hu

and the corresponding two-scale combination solution B̃h
H,Hu have a higher accuracy

than the standard Galerkin approximation Rh,hu and Bh
H,Hu, respectively, which are

supported by our numerical results, too (see Table 2).
For a three-dimensional example, we consider the integral equation

u(x1, x2, x3) +

∫ 1

0

∫ 1

0

∫ 1

0

x1x2x3 exp(y1 + y2 + y3)u(y1, y2, y3)dy1dy2dy3

= exp(−x1 − x2 − x3) in �

(4.2)

with an exact solution u = exp(−x1 − x2 − x3) − 1
2x1x2x3, where � = (0, 1)3.

It is not easy to solve (4.2), since the linear system for (4.2) is a dense matrix and
the degree of freedom increases rapidly when the mesh size h decreases. More precisely,
it is getting more and more difficult to compute Rh,h,hu when h is smaller and smaller
because of the memory limit and the speed of solving the huge linear system. However,
it is relatively easy to get an approximation Bh

H,H,Hu that is asymptotically the same

as that of Rh,h,hu when h = H2 (see Table 3). For instance, when h = 1/100, it is
not possible for us to obtain ‖u − Rh,h,hu‖ through computing Rh,h,hu (in our SGI
Origin 3800), but it is very easy to get ‖u−Bh

H,H,Hu‖.
It is observed from Table 3 that the approximate accuracy of the two-scale finite

element approximation Bh
H,H,Hu with 10,000 degrees of freedom is asymptotically the

same as that of the standard finite element solution Rh,h,hu with 1,000,000 degrees of
freedom, which coincides with our theory (see Theorem 3.1). It is shown by Table 3
that not only is the degree of freedom for obtaining Bh

H,H,Hu only of O(1/h× 1/H ×
1/H) = O(h−2) while that for the standard finite element solution Rh,h,hu is of
O(h−3) when h = H2, but also the two-scale combination solution Bh

H,H,Hu has high

accuracy. Hence Bh
H,H,Hu is a much better solution in terms of computational cost.

Moreover, it is shown from Theorem 3.2 that the iterated Galerkin solutions R̃h,h,hu

and B̃h
H,H,Hu are more accurate than Rh,h,hu and Bh

H,H,Hu, respectively. The results
shown in Table 3 are in accordance with our theory, too.

In the computation, however, it takes much more time to get R̃h,h,hu and B̃h
H,H,Hu
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Table 3

Example 1: L2-estimates for Bh
H,H,Hu and B̃h

H,H,Hu.

1
h
× 1

H
× 1

H
‖u−Bh

H,H,Hu‖ ‖u− B̃h
H,H,Hu‖ ‖u−Rh,h,hu‖ ‖u− R̃h,h,hu‖

4×2×2 0.04918028 0.00262928 0.04875677 0.00282859
16×4×4 0.01237953 0.00015595 0.01221095 0.00017483
64×8×8 0.00309985
81×9×9 0.00244954

100×10×10 0.00198428

than to get Rh,h,hu and Bh
H,H,Hu, respectively. The reason is that it is time-consuming

to compute KRh,h,hu and KBh
H,H,Hu. As a result, we may conclude that Bh

H,H,Hu

is better than B̃h
H,H,Hu in terms of the efficiency of computation. Similarly, it also

takes much more time to get RH,H,Hu − B̃h
H,H,Hu + RH,H,HB̃h

H,H,Hu than to get

Bh
H,H,Hu, though RH,H,Hu− B̃h

H,H,Hu+RH,H,HB̃h
H,H,Hu has a higher accuracy than

Bh
H,H,Hu (see Theorem 3.3). Taking the efficiency into account, it may be concluded

that Bh
H,H,Hu would be a very good approximation and would be recommended.

Example 2. Consider an integral equation of the second kind in R
2:

u(x1, x2) −
∫ 1

0

∫ 1

0

exp(x1y1 + x2y2)u(y1, y2)dy1dy2 = f(x1, x2) in �(4.3)

with an exact solution u = exp(x1 + x2) and

f(x1, x2) = exp(x1 + x2) −
2∏

i=1

((exp(xi + 1) − 1)/(xi + 1)),

where � = (0, 1)2. It is noted that the global stiff matrix of (4.3) is symmetric but
not positive definite. As a result, we adopt the GMRES method to solve the discrete
system of (4.3).

In the three-dimensional case, we consider the following integral equation:

u(x1, x2, x3) −
∫ 1

0

∫ 1

0

∫ 1

0

exp

(
3∑

i=1

(xiyi)

)
u(y1, y2, y3)dy1dy2dy3 = f(x1, x2, x3) in �

(4.4)

with an exact solution u = exp(x1 + x2 + x3) and

f(x1, x2, x3) = exp(x1 + x2 + x3) −
3∏

i=1

((exp(xi + 1) − 1)/(xi + 1)),

where � = (0, 1)3.
It is shown by Tables 4, 5, and 6 that the numerical results of Example 2 support

our theory again.

5. Concluding remarks. In this paper, we have proposed and analyzed sev-
eral two-scale Boolean Galerkin discretizations for Fredholm integral equations of the
second kind. It is shown by both theory and numerics that these new discretiza-
tions are very efficient for solving integral equations in multidimensions. Since the
computational cost and storage requirement of the two-scale discretizations still grow
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Table 4

Example 2: L2-estimates for Bh
H,Hu.

1
h
× 1

H
‖Bh

H,Hu−Rh,hu‖ ‖u−Rh,hu‖
4×2 0.04842409 0.32735166
16×4 0.01553697 0.08153128
64×8 0.00409148 0.02037784
81×9 0.00324410 0.01610091

100×10 0.00263427 0.01304169

Table 5

Example 2: L2-estimates for B̃h
H,Hu.

1
h
× 1

H
‖B̃h

H,Hu− R̃h,hu‖ ‖u− R̃h,hu‖
4×2 0.00088787 0.04532941
16×4 0.00008909 0.00285472
64×8 0.00000617 0.00017851
81×9 0.00000388 0.00011144

100×10 0.00000256 0.00007312

Table 6

Example 2: L2-estimates for Bh
H,H,Hu and B̃h

H,H,Hu.

1
h
× 1

H
× 1

H
‖u−Bh

H,H,Hu‖ ‖u− B̃h
H,H,Hu‖ ‖u−Rh,h,hu‖ ‖u− R̃h,h,hu‖

4×2×2 0.73017738 0.08240124 0.71543805 0.09778049
16×4×4 0.18486246 0.00465276 0.17845676 0.00619129
64×8×8 0.04637518
81×9×9 0.03665092

100×10×10 0.02969234

exponentially with the dimensionality, however, our methods may not be applicable
for very high-dimensional problems. What we discussed here is only for piecewise
constant elements. Indeed, similar results can be expected for higher-order elements.
It should also be mentioned that the same discretizations can be applied to solve inte-
gral eigenvalue problems as well as nonlinear integral equations, which is our ongoing
research project.
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CONVERGENCE ANALYSIS OF A QUASI-CONTINUUM
APPROXIMATION FOR A TWO-DIMENSIONAL MATERIAL

WITHOUT DEFECTS∗

PING LIN†

Abstract. In many applications, materials are modeled by a large number of particles (or
atoms), where any particle can interact with any other. The computational cost is very high since
the number of atoms is huge. Recently much attention has been paid to a so-called quasi-continuum
(QC) method, which is a mixed atomistic/continuum model. The QC method uses an adaptive finite
element framework to effectively integrate the majority of the atomistic degrees of freedom in regions
where there is no serious defect. However, numerical analysis of this method is still in its infancy.
In this paper we will conduct a convergence analysis of the QC method in the case when there is no
defect. We will also remark on the case when the defect region is small. The difference between our
analysis and conventional analysis is that our exact atomistic solution is not a solution of a continuous
partial differential equation, but a discrete lattice scale solution which is not approximately related
to any conventional partial differential equation.

Key words. lattice statics, Lennard–Jones potential, global minimization, finite element method,
quasi-continuum approximation, material defects

AMS subject classifications. 65K10, 65N15, 65N30, 70C20, 74G15, 74G65, 74N15, 74Q05

DOI. 10.1137/050636772

1. Introduction. The analysis of the structure of material, and defects of ma-
terial such as dislocations or fractures, often involves the effect of the lattice on the
scale. Directly solving the whole system (lattice statics) provides an accurate solution
for analysis on this scale. However, because the number of atomistic particles in a
material is huge, it is often impossible to directly solve the whole system to obtain the
material properties. The fact that in many practical problems defects occur only in
some local and small regions may help with the design of approximation or reduction
methods for the original huge problem. The quasi-continuum (QC) approximation
recently gained attention in the engineering literature (cf. [13, 3, 21, 17]). The idea is
that we can consider the region (called the local approximation region), where no de-
fects occur, at the macroscopic scale, and the theory of continuum material elasticity
may apply. The model enables a treatment of lattice defects—should these defects
arise—and exhibits a continuous transition from the lattice to the continuum realms
at intermediate length scales. It is incorporated with the (nonconforming) finite ele-
ment method and is expected to be an approximation of the full lattice-scale model.
There are other models that couple atomistic/finite element methods and that em-
ploy some sort of handshaking region at the atomistic/FEM interface [12, 1, 18]. A
major strength of the QC method is its ability to adaptively mesh as the deformation
gradient changes, such that regions can switch between microscopic and continuum
measures of the energy as needed. Further improvement of the method can also be
founded in the literature; see, e.g., [20].

While a significant body of knowledge about QC related models and their ex-
perimental and numerical tests has been accumulated, not much has been reported
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http://www.siam.org/journals/sinum/45-1/63677.html
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Fig. 1. Atomic positions at the reference and deformed configurations.
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Fig. 2. The energy function φ(r).

on the analysis of the approximation error of these models. The convergence rate of
the QC method is analyzed in [11] via computational results of a specific nanoinden-
tation problem. Other numerical tests can also be found in [21, 19]. In [7] the QC
method has been related to a heterogeneous multiscale framework based on a linear
homogenization technique. In [14] the QC method is analyzed for a one-dimensional
atomic chain without external forces. An analysis with an external force is conducted
in [4] for the nearest neighbor interaction. Other relevant work may be found in
[8, 2, 9, 6, 15]. The aim of this paper is to present an error analysis between the
solution of the original lattice-scale atomic system and the solution of its QC approx-
imation for multidimensional materials with conservative external forces. We will
consider only a two-dimensional material in this paper.

Let X� = (x�, y�) represent the coordinates of an atom or particle � (i.e., the loca-
tion of the atom � in a reference configuration). We collect all these reference positions
of atoms in a vector X. The position of the atom � in the deformed configuration is
denoted as z�. We collect all deformed atomic positions in a vector z. See Figure 1.

We shall assume that the atoms interact with each other via a pair-interacting
potential φ(r), where r is the distance between the pairs of atoms. The shape of the
function, shown in Figure 2, is usually nonconvex. The popular 6-12 Lennard–Jones



ANALYSIS OF A QUASI-CONTINUUM APPROXIMATION 315

X l X k i
Element E i

r
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Fig. 3. Triangulation and notation.

potential (see Frank and van der Merwe [10])

φ(r) = φmin

[
−2

(r0
r

)6

+
(r0
r

)12
]

(1)

is one example of such a function. We shall do our analysis for a potential function
of this type. Obviously r0 is the minimal point of φ(r). We may assume that r0
is the grid size of atomic position X in the reference configuration (called a lattice
constant). Later we shall also assume that the nearest neighbor atomic interaction
dominates farther interactions based on the solid material property.

The meaning of the defect in this paper is given as follows. If there is no defect,
any pair of nearest neighbor atoms, say located at zk and z�, should have such a
distance rk� = |zk − z�|, where φ(rk�) is convex (i.e., rk� < r1). Basically, if rk� < r1
but is close to r1, the material has or starts to have a defect; if rk� ≥ r1 (i.e., rk�
is in the nonconvex region of φ(r)), then we think that the material has a serious
defect. If the external forces on the material are so strong that some pairs of nearest
neighbor atoms are in the nonconvex region of φ(r), the convergence analysis may
be problematic (if not impossible) since the solution at the lattice scale may not be
unique. So in our analysis we shall assume that pairs of nearest neighbor atoms are in
the convex region of φ(r), as described in section 3. In this paper we mainly consider
the material with no serious defects. We shall remark on the defect case as well.

Later, when considering the QC approximation we need to triangulate the ref-
erence domain, as the finite element method usually does. In order to describe the
total potential energy and the approximate energy in a consistent way, we consider a
triangulation of the domain at this early stage, which is shown in Figure 3. We shall
assume that the triangular mesh satisfies usual regular conditions. R� is a disc region
with radius rc centered at the atom X�. Only atoms in the disc R� will be counted for
interaction with the atom X�. In practice, rc is taken as twice the potential cut-off
radius.

Assume that the external force is conservative and its corresponding external
potential is denoted as F (z). Define f(z) = Fz(z). The total potential energy reads

E(z) =
1

2

N∑
i=1

mi∑
k=1

∑
�∈Rk

φ(|zk − z�|) +

N∑
i=1

mi∑
k=1

F (zk),(2)
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where, and in what follows, the letter i is specially assigned to the index for the ith
triangular element Ei, and the index of the three vertices of the element Ei will be
denoted as i1, i2, and i3. k is the index1 for atoms in the element Ei, mi is the
number of atoms in Ei, and N is the number of triangular elements. | · | represents
the Euclidean length of a vector in R2. Obviously, we should also have � �= k in the
summation Σ�∈Rk

since an atom cannot interact with itself. For simplicity of notation
we just drop the self-interaction condition � �= k throughout the paper. We shall also
assume Dirichlet boundary conditions in a bounded material domain Ω.

According to physical principle (cf. [21]) stable configuration of the material is
identified with the minimizer of the potential energy E(z):

E(ẑ) = min
z

E(z).(3)

Let z = ẑ + tv (or z� = ẑ� + tv�). From

d

dt
E(ẑ + tv)|t=0 = 0,

we can obtain the variational formulation of (3):

a(ẑ, v) =
1

2

N∑
i=1

mi∑
k=1

∑
�∈Rk

φ′(|ẑ� − ẑk|)
|ẑ� − ẑk|

(ẑ� − ẑk) · (v� − vk) = −
N∑
i=1

mi∑
k=1

f(ẑk) · vk ∀v,

(4)

where the solution ẑ satisfies Dirichlet boundary conditions.
The rest of the paper is organized as follows. In section 2 we introduce the QC

approximation similarly to the original lattice-scale problem given above. Roughly
speaking, it corresponds to a nonconforming finite element approximation of (4). In
section 3 we present a few assumptions and justifications for existence and uniqueness
of the lattice-scale solution. Finally, in section 4 we estimate the error of the QC
approximation in cases with no serious defect. Roughly speaking, we mainly assume
(i) all nearest neighbor pairs of atoms in a convex region of φ, and (ii) nearest neighbor
interaction dominates further interaction. Under these assumptions we show that the
error of QC approximation is of O(h) plus a nonconforming error term which is related
to the number of atoms in each element and each element’s boundaries. Here h is the
largest side of the triangulation. We also remark on a possible error estimate in the
case when the above assumptions do not hold or serious defects occur in a relatively
small region.

2. QC approximation. Now we describe the QC approximation combined with
a nonconforming finite element idea to problem (3). Our description follows [21], but
our unknown vector is the deformed atomic position vector in order to be consistent
with the original lattice-scale problem described above. Essentially our formulation
should be the same as that in [21]. A triangulation is already given in the previous
section. Assume in each triangle Ei, shown in Figure 4, that the atoms are deformed
linearly, which corresponds to using a piecewise linear function to approximate the
solution in the finite element context. As mentioned in the previous section, we
denote the three vertices of the element Ei by Xi1 , Xi2 , and Xi3 . Let Xij = (xij , yij )

T ,

1We should use a double index such as (i, k) to represent an atom k in the element Ei. For
simplicity of notation without significant ambiguity we use k instead of (i, k).
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Fig. 4. One triangular element.

j = 1, 2, 3, be vertices of the triangular element Ei and Δi be its area. Define piecewise
linear basis functions (denoting X� = (x�, y�)

T ):

ψi1(X�) =
xi2yi3 − xi3yi2

2Δi
+

yi2 − yi3
2Δi

x� +
xi3 − xi2

2Δi
y�,

ψi2(X�) =
xi3yi1 − xi1yi3

2Δi
+

yi3 − yi1
2Δi

x� +
xi1 − xi3

2Δi
y�,

ψi3(X�) =
xi1yi2 − xi2yi1

2Δi
+

yi1 − yi2
2Δi

x� +
xi2 − xi1

2Δi
y�.

In each element Ei the derivatives ∇x,iψij and ∇y,iψij of ψij are constant, and we
denote the derivative within the element i as ∇iψij = (∇x,iψij ,∇y,iψij )

T . We can
express the position of the representative atom ki (the atom closest to the center of
mass of the element Ei) and any atom � in the element Ei using these basis functions,
i.e.,

Zki = ψi1(Xki)Z
h
i1 + ψi2(Xki)Z

h
i2 + ψi3(Xki)Z

h
i3 ,(5)

Z� = ψi1(X�)Z
h
i1 + ψi2(X�)Z

h
i2 + ψi3(X�)Z

h
i3 ,(6)

where Zh is a vector collecting all positions of atoms at the vertices of the triangu-
lation, and Z = (Z�) is a vector collecting all positions of atoms (defined by (6)) at
every lattice node X�. We can define their derivatives (constant) as well:

∇h
s,iZ = ∇h

s,iZki
= ∇h

s,iZ� =

3∑
j=1

∇s,iψijZ
h
ij ,(7)

where s may be x or y and � ∈ Ei. We can also write

Z� − Zki
=

3∑
j=1

(
ψij (X�) − ψij (Xki

)
)
Zh
ij =

3∑
j=1

(X� −Xki
) · ∇iψijZ

h
ij

= (x� − xki
)∇h

x,iZ + (y� − yki
)∇h

y,iZ.(8)

The cut-off disc Rki could include atoms of a few triangular elements in the so-called
nonlocal approximation (cf. [21]). If an atom � ∈ Rki is not in the element Ei but in
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another element Ei′ , then we can express its approximate position in a similar way
according to the vertices and basis function associated with Ei′ :

Z� = ψi′1
(X�)Z

h
i′1

+ ψi′2
(X�)Z

h
i′2

+ ψi′3
(X�)Z

h
i′3
.

In the case when there is no serious defect, local approximation is enough and no
nonlocal approximation is necessary.

The idea of the QC method is the following: The potential energy associated
with any atom k in the triangular element Ei is approximately equal to the potential
energy associated with the representative atom ki. That is,∑

�∈Rk

φ(|z� − zk|) ≈
∑

�∈Rki

φ(|z� − zki |),(9)

where Rk and Rki are cut-off discs of atomic interaction associated with the atom
k and the representative atom ki, respectively. With the QC approximation we can
write an approximate total potential energy of (2) as follows:

Eqc(Z
h) =

1

2

N∑
i=1

mi

∑
�∈Rki

φ(|Z� − Zki
|) +

N∑
i=1

mi∑
k=1

F (Zk),(10)

where Z�, Zk, and Zki are defined as in (6) and (5), and Zh is a vector collecting all
positions of atoms at the vertices of the triangulation, e.g., Zh

i1
, Zh

i2
, Zh

i3
, etc. The ap-

proximate stable configuration Ẑh is identified with the minimizer of the approximate
potential energy Eqc(Z

h):

Eqc(Ẑ
h) = min

Zh
Eqc(Z

h).(11)

Note that in [21] deformation gradients defined on triangles are used as minimization
variables. We do the minimization with respect to positions of atoms at the vertices
of the triangulation in order to make it consistent with the original problem (3),
and consequently convergence analysis may be conducted with less difficulty. Let
Zh = Ẑh + tV h (or Zh

ij
= Ẑh

ij
+ tV h

ij
). From d

dtEqc(Ẑ
h + tV h)|t=0 = 0 we then obtain

the approximate variational formulation

ah(Ẑ, V ) =
1

2

N∑
i=1

mi

∑
�∈Rki

φ′(|Ẑ� − Ẑki |)
|Ẑ� − Ẑki |

(Ẑ� − Ẑki) · (V� − Vki)

= −
N∑
i=1

mi∑
k=1

f(Ẑk) · Vk ∀V,
(12)

where the solution Ẑh satisfies Dirichlet boundary conditions, and Ẑ�, Ẑki
, Ẑk, V�, Vki ,

and Vk are defined similarly to Z� and Zki as in (6) and (5) (the only difference is that
Zh
ij

is replaced by Ẑh
ij

and V h
ij

, j = 1, 2, 3). It corresponds to a nonconforming method
in the finite element context. The difference between our analysis and conventional
finite element analysis is that our exact solution is not a solution of a continuous partial
differential equation but a discrete lattice-scale solution which may not be related to

any conventional partial differential equation. Let g(α) = φα(|α|) = φ′(|α|)
|α| α. We can

write

ah(Ẑ, V ) =
1

2

N∑
i=1

mi

∑
�∈Rki

g(Ẑ� − Ẑki) · (V� − Vki) ∀V.(13)
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3. Assumptions and uniqueness of the lattice-scale solution. The objec-
tive of this section is mainly to make a few assumptions for conducting the error
analysis to be presented in the next section. The derivative of g(α) is important in
the analysis. We first state a simple lemma.

Lemma 1. If two vectors α = (α1, α2)
T and β = (β1, β2)

T are not in the same
direction, i.e., α1β2 �= α2β1, then the matrix(

α2
1 α1α2

α1α2 α2
2

)
+

(
β2

1 β1β2

β1β2 β2
2

)
is symmetric, positive definite, and has eigenvalues ≥ |α|2|β|2

|α|2+|β|2 sin2 γ and ≤ |α|2+|β|2,
where γ is the angle between the two vectors α and β.

We can explicitly calculate the derivative of g(α) and obtain

φαα(|α|) = gα(α) = φ′′(|α|)
|α|2

(
α2

1 α1α2

α2α1 α2
2

)
+ φ′(|α|)

|α|3

(
α2

2 −α1α2

−α2α1 α2
1

)
= gα1(α) + gα2(α),

(14)

where gα1 and gα2 represent the first and second terms in the expression of gα. If
|α| is in the convex region of φ(|α|), then φ′′(|α|) > 0 and φ′(|α|) ≥ 0 if |α| ≥ r0.
Therefore, the second term gα2(α) of (14) is positive semidefinite when |α| ≥ r0. In
the case |α| < r0,

φ′′(|α|) − |φ′(|α|)|
|α| = φ′′(|α|) +

φ′(|α|)
|α| > 72φmin

r6
0

|α|8 .(15)

Hence, φ′(|α|)/|α| would be much smaller than φ′′(|α|) when |α| < r0. On the other
hand, the potential energy function φ(|α|) vanishes quickly after the lattice distance
r0 from atomic property (see the figure in [5, p. 143], which suggests nearest neighbor
dominance in atomic interactions of solid materials. These facts together with Lemma
1 motivate the assumption below that the nearest neighbor sum of gα1 dominates the
sum of gα.

We now write down our assumptions, and some further explanation follows after-
ward. We shall analyze the error of the QC approximation in the next section, based
on these assumptions.

Assumptions. Let ẑ and Zh be the lattice-scale solution and the QC approximate
solution satisfying Dirichlet boundary conditions, and let Ẑ be the piecewise linear
interpolation based on Zh as defined in (6). Also, a square lattice grid is used in the
reference configuration (see Figure 1).

1. The distance of any pair of nearest neighbor atoms ẑ� − ẑnb� and Ẑ� − Ẑnb�

is located in the convex region of φ(|α|). More precisely, the nearest neighbor
distance is in the region

c1r0 < |α| < C1r0,(16)

where α = ẑ�− ẑnb� or Ẑ�− Ẑnb� and 0 < c1 < C1 < r1/r0 (r1 is the inflection
point of φ(r), e.g., for the 6-12 Lennard–Jones potential r1 = 6

√
13/7 r0).

Under our problem setting (square reference grid) nearest neighbors of � =
(�x, �y) should at least include {(�x−1, �y), (�x+1, �y), (�x, �y−1), (�x, �y+1)}.

2. The nearest neighbor interaction dominates farther interactions. In our anal-
ysis we use the following for any atom k = (kx, ky)):

∑
�∈Rk

(x� − xk)
2gα(ξ�)

and
∑

�∈Rk
(y�− yk)

2gα(ξ�) are dominated by
∑

nbk
(xnbk −xk)

2gα1(ξnbk) and
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nbk

(ynbk − yk)
2gα1(ξnbk) (summing over all nearest neighbor atoms nbk),

respectively, where ξ� = μ�(Ẑ� − Ẑk) + (1−μ�)(ẑ� − ẑk). Also, among nearest
neighbor atoms {(kx − 1, ky), (kx + 1, ky), (kx, ky − 1), (kx, ky + 1)} there are
at least two ξ�’s in distinct directions.

3. As we mentioned earlier, the external potential F (z) is smooth and strictly
convex or Fzz(z) = fz(z) is positive definite.

The upper and lower bounds for |α| in assumption 1 can be showed for one-dimensional
problems (see [14]). |α| located in the convex region of the pair potential energy may
not be true in general but is necessary for the uniqueness of the solution. A lower
bound of |α| away from zero is expected since if pairs of atoms are too close, the
energy will be too large to reach its minimum. Assumption 2 tries to provide a
concrete mathematical description (or understanding) of nearest neighbor dominance
for a solid material. In Assumption 3 the strictly convex assumption may be relaxed
to being just convex (see the remark after Theorem 1). Thus common external forces,
e.g., gravity, Coulomb forces, and the nanoindentation example given in [11], are
included in this study.

The existence of the solution of minimization problems (satisfying a finite bound-
ary condition) is obvious from the property of a continuous function since the pair
potential energy function φ is continuous and has a lower bound and the external
energy is continuous in the bounded material domain. Under the assumptions we can
also show the uniqueness of the solution of variational problems (4) and (12). For
example, assume that if there are two solutions z1 and z2 of problem (4), then both z1

and z2 satisfy (4). Subtracting the two equations for z1 and z2, denoting d = z1 − z2,
and taking v = d we have

1

2

N∑
i=1

mi∑
k=1

∑
�∈Rk

gα(ξk)(dk − d�) · (dk − d�) +

N∑
i=1

mi∑
k=1

fz(ηk)dk · dk = 0,

where ξk = μ(z1
k − z1

� ) + (1 − μ)(z2
k − z2

� ) (0 < μ < 1) and ηk is between z1
k and z2

k.
According to assumption 1 (noting that we use only the second inequality |α| ≤ C1r0),
the difference of nearest neighbors of both z1

k−z1
� and z2

k−z2
� is in the convex region of

φ (i.e., ≤ C1r0) and F is convex so both
∑

�∈Rk
gα(ξk)(dk−d�) ·(dk−d�) (according to

the assumption of the nearest neighbor dominance) and fz(ηk)dk ·dk are nonnegative.
We can then conclude d = 0 or uniqueness of the solution.

We would like to mention here that using the square lattice grid in the reference
configuration does not imply that a square lattice structure is assumed. The real loca-
tion of atoms is in the deformed configuration, where triangular or hexagonal lattice
solutions and other types of lattice solutions are possible, depending on the Dirichlet
boundary condition, the external force, and the cut-off of the atomic interaction. In
the next section we shall analyze error in the QC approximation.

4. Error analysis of the QC method. Our goal in this section is to estimate
the error Ẑ − ẑ, where ẑ is the solution of the original problem (3) or (4) and Ẑ is
the piecewise linear interpolation (defined as (5) or (6)) of the solution Ẑh of the
approximate problem (11) or (12). Define z̃ to be a piecewise linear interpolation of
the solution ẑ, i.e.,

z̃� = ψi1(X�)ẑi1 + ψi2(X�)ẑi2 + ψi3(X�)ẑi3 ,(17)

if X� = (x�, y�)
T is a point in a triangular element Ei. We first estimate the interpo-

lation error ẑ − z̃. In order to write down a discrete Taylor’s expansion we introduce
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Fig. 6. Derivation of discrete Taylor’s formula.

notation of the first and second order divided differences as follows. If three points
X�, Xk, and Xp are located in the horizontal direction (say, Xk in the middle) we
define

Dx,ku� =
uk − u�

xk − x�
, Dx,pDx,ku� =

Dx,puk −Dx,ku�
1
2 (xp − x�)

.(18)

Dy,ku� and Dy,pDy,ku� can be defined similarly if three atomic points X�, Xk, and
Xp are located in the vertical direction. If four atomic points X�, Xk, Xp, and Xq

are located, as in Figure 5, we define

Dx,pDy,ku� =
Dy,qup −Dy,ku�

xp − x�
, Dy,kDx,pu� =

Dx,quk −Dx,pu�

yk − y�
.(19)

Denote ẑ = (ẑ1, ẑ2)T , and let indices i1, i2, and i3 be the vertices of the element Ei.
Let � be the index of any atomic point in the element and representative atom ki, and
let atoms p1, p2, p3, and p4 be positioned as in Figure 6. Obviously, xi1 = xp1

= xp2
,

xki = xp3 , xp4 = x�, yp2 = yp3 = y�, and yp1 = yki = yp4 . For simplicity we will
consider only � located in a position as shown in Figure 6. For any other locations
of � and any other different relative positions of atoms i1, ki, and �, the discussion is
similar. Mimicking the continuous Taylor’s theorem, we can have

ẑ1
i1 = ẑ1

� + ẑ1
p2

− ẑ1
� + ẑ1

i1 − ẑ1
p2

= ẑ1
� + Dx,p2 ẑ

1
� (xp2 − x�) + Dy,i1 ẑ

1
p2

(yi1 − yp2)(20)

We can also obtain

Dx,p2 ẑ
1
� = Dx,p3 ẑ

1
� + Dx,p2 ẑ

1
� −Dx,p3 ẑ

1
�

= Dx,p3 ẑ
1
� +

xp2 − xp3

xp2 − x�
Dx,p2 ẑ

1
p3

+
xp3 − x�

xp2 − x�
Dx,p3 ẑ

1
� −Dx,p3 ẑ

1
�

= Dx,p3 ẑ
1
� +

xp2 − xp3

xp2 − x�
(Dx,p2 ẑ

1
p3

−Dx,p3 ẑ
1
� )

= Dx,p3
ẑ1
� +

xp2 − xp3

xp2 − x�
Dx,p2

Dx,p3
ẑ1
�

1

2
(xp2

− x�)
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and

Dy,i1 ẑ
1
p2

= Dy,p4 ẑ
1
� + Dy,i1 ẑ

1
p2

−Dy,p1 ẑ
1
p2

+ Dy,p1
ẑ1
p2

−Dy,p4
ẑ1
� = Dy,p4

ẑ1
�

+
yi1 − yp1

yi1 − yp2

Dy,i1Dy,p1
ẑ1
p2

1

2
(yi1 − yp2

) + Dx,p2
Dy,p4

ẑ1
� (xp2

− x�).

Therefore, using xi1 − x� = xp2
− x� and yi1 − yp2

= yi1 − y�, we have

ẑ1
i1 = ẑ1

� + Dx,p3 ẑ
1
� (xi1 − x�) + Dy,p4 ẑ

1
� (yi1 − y�)

+
xp2

− xp3

xp2 − x�
Dx,p2

Dx,p3
ẑ1
�

1

2
(xp2

− x�)
2

+
yi1 − yp1

yi1 − yp2

Dy,i1Dy,p1 ẑ
1
p2

1

2
(yi1 − yp2)

2 + Dx,p2
Dy,p4

ẑ1
� (xp2 − x�)(yi1 − yp2),(21)

where it is easy to see

xp2 − xp3

xp2 − x�
≤ 1,

yi1 − yp1

yi1 − yp2

≤ 1.

Similar expansions can be done for ẑ1
i2

, ẑ1
i3

, ẑ2
i1

, ẑ2
i2

, and ẑ2
i3

. Also, denote all the
second order divided difference terms in these discrete Taylor’s expansion as D2ẑ1

ij ,ki,�
,

j = 1, 2, 3. Hence,

z̃1
� = ψi1(X�)ẑ

1
i1 + ψi2(X�)ẑ

1
i2 + ψi3(X�)ẑ

1
i3

= ψi1(X�)
(
ẑ1
� + Dx,p3

ẑ1
� (xi1 − x�) + Dy,p4

ẑ1
� (yi1 − y�) + O(h2)D2ẑ1

i1,ki,�

)
+ψi2(X�)

(
ẑ1
� + Dx,p3 ẑ

1
� (xi2 − x�) + Dy,p4 ẑ

1
� (yi2 − y�) + O(h2)D2ẑ1

i2,ki,�

)
+ψi3(X�)

(
ẑ1
� + Dx,p3 ẑ

1
� (xi3 − x�) + Dy,p4 ẑ

1
� (yi3 − y�) + O(h2)D2ẑ1

i3,ki,�

)
.(22)

We can obtain a similar expression for z̃2. Noting that
∑3

j=1 ψij (X�) = 1,
∑3

j=1(xij −
x�)ψij (X�) = 0, and

∑3
j=1(yij − y�)ψij (X�) = 0 we then have

|ẑ1
� − z̃1

� | ≤ Ch2
3∑

j=1

|D2ẑ1
ij ,ki,�|, |ẑ2

� − z̃2
� | ≤ Ch2

3∑
j=1

|D2ẑ2
ij ,ki,�|,(23)

where D2ẑij ,ki,� are defined above as a sum of a number of second order divided differ-
ences involved with three points in the element Ei, C is a generic positive constant,
and h is the maximum size of all triangular elements. Similarly, we can estimate
discrete derivatives of the interpolation error,

∇h
s,iz̃ = ∇h

s,iz̃� =

3∑
j=1

∇s,iψij ẑij

=

3∑
j=1

∇s,iψij

(
ẑ� + Dx,p3 ẑ�(xij − x�) + Dy,p4 ẑ�(yij − y�) + O(h2)D2ẑij ,ki,�

)
,

where s represents x or y. Noting that
∑3

j=1 ∇s,iψij = 0,
∑3

j=1(xij −x�)∇x,iψij = 1,∑3
j=1(yij −y�)∇x,iψij = 0,

∑3
j=1(xij −x�)∇y,iψij = 0, and

∑3
j=1(yij −y�)∇y,iψij = 1

we have

|∇s,iẑ� −∇h
s,iz̃�| ≤ Ch

3∑
j=1

|D2ẑij ,ki,�|, for X� ∈ Ei,(24)
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where s is x or y and

∇x,iẑ� = (Dx,p3
ẑ1
� , Dx,p3

ẑ2
� )

T , ∇y,iẑ� = (Dy,p4
ẑ1
� , Dy,p4

ẑ2
� )

T .(25)

Note that if � is located at a position such that xki = xp3 = x� or yki = yp4 = y�,
then Dx,p3

ẑ� or Dy,p4
ẑ� may not be defined, respectively. For these �’s we can change

ki = (kx, ky) into its neighbor, e.g., ki = (kx + 1, ky) or ki = (kx, ky + 1), in definition
(25), respectively. All previous arguments and results about the interpolation error
will still be valid. We thus have

‖ẑ − z̃‖2 ≤ C2h
2, ‖∇sẑ −∇h

s z̃‖2 ≤ C2h,(26)

where s represents x or y, ‖ · ‖2 =
√

1
M

∑N
i=1

∑mi

�=1 |(·)�|2 (where M =
∑N

i=1 mi), C2

is a positive constant proportional to the �2 norm of second order divided differences
of ẑ, and ∇sẑ and ∇h

s z̃ are vectors with components ∇s,iẑ� and ∇h
s,iz̃�, respectively.

Therefore, to estimate Ẑ − ẑ we need only estimate Ẑ − z̃. We first have

ah(Ẑ, Ẑ − z̃) − ah(z̃, Ẑ − z̃)

=
1

2

N∑
i=1

mi

∑
�∈Rki

[
g(Ẑ� − Ẑki

) − g(z̃� − z̃ki
)
]
·
[
(Ẑ� − Ẑki

) − (z̃� − z̃ki
)
]

=
1

2

N∑
i=1

mi

∑
�∈Rki

[
(Ẑ� − Ẑki

) − (z̃� − z̃ki
)
]T

gα(ξ�)
[
(Ẑ� − Ẑki

) − (z̃� − z̃ki
)
]
,(27)

where ξ� = μ�(Ẑ� − Ẑki) + (1− μ�)(z̃� − z̃ki), 0 < μ� < 1. From (5), (6), and (17) and
similarly to (8), if � is in the element Ei, then

Ẑ� − Ẑki
− (z̃� − z̃ki) = (x� − xki)

3∑
j=1

∇x,iψij (Ẑ
h
ij − ẑij )

+(y� − yki
)

3∑
j=1

∇y,iψij (Ẑ
h
ij − ẑij )

= (x� − xki)∇h
x,i(Ẑ − z̃) + (y� − yki)∇h

y,i(Ẑ − z̃).(28)

Due to assumptions given in the previous section, at the nearest neighbors � ∈ nbki

of ki = (kix, kiy), Ẑ� − Ẑki and z̃� − z̃ki are located in the convex region of the
energy function φ(|α|). Then corresponding to the nearest neighbors � ∈ nbki , ξ� =
μ�(Ẑ� − Ẑki

) + (1 − μ�)(z̃� − z̃ki
) would be in the convex region (see (16)). Define

nb′ki
= {(kix−1, kiy), (kix +1, kiy), (kix, kiy−1), (kix, kiy +1)} ⊆ nbki

. From (27) and

assumption 2, ah(Ẑ, Ẑ − z̃) − ah(z̃, Ẑ − z̃) is dominated by∑
�∈nbki

[
(Ẑ� − Ẑki) − (z̃� − z̃ki)

]T
gα1(ξ�)

[
(Ẑ� − Ẑki) − (z̃� − z̃ki)

]
≥ ∇h

x,i(Ẑ − z̃)T
∑

�∈nb′ki

(x� − xki)
2gα1(ξ�)∇h

x,i(Ẑ − z̃) + ∇h
y,i(Ẑ − z̃)T

×
∑

�∈nb′ki

(y� − yki)
2gα1(ξ�)∇h

y,i(Ẑ − z̃).
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By easy calculation we have eigenvalues

λ

⎛⎝ ∑
�∈nb′ki

(x� − xki
)2gα1(ξ�)

⎞⎠ and λ

⎛⎝ ∑
�∈nb′ki

(y� − yki
)2gα1(ξ�)

⎞⎠ > p > 0.(29)

From Lemma 1, (14), and (1), p is independent of lattice constant r0 but depends
only on sin2 γ and mint∈(0,C1] φ

′′
1(t), where φ1(t) = φ(r0t), and the meaning of C1 and

γ are given in Lemma 1 and assumptions 1 and 2. Therefore

ah(Ẑ, Ẑ − z̃) − ah(z̃, Ẑ − z̃) >
p

2

N∑
i=1

mi

(
|∇h

x,i(Ẑ − z̃)|2 + |∇h
y,i(Ẑ − z̃)|2

)
,(30)

where | · | is the Euclidean length of R2.
On the other hand, from (12) (taking V = Ẑ− z̃) and using (4) (taking v = Ẑ− z̃),

and noting

ah(Ẑ, Ẑ − z̃) = −
N∑
i=1

mi∑
k=1

f(Ẑk) · (Ẑk − z̃k), a(ẑ, Ẑ − z̃) = −
N∑
i=1

mi∑
k=1

f(ẑk) · (Ẑk − z̃k),

we have

ah(Ẑ, Ẑ − z̃) − ah(z̃, Ẑ − z̃)

=
(
ah(ẑ, Ẑ − z̃) − ah(z̃, Ẑ − z̃)

)
−
(
ah(ẑ, Ẑ − z̃) − a(ẑ, Ẑ − z̃)

)
+

N∑
i=1

mi∑
k=1

(f(ẑk) − f(Ẑk)) · (Ẑk − z̃k) = T1 − T2 + T3,

where T1 and T2 correspond to the first two bracketed terms in the expression, re-
spectively, and T3 is the double sum term. We now treat them one by one. We can
easily have

T1 =
1

2

N∑
i=1

mi

∑
�∈Rki

(g(ẑ� − ẑki) − g(z̃� − z̃ki)) ·
(
Ẑ� − Ẑki − (z̃� − z̃ki)

)

=
1

2

N∑
i=1

mi

∑
�∈Rki

(ẑ� − ẑki − (z̃� − z̃ki))
T
gα(ξ′�)

(
Ẑ� − Ẑki − (z̃� − z̃ki)

)
,

where ξ′� = μ′
�(ẑ� − ẑki) + (1 − μ′

�)(z̃� − z̃ki), 0 < μ′
� < 1. We can write

ẑ� − ẑki = Dx,�ẑ(kix,�y)(x� − xki) + Dy,(kix,�y)ẑki(y� − yki),

where kix is the first component of the index ki and �y is the second component of
the index �. Hence,

ẑ� − ẑki
− (z̃� − z̃ki

) =
(
Dx,�ẑ(kix,�y) −∇h

x,iz̃
)
(x� − xki

)

+
(
Dy,(kix,�y)ẑki −∇h

y,iz̃
)
(y� − yki).

(31)
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So similarly to the argument of (24), in estimating the interpolation error we have
z̃� − z̃ki = ẑ� − ẑki + O(hr0). Taking the inner product of it with ẑ� − ẑki and using
assumption 1 (the first inequality c1r0 ≤ |α|), we can obtain

(ẑ� − ẑki) · (z̃� − z̃k) ≥ |ẑ� − ẑki |2 −O(hr0)|ẑ� − ẑki | ≥ c21r
2
0 −O(hr0)C1r0 > 0(32)

if h is sufficiently small. Using the Cauchy–Schwarz inequality, we obtain

|T1| ≤
1

2

⎛⎝ N∑
i=1

mi

∑
�∈Rki

(ẑ� − ẑki
− (z̃� − z̃ki

))
T
gα(ξ′�) (ẑ� − ẑki

− (z̃� − z̃ki
))

⎞⎠
1
2

×

⎛⎝ N∑
i=1

mi

∑
�∈Rki

(
Ẑ� − Ẑki − (z̃� − z̃ki)

)T

gα(ξ′�)
(
Ẑ� − Ẑki − (z̃� − z̃ki)

)⎞⎠
1
2

.

To get an upper bound of T1 we need to get an upper bound of eigenvalues in the left-
hand side of (29). We then need a lower bound of the size of ξ′�. From assumption 1 we
have |ẑ�−ẑki

| ≥ c̄1r0 and |z̃�−z̃ki | ≥ c̄1r0 (using (31)), where c̄1 = min{c1, c1+O(h)} >
0. Then using (32) yields

|ξ′�|2 = μ
′2
� |ẑ� − ẑki |2 + (1 − μ′

�)
2|z̃� − z̃ki |2 + 2μ′

�(1 − μ′
�)(ẑ� − ẑki) · (z̃� − z̃ki)

≥ (μ
′2
� + (1 − μ′

�)
2)c̄21r

2
0 ≥ 1

2
c̄21r

2
0.

Combining it with the second inequality of (16) in assumption 1, we thus have

1√
2
c̄1r0 ≤ |ξ′�| ≤ C1r0.(33)

Based on this and assumption 2, we can easily verify the eigenvalues

λ

⎛⎝ ∑
�∈Rki

(x� − xki
)2gα(ξ′�)

⎞⎠ and λ

⎛⎝ ∑
�∈Rki

(y� − yki
)2gα(ξ′�)

⎞⎠ ≤ P,(34)

where P is a positive constant depending on maxt∈[ 1√
2
c̄1,C1] φ

′′
1(t) but is independent

of lattice constant r0. From (34), (31), (24), and (28) we then have

|T1| ≤ C2hM
1
2

(
N∑
i=1

mi

(
|∇h

x,i(Ẑ − z̃)|2 + |∇h
y,i(Ẑ − z̃)|2

)) 1
2

,(35)

where M =
∑N

i=1 mi is the total number of atoms and the positive constant C2 is
proportional to the �2 norm of second order divided difference of ẑ as defined in (26)
(noting that the constant C in (24) and the constant P in (34) are absorbed into the
constant C2). The third term can be written as

T3 =

N∑
i=1

mi∑
k=1

(f(z̃k) − f(Ẑk)) · (Ẑk − z̃k) +

N∑
i=1

mi∑
k=1

(f(ẑk) − f(z̃k)) · (Ẑk − z̃k),(36)
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where the first sum is less than −F ′′
min

∑N
i=1

∑mi

k=1 |Ẑk − z̃k|2 (F ′′
min > 0) due to the

strictly convex assumption of the external energy F . The second sum is less than

1

2F ′′
min

N∑
i=1

mi∑
k=1

|f(ẑk) − f(z̃k)|2 +
F ′′
min

2

N∑
i=1

mi∑
k=1

|Ẑk − z̃k|2

due to the Cauchy inequality. From (23) and (26) we then have

T3 ≤ C2
2h

4M − F ′′
min

2

N∑
i=1

mi∑
k=1

|Ẑk − z̃k|2 = C2
2h

4M − F ′′
min

2
M‖Ẑ − z̃‖2

2.(37)

Next we consider the second term T2 (nonconforming part of the error).
From (4) we have

T2 = ah(ẑ, Ẑ − z̃) − a(ẑ, Ẑ − z̃)

=
1

2

N∑
i=1

mi

∑
�∈Rki

g(ẑ� − ẑki) · (Ẑ� − Ẑki
− (z̃� − z̃ki))

−1

2

N∑
i=1

mi∑
k=1

∑
j∈Rk

g(ẑj − ẑk) · (Ẑj − Ẑk − (z̃j − z̃k)).

Define

Yj = ψi1(Xj)Ẑ
h
i1 + ψi2(Xj)Ẑ

h
i2 + ψi3(Xj)Ẑ

h
i3 ∀j ∈ Rk, Xk ∈ Ei,(38)

ỹj = ψi1(Xj)ẑi1 + ψi2(Xj)ẑi2 + ψi3(Xj)ẑi3 ∀j ∈ Rk, Xk ∈ Ei,(39)

where Yj (or ỹj) is a linear extension of the linear lattice function Ẑ (or z̃, respectively)
from the triangular element Ei to the neighbor elements; i.e., we have

Yj = Ẑj and ỹj = z̃j if Xj ∈ Ei.(40)

Then we can write

T2 =
1

2
(A1 + A2),

where

A1 =

N∑
i=1

mi

∑
�∈Rki

g(ẑ� − ẑki) · (Ẑ� − Ẑki − (z̃� − z̃ki))

−
N∑
i=1

mi∑
k=1

∑
j∈Rk

g(ẑj − ẑk) · (Yj − Yk − (ỹj − ỹk)),

A2 =

N∑
i=1

mi∑
k=1

∑
j∈Rk

g(ẑj − ẑk)
[
(Yj − Yk − (ỹj − ỹk)) − (Ẑj − Ẑk − (z̃j − z̃k))

]
.

The term A1 can be estimated by using Taylor’s theorem to the function g and shifting
ẑk to ẑki and ẑj to ẑ� with Xj −Xk = X� −Xki (see Figure 7 for relative positions of
atoms j, k, �, and ki). From the definitions of Yj and ỹj in (38) and (39), and noting
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Fig. 7. Shifting of atom k to ki and of atom j to �.

that Xj −Xk = X� −Xki and ψij (j = 1, 2, 3) are linear, we should have

Yj − Yk = Ẑ� − Ẑki
, ỹj − ỹk = z̃� − z̃ki

.

Therefore,

A1 =

N∑
i=1

mi∑
k=1

∑
j∈Rk

(g(ẑj − ẑk) − g(ẑ� − ẑki
)) (Ẑ� − Ẑki

− (z̃� − z̃ki
))

=

N∑
i=1

mi∑
k=1

∑
j∈Rk

(ẑj − ẑk − (ẑ� − ẑki))
T gα(ξA)(Ẑ� − Ẑki − (z̃� − z̃ki)),

where ξA = μA(ẑj − ẑk) + (1 − μA)(ẑ� − ẑki
) and μA ∈ [0, 1]. We can write

ẑj − ẑk − (ẑ� − ẑki) = (Dx,j ẑ(kx,jy) −Dx,�ẑ(kix,�y))(x� − xki)

+ (Dy,(kx,jy)ẑk −Dy,(kix,�y)ẑki)(y� − yki),

where kx and kix are the first components of k and ki, respectively; jy and ly are the
second components of j and l, respectively, and the differences of first order divided
differences are of order O(h). Similarly to the arguments of (32) and (33), we can have
(ẑj−ẑk)·(ẑ�−ẑki) > 0 and then 1√

2
c̄1r0 ≤ |ξA| ≤ C1r0. Applying the Cauchy–Schwarz

inequality and following the steps in estimating T1, we can thus have

|A1| ≤ C2hM
1
2

(
N∑
i=1

mi

(
|∇h

x,i(Ẑ − z̃)|2 + |∇h
y,i(Ẑ − z̃)|2

)) 1
2

.(41)

Next we estimate A2. Noting (40) we have

A2 =

N∑
i=1

mi∑
k=1

∑
j∈Rk

g(ẑj − ẑk) · (Yj − ỹj − (Ẑj − z̃j))

=

N∑
i=1

∑
j∈Si

g(ẑj − ẑk) · (Yj − ỹj − (Ẑj − z̃j)),

where Si = {j : j ∈ Rk, Xk ∈ Ei, Xj∈̄Ei} and Rk is the cut-off disc of atom Xk. The
number of atoms in the set Si is the number of atoms near the boundary of triangle
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Fig. 8. Cut-off discs near the boundary of two neighboring elements.

Ei (see Figure 8). Denote the number as bi. Also denote the line connecting atoms
i1 and i3 (or i′1 and i′2) as i1i3 and the line connecting j and k as jk and choose an
atom Xj′ on the line i1i3 to be the closest to the intersection point of lines i1i3 and
jk. We then have

ψi1(Xj′) = ψi′1
(Xj′), ψi3(Xj′) = ψi′2

(Xj′), ψi2(Xj′) = 0, ψi′3
(Xj′) = 0,

and Yj′ − ỹj′ = Ẑj′ − z̃j′ . Therefore,

Yj − ỹj − (Yj′ − ỹj′) =

3∑
q=1

(ψiq (Xj) − ψiq (Xj′))(Ẑ
h
iq − ẑiq )

= (xj − xj′)∇h
x,i(Ẑ − z̃) + (yj − yj′)∇h

y,i(Ẑ − z̃)

Ẑj − z̃j − (Yj′ − ỹj′) =

3∑
q=1

(ψi′q (Xj) − ψi′q (Xj′))(Ẑ
h
i′q
− ẑi′q )

= (xj − xj′)∇h
x,i′(Ẑ − z̃) + (yj − yj′)∇h

y,i′(Ẑ − z̃).

From the nearest neighbor dominance and nearest neighbor pairs located in the convex
region of φ (assumptions 1–3) we can obtain that |

∑
j∈Rk

g(ẑj − ẑk)(xj − xj′)| and
|
∑

j∈Rk
g(ẑj − ẑk)(yj − yj′)| are bounded by a constant independent of lattice scale

and mesh size (like P in (34)). Then, noting

Yj − ỹj − (Ẑj − z̃j) = Yj − ỹj − (Yj′ − ỹj′) + (Yj′ − ỹj′) − (Ẑj − z̃j),

we have

|A2| ≤ C

N∑
i=1

bi

(
|∇h

x,i(Ẑ − z̃)| + |∇h
y,i(Ẑ − z̃)| + |∇h

x,i′(Ẑ − z̃)| + |∇h
y,i′(Ẑ − z̃)|

)

≤ C

(
N∑
i=1

b2i
mi

) 1
2
(

N∑
i=1

mi(|∇h
x,i(Ẑ − z̃)|2 + |∇h

y,i(Ẑ − z̃)|2)
) 1

2

.(42)
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Hence,

|T2| ≤
1

2
(|A1| + |A2|)

≤ C

⎛⎝C2hM
1
2 +

√√√√ N∑
i=1

b2i
mi

⎞⎠(
N∑
i=1

mi(|∇h
x,i(Ẑ − z̃)|2 + |∇h

y,i(Ẑ − z̃)|2)
) 1

2

.(43)

We can then have the following error estimate.
Theorem 1. Let Ẑ and ẑ be the solutions of (4) and (12), respectively, satisfying

Dirichlet boundary conditions, and let assumptions 1–3 hold. Then we have

‖Ẑ − ẑ‖2 + ‖∇h
xẐ −∇xẑ‖2 + ‖∇h

y Ẑ −∇y ẑ‖2 ≤ C

⎛⎜⎝C2h +

√∑N
i=1

b2i
mi

M

⎞⎟⎠ ,(44)

where C is a generic positive constant, ∇h
x, ∇h

y , ∇x, and ∇y are discrete derivatives,

norm ‖ · ‖2 and constant C2 are defined as in (26) and (25), M =
∑N

i=1 mi, is the
total number of atoms, mi is the number of atoms in the triangular element Ei, and
bi is the number of atoms near at least one boundary of Ei and is less than a constant
times the number of atoms located at the longest side of Ei.

Proof. Using (30) and estimates (35), (43), and (37) for T1, T2, and T3, respec-
tively, and letting

H1 =

(
1

M

N∑
i=1

mi(|∇h
x,i(Ẑ − z̃)|2 + |∇h

y,i(Ẑ − z̃)|2)
) 1

2

and H2 = ‖Ẑ − z̃‖2,

we have

p

2
H2

1M < ah(Ẑ, Ẑ − z̃) − ah(z̃, Ẑ − z̃) ≤ C

⎛⎜⎝C2h +

√∑N
i=1

b2i
mi

M

⎞⎟⎠H1M

− F ′′
min

2
H2

2M + C2
2h

4M

or (noting (H2
1 + H2

2 ) ≥ (H1 + H2)
2/2 and H1 ≤ H1 + H2)

pmin(H1 + H2)
2 < C

⎛⎜⎝C2h +

√∑N
i=1

b2i
mi

M

⎞⎟⎠ (H1 + H2) + C2
2h

4,

where pmin = min{p, F ′′
min}/4. Solving this inequality for H1 + H2, we thus have

H1 + H2 < C

⎛⎜⎝C2h +

√∑N
i=1

b2i
mi

M

⎞⎟⎠ .

Then ‖∇h
xẐ −∇h

xz̃‖2 + ‖∇h
y Ẑ −∇h

y z̃‖2 can have the same estimate since

‖∇h
xẐ −∇h

xz̃‖2 + ‖∇h
y Ẑ −∇h

y z̃‖2 ≤
√

2

(
1

M

N∑
i=1

mi∑
k=1

(|∇h
x,i(Ẑ − z̃)|2 + |∇h

y,i(Ẑ − z̃)|2)
)1

2

=
√

2 H1.



330 PING LIN

Combining this with the interpolation error estimates (26), we obtain (44).
The constant C2 in the error estimate should be of reasonable size if all the

components of the solution ẑ defined on a reference configuration, as shown in the
introduction, formulate a not-too-rough surface.

Remark 1. If the external potential F (z) is convex but not strictly convex, the
analysis may still be done with some small modification. For example, the body
force energy F (z) = −

∑N
i=1

∑mi

k=1 fkzk is convex but not strictly convex, where the
constant fk is the force applied on atom k. In this case, T3 = 0 in (36) and there
is no need to estimate it further. The theorem without the first term ‖Ẑ − ẑ‖2 in
(44) remains true. For a general convex (but not strictly convex) external energy
F (z), we need to use a Poincaré type of inequality to control ‖Ẑ − z̃‖2 resulting from
estimating T3 in (36). Note that Ẑ− z̃ is a piecewise linear interpolation based on Zh

and values of ẑ at vertices of the triangulation. So Ẑ − z̃ ∈ C0 or H1 (and satisfying
the homogeneous Dirichlet boundary condition) from the finite element theory. Then
from the Poincaré inequality, we have∫

Ω

|Ẑ − z̃|2 ≤ Cd

(∫
Ω

|∇h
x(Ẑ − z̃)|2 + |∇h

y(Ẑ − z̃)|2
)
,

where Ω is the material domain in the reference configuration and Cd is a generic
constant depending on the size of the domain. Since first order derivatives of Ẑ − z̃
are constant in each element, we may derive from above inequality the Poincaré
inequality in the discrete �2 norm ‖ · ‖2:

‖Ẑ − z̃‖2
2 ≤ C̄d

(
‖∇h

x(Ẑ − z̃)‖2
2 + ‖∇h

y(Ẑ − z̃)‖2
2

)
.

Then we can estimate T3 in (36) as the following:

|T3| ≤ (δ − F ′′
min)

N∑
i=1

mi∑
k=1

|Ẑk − z̃k|2 +
1

4δ

N∑
i=1

mi∑
k=1

|f(ẑk) − f(z̃k)|2,

where F ′′
min ≥ 0. Taking δ < p/4C̄d (where p is the constant defined in (30)) we may

obtain the result of Theorem 1 in the case of the convex external energy.
Remark 2. When a material has defects, there will be a certain amount of pairs

of nearest neighbor atoms whose distance is located in the nonconvex region of the
pair potential energy φ. In this case we may divide the domain of φ into two parts
I (convex region, φ′′ > 0) and II (nonconvex region) (cf. [16]). We call the material
parts corresponding to I and II the nondefect and defect parts, respectively, and
collect all indices of triangular elements in the nondefect and defect parts into two
sets RI and RII , respectively. Denote aIh(·, ·) and aIIh (·, ·) as the parts of ah(·, ·)
corresponding to RI and RII , respectively. Then our previous argument may apply
to aIh(·, ·) = ah(·, ·) − aII(·, ·) under assumptions 1 and 2 (in the nondefect part),

assumption 3, and an additional assumption that in the defect part, ẑ, Ẑ, ∇h
xẐ, ∇xẑ,

∇h
y Ẑ, and ∇y ẑ are all bounded. Then we may have the estimate

‖Ẑ − ẑ‖2 + ‖∇h
xẐ −∇xẑ‖2 + ‖∇h

y Ẑ −∇y ẑ‖2 ≤ C

⎛⎜⎝C2h +

√∑
i∈RI

b2i
mi

M
+

√
nd

M

⎞⎟⎠ ,

(45)
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where nd is the number of atoms in the defect part (indices in RII) of the material. So
to have a small error of the QC approximation, the number of atoms nd in the defect
part of the material should be relatively small in comparison with the total number of
atoms. That is, serious defects should occur only in a small region in order for the QC
method to work. The estimate (45) is a macroscopic scale error estimate. It does not
provide an error estimate inside the defect region, where a much smaller scale needs
to be used. In fact, due to the nonconvex property in the defect region, the lattice
solution may not even be unique. Nevertheless, it seems to us that a macroscopic
error estimate is all we may expect for the model.

5. Conclusion. The QC approximation (or method) is a kind of representative
of a number of recent atomistic/continuum models for steady-state material prob-
lems. It may be a useful technique for model reduction of large scale problems in
other fields. Numerical analysis is in its infancy despite its great success in sim-
ulation of material problems in engineering literature. In this paper we introduce
a mathematical description of the method based on the energy minimization and a
nonconforming finite element framework. We prove the convergence of the solution
of the QC approximation to the solution of the original atomic scale energy mini-
mization problem in two dimensions (using the Lennard–Jones pair potential). Some
mathematical understanding of usual atomistic assumptions for solid materials such
as nearest neighbor interaction dominance and convex nearest neighbor pair potential
energy is made into assumptions for convergence analysis. In the case that these as-
sumptions do not hold, an expected convergence result is also given as a remark. The
framework of analysis may apply to problems with different pair potential energies
(or with material impurity) and to three-dimensional problems.
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CONVERGENCE OF UNSYMMETRIC KERNEL-BASED
MESHLESS COLLOCATION METHODS∗

ROBERT SCHABACK†

Abstract. This paper proves convergence of variations of the unsymmetric kernel-based col-
location method introduced by Kansa in 1986. Since then, this method has been very successfully
used in many applications, though it may theoretically fail in special situations, and though it had
no error bound or convergence proof up to now. Thus it is necessary to add assumptions or to make
modifications. Our modifications prevent numerical failure by dropping strict collocation and allow
a rigorous mathematical analysis proving error bounds and convergence rates. These rates improve
with the smoothness of the solution, the domain, and the kernel providing the trial spaces, but they
are currently not yet optimal and deserve refinement. They are based on rates of approximation to
the residuals by nonstationary meshless kernel-based trial spaces, and they are independent of the
type of differential operator. The results are applicable to large classes of linear problems in strong
form, provided that there is a smooth solution and the test and trial discretizations are chosen with
some care. Our analysis does not require assumptions like ellipticity, and it can be extended to
ill-posed problems.
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1. Introduction. The final goal of this paper is to prove error bounds and
convergence of certain numerical techniques that approximately solve a PDE problem
via an unsymmetric or even nonsquare system of linear collocation equations involving
meshless kernel-based trial functions. The most popular method of this kind was first
proposed by Kansa [8] in 1986, and there are many follow-up papers in engineering
journals (see, e.g., [5] for a selection) that can easily be retrieved via the Internet. This
is why this paper does not supply additional numerical examples. So far, the method
is quite successful in applications with smooth solutions, but it can fail [7] in specially
constructed situations. Consequently, it has neither error bounds nor convergence
proofs for its original form, and a rigorous mathematical analysis will either require
some additional assumptions or make changes to the method itself. We shall do both,
but we shall stay general enough not to spoil the applicability to elliptic, parabolic,
and hyperbolic problems. Therefore we need a somewhat nonstandard framework,
which we sketch here first, to make sure that the reader does not get lost in the
technical details we have to provide later.

Consider a linear operator equation

L(u) = f, L : U → F(1.1)

between normed linear spaces U and F which is to be solved for any given f ∈ F .
The map L takes a solution u ∈ U to its data L(u) in F . Thus F will usually be a
Cartesian product of trace spaces of functions prescribed on the domain or on parts of
the boundary. We shall consider a large class of unsymmetric discretization methods
to solve such equations approximately, and we need five essential ingredients.
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The first ingredient requires the problem to be continuously dependent on the
data. In quantitative form, this means that the inverse L−1 is a bounded linear map
from F to U . In particular, we assume an inequality of the form

‖u‖U ≤ Ca‖L(u)‖F for all u ∈ U(1.2)

with a positive constant Ca describing the stability of the problem. In practical
applications this will imply that the solution space U and the data space F have to be
chosen with some care. In particular, U and F must often be chosen on a theoretical
basis, e.g., as quite large spaces in which certain general existence results hold and
which carry only rather weak norms. Usually, U will be a Sobolev space Wμ

2 (Ω)
while F is a Cartesian product of Sobolev spaces which provide the right-hand sides
for the differential equation and the boundary data via trace operators. Continuous
dependence serves here as a replacement for more specific analytic assumptions like
coercivity of a bilinear form. However, in section 9 we shall abandon the assumption
of continuous dependence to be able to treat a certain class of ill-posed problems.

The second ingredient is some additional regularity. The actual solution u of a
specific problem will often have more regularity than needed for the spaces U and
F defining continuous dependence, and therefore we shall focus on a subspace UR ⊆
Wm

2 (Ω) ⊂ Wμ
2 (Ω) =: U of U which we call the regularity subspace. The additional

regularity of order m − μ > 0 will be the driving force behind convergence rates, as
we shall prove later.

The third ingredient is a scale of finite-dimensional trial subspaces Ur of U for
a trial discretization parameter r > 0 which uses the additional regularity to provide
a convergent scheme for data approximation. This is formalized by not necessarily
linear maps Ir : UR → Ur with error bounds

‖L(u− Ir(u))‖F ≤ εr(u) for all u ∈ UR.(1.3)

It will be this approximation property that yields our convergence rates driven by
additional regularity. Note that we do not use a single discretization parameter like
the usual h here, because we need two different discretization parameters r and s for
trial and test discretization. The trial spaces Ur can be chosen independent of the
operator L, and we do not approximate the solution directly but rather the data via
the linear operator L.

The fourth ingredient is a scale of stable test discretizations Fs of the data space F
with respect to the scale of trial spaces Ur. This is formalized by a test discretization
parameter s > 0 and linear maps Πs : F → Fs into a scale of finite-dimensional test
data spaces Fs such that the inequalities

‖L(ur)‖F ≤ C(r, s)‖ΠsL(ur)‖Fs for all ur ∈ Ur,
c(s)‖ΠsL(u)‖Fs ≤ ‖L(u)‖F for all u ∈ U

(1.4)

hold. We call a specific choice of trial and test discretization schemes uniformly stable
if both constants can be chosen independent of r and s for a certain range of these
parameters. When restricted to the finite-dimensional trial spaces Ur, the inequalities
express equivalence of discrete and nondiscrete norms on the data L(ur). The second
inequality will be easily satisfied by discretization, but the first one will be hard,
because it bounds a nondiscrete norm by a discrete norm, and this can work only
for finite-dimensional spaces. It also implies uniqueness of solutions of the discretized
finite systems ΠsL(ur) = ΠsL(u), which is a serious problem [7].
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To simplify some of the later arguments, we outline here how we proceed to prove
the first inequality of (1.4).

Theorem 1.1. Assume a Poincaré–Friedrichs inequality

‖f‖F ≤ c1(s)‖f‖FR
+ c2(s)‖Πsf‖Fs for all f ∈ FR ⊂ F(1.5)

on a regularity subspace FR of the data space F . Second, assume a Markov–Bernstein
inequality

‖Lur‖FR
≤ c3(r)‖Lur‖F for all ur ∈ Ur ⊂ UR(1.6)

on a scale of trial spaces Ur ⊂ UR with L(UR) ⊆ FR. Third, let the trial and test
discretization parameters r and s satisfy the stability criterion

c1(s)c3(r) <
1

2
.(1.7)

Then the first inequality of (1.4) holds with C(r, s) ≤ 2c2(s).
Proof. Just consider

‖L(ur)‖F ≤ c1(s)‖L(ur)‖FR
+ c2(s)‖ΠsL(ur)‖Fs

≤ c1(s)c3(r)‖Lur‖F + c2(s)‖ΠsL(ur)‖Fs

≤ 1
2‖Lur‖F + c2(s)‖ΠsL(ur)‖Fs

for all ur ∈ UR.
Note that in (1.5) we shall have c1(s) → 0 for s → 0, because the inequality

means that a function is small in a weak norm if it is bounded in a strong norm and
is small on a large discrete set. In (1.6) we have to expect c3(r) → ∞ for r → 0
because c3 bounds a strong norm by a weak one on a finite-dimensional space. Thus
the stability criterion (1.7) will usually be satisfied if the test discretization is “fine
enough” with respect to the trial discretization.

The final ingredient is the class of numerical methods. We do not specify details
in this overview, but we can always find nonunique trial functions u∗

r,s ∈ Ur with

‖ΠsL(u− u∗
r,s)‖Fs

≤ δr,s(1.8)

solving ΠsL(ur) = ΠsL(u) approximately with a small tolerance. In fact, the approx-
imation Ir(u) is a solution if we have (1.4) and

c(s)εr(u) ≤ δr,s.(1.9)

Note that we do not attempt to solve the discrete system ΠsL(ur) = ΠsL(u) exactly,
because it will be overdetermined and unsolvable in general. However, under the
assumption (1.9) we know that the relaxed problem (1.8) is solvable. In section 8
we show how to tackle such problems. Altogether, we replace strict collocation by a
generalized form of “almost interpolation.” Now we can formulate the core result of
this paper.

Theorem 1.2. If the analytic problem is solvable by u ∈ UR and if we solve (1.8)
by some u∗

r,s ∈ Ur, then the following error bound holds:

‖u− u∗
r,s‖U ≤ Ca

(
εr(u)

(
1 +

C(r, s)

c(s)

)
+ c(s)δr,s

)
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provided that all of the above ingredients are available. If the discretization is uni-
formly stable with constants

C(r, s) ≤ C,
0 < c ≤ c(s) ≤ c̃,

and if we choose c̃εr(u) ≤ δr,s ≤ 2c̃εr(u) to satisfy (1.9), we get the bound

‖u− u∗
r,s‖U ≤ εr(u)Ca

(
1 +

C

c
+ 2c̃2

)
,

which behaves asymptotically like the trial approximation error εr(u).
Proof. The assertion follows from a simple chain of inequalities:

1
Ca

‖u− u∗
r,s‖U ≤ ‖L(u− u∗

r,s)‖F
≤ ‖L(u− Ir(u))‖F + ‖L(Ir(u) − u∗

r,s)‖F
≤ εr(u) + c(s)‖ΠsL(Ir(u) − u∗

r,s)‖Fs

≤ εr(u) + c(s)‖ΠsL(u− u∗
r,s)‖Fs

+ c(s)‖ΠsL(Ir(u) − u)‖Fs

≤ εr(u) + c(s)δr,s + C(r,s)
c(s) ‖L(Ir(u) − u)‖F

≤ εr(u)
(
1 + C(r,s)

c(s)

)
+ c(s)δr,s.

But now we shall have to show how this abstract machinery can be set to work. We
shall finally derive specific convergence rates for unsymmetric collocation techniques
solving strongly posed problems with continuous dependence in Sobolev spaces, in-
cluding the Poisson problem with Dirichlet data as an illustration. But note that the
above formalism is much more general, and there may be various other future ways to
apply the framework, e.g., to unsymmetric methods solving problems in weak form.

The following sections will treat the above ingredients one by one, and then we
shall patch the results together. Our key tools will be nonstationary meshless kernel-
based trial spaces which allow approximation schemes with high-order convergence
rates while maintaining stability if paired with sufficiently rich test discretizations. It
turns out that the use of smooth kernels makes the final convergence order dependent
mainly on the regularity of the solution and the problem. The numerical methods for
solving (1.8) will consist of certain variations of the original unsymmetric collocation
method, and we already have solvability via (1.9). This saves us from the degeneration
problems of the standard unsymmetric collocation technique [7].

2. Well-posed problems and regularity. For example, consider a standard
Poisson boundary value problem

−Δu = fΩ in Ω,
u = fD on ∂Ω

(2.1)

on a bounded domain Ω ⊂ R
d with Dirichlet data fD on the piecewise smooth bound-

ary ∂Ω. In such problems, we consider the equations as being given in strong form;
i.e., we assume the solution u to be regular enough to pose the equations pointwise as

(−Δu)(x) = (δx ◦ (−Δ))(u) = fΩ(x) for all x ∈ Ω,
u(x) = (δx ◦ Id)(u) = fD(x) for all x ∈ ∂Ω.

(2.2)
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This leads to (1.1) if we define L(u) := (−Δu|Ω , u|∂Ω
) on U := Wμ

2 (Ω) with values in

F := Wμ−2
2 (Ω) ×W

μ−1/2
2 (∂Ω), with given data f = (fΩ, fD) ∈ F .

But we allow much more general linear equations and boundary value operators.
Formally, we follow the notation of [3] and others to combine differential and boundary
operators into just one equation and write the latter as (1.1) where u is a function
from some normed space U of functions. The mapping L : U → F maps solutions
u ∈ U to their data L(u) ∈ F , and the given problem consists in the inversion of L.

When aiming at methods with error bounds and convergence, we have to take a
closer look at the given analytic problem (1.1). In particular, we shall assume that
the problem (1.1) is well-posed in the sense that the solution u depends continuously
on the data f of the right-hand side of (1.1). But we have to make this more precise.
This can be done in various ways, e.g., by total sets of data functionals, but this is not
quantitative. For later use we impose a norm ‖.‖F on F := L(U) in a suitable way
and assume (1.2) with a positive “analytic” constant Ca which describes the norm of
the linear map L−1 that takes the data f ∈ F and maps them back to the solution u
in the function space U . Clearly, for such a priori inequalities we must be careful with
the choice of norms, because they depend on regularity theory, and they always imply
that the homogeneous equation has only the trivial solution. The numerical methods
following below will work on discretized versions Fs of F , and thus the proper choice
of F will also have practical consequences.

So far we have not mentioned any specific numerical algorithm. But if any numer-
ical method has produced an approximate solution ũ ∈ U to the problem (1.1), one
can calculate the data f̃ = L(ũ) ∈ F and the norm ‖f̃ − f‖F to get the a posteriori
error bound

‖u− ũ‖U ≤ Ca · ‖L(u− ũ)‖F = Ca · ‖f − f̃‖F(2.3)

for free, since the residuals L(u − ũ) = f − f̃ are explicitly known. It means that
errors in the solution are bounded by the norm of the residuals, multiplied with the
analytic constant. Thus any numerical technique that produces approximate solutions
of well-posed problems with small residuals will automatically guarantee small errors
in the solution. This trivial observation is well known in numerical analysis and
serves as a basis for defect correction and residual minimization techniques, and is
important for providing a safe a posteriori foundation for many unsafe and ad hoc
numerical calculations published in science and engineering journals. If the underlying
problem is continuously dependent on the data and if the naive user at least checks
the residuals carefully, the calculations are on the safe side. But, unfortunately, there
is no handbook listing all known inequalities of the form (1.2) for typical applications
in science and engineering. In particular, it would be very useful to have proven upper
bounds for the analytic constants.

Guided by regularity theory for elliptic problems, we focus on operator equations
(1.1) where the linear map L splits into maps L1, . . . , Ln with Li : U → F i, 1 ≤
i ≤ n, such that F = F 1 × · · · × Fn is the data space. We assume U = Wμ

2 (Ω)
for some bounded domain Ω ⊂ R

d and F i := Wμ−μi

2 (Ωi), where μi is defined via a
trace theorem by the order of the operator Li and the dimension di ≤ d of the partial
domain Ωi ⊂ Ω ⊂ R

d. The space F is then equipped with the sup of the norms
of the spaces F i. The regularity subspace UR occurring later will then be a space
UR ⊆ Wm

2 (Ω) ⊂ U := Wμ
2 (Ω) for some m ≥ μ.

In the standard Poisson problem with Dirichlet data we take L(u) = (−Δu, u∂Ω)

mapping U ⊆ Wμ
2 (Ω) into F = Wμ−2

2 (Ω) ×W
μ−1/2
2 (∂Ω). This is a well-established
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continuous dependence setting if the domain is smooth enough to make trace theorems
and the regularity order μ valid. See, e.g., [3, 12] for early references which also allow
distributional data and negative μ.

3. Approximation from trial spaces. The second ingredient of our framework
is some additional regularity defined via a subspace UR of the space U occurring in
the continuous dependence bound (1.2). At this point, the regularity space can be
quite general, but we also want an approximation property like (1.3) to hold. Thus we
now have to consider our third ingredient, i.e., techniques that construct approximate
solutions ũr from a scale of trial spaces Ur ⊆ U with a trial discretization parameter r.
Note that this includes plenty of methods, with or without meshes, like finite elements,
Petrov–Galerkin schemes, spectral methods, and all variations of collocation. It is
trivial that the choice of the trial space should be such that the true solution u can
be approximated easily by functions from the trial space. In case of solutions with
singularities, like for Poisson problems on domains with incoming vertices, one should
make sure that the trial space contains the expected singular functions.

One way to make this more precise is to assume that there is a mapping Ar :
UR → Ur with

‖u−Ar(u)‖U =: δr(u) for all u ∈ UR(3.1)

with a certain error δr(u) which will depend on the regularity subspace UR.
But the previous section teaches us that we do not need to approximate the exact

solution u in the space U by functions ur ∈ Ur ⊂ U directly. It suffices to make sure
that the residuals L(u) − L(ur) are small. Thus the crucial quantity is the residual
error ‖L(u − ur)‖F for any u ∈ U and an approximation ur ∈ Ur. In contrast to
the theory of finite elements, we do not consider optimal approximations of u by ur

here, nor do we attempt to minimize the above error with respect to ur. Instead, we
are satisfied if the trial space Ur contains for each function u ∈ U an approximation
ur := Ir(u) with small residual error εr(u) as in (1.3).

Of course, if an L-independent approximation operator Ar with (3.1) is available,
one can take Ir = Ar and assume εr(u) ≤ ‖L‖δr(u) because of

εr(u) = ‖L(u− Ir(u))‖W ≤ ‖L‖‖(u−Ar(u))‖U ≤ ‖L‖δr(u).

But there may be better choices of Ir if L and the special structure of the residual
space W are taken into account.

Inspection of (1.3) for F being a Cartesian product of Sobolev spaces reveals that
the special approximation Ir(u) should approximate u well including its derivatives,
as far as they occur in the collection of data spaces F i forming the space F . In
fact, if we go back to our special case U = Wμ

2 (Ω) and F = F 1 × · · · × Fn with
F i := Li(U) := Wμ−μi

2 (Ωi) with a regularity subspace UR ⊆ Wm
2 (Ω) and m > μ, we

should expect approximation bounds like

‖Li(u) − Li(Ir(u))‖
W

μ−μi
2 (Ωi)

≤ Crm−μ‖Li(u)‖
W

m−μi
2 (Ωi)

≤ Crm−μ‖u‖Wm
2 (Ω) for all u ∈ Wm

2 (Ω),
(3.2)

and this should work for a reasonable choice of 0 ≤ μ ≤ m and with rates that just
depend on the regularity gap m− μ and not on the order of the operators involved.

Note that the standard trial spaces of h-type finite element techniques consisting
of piecewise linear functions fail to provide approximations of more than first-order
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derivatives. In contrast to this, trial spaces generated by sufficiently smooth ker-
nel functions can contain approximations to derivatives of any order, without any
additional work needed. We shall explain this in the following sections.

In contrast to many engineering applications where a rather simple solution func-
tion is calculated via a huge finite element method system of millions of unknowns, we
tend to argue in favor of small trial spaces designed to capture the essential features
of the solution without taking the detour via a fine-grained space discretization. The
consequence will be that the linear systems get unsymmetric, because any solution
from a small trial space must be tested on a fine-grained space discretization, asking
for many more degrees of freedom on the “test side” than on the “trial side.” Un-
symmetry of a method can be a feature instead of a bug. In what follows we shall
investigate the relation of test and trial spaces more closely.

4. Kernel-based trial spaces. Now it is time to study maps Ir or Ar with
good approximation properties for certain trial spaces Ur in the sense of (1.3) and
(3.1). This is independent of PDE solving, and we shall see that nonstationary scales
of meshless kernel-based trial spaces work perfectly.

Definition 4.1. A kernel is a function of the form K : Ω×Ω → R with Ω ⊆ R
d.

It is translation-invariant if K(x, y) = Φ(x− y) with Ω = R
d and Φ : R

d → R. It is
radial if it is translation-invariant and of the form

K(x, y) = Φ(x− y) = φ(‖x− y‖2) with φ : [0,∞) → R and x, y ∈ R
d.

Radial kernels are also called radial basis functions.
Note that radial basis functions φ can in principle be used in any space dimension,

but certain properties of the associated translation-invariant kernel Φ on R
d may

depend [6, 19] on the dimension d.
Kernels provide excellent tools in various disciplines, including approximation

theory, partial differential equations, and machine learning [17]. The most important
kernels are reproducing kernels of some Hilbert space which can be called the “na-
tive” Hilbert space for the kernel. Any Hilbert space H of functions on a domain Ω
with continuous and linearly independent point evaluations has a kernel K with the
reproduction property

f(x) = (f,K(x, ·)) for all f ∈ H, x ∈ Ω.

Conversely, any (strictly) positive definite [6, 19] and continuous kernel K on Ω is the
reproducing kernel of a native Hilbert space NK of continuous functions on Ω. We
denote the norm on the native space NK by ‖.‖K .

We focus here on trial spaces provided by kernels. Like in wavelet theory, the
notions of translation and dilation play an important role. First, a general kernel
K : Ω × Ω → R can be translated to points y1, . . . , yM ∈ Ω called centers to
provide trial functions uj(x) := K(x, yj), 1 ≤ j ≤ M , on Ω. In many cases, the set
Y := {yj : 1 ≤ j ≤ M} of centers should fill a bounded domain Ω in such a way that
the centers get dense when M → ∞. This is expressed by the fill distance

h := h(Y,Ω) := sup
x∈Ω

inf
y∈Y

‖x− y‖2

depending on Ω and the M centers in Y , which should converge to zero if M tends
to infinity. The fill distance is the radius of the largest open ball with center in Ω
that contains none of the centers yj from Y . We use the notation h here, but later
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we shall have two different fill distances for trial and test centers, and then we shall
use r and s for clarity.

A nonstationary scale of kernel-based trial spaces can now be defined as

Ur := span {K(·, yj) : 1 ≤ j ≤ M} with r := h(Y,Ω),(4.1)

where the dependence on the location and number of the centers is suppressed in the
notation.

In the above nonstationary situation, only translations, but no dilations are used.
The translated kernel is fixed and independent of the fill distance. There is no rescal-
ing, if the fill distance gets small. This is in contrast to the stationary technique in
standard and general finite elements [4]. There, the basis functions are rescaled when
the fill distance changes, and in the translation-invariant kernel-based case this can
be described by a scale of trial spaces

Ur := span

{
Φ

(
x− yj

r

)
: 1 ≤ j ≤ M

}
,

where now the wavelet style interaction of translation and dilation is apparent.
The mathematics of the stationary and nonstationary cases are quite different.

This often leads to misunderstandings. The stationary situation, as included in the
meshless generalized finite element method [4], uses polynomial reproduction and the
Bramble–Hilbert lemma. If centers are on a grid, it applies the Strang–Fix theory.
Convergence orders are closely tied to polynomial reproduction properties, and the
choice of kernels is quite restricted, because integrable kernels like the Gaussian do not
yield convergent stationary approximations for h → 0 [6]. Stability is usually much
better than in the nonstationary case, but convergence rates (if they exist at all, e.g.,
for thin-plate splines or multiquadrics) are much smaller. We focus on nonstationary
kernel-based trial spaces here, because condition problems can be overcome [5, 9], and
we are heading for methods with high approximation orders.

We define a map Ir : u → ur := Ir(u) ∈ Ur of (1.3) via interpolation in the trial
centers by solving the system

ur(yk) :=

M∑
j=1

αjK(yj , yk) = u(yk), 1 ≤ k ≤ M,(4.2)

for the coefficients α1, . . . , αM defining the function ur := Ir(u) in terms of the basis
functions of the nonstationary trial space Ur of (4.1). This interpolation problem
is solvable by definition if the kernel K is symmetric and positive definite [6, 19],
because then the M × M matrix with entries K(yj , yk) is symmetric and positive
definite. Table 4.1 gives some examples. We ignore conditionally positive definite
kernels here and refer to the literature [6, 16, 19] for details.

The interpolation system (4.2) makes sense for all functions u which have well-
defined function values at the trial centers yk. Thus the mapping Ir is at least defined
on C(Ω), but for solutions u of PDE problems in strong form we use it on a regularity
subspace UR of C(Ω) ⊂ U .

The book [19] contains a fairly complete account of interpolation error bounds
in the nonstationary setting, while bounds for stationary and regular cases are in [6].
But in view of (1.3) and (3.2), we need very general error bounds in Sobolev spaces
which are not covered in these books. Here (on the trial side) and later (on the test
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Table 4.1

Radial basis functions φ(r), positive definite on R
d.

Function φ(r) Range Smoothness β
Gaussian exp(−r2) d ≥ 1 all β

inverse multiquadric (r2 + c2)γ , γ < −d/2, c > 0 d ≥ 1 all β

Sobolev for Wk
2 (Rd) rk−d/2Kk−d/2(r), k > d/2 d ≥ 1 β = 2k − d

Wendland C2 [18] (1 − r)4+(1 + 4r) d ≤ 3 3

(1 − r)5+(1 + 5r) d ≤ 5 3

Wendland C4 [18] (1 − r)6+(3 + 18r + 35r2) d ≤ 3 5

(1 − r)7+(1 + 7r + 16r2) d ≤ 5 5

side for proving (1.5)) we use a general result from [13] which was extended in [20],
while the range of admissible parameters was enlarged in [14].

Theorem 4.2. Suppose Ω ⊂ R
d is a bounded domain with an interior cone

condition. Choose q ∈ [1,∞] and constants

0 ≤ μ < μ + d/2 < �m�(4.3)

with μ being an integer. Then there are positive constants C, h0 such that

|u|Wμ
q (Ω) ≤ C

(
hm−μ−d(1/2−1/q)+ |u|Wm

2 (Ω) + h−μ‖u‖∞,Yh

)
(4.4)

holds for every discrete set Yh in Ω with fill distance at most h ≤ h0 and every
u ∈ Wm

2 (Ω).
This can be seen as a quantitative Poincaré–Friedrichs inequality for functions

which are small on a finite subset, and it is independent of any trial space. If we
replace seminorms by norms and extract h−μ out of the right-hand side, the rest is
a μ-independent norm on Wm

2 (Ω) and we can apply interpolation theory to replace
(4.4) by

‖u‖Wμ
q (Ω) ≤ C

(
hm−μ−d(1/2−1/q)+‖u‖Wm

2 (Ω) + h−μ‖u‖∞,Yh

)
(4.5)

under the assumptions (4.3) without the restriction of μ being an integer.
Now we take h = r because we discretize the trial side, and we interpolate a

function u on Yr by Ir(u) using points from Yr as translations in (4.1) to get

‖u− Ir(u)‖Wμ
2 (Ω) ≤ Crm−μ‖u− Ir(u)‖Wm

2 (Ω) for all u ∈ Wm
2 (Ω).(4.6)

Then we use the standard fact that the interpolant Ir(u) solves the minimization
problem

‖v‖K → min, v ∈ K, v(yj) = u(yj) for all yj ∈ Yr,

implying that ‖Ir(u)‖K ≤ ‖u‖K holds if we assume u to be in the native space NK

for the kernel K.
Therefore we strengthen the requirement on the regularization subspace UR and

on the regularity of our solution u to

u ∈ NK = UR ⊆ Wm
2 (Ω) ⊆ U(4.7)

with bounded embeddings, where we always assume (4.3). This is easy if the kernel
is smooth enough, and for the kernels in Table 4.1 the inequality

2m ≤ β + d(4.8)
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is a sufficient condition.
We can now replace (4.6) by

‖u− Ir(u)‖Wμ
2 (Ω) ≤ Crm−μ‖u‖K for all u ∈ NK

with a different constant. This inequality can be coupled with trace theorems for the
operators Li : Wm

2 (Ω) → Wm−μi

2 (Ωi) to get

‖Li(u− Ir(u))‖
W

μ−μi
2 (Ωi)

≤ C‖u− Ir(u)‖Wμ
2 (Ω) ≤ Crm−μ‖u‖K for all u ∈ NK

which yields (3.2) in a slightly restricted form and our third ingredient (1.3) as

‖L(u− Ir(u))‖F ≤ Crm−μ‖u‖K =: εr(u) for all u ∈ UR = NK(4.9)

under the assumptions (4.3), (4.7), and (4.8).

5. Stability of kernel-based test discretizations. We now consider the sta-
bility conditions (1.4), our fourth ingredient. We do this for meshless kernel-based
trial spaces and for our running example generalizing the Poisson equation. The trial
discretization via Ur and a set Yr of centers is chosen as in section 4. We assume (4.7)
and have the approximation result (4.9). On the test side, we use a set Xs of test
centers which has a fill distance s on all of Ω. For all the operators Li that arise in
L, we will have a selection Xi

s := Xs ∩ Ωi of points with the same fill distance with
respect to Ωi, because we can assume that all Ωi are subsets of Ω. The projectors Πi

s

on F i just map functions from F i = Wμ−μi

2 (Ωi) to their values on Xi
s. We thus have

to assume Sobolev embedding conditions

2(μ− μi) > di := dim(Ωi) ≤ d := dim(Ω), 1 ≤ i ≤ n.(5.1)

The discretized spaces F i
s will be R

|Xi
s| with the L∞ norm, and we have

Πi
sL

i(u) = (Li(u))(Xi
s), ‖Πi

sL
i(u)‖F i

s
= ‖Li(u)‖∞,Xi

s
.

This implies by Sobolev embedding

‖Πi
sL

i(u)‖F i
s

= ‖Li(u)‖∞,Xi
s
≤ ‖Li(u)‖∞,Ωi ≤ Ci‖Li(u)‖

W
μ−μi
2 (Ωi)

,

where the constant is independent of u and s. We now assemble this into a discretiza-
tion Fs := F 1

s × · · · × Fn
s with Πs := Π1

s × · · · × Πn
s of F = F 1 × · · · × Fn and take

the sup norm of the components. Then we have

‖ΠsL(u)‖Fs = sup1≤i≤n ‖Πi
sL

i(u)‖F i
s

≤ C sup1≤i≤n ‖Li(u)‖
W

μ−μi
2 (Ωi)

= C‖L(u)‖F

and get the second inequality of (1.4) with a constant that is independent of s and
dependent only on Sobolev embedding. This leaves us to prove the first inequality of
(1.4) via Theorem 1.1.

Fortunately, the inequality (4.5) holds for general Sobolev spaces, and we can
apply it on the test side for different operators. We get

‖Li(u)‖
W

μ−μi
2 (Ωi)

≤ C
(
sm−μ‖Li(u)‖

W
m−μi
2 (Ωi)

+ s−(μ−μi)‖Li(u)‖∞,Xi
s

)
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under the assumptions (5.1) and

di/2 < μ− μi < μ− μi + di/2 < �m− μi� for all i, 1 ≤ i ≤ n,(5.2)

which pose no serious problems if m is large enough. Now we define FR to be the
range of L(UR) in the Cartesian product of all spaces Wm−μi

2 (Ωi), taking the sup of
the component norms. With part of the notation

min
i

μi =: μ ≤ μi ≤ μ := max
i

μi,(5.3)

this yields (1.5) in the form

‖L(u)‖F ≤ C
(
sm−μ‖L(u)‖FR

+ sμ−μ‖ΠsL(u)‖Fs

)
.

We now want to consider (1.6). Assume K to be a translation-invariant positive
definite kernel of finite smoothness which is Fourier-transformable in R

d with an
exact decay

c(1 + ‖ω‖2)
−β−d ≤ K̂(ω) ≤ C(1 + ‖ω‖2)

−β−d for all ω ∈ R
d,(5.4)

where the constants β can be read from Table 4.1. If we again assume (4.8), we can
cite the Bernstein-type inequality

‖ur‖Wm
2 (Ω) ≤ C · ‖ur‖W (d+β)/2

2 (Rd)
≤ Cr−(d+β)/2‖ur‖L∞(Ω) for all ur ∈ Ur

from [15] provided that the trial centers in Yr ⊂ Ω are not too wildly scattered in the
sense that the minimal separation distance q(Yr) is uniformly bounded below by the
fill distance h(Yr,Ω) via

q(Yr) := min
yj �=yi∈Yr

‖yj − yi‖2 ≥ C sup
y∈Ω

min
yi∈Yr

‖y − yi‖2 =: h(Yr,Ω)(5.5)

such that both quantities behave asymptotically like the trial discretization parameter
r. This yields

‖L(ur)‖FR
= maxi ‖Li(ur)‖Wm−μi

2 (Ωi)

≤ C‖ur‖Wm
2 (Ω)

≤ Cr−(d+β)/2‖ur‖L∞(Ω)

≤ Cr−(d+β)/2‖ur‖Wμ
2 (Ω)

= Cr−(d+β)/2‖ur‖U
≤ CaCr−(d+β)/2‖L(ur)‖F for all i, 1 ≤ i ≤ n,

under the additional assumption μ > d/2. This result is far from optimal, but it
establishes (1.6) and allows us to apply Theorem 1.1 under a stability condition of
the form

Csm−μr−(d+β)/2 <
1

2
.(5.6)

This finally implies the following theorem.
Theorem 5.1. Assume that the trial kernel K with (5.4) is smooth enough

to satisfy (4.8). Let the trial space consist of quasi-uniform translates on Ω with
discretization parameter r, and consider a test discretization on Ω with fill distance
s. Then, under the notation (5.3), and the additional conditions (4.3), (5.2), (5.6),
and μ > d/2, the first inequality of (1.4) is satisfied with

‖L(ur)‖F ≤ Csμ−μ‖ΠsL(ur)‖Fs

for all ur ∈ Ur.
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6. Strong convergence in Sobolev spaces. We now assemble what we have
in case of our running example with continuous dependence in Sobolev norms. In
contrast to the introduction, we proceed here from the user’s point of view.

We start with the analytic problem. Consider an operator equation L(u) = f
as in (1.1) whose solution u is continuously dependent on the data f . We assume
continuous dependence in the sense of (1.2) to hold if we pick spaces U = Wμ

2 (Ω)
and F defined as a Cartesian product of Sobolev trace spaces F i as in section 2.
But note that users have to make sure in each application problem that the a priori
inequalities composing (1.2) are actually satisfied. If several choices of μ are possible,
the user should know that the final convergence will take place in U = Wμ

2 (Ω), but
large μ have to be paid for by regularity. If convergence of higher-order derivatives
is of importance, a sufficiently large μ must be chosen. Since we solve problems in
strong form via evaluation of residuals, we have to pick μ large enough to let all data
have continuous point evaluations. This is expressed by the requirement (5.1). At
this point, the lower bounds for μ will rule out problems with low regularity. Such
problems should be tackled with methods using weak data functionals and involving
integration. We plan to deal with such methods in the future, in particular with the
unsymmetric meshless Petrov–Galerkin method of Atluri and his collaborators [1].

The next step concerns regularity. We assume that the solution should have at
least a UR ⊆ Wm

2 (Ω) regularity with some m > μ. By standard arguments from
approximation theory, the difference between m and μ is the driving force for the
possible convergence rates. The user has to decide which m is adequate. Larger m
will improve the convergence rates, but they may not be justified by the smoothness
of the problem.

Then we pick a kernel K which is smooth enough to have its native space NK

contained in Wm
2 (Ω). In view of Table 4.1, this requires (5.4) and (4.8). The solution

u must have at least the regularity of Wm
2 (Ω), because it should be in UR = NK ⊆

Wm
2 (Ω). The excess regularity of NK over Wm

2 (Ω) does not pay off later, and thus it
is a good idea to stay with a kernel satisfying β + d = 2m to have norm equivalence
between Wm

2 (Ω) and NK . Note that the compactly supported radial polynomial
kernels of Wendland [18] satisfy this for certain choices of m,β, and d.

Now it is time to pick a meshless trial discretization Ur via a set Yr of trial
centers with fill distance r using the kernel K. Then we can expect an error behavior
εr(u) ≤ Crm−μ for u ∈ NK for a direct interpolant to the regular solution in the
points of Yr. This rate is the ideal goal we want to achieve for our numerical solution
of the given operator equation.

The next step is to pick a test discretization via a set Xs of test centers in Ω with
fill distance s. The second inequality of (1.4) holds with c(s) independent of s because
we assume continuous residuals and corresponding Sobolev embedding theorems. By
Theorem 5.1, the first inequality of (1.4) will then hold with C(r, s) ≤ Csμ−μ using
(5.3). But we have to make the test discretization fine enough to satisfy (5.6). As
expected, this means that the test discretizations must be somewhat finer than the
trial discretizations, and the required relation between s and r is

s < c · r1+ μ
m−μ .(6.1)

There is plenty of leeway for small trial and large test spaces.

We are now ready to put everything into Theorem 1.2, while we assume that we
solve the discretized problem (1.8) with accuracy δr,s. With new generic constants
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we get

‖u− u∗
r,s‖Wμ

2 (Ω) ≤ C
(
rm−μ

(
1 + Csμ−μ

)
+ δr,s

)
‖u‖K .(6.2)

Note that this bound has the proper approximation error of order rm−μ holding
between Sobolev spaces U = Wμ

2 (Ω) and UR = NK ⊆ Wm
2 (Ω), but there also is a

counteracting term sμ−μ which is the price we have to pay for working on discrete
residuals in the L∞ norm while bounding the residual error in the norm on Sobolev
trace spaces Wμ−μi

2 (Ωi) in order to use continuous dependence on Sobolev space data.
If we choose δr,s properly via (1.9) and s via (5.6), we have solvability of the system
and an error bound

‖u− u∗
r,s‖Wμ

2 (Ω) ≤ Crm−2μ+μ−
μ(μ−μ)

m−μ ‖u‖Wm
2 (Ω).

Of course, this is not an optimal bound because μ must be positive and even larger
than d/2. Consequently, there is quite some future work necessary on this bound,
though it is improving when m is much larger than μ. In this context, it is not
surprising that most of the practical applications of unsymmetric collocation methods
have very regular solutions.

To show the minimum regularity requirements for the results of this section, we
should track the possible range of m for the Poisson problem in d dimensions. For
operators L1 := −Δ and L2 providing Dirichlet boundary data, we have μ1 = 2 and
μ2 = 1/2 with d1 = d and d2 = d − 1. Then (5.2) requires d/2 < μ − 2 while (4.3)
leads to �m� > 2 + d as the minimum regularity requirement. This clearly needs
improvement by future work, but it should be mentioned that the resulting error
bound is strong enough to include derivatives up to order μ with 2 + d/2 < μ <
�m� − d/2 ≥ m− 1 − d/2.

7. Weak convergence in Sobolev spaces. Analysis of the previous section
shows that the term sμ−μ in (6.2) with some positive μ satisfying (5.1) and μ > d/2
makes the final bound worse than expected. Tracing this back to (4.4) shows that
one should better look at another variation which allows μ = 0 at that point without
spoiling the assumption that the data are still continuous. In fact, (4.4) also allows

‖u‖L∞(Ω) ≤ C
(
hm−d/2‖u‖Wm

2 (Ω) + ‖u‖∞,Yh

)
for all u ∈ Wm

2 (Ω)(7.1)

if d/2 < �m� holds.
But this does not easily fit into the framework required for continuous depen-

dence. Thus we start anew, defining the data spaces F i as spaces C(Ωi) of continuous
functions under the L∞ norm. To make continuous dependence valid, we use embed-
dings C(Ωi) ⊂ L2(Ω

i) = W 0
2 (Ωi) ⊆ Wμ−μi

2 (Ωi) for μ := μ = minμi. Then we apply
the standard continuous dependence relating the standard solution space Wμ

2 (Ω) to
the trace spaces Li(Wμ

2 (Ω)) ⊆ Wμ−μi

2 (Ωi), which fortunately hold for small and even
negative μ, if the domain is smooth [12, 3]. This yields a new continuous dependence
relation via

‖u‖Wμ
2 (Ω) ≤ C maxi ‖Li(u)‖

W
μ−μi
2 (Ωi)

≤ C maxi ‖Li(u)‖W 0
2 (Ωi)

≤ C maxi ‖Li(u)‖C(Ωi)

= C maxi ‖Li(u)‖F i

= C‖L(u)‖F ,
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holding only on the subspace U of functions u in Wμ
2 (Ω) with continuous data L(u).

Note that this will lead to a weak convergence result in U ⊂ Wμ
2 (Ω), though the

problem formulation is still strong. For instance, a problem with Dirichlet data will

lead to μ = 1/2 due to the trace map Wμ
2 (Ω) → W

μ−1/2
2 (∂Ω) if all other trace or

differential operators have a larger loss in the order of the respective Sobolev trace
spaces.

Thus we now repeat our basic argument for U ⊂ Wμ
2 (Ω) with μ = μ = mini μi.

Our choice of regularity space UR and the kernel K will be as above. This fixes β and
m. To derive the approximation order in (1.3) we apply (4.5) to get

‖Li(u− Ir(u))‖W 0
∞(Ωi) ≤ Crm−μi−d/2‖Li(u− Ir(u))‖

W
m−μi
2 (Ωi)

≤ Crm−μi−d/2‖u− Ir(u)‖Wm
2 (Ω)

≤ Crm−μ−d/2‖u‖Wm
2 (Ω),

which requires only

d/2 < �m− μi�, 1 ≤ i ≤ n,(7.2)

and where we now also need μ from (5.3). Thus we get

εr(u) ≤ Crm−μ−d/2

for (1.3).
The discretization of the F i = C(Ωi) spaces is again by pointwise evaluation on

a set Xi
s of test centers, taking the discrete L∞ norm, but we now can skip Sobolev

embedding which led to the inequalities (5.1) we want to avoid now. Since every data
space is equipped with the L∞ norm, we have c(s) = 1 in the second inequality of
(1.4). The proof of the first inequality of (1.4) again proceeds via Theorem 1.1. To
prove (1.5) we start with (7.1) on the various data:

‖Li(u)‖W 0
∞(Ωi) ≤ C

(
sm−μi−di/2‖Li(u)‖

W
m−μi
2 (Ωi)

+ ‖Li(u)‖∞,Xi
s

)
for all u ∈ UR = NK where we need (7.2) again. We define FR as in the previous
section, and then we have (1.5) in the form

‖L(u)‖F ≤ C
(
sm−μ−d/2‖L(u)‖FR

+ ‖ΠsL(u)‖Fs

)
.

Unfortunately, the proof for (1.6) given in section 5 proceeds via ‖.‖∞ and thus needs
μ > d/2. Of course there is always some a priori inequality of the form (1.6), but we
currently have no explicit upper bounds for c3(r) in terms of r. Anyway, if we take s
small enough to satisfy (1.7) with c1(s) = Csm−μ−d/2, Theorem 1.1 still is valid and
yields the first inequality of (1.4) with C(r, s) independent of r and s provided that s
is small enough.

Then we continue as in the proof of Theorem 5.1. Since the discretization scheme
is uniformly stable for sufficiently small test discretizations s, Theorem 1.2 now gives
the error bound

‖u− u∗
r,s‖Wμ

2 (Ω)
≤ Crm−μ−d/2‖u‖Wm

2 (Ω) for all u ∈ Wm
2 (Ω)

provided that the numerical solution of (1.8) observes (1.9) and the test discretization
is fine enough in a way we currently cannot specify explicitly. The left-hand norm
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is rather weak here, and the approximation order can probably be improved. For
instance, a standard two-dimensional Poisson problem with Dirichlet data would lead
to

‖u− u∗
r,s‖W 1/2

2 (Ω)
≤ Crm−3‖u‖Wm

2 (Ω) for all u ∈ Wm
2 (Ω),

but an optimal rate for the Sobolev spaces involved would be m−1/2 instead of m−3.
The minimum regularity in this case is m = 4 because of (7.2).

Future work should improve the results of this and the previous sections. This may
be done by better choices of spaces and norms, plus better versions of the Markov–
Bernstein inequality (1.6) which are currently investigated.

8. Numerical methods. We now look at techniques to solve the discrete prob-
lem (1.8). It amounts to solving the n linear problems

Πi
sL

i(u− u∗
r,s) = 0, 1 ≤ i ≤ n,

approximately, where we discretized the operators Li on the domains Ωi by taking
only point evaluations. This takes the form of collocation

Li(u)(xji) = Li(u∗
r,s)(xji) = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ Ni,

where the points of the test discretization Xs are the union of the sets

Xi
s := {xj1, . . . , xjNi}, 1 ≤ j ≤ n,

and where we dropped the dependence on s in the notation for the xji and for Ni.
For a shorthand notation, we introduce the functionals

λji : v �→ Li(v)(xji)

and rearrange them into a single-indexed list λ1, . . . , λN with N = N1 + · · · + Nn.
Since u∗

r,s should be in the trial space Ur generated by translations of the kernel
K at trial centers forming Yr := {y1, . . . , yM}, we arrive at a system

M∑
m=1

αmλz
iK(z, ym) = λz

i u(z), 1 ≤ i ≤ N,

with M unknowns and N equations. In case M = N this is exactly the unsymmetric
collocation technique dating back to Kansa in 1986 [8]. It has no rigid foundation
yet, and it can fail in specially constructed situations [7], though it works fine in
many applications. In the first years it was applied to small problems with smooth
solutions due to serious condition problems, but recently there have been results on
preconditioning [5, 9] that allow a wider range of applicability.

In view of Theorem 5.1 and the two previous sections we know that N ≥ M holds
and the system has full rank M , provided that our stability conditions are satisfied,
calling for a somewhat finer discretization on the test than on the trial side. Thus the
system will be unsymmetric and overdetermined, but at least there is no rank loss.
Furthermore, we know by (1.3) and (1.9) that there is a good approximate solution to
the full system. This means that we can allow any numerical method that produces
a solution with similar or less deviation.
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Since our convergence analysis worked with the L∞ norm on the discretized Fs

spaces, a first choice would be to go for a best L∞ approximation of the right-hand
side. This means solving a linear optimization problem which minimizes η under the
constraints

−η ≤
M∑

m=1

αmλz
iK(z, ym) − λz

i u(z) ≤ η, 1 ≤ i ≤ N,(8.1)

where α1, . . . , αM are the other variables. If the revised simplex method is applied to
the dual problem, each step has an O(M2) complexity. The Kuhn–Tucker conditions
ensure that one can work with at most M+1 active test conditions at each time. This
makes the number N >> M of test centers much less relevant than M , and for nicely
chosen low-dimensional trial spaces one can get away with rather small computational
complexity, as demonstrated in [10, 11].

But one can also try all other techniques that somehow provide a function u∗
r,s ∈

Ur which by a posteriori inspection leads to a small residual norm δr,s in (1.8). This
can happen to the original Kansa method when executed on a subset of M test points,
or by adaptive bootstrapping techniques like the one in [10, 11] which picks suitable
test centers and trial centers one by one. Other alternatives are to use pivoting with
row exchange or to go for a least-squares solution first. Anyway, if the resulting
residual norm δr,s is small, the result of Theorem 1.2 is still valid, proving that one
actually has a good approximation to the real solution.

As an aside, we note that a simpler theory is possible if we optimize over a
nondiscrete residual norm on F . Section 5 will then be obsolete, but one has to
solve semi-infinite optimization problems (if F carries a sup-norm) or apply least-
squares methods with integrations (if F carries an inner product). Another strategy
to avoid stability problems is to add the numerically accessible quadratic constraint
‖ur‖2

K ≤ C to any method trying to make residuals small. This regularization trick
has connections to machine learning [17] and should be investigated in future work.

9. Ill-posed problems. For ill-posed problems, continuous dependence fails,
but our method and its analysis will still be useful. We assume that the problem still
has the form (1.1), but we now assume that the “true solution” u ∈ U satisfies only

L(u) = f + ρ ∈ F,(9.1)

where F contains the available data f and a small residual ρ. The problem L(u) = f
may be unsolvable, and (1.2) is not available. We consider a function ũ ∈ U to be
acceptable as a “solution” if

‖L(ũ) − L(u)‖F = ‖L(ũ) − f − ρ‖F

is not much larger than ‖ρ‖F . We still assume (1.3) and (1.4), but we have to replace
(1.8) by

‖Πs(f − L(u∗
r,s))‖Fs ≤ δr,s,(9.2)

because L(u) now is unknown and does not coincide with f . Furthermore, solvability
of the above system now requires

c(s)(‖ρ‖F + εr(u)) ≤ δr,s(9.3)
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instead of (1.9) as a sufficient condition. The proof technique of Theorem 1.2 then
still implies the following theorem.

Theorem 9.1. If the analytic problem is ill-posed, but solvable by u ∈ UR in the
sense of (9.1), and if we solve (9.2) by some u∗

r,s ∈ Ur, then there is a bound

‖L(u− u∗
r,s)‖U ≤ c(s)‖ρ‖F +

(
εr(u)

(
1 +

C(r, s)

c(s)

)
+ c(s)δr,s

)
.

If the discretization is uniformly stable, then there is a choice of δr,s via (9.3) such
that the above residual error behaves asymptotically like the trial approximation error
εr(u) plus ‖ρ‖F .

Proof. We modify the proof of Theorem 1.2 to get

‖L(u− u∗
r,s)‖F ≤ ‖L(u− Ir(u))‖F + ‖L(Ir(u) − u∗

r,s)‖F
≤ εr(u) + c(s)‖ΠsL(Ir(u) − u∗

r,s)‖Fs

≤ εr(u) + c(s)‖ΠsL(Ir(u) − u)‖Fs

+c(s)‖Πs(L(u) − f)‖Fs

+c(s)‖Πs(f − L(u∗
r,s))‖Fs

≤ εr(u) + c(s)δr,s + C(r,s)
c(s) ‖L(Ir(u) − u)‖F + c(s)‖Πs‖‖ρ‖F

≤ c(s)‖ρ‖F + εr(u)
(
1 + C(r,s)

c(s)

)
+ c(s)δr,s.

For simplicity of the above presentation, we have replaced the second inequality
of (1.4) by

c(s)‖Πsg‖Fs
≤ ‖g‖F for all g ∈ F

which is no serious complication. However, we should comment on what happens with
Theorems 1.1 and 5.1 if we have no analytic constant Ca for carrying out the proof.
We replace Ca by the constant Ca(r) arising in a finite-dimensional version

‖ur‖U ≤ Ca(r)‖L(ur)‖F for all ur ∈ Ur

of (1.2). This is feasible due to norm equivalence, but we leave it to future research
to derive upper bounds for Ca(r).

10. Conclusions. We provided convergence proofs for a generalized nonsquare
version of Kansa’s collocation method, showing that the convergence rates are deter-
mined by approximation results for nonstationary meshless kernel-based trial spaces.
The rates improve with the smoothness of the solution, the domain, the differential
operator, and the kernel. They hold for large classes of analytic problems, provided
that there is continuous dependence on the data, and they result from a fairly general
framework that possibly has applications to other unsymmetric methods. On the
downside, the results still need improvement by proving better a priori inequalities to
plug into the framework.

There are many possibilities for enhancement and extension of these results:
1. Find sufficient conditions for nonsingularity of square Kansa-type collocation

matrices.
2. Introduce discretization-dependent weights for different parts of residuals into

the theory of this paper in order to align dimension- and order-dependent
convergence rates.
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3. For important problems of applied analysis, state the continuous dependence
of the solution on the data in precise form and derive upper bounds for the
analytic constants.

4. Implement algorithms of this paper as local components of a global algorithm
using localization features like domain decomposition or partitions of unity
and efficiency-enhancing features like preconditioning and iterative solvers.

5. For such a global algorithm, perform large-scale numerical experiments and
compare observed convergence rates with the theoretical ones of this paper.

6. Generalize all of this to unsymmetric methods for weak problems like the
meshless local Petrov–Galerkin (MLPG) method of Atluri and collaborators
[2].

Acknowledgments. The author thanks I. Babuška, C. S. Chen, Y. C. Hon, E.
Kansa, L. Ling, G. Lube, and H. Wendland for several very stimulating discussions.
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Abstract. In this paper we discuss two explicit finite difference schemes, namely a first order
upwind scheme and a second order high resolution scheme, for solving a hierarchical size-structured
population model with nonlinear growth, mortality, and reproduction rates. We prove stability and
convergence for both schemes and provide numerical examples to demonstrate their capability in
solving smooth and discontinuous solutions.
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1. Introduction. In this paper we develop stable and convergent finite differ-
ence schemes for a hierarchical size-structured population model given by the equa-
tions

ut + (g(x,Q(x, t))u)x + m(x,Q(x, t))u = 0, (x, t) ∈ (0, L] × (0, T ],

g(0, Q(0, t))u(0, t) = C(t) +

∫ L

0

β(x,Q(x, t))u(x, t)dx, t ∈ (0, T ],(1.1)

u(x, 0) = u0(x), x ∈ [0, L],

where u(x, t) is the density of individuals having size x at time t, and the nonlocal
term Q(x, t) is defined by

Q(x, t) = α

∫ x

0

w(ξ)u(ξ, t)dξ +

∫ L

x

w(ξ)u(ξ, t)dξ, 0 ≤ α < 1,(1.2)

for some given function w. Q(x, t) depends on the density u in a global way and is
usually referred to as the environment.

A special feature of (1.1) is the boundary condition at size x = 0, which involves
the function g representing the growth rate of an individual, and a global dependency
on the density u(x, t) for all x ∈ (0, L]. The function m in (1.1) represents the mortal-
ity rate of an individual. The function β in the boundary condition of (1.1) represents
the reproduction rate of an individual, and the function C represents the inflow rate
of zero-size individual from an external source. We assume that the functions g, m,
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and β are functions of both the size x and the environment Q, which in turn depends
globally on the density u; hence the problem is highly nonlinear.

The hierarchical structured population model (1.1) describes population dynam-
ics in which the size of an individual determines its access to resources and hence to its
growth or decay. This dependency is based on the environment which is a global func-
tion of the density for all sizes. The hierarchy is determined by the size; for example,
in a population of animals, very often the size of an individual determines what species
its prey can be and by what species it can be eaten, or in a population of forest trees,
the taller the tree, the higher the availability of light it has. In (1.2), since α < 1, we
observe that the environment for size x has a larger weight for the density of those
larger than x than for the density of those smaller than x, representing a particular
instance of the size hierarchy. We refer to, e.g., [3] for a more detailed discussion of
the background and application of the hierarchical size-structured population models.

Hierarchical structured population models have been studied in the literature in,
e.g., [2, 3, 5, 6, 11, 13, 19], usually with more restrictive assumptions on the functions
g, β, and m. For example, in [3], the model (1.1) was considered for the special
situation g = g(Q), β = β(Q), m = m(Q), and C = 0. In [2], the model (1.1) was
studied with the functions g and β depending linearly on the size x, m independent
of x, and C = 0. In [13], (1.1) was investigated with α = 0. The model (1.1) with the
complete generality as stated above was studied in [1], in which an implicit first order
finite difference scheme was analyzed and its stability and convergence, as well as the
existence, uniqueness, and well-posedness (in the L1 norm) of bounded variation weak
solutions for (1.1) were proved. However, the scheme in [1] is not very practical for
actual numerical simulation, because it is implicit and only first order accurate.

In this paper we develop and analyze two explicit finite difference schemes, namely,
a first order upwind scheme and a second order high resolution scheme, for solving
(1.1). We prove stability and convergence for both schemes. Many aspects of our
proof are based on the techniques in [1, 4, 8, 15], but it is not a routine generalization
because of the complication due to the explicit time marching, second order accuracy,
and global constraints in the equation. We also provide numerical examples to demon-
strate the capability of these schemes in solving smooth and discontinuous solutions.
We remark that discontinuous solutions for (1.1) are generic (see, for example, the
numerical example in section 4), unless the boundary condition (e.g., the inflow rate
C of a zero-size individual from an external source) happens to be compatible with
the initial condition.

As in [1], we make the following assumptions on the model functions:
• (H1) g(x,Q) is twice continuously differentiable with respect to x and Q,
g(x,Q) > 0 for x ∈ [0, L), g(L,Q) = 0, and gQ(x,Q) ≤ 0.

• (H2) m(x,Q) is nonnegative continuously differentiable with respect to x
and Q.

• (H3) β(x,Q) is nonnegative continuously differentiable with respect to x and
Q. Furthermore, there is a constant ω1 > 0 such that sup(x,Q)∈[0,L]×[0,∞) β(x,Q)
≤ ω1.

• (H4) w(x) is nonnegative continuously differentiable.
• (H5) C(t) is nonnegative continuously differentiable.
• (H6) u0 ∈ BV [0, L] and u0(x) ≥ 0.

In section 2, we present an explicit, first order upwind scheme for solving (1.1)
and state its stability and convergence. To save space we omit most details of the
proof in this section, since we will provide a similar but technically more complicated
proof in the following section for the second order scheme. In section 3, we present an
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explicit, second order high resolution scheme for solving (1.1) and prove its stability
and convergence. Section 4 contains numerical examples demonstrating the capability
of these two numerical schemes. Concluding remarks are given in section 5.

2. A first order upwind finite difference scheme. First, we briefly describe
the standard notation to be used in this paper. We assume the spatial domain [0, L]
is divided into N cells with cell boundary points denoted by xj for 0 ≤ j ≤ N , x0 = 0,
and xN = L. For simplicity of presentation we will assume that the mesh is uniform
of size Δx, namely, xj = jΔx. This assumption is not essential for the analysis or the
numerical computation; more general meshes can be easily considered. We also denote
the time step by Δt. In fact, this time step Δt = Δtn = tn+1 − tn could change from
one step to the next step, based on stability conditions, but we use the same notation
Δt without the superscript n since we will consider only one-step time discretizations
(forward Euler or Runge–Kutta). We shall denote by un

j and Qn
j the finite difference

approximations of u(xj , t
n) and Q(xj , t

n), respectively. We also denote

gnj = g(xj , Q
n
j ), βn

j = β(xj , Q
n
j ), mn

j = m(xj , Q
n
j ), wj = w(xj), Cn = C(tn).

We define the standard finite difference operators

D−(un
j ) =

un
j − un

j−1

Δx
, Δ+(un

j ) = un
j+1 − un

j , Δ−(un
j ) = un

j − un
j−1,

and we define the standard discrete L1 and L∞ norms and TV seminorm of the grid
function un by

‖un‖1 =

N∑
j=1

|un
j |Δx, ‖un‖∞ = max

0≤j≤N
|un

j |, TV (un) =

N−1∑
j=0

|un
j+1 − un

j |.

The explicit, first order upwind finite difference scheme for (1.1) that we consider
in this section is defined by

un+1
j − un

j

Δt
+

gnj u
n
j − gnj−1u

n
j−1

Δx
+ mn

j u
n
j = 0, 1 ≤ j ≤ N,(2.1)

with the left boundary condition implemented by

gn0 u
n
0 = Cn +

N∑
j=1

βn
j u

n
j Δx,(2.2)

the environment is computed by

Qn
j = α

j∑
i=1

wiu
n
i Δx +

N∑
i=j+1

wiu
n
i Δx,(2.3)

and the initial condition is taken as

u0
j = u0(xj), j = 1, 2, . . . , N.

We denote λ = Δt
Δx , and rewrite the scheme (2.1) as

un+1
j = (1 − λgnj − Δtmn

j )un
j + λgnj−1u

n
j−1, j ≥ 1.(2.4)
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Since we consider only one-step explicit schemes, the right side of (2.4) contains only
terms at time level tn. Hence sometimes we will omit the superscript n when it does
not cause confusion.

We first state the L1 boundedness of the numerical solution un for tn ≤ T , under
the assumption that un

j ≥ 0. We will prove the validity of this assumption later.
Proposition 2.1. If un

j ≥ 0, then ‖un‖1 is bounded when tn ≤ T .
We omit the proof of this proposition since it is similar to and simpler than the

proof of Proposition 3.1 in the next section. The L1 bound is estimated as

‖un‖1 ≤ eω1T ‖u0‖1 +
Ceω1T

ω1
≡ ω2,

where ω1 is the upper bound of β(x,Q) given in assumption H3, and the constant
ω2, as well as a sequence of such constants ωk to be defined later, depend only on the
given functions g,m,C, β, and w, the final time T , and the initial condition u0.

With this L1 bound on the density un
j , we can easily obtain the following upper

bound for the environment Q:

|Qn
j | =

∣∣∣∣∣∣α
j∑

i=1

wiu
n
i Δx +

N∑
i=j+1

wiu
n
i Δx

∣∣∣∣∣∣
≤ ‖w‖∞ max

n
‖un‖1 ≤ ω2‖w‖∞ ≡ Qmax.

We now have a bounded closed domain D = {(x,Q) ∈ [0, L] × [0, Qmax]} that x and
Q reside in; hence by the smoothness assumptions of g, m, β, and w, we have a fixed
constant ω3 such that

sup
D

|f(x,Q)| ≤ ω3, sup
0≤x≤L

|h(x)| ≤ ω3

for

f(x,Q) = g(x,Q), gx(x,Q), gQ(x,Q), gxx(x,Q), gxQ(x,Q), gQQ(x,Q),

m(x,Q), mx(x,Q), mQ(x,Q), β(x,Q),

h(x) = w(x), w′(x).

Thus when Δt ≤ Δt0 ≡ 1
2ω3

and λ ≤ λ0 ≡ 1
2ω3

, we have

1 − λgnj − Δtmn
j ≥ 0, 1 ≤ j ≤ N.(2.5)

This clearly implies un
j ≥ 0 by (2.4). Notice that we can choose λ = λ0 as either

a constant or a variable depending on the time level tn. We have thus verified the
assumption made in Proposition 2.1 about the nonnegativity of un

j .
Next we will state the L∞ boundedness of the numerical solution.
Proposition 2.2. ‖un‖∞ is bounded for tn ≤ T .
We again omit the details of the proof of this proposition since it is similar to

and simpler than the proof of Proposition 3.2 in the next section. We point out only
that, since g is continuous and g(0, Q) > 0 by assumption (H1), we can take

μ = min
Q∈[0,Qmax]

g(0, Q) > 0.(2.6)
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We would then have

|un
0 | ≤

C + ω1ω2

μ
(2.7)

and, for j ≥ 1,

|un
j | ≤ ‖un−1‖∞ + sup

D
|gx(x,Q)| ‖un−1‖∞Δt

≤ (1 + ω3Δt)‖un−1‖∞.

This, together with (2.7), provides the L∞ bound as

‖un‖∞ ≤ max

{
eω3T ‖u0‖∞,

1

μ
(C + ω1ω2)

}
≡ ω4.

In order to prove the total variation stability of the scheme, we would need the
following results.

Lemma 2.3. There exist positive constants ω5, ω6, and ω7 such that

max
1≤j≤N

|Qn
j −Qn

j−1| ≤ ω5Δx, max
1≤j≤N

|gnj − gnj−1| ≤ ω5Δx,(2.8)

max
1≤j≤N

|mn
j −mn

j−1| ≤ ω5Δx

for 1 ≤ j ≤ N ,

|gnj+1 − 2gnj + gnj−1| ≤ ω6

(
Δx2 + Δx|un

j+1 − un
j |
)

(2.9)

for 1 ≤ j ≤ N − 1, and

max
1≤j≤N

|Qn+1
j −Qn

j | ≤ ω7Δt (1 + TV (un)) , max
1≤j≤N

|gn+1
j − gnj | ≤ ω7Δt (1 + TV (un)) ,

max
1≤j≤N

|βn+1
j − βn

j | ≤ ω7Δt (1 + TV (un))(2.10)

for 0 ≤ j ≤ N .
We omit the details of the proof of this lemma since it is similar to and simpler

than the proof of Lemma 3.3 in the next section. We point out only that ω5 in (2.8)
is given by

ω5 = max (ω3ω4, ω3(1 + ω3ω4)) ,

ω6 in (2.9) is given by

ω6 = max
(
ω3(2 + ω5 + 2ω3ω4 + 2ω3ω4ω5), ω2

3

)
,

and ω7 in (2.10) is given by

ω7 = max(ω2
3 , ω3

3 , ω3ω4(ω3 + ω5)L, ω2
3ω4(ω3 + ω5)L).

We are now ready to state the total variation stability of the scheme.
Proposition 2.4. TV (un) is bounded for tn ≤ T .
We once again omit the details of the proof of this proposition since it is similar

to and simpler than the proof of Proposition 3.4 in the next section. We point out
only that with

ω8 = max ((ω3 + ω6)ω4L, ω3 + ω5 + ω4ω6) ,
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ω9 = ω8 + ω4(ω3 + ω5),

ω10 = max

(
ω4ω7

μ
(1 + L) +

ω2
3

μ
,
ω4ω7

μ
(1 + L) +

ω3

μ
+

ω3ω4

μ
(ω3 + ω5)L

)
,

and

ω11 = ω9 + ω10,

we have

TV (un+1) ≤ (1 + ω11Δt)TV (un) + ω11Δt,

which implies the boundedness of TV (un) for tn ≤ T .
Next, we show the Lipschitz stability in t.
Proposition 2.5. There exists a positive constant M such that for any q > p,

we have

N∑
j=1

∣∣∣∣∣u
q
j − up

j

Δt

∣∣∣∣∣Δx ≤ M(q − p).

Proof. Using (2.1) and Lemma 2.3, we have

N∑
j=1

∣∣∣∣∣u
n+1
j − un

j

Δt

∣∣∣∣∣Δx =
N∑
j=1

∣∣D−(gnj u
n
j ) + mn

j u
n
j

∣∣Δx

=

N∑
j=1

∣∣∣∣(gnj − gnj−1

Δx
+ mn

j

)
un
j + gnj−1D

−(un
j )

∣∣∣∣Δx

≤ ω4ω5L + ω3ω4L + ω3TV (un) ≤ M.

Thus,

N∑
j=1

∣∣∣∣∣u
q
j − up

j

Δt

∣∣∣∣∣Δx ≤
q−1∑
n=p

N∑
j=1

∣∣∣∣∣u
n+1
j − un

j

Δt

∣∣∣∣∣Δx ≤ M(q − p).

Following [18] we can define a family of functions {UΔx,Δt} by

UΔx,Δt(x, t) = un
j

for x ∈ [xj−1, xj), t ∈ [tn−1, tn), j = 1, . . . , N , and n = 1, . . . , l. Then, the set of
functions {UΔx,Δt} is compact in the topology of L1((0, L)× (0, T )), and we have the
following result of convergence.

Proposition 2.6. Under the time step restriction for the validity of previous
propositions in this section, there exists a subsequence {UΔxi,Δti} ⊂ {UΔx,Δt} which
converges to a BV ([0, L] × [0, T ]) function u(x, t) in the sense that∫ L

0

|UΔxi,Δti(x, 0) − u0(x)|dx → 0

and ∫ T

0

∫ L

0

|UΔxi,Δti(x, t) − u(x, t)|dxdt → 0
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as i → ∞. Furthermore, the function u, satisfying

‖u‖BV ([0,L]×[0,T ]) ≤ E(‖u0‖BV [0,L], ‖C‖C1[0,T ]),

is the unique BV ([0, L]× [0, T ]) solution u(x, t) for (1.1), and the numerical solution
{UΔx,Δt} converges to it when Δx → 0.

Proof. The convergence of a subsequence to a BV function u(x, t) and the fact that
u(x, t) is a BV weak solution of (1.1) follow from Propositions 2.1, 2.2, 2.4, and 2.5
and [18]. The uniqueness of bounded variation weak solutions of (1.1) is proved in [1].
Using this uniqueness we easily deduce the convergence of the numerical solution
{UΔx,Δt} toward u(x, t) when Δx → 0.

3. A second order high resolution finite difference scheme. The first or-
der scheme defined in the previous section is very diffusive and would need many
grid points to achieve acceptable resolution. In this section we develop and analyze a
second order high resolution finite difference scheme for (1.1), following the minmod
based MUSCL schemes [8, 14]. We remark, however, that the analysis is significantly
more complicated because of the global constraints in (1.1). We note that our scheme
can be easily generalized to the more accurate generalized MUSCL-type scheme simi-
lar to the one in [15] and the total variation bounded modified minmod based scheme
in [16] without affecting the analysis. The second order high resolution finite difference
scheme that we consider in this section is defined by

un+1
j − un

j

Δt
+

f̂n
j+1/2 − f̂n

j−1/2

Δx
+ mn

j u
n
j = 0, 1 ≤ j ≤ N,(3.1)

where the numerical flux f̂n
j+1/2 is defined by

f̂n
j+1/2 =

{
gnj u

n
j + 1

2 (gnj+1 − gnj )un
j + 1

2g
n
j mm(Δ+u

n
j ,Δ−u

n
j ) : j = 2, . . . , N − 2,

gnj u
n
j : j = 0, 1, N − 1, N,

where the minmod function mm is defined by [8]

mm(a, b) =
sign(a) + sign(b)

2
min(|a|, |b|).(3.2)

Clearly, this scheme is second order accurate except at the boundary, where it is first
order accurate. This guarantees second order accuracy in the global L1 norm. The
global boundary condition at the left is implemented by a second order composite
trapezoid rule

gn0 u
n
0 = Cn +

N∑
j=0

′ βn
j u

n
j Δx,(3.3)

where the special summation notation is defined by

j2∑
j=j1

′ aj =
1

2
aj1 +

1

2
aj2 +

j2−1∑
j=j1+1

aj

if j2 − j1 ≥ 1, and of course

j2∑
j=j1

′ aj = 0 if j2 ≤ j1.
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The environment is computed also by a second order composite trapezoid rule, except
for the integral over the first interval which is computed by the right-ended rectangular
rule to avoid using un

0 . That is,

Qn
0 = ω1u

n
1Δx +

N∑
i=1

′ wiu
n
i Δx, Qn

1 = αω1u
n
1Δx +

N∑
i=1

′ wiu
n
i Δx,

Qn
j = αω1u

n
1Δx + α

j∑
i=1

′ wiu
n
i Δx +

N∑
i=j

′ wiu
n
i Δx, 2 ≤ j ≤ N.(3.4)

Notice that this approximation to Qn
j is second order accurate. The initial condition

is still taken as

u0
j = u0(xj), j = 1, 2, . . . , N.

Still using the notation λ = Δt
Δx , we can write the scheme (3.1) as

un+1
j = un

j − λ(f̂n
j+1/2 − f̂n

j−1/2) − Δtmn
j u

n
j , j ≥ 1.(3.5)

We denote

An
j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2

(
gnj+1 + gnj + gnj

mm(Δ+un
j ,Δ−un

j )

Δ−un
j

− gnj−1
mm(Δ−un

j ,Δ−un
j−1)

Δ−un
j

)
: j = 3, . . . , N − 2,

1
2

(
gnj+1 + gnj + gnj

mm(Δ+un
j ,Δ−un

j )

Δ−un
j

)
: j = 2,

1
2

(
2gnj − gnj−1

mm(Δ−un
j ,Δ−un

j−1)

Δ−un
j

)
: j = N − 1,

gnj : j = 1, N,

Bn
j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2 (Δ+g

n
j + Δ−g

n
j ) : j = 3, . . . , N − 2,

1
2Δ+g

n
j : j = 2,

1
2Δ−g

n
j : j = N − 1,

Δ−g
n
j : j = 1, N,

and rewrite the scheme (3.5) as

un+1
j = (1 − λAn

j −mn
j Δt)un

j + λ(An
j −Bn

j )un
j−1, j ≥ 1.(3.6)

We first prove the L1 boundedness of the numerical solution un for tn ≤ T , under
the assumption that un

j ≥ 0. We will prove the validity of this assumption later.
Proposition 3.1. If un

j ≥ 0, then ‖un‖1 is bounded when tn ≤ T .
Proof. As before, since un

j ≥ 0, mn
j ≥ 0, and gnN = 0, we have

‖un+1‖1 − ‖un‖1

Δt
=

N∑
j=1

un+1
j − un

j

Δt
Δx

= −
N∑
j=1

(f̂n
j+1/2 − f̂n

j−1/2) −
N∑
j=1

mn
j u

n
j Δx

≤ −
N∑
j=1

(f̂n
j+1/2 − f̂n

j−1/2)
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= gn0 u
n
0

= Cn +
1

2
βn

0 u
n
0Δx +

1

2
βn
Nun

NΔx +

N−1∑
j=1

βn
j u

n
j Δx

≤ Cn +
1

2
βn

0 u
n
0Δx + ω1‖un‖1.

We now assume, for the time being, that uk
0 ≤ θ, where θ is a constant. This as-

sumption will be justified later. If Δx ≤ 2C/ω1θ, where again C denotes the upper
bound of C(t) for t ∈ [0, T ] and ω1 is the upper bound of β(x,Q), then we have
1
2β

k
0u

k
0Δx ≤ C. For constant Δt, we then immediately have

‖un‖1 ≤ (1 + ω1Δt)‖un−1‖1 + 2CΔt

≤ (1 + ω1Δt)n‖u0‖1 +

n−1∑
j=0

(1 + ω1Δt)j2C Δt

≤ eω1T ‖u0‖1 +
2Ceω1T

ω1
≡ M2,

where the constant M2, as well as a sequence of such constants Mk to be defined
later, depend only on the given functions g,m,C, β, and w, the final time T , and the
initial condition u0. This proof is clearly also valid, with a minor modification, for
the situation when Δt is not a constant.

We now look at the bound of Qn
j . For 0 ≤ j ≤ N , we have, by the definition of

Qn
j in (3.4), that

Qn
j ≤ ω1u

n
1Δx +

N∑
i=1

′ wiu
n
i Δx ≤ 3

2
ω3M2 ≡ Qmax,

and therefore

gn0 ≥ min
0≤Q≤Qmax

g(0, Q) ≡ μ > 0.(3.7)

Thus if Δx ≤ μ/ω1, we have gn0 − 1
2β0Δx ≥ μ/2; hence from (3.3) we deduce

un
0 ≤ 2

μ
(ω1M2 + C).(3.8)

The constants on the right-hand side of the inequality above do not depend on θ;
hence the assumption on the boundedness of uk

0 is justified.
As before, we now have a bounded closed domain D = {(x,Q) ∈ [0, L]×[0, Qmax]}

that x and Q reside in; hence by the smoothness assumptions of g, m, β, and w, we
have a fixed constant M3 such that

sup
D

|f(x,Q)| ≤ M3, sup
0≤x≤L

|h(x)| ≤ M3, sup
0≤t≤T

|η(t)| ≤ M3

for

f(x,Q) = g(x,Q), gx(x,Q), gQ(x,Q), gxx(x,Q), gxQ(x,Q), gQQ(x,Q),

m(x,Q), mx(x,Q), mQ(x,Q), β(x,Q),

h(x) = w(x), w′(x), η(t) = C(t), C ′(t).
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It can be easily shown that

|An
j | ≤

3

2
max
D

|g(x,Q)| ≤ 3

2
M3;

thus when Δt ≤ Δt0 ≡ 1
2M3

and λ ≤ λ0 ≡ 1
3M3

, we have

1 − λAn
j − Δtmn

j ≥ 0, 1 ≤ j ≤ N.(3.9)

Notice that
2(An

j −Bn
j )

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
gnj

(
1 +

mm(Δ+un
j ,Δ−un

j )

Δ−un
j

)
+ gnj−1

(
1 − mm(Δ−un

J ,Δ−un
j−1)

Δ−un
j

)
: j = 3, . . . , N − 2,

gnj

(
2 +

mm(Δ+un
J ,Δ−un

j )

Δ−un
j

)
: j = 2,

gnj + gnj−1

(
1 − mm(Δ−un

j ,Δ−un
j−1)

Δ−un
j

)
: j = N − 1,

2gnj−1 : j = 1, N,

which implies, by the definition of the minmod function (3.2), that

An
j −Bn

j ≥ 0, 1 ≤ j ≤ N.(3.10)

This, together with (3.9), clearly implies un
j ≥ 0 by (3.6). Notice that we can choose

λ = λ0 as either a constant or a variable depending on the time level tn. We have
thus verified the assumption made in Proposition 3.1 about the nonnegativity of un

j .
Next we will prove the L∞ boundedness of the numerical solution.
Proposition 3.2. ‖un‖∞ is bounded for tn ≤ T .
Proof. First, we have already shown the boundedness of un

0 in (3.8). As for j ≥ 1,
we use (3.6), (3.9), (3.10), and the nonnegativity of m to obtain

|un
j | ≤ (1 − λAn−1

j − Δtmn−1
j )‖un−1‖∞ + λ(An−1

j −Bn−1
j )‖un−1‖∞

≤ ‖un−1‖∞ − λBn−1
j ‖un−1‖∞.

We can easily verify that, for 2 ≤ j ≤ N ,

Qj −Qj−1 =
1

2
(α− 1)(wjuj + wj−1uj−1)Δx.(3.11)

For j = 1, we have a similar formula:

Q1 −Q0 = (α− 1)ω1u1.(3.12)

Therefore, we have

gn−1
j − gn−1

j−1 = g(xj , Q
n−1
j ) − g(xj−1, Q

n−1
j ) + g(xj−1, Q

n−1
j ) − g(xj−1, Q

n−1
j−1 )

= gx(x̂j , Q
n−1
j )Δx + gQ(xj−1, Q̂

n−1
j )(Qn−1

j −Qn−1
j−1 ).

Here and below ẑj denotes a value between zj−1 and zj for z = x or z = Q. By
assumption, α < 1, gQ(x,Q) ≤ 0. We clearly have, for 2 ≤ j ≤ N ,

−gQ(xj−1, Q̂
n−1
j )(Qn−1

j −Qn−1
j−1 ) = −1

2
gQ(xj−1, Q̂

n−1
j )(α− 1)(wju

n−1
j + wj−1u

n−1
j−1 )Δx

≤ 0,
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and also

−gQ(x0, Q̂
n−1
1 )(Qn−1

1 −Qn−1
0 ) = −gQ(x0, Q̂

n−1
1 )(α− 1)ω1u

n−1
1 Δx ≤ 0.

Now, noticing that −Bj ≤ maxi(gi−1 − gi) for j ≥ 1, we obtain immediately, for
j ≥ 1,

|un
j | ≤ ‖un−1‖∞ + sup

D
|gx(x,Q)| ‖un−1‖∞Δt ≤ (1 + M3Δt)‖un−1‖∞.

This, together with (3.8), clearly implies

‖un‖∞ ≤ max

{
eM3T ‖u0‖∞,

2

μ
(ω1M2 + C)

}
≡ M4.

Before proving the total variation stability of the scheme, we would need to prove
the following results.

Lemma 3.3. There exist positive constants M5, M6, and M7 such that

max
1≤j≤N

|Qn
j −Qn

j−1| ≤ M5Δx, max
1≤j≤N

|gnj − gnj−1| ≤ M5Δx,(3.13)

max
1≤j≤N

|mn
j −mn

j−1| ≤ M5Δx,

for 1 ≤ j ≤ N ;

|gnj+1 − 2gnj + gnj−1| ≤ M6Δx
(
Δx + |un

j − un
j−1| + |un

j+1 − un
j |
)
,(3.14)

1 ≤ j ≤ N − 1,

|Bn
j −Bn

j−1| ≤ M6Δx
(
Δx + |un

j − un
j−1| + |un

j+1 − un
j |
)
,

4 ≤ j ≤ N − 2;

and

|Qn+1
j −Qn

j | ≤ M7TV (un)Δt + M7Δt, |gn+1
j − gnj | ≤ M7TV (un)Δt + M7Δt,

(3.15)

|βn+1
j − βn

j | ≤ M7TV (un)Δt + M7Δt

for 0 ≤ j ≤ N .
Proof. By (3.11), we have, for 2 ≤ j ≤ N ,

|Qn
j −Qn

j−1| =

∣∣∣∣12(α− 1)(wju
n
j + wj−1u

n
j−1)

∣∣∣∣Δx ≤ ‖w‖∞‖un‖∞Δx ≤ M3M4Δx,

which is clearly also valid for j = 0 by (3.12). Therefore,

|gnj − gnj−1| =
∣∣g(xj , Q

n
j ) − g(xj−1, Q

n
j ) + g(xj−1, Q

n
j ) − g(xj−1, Q

n
j−1)

∣∣
≤ |gx(x̂j , Q

n
j )|Δx + |gQ(xj−1, Q̂j)| |Qn

j −Qn
j−1|

≤ M3Δx + M3(M3M4Δx) = M3(1 + M3M4)Δx,

|mn
j −mn

j−1| =
∣∣m(xj , Q

n
j ) −m(xj−1, Q

n
j ) + m(xj−1, Q

n
j ) −m(xj−1, Q

n
j−1)

∣∣
≤ |mx(x̂j , Q

n
j )|Δx + |mQ(xj−1, Q̂j)| |Qn

j −Qn
j−1|

≤ M3Δx + M3(M3M4Δx) = M3(1 + M3M4)Δx.
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We have thus proved (3.13) with

M5 = max (M3M4, M3(1 + M3M4)) .

As to (3.14), for 4 ≤ j ≤ N − 2, we can easily verify

|Bn
j −Bn

j−1| =

∣∣∣∣12(gnj+1 − 2gnj + gnj−1) +
1

2
(gnj − 2gnj−1 + gnj−2)

∣∣∣∣
≤ max

i
|gni+1 − 2gni + gni−1|;

hence we need only to prove the first inequality in (3.14). Using (3.11), we have, for
1 ≤ j ≤ N − 1,

|gnj+1 − 2gnj + gnj−1| = |(gnj+1 − gnj ) − (gnj − gnj−1)|

=
∣∣∣Δ+

(
gx(x̂j , Q

n
j )Δx + gQ(xj−1, Q̂

n
j )(Qn

j −Qn
j−1)

)∣∣∣
≤ |gx(x̂j+1, Q

n
j+1) − gx(x̂j , Q

n
j )|Δx

+ |gQ(xj , Q̂
n
j+1)wj+1u

n
j+1 − gQ(xj−1, Q̂

n
j )wju

n
j |

(1 − α)

2
Δx

+ |gQ(xj , Q̂
n
j+1)wju

n
j − gQ(xj−1, Q̂

n
j )wj−1u

n
j−1|

(1 − α)

2
Δx

= I + II + III,

where

I = |gx(x̂j+1, Q
n
j+1) − gx(x̂j , Q

n
j )|Δx

= |gxx(xj+1, Q
n
j+1)(x̂j+1 − x̂j) + gxQ(x̂j , Q

n

j+1)(Q
n
j+1 −Qn

j )|Δx

≤ 2M3Δx2 + M3M5Δx2;

and

II =
∣∣∣gQ(xj , Q̂

n
j+1)wj+1u

n
j+1 − gQ(xj−1, Q̂

n
j )wju

n
j

∣∣∣ (1 − α)

2
Δx

=
∣∣∣(gQ(xj , Q̂

n
j+1) − gQ(xj−1, Q̂

n
j ))wj+1u

n
j+1 + gQ(xj−1, Q̂

n
j )un

j+1(wj+1 − wj)

+gQ(xj−1, Q̂
n
j )wj(u

n
j+1 − un

j )
∣∣∣ (1 − α)

2
Δx

≤ 1

2

∣∣∣gQx(x̂j , Q̂
n
j+1)Δx + gQQ(xj−1, Q

n

j+1)(Q̂
n
j+1 − Q̂n

j )
∣∣∣ ‖w‖∞‖un‖∞Δx

+
M3

2
‖un‖∞‖wx‖∞Δx2 +

M3

2
‖w‖∞|un

j+1 − un
j |Δx

≤ M2
3

2
M4Δx2 +

M2
3M4

2
Δx(2M5Δx) +

M2
3M4

2
Δx2 +

M2
3

2
|un

j+1 − un
j |Δx

≤ M2
3M4(1 + M5)Δx2 +

M2
3

2
Δx|un

j+1 − un
j |.

Similarly,

III =
∣∣∣gQ(xj , Q̂

n
j+1)wju

n
j − gQ(xj−1, Q̂

n
j )wj−1u

n
j−1

∣∣∣ (1 − α)

2
Δx

≤ M2
3M4(1 + M5)Δx2 +

M2
3

2
Δx|un

j+1 − un
j−1|.
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Hence we have proved (3.14) with

M6 = max

(
M3(2 + M5 + 2M3M4 + 2M3M4M5),

M2
3

2

)
.

For (3.15), 0 ≤ j ≤ N , we have, by the definition of Qj in (3.4), that

|Qn+1
j −Qn

j | ≤
3

2

N∑
i=1

|un+1
i − un

i |wiΔx ≤ 3

2
M3

N∑
i=1

|un+1
i − un

i |Δx.

From (3.6) and the definition of An
i and Bn

i , we have, for 1 ≤ i ≤ N ,

|un+1
i − un

i | =
∣∣−λAn

i u
n
i + λ(An

i −Bn
i )un

i−1 −mn
i u

n
i Δt

∣∣
≤ λ|An

i | |un
i − un

i−1| + λ|Bn
i |un

i−1 + ‖mn‖∞‖un‖∞Δt

≤ 2λ sup
D

|g(x,Q)| |un
i − un

i−1| + λM4 max
k

|gnk − gnk−1| + M3M4Δt

≤ 2λM3|un
i − un

i−1| + M4M5Δt + M3M4Δt.(3.16)

Thus we have

|Qn+1
j −Qn

j | ≤
3

2
M3

N∑
i=1

(2λM3|un
i − un

i−1| + M4M5Δt + M3M4Δt)Δx

= 3M2
3TV (un)Δt +

3

2
M3M4(M3 + M5)LΔt,

which implies

|gn+1
j − gnj | = |g(xj , Q

n+1
j ) − g(xj , Q

n
j )|

= |gQ(xj , Q̃j)| |Qn+1
j −Qn

j | ≤ M3|Qn+1
j −Qn

j |

≤ 3M3
3TV (un)Δt +

3

2
M2

3M4(M3 + M5)LΔt,

|βn+1
j − βn

j | = |β(xj , Q
n+1
j ) − β(xj , Q

n
j )|

= |βQ(xj , Q̃j)| |Qn+1
j −Qn

j | ≤ M3|Qn+1
j −Qn

j |

≤ 3M3
3TV (un)Δt +

3

2
M2

3M4(M3 + M5)LΔt.

We have thus proved (3.15) with

M7 = max

(
3M2

3 , 3M3
3 ,

3

2
M3M4(M3 + M5)L,

3

2
M2

3M4(M3 + M5)L

)
.

We are now ready to prove the total variation stability of the scheme.
Proposition 3.4. TV (un) is bounded for tn ≤ T .
Proof. First, we rewrite the scheme (3.6) as

un+1
j = un

j − λAn
j (un

j − un
j−1) − λBn

j u
n
j−1 − Δtmn

j u
n
j , j ≥ 1.

We then have

un+1
j+1 − un+1

j =
[(

1 − λAn
j+1

) (
un
j+1 − un

j

)
+ λ

(
An

j −Bn
j

) (
un
j − un

j−1

)]
+
[
−λun

j

(
Bn

j+1 −Bn
j

)]
+
[
−Δt(mn

j+1u
n
j+1 −mn

j u
n
j )
]

= Dn
j + En

j + Fn
j , j = 1, 2, . . . , N − 1.
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Hence

TV (un+1) =

N−1∑
j=0

|un+1
j+1 − un+1

j | ≤
N−1∑
j=1

|Dn
j | +

N−1∑
j=1

|En
j | +

N−1∑
j=1

|Fn
j | + |un+1

1 − un+1
0 |.

We now estimate each term separately. First we have

N−1∑
j=1

|Dn
j | ≤

N−1∑
j=1

(1 − λAn
j+1)|un

j+1 − un
j | + λ(An

j −Bn
j )|un

j − un
j−1|

=

N−1∑
j=1

|un
j+1 − un

j | − λ

N−1∑
j=1

Bn
j |un

j − un
j−1| + λgn1 |un

1 − un
0 | − λgnN |un

N − un
N−1|

≤
N−1∑
j=1

|un
j+1 − un

j | + M5ΔtTV (un) + λgn1 |un
1 − un

0 |,

where in the first inequality we have used (3.9) and (3.10), and in the last inequality
we have used Lemma 3.3, the fact that

|Bj | ≤ max
i

|gi − gi−1|, 1 ≤ j ≤ N,(3.17)

and the fact that g(xN , Q) = 0. Using again Lemma 3.3 and (3.17), we have

N−1∑
j=1

|En
j | ≤

N−2∑
j=4

λ|Bn
j+1 −Bn

j | |un
j | +

∑
j=1,2,3,N−1

λ|Bn
j+1 −Bn

j | |un
j |

≤ M4M6Δt

⎛⎝N−2∑
j=4

Δx +

N−2∑
j=4

(|un
j+2 − un

j+1| + |un
j+1 − un

j |)

⎞⎠ + 8λM4‖Bn‖∞

≤ M4M6LΔt + 2M4M6ΔtTV (un) + 8M4M5Δt.

The term Fn
j can be estimated as

|Fn
j | = Δt|mn

j+1u
n
j+1 −mn

j u
n
j+1 + mn

j u
n
j+1 −mn

j u
n
j |

≤ M3M4ΔtΔx + M3|un
j+1 − un

j |Δt.

Hence we have

N−1∑
j=1

|Fn
j | ≤ M3M4LΔt + M3ΔtTV (un).

Let

M8 = max{M4((M3 + M6)L + 8M5), M3 + M5 + 2M4M6};

we have

TV (un+1) ≤ M8Δt + M8Δt TV (un) +

N−1∑
j=1

|un
j − un

j−1| + λgn1 |un
1 − un

0 | + |un+1
1 − un+1

0 |.
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Next we discuss |un+1
1 − un+1

0 |. This boundary term has the form

|un+1
1 − un+1

0 | = |(1 − λgn1 − Δtmn
1 )un

1 + λgn0 u
n
0 − un+1

0 |
= |(1 − λgn1 )(un

1 − un
0 ) −mn

1u
n
1Δt− λ(gn1 − gn0 )un

0 − (un+1
0 − un

0 )|
≤ (1 − λgn1 )|un

1 − un
0 | + M3M4Δt + M5M4Δt + |un+1

0 − un
0 |.

We then have

TV (un+1) ≤ M9Δt + M9Δt TV (un) + TV (un) + |un+1
0 − un

0 |,

where

M9 = M8 + M4(M3 + M5).

Finally, we must estimate |un+1
0 − un

0 |. From (3.3), we have

gn+1
0 un+1

0 − gn0 u
n
0 = gn+1

0 (un+1
0 − un

0 ) + (gn+1
0 − gn0 )un

0

= Cn+1 − Cn +

N∑
j=0

′ (βn+1
j un+1

j − βn
j u

n
j

)
Δx

= Cn+1 − Cn +

N∑
j=0

′ (βn+1
j (un+1

j − un
j ) + (βn+1

j − βn
j )un

j

)
Δx.

Rearranging terms and using (3.16) and the results of Lemma 3.2, we obtain∣∣∣∣(gn+1
0 − 1

2
βn+1

0 Δx

)
(un+1

0 − un
0 )

∣∣∣∣
≤ |Cn+1 − Cn| + |gn+1

0 − gn0 |un
0 +

1

2
un

0Δx|βn+1
0 − βn

0 |

+

N∑
j=1

(βn+1
j |un+1

j − un
j | + |βn+1

j − βn
j |un

j )Δx

≤ M3Δt + M4M7Δt(1 + TV (un)) +
1

2
M4M7ΔxΔt(1 + TV (un))

+M3

N∑
j=1

(
2λM3|un

j − un
j−1| + M4(M3 + M5)Δt

)
Δx + M4M7LΔt(1 + TV (un))

≤
(
M4M7(2 + L) + 2M2

3

)
Δt TV (un) + (M3 + M4M7(2 + L) + M3M4(M3 + M5)L) Δt,

where in the last inequality we have assumed Δx ≤ 2. Notice that, by (3.7), gn+1
0 ≥

μ > 0. Hence if Δx ≤ μ
M3

, we have gn+1
0 − 1

2β
n+1
0 Δx ≥ μ

2 > 0. Hence

|un+1
0 − un

0 | ≤ M10TV (un)Δt + M10Δt

with

M10 =
1

μ
max

(
M4M7(2 + L) + 2M2

3 , M3 + M4M7(2 + L) + M3M4(M3 + M5)L
)
.

Now, with M11 = M9 + M10, we have

TV (un+1) ≤ (1 + M11Δt)TV (un) + M11Δt,
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which implies the boundedness of TV (un).
Next, we show the Lipschitz stability in t.
Proposition 3.5. There exists a positive constant M such that for any q > p,

we have

N∑
j=1

∣∣∣∣∣u
q
j − up

j

Δt

∣∣∣∣∣Δx ≤ M(q − p).

Proof. Using (3.6), (3.17), and the definition of An
j and Bn

j , we obtain

N∑
j=1

∣∣∣∣∣u
n+1
j − un

j

Δt

∣∣∣∣∣Δx =
N∑
j=1

∣∣∣∣(Bn
j

Δx
+ mn

j

)
un
j + (An

j −Bn
j )D−(un

j )

∣∣∣∣Δx

≤
N∑
j=1

max
i

|gni − gni−1|un
j + M3

N∑
j=1

un
j Δx + 3M3

N∑
j=1

|un
j − un

j−1|

≤ M4M5L + M3M4L + 3M3TV (un) ≤ M.

Thus,

N∑
j=1

∣∣∣∣∣u
q
j − up

j

Δt

∣∣∣∣∣Δx ≤
q∑

n=p

N∑
j=1

∣∣∣∣∣u
n+1
j − un

j

Δt

∣∣∣∣∣Δx ≤ M(q − p).

If we again define a family of functions {UΔx,Δt} by

UΔx,Δt(x, t) = un
j

for x ∈ [xj−1, xj), t ∈ [tn−1, tn), j = 1, . . . , N , and n = 1, . . . , l, then we have the
following proposition. The proof is the same as that for Proposition 2.6.

Proposition 3.6. Under the time step restriction for the validity of previous
propositions in this section, the numerical solution {UΔx,Δt} converges to the unique
BV ([0, L] × [0, T ]) solution u(x, t) for (1.1) when Δx → 0.

Finally, we remark that the scheme (3.1) is second order in space but only first
order in time. We should use the following second order TVD Runge–Kutta time
discretization [17]:

u(1) = un + ΔtL(un), un+1 =
1

2

(
un + u(1) + ΔtL(u(1))

)
,(3.18)

where L is the spatial operator. This will yield a second order (in space and time)
scheme which shares the same stability and convergence properties as the scheme
(3.1). See also [9, 10].

4. Numerical examples. In this section we perform numerical experiments to
demonstrate the properties of the schemes developed in previous sections. We take
the initial condition as u0(x) = −x2 + x + 1, with the parameters and functions in
(1.1) and (1.2) taken as L = 1, α = 0.5, w(x) = 1, g(x,Q) = (1−x)(5−x+x2/2−Q),
m(x,Q) = 4 + 2Q + (1 − x)2/2, β(x,Q) = (1 + x)(2 − Q). As in [1], the choice of
these particular functions and initial boundary conditions is simply to demonstrate
the accuracy and high resolution properties of our schemes. However, as proven in
the previous sections, our schemes will be stable and convergent for all population
models (1.1) satisfying assumptions (H1)–(H6).
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Fig. 4.1. Left: The evolution of the solution to t = 2. Right: Numerical solutions using
N = 100 uniform grid points using the first order scheme (triangles) and using the second order
scheme (circles), versus the reference solution (solid line) obtained by the second order scheme using
N = 2000 grid points.

For the second order scheme, based on a local truncation error analysis, it is more
accurate to adjust the mesh size for the second interval x2 − x1 from Δx to 3

2Δx,
and the mesh size for the second last interval xN−1 − xN−2 from Δx to 1

2Δx (not
the actual mesh sizes in the physical space—just that used in the scheme); hence we
have made this adjustment in the computation. This apparently does not affect the
stability and convergence analysis as the analysis does not require uniform meshes.
The time step is chosen as Δtn = 0.8Δx/‖gn(x,Q) + mn(x,Q)Δx‖∞ for the first
order scheme, according to (2.5), and as Δtn = 0.8Δx/‖ 3

2g
n(x,Q) + mn(x,Q)Δx‖∞

for the second order scheme, according to (3.9).
First we demonstrate that the schemes are nonoscillatory in the presence of so-

lution discontinuities. For this purpose we take C(t) = 3, which causes an incom-
patibility of the boundary data and the initial condition at the origin. The solution
then has a discontinuity emitted from the left boundary and traveling to the right,
until it moves outside the right boundary. See Figure 4.1, left, for the evolution of
the solution until t = 2. When t = 0.5, the solution still contains a discontinuity. The
numerical solutions using N = 100 uniformly spaced grid points for both the first
order scheme and the second order scheme are plotted in Figure 4.1, right, against a
reference solution which is obtained by the second order scheme with N = 2000 grid
points. We can see clearly that both schemes can resolve the discontinuity without os-
cillation, and the second order scheme resolves the discontinuity much better without
introducing spurious numerical oscillations. This verifies the high resolution property
of the second order scheme. The solution for this problem changes very little after
t = 2. We plot the rather smooth and monotone solution at t = 20 for both the first
order scheme and the second order scheme in Figure 4.2. For such simple solutions
there is no noticeable difference between the two schemes. Both schemes are stable
for long time simulation.

Next, we demonstrate that the schemes can achieve their designed accuracy for
smooth solutions. For this purpose we take C(t) = 38

21 + t, which ensures the com-
patibility of the boundary data and the initial condition at the origin. The solution
then is continuous but has a discontinuous derivative (a kink) emitted from the left
boundary and traveling to the right, until it moves outside the right boundary. When
t = 2, the kink has already moved out of the right boundary and solution becomes
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Fig. 4.2. Solution at t = 20. N = 100 uniform grid points using the first order scheme (dashed
line) and using the second order scheme (solid line).

Table 4.1

L1 errors and numerical order of accuracy of the first and second order schemes using N
uniformly spaced mesh points.

N First order scheme Second order scheme

N L1 error order L1 error order
10 9.49E-02 3.60E-02
20 4.61E-02 1.04 1.19E-02 1.60
40 2.25E-02 1.03 3.88E-03 1.62
80 1.10E-02 1.03 1.18E-03 1.71
160 5.44E-03 1.02 3.03E-04 1.97

smooth. Since we do not know the exact solution, we use the second order scheme
with N = 10240 grid points to produce a reference solution and then compute the
L1 errors of the first and second order schemes using coarser meshes; see Table 4.1.
We can see that the designed orders of accuracy are obtained by the first and second
order schemes for this smooth solution.

5. Concluding remarks. We have developed a first order explicit upwind
scheme and a second order explicit high resolution scheme for solving a hierarchical
size-structured population model with nonlinear growth, mortality, and reproduction
rates, which contains global terms both for the boundary condition and for the coef-
ficients in the equations. Stability and convergence are proved for both schemes for
solutions with bounded total variation, which include discontinuous solutions. Numer-
ical results are provided to demonstrate the capability of these schemes in resolving
smooth as well as discontinuous solutions. Future work will include the design of
higher order WENO schemes [12] with suitable treatment for boundary conditions
and global constraints, and the study of schemes for the asymptotic behavior of the
solution with techniques such as upwinding of the source, well-balancedness, etc.,
along the lines of, e.g., [7].
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AN ADAPTIVE LEAST-SQUARES MIXED FINITE ELEMENT
METHOD FOR ELASTO-PLASTICITY∗

GERHARD STARKE†

Abstract. A least-squares mixed finite element method for the incremental formulation of
elasto-plasticity using a plastic flow rule of von Mises type with isotropic hardening is presented.
This approach is based on the use of the stress tensor, in addition to the displacement field, as
independent process variables. The nonlinear least-squares functional is shown to constitute an a
posteriori error estimator on which an adaptive refinement strategy may be based. For the finite
element implementation under plane strain conditions, quadratic (i.e., next-to-lowest-order) Raviart–
Thomas elements are used for the stress approximation, while the displacement is represented by
standard quadratic conforming elements. Computational results for a benchmark problem of elasto-
plasticity under plane strain conditions are presented in order to illustrate the effectiveness of the
least-squares approach.

Key words. least-squares mixed finite element method, elasto-plasticity, isotropic hardening, a
posteriori error estimator

AMS subject classifications. 65N30, 65N50, 74C05
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1. Introduction. In this paper, a least-squares mixed finite element method for
the incremental formulation of elasto-plastic deformation models is studied. This ap-
proach works with the stress tensor as an independent process variable, in addition to
the displacement field. It is based on a first-order system modelling the elasto-plastic
deformation process. The method studied in this paper constitutes an extension of
the least-squares mixed finite element approach for linear elasticity presented in [12].
The closely related least-squares approaches investigated in [13, 14] could similarly
be generalized to the elasto-plastic case. The main result of this paper is that, un-
der the assumption of a plastic flow rule of von Mises type with isotropic hardening,
the nonlinear least-squares functional associated with elasto-plasticity is elliptic with
respect to an appropriate product space for the stresses and displacements. Our com-
putational results suggest that the approximation properties actually deteriorate in
the perfectly plastic case. This implies that it is not possible to extend our elliptic-
ity result to perfect plasticity. Despite this deterioration of the approximation order
in the perfectly plastic case, the adaptive implementation of the least-squares finite
element method provides remarkably accurate results, in particular, for the stresses.

Finite element methods of least-squares type have been the object of many studies
recently (see, e.g., the survey [7]). These methods may be viewed as an alternative to
mixed finite element methods of saddle point structure whenever accurate approxima-
tions of the stress tensor are desired. Among its advantages is the greater flexibility
in combining finite element spaces for the different process variables which are not
restricted by an inf-sup condition. Moreover, if the least-squares functional is elliptic
with respect to some norm on the underlying function spaces, then its local eval-
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uation provides an a posteriori error estimator. This may be used in an adaptive
refinement technique; see [5] for a detailed study of such strategies in the context of
least-squares formulations. The most appropriate combination for the elasto-plasticity
models treated in this paper consists of Raviart–Thomas elements for the stresses cou-
pled with conforming finite element spaces of the same polynomial degree for the dis-
placement components. This is due to the fact that the same order of approximation
is achieved for the individual variables. In particular, next-to-lowest-order Raviart–
Thomas spaces are combined with piecewise quadratic conforming finite elements in
our computations.

The numerical simulation of elasto-plastic deformation processes has been an in-
tensive area of research for several decades. Two monographs which appeared at the
end of the last century cover the state of the art from a more engineering-oriented
perspective [22] and a more abstract mathematical view [15]. Error estimation and
adaptive refinement strategies for elasto-plasticity based on duality techniques were
proposed and studied in [19, 20]. Other approaches to adaptive finite element com-
putations for elasto-plastic deformation processes are described in [1]. Even earlier,
several error indicators were investigated about their suitability for problems of elasto-
plasticity from an engineering point of view in [4]. The solution of the nonlinear al-
gebraic systems associated with finite element discretizations of elasto-plastic models
was the subject of [3, 6, 24]. As in [24], multigrid methods were applied in [16] to
the solution of elasto-plastic deformation models discretized by finite elements. The
efficiency was tested for benchmark test problems defined in [23], which constitutes
another contribution to the same book resulting from a larger project on adaptive
finite element methods in computational mechanics in which several research groups
were involved. A detailed comparison of our least-squares finite element method with
the adaptive approaches mentioned above is beyond the scope of this paper. Such a
comparison would certainly depend on the choice of norm in which the approximation
of the different variables is desired. At the very least, our least-squares method can be
expected to provide more accurate stress approximations, in terms of computational
effort, than a displacement-based approach.

The issue of time discretization is omitted almost completely in this paper by
restricting ourselves to the implicit Euler scheme. Issues of the time discretization are
important, however, in order to obtain accurate simulations of elasto-plastic deforma-
tion processes; see [10, 11] for details on this subject. A general framework for the
numerical approximation of different models of elasto-plasticity was recently provided
in [17].

In section 2, the first-order system model of incremental elasto-plasticity and the
corresponding least-squares variational formulation are derived. The equivalence of
the least-squares functional to a certain error norm on the product space of stresses
and displacements is shown in section 3. This establishes ellipticity of the least-
squares variational formulation and implies that the local evaluation of the least-
squares functional constitutes an a posteriori error estimator to be used in adaptive
refinement strategies. Section 4 contains the reduction to plane strain conditions and
the specific finite element spaces appropriate under these circumstances. Finally, in
section 5 the numerical results obtained with our adaptive least-squares method for
a benchmark problem of elasto-plasticity are presented.

2. Least-squares formulation of incremental elasto-plasticity. Elasto-
plastic deformation processes are usually modelled by a first-order system of the form
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div σ = 0 ,

σ = C(ε(u) − p)
(2.1)

for the stress tensor σ : Ω → R
3×3 and the displacement field u : Ω → R

3. In (2.1),
div σ means row-wise application of the divergence operator, and ∇u contains the
gradient vectors of the components of u in each row. Similarly to the model of linear
elasticity,

ε(u) =
1

2
(∇u + (∇u)T )(2.2)

denotes the strain tensor, and

Cε = 2με + λ (tr ε)I(2.3)

represents the linear material law. The difference from the elastic case lies in the term
p, which stands for the plastic strains satisfying additional constraints. To this end,
we need to define the deviatoric stress part

dev(σ) = σ − 1

3
(tr σ) I .(2.4)

The system (2.1) is extended by the constraint

|dev(σ)| ≤
√

2

3
K(α)(2.5)

with a hardening function K(α) and the evolution equations

ṗ = γ
dev(σ)

|dev(σ)| , α̇ = γ

√
2

3
.(2.6)

The parameter γ acts as a Lagrange multiplier associated with the constraint (2.5)
and therefore satisfies

γ ≥ 0 and γ

(
|dev(σ)| −

√
2

3
K(α)

)
= 0 .(2.7)

The hardening parameter α : Ω → R constitutes an additional process variable in
the case of elasto-plasticity with hardening. Due to (2.6), elasto-plasticity models
become time-dependent with the need to employ an appropriate time-discretization
scheme. The model for elasto-plastic deformation processes described above is taken
from [22, Chap. 2]. We restrict our exposition to these basic relations required for
the derivation of the system arising in each step of a time-discretized model. Details
on the mechanical background of elasto-plasticity models and different variational
formulations suitable for numerical treatment may be found in [22, 15] or in [21,
Chap. 6].

Discretization in time by an implicit Euler scheme leads to a first-order system for
the increments σinc and uinc in the representations σ = σold+σinc and u = uold+uinc,
respectively. The system associated with one time-step in an incremental formulation
of elasto-plasticity may be written as

div(σold + σinc) = 0 ,

σinc −R(ε(uinc);σold, αold) = 0 .
(2.8)
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The stress operator R(ε;σold, αold) in (2.8) depends, in general, nonlinearly and non-
smoothly on ε as soon as plastic deformation occurs.

For notational convenience the increments σinc and uinc are simply denoted by σ
and u (which had a different meaning in (2.1)) throughout the rest of this paper. For
simplicity, we will also omit the dependence on σold and αold in the stress operator
and simply write R(ε) instead of R(ε;σold, αold). We introduce the Sobolev spaces

H(div,Ω) = {s ∈ L2(Ω)3 : div s ∈ L2(Ω)} ,
H1(Ω) = {p ∈ L2(Ω) : ∇p ∈ L2(Ω)3}

and associated subspaces

HΓN
(div,Ω) = {s ∈ H(div,Ω) : s · n = 0 on ΓN} ,
H1

ΓD
(Ω) = {p ∈ H1(Ω) : p = 0 on ΓD}

where homogeneous boundary conditions are imposed. The solution of (2.8) for σ :
Ω → R

3×3 is then sought in σN + HΓN
(div,Ω)3, where σN ∈ H(div,Ω)3 satisfies

the boundary conditions σN · n = g on ΓN . In connection with the incremental
formulation (2.8), g stands for the increment of the boundary traction. The solution
space for u : Ω → R

3 is H1
ΓD

(Ω)3.
For the case of von Mises plasticity with isotropic hardening, the stress response

is given by

R(ε) = C
(
ε− 1

2μ
γR(dev(σold + C ε))

dev(σold + C ε)

|dev(σold + C ε)|

)
,(2.9)

where the return parameter γR(dev(σold + C ε)) is implicitly defined as the solution
of the equation

γR(dev(σold + C ε))

= |dev(σold + C ε)| −
√

2

3
K

(
αold +

√
2

3

γR(dev(σold + C ε))

2μ

)
,

(2.10)

if |dev(σold+Cε)| >
√

2/3K(αold) and γR(dev(σold+Cε)) = 0 otherwise. The return
parameter γR in (2.10) plays the same role as the Lagrange multiplier γ in (2.6) and
satisfies γR = 2μ Δt γ, if Δt denotes the time-step size. The hardening parameter is
updated by

α = αold +

√
2

3

γR(dev(σold + C ε))

2μ
.(2.11)

For the theoretical study in the next section, the following conditions on K(α) are
assumed to hold for all α > 0 (cf. [6]):

K(α) ≥ K0 > 0 ,

K ′(α) ≥ K1 > 0 .
(2.12)

This is satisfied, for example, for exponential hardening where

K(α) = K0 + Hα + (K∞ −K0)(1 − e−ωα)
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with given parameters K∞ ≥ K0 > 0, H > 0, and ω > 0 which are denoted as
saturation stress, initial yield stress, hardening modulus, and hardening exponent,
respectively.

In the case of perfect plasticity, we have K(α) ≡ K0, which means that (2.12) is
not satisfied and the theoretical results in section 3 do not hold. Nevertheless we will
present computational results for the perfectly plastic case in this paper. Since, for
|dev(σold + C ε)| >

√
2/3K0, the return parameter is simply given by

γR(dev(σold + C ε)) = |dev(σold + C ε)| −
√

2

3
K0 ,

we end up with

R(ε) =
1

3
tr(Cε) I − dev(σold) +

√
2

3
K0

dev(σold + C ε)

|dev(σold + C ε)|(2.13)

for the stress response. This means that different strain increments ε and ε̄ lead to
the same stress response as long as tr(ε) = tr(ε̄) and dev(ε) is aligned with dev(ε̄).

We close this section with the least-squares formulation of the first-order system
(2.8). Throughout this paper, ‖ · ‖ will simply denote the L2(Ω) (or, if applicable,
L2(Ω)d, L2(Ω)d×d) norm. The least-squares functional, associated with (2.8), is given
by

F(σ,u;σold, αold) = ‖div(σold + σ)‖2 + ‖C−1/2(σ −R(ε(u))‖2 .(2.14)

The weighting of the second term in the above functional is motivated from our earlier
work on linear elasticity in [13, 12]. Its implementation is straightforward using the
explicit formula

C−1σ =
1

2μ
σ − λ

2μ(3λ + 2μ)
(tr σ)I

for the inverse of the operator defined in (2.3). The corresponding least-squares
formulation consists in minimizing (2.14) among all suitable (σ,u) ∈ H(div,Ω)3 ×
H1(Ω)3. More precisely, our aim is to find σ ∈ σN +HΓN

(div,Ω)3 and u ∈ H1
ΓD

(Ω)3

such that

F(σ,u;σold, αold) ≤ F(σN + τ ,v;σold, αold)(2.15)

holds for all τ ∈ HΓN
(div,Ω)3 and v ∈ H1

ΓD
(Ω)3. For hardening laws which satisfy

(2.12), the well-posedness of the system (2.8) is studied in [15, sect. 8]. If the first-
order system (2.8) is guaranteed to possess a unique solution, then it is also the unique
minimizer of (2.15).

The analysis carried out in the next section will be based on a Korn inequality of
the form (

‖v‖2 + ‖∇v‖2
)
≤ CK‖C1/2ε(v)‖2(2.16)

to hold for all v ∈ H1
ΓD

(Ω)3 with a constant CK . Korn’s inequality (2.16) is known
to hold, e.g., if ΓD does not vanish (cf. [8, sect. VI.3]). In fact, the constant in (2.16)
satisfies CK ≥ 2μ, since, if div v = 0,

‖C1/2ε(v)‖2 = 2μ‖ε(v)‖2 = 2μ

(
‖∂1v1‖2 + ‖∂2v2‖2 + 2‖1

2
(∂2v1 + ∂1v2)‖2

)
≤ 2μ

(
‖∂1v1‖2 + ‖∂2v2‖2 + ‖∂2v1‖2 + ‖∂1v2‖2

)
= 2μ‖∇v‖2

≤ 2μ
(
‖v‖2 + ‖∇v‖2

)
.
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3. The nonlinear least-squares functional as an error estimator. In this
section, the equivalence of the nonlinear least-squares functional in (2.14) to the nat-
ural norm of the error is established. To this end, the estimate given in the following
lemma is required.

Lemma 3.1. Under the assumptions (2.12), there exists a constant CR ∈ [0, 1)
such that

‖C−1/2(R(ε(u)) −R(ε(v))) − C1/2ε(u − v)‖ ≤ CR‖C1/2ε(u − v)‖(3.1)

holds for all u,v ∈ H1
ΓD

(Ω)3.
Proof. The special form (2.9) of the stress operator R(ε) implies

C−1/2(R(ε(u)) −R(ε(v))) − C1/2ε(u − v)

=
1√
2μ

(
γR(dev(σold + C ε(v)))

dev(σold + C ε(v))

|dev(σold + C ε(v))|

− γR(dev(σold + C ε(u)))
dev(σold + C ε(u))

|dev(σold + C ε(u))|

)
.

On the other hand,

‖C1/2ε(u − v)‖ ≥ ‖dev(C1/2ε(u − v))‖ = ‖
√

2μdev(ε(u − v))‖

=

∥∥∥∥ 1√
2μ

(
dev(σold + 2μ ε(u)) − dev(σold + 2μ ε(v))

)∥∥∥∥
=

∥∥∥∥ 1√
2μ

(
dev(σold + C ε(u)) − dev(σold + C ε(v))

)∥∥∥∥ .

With the abbreviations ξ = dev(σold +C ε(u)) and η = dev(σold +C ε(v)) this means
that it is sufficient to show∥∥∥∥γR(η)

η

|η| − γR(ξ)
ξ

|ξ|

∥∥∥∥ ≤ CR‖η − ξ‖ .

This inequality certainly holds if∣∣∣∣γR(η)
η

|η| − γR(ξ)
ξ

|ξ|

∣∣∣∣ ≤ CR|η − ξ|(3.2)

is satisfied for all x ∈ Ω.
In order to prove (3.2), we fix x ∈ Ω and investigate the function

S : R
3×3 → R

3×3 , S(ξ) = γR(ξ)
ξ

|ξ|(3.3)

more closely. S is differentiable at all ξ ∈ R
3×3 with |ξ| 
=

√
2/3K(αold). For

|ξ| <
√

2/3K(αold), obviously, S ′(ξ)[χ] = 0, while, for |ξ| >
√

2/3K(αold),

S ′(ξ)[χ] = γ′
R(ξ)[χ]

ξ

|ξ| + γR(ξ)
χ

|ξ| − γR(ξ)
(ξ : χ) ξ

|ξ|3

holds. γ′
R(ξ) may be computed from differentiating the defining equation (2.10). This

leads to

γ′
R(ξ)[χ] =

ξ : χ

|ξ| − 1

3μ
γ′
R(ξ)[χ] K ′

(
αold +

√
2

3

γR(ξ)

2μ

)
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or, equivalently,

γ′
R(ξ)[χ] =

(
1 +

1

3μ
K ′

(
αold +

√
2

3

γR(ξ)

2μ

))−1
ξ : χ

|ξ| .(3.4)

This implies

|S′(ξ)[χ]|2 =

(
1 +

1

3μ
K ′

(
αold +

√
2

3

γR(ξ)

2μ

))−2
(ξ : χ)2

|ξ|2

+ γR(ξ)2
(
|χ|2
|ξ|2 − (ξ : χ)2

|ξ|4

)
,

which leads to

|S′(ξ)[χ]|2
|χ|2 =

(
1 +

1

3μ
K ′

(
αold +

√
2

3

γR(ξ)

2μ

))−2
(ξ : χ)2

|ξ|2|χ|2 +
γR(ξ)2

|ξ|2

(
1 − (ξ : χ)2

|ξ|2|χ|2

)

≤ max

⎧⎨⎩
(

1 +
1

3μ
K ′

(
αold +

√
2

3

γR(ξ)

2μ

))−2

,
γR(ξ)2

|ξ|2

⎫⎬⎭
for all χ 
= 0. This may be rewritten as

sup
χ�=0

|S′(ξ)[χ]|
|χ| ≤ max

⎧⎨⎩
(

1 +
1

3μ
K ′

(
αold +

√
2

3

γR(ξ)

2μ

))−1

,
γR(ξ)

|ξ|

⎫⎬⎭ .(3.5)

For the first of the two terms on the right-hand side in (3.5), (2.12) implies that it is
bounded by (1 +K1/(3μ))−1. For the second term let CT denote an upper bound for
the largest strain increment in the sense that |dev(ε(u))| ≤ CT holds. This implies
that

|dev(σold + C ε(u))| ≤ |dev(σold)| + 2μ|dev(ε(u))| ≤
√

2

3
K(αold) + 2μCT

is satisfied. Using (2.10) and the fact that K is monotonically increasing (which
follows from (2.12)), this leads to

γR(ξ)

|ξ| = 1 − 1

|ξ|

√
2

3
K

(
αold +

√
2

3

γR(ξ)

2μ

)
≤ 1 − 1

|ξ|

√
2

3
K(αold)

≤ 1 −

√
2
3K(αold)√

2
3K(αold) + 2μCT

=
1

1 +
√

2
3
K(αold)
2μCT

≤ 1

1 +
√

2
3

K0

2μCT

.

Therefore, (3.2) holds with

CR = max

⎧⎨⎩
(

1 +
K1

3μ

)−1

,

(
1 +

√
2

3

K0

2μCT

)−1
⎫⎬⎭ < 1 .
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Remark. In the case of perfect plasticity, different displacements u and v may lead
to the same stress states R(ε(u)) = R(ε(v)) as can be seen from (2.13). Therefore,
(3.1) does not hold with CR < 1 in that case.

Theorem 3.2. Let σ ∈ σN + HΓN
(div,Ω)3, u ∈ H1

ΓD
(Ω)3 be the solution of

the first-order system (2.8). Then, under the assumptions (2.12), there exist positive
constants β, β (which do not depend on the Lamé parameter λ) such that

β
(
‖div (σ − σ̄)‖2 + ‖C−1/2(σ − σ̄)‖2 + ‖C1/2ε(u − ū)‖2

)
≤ F(σ̄, ū;σold, αold)

≤ β
(
‖div (σ − σ̄)‖2 + ‖C−1/2(σ − σ̄)‖2 + ‖C1/2ε(u − ū)‖2

)(3.6)

holds for all σ̄ ∈ σN + HΓN
(div,Ω)3 and ū ∈ H1

ΓD
(Ω)3.

Proof. For simplicity we set μ = 1 and observe that the equivalence is invariant
with respect to the scaling of μ. Using the fact that (σ,u) is the exact solution of
(2.8), we obtain

F(σ̄, ū;σold, αold) = ‖div (σ − σ̄)‖2

+ ‖C−1/2(σ − σ̄) − C−1/2(R(ε(u)) −R(ε(ū)))‖2 .
(3.7)

For the lower bound in (3.6), we use the decomposition of an arbitrary matrix-
valued function τ ∈ L2(Ω)d×d into its symmetric and antisymmetric parts,

τ = sy τ + as τ with sy τ =
τ + τT

2
, as τ =

τ − τT

2
.

Obviously, (sy τ , as τ )0,Ω = 0, which implies

‖τ‖2 = ‖sy τ‖2 + ‖as τ‖2 ≥ ‖as τ‖2 .

If this estimate is applied with τ = C−1/2(σ − σ̄) − C−1/2(R(ε(u)) − R(ε(ū))), we
obtain

‖C−1/2(σ − σ̄) − C−1/2(R(ε(u)) −R(ε(ū)))‖2 ≥ ‖as(C−1/2(σ − σ̄))‖2

=
1

2
‖as(σ − σ̄)‖2

(3.8)

(note that as(C−1/2(R(ε(u)) − R(ε(ū)))) = 0). The combination of (3.7) and (3.8)
leads to

F(σ̄, ū;σold, αold) ≥ 1

3

(
‖div (σ − σ̄)‖2 + ‖as (σ − σ̄)‖2

+‖C−1/2(σ − σ̄) − C−1/2(R(ε(u)) −R(ε(ū)))‖2
)
.
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Inserting C1/2ε(u − ū) and using the result of Lemma 3.1, we are further led to

F(σ̄, ū;σold, αold) ≥ 1

3

(
‖div (σ − σ̄)‖2 + ‖as (σ − σ̄)‖2

+ (1 − ρ)‖C−1/2(σ − σ̄) − C1/2ε(u − ū)‖2

−
(

1

ρ
− 1

)
‖C1/2ε(u − ū) − C−1/2(R(ε(u)) −R(ε(ū)))‖2

)
≥ 1

3

(
‖div (σ − σ̄)‖2 + ‖as (σ − σ̄)‖2

+ (1 − ρ)‖C−1/2(σ − σ̄) − C1/2ε(u − ū)‖2

−
(

1

ρ
− 1

)
C2

R ‖C1/2ε(u − ū)‖2

)
=:

1 − ρ

3
G(σ − σ̄,u − ū) ,

(3.9)

where ρ ∈ (0, 1) is still free to be chosen appropriately below.
If we set (τ ,v) = (σ− σ̄,u− ū) ∈ HΓN

(div,Ω)3×H1
ΓD

(Ω)3, then we are left with
estimating the quadratic functional

G(τ ,v) =
‖div τ‖2 + ‖as τ‖2

1 − ρ
+ ‖C−1/2τ − C1/2ε(v)‖2 − C2

R

ρ
‖C1/2ε(v)‖2(3.10)

from below. The decomposition of τ into its symmetric and antisymmetric parts and
integration by parts lead to

(τ , ε(v))0,Ω = (sy τ , ε(v))0,Ω + (as τ , ε(v))0,Ω = (sy τ , ε(v))0,Ω

= (sy τ ,∇v)0,Ω = (τ ,∇v)0,Ω − (as τ ,∇v)0,Ω

= −(div τ ,v)0,Ω − (as τ ,∇v)0,Ω .

(3.11)

Inserting (3.11) into (3.10) we obtain

G(τ ,v) =
1

1 − ρ

(
‖div τ‖2 + ‖as τ‖2

)
+ ‖C−1/2τ‖2

+

(
1 − C2

R

ρ

)
‖C1/2ε(v)‖2 − 2(τ , ε(v))

=
1

1 − ρ

(
‖div τ‖2 + ‖as τ‖2

)
+ ‖C−1/2τ‖2

+

(
1 − C2

R

ρ

)
‖C1/2ε(v)‖2 + 2 ((div τ ,v) + (as τ ,∇v)) .

(3.12)

For the last term in (3.12), Korn’s inequality (2.16) may be used to obtain

2 ((div τ ,v) + (as τ ,∇v)) ≤ 1

δ

(
‖div τ‖2 + ‖as τ‖2

)
+ δ

(
‖v‖2 + ‖∇v‖2

)
≤ 1

δ

(
‖div τ‖2 + ‖as τ‖2

)
+ CKδ‖C1/2ε(v)‖2 ,

where δ ∈ (0, 1) is still free to be chosen appropriately. Inserting this into (3.12) yields

G(τ ,v) ≥
(

1

1 − ρ
− 1

δ

)(
‖div τ‖2 + ‖as τ‖2

)
+ ‖C−1/2τ‖2

+

(
1 − C2

R

ρ
− CKδ

)
‖C1/2ε(v)‖2 .

(3.13)
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If ρ is restricted to the interval (C2
R, 1), then we may choose

δ =

(
1 − ρ

CK

(
1 − C2

R

ρ

))1/2

(δ < 1 is satisfied due to CK ≥ 2). If we insert this into (3.13), we see that

G(τ ,v) ≥ 1

1 − ρ

⎛⎜⎝1 −

⎛⎝CK(1 − ρ)

1 − C2
R

ρ

⎞⎠1/2
⎞⎟⎠(

‖div τ‖2 + ‖as τ‖2
)

+ ‖C−1/2τ‖2

+

(
1 − C2

R

ρ

)⎛⎜⎝1 −

⎛⎝CK(1 − ρ)

1 − C2
R

ρ

⎞⎠1/2
⎞⎟⎠ ‖C1/2ε(v)‖2

(3.14)

holds. Finally, ρ ∈ (C2
R, 1) may be chosen such that it satisfies

CK(1 − ρ)

1 − C2
R

ρ

< 1 .

(This is clearly possible, since the left-hand side tends to 0 as ρ approaches 1 and
depends continuously on ρ.) We have therefore shown that

G(τ ,v) ≥ β̂
(
‖div τ‖2 + ‖C−1/2τ‖2 + ‖C1/2ε(v)‖2

)
(3.15)

holds with

β̂ =

(
1 − C2

R

ρ

)⎛⎜⎝1 −

⎛⎝CK(1 − ρ)

1 − C2
R

ρ

⎞⎠1/2
⎞⎟⎠ > 0,

which, combined with (3.9), implies the lower bound in (3.6) with β = β̂(1 − ρ)/3.
The upper bound in (3.6) follows directly from (3.7) and (3.1), which gives

F(σ̄, ū;σold, αold) ≤ ‖div (σ − σ̄)‖2 + 2‖C−1/2(σ − σ̄)‖2

+ 2(1 + CR)2‖C1/2ε(u − ū)‖2 .

Remark. In the case of perfect plasticity, it is no longer possible to show the
lower bound in (3.6) along the lines in the above proof. In fact, our numerical results
documented in section 5 suggest that the equivalence (3.6) is actually lost in the case
of perfect plasticity.

The practical implication of Theorem 3.2 is that, under the assumptions (2.12),
the least-squares functional F(σh,uh;σold, αold) constitutes an a posteriori estimator
for any approximation (σh,uh). By its very definition, for any triangulation Th of Ω,

F(σh,uh;σold, αold) =
∑
T∈Th

FT (σh,uh;σold, αold) .(3.16)

This means that the local evaluation of the functional, FT (σh,uh;σold, αold), can be
used in an adaptive refinement strategy.
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Of course, the approximation (σh,uh) to be used in practice comes from the
solution of the least-squares minimization problem (2.15) with respect to finite element
spaces. It can already be observed from the definition (2.9) that R(ε(u)) is not
differentiable with respect to u everywhere. In the proof of Lemma 3.1, it becomes
apparent that

R(ε(u)) = C ε(u) − S(dev(σold + C ε(u)))

is not smooth for those u ∈ H1
ΓD

(Ω)3 with

|dev(σold + C ε(u))| =

√
2

3
K(αold) ,(3.17)

since S(ξ), defined in (3.3), is not smooth for |ξ| =
√

2/3K(αold). The nonsmooth-
ness of R(ε(u)) implies that the least-squares functional F(σ,u;σold, αold) is also not
differentiable for displacements which satisfy (3.17). This causes the Gauss–Newton
iteration with a line search strategy (cf. [18, Chap. 10]) commonly used in least-
squares finite element computations to slow down as plastic deformations become
dominant. The issue of efficiently solving the nonlinear algebraic least-squares prob-
lems resulting from the discretization of (2.15) will be discussed elsewhere.

4. Plane strain model and finite element approximation. We restrict our
computations in this paper to two-dimensional domains by assuming plane strain
conditions, i.e.,

ε(u) =

⎡⎣ ∂1u1 (∂2u1 + ∂1u2)/2 0
(∂2u1 + ∂1u2)/2 ∂2u2 0

0 0 0

⎤⎦ .

This implies that

dev(ε(u)) =

⎡⎣(2∂1u1 − ∂2u2)/3 (∂2u1 + ∂1u2)/2 0
(∂2u1 + ∂1u2)/2 (2∂2u2 − ∂1u1)/3 0

0 0 −(∂1u1 + ∂2u2)/3

⎤⎦ ,

and therefore σ = R(ε(u)) is of the general form

σ =

⎡⎣σ11 σ12 0
σ21 σ22 0
0 0 σ33

⎤⎦ .(4.1)

If we denote our two-dimensional domain again as Ω, then σ1 = (σ11, σ12) ∈ H(div,Ω)
and σ2 = (σ21, σ22) ∈ H(div,Ω). Moreover, σ33 is constant in the x3-direction and
may be assumed in L2(Ω). For the two remaining displacement components we still
have u1, u2 ∈ H1

ΓD
(Ω).

The choice of appropriate finite element spaces Σh and Uh for the approximation
of σ and u, respectively, is done with the aim of achieving a certain approximation
order with respect to the norm in (3.6). Suitable for the stress approximation is a
product space of Raviart–Thomas elements (of degree k ≥ 0) for σ1 and σ2 and
discontinuous piecewise polynomials (of the same degree k ≥ 0) for σ33. The interpo-
lation estimate for Raviart–Thomas elements (cf. [9, Prop. III.3.9]) yields

‖div (σi − Πhσi)‖2 + ‖σi − Πhσi‖2 ≤ C
2
h2(k+1)

(
|div σi|2k+1,Ω + |σi|2k+1,Ω

)
(4.2)
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for i = 1, 2 with a suitable interpolation operator Πh. Standard piecewise polynomial
interpolation, separately on each element T ∈ Th, leads to

‖σ33 −Qhσ33)‖2 ≤ C
2
h2(k+1)|σ33|2k+1,Ω(4.3)

with the corresponding interpolation operator Qh. Finally, H1-conforming finite ele-
ments which consist of piecewise polynomials of degree k + 1 lead to

‖∇(u − Ψhu)‖2 ≤ C
2
h2(k+1)|u|2k+2,Ω(4.4)

for the interpolation error. Combined with the result of Theorem 3.2, (4.2), (4.3),
and (4.4) imply the error estimate(

‖div (σ − σh)‖2 + ‖C−1/2(σ − σh)‖2 + ‖C1/2ε(u − uh)‖2
)1/2

≤
(
β

β

)1/2

Chk+1 (|div σ1|k+1,Ω + |div σ2|k+1,Ω + |σ|k+1,Ω + |u|k+2,Ω)

for the least-squares finite element approximation.
In particular, for k = 1, i.e, using next-to-lowest-order Raviart–Thomas elements

combined with discontinuous piecewise linear elements for σ and continuous piecewise
quadratic elements for u, we obtain(

‖div (σ − σh)‖2 + ‖C−1/2(σ − σh)‖2 + ‖C1/2ε(u − uh)‖2
)1/2

≤
(
β

β

)1/2

Ch2 (|div σ1|2,Ω + |div σ2|2,Ω + |σ|2,Ω + |u|3,Ω)

(4.5)

for the least-squares finite element approximation. This is actually the combination of
finite element spaces that we used in our computations presented in the next section.
However, the regularity assumptions div σi ∈ H2(Ω), σi ∈ H2(Ω)2 for i = 1, 2, σ33 ∈
H2(Ω), and u ∈ H3(Ω)2 are rarely fulfilled in applications of practical relevance. The
approximation estimate (4.5) therefore serves only as a guideline for the properties of
the finite element spaces. In our actual computations the least-squares finite element
method is implemented in an adaptive fashion based on (3.16) for a posteriori error
estimation.

The implementation of the least-squares finite element method is done by eval-
uating the integrals in (2.14) with an appropriate quadrature rule. Since the finite
element spaces used in our computations include piecewise polynomials up to degree
2, the integrands in the least-squares functional involve polynomials up to degree
4. A 7-point quadrature rule which is exact for polynomials of degree 5 on trian-
gles (see [2, sect. 5.1]) is therefore used in our implementation. The return parameter
γR(dev(σold+Cε(u))) is computed at all quadrature nodes. The hardening parameter

α = αold +

√
2

3

γR(dev(σold + C ε(u)))

2μ

(cf. (2.11)) is approximated by piecewise linear, not necessarily continuous, functions
on the triangulation Th. This leads to the same order of approximation for the hard-
ening parameter α as for the other process variables.
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Fig. 5.1. Computational domain and boundary conditions.

5. Computational tests. In this section, numerical results for a benchmark
problem of elasto-plasticity taken from [23] are presented. The problem to be consid-
ered is given by a quadratic plate of an elasto-plastic isotropic material with a circular
hole in the center under plane strain conditions. At the upper and lower edges of the
plate, traction forces pointing outwards are applied. Because of the symmetry of the
domain, it suffices to discretize only a fourth of the total geometry. The computational
domain is then given by

Ω = {x ∈ R
2 : 0 < x1 < 10, 0 < x2 < 10, x2

1 + x2
2 > 1}

(see Figure 5.1). The boundary conditions on the top edge of the computational
domain (x2 = 10, 0 < x1 < 10) are set to σ · n = (0, t)T , while on the right edge
(x1 = 10, 0 < x2 < 10) and on the circular arc (x2

1 + x2
2 = 1) the boundary conditions

are set to σ · n = (0, 0). Symmetry boundary conditions are prescribed on the rest
of the boundary, i.e., (σ11, σ12) · n = 0, u2 = 0 on the bottom (x2 = 0, 1 < x1 < 10),
and u1 = 0, (σ21, σ22) · n = 0 on the left (x1 = 0, 1 < x2 < 10). The Poisson ratio is
ν = 0.29, which implies for the Lamé constants λ = 1.381 μ. Actually μ = 1 is set in
our computations for simplicity, since the stress values do not depend on the size of
μ.

Example 1. Our first set of computational experiments uses a combination of
linear and exponential isotropic hardening of the form

K(α) = K0 + Hα + (K∞ −K0)(1 − e−ωα)

with K0 = 450, K∞ = 750, H = 129, and ω = 16.93 taken from [23]. The load is
increased starting from t = 0 in steps of Δt = 2.5. These rather small load steps
were chosen in order to rule out artifacts caused by the first-order time discretization
used in our computations. For each load step, an initial triangulation consisting of
52 elements is successively refined based on the local evaluation of the least-squares
functional. Tables 5.1 to 5.3 show the error reduction, measured in terms of the
functional, at different stages of the simulation. For t = 150, the results are still well
within the elastic domain, which means that the results in Table 5.1 simply correspond
to a linear elasticity problem. Inelastic deformation starts around t = 170 so that
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Table 5.1

Plasticity with hardening: Reduction of the least-squares functional for t = 150.

l 1 2 3 4 5 6
# elements 113 224 452 917 1829 3610

dim Uh 474 926 1858 3738 7440 14628
dim Σh 1447 2882 5826 11851 23653 46742

F(σh,uh) 3.04 e-6 5.77 e-7 1.37 e-7 4.04 e-8 1.05 e-8 3.00 e-9
‖as σh‖2 7.48 e-3 1.43 e-3 3.32 e-4 9.36 e-5 2.37 e-5 6.57 e-6
‖div σh‖2 7.45 e-8 9.92 e-9 7.68 e-10 1.43 e-10 1.64 e-11 2.39 e-12

Table 5.2

Plasticity with hardening: Reduction of the least-squares functional for t = 300.

l 1 2 3 4 5 6
# elements 113 224 456 923 1905 3953

dim Uh 474 926 1874 3760 7742 15998
dim Σh 1447 2882 5878 11931 24643 51203

F(σh,uh) 4.02 e-6 2.65 e-6 1.62 e-6 3.19 e-7 3.45 e-8 6.39 e-9
‖as σh‖2 2.90 e-2 5.55 e-3 1.32 e-3 4.02 e-4 1.10 e-4 3.33 e-5
‖div σh‖2 8.91 e-8 2.34 e-8 2.58 e-9 2.06 e-10 2.54 e-11 3.06 e-12

Table 5.3

Plasticity with hardening: Reduction of the least-squares functional for t = 400.

l 1 2 3 4 5 6
# elements 113 226 459 923 1932 4002

dim Uh 474 936 1884 3764 7834 16166
dim Σh 1447 2906 5919 11927 25010 51868

F(σh,uh) 5.78 e-5 1.87 e-5 5.60 e-6 8.20 e-7 9.76 e-8 2.22 e-8
‖as σh‖2 4.49 e-2 1.07 e-2 3.31 e-3 9.25 e-4 3.40 e-4 1.09 e-4
‖div σh‖2 2.18 e-6 3.37 e-7 2.52 e-8 3.01 e-10 8.15 e-11 1.02 e-11

the results in Table 5.2 already correspond to elasto-plastic computations for t = 300.
Further increase of the load to t = 400 in Table 5.3 leads to a spreading of the zone
in which inelastic deformations occur.

In Tables 5.1 to 5.3, the computational results show that the reduction rate of
the functional does not deteriorate much as the load is increased and inelastic defor-
mations become more dominant. The optimal convergence behavior achievable with
the finite element spaces used here would result in a reduction of the least-squares
functional proportional to (dim Uh + dim Σh)−2. This behavior would be achieved
with uniformly refined triangulations under sufficient regularity conditions (see (4.5);
note that dim Uh +dim Σh � h−2 in two space dimensions). In Tables 5.1 to 5.3, the
number of degrees of freedom is approximately doubled with each refinement. This
corresponds to a reduction of the functional by a factor 4 with each refinement, which
is approximately achieved in our numerical results, at least on the finer levels.

The antisymmetry, measured by ‖as σh‖2
0,Ω, is also shown in Tables 5.1 to 5.3.

Note that (3.8) implies

‖as(σh − σold
h )‖2 ≤ 2F(σh,uh;σold

h , αold)

but that the antisymmetry actually accumulates with time. In the elastic case, for
t = 150, the reduction occurs at about the same rates for the antisymmetric stress
and for the least-squares functional. However, in the presence of plastic deformations,
for t = 300 and t = 400, the antisymmetry is actually reduced at a faster rate than
the functional. This is due to the fact that the antisymmetric stress is actually an
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Table 5.4

Perfect plasticity: Reduction of the least-squares functional for t = 300.

l 1 2 3 4 5 6
# elements 120 253 502 967 1847 3667

dim Uh 502 1044 2052 3936 7484 14832
dim Σh 1538 3257 6482 12503 23915 47507

F(σh,uh) 1.26 e-4 3.40 e-5 8.02 e-5 2.29 e-6 5.31 e-7 1.23 e-7
‖as σh‖2 3.62 e-2 7.82 e-3 2.22 e-3 5.99 e-4 2.41 e-4 8.57 e-5
‖div σh‖2 8.00 e-6 7.34 e-7 6.12 e-8 6.76 e-9 6.24 e-10 3.74 e-11

Table 5.5

Perfect plasticity: Reduction of the least-squares functional for t = 400.

l 1 2 3 4 5 6
# elements 117 256 548 1249 2779 6153

dim Uh 492 1054 2228 5046 11206 24752
dim Σh 1497 3298 7088 16187 36037 79849

F(σh,uh) 5.04 e-4 1.88 e-4 6.26 e-5 1.94 e-5 5.68 e-6 3.07 e-6
‖as σh‖2 8.39 e-2 2.48 e-2 1.50 e-2 8.72 e-3 2.31 e-3 8.29 e-4
‖div σh‖2 1.30 e-4 3.19 e-5 3.36 e-6 7.24 e-7 5.48 e-8 2.39 e-8

Table 5.6

Perfect plasticity: Reduction of the least-squares functional for t = 450.

l 1 2 3 4 5 6
# elements 115 258 558 1220 2649 5638

dim Uh 482 1062 2276 4940 10676 22668
dim Σh 1473 3324 7210 15800 34357 73178

F(σh,uh) 3.21 e-3 3.01 e-3 1.34 e-3 5.91 e-4 2.71 e-4 1.17 e-4
‖as σh‖2 2.33 e-1 9.89 e-2 3.78 e-2 1.36 e-2 4.02 e-3 2.51 e-3
‖div σh‖2 1.85 e-3 1.63 e-3 6.45 e-4 2.56 e-4 7.05 e-5 1.88 e-5

accumulated quantity, while the least-squares functional shows the full deterioration
of the functional with increasing load. It can also be observed from Tables 5.1 to 5.3
that the divergence error, measured by ‖div σh‖2, decreases slightly faster than the
overall functional.

Example 2. We also include numerical results for perfect plasticity, since tabulated
benchmark values are available from [23] for this case. This allows us to verify the
least-squares approach by a comparison of our results with the benchmark values
which will be done further below. In this setting,

K(α) ≡ K0

with K0 = 450, which means that the internal hardening variable α is obsolete. For
perfect plasticity, the conditions (2.12) are not valid, and therefore the theoretical
results from section 3 are not established.

With the same load steps as in Example 1 we obtain the numerical results shown
in Tables 5.4 to 5.6. The results for t = 150 are, of course, identical to those in
Table 5.1, since this still constitutes the same elastic problem as in Example 1. For
t = 300, a reduction rate which nearly reaches the optimal asymptotic behavior of
F(σh,uh) � (dim Uh + dim Σh)−2 is attained. The reduction of the functional is
much slower at the load step t = 400 and slows down even more for t = 450.

Figure 5.2 shows on the left the size of the deviatoric stress, scaled as |dev(σ)|/K0,
for the load steps t = 300, 400, and 450. The zone where plastic deformation occurs
is clearly visible and expands with increasing load. The fact that the reduction of the



386 GERHARD STARKE

Fig. 5.2. Deviatoric stress (left) and triangulation after six adaptive refinement steps (right)
for t = 300, 400, and 450.

functional slows down significantly as the plastic zone occupies most of the compu-
tational domain supports our speculation that this causes the ellipticity of the least-
squares functional in the sense of Theorem 3.2 to deteriorate. Shown on the right in
Figure 5.2 are the triangulations which result after six steps of adaptive refinement
based on the elementwise evaluation of the least-squares functional.

Despite this deterioration of the convergence behavior, our results obtained with
the least-squares method agree remarkably well with the benchmark results tabulated
in [23]. In order to illustrate this, the benchmark results for a selected stress value,
s22(1, 0), are shown for a full load cycle in Figure 5.3. The load cycle starts by
increasing the traction forces t from 0 to 450 (pointing outwards), then decreasing
from 450 to −450, and finally increasing from −450 to 0 again. The solid curve is
the result of our computations, and the circles represent the values for the reference
solution taken from Table 11.8 in [23]. Throughout the load cycle the difference
between our results and the benchmark values is marginally small. Even after the
completion of the cycle, our least-squares method gives a value of 514.38 for s22(1, 0)
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Fig. 5.3. Stress values for one complete load cycle.

compared to the reference solution of 513.93.
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FINITE ELEMENT METHODS FOR THE SIMULATION OF WAVES
IN COMPOSITE SATURATED POROVISCOELASTIC MEDIA∗

JUAN E. SANTOS† AND DONGWOO SHEEN‡

Abstract. This work presents and analyzes a collection of finite element procedures for the
simulation of wave propagation in a porous medium composed of two weakly coupled solids saturated
by a single-phase fluid. The equations of motion, formulated in the space-frequency domain, include
dissipation due to viscous interaction between the fluid and solid phases with a correction factor in the
high-frequency range and intrinsic anelasticity of the solids modeled using linear viscoelasticity. This
formulation leads to the solution of a Helmholtz-type boundary value problem for each temporal
frequency. For the spatial discretization, nonconforming finite element spaces are employed for
the solid phases, while for the fluid phase the vector part of the Raviart–Thomas–Nedelec mixed
finite element space is used. Optimal a priori error estimates for global standard and hybridized
Galerkin finite element procedures are derived. An iterative nonoverlapping domain decomposition
procedure is also presented and convergence results are derived. Numerical experiments showing
the application of the numerical procedures to simulate wave propagation in partially frozen porous
media are presented.
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1. Introduction. Wave propagation in composite porous materials has appli-
cations in many branches of science and technology, such as seismic methods in the
presence of shaley sandstones [8], frozen or partially frozen sandstones [29, 10, 11],
gas-hydrates in ocean-bottom sediments [12], and evaluation of the freezing condi-
tions of foods by ultrasonic techniques [26]. A recent review of the theory of wave
propagation in fluid-saturated porous media can be found in [7].

A theory to describe wave propagation in frozen porous media was first presented
by Leclaire, Cohen-Tenoudji, and Aguirre Puente [24]. This model, valid for uniform
porosity, predicts the existence of three compressional and two shear waves; the veri-
fication that additional (slow) waves can be observed in laboratory experiments was
published by Leclaire, Cohen-Tenoudji, and Aguirre Puente [25]. Later, Carcione and
Tinivella [12] generalized this theory to include the interaction between the solid and
ice particles and grain cementation with decreasing temperature, used as a parame-
ter to determine the bulk water content. Also, Carcione, Gurevich, and Cavallini [8]
applied this theory to study the acoustic properties of shaley sandstones, assuming
that sand and clay are nonwelded and form a continuous and interpenetrating porous
composite skeleton. Both frozen porous media and shaley sandstones are examples of
porous materials where the two solid phases are weakly coupled or nonwelded, i.e., both
solids form a continuous and interacting composite structure, interchanging mechan-
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ical energy. Similar weakly coupled formulations have previously been proposed. For
instance, McCoy [28] has proposed a mixture theory appropriate for the combination
of two acoustic phases.

Later, Santos, Ravazzoli, and Carcione [37] generalized to the nonuniform poros-
ity case the models of Leclaire, Cohen-Tenoudji, and Aguirre Puente [24] and Carcione
and Tinivella [12] valid only for uniform porosity. The formulation presented in [37]
enabled us to identify the generalized coordinates of the system, which are the two
solid displacement vectors and a new variable (denoted by u(2) in this paper) as-
sociated with the fluid displacement relative to the solid composite matrix, whose
divergence is the change in the fluid content, in formal analogy with the classical Biot
theory for a single solid-phase matrix. It also allowed us to identify the generalized
forces of the system, which are the fluid pressure pf and the stress tensors denoted
by σ(1) and σ(3) in this paper.

This article presents a differential and numerical model to describe wave propaga-
tion in a heterogeneous poroviscoelastic frame consisting of two weakly coupled solid
phases saturated by a single-phase fluid. The equations of motion, stated in the space-
frequency domain, generalize those presented in [37, 9] by the inclusion of solid matrix
dissipation using a linear viscoelastic model and introducing a frequency dependent
correction factor in the mass and viscous coupling coefficients in the high-frequency
range [4, 35].

The numerical procedures presented employ the nonconforming rectangular el-
ement defined in [17] to approximate the displacement vector in the solid phases.
The dispersion analysis presented in [38] shows that employing this nonconforming
element allows for a reduction in the number of points per wavelength necessary to
reach a desired accuracy. On the other hand, the displacement in the fluid phase is
approximated by using the vector part of the Raviart–Thomas–Nedelec mixed finite
element space of zero order, which is a conforming space [34, 30]. The error analysis
yields optimal a priori error estimates for the global standard and hybridized Galerkin
methods.

Numerical simulation of waves in porous media is computationally expensive due
to a large number of degrees of freedom needed to calculate wave fields accurately; the
use of a domain decomposition iteration is a convenient approach to overcome this
difficulty. Here we define a nonoverlapping domain decomposition iterative scheme
and derive convergence results similar to those presented in [14] for solving second-
order elliptic problems. This iterative procedure was used for the simulation of waves
in a sample of water-saturated partially frozen Berea sandstone [9, 12], perturbed
by a point source at seismic frequencies. The sample has an interior plane interface
defined by a change in ice content in the pores, and the snapshots of the generated
wave fields show clearly the events associated with the different types of waves.

2. The differential model. In this section we review and generalize a model
recently presented by one of the authors and some of his colleagues [37] to describe
the propagation of waves in a poroviscoelastic domain Ω ⊂ R

d, d = 2, 3, in which
the matrix consists of two different solids indicated by the superindices (1) and (3),
saturated by a single-phase fluid indicated by the superindex (2). Thus, for any
reference element E of bulk material we have

E = E(1) ∪ E(2) ∪ E(3).

Let V (i) denote the volumetric measure of the phase E(i) and let V (b) and V (sm)

denote the volumetric measures of E and the solid matrix E(sm) = E(1) ∪ E(3),



WAVES IN COMPOSITE POROVISCOELASTIC SOLIDS 391

respectively, so that

V (sm) = V (1) + V (3), V (b) = V (1) + V (2) + V (3).

We introduce the bulk volumetric fractions of the different components in the form

φ =
V (2)

V (b)
, φ(1) =

V (1)

V (b)
, φ(3) =

V (3)

V (b)
,

and the solid fractions of the composite matrix

S(1) =
V (1)

V (sm)
, S(3) =

V (3)

V (sm)
, with S(1) + S(3) = 1.

For some practical applications it is convenient to define the absolute or effective
porosity φ(a) of the medium, defined as the ratio of the volume of the interconnected
pores V (p) and the total volume of the sample, i.e.,

φ(a) =
V (p)

V (b)
.

These sets of fractions can have different meanings depending on the physical
model considered. For example, in the case of a sandstone or soil at very low tem-
perature, it is reasonable to consider that a part of the fluid which saturates the pore
space is at a liquid state and the rest is frozen. If E(1) represents the mineral grains
and E(3) the ice, for a given porosity φ(a) and bulk water content φ, the following
relations hold:

(2.1) φ(1) = 1 − φ(a), φ(3) = φ(a) − φ, S(3) =
φ(3)

1 − φ
.

It is useful to introduce an additional fraction S(3)′ to account for the ice content in
the pores, given by

S(3)′ =
V (3)

V (p)
=

φ(3)

1 − φ(1)
.

A different application of this model would be the case of a shaley sandstone, that is, a
porous rock mainly composed of quartz grains and clay particles, saturated by a fluid
(such as water, brine, gas, or oil). In this case we assume that the fluid completely
saturates the pore space of the composite rock so that V (2) ≡ V (p). Then, if E(1)

represents the grains of the rock and E(3) the clay part, for a given matrix clay content
S(3) and water content φ, instead of (2.1) the following hold:

φ = φ(a), φ(1) = S(1)(1 − φ), φ(3) = S(3)(1 − φ).

Let us now consider a unit cube Ω = Ω(1) ∪ Ω(2) ∪ Ω(3) ⊂ R
d of our fluid-saturated

poroviscoelastic material with boundary Γ = ∂Ω. Since by hypothesis the two solids
are nonwelded (or weakly coupled), we assume that they can move independently
and consequently we can distinguish three different particle displacement fields for

this model. Let u(m) ≡ u(m)(x, ω) = (u
(m)
1 (x, ω), . . . , u

(m)
d (x, ω))t, m = 1, 3, be

the averaged solid displacements over the bulk material Ω at the angular frequency

ω, and let ũ(2) ≡ ũ(2)(x, ω) = (ũ
(2)
1 (x, ω), . . . , ũ

(2)
d (x, ω))t denote the absolute fluid



392 JUAN E. SANTOS AND DONGWOO SHEEN

displacement. Also, let the relative displacement of the fluid phase with respect to
the composite solid matrix be defined by

u(2) = φ(ũ(2) − S(1)u(1) − S(3)u(3))

and set u = (u(1), u(2), u(3))t. As explained in [37], the variable

ζ = −∇ · u(2)

represents the change in fluid content. Next we introduce the local stress tensors

σ
(1,s)
jk and σ

(3,s)
jk in the solid parts Ω(1) and Ω(3), averaged over the bulk material and

the fluid pressure pf . Following [37], we define the second-order tensors

σ
(1)
jk = σ

(1,s)
jk − S(1)φpfδjk, σ

(3)
jk = σ

(3,s)
jk − S(3)φpfδjk

associated with the total stresses in Ω(1) and Ω(3), respectively. Then the constitutive
equations, stated in the space-frequency domain, are as follows [37]:

σ
(1)
jk (u) =

[
K

(1)
G e(1) −B(1)ζ + B(3)e(3)

]
δjk + 2μ(1)d

(1)
jk + μ(13)d

(3)
jk ,(2.2a)

σ
(3)
jk (u) =

[
K

(3)
G e(3) −B(2)ζ + B(3)e(1)

]
δjk + 2μ(3)d

(3)
jk + μ(13)d

(1)
jk ,(2.2b)

pf (u) = −B(1)e(1) −B(2)e(3) + Kavζ,(2.2c)

where

d
(m)
jk = εjk(u

(m)) − 1

d
e(m)δjk, m = 1, 3, in R

d,

denotes the deviatoric tensor in Ω(m), with εjk(u
(m)) being the strain tensor with

linear invariant e(m). In [37] the constitutive relations (2.2) were stated in the space-
time domain with real coefficients in terms of the bulk and shear moduli of the two
solid (dry) frames (denoted by K

(s1)
m ,K

(s3)
m , μ

(s1)
m , and μ

(s3)
m , respectively), the bulk

and shear moduli of the grains in the two solid phases (denoted by K(s1), μ(s1),K(s3),
and μ(s3), respectively), and Kf , the bulk modulus of the fluid phase.

To introduce viscoelasticity we use the correspondence principle stated by M.

Biot [3, 5]; i.e., we replace the real poroelastic coefficients K
(m)
G , μ(m), m = 1, 3,

and Kav in the constitutive relations (2.3a)–(2.3c) by complex frequency dependent
poroviscoelastic moduli satisfying the same relations as in the elastic case. In this
work the linear viscoelastic model presented in [27] is used to make these moduli
complex and frequency dependent by using the following formula:

M(ω) =
Mre

RM (ω) − iTM (ω)
,

where M represents any of the five moduli mentioned above and the coefficient Mre is
the relaxed elastic modulus associated with M [6]. The functions RM (ω) and TM (ω),
associated with a continuous spectrum of relaxation times, are given by [27]

RM (ω) = 1 − 1

πQ̂M

ln
1 + ω2T 2

1,M

1 + ω2T 2
2,M

, TM (ω) =
2

πQ̂M

tan−1 ω(T1,M − T2,M )

1 + ω2T1,MT2,M
.

The model parameters Q̂M , T1,M , and T2,M are taken such that the quality factors

QM (ω) = TM/RM are approximately equal to the constant Q̂M in the range of
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frequencies where the equations are solved, which makes this model convenient for
geophysical applications.

Next, by writing

λ(m) = K
(m)
G − 2

d
μ(m), D(3) = B(3) − 1

d
μ(13) in R

d,

the constitutive relations (2.2) are then stated in the following equivalent form, which
will be used in the analysis that follows:

σ
(1)
jk (u) =

[
λ(1)e(1) −B(1)ζ + D(3)e(3)

]
δjk + 2μ(1)εjk(u

(1)) + μ(13)εjk(u
(3)),(2.3a)

σ
(3)
jk (u) =

[
λ(3)e(3) −B(2)ζ + D(3)e(1)

]
δjk + 2μ(3)εjk(u

(3)) + μ(13)εjk(u
(1)),(2.3b)

pf (u) = −B(1)e(1) −B(2)e(3) + Kavζ.(2.3c)

Let the positive definite mass matrix P = P(ω) and the nonnegative dissipation
matrix B = B(ω) be defined by

P =

⎡⎣ p11I p12I p13I
p12I p22I p23I
p13I p23I p33I

⎤⎦ , B =

⎡⎣ b11I −b12I −b11I
−b12I b22I b12I
−b11I b12I b11I

⎤⎦ ,

where I denotes the identity matrix in R
d×d. The nonnegative coefficients pjk =

pjk(ω), bjk = bjk(ω) in the definition of the matrices P and B are given by the formulae

p11(ω) = m11 +
FI(θ) (f11 − b13)

ω
, p12(ω) = m12 −

FI(θ)f12

ω
,(2.4a)

p13(ω) = m13 −
FI(θ) (f11 − b13)

ω
, p22(ω) = m22 +

FI(θ)f22

ω
,(2.4b)

p23(ω) = m23 +
FI(θ)f12

ω
, p33(ω) = p33 +

FI(θ) (f11 − b13)

ω
,(2.4c)

b11(ω) = FR(θ) (f11 − b13) + b13, b12(ω) = FR(θ)f12, b22(ω) = FR(θ)f22,(2.4d)

with the mij ’s and f11, f12, and f22 computed as in [37] in terms of the mass densities
ρ(m),m = 1, 2, 3, of each solid and fluid constituent, the fluid viscosity η, and the
absolute permeabilities κ1, κ3 of the two solid frames. The coefficient b13 is a friction
coefficient between the two solid phases and is left as a free parameter chosen so that

b11b22 − b212 > 0, ω > 0,(2.5)

which is needed in order that the dissipation function be positive in the variables u(2)

and u(1) − u(3).
The complex valued frequency dependent function F (θ) = FR(θ) + iFI(θ) is the

frequency correction function defined by Biot [4]:

F (θ) =
1

4

θT (θ)

1 − 2
iθT (θ)

, T (θ) =
ber′(θ) + ibei′(θ)

ber(θ) + ibei(θ)
,

with ber(θ) and bei(θ) being the Kelvin functions of the first kind and zero order. The
frequency dependent argument θ = θ(ω) is given in terms of the pore size parameter
ap by the following equations:

θ = ap

√
ω ρ(2)/η, ap = 2

√
κA0/φ,



394 JUAN E. SANTOS AND DONGWOO SHEEN

where 1
κ = 1

κ1
+ 1

κ3
and A0 is the Kozeny–Carman constant [2, 22]. This frequency

correction is needed to include the departure of the relative flow from laminar type
above a certain critical frequency depending on the pore radius, as explained in [4, 35].

Next, let L(u) be the second-order differential operator defined by

L(u) =
(
∇ · σ(1)(u),−∇pf (u),∇ · σ(3)(u)

)t
.

Then the equations of motion in Ω, stated in the space-frequency domain, are given
as follows [37]:

(2.6) −ω2Pu(x, ω) + iωBu(x, ω)−L(u(x, ω)) = F (x, ω), (x, ω) ∈ Ω× (0, ω∗),

where F (x, ω) = (F (1)(x, ω), F (2)(x, ω), F (3)(x, ω))t denotes the external source and
ω∗ is an upper temporal frequency of interest.

A plane wave analysis shows that three different compressional waves (P1, P2,
and P3) and two shear waves (S1, S2) can propagate [24, 37]. The P1 and S1 waves
correspond to the classical fast P and S waves propagating in elastic or viscoelastic
isotropic solids. The additional slow waves are related to motions out of phase of the
different phases. The experimental observation of the additional (slow) waves was
reported by Leclaire, Cohen-Tenoudji, and Aguirre Puente [25].

Let us denote by ν the unit outer normal on Γ. In the two dimensional (2D) case
let χ be a unit tangent on Γ so that {ν, χ} is an orthonormal system on Γ. In the 3D
case let χ1 and χ2 be two unit tangents on Γ so that {ν, χ1, χ2} is an orthonormal
system on Γ.

Then, in the 2D case set

GΓ(u) =
(
σ(1)(u)ν · ν, σ(1)(u)ν · χ, pf (u), σ(3)(u)ν · ν, σ(3)(u)ν · χ

)t
,(2.7a)

SΓ(u) =
(
u(1) · ν, u(1) · χ, u(2) · ν, u(3) · ν, u(3) · χ

)t
,(2.7b)

and in the 3D case set

GΓ(u) =
(
σ(1)(u)ν · ν, σ(1)(u)ν · χ1, σ(1)(u)ν · χ2, pf (u),(2.8a)

σ(3)(u)ν · ν, σ(3)(u)ν · χ1, σ(3)(u)ν · χ2
)t
,

SΓ(u) =
(
u(1) · ν, u(1) · χ1, u(1) · χ2, u(2) · ν, u(3) · ν, u(3) · χ1, u(3) · χ2

)t
.(2.8b)

Let us consider the solution of (2.3) with the following absorbing boundary condition:

(2.9) −GΓ(u(x, ω)) = iωDSΓ(u(x, ω)), (x, ω) ∈ Γ × (0, ω∗).

The matrix D in (2.9) is positive definite and given by

(2.10) D = Mc
1
2Sc

1
2Mc

1
2 =

(
EcMc

−1
) 1

2Mc,

with Sc = Mc
− 1

2 EcMc
− 1

2 , and in the 3D case,

Mc =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

m11 0 0 m12 m13 0 0
0 q1 0 0 0 q2 0
0 0 q1 0 0 0 q2

m12 0 0 m22 m23 0 0
m13 0 0 m23 m33 0 0
0 q2 0 0 0 q3 0
0 0 q2 0 0 0 q3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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Ec =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ
(1)
re + 2μ

(1)
re 0 0 B

(1)
re D

(3)
re + μ

(13)
re 0 0

0 μ
(1)
re 0 0 0 1

2μ
(13)
re 0

0 0 μ
(1)
re 0 0 0 1

2μ
(13)
re

B
(1)
re 0 0 Kav,re B

(2)
re 0 0

D
(3)
re + μ

(13)
re 0 0 B

(2)
re λ

(3)
re + 2μ

(3)
re 0 0

0 1
2μ

(13)
re 0 0 0 μ

(3)
re 0

0 0 1
2μ

(13)
re 0 0 0 μ

(3)
re

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with obvious modifications for the 2D case. The boundary condition (2.9) can be de-
rived with a similar argument to that presented in [36] starting from the conservation
of momentum equation on Γ and using the fact that the interaction energy among
the different types of waves is small compared to the total energy involved.

3. A weak formulation. For X ⊂ R
d with boundary ∂X, let (·, ·)X and 〈·, ·〉∂X

denote the complex L2(X) and L2(∂X) inner products for scalar, vector, or matrix
valued functions. Also, for s ∈ R, ‖ · ‖s,X and | · |s,X will denote the usual norm
and seminorm for the Sobolev space Hs(X). In addition, if X = Ω or X = Γ, the
subscript X may be omitted such that (·, ·) = (·, ·)Ω or 〈·, ·〉 = 〈·, ·〉Γ. Also, set

H(div; Ω) = {v ∈ [L2(Ω)]d :∇·v ∈L2(Ω)}, H1(div; Ω) = {v ∈ [H1(Ω)]d :∇·v ∈H1(Ω)},

with the norms

‖v‖H(div;Ω) =
[
‖v‖2

0 + ‖∇ · v‖2
0

]1/2
; ‖v‖H1(div;Ω) =

[
‖v‖2

1 + ‖∇ · v‖2
1

]1/2
.

We will assume that the solution of (2.6) with the boundary condition (2.9) exists
and satisfies the regularity assumption

(3.1) ‖u(1)‖2 + ‖u(3)‖2 + ‖u(2)‖1 + ‖∇ · u(2)‖1 ≤ C(w)‖F‖0.

Let us introduce the space V = [H1(Ω)]d ×H(div; Ω) × [H1(Ω)]d. Then multiply
(2.3) by v ∈ V, use integration by parts in the (L(u), v) term, and apply the boundary
condition (2.9) to see that the solution u of (2.6) and (2.9) satisfies the weak form,

−ω2 (Pu, v) + iω (Bu, v) + A(u, v) + iω 〈D SΓ(u), SΓ(v)〉 = (F, v),(3.2)

v = (v(1), v(2), v(3))t ∈ V,

where A(u, v) is the bilinear form defined as follows:

A(u, v) =
(
σ

(1)
jk (u), εjk(v

(1))
)

+
(
σ

(3)
jk (u), εjk(v

(3))
)

(3.3)

−
(
pf (u),∇ · v(2)

)
, u, v ∈ V.

In (3.3), and the rest of the paper, Einstein’s convention of sum on repeated indices
is used. Note that the bilinear form A(u, v) can be written in the form

A(u, v) = (E ε̃(u), ε̃(v)) = (Er ε̃(u), ε̃(v)) + i (Ei ε̃(u), ε̃(v)) , u, v ∈ V,

where E = Er + iEi is a complex matrix. Furthermore, we assume that the real
part Er is positive definite since in the elastic limit it is associated with the strain
energy density. On the other hand, the imaginary part Ei is assumed to be positive
definite because of the restriction imposed on our system by the first and second laws
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of thermodynamics. A similar assumption was used in [33] to obtain restrictions on
the imaginary parts of the coefficients in the constitutive relations for the case of a
poroviscoelastic matrix saturated by a two-phase fluid. In the 2D case the matrix E
is defined as follows, with the obvious extension to the 3D case:

E =

(
Ê 0

0 Ŝ

)
, Ŝ =

(
2μ(1) μ(13)

μ(13) 2μ(3)

)
,

Ê =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ(1) + 2μ(1) λ(1) D(3) + μ(13) D(3) B(1)

λ(1) λ(1) + 2μ(1) D(3) D(3) + μ(13) B(1)

D(3) + μ(13) D(3) λ(3) + 2μ(3) λ(3) B(2)

D(3) D(3) + μ(13) λ(3) λ(3) + 2μ(3) B(2)

B(1) B(1) B(2) B(2) Kav

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

ε̃(u) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε11(u
(1))

ε22(u
(1))

ε11(u
(3))

ε22(u
(3))

∇ · u(2)

ε12(u
(1))

ε12(u
(3))

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us analyze the uniqueness of the solution of our differential model for the case
of a unit square Ω = (0, 1)2 in the (x1, x2) plane to shorten the argument; the 3D case
follows with the same argument. Then, set F = 0 and choose v = u in (3.2). Taking
the imaginary part in the resulting equation, we obtain

ω (Bu, u) + (Ei ε̃(u), ε̃(u)) + ω 〈D SΓ(u), SΓ(u)〉 = 0.

Using (2.5) and that Ei and D are positive definite and B is nonnegative, we conclude
that

u(2) = 0, u(1) − u(3) = 0, Ω,(3.4a)

u(1) = 0, u(3) = 0, Γ,(3.4b)

u(2) · ν = 0, Γ.(3.4c)

Consider the part Γ1 of the boundary Γ defined by Γ1 = {x = (x1, x2) ∈ Γ : x1 =
1, 0 < x2 < 1}. Notice that (3.4b) and (3.4c) imply that

(3.5)
∂u

(1)
1

∂x2
=

∂u
(1)
2

∂x2
=

∂u
(3)
1

∂x2
=

∂u
(3)
2

∂x2
= 0, Γ.
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Owing to (2.9) GΓ(u) = 0 leads to the following relations on Γ1:

σ
(1)
11 (u) = (λ(1) + 2μ(1))

∂u
(1)
1

∂x1
+ (D(3) + μ(13))

∂u
(3)
1

∂x1
+ B(1)∇ · u(2) = 0,(3.6a)

σ
(3)
11 (u) = (λ(3) + 2μ(3))

∂u
(3)
1

∂x1
+ (D(3) + μ(13))

∂u
(1)
1

∂x1
+ B(2)∇ · u(2) = 0,(3.6b)

σ
(1)
12 (u) = μ(1) ∂u

(1)
2

∂x1
+

1

2
μ(13) ∂u

(3)
2

∂x1
= 0,(3.6c)

σ
(3)
12 (u) = μ(3) ∂u

(3)
2

∂x1
+

1

2
μ(13) ∂u

(1)
2

∂x1
= 0,(3.6d)

−pf (u) = B(1) ∂u
(1)
1

∂x1
+ B(2) ∂u

(3)
1

∂x1
+ Kav∇ · u(2) = 0.(3.6e)

Next we observe that (3.6c) and (3.6d) form a homogeneous 2 × 2 linear system

of equations with coefficient matrix 2 Ŝ, while (3.6a), (3.6b), and (3.6e) is another
homogeneous linear system of equations with matrix coefficients

E(p) =

⎡⎣ λ(1) + 2μ(1) D(3) + μ(13) B(1)

D(3) + μ(13) λ(3) + 2μ(3) B(2)

B(1) B(2) Kav

⎤⎦ .

We make the assumption (valid in any physically meaningful situation) that the co-
efficients in the matrix Ei fulfill

Im(det(E(p))) > 0,(3.7a)

Im(det(Ŝ)) > 0.(3.7b)

For example, a calculation shows that (3.7) is satisfied if the coefficients λ(m), μ(m),
m = 1, 3, and Kav are complex with nonzero imaginary parts and the imaginary part
of Kav is chosen sufficiently small. Thus, under the condition (3.7), from (3.6) we
conclude that

∂u
(1)
2

∂x1
=

∂u
(3)
2

∂x1
= 0, Γ1,(3.8a)

∂u
(1)
1

∂x1
=

∂u
(3)
1

∂x1
= ∇ · u(2) = 0, Γ1.(3.8b)

The same argument applies for the validity of (3.5) and (3.8) in the rest of the bound-
ary. Thus by the Cauchy–Kovalevsky theorem u(1) = 0, u(3) = 0 in a neighborhood
of any point on Γ where the coefficients are analytic and with the possible exception
at the corners. Then the unique continuation principle [31] implies

(3.9) u(1) = u(3) = 0, Ω.

Now from (3.4a) and (3.9) we have uniqueness. The 3D case follows with the identical
argument.

We summarize the result in the following theorem.
Theorem 3.1. Under the assumption made in the above argument concerning

the validity of (3.7), problem (2.6) with the boundary condition (2.9) has a unique
solution for any ω �= 0.
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For the analysis that follows a similar result can be demonstrated for the adjoint
problem to (2.6) and (2.9). Thus, the solution ψ = (ψ(1), ψ(2), ψ(3))t of the problem

−ω2Pψ − iωBψ − L∗(ψ) = F, Ω × (0, ω∗),(3.10a)

G∗
Γ(ψ) − iωDSΓ(ψ) = 0, Γ × (0, ω∗),(3.10b)

is unique and satisfies the regularity assumption

(3.11) ‖ψ(1)‖2 + ‖ψ(3)‖2 + ‖ψ(2)‖1 + ‖∇ · ψ(2)‖1 ≤ C(ω)‖F‖0.

In (3.10a),

L∗(ψ) =
(
∇ · σ(1,∗)(ψ),−∇p∗f (ψ),∇ · σ(3,∗)(ψ)

)t
,

where σ(m,∗)(ψ),m = 1, 3, and p∗f (ψ) are defined as in (2.3) but using the com-
plex conjugates of the coefficients. Similarly, G∗

Γ(ψ) is defined as in (2.7) but using
σ(m,∗)(ψ),m = 1, 3, and p∗f (ψ) in those definitions. As before, existence for (3.10) will
be assumed.

4. The global finite element procedure. The numerical procedures will be
defined and analyzed in detail in two dimensions and for rectangular elements. The
changes for triangular elements and the 3D case will be described in section 9.

Let T h(Ω) be a nonoverlapping partition of Ω into rectangles Qj of diameter
bounded by h such that Ω = ∪J

j=1Qj . Denote by ξj and ξjk the midpoints of ∂Qj ∩Γ
and ∂Qj∩∂Qk, respectively. Let 〈〈·, ·〉〉Γjk

denote the approximation to the (complex)
inner product 〈·, ·〉Γjk

in L2(Γjk) computed using the midpoint quadrature rule; more
precisely,

〈〈u, v〉〉Γjk
= (uv)(ξjk)|Γjk|,

where |Γjk| denotes the measure of Γjk.
Let us denote by νjk the unit outer normal on ∂Qj ∩ ∂Qk from Qj to Qk and by

νj the unit outer normal to ∂Qj . Let χj and χjk be unit tangents on ∂Qj ∩ Γ and
∂Qj ∩ ∂Qk so that {νj , χj} and {νjk, χjk} are orthonormal systems on ∂Qj ∩ Γ and
∂Qj ∩ ∂Qk, respectively.

To approximate each component of the solid displacement vector we employ the
nonconforming finite element space as in [17], while to approximate the fluid displace-
ment vector we choose the vector part of the Raviart–Thomas–Nedelec space [34, 30]
of zero order. More specifically, set

R̂ = [−1, 1]2, N̂C(R̂) = Span{1, x̂1, x̂2, α(x̂1) − α(x̂2)}, α(x̂1) = x̂2
1 −

5

3
x̂4

1,

with the degrees of freedom being the values at the midpoint of each edge of R̂. Also,
if ψL(x̂1) = −1+x̂1

2 , ψR(x̂1) = 1+x̂1

2 , ψB(x̂2) = −1+x̂2

2 , ψT (x̂2) = 1+x̂2

2 , we have that

Ŵ(R̂) = Span
{
(ψL(x̂1), 0)t, (ψR(x̂1), 0)t, (0, ψB(x̂2))

t, (0, ψT (x̂2))
t
}
.

For each Qj , let FQj : R̂ → Qj be an invertible affine mapping such that FQj (R̂) = Qj ,
and define

NCh
j = {v = (v1, v2)

t : vi = v̂i ◦ F−1
Qj

, v̂i ∈ N̂C(R̂), i = 1, 2},

Wh
j = {w : w = ŵ ◦ F−1

Qj
, ŵ ∈ Ŵ(R̂)}.
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Setting

NCh = {v : vj = v|Qj ∈ NCh
j , vj(ξjk) = vk(ξjk) ∀(j, k)},

Wh = {w ∈ H(div; Ω) : wj = w|Qj ∈ Wh
j },

the global finite element space to approximate the solution u of (3.2) is defined by

Vh = NCh ×Wh ×NCh.

In order to state the approximation properties of Vh let us introduce the space

Λ̃h
s =

{
λ̃h
s : λ̃h

s |∂Qj∩∂Qk
= λ̃h

s,jk ∈ [P0(∂Qj ∩ ∂Qk)]
2 ≡ Λ̃h

s,jk, λ̃h
s,jk + λ̃h

s,kj = 0
}
,

where P0(∂Qj ∩ ∂Qk) denotes the constant functions defined on ∂Qj ∩ ∂Qk. Also,

define the projections Πh : [H2(Ω)]2 → NCh and P
(m)
h : [H2(Ω)]2 × H1(div; Ω) ×

[H2(Ω)]2 → Λ̃h
s ,m = 1, 3, associated with the two solid phases by

(ϕ(m) − Πhϕ
(m))(ξ) = 0, ξ = ξjk or ξj ,〈

σ(m)(ψj)ν − P
(m)
h (ψj), 1

〉
B

= 0, B = ∂Qj ∩ ∂Qk or ∂Qj ∩ Γ,

for all ϕ ∈ [H2(Ω)]2 and ψ ∈ [H2(Ω)]2 ×H1(div; Ω) × [H2(Ω)]2. Then, standard ap-
proximation theory implies that, for all ϕ = (ϕ(1), ϕ(2), ϕ(3))t ∈ [H2(Ω)]2

×H1(div; Ω) × [H2(Ω)]2,

∑
m=1,3

[
‖ϕ(m)−Πhϕ

(m)‖0 + h

(∑
j

‖ϕ(m)−Πhϕ
(m)‖2

1,Qj

) 1
2

(4.1)

+h2

(∑
j

‖ϕ(m)−Πhϕ
(m)‖2

2,Qj

) 1
2

+ h
1
2

(∑
j

|ϕ(m) − Πhϕ
(m)|20,∂Qj

) 1
2

+h
3
2

(∑
j

|σ(m)(ϕj)νj − P
(m)
h ϕj |20,∂Qj

) 1
2
]

≤ Ch2
(
‖ϕ(1)‖2 + ‖ϕ(3)‖2 + ‖∇ · ϕ(2)‖1

)
.

We also notice the orthogonality to constants of the difference ϕ
(m)
j − ϕ

(m)
k on the

interfaces ∂Qj ∩ ∂Qk of Qj and Qk; that is,〈
ϕ

(m)
j − ϕ

(m)
k , 1

〉
∂Qj∩∂Qk

= 0 for all interfaces ∂Qj ∩ ∂Qk, ϕ(m) ∈ NCh, m = 1, 3.

Next, let us define the projection Qh associated with the displacement vector of the
fluid phase as follows:

Qh : [H1(Ω)]2 → Wh :
〈(

Qhϕ
(2) − ϕ(2)

)
· ν, 1

〉
B

= 0,

B = ∂Qj ∩ ∂Qk or B = ∂Qj ∩ Γ.

Then, it follows from [30, 34] that

‖ϕ(2) − Qhϕ
(2)‖0 ≤ Ch‖ϕ(2)‖1,(4.2a)

‖ϕ(2) − Qhϕ
(2)‖H(div;Ω) ≤ Ch

(
‖ϕ(2)‖1 + ‖∇ · ϕ(2)‖1

)
.(4.2b)
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Set

Ah(u, v) =
∑
j

[(
σ

(1)
jk (u), εjk(v

(1))
)
Qj

+
(
σ

(3)
jk (u), εjk(v

(3))
)
Qj

(4.3)

−
(
pf (u),∇ · v(2)

)
Qj

]
and

Θh(u, v) = −ω2 (Pu, v) + iω (Bu, v) + Ah(u, v) + iω 〈D SΓ(u), SΓ(v)〉 .

Then the global finite element procedure is defined as follows: find uh = (u(1,h), u(2,h),
u(3,h))t ∈ Vh such that

(4.4) Θh(uh, v) = (F, v), v =
(
v(1), v(2), v(3)

)t ∈ Vh.

Let us denote by u
(m,h)
j , j = 1, 2, the components of the vector u(m,h), m = 1, 2, 3.

The following theorem analyzes the uniqueness of the solution of (4.4).

Theorem 4.1. Problem (4.4) has a unique solution for any ω �= 0.

Proof. Set F = 0, choose v = uh in (4.4), and take the imaginary part in the
resulting equation to obtain

ω
(
Buh, uh

)
+
∑
Qj

(
Ei ε̃(u

h), ε̃(uh)
)
Qj

+ ω
〈
D SΓ(uh), SΓ(uh)

〉
= 0.(4.5)

Since each term in the left-hand side of (4.5) is nonnegative, in particular we have
that (Buh, uh) = 0, and the argument in the proof of Theorem 3.1 can be repeated to
show that

(4.6) u(2,h) = 0, u(1,h) = u(3,h), Ω.

To show that u(1,h) = u(3,h) = 0, take an element, say Q1, among the four elements
which intersect Γ at the vertices of Ω; two faces of Q1 are contained in Γ. After a
proper transformation, without loss of generality we can assume that Q1 = (−1, 1)2

with the faces ΓR = {(x1, x2) ∈ Γ : x1 = 1} and ΓT = {(x1, x2) ∈ Γ : x2 = 1}
contained in Γ. Set

u
(1,h)
1 = a1 + b1x1 + c1x2 + d1(α(x1) − α(x2)),

u
(1,h)
2 = a2 + b2x1 + c2x2 + d2(α(x1) − α(x2)).

Since the boundary term in (4.5) must vanish and the matrix D is positive definite,
we conclude that SΓ(uh) = 0 and consequently u(m,h)(x1, x2),m = 1, 3, must vanish
on ΓR ∪ ΓT . In particular, at the midpoint of ΓR ∪ ΓT we have

u
(1,h)
1 (1, 0) = a1 + b1 −

2

3
d1 = 0, u

(1,h)
1 (0, 1) = a1 + c1 +

2

3
d1 = 0,(4.7)

u
(1,h)
2 (1, 0) = a2 + b2 −

2

3
d2 = 0, u

(1,h)
2 (0, 1) = a2 + c2 +

2

3
d2 = 0.

Next, since the second term in the left-hand side of (4.5) is nonnegative and the matrix
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Ei is positive definite, for (x1, x2) ∈ Q1 we must have

ε11(u
(1,h)) = b1 + 2d1

(
x1 −

10

3
x3

1

)
= 0,(4.8a)

ε22(u
(1,h)) = c2 − 2d2

(
x2 −

10

3
x3

2

)
= 0,(4.8b)

ε12(u
(1,h)) =

1

2

[
c1 + b2 − 2d1

(
x1 −

10

3
x3

1

)
+ 2d2

(
x2 −

10

3
x3

2

)]
= 0.(4.8c)

From (4.7) and (4.8) it follows that u
(1,h)
1 |Q1 = u

(1,h)
2 |Q1 = 0, and using (4.6) we

also have u
(3,h)
1 |Q1 = u

(3,h)
2 |Q1 = 0. Let us take an element Q2 adjacent to Q1 that

intersects Γ and has a common face Γ12 with Q1. Then u
(1,h)
1 and u

(1,h)
2 vanish at the

midpoints of Γ2 and Γ12 and ε11(u
(1,h)), ε22(u

(1,h)), and ε22(u
(1,h)) vanish identically

on Q2, so that repeating the above argument we verify that

(4.9) u
(m,h)
1 |Q2 = u

(m,h)
2 |Q2 = 0, m = 1, 3.

Repeating the argument, one can show that (4.9) holds for all elements with a face
contained in Γ. Next stripping out such boundary elements, take a boundary element
with two faces common with the corner of stripped out domain and repeat the argu-
ment to show the validity of (4.9) for those elements. Then continue the process until
the domain is exhausted. This completes the proof.

5. A priori error estimates for the global procedure. In this section, we
derive an error estimate between the solutions u and uh defined by (3.2) and (4.4),
respectively. The argument in this section is close to that given in [21], which uses
a boot-strapping argument similar to [15] for nonconforming finite element methods
for Helmholtz-type problems. Also, see [16] for such a boot-strapping argument for
conforming finite element methods for the Helmholtz equation.

Set

Zh =
(
Πhu

(1),Qhu
(2),Πhu

(3)
)t
, δ = u− uh, γ = Zhu− uh.

Our first goal is to derive an estimate for ‖γ‖0, and for that purpose we will solve the
adjoint problem (3.10) to (2.6) and (2.9) with γ as a source term. It is convenient to
define the following broken norms and seminorms:

‖v‖2
s,h =

∑
j

‖v‖2
s,Qj

, |v|2s,h =
∑
j

|v|2s,Qj
, |v|2s,h,Γ =

∑
j

|v|2s,∂Qj∩Γ.

First note that for v = (v(1), v(2), v(3))t ∈ [L2(Ω)]6 such that v(1), v(3) ∈ [H1(Qj)]
2,

v(2) ∈ H(div;Qj). Using integration by parts on each Qj , we obtain

Θh(u, v) =
∑
j

(−ω2Pu + iωBu− L(u), v)Qj(5.1)

+
∑
j

〈
(σ(1)(u)ν,−pf (u)ν, σ(3)(u)ν)t, (v(1), v(2), v(3))t

〉
∂Qj\Γ.

Thus from (4.4) and (5.1) we see that for v ∈ Vh,

(5.2) Θh(δ, v) =
∑
j

[ ∑
m=1,3

〈
σ(m)(u)ν, v(m)

〉
∂Qj\Γ −

〈
pf (u), v(2) · ν

〉
∂Qj\Γ

]
.
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Notice that the regularity assumption (3.1) implies that pf (u) ∈ H1/2(∂Qj ∩ ∂Qk)

which, together with the fact that v
(2)
j ·νjk +v

(2)
k ·νkj = 0 in the sense of H−1/2(∂Qj ∩

∂Qk), leads to

(5.3)
∑
j

〈
pf (u), v(2) · ν

〉
∂Qj\Γ = 0.

Hence, thanks to (5.3) and the fact that v(1) and v(3) are orthogonal to constants,
(5.2) can be rewritten in the form

(5.4) Θh(δ, v) =
∑
j

∑
m=1,3

〈
σ(m)(u)ν − P

(m)
h (u), v(m)

〉
∂Qj\Γ, v ∈ Vh.

Let ψ = (ψ(1), ψ(2), ψ(3))t be the solution of the adjoint problem to (2.6) and (2.9):

−ω2Pψ − iωBψ − L∗(ψ) = γ, Ω × (0, ω∗),(5.5a)

G∗
Γ(ψ) − iωDSΓ(ψ) = 0, Γ × (0, ω∗).(5.5b)

According to (3.11), ψ satisfies the regularity assumption

(5.6) ‖ψ(1)‖2 + ‖ψ(3)‖2 + ‖ψ(2)‖1 + ‖∇ · ψ(2)‖1 ≤ C(w)‖γ‖0.

Using integration by parts on each Qj and applying the boundary condition (5.5b),
we get

−(γ,L∗(ψ)) = Ah(γ, ψ) + iω〈D SΓ(γ), SΓ(ψ)〉

−
∑
j

[ ∑
m=1,3

〈
γ(m), σ(m,∗)(ψ)ν

〉
∂Qj\Γ −

〈
γ(2) · ν, p∗f (ψ)

〉
∂Qj\Γ

]
.(5.7)

Next, the argument used to show the validity of (5.3) can be applied to see that the
last term in the right-hand side of (5.7) vanishes. Thus (5.7) implies that

‖γ‖2
0 = (γ,−ω2Pψ − iωBψ − L∗(ψ))(5.8)

= Θh(γ, ψ) −
∑
j

∑
m=1,3

〈
γ(m), σ(m,∗)(ψ)ν

〉
∂Qj\Γ.

Next, since σ(m,∗)(ψ)ν − P
(m,∗)
h (ψ) has average value zero on ∂Qj \ Γ, we have that

for any q(m) ∈ [P0(Qj)]
2,m = 1, 3,〈

q(m), σ(m,∗)(ψ)ν − P
(m,∗)
h (ψ)

〉
∂Qj\Γ = 0, m = 1, 3,

so that (5.8) can be stated in the form

(5.9) ‖γ‖2
0 = Θh(γ, ψ) −

∑
j

∑
m=1,3

〈
γ(m) − q(m), σ(m,∗)(ψ)ν − P

(m,∗)
h (ψ)

〉
∂Qj\Γ.

Next use (5.4) to see that for v ∈ Vh,

Θh(γ, v) = Θh(δ, v) − Θh(u− Zhu, v)

=
∑
j

∑
m=1,3

〈
σ(m)(u)ν − P

(m)
h (u), v(m)

〉
∂Qj\Γ − Θh(u− Zhu, v).(5.10)
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Then use (5.10) in (5.9) to obtain

‖γ‖2
0 = Θh(γ, ψ − v) − Θh(u− Zhu, v)

+
∑
j

∑
m=1,3

〈
σ(m)(u)ν − P

(m)
h (u), v(m)

〉
∂Qj\Γ(5.11)

−
∑
j

∑
m=1,3

〈
γ(m) − q(m), σ(m,∗)(ψ)ν − P

(m,∗)
h (ψ)

〉
∂Qj\Γ.

Next, since ψ(m) ∈ [H2(Ω)]2,m = 1, 3, (5.11) can be put in the equivalent form

‖γ‖2
0 = Θh(γ, ψ − v) − Θh(u− Zhu, v)

+
∑
j

∑
m=1,3

〈
σ(m)(u)ν − P

(m)
h (u), v(m) − ψ(m)

〉
∂Qj\Γ(5.12)

−
∑
j

[ ∑
m=1,3

〈
γ(m) − q(m), σ(m,∗)(ψ)ν − P

(m,∗)
h (ψ)

〉
∂Qj\Γ

]
.

Let us bound each term in the right-hand side of (5.12). First, choose v = (v(1), v(2),
v(3))t = Zhψ ∈ Vh such that∑

m=1,3

‖ψ(m) − v(m)‖0 + h‖ψ(m) − v(m)‖1,h + h2‖v(m)‖2,h

≤ Ch2
(
‖ψ(1)‖2 + ‖ψ(3)‖2

)
≤ Ch2‖γ‖0,(5.13a)

‖ψ(2) − v(2)‖0 ≤ Ch‖ψ(2)‖1 ≤ Ch‖γ‖0,(5.13b)

‖∇ · (ψ(2) − v(2))‖0 + h‖∇ · (ψ(2) − v(2))‖1,h

≤ Ch‖∇ · ψ(2)‖1 ≤ Ch‖γ‖0.(5.13c)

For the first term in the right-hand side of (5.12), using (5.13) we see that

|Θh(γ, ψ − v)| ≤ C(ω)

[
‖γ‖0‖ψ − v‖0 +

∑
m=1,3

‖γ(m)‖1,h‖ψ(m) − v(m)‖1,h

+ ‖∇ · γ‖0‖∇ · (ψ − v)‖0 + |〈SΓ(γ), SΓ(ψ − v)〉|
]

≤ C(ω)h‖γ‖0

[
‖γ(1)‖1,h + ‖γ(3)‖1,h + ‖∇ · γ(2)‖0

+ |〈SΓ(γ), SΓ(ψ − v)〉|
]
.(5.14)

The boundary integral in the right-hand side of (5.14) can be bounded using (5.6)
and the trace inequality as follows:

(5.15) |〈SΓ(γ), SΓ(ψ − v)〉| ≤ C‖γ‖0h
3/2

[
‖γ(1)‖1,h + |γ(3)‖1,h

]
,

where we have used that∑
j

〈(
ψ(2) − Qhψ

(2)
)
· ν, γ(2) · ν

〉
∂Qj\Γ = 0.

Hence, using (5.15) in (5.14), we get

(5.16) |Θh(γ, ψ − v)| ≤ C(ω)h‖γ‖0

[
‖γ(1)‖1,h + ‖γ(3)‖1,h + ‖∇ · γ(2)‖0

]
.
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By choosing q
(m)
j = qm|Qj

, m = 1, 3, to be the average value of γ(m) on Qj

and using the trace inequality, (4.1) and (5.6), the last term in (5.12) is bounded as
follows:∣∣∣∣∣ ∑

m=1,3

∑
j

〈
γ(m) − q(m), σ(m,∗)(ψ)ν − P

(m,∗)
h (ψ)

〉
∂Qj\Γ

∣∣∣∣∣
≤

∑
m=1,3

(∑
j

|γ(m) − q(m)|20,∂Qj\Γ

)1/2(∑
j

|σ(m,∗)(ψ)ν − P
(m,∗)
h (ψ)|20,∂Qj\Γ

)1/2

≤
∑

m=1,3

(∑
j

h‖γ(m)‖2
1,Qj

)1/2

h1/2
(
‖ψ(1)‖2 + ‖ψ(3)‖2 + ‖∇ · ψ(2)‖1

)
≤ Ch‖γ‖0

(
‖γ(1)‖1,h + ‖γ(3)‖1,h

)
.(5.17)

Next, using integration by parts in the Ah(u − Zhu, v) term and the boundary
condition (5.5b), the second term in the right-hand side of (5.12) can be written in
the form

Θh(u− Zhu, v) =
∑
j

(u− Zhu,−ω2Pv − iωBv − L∗(v))Qj

+
∑
j

〈SΓ(u− Zhu),G∗
Γ(v)〉∂Qj\Γ +

∑
j

〈SΓ(u− Zhu),G∗
Γ(v)〉∂Qj∩Γ

+ iω〈DSΓ(u− Zhu), SΓ(v)〉
=
∑
j

(u− Zhu,−ω2Pv − iωBv − L∗(v))Qj

+
∑
j

〈SΓ(u− Zhu),G∗
Γ(v) − G∗

Γ(ψ)〉∂Qj∩Γ

+
∑
j

〈SΓ(u− Zhu),G∗
Γ(v)〉∂Qj\Γ

+ iω 〈DSΓ(u− Zhu), SΓ(v − ψ)〉
≡ T1 + T2 + T3 + T4.(5.18)

Let us bound each term in the right-hand side of (5.18). First, using (4.1), (4.2), and
(5.13) we see that

|T1| ≤ Ch‖γ‖0(‖u(1)‖2 + ‖u(3)‖2 + ‖u(2)‖1 + ‖∇ · u(2)‖1).

For the T2 term, applying the trace inequality, (4.1), (4.2), (3.11), and (5.13), one has

|T2| ≤
∑

m=1,3

∑
j

|u(m) − Πhu
(m)|0,∂Qj∩Γ|(σ(m,∗)(v) − σ(m,∗)(ψ)) · ν|0,∂Qj∩Γ

+
∑
j

|(u(2) − Qhu
(2)) · ν|−1/2,∂Qj∩Γ|p∗f (v) − p∗f (ψ)|1/2,∂Qj∩Γ

≤ C‖γ‖0[h
2(‖u(1)‖2 + ‖u(3)‖2) + h(‖u(2)‖1 + ‖∇ · u(2)‖1)].(5.19)
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Next, we decompose T3 as follows:

T3 =
∑
j

〈SΓ(u− Zhu),G∗
Γ(v) − G∗

Γ(ψ)〉∂Qj\Γ

+
∑
j

〈SΓ(u− Zhu),G∗
Γ(ψ)〉∂Qj\Γ

≡ T3,1 + T3,2.(5.20)

Then, as in (5.19), the first term is bounded as follows:

|T3,1| ≤ C‖γ‖0[h
2(‖u(1)‖2 + ‖u(3)‖2) + h(‖u(2)‖1 + ‖∇ · u(2)‖1)].

The other term in (5.20) can be bounded by again using the fact that Πhu
(m)
j −Πhu

(m)
k

is orthogonal to constants

|T3,2| ≤
∣∣∣∣∣ ∑
m=1,3

∑
j

〈(u(m) − Πhu
(m)) · ν, σ(m,∗)(ψ)ν · ν〉∂Qj\Γ

+ 〈(u(m) − Πhu
(m)) · χ, σ(m,∗)(ψ)ν · χ〉∂Qj\Γ

−
∑
j

〈(u(2) − Qhu
(2)) · ν, p∗f (ψ)〉∂Qj\Γ

∣∣∣∣∣
≤ C‖γ‖0[h

2(‖u(1)‖2 + ‖u(3)‖2)],

where we have again used the argument in (5.3) to cancel out the terms involving u(2)

in the inequality above. Finally, in order to bound T4, applying the trace inequality,
(4.1), (4.2), and (5.13), we obtain

|T4| ≤ C

[ ∑
m=1,3

∑
j

|u(m) − Πhu
(m)|0,∂Qj∩Γ|v(m) − ψ(m)|0,∂Qj∩Γ

+
∑
j

|(u(2) − Qhu
(2)) · ν|0,∂Qj∩Γ|(v(2) − ψ(2)) · ν|0,∂Qj∩Γ

]

≤
∑

m=1,3

∑
j

‖u(m)−Πhu
(m)‖

1
2

0,Qj
‖u(m)−Πhu

(m)‖
1
2

1,Qj

×‖ψ(m)− v(m)‖
1
2

0,Qj
‖ψ(m)− v(m)‖

1
2

1,Qj

+
∑
j

h
1
2 |u(2) · ν| 1

2 ,∂Qj∩Γh
1
2 |ψ(2) · ν| 1

2 ,∂Qj∩Γ

≤ C‖γ‖0[h
3(‖u(1)‖2 + ‖u(3)‖2)] + Ch‖u(2)‖1‖ψ(2)‖1

≤ C‖γ‖0[h
3(‖u(1)‖2 + ‖u(3)‖2) + Ch‖u(2)‖1].

Collecting the estimates for T1, T2, T3, and T4, we conclude that

(5.21) |Θh(u− Zhu, v)| ≤ C‖γ‖0[h
2(‖u(1)‖2 + ‖u(3)‖2) + h(‖u(2)‖1 + ‖∇ · u(2)‖1)].

Next, use the trace inequality, (4.1), and (5.16) to bound the third term in the
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right-hand side of (5.12) as follows:∣∣∣∣∣∑
j

∑
m=1,3

〈σ(m)(u)ν − Pm
h (u), v(m) − ψ(m)〉∂Qj\Γ

∣∣∣∣∣
≤

∑
m=1,3

(∑
j

|σ(m)(u)ν − P
(m)
h (u)|20,∂Qj\Γ

)1/2(∑
j

|v(m) − ψ(m)|20,∂Qj\Γ

)1/2

≤ Ch1/2(‖u(1)‖2 + ‖u(3)‖2 + ‖∇ · u(2)‖1)h
3/2(‖ψ(1)‖2 + ‖ψ(3)‖2)

≤ Ch2‖γ‖0(‖u(1)‖2 + ‖u(3)‖2 + ‖∇ · u(2)‖1).(5.22)

Thus, collecting the bounds in (5.16), (5.17), (5.21), and (5.22), we obtain

‖γ‖0 ≤ C(ω)[h(‖γ(1)‖1,h + ‖γ(3)‖1,h + ‖∇ · γ(2)‖0)(5.23)

+h2(‖u(1)‖2 + ‖u(3)‖2) + h(‖u(2)‖1 + ‖∇ · u(2)‖1)].

Using the triangle inequality, the last estimate (5.23), and the approximation
properties of Πh and Qh in (4.1) and (4.2), we get

‖δ‖0 ≤ ‖γ‖0 + ‖Zhu− u‖0 ≤ C(ω)[h(‖δ(1)‖1,h + ‖δ(3)‖1,h + ‖∇ · δ(2)‖0)

+h(‖u(1) − Πhu
(1)‖1,h + ‖u(3) − Πhu

(3)‖1,h + ‖∇ · (u(2) − Qhu
(2))‖0)

+h2(‖u(1)‖2 + ‖u(3)‖2) + h(‖u(2)‖1 + ‖∇ · u(2)‖1)]

≤ C(ω)[h(‖δ(1)‖1,h + ‖δ(3)‖1,h + ‖∇ · δ(2)‖0)(5.24)

+h2(‖u(1)‖2 + ‖u(3)‖2) + h(‖u(2)‖1 + ‖∇ · u(2)‖1)].

We next use a Gärding-type inequality to bound the δ terms in (5.24) in terms
of the u terms in that inequality. Using Korn’s second inequality [18, 32] and noting
that Ei is positive definite, we get

|Im(Θh(δ, δ))| = ω(Bδ, δ) +
∑
j

(Ei ε̃(δ), ε̃(δ))Qj + ω〈D SΓ(δ), SΓ(δ)〉

≥ C1(ω)[‖δ(1)‖2
1,h + ‖δ(3)‖2

1,h + ‖∇ · δ(2)‖2
0 + 〈SΓ(δ), SΓ(δ)〉]

−C2(ω)‖δ‖2
0.

Hence,

‖δ(1)‖2
1,h + ‖δ(3)‖2

1,h + ‖∇ · δ(2)‖2
0 + 〈SΓ(δ), SΓ(δ)〉

≤ C3(ω)|Θh(δ, δ)| + C2(ω)‖δ‖2
0

≤ C3(ω)[‖δ‖2
0 + |Θh(δ, u− Zhu)| + |Θh(δ, γ)|].(5.25)

Since γ ∈ Vh, the expression for Θh(δ, γ) given in (5.4) can be replaced by using (5.25)
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so that

‖δ(1)‖2
1,h + ‖δ(3)‖2

1,h + ‖∇ · δ(2)‖2
0 + 〈SΓ(δ), SΓ(δ)〉

≤ C3(ω)

[
‖δ‖2

0 − ω2(Pδ, u− Zhu) + iω(Bδ, u− Zhu) + Ah(δ, u− Zhu)(5.26)

+ iω〈D SΓ(δ), SΓ(u− Zhu)〉 +
∑
j

∑
m=1,3

〈σ(m)(u)ν − P
(m)
h (u), γ(m)〉∂Qj\Γ

]
.

Let us bound the last five terms in the right-hand side of (5.26). First, thanks to
the approximation properties of Πh and Qh given in (4.1) and (4.2), it follows that

| − ω2(Pδ, u− Zhu) + iω(Bδ, u− Zhu)|(5.27)

≤ C(ω)[‖δ‖2
0 + h4(‖u(1)‖2

2 + ‖u(3)‖2
2) + h2‖u(2)‖2

1].

Again, due to (4.1) and (4.2),

|Ah(δ, u− Zhu)| ≤ C(ω)

[ ∑
m=1,3

(‖δ(m)‖1,h‖u(m) − Πhu
(m)‖1,h)

+ ‖∇ · δ(2)‖0‖∇ · (u(2) − Qhu
(2))‖0

]
≤ ε(‖δ(1)‖2

1,h + ‖δ(3)‖2
1,h + ‖∇ · δ(2)‖2

0)(5.28)

+C(ω)[h2(‖u(1)‖2
2 + ‖u(3)‖2

2) + h2‖∇ · u(2)‖2
1].

Next, using the trace inequality and approximation properties (4.1) and (4.2) again,
we have

|ω〈D SΓ(δ), SΓ(u− Zhu)〉|
≤ ε〈DSΓ(δ), SΓ(δ)〉 + C(ω)〈DSΓ(u− Zhu), SΓ(u− Zhu)〉
≤ ε〈DSΓ(δ), SΓ(δ)〉

+C(ω)

[ ∑
m=1,3

∑
j

|u(m) − Πhu
(m)|20,∂Qj∩Γ +

∑
j

|(u(2) −Qhu
(2)) · ν|20,∂Qj∩Γ

]

≤ ε〈DSΓ(δ), SΓ(δ)〉 + C(ω)

[
h3(‖u(1)‖2

2 + ‖u(3)‖2
2) +

∑
j

h2|u(2) · ν|21,∂Qj∩Γ

]

≤ ε〈DSΓ(δ), SΓ(δ)〉 + C(ω)

[
h3(‖u(1)‖2

2 + ‖u(3)‖2
2) +

∑
j

h2‖u(2)‖2
3
2 ,Qj

]
≤ ε〈DSΓ(δ), SΓ(δ)〉 + C(ω)[h3(‖u(1)‖2

2 + ‖u(3)‖2
2) + h2‖u(2)‖2

3
2
].(5.29)

Finally, owing to the orthogonality property of γ(m) to constants on ∂Qj \Γ, the trace
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inequality, and (4.1), it follows that∣∣∣∣∣∑
j

∑
m=1,3

〈σ(m)(u)ν − P
(m)
h (u), γ(m)〉∂Qj\Γ

∣∣∣∣∣
=

∣∣∣∣∣∑
j

∑
m=1,3

〈σ(m)(u)ν − P
(m)
h (u), γ(m) − q(m)〉∂Qj\Γ

∣∣∣∣∣
≤ C

∑
m=1,3

(∑
j

|σ(m)(u)ν − P
(m)
h (u)|20,∂Qj\Γ

)1/2(∑
j

|γ(m) − q(m)|20,∂Qj\Γ

)1/2

≤ Ch1/2(‖u(1)‖2 + ‖u(3)‖2 + ‖∇ · u(2)‖1)
∑

m=1,3

(∑
j

h‖γ(m)‖1,Qj

)1/2

≤ Ch
∑

m=1,3

‖γ(m)‖1,h(‖u(1)‖2 + ‖u(3)‖2 + ‖∇ · u(2)‖1)

≤ Ch

( ∑
m=1,3

‖δ(m)‖1,h + ‖u(m) − Πhu
(m)‖1,h

)
(‖u(1)‖2 + ‖u(3)‖2 + ‖∇ · u(2)‖1)

≤ ε(‖δ(1)‖2
1,h + ‖δ(3)‖2

1,h) + Ch2(‖u(1)‖2
2 + ‖u(3)‖2

2 + ‖∇ · u(2)‖2
1).(5.30)

Hence using (5.27), (5.28), (5.29), and (5.30) in (5.26), we have the following estimate:

‖δ(1)‖1,h + ‖δ(3)‖1,h + ‖∇ · δ(2)‖0 + 〈SΓ(δ), SΓ(δ)〉
1
2

≤ C(ω)[‖δ‖0 + h(‖u(1)‖2 + ‖u(3)‖2 + ‖u(2)‖ 3
2

+ ‖∇ · u(2)‖1)].(5.31)

Next, use (5.31) in (5.24) to obtain

‖δ‖0 ≤ C(ω)[h‖δ‖0 + h2(‖u(1)‖2 + ‖u(3)‖2 + ‖u(2)‖ 3
2
)(5.32)

+h(‖u(2)‖1 + ‖∇ · u(2)‖1)].

Then, for sufficiently small h > 0 such that 0 < C(ω)h < 1, the term ‖δ‖0 in the
right-hand side of (5.32) is absorbed in the left-hand side, and therefore

(5.33) ‖δ‖0 ≤ C(ω)[h2(‖u(1)‖2 + ‖u(3)‖2 + ‖u(2)‖ 3
2
) + h(‖u(2)‖1 + ‖∇ · u(2)‖1)].

Finally, using (5.33) in (5.31), we arrive at the following error estimate:

‖δ(1)‖1,h + ‖δ(3)‖1,h + ‖∇ · δ(2)‖0 + 〈SΓ(δ), SΓ(δ)〉 ≤ C(ω)h[‖u(1)‖2

+‖u(3)‖2 + ‖u(2)‖ 3
2

+ ‖∇ · u(2)‖1].

We summarize the above in the following theorem.

Theorem 5.1. Let u ∈ V and uh ∈ Vh be the solutions of (3.2) and (4.4),
respectively. We then have the following energy-norm error estimate: for sufficiently
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small h > 0, ∑
m=1,3

‖u(m) − u(m,h)‖1,h + ‖∇ · (u(2) − u(2,h))‖0

+
∑

m=1,3

|u(m) − u(m,h)|0,Γ + |(u(2) − u(2,h)) · ν|0,Γ

≤ C(ω)h
[
‖u(1)‖2 + ‖u(3)‖2 + ‖u(2)‖ 3

2
+ ‖∇ · u(2)‖1

]
.

Also, we have the [L2(Ω)]6-error estimate as follows: for sufficiently small h > 0,

‖u− uh‖0 ≤ C(ω)[h2(‖u(1)‖2 + ‖u(3)‖2 + ‖u(2)‖ 3
2
) + h(‖u(2)‖1 + ‖∇ · u(2)‖1)].

6. A global hybridized nonconforming finite element procedure. Let
us decompose Ω ∈ R

2 into nonoverlapping subdomains Ω1, . . . ,ΩN such that each
Ωj is composed of the union of disjoint rectangles Q ∈ T h(Ω), with the interfaces
Γjk = ∂Ωj ∩ ∂Ωk. Also, let Γj = ∂Ωj ∩ Γ. Set

T h(Ωj) = {Q ∈ T h(Ω) : Q ∈ Ωj},
NCh(Ωj) = {vj : Ωj → C

2, vj |Q ∈NCh
j ∀Q∈T h(Ωj), vj |Qk

(ξkl) = vj |Ql
(ξkl)∀(k, l)},

Wh(Ωj) = {w ∈ H(div; Ωj) : wk = w|Qk
∈Wh

k },
Vh(Ωj) = NCh(Ωj) ×Wh(Ωj) ×NCh(Ωj).

Our global hybridized finite element space is then defined by

Vh
−1 = {v ∈ [L2(Ω)]6 : v|Ωj ∈ Vh(Ωj)}.

In order to define a hybridized procedure, we follow the ideas in [1, 19, 20, 14] to
impose the continuity constraints across interior interfaces using Lagrange multipliers.
Thus we introduce the space Λ̃h

−1,j , with λ̃h
jk ∈ Λ̃h

−1,j associated with GΓjk
(uj) on Γjk:

Λ̃h
−1,j = {λ̃h

j : λ̃h
jk = λ̃h

j |∂Q∩Γjk
∈ Λ̃h

−1,jk ∀Q ∈ Ωj such that Q ∩ Γjk �= ∅},

where

Λ̃h
−1,jk = {λ̃h

jk : λ̃h
jk ∈ [P0(∂Q ∩ Γjk)]

5 ∀Q ∈ Ωj such that Q ∩ Γjk �= ∅, λ̃h
jk = λ̃h

kj}
∀j, k.

Set

Λ̃h
−1 = ∪jΛ̃

h
−1,j .

The global hybridized nonconforming procedure is defined in the following fashion:
find (ũh, λ̃h) ∈ Vh

−1 × Λ̃h
−1 such that∑

j

∑
Q∈T h(Ωj)

[−ω2(Pũh
j , v)Q + iω(Bũh

j , v)Q + Ah,Q(ũh
j , v)](6.1a)

−
∑
j,k

〈〈λ̃h
jk, SΓjk

(v)〉〉Γjk
+ iω

∑
j

〈DSΓj (ũ
h
j ), SΓj (v)〉Γj = (F, v), v ∈ Vh

−1,∑
j,k

〈〈θ, SΓjk
(ũh

j )〉〉Γjk
= 0, θ ∈ Λ̃h

−1,(6.1b)
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where Ah,Q indicates the restriction to Q of the bilinear form Ah defined in (4.3) and
SΓjk

, SΓj are defined as in (2.7)–(2.8). The following theorem gives an existence and
uniqueness result for the procedure (6.1).

Theorem 6.1. Problem (6.1) has a unique solution.
Proof. It is enough to show uniqueness due to finite dimensionality. For this, set

F = 0 and add (6.1a) with the choice of v = ũh and (6.1b) with the choice θ = λ̃h.
Then the imaginary part in the resulting equation reduces to∑

j

∑
Q∈T h(Ωj)

[ω(Bũh
j , ũ

h
j )Q + (Eiε̃(ũ

h
j ), ε̃(ũh

j ))Q](6.2)

+ω〈DSΓj (ũ
h
j ), SΓj (ũ

h
j )〉Γj = 0.

Now an argument similar to that given in the proof of Theorem 4.1 shows that

ũh = 0 in Ω.

Thus (6.1a) reduces to

(6.3)
∑
j,k

〈〈λ̃h, SΓjk
(v)〉〉Γjk

= 0, v ∈ NCh
−1.

Now, for each Ωj and each Q ∈ Ωj with Q facing the boundary Γ, we can choose

v ∈ Vh(Ωj) with the degrees of freedom chosen such that SΓjk
(v) is equal to λ̃h at

the midpoint m of one edge of Q and zero degrees of freedom at the other three
midpoints of Q to show that λ̃h = 0 at the midpoint m. Repeating the argument for
all midpoints of Q and all Q ∈ Ωj whose faces meet ∂Ωj for each j yields that λ̃h = 0.
This completes the proof.

We next notice the validity of the following lemma, whose obvious proof is omit-
ted.

Lemma 6.1. If ũh ∈ Vh
−1, then ũh ∈ Vh if and only if∑

j,k

〈〈θ, SΓjk
(ũh)〉〉Γjk

= 0, θ ∈ Λ̃h
−1.

Remark 6.1. As a consequence of Theorem 6.1 and Lemma 6.1, ũh solves problem
(4.4).

7. The domain decomposition iterative procedures. Consider the decom-
position of problem (2.6) and (2.9) over Ωj as follows: for j = 1, . . . , N , find uj(x, ω)
satisfying

−ω2Puj + iωBuj − L(uj) = F, Ωj ,(7.1a)

GΓjk
(uj) + iωβjkSΓjk

(uj) = GΓkj
(uk) − iωβjkSΓkj

(uk), Γjk,(7.1b)

−GΓj (uj) = iωDSΓj
(uj), Γj ,(7.1c)

where GΓjk
and GΓj

are defined as in (2.7)–(2.8). Notice that (7.1b) is equivalent to
imposing the two consistency conditions

GΓjk
(uj) = GΓkj

(uk), Γjk,

βjk(SΓjk
(uj) + SΓkj

(uk)) = 0, Γjk.
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A weak form of (7.1) at the differential level may be stated as follows: for all j,
find uj ∈ [H1(Ωj)]

2 ×H(div; Ωj) × [H1(Ωj)]
2 such that

−ω2(Puj , v)Ωj + iω(Buj , v)Ωj + Aj(uj , v) + iω〈D SΓj (uj), SΓj (v)〉

+
∑
k

〈
iωβjk(SΓjk

(uj) + SΓkj
(uk)) − GΓjk

(uk), v
〉
Γjk

= (F, v)Ωj ,(7.2)

v = (v(1), v(2), v(3))t ∈ [H1(Ωj)]
2 ×H(div; Ωj) × [H1(Ωj)]

2,

where Aj is the restriction to Ωj of the bilinear form A defined in (3.3). Then a Jacobi-
type iteration at the differential level may be defined by changing uj and uk in (7.2)

into u
{n}
j and u

{n−1}
k , respectively. This motivates the definition of our hybridized

nonconforming domain decomposition procedure. For that purpose, we introduce a

new set of Lagrange multipliers
˜̃
λh
jk associated with SΓjk

(uj) at the midpoints ξjk of

the face of element Q ∈ Ωj such that Q ∩ Γjk �= ∅ for all the interior interfaces Γjk.
Let

˜̃Λh
−1,j = {˜̃

λh
j :

˜̃
λh
jk =

˜̃
λh
j |∂Q∩Γjk

∈ [P0(∂Q ∩ Γjk)]
5 ∀Q ∈ Ωj such that Q ∩ Γjk �= ∅},

and set ˜̃Λh
−1 = ∪j

˜̃Λh
−1,j .

Remark 7.1. Note that we have two copies of [P0(Γjk)]
5 on each Γjk, one from

Ωj to Ωk and another from Ωk to Ωj .
An iterative procedure corresponding to (7.2) is defined as follows: for all j =

1, . . . , N , choose an initial guess (u
{h,0}
j ,

˜̃
λ
{h,0}
j ) ∈ Vh(Ωj) × ˜̃Λh

−1. Then, for n =

1, 2, 3, . . . , compute (u
{h,n}
j ,

˜̃
λ
{h,n}
j ) ∈ Vh(Ωj) × ˜̃Λh

−1,j as the solution of the
equations ∑

Q∈T h(Ωj)

[
− ω2

(
Pu

{h,n}
j , v

)
Q

+ iω
(
Bu{h,n}

j , v
)
Q

+ Ah,Q(u
{h,n}
j , v)

]
+ iω

〈
D SΓj (u

{h,n}
j ), SΓj (v)

〉
Γj

+
∑
k

〈
iωβjkSΓjk

(u
{h,n∗}
k ),SΓjk

(v)
〉
Γjk

= (F, v)Ωj −
∑
k

〈
iωβjkSΓjk

(u
{h,n∗}
k ),SΓjk

(v)
〉
Γjk

+
∑
k

〈〈˜̃
λ
{h,n∗}
kj ,SΓjk

(v)
〉〉

Γjk
, v ∈ Vh(Ωj),(7.3a)

˜̃
λ
{h,n}
jk =

˜̃
λ
{h,n∗}
kj − iωβjk[SΓjk

(u
{h,n}
j ) + SΓkj

(u
{h,n∗}
k )](ξjk) on Γjk∀k,(7.3b)

for all j = 1, . . . , N , where n∗ is defined according to the iteration type as follows:

Jacobi type Seidel type red-black type

n∗ = n− 1, n∗ =

{
n− 1, j < k,

n, j > k,
n∗ =

{
n− 1, Ωj is red, i.e., j ∈ IR,

n, Ωj is black, i.e., j ∈ IB .

Here for the red-black type, the red and black parts of subdomains are given alter-
natively such that Ω = [∪j∈IRΩj ] ∪ [∪j∈IBΩj ]. If, for {j, k} ⊂ IR or {j, k} ⊂ IB ,
Ωj ∩ Ωk �= ∅, then Ωj ∩ Ωk consists of a common vertex (in 2D) or a common edge
(in 3D) of Ωj and Ωk.
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8. Convergence of the iterative procedure. Next, we analyze the conver-
gence of the iterative procedure (7.3). For simplicity in the notation we consider the
case βjk = βI with β = βR > 0 and I being the identity matrix of suitable size.

It follows immediately from (6.1) that for j, k, (ũh
j , λ̃

h
jk) ∈ Vh(Ωj)× Λ̃h

−1,j satisfy
the local equations

∑
Q∈T h(Ωj)

[
−ω2(Pũh, v)Q + iω(Bũh, v)Q + Ah,Q(ũh, v)

]
−
∑
k

〈〈
λ̃h
jk, v

〉〉
Γjk

+ iω
〈
DSΓj (ũ

h), SΓj (v)
〉
Γj

= (F, v)Ωj , v ∈ Vh(Ωj).(8.1)

Also, since λ̃h
jk = λ̃h

kj , (6.1b) is equivalent to

(8.2) λ̃h
jk = λ̃h

kj − iωβ
[
SΓjk

(ũh
j ) + SΓkj

(ũh
k)
]
(ξjk) on Γjk∀k.

Since ũh satisfies the error estimates given in Theorem 5.1, in order to show
the convergence of the iteration procedure (7.3) it is sufficient to demonstrate that

u
{h,n}
j → ũh

j and
˜̃
λ
{h,n}
jk → λ̃h

jk as n → ∞ for all j, k. For this, set

dnj = u
{h,n}
j − ũh

j , x ∈ Ωj , ηnjk =
˜̃
λ
{h,n}
jk − λ̃h

jk on Γjk.

Then, from (7.3)–(8.2), we obtain the following iteration error equations:

∑
Q∈T h(Ωj)

[
−ω2

(
Pdnj , v

)
Q

+ iω
(
Bdnj , v

)
Q

+ Ah,Q(dnj , v)
]

+ iω
〈
D SΓj

(dnj ), SΓj
(v)

〉
Γj

−
∑
k

〈〈
ηnjk,SΓjk

(v)
〉〉

Γjk
= 0, v ∈ Vh(Ωj),(8.3a)

ηnjk = ηn∗kj − iωβ
[
SΓjk

(dnj ) + SΓkj
(dn∗k )

]
(ξjk) on Γjk∀k.(8.3b)

Let us define the pseudoenergy Rn at the nth iteration step as follows:

(8.4) Rn = Rn(dn, ηn) =
∑
j,k

|ηnjk + iωβSΓjk
(dnj )(ξjk)|20,Γjk

.

A similar argument to that in [21] shows that dn → 0 in L2(Ωj) and ηn → 0 as n goes
to ∞, so that the procedures (7.3) converge.

Let us turn to analyze the actual convergence rate by using a fixed point argument.

Let TF : Vh
−1 × ˜̃Λh

−1 → Vh
−1 × ˜̃

λh
−1 be defined as follows: for any (p, θ) ∈ Vh

−1 ×
λ̃h
−1, (u, η) = TF (p, θ) is the solution of the equations
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Q∈T h(Ωj)

[
− ω2 (Puj , v)Q + iω (Buj , v)Q + Ah,Q(uj , v)

]
+ iω

〈
D SΓj (uj), SΓj (v)

〉
Γj

+
∑
k

〈
iωβjkSΓjk

(uj),SΓjk
(v)

〉
Γjk

(8.5a)

= (F, v)Ωj −
∑
k

〈
iωβjkSΓjk

(pk),SΓjk
(v)

〉
Γjk

+
∑
k

〈〈
θkj ,SΓjk

(v)
〉〉

Γjk
,

v ∈ Vh(Ωj),

ηjk = θkj − iωβjk

[
SΓjk

(uj) + SΓkj
(pk)

]
(ξjk) on Γjk∀k,(8.5b)

for all j = 1, . . . , N.
Notice that TF (p, θ) = T0(p, θ) + TF (0, 0) and (p, θ) is a fixed point of TF if and

only if

TF (p, θ) = (p, θ) = T0(p, θ) + TF (0, 0).

Therefore, a fixed point of TF is a solution of the equation

(I − T0)(p, θ) = TF (0, 0).

An estimate on the spectral radius of the operator T0 can be obtained using similar
arguments to those in [17, 21], as follows.

Theorem 8.1. Let ρ(T0) be the spectral radius of T0. Then ρ(T0) < 1 and conse-
quently the iterative procedure (7.3) is convergent.

9. The triangular and the three-dimensional cases.

9.1. The triangular element case. Let Ω = ∪J
j=1Qj be a quasi-regular par-

tition of Ω into triangles Qj ’s; here, Ω can be a convex polygon. Let us change the

definition of the set NCh
j in section 4 to NCh

j = [P1(Qj)]
2, with the degrees of free-

dom being the midpoint values of the edges of Qj . Also, change the definition of the
space Wj to be the vector part of the Raviart–Thomas–Nedelec mixed finite element
space of zero order based on triangles [34, 30], with the degrees of freedom being the
values of the normal component of the fluid displacement vector at the midpoints of
the edges of Qj .

An inspection of the analysis shows that all the conclusions presented for the
rectangular case in Theorem 4.1 about the existence and uniqueness of the solution
uh of (4.4), the a priori error estimates in derived in Theorem 5.1, and the convergence
of the iterative domain decomposition method in Theorem 8.1 remain valid for the
new definition of the space Vh.

9.2. The three-dimensional case. Let Qj , j = 1, . . . , J, be a nonoverlapping

partition of Ω. If the Qj ’s are tetrahedrons we take NCh
j = [P1(Qj)]

3. If the Qj ’s are

cubic elements, we set R̂ = (−1, 1)3 and

Ŝ(R̂) = Span
{
1, x̂, ŷ, ẑ, α(x̂) − α(ŷ), α(x̂) − α(ẑ)

}
(9.1)

= Span

{
1

2
x̂± α(x̂)

2α(1)
,
1

2
ŷ ± α(ŷ)

2α(1)
,
1

2
ẑ ± α(ẑ)

2α(1)

}
,

and choose NCh
j = [S(Qj)]

3. The four and six degrees of freedom associated with the
tetrahedron case and (9.1) are the values at the centers of the faces. Also, take Wj to
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Table 1

Material properties of the frozen sandstone model.

Solid grain bulk modulus, K(s1) 38.7 GPa

shear modulus, μ(s1) 39.6 GPa

density, ρ(1) 2650 kg/m3

permeability κ(1),0 1.07 10−13 m2

Ice bulk modulus, K(s3) 8.58 GPa

shear modulus, μ(s3) 3.32 GPa

density, ρ(3) 920 kg/m3

permeability κ(3),0 5 10−4 m2

Fluid bulk modulus, K(f) 2.25 GPa

density, ρ(2) 1000 kg/m3

viscosity, η 10−6 cP

Air bulk modulus, K(a) 1.5 10−4 GPa

shear modulus, μ(a) 0 GPa

be the Raviart–Thomas–Nedelec space of order zero over either tetrahedrons or cubic
elements depending on Qj [30].

Next, change the definitions of the spaces Vh, Vh
−1, Λ̃h

s , Λ̃
h
−1,j , and ˜̃Λh

−1,j in the
obvious fashion. With these changes in the definitions, all the results derived for the
2D case remain unchanged.

10. Numerical experiments. We performed wave propagation simulation in
a sample of water-saturated partially frozen Berea sandstone, with an interior plane
interface Γ defined by a change in ice content in the pores. In this case Ω(1) and
Ω(3) correspond to the sandstone and ice, respectively. The material properties of
the system, taken from [9, 12], are given in Table 1. Since we would like to run
an experiment in which the slow waves can actually be observed in the low-frequency
range, the water viscosity value was taken to be of 10−6 centipoise. The computational
domain Ω is a square of side length L = 3 km with a uniform partition of Ω into squares
of side length h = L/261. The absolute porosity is φ(a) = .18, with the ice content in

the pores changing from S(3)′ = 20 percent in the lower layer to S(3)′ = 82 percent in
the upper layer.

The source function is a point source representing a force applied to the rock
frame in the vertical z direction, located at (xs = 1.5 km, zs = 1.88 km). It has the
form F = (F (1), F (2), F (3))t = (F (1), 0, 0)t,

F (1) =

(
0,

∂δ(xs,zs)

∂z

)t

g(ω),

where δ(xs,zs) denotes the Dirac distribution and g(ω) is the Fourier transform of the
waveform of central (dominant) frequency f0 = 12 Hz given by

g(t) = −2ξ(t− t0)e
−ξ(t−t0)

2

,

with ξ = 8 f2
0 , t0 = 1.25/f0.

For the calculation of the elastic coefficients we need values for the bulk and
shear moduli of the two solid (dry) frames, denoted by K

(s1)
m ,K

(s3)
m , μ

(s1)
m , and μ

(s3)
m ,

respectively. Following [24, 12, 37], it is assumed that K
(s1)
m = 14.4 GPa and that the
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Table 2

Wave speeds and attenuation factors for all waves at frequency 12 Hz.

Ice content 0.82 Ice content 0.20
Wave Phase velocity Attenuation Phase velocity Attenuation

(km/s) (dB) (km/s) (dB)

Fast P1 wave 4.316 1.872 10−3 3.723 4.282 10−2

Slow P2 wave 1.463 1.825 7.281 10−1 1.151 101

Slow P3 wave 9.577 10−2 4.053 101 1.192 10−1 6.562
Fast S1 wave 2.946 1.281 2.384 2.202 10−1

Slow S2 wave 7.104 10−1 5.582 10−2 1.013 10−1 4.605 10−1

modulus μ
(s1)
m , μ

(s3)
m , and K

(s3)
m can be computed using a percolation-type model with

critical exponent 3.8 [13] using the relations

μ(sj)
m =

[
μ(sj),max
m − μ(sj),0

m

][ φ(3)

1 − φ(1)

]3.8

+ μ(sj),0
m , j = 1, 3,

K(s3)
m =

[
K(s3),max

m −K(s3),0
m

][ φ(3)

1 − φ(1)

]3.8

+ K(s3),0
m ,

where μ
(s1),max
m , μ

(s3),max
m , and K

(s3),max
m are computed using the Kuster and Toksöz

model [23], taking the known values of K(s1), μ(s1),K(s3), μ(s3) for the background
medium with inclusions of air, with properties K(a), μ(a) (see Table 1). The moduli

μ
(s1),0
m , μ

(s3),0
m , and K

(s3),0
m are appropriate reference values, which we take as

μ(s1),0
m = 13.3 GPa, K(s3),0

m = μ(s3),0
m = 0.

The viscoelastic parameters describing the dissipative behavior of the saturated sand-
stone are given as follows: T1,M = (2π 10)−1ms, T2,M = (2π 109)−1ms, and the mean

quality factors are taken to be Q̂M = 300 for M = K
(1)
G ,K

(3)
G , μ(1), μ(3),Kav. The

value of the Kozeny–Carman constant was taken to be 5 [22]. Also, the coefficient b13
in the definition (2.4) of the mass and viscous coupling coefficients was taken to be
zero.

Table 2 displays values of the phase velocity and attenuation factors at 12 Hz for
the five different types of waves for the two-layer model used in this experiment.

The following figures present snapshots of the wave fields for this experiment,
generated after solving (7.3) for 110 equally spaced temporal frequencies in the in-
terval (0, 12 Hz) and using an approximate inverse Fourier transform as explained
in [16].

Figures 1, 2, and 3 show, respectively, snapshots of the vertical component of
the particle velocity of the three phases at t = 410 ms, where we can observe that
after arriving at the interface Γ, the direct P1 wave labeled P1D has generated the
transmitted fast P1 wave labeled P1T-P1D and the slow P2 transmitted and reflected
waves labeled P2R-P1D and P2T-P1D, respectively. Also, after arriving at Γ, the
direct fast shear wave labeled S1D has generated the transmitted and reflected fast
shear waves labeled S1T-S1D and S1R-S1D, respectively. In the snapshots for the ice
and fluid phases in Figures 2 and 3 we can also observe the direct slow P2 wave front
labeled P2D. The relative amplitudes among the snapshots in Figures 1, 2, and 3 are
1, 0.56873, and 0.023708, respectively. We observe that the slow P2 wave is observed
better in the ice and fluid phases than in the solid matrix phase.
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Fig. 1. Snapshot of the vertical particle velocity of the solid matrix phase at t = 410 ms.
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Fig. 2. Snapshot of the vertical particle velocity of the ice phase at t = 410 ms.
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Fig. 3. Snapshot of the vertical particle velocity of the fluid phase at t = 410 ms.



WAVES IN COMPOSITE POROVISCOELASTIC SOLIDS 419

REFERENCES

[1] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: Implemen-
tation, postprocessing and error estimates, RAIRO Anal. Numer., 19 (1985), pp. 7–32.

[2] J. Bear, Dynamics of Fluids in Porous Media, Dover Publications, New York, 1972.
[3] M. A. Biot, Theory of deformation of a porous viscoelastic anisotropic solid, J. Appl. Phys.,

27 (1956), pp. 459–467.
[4] M. A. Biot, Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher

frequency range, J. Acoust. Soc. Amer., 28 (1956), pp. 179–191.
[5] M. A. Biot, Mechanics of deformation and acoustic propagation in porous media, J. Appl.

Phys., 33 (1962), pp. 1482–1498.
[6] T. Bourbie, O. Coussy, and B. Zinszner, Acoustics of Porous Media, Editions Technip,

Paris, 1987.
[7] J. M. Carcione, Wave Fields in Real Media: Wave Propagation in Anisotropic, Anelastic,

and Porous Media, Handbook of Geophysical Exploration 31, Pergamon Press, Amsterdam,
2001.

[8] J. M. Carcione, B. Gurevich, and F. Cavallini, A generalized Biot-Gassmann model for the
acoustic properties of shaley sandstones, Geophys. Prospecting, 48 (2000), pp. 539–557.

[9] J. M. Carcione, J. E. Santos, C. L. Ravazzoli, and H. B. Helle, Wave simulation in
partially frozen porous media with fractal freezing conditions, J. Appl. Phys., 94 (2003),
pp. 7839–7847.

[10] J. M. Carcione and G. Seriani, Seismic velocities in permafrost, Geophys. Prospecting, 46
(1998), pp. 441–454.

[11] J. M. Carcione and G. Seriani, Wave simulation in frozen porous media, J. Comput. Phys.,
170 (2001), pp. 676–695.

[12] J. M. Carcione and U. Tinivella, Bottom-simulating reflectors: Seismic velocities and AVO
effects, Geophysics, 65 (2000), pp. 54–67.

[13] D. Deptuck, J. P. Harrison, and P. Zawadzki, Measurement of elasticity and conductivity
in a three-dimensional percolation system, Phys. Rev. Lett., 54 (1985), pp. 913–916.

[14] J. Douglas, Jr., P. L. Paes Leme, J. E. Roberts, and J. Wang, A parallel iterative procedure
applicable to the approximate solution of second order partial differential equations by
mixed finite element methods, Numer. Math., 65 (1993), pp. 95–108.

[15] J. Douglas, Jr., J. E. Santos, and D. Sheen, Nonconforming Galerkin methods for the
Helmholtz equation, Numer. Methods Partial Differential Equations, 17 (2001), pp. 475–
494.

[16] J. Douglas, Jr., J. E. Santos, D. Sheen, and L. Bennethum, Frequency domain treatment
of one-dimensional scalar waves, Math. Models Methods Appl. Sci., 3 (1993), pp. 171–194.

[17] J. Douglas, Jr., J. E. Santos, D. Sheen, and X. Ye, Nonconforming Galerkin methods
based on quadrilateral elements for second order elliptic problems, ESAIM Math. Model.
Numer. Anal., 33 (1999), pp. 747–770.

[18] G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin,
Heidelberg, 1976.

[19] B. X. Fraeijs de Veubeke, Displacement and equilibrium models in the finite element method,
in Stress Analysis, O. C. Zienkiewicz and G. Holister, eds., Wiley, New York, 1965, pp. 145–
197.

[20] B. X. Fraeijs de Veubeke, Stress function approach, in International Congress on the Finite
Element Method in Structural Mechanics, Bournemouth, UK, 1975, pp. 321–332.

[21] T. Ha, J. E. Santos, and D. Sheen, Nonconforming finite element methods for the simulation
of waves in viscoelastic solids, Comput. Methods Appl. Mech. Engrg., 191 (2002), pp. 5647–
5670.

[22] J. M. Hovem and G. D. Ingram, Viscous attenuation of sound in saturated sand, J. Acoust.
Soc. Amer., 66 (1979), pp. 1807–1812.
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Abstract. We present an adaptive finite element method for approximating solutions to the
Laplace–Beltrami equation on surfaces in R

3 which may be implicitly represented as level sets of
smooth functions. Residual-type a posteriori error bounds which show that the error may be split
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1. Introduction. In this paper we derive residual-based a posteriori error esti-
mates for piecewise linear finite element approximations to solutions of the Laplace–
Beltrami equation

−ΔΓu= f on Γ,

u= 0 on ∂Γ.
(1.1.1)

Here Γ is a connected two-dimensional surface embedded in R
3, and −ΔΓ is the

Laplace–Beltrami operator on Γ. ∂Γ is required to be “piecewise curvilinear” in a
sense which we will make precise below. We also allow ∂Γ = ∅, in which case the
conditions

∫
Γ
f dσ =

∫
Γ
u dσ = 0 are required to guarantee existence and uniqueness

of u. Here dσ is the surface measure on Γ.
A finite element method for (1.1.1) was introduced in [Dz88]. Let Γh be a poly-

hedral approximation to Γ having triangular faces, and let Sh be the continuous
functions which are affine on each face of Γh. We then let uh ∈ Sh solve∫

Γh

∇Γh
uh∇Γh

vh dσh =

∫
Γh

vhfh dσh ∀ vh ∈ Sh.(1.1.2)

Here ∇Γh
is the tangential derivative on Γh, σh is the surface measure on Γh, and fh

is an approximation to f on Γh. As above, we require the side conditions
∫
Γh

fh dσh =∫
Γh

uh dσh = 0 if ∂Γh = ∅.
A key feature of our theoretical development is that Γ is represented as the 0 level

set of a signed distance function d with |d(x)| = dist(x,Γ). Our approach requires

∗Received by the editors October 17, 2005; accepted for publication (in revised form) July 14, 2006;
published electronically February 15, 2007. This research is based upon work partially supported
by a National Science Foundation postdoctoral research fellowship and a grant of the Deutsche
Forschungsgemeinschaft.

http://www.siam.org/journals/sinum/45-1/64287.html
†Department of Mathematics, University of Kentucky, Patterson Office Tower 715, Lexington,

KY 40506-0027 (demlow@ms.uky.edu).
‡Abteilung für Angewandte Mathematik, Hermann-Herder-Str. 10, 79104 Freiburg, Germany

(gerd@mathematik.uni-freiburg.de).

421



422 ALAN DEMLOW AND GERHARD DZIUK

access to the derivatives of d (the normal vector and curvature tensor) and also re-
quires that Γh lie in a strip about Γ on which a unique orthogonal projection a(x)
onto Γ is defined. This projection is instrumental in suitably defining the discrete
data fh and also in carrying out both a priori and a posteriori error analysis. Also,
if ∂Γ is nonempty we shall require that ∂Γ = a(∂Γh) so that ∂Γ is in a sense piece-
wise curvilinear. This is similar to requiring polygonal boundaries when performing
finite element calculations on domains in R

n in that it rules out “variational crimes”
resulting from boundary approximations.

In practice, Γ often is defined as a level set of a function ζ which is not a distance
function. In this situation one must approximate the projection a(x) numerically, and
the other necessary geometric information may then be computed in a straightforward
fashion. In practical terms, the resulting finite element code requires the user to supply
the data f , the level set function ζ and its first and second derivatives, and an initial
mesh which lies in a sufficiently narrow strip about Γ to guarantee that the projection
a is a bijection between Γh and Γ. In what follows we shall discuss some details of
our implementation in addition to providing a posteriori error estimates.

Optimal-order H1(Γ) and L2(Γ) a priori estimates for the method (1.1.2) were
proved in [Dz88]. Roughly speaking, the finite element error may be broken into an
almost-best-approximation term typical of finite element methods in R

n, a geometric
error term which is due to the discretization of Γ, and a data approximation term
due to the approximation of f on Γ by fh on Γh. On a mesh whose elements have
diameter h, the latter two terms are of order h2 for typical choices of fh and are thus
of higher order when the error is measured in the H1-norm.

In this paper we provide a posteriori error control in the H1(Γ)-norm via residual-
type estimators. As in the a priori analysis, the error is split into three terms:
a residual indicator term, a geometric error term, and a data approximation term.
Computation of these error terms requires pointwise access to geometric information,
in particular to the projection a and the normal vector and curvature tensor on Γ.
However, the asymptotically dominant term requires no explicit geometric quantities
except those which are necessary to compute the discrete data fh.

A relatively simple setting is assumed here in order to concentrate on effects aris-
ing from the discretization of Γ. In particular, we do not consider problems with
nonconstant coefficients, the case where a(Γh) �= Γ, lower-order terms, or nonhomo-
geneous Dirichlet or Neumann boundary conditions. These additional complexities
may be handled in much the same way as for problems on polygonal domains in R

2,
so we refer, for example, to the works [DR98], [DW00], [BCD04], [MN05], and [AO00],
where many of these issues are considered. Under suitable assumptions, our develop-
ment also holds largely unchanged for surfaces of codimension 1 which are immersed
in R

n, n ≥ 2.
In order to conclude the introduction, we briefly describe other strategies for

performing adaptive finite element calculations on surfaces. One possibility is the
use of a global parametrization to represent Γ and define a suitable mesh. This
approach was taken in [AP05] to perform adaptive finite element calculations on the
sphere. The key to this method is a global parametrization which maps a triangulated
planar domain onto the sphere in such a way that the resulting curved “triangles”
are isotropic (shape-regular). A more general approach using local parametrizations
(charts) to represent 2- and 3-manifolds is described in [Ho01].

The technique we present here has several advantages when compared with the
two described above. Extending the use of global parametrizations to surfaces other
than the sphere is relatively difficult because a new parametrization must be found for



ADAPTIVE FINITE ELEMENT METHOD ON SURFACES 423

every surface on which computations are to be performed. In addition, the analysis
of the Clemént-type interpolant used to prove reliability of a posteriori estimates in
[AP05] is specific to the sphere and would have to be redone for other surfaces. In
contrast, implementation of our method is quite straightforward for the sphere and
may be carried out in a fairly general way for a large class of surfaces. The analysis we
give here also is not restricted to any particular surface. The use of local parametriza-
tions described in [Ho01] provides a framework for computations on manifolds which
is in some ways more general than that which we propose here. However, the use of
overlapping local charts adds to the complexity of both the resulting finite element
code and the theoretical analysis. Indeed, the issue of approximation theory when
using local charts is not addressed rigorously in [Ho01]. A final advantage of our
approach is that it provides rigorous theoretical background for adaptive methods in
certain situations in which no parametrization is available, such as implicit computa-
tions of surfaces evolving, for example, by mean curvature flow (cf. [Dz91], [BMN05],
[CDDRR04]).

This paper is organized as follows: In section 2 we give a number of preliminaries
and assumptions necessary for our theoretical development. In section 3 we then prove
global a posteriori upper bounds and local lower bounds. In section 4 our implemen-
tation is described. In section 5, we demonstrate the flexibility of our approach by
describing computational experiments on three different surfaces: a spherical subdo-
main with a nonempty boundary, a torus (which is nonconvex and has a topological
type different than that of the sphere), and an ellipsoid (which requires numerical
approximation of the distance function).

2. Preliminaries and assumptions.

2.1. The continuous surface Γ. We assume that Γ is a connected C2 compact
hypersurface which is the zero level set of a signed distance function |d(x)| = dist(x,Γ)
defined on an open subset U0 of R

3. If ∂Γ = ∅ we also assume for simplicity that d < 0
on the interior of Γ and d > 0 on the exterior. �ν = ∇d is then the outward-pointing
unit normal on Γ. Note that |�ν| = 1 wherever d is defined. Let also H : R

3 → R
3×3

be the Weingarten map defined by

Hij(x) = �νi,xj
(x) = �νj,xi

(x),(2.2.1)

that is, H(x) = D2d(x), and let κi(x), i = 1, 2, and 0 be the eigenvalues of H(x). For
x ∈ Γ, κ1 and κ2 are the principal curvatures.

Next we define the projection

a(x) = x− d(x)�ν(x).(2.2.2)

We then let U ⊂ R
3 be a strip of width δ about Γ, where δ > 0 is sufficiently small

to ensure that the decomposition

x = a(x) + d(x)�ν(x)(2.2.3)

is unique for x ∈ U . We require that

δ <

[
max
i=1,2

‖κi‖L∞(Γ)

]−1

.(2.2.4)

For x ∈ U , we also note the useful formula

κi(x) =
κi(a(x))

1 + d(x)κi(a(x))
(2.2.5)

for the curvature of parallel surfaces, cf. Lemma 14.17 of [GT98].
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The condition (2.2.4) is sufficient to ensure that the decomposition (2.2.3) is
locally unique (cf. [GT98, section 14.6]), but we require that it be globally unique.
This global requirement is a simplifying assumption which restricts our presentation
to embedded surfaces. Immersed surfaces (including surfaces with self-intersections)
could also be considered with slight changes to our presentation.

We may uniquely extend a function ψ defined on Γ to U by

ψ�(x) = ψ(a(x))(2.2.6)

for x ∈ U . Let

P = I − �ν ⊗ �ν,(2.2.7)

where ⊗ is the tensor or outer product �a⊗�b = �a�bT (vectors here are in column form).
We then define the tangential gradient

∇Γψ = ∇ψ� − (�ν · ∇ψ�)�ν = P∇ψ�(2.2.8)

for ψ defined on Γ and extended to U via (2.2.6). Note that ∇Γψ depends only on
the values of ψ on Γ even though its definition formally involves the extension of ψ to
Γ. Note also that −ΔΓ = −∇Γ · ∇Γ. Finally, we denote by H1(Γ) the functions on Γ
having a tangential gradient in L2(Γ).

2.2. The discrete surface Γh and mesh Th. Let Γh ⊂ U be a polyhedron
consisting of a set Th of triangular faces, that is, Γh = ∪T∈Th

T . Let also �νh denote the
(piecewise constant) unit outer normal on Γh, and let N denote the set of nodes of
triangles in Th. We assume that a : Γh → Γ is bijective and that �ν ·�νh > 0 everywhere
on Γh. We note that it is often simplest to define Γh so that N ⊂ Γ, but this is not
theoretically required in any way. Also denote by hT the diameter of T ∈ Th. Given
z ∈ N , we define the patch ωz = interior(∪T�zT ) and let hz = maxT⊂ωz hT . Also,
let E denote the set of edges of triangles in Th. Finally, ϕz ∈ Sh denotes the canonical
basis function associated to z, that is, ϕzi(zj) = δij for zi, zj ∈ N .

Analyses of a posteriori estimates for finite element methods on domains in R
n

typically assume that the underlying mesh is shape-regular, that is, all elements in
Th have a bounded aspect ratio. Under this assumption, constants depending on the
aspect ratio of the elements of the mesh are then bounded and may be absorbed into
a global constant of moderate size. This approach is reasonable because typical mesh
refinement algorithms preserve shape-regularity.

The situation is somewhat more complicated in the current context of finite ele-
ment methods on surfaces. The first issue which arises is that the mesh is perturbed
after each refinement by projecting newly created nodes onto the continuous surface
Γ via a. While these perturbations are asymptotically negligible, we are not aware of
a proof that the refinement/perturbation procedure described here maintains shape
regularity beginning from an arbitrary shape-regular mesh with nodes on Γ and lying
in U . A second problem is that, in contrast to the situation in R

n, shape regularity
does not automatically imply that the number of triangles sharing a given node is
bounded. However, if the number of elements in the patches of the initial coarse
mesh used to begin the refinement algorithm is bounded, we may guarantee that
such a bound will hold for all subsequent meshes by applying a suitable refinement
algorithm. This is, in particular, the case for the newest-node subdivision algorithm.

As we have not been able to theoretically guarantee that a family of meshes
maintains shape regularity under mesh refinement, we take the following approach.
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We first prove a posteriori bounds which do not assume shape regularity. In these
estimates, lack of shape regularity is penalized by a single factor. In our computational
examples we do not include this penalty factor in our estimator but instead monitor
it to ensure that mesh quality remains acceptable. In our examples, the penalty term
remains of moderate size when refining meshes which initially lie within U .

2.3. Lifts and extensions of functions. Given a function vh defined on Γh,
we define the lift ṽh by vh(x) = ṽh(a(x)) for x ∈ Γh. We may then extend ṽh to U by
(2.2.6). For vh defined on Γh and x ∈ U , we thus define

v�h(x) = ṽh(a(x)).(2.2.9)

The overall effect of (2.2.9) is to extend vh defined on Γh to U . Formally, however,
this operation consists of a lift to Γ followed by extension to U . We emphasize that
all extentions of functions to U referred to in this paper are constant along normals
to Γ. Thus for our purposes extensions of functions defined on Γ and of functions
defined on Γh have essentially the same properties.

Letting �νh denote the normal on Γh, we define for x ∈ Γh

Ph(x) = I − �νh(x) ⊗ �νh(x)(2.2.10)

so that, for V defined on U and x ∈ Γh,

∇Γh
V (x) = Ph∇V (x).(2.2.11)

We see from (2.2.2) and (2.2.9) that, for x ∈ Γh and vh defined on Γh,

∇v�h(x) = [(P − dH)(x)]∇v�h(a(x)).(2.2.12)

Since �ν · �ν ≡ 1, we have �νH = H�ν = 0 and PH = HP = H so that, for x ∈ Γh,

∇v�h(x) = [(I − dH)(x)][P(x)]∇v�h(a(x)) = [(I − dH)(x)]∇Γv
�
h(a(x)).(2.2.13)

Thus

∇Γh
vh(x) =∇Γh

v�h(x) = [Ph(x)][(I − dH)(x)][P(x)]∇Γv
�
h(a(x)).(2.2.14)

Correspondingly, for ψ ∈ H1(Γ) (2.2.6) yields

∇Γh
ψ�(x) = [Ph(x)][(I − dH)(x)][P(x)]∇Γψ(a(x)).(2.2.15)

For x ∈ Γh, (2.2.13) yields

∇Γv
�
h(a(x)) = [(I − dH)(x)]−1∇v�h(x).(2.2.16)

The invertibility of [(I − dH)(x)] on U may be derived from (2.2.4) and (2.2.5).
Indeed, if e1 and e2 are the eigenvectors of H corresponding to κ1(x) and κ2(x), then
[(I − dH)(x)]−1 = �ν ⊗ �ν + (1 + d(x)κ1(a(x)))e1 ⊗ e1 + (1 + d(x)κ2(a(x)))e2 ⊗ e2.
We shall need to compute ∇Γv

�
h when vh ∈ Sh. In such cases we initially have

access only to the tangential derivative ∇Γh
vh and not to ∇v�h, which according to

(2.2.16) is necessary to compute ∇Γv
�
h. Since ∇Γh

vh(x) = [Ph(x)]∇v�h(x), we have
0 = ∇v�h(x) · �ν = ∇Γh

vh(x) · �ν + (�νh · �ν)∇v�h(x) · �νh. Thus

∇v�h(x) · �νh = −∇Γh
vh(x) · �ν
�νh · �ν ,(2.2.17)
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and for x ∈ Γh

∇v�h(x) =

[
I − �νh ⊗ �ν

�νh · �ν

]
∇Γh

vh(x).(2.2.18)

Combining (2.2.16) and (2.2.18), we thus find that, for x ∈ Γh,

∇Γv
�
h(a(x)) = [(I − dH)(x)]−1

[
I − �νh ⊗ �ν

�νh · �ν

]
∇Γh

vh(x).(2.2.19)

Next we state an integral equality which we shall use repeatedly. For x ∈ Γh, let

μh(x) dσh(x) = dσ(a(x)),(2.2.20)

and also let

Ah(x) = A�
h(a(x)) =

1

μh(x)
[P(x)][(I − dH)(x)][Ph(x)][(I − dH)(x)][P(x)].(2.2.21)

Then from (2.2.14) and (2.2.15), we have∫
Γh

∇Γh
vh∇Γh

ψh dσh =

∫
Γ

A�
h∇Γv

�
h∇Γψ

�
h dσ.(2.2.22)

Note that this equality holds without regard to the original domain of definition of vh
and ψ; that is, we may for example replace ψh and ψ�

h with ψ� and ψ, respectively,
where ψ ∈ H1(Γ). We also emphasize that the quantities d and H in (2.2.21) are
always evaluated on the discrete surface Γh, even though A�

h often appears in integrals
over the continuous surface Γ.

Finally we give an explicit formula for the quantity μh defined above. The proof
of this formula is tedious but elementary, and we sketch it in Appendix A.

Proposition 2.1. Assume that x ∈ Γh. Then

μh(x) = (1 − d(x)κ1(x))(1 − d(x)κ2(x))�ν · �νh.(2.2.23)

2.4. Interpolation and Poincaré inequality. In this section we define an
interpolant and prove error bounds for it. Given ψ ∈ L1(Γ) and z ∈ N , we let

ψ�
z =

1∫
ωz

ϕz dσh

∫
ωz

ϕzψ
� dσh(2.2.24)

and define

Ihψ
� =

∑
z∈N

ψ�
zϕz.(2.2.25)

A similar interpolant is used, for example, in [FV06] to prove a posteriori bounds on a
domain in R

2. Noting that {ϕz}z∈N is a partition of unity, we then have the following
relationship: ∫

Γh

(ψ� − Ihψ
�) dσh =

∑
z∈N

∫
ωz

(ψ� − ψ�
z)ϕz dσh = 0.(2.2.26)
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Lemma 2.2 (Poincaré inequality). Let ψ ∈ H1(Γ). Let mz be the number of
elements sharing the node z, and let ω̃z be the lift of the patch ωz onto Γ . Then for
each z ∈ N ,

‖ψ� − ψ�
z‖L2(ωz) ≤ C max

T⊂ωz

√
|T |mz max

T⊂ωz

hT√
|T |

‖Ah‖
1
2

�2,L∞(ωz)‖∇Γψ‖L2(ω̃z).(2.2.27)

Let also z ∈ e ∈ E. Then

‖ψ� − ψ�
z‖L2(e) ≤ C

√
|e|mz max

T⊂ωz

hT√
|T |

‖Ah‖
1
2

�2,L∞(ωz)‖∇Γψ‖L2(ω̃z).(2.2.28)

Here ‖Ah‖�2,L∞(ωz) = ‖‖Ah‖�2→�2‖L∞(ωz), where ‖ · ‖�2→�2 is the standard matrix
2-norm, and C does not depend on any essential quantities.

Remark 2.3. The terms in (2.2.27) and (2.2.28) may be classified as follows: In
shape-regular meshes the quantities maxT⊂ωz

√
|T | and

√
|e| may be reduced to hz

and h
1/2
z , respectively, where hz is the maximum element diameter in ωz. The factor

mz accounts for the number of elements sharing the vertex z if this number is not
known to be bounded, and the factor maxT⊂ωz hT /

√
|T | accounts for the aspect ratio

of T . If Th is shape-regular and mz is bounded, we thus have

‖ψ� − ψ�
z‖L2(ωz) ≤ Chz‖Ah‖

1
2

�2,L∞(ωz)‖∇Γh
ψ�‖L2(ωz),(2.2.29)

‖ψ� − ψ�
z‖L2(e) ≤ Ch

1
2
z ‖Ah‖

1
2

�2,L∞(ωz)‖∇Γψ‖L2(ω̃z),(2.2.30)

where C does not depend on essential quantities.
Proof. We first show that Ih is locally L2-stable independent of mesh properties.

Note first that

‖ψ�
z‖L2(ωz) = |ωz|1/2|ψ�

z| ≤ |ωz|1/2
‖ϕz‖L2(ωz)

‖ϕz‖L1(ωz)
‖ψ�‖L2(ωz).(2.2.31)

If z is an interior node, we let ω̂z be a regular mz-gon with vertices lying on the unit
circle. If z is a boundary node, then we let ω̂z be one half of a regular 2mz-gon with
vertices lying on the unit circle. In either case the reference domain ω̂z is convex and
may be broken into mz congruent triangles with the origin being a vertex of each.
There is a natural piecewise-affine transformation Fz : ω̂z → ωz. We denote by T̂
the inverse image of T ⊂ ωz and by û the inverse image of u ∈ H1(Γh) under this
transformation. For p = 1 or p = 2 and any T̂ ⊂ ω̂z,

‖ϕz‖pLp(ωz) =
∑
T⊂ωz

∫
T

ϕp
z dσh =

∑
T⊂ωz

|T |
|T̂ |

∫
T̂

ϕ̂p
z dx̂ = |ωz|

∫
T̂
ϕ̂p
z dx̂

|T̂ |
.(2.2.32)

An elementary calculation yields

√
|T̂ |‖ϕ̂z‖L2(T̂ )

‖ϕ̂z‖L1(T̂ )
=

√
3
2 , which when combined with

(2.2.31) and (2.2.32) yields

‖ψ�
z‖L2(ωz) ≤

√
3

2
‖ψ�‖L2(ωz).(2.2.33)

Thus for any K ∈ R,

‖ψ� − ψ�
z‖L2(ωz) ≤

(
1 +

√
3

2

)
‖ψ� −K‖L2(ωz).(2.2.34)
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Choosing K = 1
|ω̂z|

∫
ω̂z

ψ̂� dx̂ and noting that ∇ψ̂� = ∇Γh
ψ�∇Fz, we next find

that

‖ψ� −K‖2
L2(ωz) =

∑
T⊂ωz

|T |
|T̂ |

∫
T̂

(ψ̂� −K)2 dx̂

=
1

|T̂ |
max
T⊂ωz

|T |
∫
ω̂z

(ψ̂� −K)2 dx̂

≤ CP (ω̂z)
2 1

|T̂ |
max
T⊂ωz

|T |
∫
ω̂z

|∇ψ̂�|2 dx̂

= CP (ω̂z)
2 1

|T̂ |
max
T⊂ωz

|T |
∑
T⊂ωz

|T̂ |
|T |

∫
T

|∇Γh
ψ�∇Fz|2 dσh

≤ CP (ω̂z)
2 max
T⊂ωz

|T | max
T⊂ωz

‖∇Fz|T ‖2
�2→�2

|T | ‖∇Γh
ψ�‖2

L2(ωz).

(2.2.35)

Here CP is the Poincaré constant for ω̂z. It is not hard to compute that

‖∇Fz|T ‖�2→�2 ≤ CmzhT ,(2.2.36)

where C does not depend on any essential quantities. Combining (2.2.34), (2.2.35),
and (2.2.36) and finally applying (2.2.22) yields (2.2.27).

The proof of (2.2.28) is accomplished by employing a trace inequality and slightly
modifying the preceding proof. Assume that e ⊂ T ⊂ ωz. Let Ť be the unit simplex
in R

2 (note that this is not the same as the reference element employed above), with
ê denoting the transformation of e to Ť . Letting F̂T denote the affine transformation
of Ť to T , we note that ‖F̂T ‖�2→�2 ≤ hT . Employing a trace inequality on Ť then
yields

‖ψ� − ψ�
z‖L2(e) ≤

√
|e|‖ψ̂� − ψ�

z‖L2(ê)

≤C
√
|e|(‖ψ̂� − ψ�

z‖L2(Ť ) + ‖∇ψ̂�‖L2(Ť ))

≤C
√

|e|
|T | (‖ψ� − ψ�

z‖L2(T ) + hT ‖∇Γh
ψ�‖L2(T )).

(2.2.37)

√
|e|/|T |hT ‖∇Γh

ψ�‖L2(T ) is clearly bounded by the right-hand side of (2.2.28), so we
must consider only the first term in the last line above.

Letting T̂ , ω̂z, and K be as defined as before, we first procede as in (2.2.35) to
find that √

|e|
|T |‖ψ� −K‖L2(T ) ≤

√
|e|
|T̂ |‖ψ̂

� −K‖L2(T̂ )

≤
√

|e|
|T̂ |‖ψ̂

� −K‖L2(ω̂z)

≤C
√
|e|mz max

T⊂ωz

hT√
|T |

‖∇Γh
ψ�‖L2(ωz).

(2.2.38)

Proceeding as in (2.2.31) through (2.2.34), we next find that√
|e|
|T |‖(ψ� −K)z‖L2(T ) ≤

√
|e||(ψ� −K)z|

≤
√

3
2

√
|e|
|ωz|‖ψ

� −K‖L2(ωz).
(2.2.39)
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Combining (2.2.39) and (2.2.35) yields

√
|e|
|T | ‖(ψ

� −K)z‖L2(T ) ≤ C
√
|e| max

T⊂ωz

√
|T |
|ωz|mz max

T⊂ωz

hT√
|T |

‖∇Γh
ψ�‖L2(ωz)

(2.2.40)
≤ C

√
|e|mz max

T⊂ωz

hT√
|T |

‖∇Γh
ψ�‖L2(ωz).

Since ‖ψ�−ψ�
z‖L2(T ) ≤ ‖ψ�−K‖L2(T )+‖(ψ�−K)z‖L2(T ), combining (2.2.37), (2.2.38),

and (2.2.40) with (2.2.22) completes the proof of (2.2.28).

3. The estimator. In this section we develop a computable and reliable esti-
mator for ‖∇Γ(u− u�

h)‖L2(Γ).

3.1. Residual equation. We first derive a residual equation. Let ψ ∈ H1
0 (Γ),

where H1
0 (Γ) is the set of functions in H1(Γ) having a vanishing trace if ∂Γ �= ∅ and

having a vanishing mean value if ∂Γ = ∅. Following [Dz88] and applying (2.2.22), we
find that, for ψ ∈ H1(Γ) and ψh ∈ Sh,

∫
Γ

∇Γ(u− u�
h)∇Γψ dσ=

∫
Γh

f �μhψ
� dσh −

∫
Γ

[P − A�
h]∇Γu

�
h∇Γψ dσ

−
∫

Γh

∇Γh
uh∇Γh

ψ� dσh

(3.3.1)

and

∫
Γ

∇Γ(u− u�
h)∇Γψ

�
h dσ =

∫
Γh

f �μhψh dσh −
∫

Γ

[P − A�
h]∇Γu

�
h∇Γψ

�
h dσ

−
∫

Γh

∇Γh
uh∇Γh

ψh dσh

(3.3.2)
=

∫
Γh

(f �μh − fh)ψh dσh −
∫

Γ

[P − A�
h]∇Γu

�
h∇Γψ

�
h dσ.

Combining (3.3.1) and (3.3.2), we find that

∫
Γ

∇Γ(u− u�
h)∇Γψ dσ =

∫
Γ

∇Γ(u− u�
h)∇Γψ dσ −

∫
Γ

∇Γ(u− u�
h)∇Γψ

�
h dσ

+

∫
Γ

∇Γ(u− u�
h)∇Γψ

�
h dσ

(3.3.3)
=

∫
Γh

f �μh(ψ� − ψh) dσh −
∫

Γh

∇Γh
uh∇Γh

(ψ� − ψh) dσh

−
∫

Γ

[P − A�
h]∇Γu

�
h∇Γψ dσ +

∫
Γh

(f �μh − fh)ψh dσh.
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Next we note that

−
∫

Γh

∇Γh
uh∇Γh

(ψ� − ψh) dσh

=
∑
T∈Th

∫
T

ΔΓh
uh(ψ� − ψh) dσh −

∫
∂T

∇Γh
uh · �n(ψ� − ψh) ds

=

∫
Γh

ΔΓh
uh(ψ� − ψh) dσh − 1

2

∑
T∈T

∫
∂T

[[∇Γh
uh]](ψ� − ψh) ds,

(3.3.4)

where ΔΓh
uh is a piecewise polynomial and �n is the conormal vector to the triangle T

(that is, �n·�νh = 0). In the current situation ΔΓh
uh is identically 0, but we include it to

make clear how the corresponding term would appear in other situations. Also, let e
be an edge shared by elements T1 and T2 which have normals �n1 and �n2, respectively.
Then [[∇Γh

uh]] = ∇Γh
uh|T1 · �n1 −∇Γh

uh|T2 · �n2 is the jump in the normal derivative
across e. If e ⊂ ∂Γh we set [[∇Γh

uh]]|e = 0. Note that �n1 lies in the plane of T1 and
�n2 lies in the plane of T2, so in contrast to the situation which arises on domains in
R

n, we generally have �n1 �= −�n2. Finally, we insert (3.3.4) into (3.3.3) to find∫
Γ

∇Γ(u− u�
h)∇Γψ dσ =

∫
Γh

(f �μh + ΔΓh
uh)(ψ� − ψh) dσh

−1

2

∑
T∈T

∫
∂T

[[∇Γh
uh]](ψ� − ψh) ds−

∫
Γ

[P − A�
h]∇Γu

�
h∇Γψ dσ

+

∫
Γh

(f �μh − fh)ψh dσh

≡ I + II + III + IV.

(3.3.5)

3.2. A posteriori upper bound (reliability). We begin by bounding term
I of (3.3.5). Let ψh = Ihψ

�, and let sz = mz maxT⊂ωz hT /
√
|T |. Also let R =

f �μh + ΔΓh
uh, and let {Rz}z∈N be constants. Recalling that {ϕz}z∈N is a partition

of unity, recalling (2.2.25) and (2.2.26), and applying Lemma 2.2, we then have

I =
∑
z∈N

∫
ωz

R(ψ� − ψ�
z)ϕz dσh =

∑
z∈N

∫
ωz

(R−Rz)(ψ
� − ψ�

z)ϕz dσh

(3.3.6)
≤ C

∑
z∈N

max
T⊂ωz

√
|T |sz‖Ah‖

1
2

�2,L∞(ωz) · ‖ϕz(R−Rz)‖L2(ωz)hz‖∇Γψ‖L2(ω̃z).

Next we turn to bounding the term II. Applying Lemma 2.2, we find

II =−1

2

∑
z∈N

∑
e�z

∫
e

ϕz[[∇Γh
uh]](ψ� − ψ�

z) ds

≤C
∑
z∈N

∑
e�z

√
|e|sz‖Ah‖

1
2

�2,L∞(ωz)‖ϕz[[∇Γh
uh]]‖L2(e)‖∇Γψ‖L2(ω̃z).

(3.3.7)

Let

ηz = sz

(
max
T⊂ωz

√
|T |‖ϕz(R−Rz)‖L2(ωz) +

∑
e�z

√
|e|‖ϕz[[∇Γh

uh]]‖L2(e)

)
.(3.3.8)
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Combining (3.3.6) and (3.3.7) and noting that each element T has only three nodes,
we thus find that

I + II≤C
∑
z∈N

‖Ah‖
1
2

�2,L∞(ωz)ηz‖∇Γψ‖L2(ω̃z)

≤C

(∑
z∈N

‖Ah‖�2,L∞(ωz)η
2
z

) 1
2
(∑

z∈N
‖∇Γψ‖2

L2(ω̃z)

) 1
2

≤C

(∑
z∈N

‖Ah‖�2,L∞(ωz)η
2
z

) 1
2

‖∇Γψ‖L2(Γ),

(3.3.9)

where C does not depend on Th or any other essential quantities.
In order to bound the term III, we use (2.2.19) to compute

III =−
∑
z∈N

∫
ω̃z

ϕ�
z[P − A�

h]∇Γu
�
h∇Γψ dσ

≤
∑
z∈N

∥∥∥∥√ϕ�
z[P − A�

h]∇Γu
�
h

∥∥∥∥
L2(ω̃z)

∥∥∥∥√ϕ�
z∇Γψ

∥∥∥∥
L2(ω̃z)

=
∑
z∈N

∥∥∥∥√μh
√
ϕz[P − Ah][I − dH]−1

[
I − �νh ⊗ �ν

�νh · �ν

]
∇Γh

uh

∥∥∥∥
L2(ωz)

·
∥∥∥∥√ϕ�

z∇Γψ

∥∥∥∥
L2(ω̃z)

.

(3.3.10)

Defining

Bh =
√
μh[P − Ah][I − dH]−1[I − �νh ⊗ �ν

�νh · �ν ](3.3.11)

and recalling that
∑

z∈N ϕz =
∑

z∈N ϕ�
z ≡ 1, we finally compute

III≤
(∑

z∈N
‖√ϕzBh∇Γh

uh‖2
L2(ωz)

)1/2 (∑
z∈N

‖
√
ϕ�
z∇Γψ‖2

L2(ω̃z)

)1/2

= ‖Bh∇Γh
uh‖L2(Γh)‖∇Γψ‖L2(Γ).

(3.3.12)

Finally we bound the term IV. First we note that, for z ∈ N and with ψ�
z defined

as in (2.2.24),

‖√ϕzψ
�
z‖L2(Ωz) =

√∫
ωz

ϕz dσh
1∫

ωz
ϕz dσh

∣∣∣∣∫
ωz

ϕzψ
�
z dσh

∣∣∣∣
≤‖√ϕzψ

�‖L2(ωz).

(3.3.13)

Since ψ ∈ H1
0 (Γ) has either a vanishing trace on ∂Ω or a vanishing mean value over
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Ω, we may apply (3.3.13) and a Poincaré inequality to compute

IV =

∫
Γh

(f �μh − fh)ψh dσh

=
∑
z∈N

∫
ωz

(f �μh − fh)ϕzψ
�
z dσh

≤
∑
z∈N

‖√ϕz(f
�μh − fh)‖L2(ωz)‖

√
ϕzψ

�
z‖L2(ωz)

≤
∑
z∈N

‖√ϕz(f
�μh − fh)‖L2(ωz)‖

√
ϕzψ

�‖L2(ωz)

≤
∑
z∈N

∥∥∥∥ 1
√
μh

∥∥∥∥
L∞(ωz)

‖√ϕz(f
�μh − fh)‖L2(Γh)

∥∥∥∥√ϕ�
zψ

∥∥∥∥
L2(ω̃z)

≤
(∑

z∈N

∥∥∥∥ 1

μh

∥∥∥∥
L∞(ωz)

‖√ϕz(f
�μh − fh)‖2

L2(Γh)

)1/2

‖ψ‖L2(Γ)

≤CP (Γ)

(∑
z∈N

∥∥∥∥ 1

μh

∥∥∥∥
L∞(ωz)

‖√ϕz(f
�μh − fh)‖2

L2(Γh)

)1/2

‖∇Γψ‖L2(Γ).

(3.3.14)

Making the substitution ψ = u− u�
h if ∂Γ �= ∅ or ψ = u− u�

h − 1
|Γ|

∫
Γ
(u− u�

h) dσ

if ∂Γ = ∅ while combining (3.3.3), (3.3.12), and (3.3.14) yields

‖∇Γ(u−u�
h)‖2

L2(Γ) ≤

⎡⎣C (∑
z∈N

‖Ah‖�2,L∞(ωz)η
2
z

)1/2

+ ‖Bh∇Γh
uh‖L2(Γh)

+CP (Γ)

(∑
z∈N

∥∥∥∥ 1

μh

∥∥∥∥
L∞(ωz)

‖√ϕz(f
�μh − fh)‖2

L2(Γh)

)1/2
⎤⎦

·‖∇Γ(u− u�
h)‖L2(Γ).

(3.3.15)

Dividing (3.3.15) through by ‖∇Γ(u−u�
h)‖L2(Γ) then yields the following theorem.

Theorem 3.1. Under the assumptions in section 2,

‖∇Γ(u− u�
h)‖L2(Γ) ≤ R + G + D,(3.3.16)

where

R = C

(∑
z∈N

‖Ah‖�2,L∞(ωz)η
2
z

)1/2

,(3.3.17)

G = ‖Bh∇Γh
uh‖L2(Γh),(3.3.18)

and

D = CP (Γ)

(∑
z∈N

∥∥∥∥ 1

μh

∥∥∥∥
L∞(ωz)

‖√ϕz(f
�μh − fh)‖2

L2(Γh)

)1/2

.(3.3.19)

Here ηz = sz(maxT⊂ωz

√
|T |‖ϕz(R − Rz)‖L2(ωz) +

∑
e�z

√
|e|‖ϕz[[∇Γh

uh]]‖L2(e)) as
in (3.3.8), the constants Rz in ηz may be freely chosen, and C does not depend on Th
or Γ.
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We make a few brief remarks concerning Theorem 3.1, beginning with the residual
term R. First we note that if the nodes of Γh lie on Γ, then ‖[(P − Ah)(x)]‖�2→�2 ≤
Ch2

T for x ∈ T (cf. [Dz88]). Thus up to a higher-order term, R is bounded by
C(

∑
z∈N η2

z)
1/2. Next we consider the geometric error term G. Note first that unlike

the residual term R, it contains no unknown constants. Secondly, G is heuristically
of higher order since ‖Bh‖�2→�2 ≤ C‖P−Ah‖�2→�2 ≤ Ch2

T . The data approximation
term D is 0 if we let fh = μhf

� and assume exact quadrature, both of which we shall
do in our numerical tests. In [Dz88] the definition fh(x) = f �(x) − 1

|Γh|
∫
Γh

f � dσh is

made. This choice has the advantage of not requiring the computation of the ratio
μh of the continuous to the discrete measure and still leads to optimal-order H1 and
L2 estimates. However, computation of R and G requires access to μh in any case, so
we shall use the definition fh = μhf

� and thereby exclude D. A final note concerning
D is that it includes the global Poincaré constant CP (Γ). In contrast to the terms R
and G, D is thus not entirely built up of quantities which are locally determined.

Finally, we note that the dominant term in (3.3.16) does not depend explicitly on
geometric information about Γ. Since ‖Ah−P‖�2,L∞(ωz) ≤ C(ω̃z)h

2
z, we may compute

G ≤ (
∑

z∈N C(ω̃2
z)h

4
z‖
√
ϕz∇Γh

uh‖2
L2(ωz))

1/2. Also, R ≤ C(
∑

z∈N η2
z + C(Γ)h2

zη
2
z)

1/2.

Finally, as shown in [Dz88], D is of higher order even if the choice fh(x) = f �(x) −
1

|Γh|
∫
Γh

f � dσh is made. Thus the dominant part of the a posteriori upper bound is

C(
∑

z∈N η2
T )1/2, exactly as for problems in planar domains.

The estimator given in Theorem 3.1 could in principle be implemented, but it is
possible to define a more convenient estimator for practical use. Recalling the com-
ments of section 2.2, we may simplify it by assuming shape-regularity. In addition,
residual estimators are typically calculated elementwise instead of patchwise, so we
define an alternate estimator which allows mostly elementwise calculations (the only
exception is the term involving ‖Ah‖, which must be patch-based). In our computa-
tions we shall apply the estimator naturally derived from the following corollary.

Corollary 3.2. Assume that fh = μhf
�, that Th is shape-regular, and that mz

is bounded. Then

‖∇Γ(u− u�
h)‖L2(Γ) ≤

√
2

( ∑
T∈Th

C‖Ah‖�2,L∞(ωT )η
2
T + ‖Bh∇Γh

uh‖2
L2(T )

)1/2

≡ Θ.

(3.3.20)

Here ωT = ∪z∈Tωz, ηT = hT ‖R‖L2(T ) + h
1/2
T ‖[[∇Γh

uh]]‖L2(∂T ), and C depends on
maxz∈N mz and the minimum angle over all elements of Th.

The proof of Corollary 3.2 follows by setting Rz = 0 in (3.3.8) and noting that,
under the assumptions that Th is shape-regular and mz is bounded, hT is equivalent
to hz for all vertices z of T and to |e| for all e ⊂ ∂T .

3.3. A posteriori lower bound (efficiency). In this section we prove a local
a posteriori lower bound which is a counterpart to the upper bound in Corollary
3.2. Such lower bounds verify (up to higher-order terms) that the stated a posteriori
estimate does not overestimate the actual error and also are an essential ingredient
in proving the convergence of adaptive methods; cf. [MNS02].
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Proposition 3.3. Assume that fh = μhf
�, that Th is shape-regular, and that

mz is bounded. Then for T ∈ Th,

ηT ≤C‖Ah‖1/2
�2,L∞(ωT )(‖∇Γ(u− u�

h)‖L2(ω̃T ) + ‖Bh∇Γh
uh‖L2(ωT ))

+ChT ‖R−RT ‖L2(ωT ).
(3.3.21)

Here C depends on maxz∈N :z∈T mz and the minimum angle of the elements in ωT ,
and RT is an arbitrary piecewise linear function.

Proof. We shall follow the well-known proof of Verfürth (cf. [Ver89]). First let
z ∈ N and T ⊂ ωz. Letting zi, 1 ≤ i ≤ 3, be the nodes of T , we define the
bubble function φT =

∏3
i=1 ϕzi . In addition, let RT be an arbitrary piecewise linear

approximation to R on T . Let also T̃ denote the natural lift of T to Γ. Then using
(3.3.5) with ψ = R�

Tφ
�
T and ψh = 0 and noting that φT = 0 on ∂T̃ , we have∫

T

RRTφT dσh =

∫
T̃

∇Γ(u− u�
h)∇Γ(R�

Tφ
�
T ) dσ

+

∫
T̃

[I − A�
h]∇Γu

�
h∇Γ(R�

Tφ
�
T ) dσ

≤ (‖∇Γ(u− u�
h)‖L2(T̃ ) + ‖[I − A�

h]∇Γu
�
h‖L2(T̃ ))‖∇Γ(R�

Tφ
�
T )‖L2(T̃ )

≤ (‖∇Γ(u− u�
h)‖L2(T̃ ) + ‖Bh∇Γh

uh‖L2(T ))

·‖Ah‖1/2
L∞(T )‖∇Γh

(RTφT )‖L2(T ).

(3.3.22)

Since RTφT is a polynomial, we may apply an inverse inequality to find

‖∇Γh
(RTφT )‖L2(T ) ≤ Ch−1

T ‖RTφT ‖L2(T ) ≤ Ch−1
T ‖RT ‖L2(T ),(3.3.23)

where C depends only on the shape-regularity of T . Thus

∫
T

RRTφT dσh

≤ Ch−1
T ‖Ah‖1/2

L∞(T )(‖∇Γ(u− u�
h)‖L2(T̃ ) + ‖Bh∇Γh

uh‖L2(T ))‖RT ‖L2(T ).

(3.3.24)

Applying Theorem 2.2 of [AO00], we next note that

‖RT ‖2
L2(T ) ≤‖

√
φTRT ‖2

L2(T )

≤
(
‖
√
φT (R−RT )‖L2(T ) +

(∫
T

RRTφT dσh

)1/2
)
‖RT ‖L2(T ).

(3.3.25)

Combining the previous inequalities, we thus find

‖RT ‖2
L2(T ) ≤C[‖R−RT ‖L2(T ) + h−1

T ‖Ah‖1/2
L∞(T )(‖∇Γ(u− u�

h)‖L2(T̃ )

+‖Bh∇Γh
uh‖L2(T ))]‖RT ‖L2(T ).

(3.3.26)

Thus

hT ‖R‖L2(T ) ≤C[‖Ah‖1/2
L∞(T )(‖∇Γ(u− u�

h)‖L2(T̃ ) + ‖Bh∇Γh
uh‖L2(T ))

+hT ‖R−RT ‖L2(T )].
(3.3.27)
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Next we bound the edge residual ‖[[∇Γh
uh]]‖L2(∂T ). Let e be an edge which is

shared by elements T1 = T and T2 and whose closure contains the nodes z1 and z2.
Let λi,j , i, j = 1, 2, be the barycentric coordinate on triangle i corresponding to the
vertex zj , and define φe|Ti = λi,1λi,2. Thus φe ∈ H1

0 (T1 ∪T2), and φe > 0 on e. Then

‖[[∇Γh
uh]]‖L2(e) ≤ C‖

√
φe[[∇Γh

uh]]‖L2(e).(3.3.28)

Noting that [[∇Γh
uh]]e is a constant, we employ (3.3.5) with ψ = (|[[∇Γh

uh]]|eφ�
e)

to find

∫
e

|[[∇Γh
uh]]|2φe ds =

∫
T̃1∪T̃2

∇Γ(u− u�
h)∇Γ([[∇Γh

uh]]eφ
�
e) dσ

−
∫
T1∪T2

R|[[∇Γh
uh]]|eφe dσh +

∫
T̃1∪T̃2

[I − A�
h]∇Γu

�
h∇Γ([[∇Γh

uh]]eφe) dσ

≤ |[[∇Γh
uh]]|e(‖∇Γ(u− u�

h)‖L2(T̃1∪T̃2)
‖Ah‖1/2

L∞(T1∪T2)
‖∇Γh

φe‖L2(T1∪T2)

+ ‖R‖L2(T1∪T2)‖φe‖L2(T1∪T2)

+ ‖Bh∇Γh
uh‖L2(T1∪T2)‖Ah‖1/2

L∞(T1∪T2)
‖∇Γh

φe‖L2(T1∪T2)).

(3.3.29)

A simple scaling argument yields ‖φe‖L2(T1∪T2) ≤ ChT and ‖∇Γh
φe‖L2(T1∪T2) ≤ C,

so that ∫
e

|[[∇Γh
uh]]|2 φe ds ≤ Ch

−1/2
T ‖[[∇Γh

uh]]‖L2(e)

·[‖Ah‖1/2
L∞(T1∪T2)

‖∇Γ(u− u�
h)‖L2(T̃1∪T̃2)

+hT ‖R‖L2(T1∪T2) + ‖Ah‖1/2
L∞(T1∪T2)

‖Bh∇Γh
uh‖L2(T1∪T2)].

(3.3.30)

Combining the previous three inequalities, we find that

h
1/2
T ‖[[∇Γh

uh]]‖L2(e) ≤ C(‖Ah‖1/2
L∞(T1∪T2)

‖∇Γ(u− u�
h)‖L2(T̃1∪T̃2)

+hT ‖R‖L2(T1∪T2) + ‖Ah‖1/2
L∞(T1∪T2)

‖Bh∇Γh
uh‖L2(T1∪T2)).

(3.3.31)

Summing (3.3.31) over the three edges of T and combining (3.3.31) with (3.3.27)
completes the proof of (3.3.21).

4. Implementation details. In this section we provide some details concerning
implementation.

4.1. Computation of geometric quantities. We assume that Γ = {x ∈ R
3 :

ζ(x) = 0}, where ζ is sufficiently smooth with a nonzero gradient in a large enough
neighborhood of Γ. In addition, we assume that ζ, its gradient, and its Hessian matrix
are available and that for x ∈ U we can approximate a(x) with sufficient accuracy. In
the next subsection we describe a simple approach for approximating a(x).

First we note that if x ∈ Γ, �ν(x) = ∇ζ
|∇ζ| . Thus for x ∈ U ,

�ν(x) =
∇ζ(a(x))

|∇ζ(a(x))| .(4.4.1)

In addition, we have for x ∈ Γ

H(x) = ∇Γ�ν(x) = P∇ ∇ζ(x)

|∇ζ(x)| .(4.4.2)
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For the sake of concreteness, we note that ∇ ∇ζ(x)
|∇ζ(x)| is not necessarily symmetric

and that [∇ ∇ζ
|∇ζ| ]ij = ∂

∂xi

ζxj

|∇ζ| . The eigenvalues κ1 and κ2 of H in the directions

orthogonal to �ν may then be approximated numerically. We also recall the relationship

κi(x) = κi(a(x))
1+d(x)κi(a(x)) from (2.2.5). Finally, we emphasize that d is the signed distance

function, that is, d(x) = sign(ζ(x))|a(x) − x| for x ∈ U \ Γ.
The above information is sufficient to implement the adaptive method described

above. In particular, for x ∈ Γh we use (2.2.23) to define the discrete data

fh(x) = μh(x)f(a(x)) = (1 − d(x)κ1(x))(1 − d(x)κ2(x))�ν(x) · �νh(x)f(a(x)).(4.4.3)

Here �ν(x) is computed via (4.4.1), κ1 and κ2 are computed via (2.2.5), and �νh must
be computed from mesh information. Next we note that

‖Ah(x)‖�2→�2 ≤ max(1 − d(x)κ1(x), 1 − d(x)κ2(x))

|�ν(x) · �νh(x)|min(1 − d(x)κ1(x), 1 − d(x)κ2(x))
≡ Ah(x)(4.4.4)

and

‖Bh(x)‖�2→�2 ≤ 1
μh(x) [|d(x)(κ1(x) − κ2(x))|

+ |1 − �ν(x) · �νh(x)|(1 + 4 max(1 − d(x)κ1(x), 1 − d(x)κ2(x)))]

≡Bh(x).

(4.4.5)

The expressions on the right-hand sides of (4.4.4) and (4.4.5) may be computed using
(4.4.1) and (2.2.5) as before. Since P − Ah and Bh are of higher order, using the
above approximations for the norms of Ah and Bh should lead to at most a slight
overestimation of the overall error while yielding nontrivial computational savings.

4.2. Computation of d and a. The efficient computation of the projection a
and distance function d are central to implementing the finite element method and
a posteriori estimators described here. In a very few cases, d is available explicitly
(for example, d(x) = |x| − r for a sphere of radius r). Even for relatively simple
surfaces such as ellipsoids, however, an explicit expression for d is not available and
a and d must be approximated. Since d is assumed to be smooth and we need to
be concerned only about starting points sufficiently close to Γ, standard methods of
nonlinear optimization are, in principle, applicable.

We have tested two different algorithms for computing a: one being Newton’s
method and the other being an ad hoc first-order method. Before describing the
methods we note a relationship which we shall use in our algorithms. For x ∈ U ,

ζ(x) =
∫ d(x)

0
∇ζ(a(x) + t�ν(x)) · �ν(x) dt = d|∇ζ(x)| + O(d2). Thus

d(x) ≈ ζ(x)

|∇ζ(x)| .(4.4.6)

Next we describe our implementation of Newton’s method. Assume that x0 ∈ U
and that we wish to compute a(x0). In order to employ Newton’s method, we seek
a stationary point of the function F (x, λ) = |x− x0| + λζ(x). Note that ∇F (x, λ) =
(2(x − x0) + λ∇ζ(x), ζ(x)). Thus ∇F (x, λ) = 0 implies that x ∈ Γ and (x − x0) is
parallel to ∇ζ(x), that is, x = a(x0). In order to choose a starting point, we note that
2(x−x0)+λ∇ζ(x) = 0 implies that λ = 2d(x0)/|∇ζ(x)|. Using (4.4.6), we thus choose
the starting value (x0, λ0) = (x0, 2φ(x0)/|∇φ(x0)|2) for Newton’s method. Given a
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tolerance tol, we iterate Newton’s method until(
ζ(x)2

|∇ζ(x)|2 +

∣∣∣∣ ∇ζ(x)

|∇ζ(x)| −
x− x0

|x− x0|

∣∣∣∣2
)1/2

< tol.(4.4.7)

Fulfillment of this stopping criteria guarantees that the returned value x ≈ a(x0) lies
in the correct direction from x0 to within tol and that, because of (4.4.6), d(x) < tol
up to higher-order terms.

The first-order algorithm which we employed may be described as follows: Since

a(x) = x − d(x)�ν(x), we may use (4.4.6) and �ν(x) ≈ ∇ζ(x)
|∇ζ(x)| to approximate a by

a(x) ≈ x− ζ(x)∇ζ(x)
|∇ζ(x)|2 . Iterating this relationship leads to an algorithm which converges

to some point on Γ but not generally to a(x). We thus correct the direction x−x0 at
each step, yielding the following algorithm.

1. Stipulate tol and x0, and initialize x = x0.
2. While (4.4.7) is not satisfied, iterate the following steps:

(a) Calculate x̃ = x− ζ(x)∇ζ(x)
|∇ζ(x)|2 and dist = sign(ζ(x0))|x̃− x0|.

(b) Set x = x0 − dist ∇ζ(x̃)
|∇ζ(x̃)| .

In practice, the second of the two algorithms was more efficient than Newton’s
method. While Newton’s method converged in less steps as one would expect, each
step is relatively expensive. We also note that we have not rigorously analyzed the
error in either of these methods which results from using the stopping criterion (4.4.7).
A more rigorous analysis of robust algorithms for approximating a would thus be
desirable.

5. Computational examples. In this section we describe several computa-
tional examples. All computations were performed using the finite element toolbox
ALBERTA [SS05], and graphics were processed using the software GMV [Or05]. Also,
the constant C appearing in the estimator Θ in (3.3.20) was taken to 0.25 in all cal-
culations.

5.1. Example 1: Computation on a spherical subdomain. In our first
test we consider a problem which was used as an example in the paper [AP05]. This
problem demonstrates the ease with which our method handles problems in which
the distance function is explicitly available and also provides a convenient place to
consider surfaces with boundaries.

Let S2 be the unit sphere with angular spherical coordinates (φ, θ), where φ
(0 ≤ φ < 2π) is the azimuthal angle in the xy-plane and θ = cos−1 z (0 ≤ θ ≤ π) is
the polar angle from the z-axis. Following [AP05], we let Γ consist of points in S2

such that 0 ≤ φ ≤ 5π
3 , and let u(φ, θ) = (sin θ)λ sinλφ for λ = .6. Then u satisfies

−ΔΓu = f in Γ and u = 0 on ∂Γ with f = λ(λ + 1)(sin θ)λ sinλφ. Note that u is
singular at the poles, so we may expect an adaptive algorithm to refine more heavily
there.

Computation of the geometric quantities necessary to implement our method is
quite straightforward. We employ the distance function d(x) = |x| − 1 for the sphere
(note that we do not actually require access to the distance function for Γ here). In

addition, we may easily compute that �ν(x) = x
|x| , a(x) = x

|x| , and Hij(x) =
δij
|x| −

xixj

|x|3 .

The eigenvalues of H(x) are the principle curvatures of the sphere of radius |x|, that
is, κ1 = κ2 = 1

|x| . Computation of μh, Ah, and Bh is similarly straightforward.

In Figure 5.1, the initial mesh of six elements is displayed along with an adaptively
refined mesh colored with the solution uh. A blowup showing refinement near the
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Fig. 5.1. Experiment 1: The initial mesh with 6 nodes (left) and adaptively refined meshes with
151 (center) and 5559 (right) DOF displaying uh.

Fig. 5.2. Experiment 1: View of the refined mesh along the z-axis, magnified 80×, with contour
lines of u.

positive z-pole is displayed in Figure 5.2. Finally, a graph displaying the error, the
residual estimator Θ defined in (3.3.20), and various geometric quantities is given
in Figure 5.3. First note that the quantity maxT∈Th

hT /
√
|T | appears to reach a

maximum value of about 3. Thus our assumption in Corollary 3.2 that the mesh is
shape-regular is justified for this example. Also, the error ‖∇Γ(u − u�

h)‖L2(Ω) and
the residual estimator Θ converge with optimal order and appear to have a constant
ratio as the mesh is refined. Finally, the quantities ‖Bh|∇Γh

uh|‖L2(Γh) and ‖1 −
Ah‖L∞(Γh) are plotted and show second-order convergence, confirming experimentally
our theoretical observation that these geometric contributions to the error are of
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Fig. 5.3. Experiment 1: Error, estimator, and various geometric quantities.

higher order. It is worth noting here that the quantity Ah appears in the estimator
as a multiplicative factor. Since it converges to 1, it would thus be reasonable and
computationally more efficient to omit it entirely once ‖Ah‖L∞(Γh) is observed to
reach a given tolerance.

5.2. Example 2: Computation on a torus. In our second test we performed

a computation on a torus. d(x) =
√

(r0 −
√
x2 + y2)2 + z2 − r1 is the signed distance

function for a torus whose axis of revolution is the z-axis, whose radius of revolution
is r0, and which has thickness 2r1. The other necessary geometric quantities may be
computed from this formula. We took r0 = 1 and r0 = 0.25. As a test solution we
took the function

u(x, y, z) = e
1

1.85−x2 sin y,(5.5.1)

which has exponential peaks on the outer portions of the torus which lie near the
x-axis.

In Figure 5.4 we display Ah on the the initial 24-node mesh; note that here Ah is
about 5 on the outer edge of the torus, so it enters into the calculation in a significant
way. Also displayed in Figure 5.4 is a refined mesh having 1248 nodes and displaying
the discrete solution uh. In Figure 5.5 we display the local H1 error contributions
along with the three components Ah, ηT , and Bh|∇Γh

uh| of the estimator Θ. The local
residual indicator ηT reflects reasonably well the local error distribution, while the
contributions from Ah and Bh|∇Γh

uh| are relatively insignificant. Also, the maximum
ratio hT /

√
|T | observed during this calculation was 5.28. This relatively large number

reflects the fact that the triangles in the initial mesh displayed in Figure 5.4 already
have relatively high aspect ratios.
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Fig. 5.4. Experiment 2: The initial mesh displaying Ah (left) and the refined mesh with 1248
DOF displaying uh (right).

Fig. 5.5. Experiment 2: The local residual ηT (top left), H1 error (top right), Bh|∇Γh
uh|

(bottom left), and Ah (bottom right).

5.3. Example 3: Computation on an ellipsoid. In our third computational
example we let Γ be an ellipsoid satisfying the level set equation

x2 + y2 +
z2

400
= 1.(5.5.2)

As a test solution we took u(x, y, z) = sin y so that u and its derivatives were of
moderate size.

In Figure 5.6 we display the local residual contribution ηT and the local geometric
error Bh|∇Γh

uh| on an adaptively refined mesh having 10383 nodes. Note that the
maximum values of ηT and Bh|∇Γh

uh| are approximately equal. Thus the geometric
error plays a role in the marking of some elements even on a refined mesh. As in Figure
5.3, however, the overall geometric error ‖Bh|∇Γh

|‖L2(Γh) declines approximately as

DOF−1, while the residual error (
∑

T∈Th
η2
T )1/2 declines as DOF−1/2 (we do not

display a chart for the current situation as it is entirely analogous to Figure 5.3).
Finally, the maximum ratio hT /

√
|T | observed in this adaptive calculation (up 64521

DOF) was 3.41, so that mesh quality remained reasonable.
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Fig. 5.6. Experiment 3: Mesh with 10383 nodes displaying the relative sizes of Bh|∇Γh
uh|

(left) and the local residual ηT (right). The view is along the z-axis.

Appendix. Proof of Proposition 2.1. Proposition 2.1 is potentially of interest
in other situations (e.g., when Γh is a higher-order polynomial approximation to Γ),
so we begin by stating a more general version.

Proposition A.1. Let T̂ be the unit simplex in R
2, and suppose that F : T̂ → U

is a C1 mapping whose gradient has two nonzero singular values at each point in T̂ .
Suppose x ∈ T := F (T̂ ), let �νh be the normal to T at x, and let dσh be a surface
measure on T . Assume also that �ν · �νh > 0. Letting dσh(x)μh(x) = dσ(x), we then
have

μh(x) = �ν · �νh(1 − d(x)κ1(x))(1 − d(x)κ2(x)).(A.A.1)

Proof. We fix a point x̂ ∈ T̂ and let x = F (x̂) and R
3×2 � A = ∇F (x̂). Let

{�e1, �e2}, {�u1, �u2}, and {�v1, �v2} be orthonormal bases for R
2 and the tangent spaces

to Γh and Γ at x and a(x), respectively. We assume also that {�v1, �v2, �ν} are the
eigenvectors of (I − dH)(x) corresponding to the eigenvalues λ1 = 1 − d(x)κ1(x),
λ2 = 1 − d(x)κ2(x), and λ3 = 1. Letting × denote the cross product, we have
dσh = |A�e1 × A�e2| dx̂ and dσ = |([I − dH][P][A]�e1) × ([I − dH][P][A]�e2)| dx̂.

Next we recall the formula (B�x1)× (B�x2) = Badj(�x1×�x2), where B is symmetric
and nonsingular and Badj = (detB)B−1. Noting that (I − dH)adj has eigenvectors
{�v1, �v2, �ν} with eigenvalues {λ2λ3, λ1λ3, λ1λ2}, we calculate

([I − dH][P][A]�e1) × ([I − dH][P][A]�e2) = λ2λ3[([P][A]�e1 × [P][A]�e2) · �v1]�v1

+ λ1λ3[([P][A]�e1 × [P][A]�e2) · �v2]�v2 + λ1λ2[([P][A]�e1 × [P][A]�e2) · �ν]�ν.(A.A.2)

But ([P][A]�e1 × [P][A]�e2) ⊥ �vi, i = 1, 2, ([P][A]�e1 × [P][A]�e2) · �ν = (A�e1 × A�e2) · �ν,
and A�e1 × A�e2 ‖ �νh. Thus

dσ= |([I − dH][P][A]�e1) × ([I − dH][P][A]�e2)| dx̂
=λ1λ2[(A�e1 × A�e2) · �ν]�ν dx̂ = λ1λ2|A�e1 × A�e2|�νh · �ν dx̂.

(A.A.3)

Recalling that dσh = |A�e1 × A�e2| dx̂ completes the proof.
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CONVERGENCE OF FOURTH ORDER COMPACT DIFFERENCE
SCHEMES FOR THREE-DIMENSIONAL CONVECTION-DIFFUSION

EQUATIONS∗

GIVI BERIKELASHVILI† , MURLI M. GUPTA‡ , AND MANANA MIRIANASHVILI§

Abstract. We consider a Dirichlet boundary-value problem for the three-dimensional convection-
diffusion equations with constant coefficients in the unit cube. A high order compact finite difference
scheme is constructed on a 19-point stencil using the Steklov averaging operators. We prove that
the finite difference scheme converges in discrete Wm

2 (ω)-norm with the convergence rate O(hs−m),
where the real parameter s satisfies the condition max(1.5,m) < s ≤ m + 4, m = 0, 1, 2, and the
exact solution belongs to the Sobolev space W s

2 (Ω).

Key words. convection-diffusion equation, convergence estimates, three-dimensions, high ac-
curacy, compact approximations, finite differences

AMS subject classifications. 65N06, 65N15, 76D05
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1. Introduction. Let Ω = {x = (x1, x2, x3) : 0 < xα < 1, α = 1, 2, 3} be
the unit cube with boundary Γ. Let Dν denote the differential operator Dν =
∂|ν|/(∂xν1

1 ∂xν2
2 ∂xν3

3 ), where ν = (ν1, ν2, ν3) are multi-indices with nonnegative in-
teger components, |ν| = ν1 + ν2 + ν3. By W s

2 (Ω), s ≥ 0, we denote a Sobolev space
with the norm defined by

||u||2W s
2 (Ω) =

s∑
j=0

|u|2
W j

2 (Ω)
, |u|W j

2 (Ω) =
∑
|ν|=j

||Dνu||L2(Ω)

when s is an integer. If s is a noninteger, let s = s̄ + ε, where s̄ is the integer part of
s and 0 < ε < 1. In this case, the norm is defined by

||u||2W s
2 (Ω) = ||u||2W s̄

2 (Ω) + |u|2W s
2 (Ω),

where

|u|2W s
2 (Ω) =

∑
|ν|=s̄

∫
Ω

∫
Ω

|Dνu(x) −Dνu(y)|2
|x− y|3+2ε

dx dy.

In particular, for s = 0, we have W 0
2 = L2.

Let ω̄ be the uniform grid in Ω̄ with mesh size h, ω = ω̄ ∩Ω, γ = ω̄\ω. We define
the difference quotients (forward, backward, and central, respectively) in xα direction
as follows:

vxα
=

(I(+α) − I)v

h
, vx̄α

=
(I − I(−α))v

h
, ∂v =

(I(+α) − I(−α))v

2h
,

where Iv = v, I(±α)v = v(x± hrα), and rα is the unit vector on the xα axis.
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Let L2(ω) be the Hilbert space of all discrete functions y = y(x), defined on the
grid ω and vanishing on γ, with the inner product and norm defined by

(y, v) =
∑
x∈ω

h3y(x)v(x), ||y|| = (y, y)1/2.

Further, we define the following norms:

||y||W 0
2 (ω) = ||y||, ||y||2W 1

2 (ω) =

3∑
α=1

||yx̄α ||2(α),

||y||2W 2
2 (ω) = ||yx̄1x1

||2+||yx̄2x2
||2+||yx̄3x3

||2+2||yx̄1x̄2
||2(1,2)+2||yx̄1x̄3

||2(1,3)+2||yx̄2x̄3
||2(2,3).

In the definitions of the norms || · ||(α), || · ||(α,β) the sums run not only over
all interior grid points x ∈ ω, but also over the boundary points x ∈ γ with the
coordinates xα = 1 for ||·||(α) and over the boundary points x ∈ γ with the coordinates
xα = 1, xβ = 1 for || · ||(α,β). The inner product (·, ·)(α) is defined in a similar manner.

In this paper, we investigate certain high order compact finite difference schemes
for the Dirichlet boundary value problem for three-dimensional convection-diffusion
equations with constant coefficients:

Δu +

3∑
α=1

λα
∂u

∂xα
= f(x), x ∈ Ω, u(x) = 0, x ∈ Γ, λα = const.(1)

We obtain discretization error estimates of up to the fourth order that are consis-
tent with the smoothness of the solution sought. By definition (see [1]), these error
estimates have the form

||y − u||Wm
2 (ω) ≤ chs−m||u||W s

2 (Ω), s > m ≥ 0,(2)

where y is the solution of the finite difference scheme and c denotes a positive generic
constant, independent of h and u.

Fourth order finite difference schemes for this problem were considered in [2, 3, 4],
and it was numerically exhibited, through a variety of test examples, that the discrete
solutions converge to the exact solutions of class C6(Ω̄) in discrete norm C(ω), and
the rate of convergence was exhibited to be O(h4) (see also [18]). The case of (1)
with variable coefficients has been considered by various authors (see, e.g., [16, 17]
for three-dimensional and [19] two-dimensional convection-diffusion equations) who
described fourth order compact finite difference schemes and exhibited the fourth
order convergence through numerical examples. In [18], an attempt was made to
carry out theoretical analysis for the convection diffusion equation (1) with constant
coefficients—these authors used an eigenvalue analysis to prove that the coefficient
matrix arising from the 19-point discretization of (1) is positive definite when the
cell Reynolds number exceeds a critical value and that the discrete solution remains
oscillation free in such cases. To our knowledge, no theoretical error estimates have
so far been published for (1).

In this paper, we first present the derivation of the 19-point compact finite dif-
ference scheme for (1); the resulting finite difference scheme is the same as that
introduced and used in previous papers [4, 16]. Next, we derive discretization error
estimates of type (2) for the real parameter s satisfying max(1.5,m) < s ≤ m+4, m =
0, 1, 2, under the assumption that the solution of the original boundary-value problem
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(1) belongs to the Sobolev space W s
2 (Ω). These error estimates are derived using

certain well-known techniques (see, e.g., [5, 6]) that employ the generalized Bramble–
Hilbert lemma. Similar error estimates were previously obtained by Berikelashvili for
two-dimensional convection-diffusion equations with constant coefficients in [7].

2. Construction of finite difference schemes. In the Hilbert space L2(ω)
we define the difference operators

Λα = yx̄αxα
, Λ(α) =

3∑
k=1
k �=α

Λk, α = 1, 2, 3.

We need the following averaging operators for functions defined on Ω:

S−
1 v(x) =

1

h

∫ x1

x1−h

v(t, x2, x3) dt,

T1v(x) =
1

h2

∫ x1+h

x1−h

(h− |x1 − t|)v(t, x2, x3) dt.

The operators S−
α , Tα are defined in a similar manner for α = 2, 3. Notice that these

operators commute in the case of different indices and

Tα
∂2u

∂x2
α

= Λαu, Tα
∂u

∂xα
= (S−

α u)xα .

Let

T =

3∏
k=1

Tk, T(α) =

3∏
k=1
k �=α

Tk, Λ(α) =

3∑
k=1
k �=α

Λk.

We assume that the solution u of the boundary-value problem (1) belongs to the
Sobolev space W s

2 (Ω), s > 1.5. Applying operator T to (1) we obtain

3∑
α=1

ΛαT(α)u +

3∑
α=1

λαS
−
α T(α)uxα = Tf.(3)

It can be easily verified that, on the set of sufficiently smooth functions, the
following operators are equivalent (with errors of order O(h4)):

Tα ∼ I +
h2

12
Λα

and consequently

T(α) ∼ I +
h2

12
Λ(α).

Therefore we denote

ηα = T(α)u−
(
I +

h2

12
Λ(α)

)
u,
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which implies

ΛαT(α)u = Λα

(
I +

h2

12
Λ(α)

)
u + Λαηα.(4)

Similarly,

S−
α T(α) ∼

1

2
(I + I(−α))

(
I +

h2

6
Λ(α)

)
− h2

12
S−
α T(α)Δ.

The approximation error of this relation is

ηα = S−
α T(α)u− 1

2
(I + I(−α))

(
I +

h2

6
Λ(α)

)
u +

h2

12
S−
α T(α)Δu,

from which it follows that

S−
α T(α)uxα = ∂α

(
I +

h2

6
Λ(α)

)
u− h2

12
T

∂

∂xα
Δu + (ηα)xα

.(5)

From (3), (4) and (5), we obtain the following equality:

3∑
α=1

Λα

(
I +

h2

12
Λ(α)

)
u +

3∑
α=1

λα∂α

(
I +

h2

6
Λ(α)

)
u(6)

+
h2

6

∑
1≤α<β≤3

λαλβT
∂2u

∂xα∂xβ
+

h2

12

3∑
α=1

λ2
αT

∂2u

∂x2
α

+

3∑
α=1

(Λαηα + λαη
α
xα

) = ϕ,

where

ϕ = Tf +
h2

12

3∑
α=1

λαT
∂f

∂xα
.(7)

Using

ηαβ =
h2

6

(
S−
α S−

β Tγu− 1

4
(I + I(−α) + I(−β) + I(−α)I(−β))u

)
,

γ = 6 − α− β, ηαα =
h2

12
(T(α)u− u),

we obtain

h2

6
T

∂2u

∂xα∂xβ
=

h2

6
∂α∂βu + (ηαβ)xαxβ

,
h2

12
T
∂2u

∂x2
α

=
h2

12
Λαu + Λαη

α
α ,

and from (6) we get

3∑
α=1

Λα

(
I +

h2

12
Λ(α)

)
u +

3∑
α=1

λα∂α

(
I +

h2

6
Λ(α)

)
u(8)

+
h2

6

∑
1≤α<β≤3

λαλβ∂α∂βu +
h2

12

3∑
α=1

λ2
αΛαu = ϕ + ψ,
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where the remainder term (truncation error) ψ is given by

ψ = −
3∑

α=1

(Λαηα + λαη
α
xα

+ λ2
αΛαη

α
α) −

∑
1≤α<β≤3

λαλβ(ηαβ)xαxβ
.(9)

By dropping the remainder term on the right-hand side of (8) and replacing the
continuous solution u(x) by the grid function y(x), we obtain the finite difference
scheme

−Lhy = ϕ, x ∈ ω, y ∈ L2(ω),(10)

where the right-hand side ϕ is defined in (7) and

Lhy ≡ (A+B+C)y, A = −
3∑

α=1

Λα

(
I +

h2

12
Λ(α)

)
, C = −

3∑
α=1

λα∂α

(
I +

h2

6
Λ(α)

)
,

B = −h2

6

∑
1≤α<β≤3

λαλβ∂α∂β − h2

12

3∑
α=1

λ2
αΛα, Λ(α) =

3∑
β=1
β �=α

Λβ .

3. A priori estimate of discretization error. We start with a few preliminary
results.

The operators Λα are self-adjoint and negative definite in the Hilbert space L2(ω)
with respect to the inner product (., .), and (see, e.g., [8])

8I ≤ −Λα ≤ (4/h2)I, ΛαΛβ = ΛβΛα, α, β = 1, 2, 3, β �= α.(11)

Consequently, the operator

Λ = −
3∑

α=1

Λα

is self-adjoint and positive definite in L2(ω), and

24I ≤ Λ ≤ (12/h2)I.

One can easily verify that

||y||W 1
2 (ω) = (Λy, y)1/2, ||y||W 2

2 (ω) = ||Λy||.

Lemma 3.1. Lh is a positive definite operator in space L2(ω), and for any y ∈
L2(ω), we have the following estimate:

3(Lhy, y) ≥ ||y||2W 1
2 (ω).(12)

Proof. Taking into account inequality (11), we have

(Ay, y) ≥ (1/3)(Λy, y) = (1/3)||y||2W 1
2 (ω)(13)

as I + (h2/12)Λ(α) ≥ (1/3)I. It is easy to verify that (∂αy, v) = −(y, ∂αv) and conse-
quently

(Cy, y) = 0.(14)
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Further, we have

(By, y) =
h2

12

3∑
α=1

λ2
α||yx̄α

||2(α) +
h2

6

∑
1≤α<β≤3

λαλβ(∂αy, ∂βy).

However,

||∂αy||2 =
∑
ω

h3

(
yx̄α + yxα

2

)2

≤
∑
ω

h3

2
(y2

x̄α
+ y2

xα
) ≤ ||yx̄α

||2(α),

which yields

(By, y) ≥ h2

12

3∑
α=1

λ2
α||∂αy||2 +

h2

6

∑
1≤α<β≤3

λαλβ(∂αy, ∂βy)

=
h2

12
||

3∑
α=1

λα∂αy||2 ≥ 0.(15)

The relations (13)–(15) complete the proof of Lemma 3.1.
Lemma 3.2. For any y ∈ L2(ω) the following estimates are valid:

||Λy|| ≤ c0||Lhy||,(16)

||L−1
h y|| ≤ c0||Λ−1y||,(17)

where c0 = 3 + (9
√

2/4)λ, λ = max(|λ1|, |λ2|, |λ3|).
Proof. We have (Λ1y,Λ2y) = −(Λ2yx̄1 , yx̄1)(1) ≥ (∂2yx̄1 , ∂2yx̄1)(1) = (−Λ1∂2y, ∂2y),

and (Λ1y,Λ3y) ≥ (−Λ1∂3y, ∂3y), which yields

(Λ1y, λ
2
2Λ2y + λ2

3Λ3y + 2λ2λ3∂2∂3y) ≥ ||∂1(λ2∂2 + λ3∂3)y||2.

Using this inequality we obtain

(By,−Λ1y) = (h2/12)
(
λ2

1||Λ1y||2 + (Λ1y, λ
2
2Λ2y + λ2

3Λ3y + 2λ2λ3∂2∂3y)

+2λ1λ2(∂1∂2y,Λ1y) + 2λ1λ3(∂1∂3y,Λ1y)
)

≥ (h2/12)||(λ1Λ1 + λ2∂1∂2 + λ3∂1∂3)y||2 ≥ 0.

Analogously, (By,−Λky) ≥ 0, for k = 2, 3 which yields (By,Λy) ≥ 0. From (13), we
have (Ay,Λy) ≥ 1

3 ||Λy||2, which yields ((A + B)y,Λy) ≥ 1
3 ||Λy||2, or

||Λy|| ≤ 3||(A + B)y||.(18)

It is clear that

||Cy|| ≤ λ

3∑
α=1

∥∥∥∥(I +
h2

6
Λ(α)

)
∂αy

∥∥∥∥ ≤ λ

3∑
α=1

||∂αy||

≤
√

3λ

(
3∑

α=1

||∂αy||2
)1/2

≤
√

3λ||y||W 1
2 (ω).(19)
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Using Lemma 3.1 and the discrete analogue of Friedrichs inequality ||y||2
W 1

2 (ω)
≥

24||y||2, we obtain

||y||W 1
2 (ω) ≤

√
6

4
||Lhy||,(20)

and therefore the relation

||Cy|| ≤ 3
√

2

4
λ||Lhy||(21)

follows from inequality (19). Substituting A + B = Lh − C into (18) and using (21),
we obtain the estimate in (16). The estimate

||Λy|| ≤ c||L∗
hy|| ∀y ∈ L2(ω)(22)

can be obtained in a similar manner. Further, L∗
hLh is a self-adjoint positive definite

operator in L2(ω), and

||L−1
h y|| = ||(L∗

hLh)−1L∗
hy|| = sup

v �=0

|(L∗
hy, v)|

||L∗
hLhy||

= sup
v �=0

|(Λ−1y,ΛLhv)|
||L∗

hLhy||

≤ ||Λ−1y|| sup
v �=0

||ΛLhv)||
||L∗

hLhv||
.

Using this result and (22), we obtain (17). This completes the proof of Lem-
ma 3.2.

Let z = y − u, where u is the continuous solution of the boundary-value problem
(1) and y is the solution of the finite difference scheme (10). Substituting y = u+z into
(10) and taking into account (8), we obtain the following problem for the discretization
error z:

Lhz = ψ, z ∈ L2(ω),(23)

where the truncation error ψ is defined in (9).
Lemma 3.3. For the solution of problem (23) the following estimates hold:

||z||Wm
2 (ω) ≤ cmJm(u), m = 0, 1, 2, c1 = 3, c2 = c0,(24)

where

J0(u) =

3∑
α=1

(
||ηα|| + λ||ηα||(α) + λ2||ηαα ||

)
+

∑
1≤α<β≤3

λ2||ηαβ ||(α,β),

J1(u) =

3∑
α=1

(
||ηαx̄α ||(α) + λ||ηα||(α) + λ2||ηααx̄α

||(α)

)
+

∑
1≤α<β≤3

λ2||ηαβxβ
||(α),

J2(u) =

3∑
α=1

(
||Λαηα|| + λ||ηαxα

|| + λ2||Λαη
α
α ||

)
+

∑
1≤α<β≤3

λ2||ηαβxαxβ
||.

Proof. For m = 0, (24) can be established using the estimate (17), taking into
account that ||Λαv|| ≤ ||Λv||, ||vx̄α ||(α) ≤ ||Λv||, and ||vxαxβ

|| ≤ ||Λv||.
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For m = 1, we have from (12) and (23):

||z||2W 1
2 (ω) ≤ 3|(ψ, z)|.(25)

Using the definition of ψ in (9) and summing by parts, we obtain

(ψ, z) = −
3∑

α=1

(
(ηαx̄α

, zx̄α
)(α) + λα(ηα, zx̄α

)(α) + λ2
α(ηααx̄α

, zx̄α
)(α)

)
−

∑
1≤α<β≤3

λαλβ(ηαβxβ
, zx̄α)(α).

As ||zx̄α ||(α) ≤ ||z||W 1
2 (ω), using the Cauchy inequality we get (ψ, z)| ≤ J1(u) ||z||W 1

2 (ω).

Using (25) we obtain the desired result (24) for the case m = 1.
For m = 2, the estimate (24) follows immediately from (23) using (16). Thus,

Lemma 3.3 is proved.
To determine the rate of convergence of the finite difference scheme (10) with

the help of Lemma 3.3, it is sufficient to estimate the corresponding norms of the
expressions ηα, η

α, ηαα , and ηαβ on the right-hand side Jk(u) of (24).
For this we need the next lemma.
Lemma 3.4. Assume that the linear functional l(u) is bounded in W s

2 (E), where
s = s̄ + ε, s̄ is an integer, 0 < ε ≤ 1, and l(P ) = 0 for every polynomial P of degree
≤ s̄ in three variables. Then, there exists a constant c, independent of u, such that
|l(u)| ≤ c |u|W s

2 (Ω).
This lemma is a particular case of the Dupont–Scott approximation theorem [9]

and represents a generalization of the Bramble–Hilbert lemma [10] (see also [11]).

4. Estimate of the convergence rate. By πk let us denote the set of all
polynomials of degree ≤ k in three variables.

We assert that the following inequalities hold for α = 1, 2, 3:

||ηα|| ≤ chs|u|W s
2 (Ω), s ∈ (1.5, 4],

||ηαx̄α ||(α) ≤ chs−1|u|W s
2 (Ω), s ∈ (1.5, 5],(26)

||Λαηα|| ≤ chs−2|u|W s
2 (Ω), s ∈ (1.5, 6].

First we consider the expression η1. Let e = e(x) = {ξ = (ξ1, ξ2, ξ3) : |ξα − xα| ≤
h, α = 1, 2, 3}. By ũ(t) we denote a function obtained from u(ξ) by changing the
variables ξα = xα + tαh, α = 1, 2, 3, and mapping the function e(x) onto ẽ = {t =
(t1, t2, t3) : |tα| ≤ 1, α = 1, 2, 3}. Since u(ξ) = u(x1 + t1h, x2 + t2h, x3 + t3h) = ũ(t),
the expression

η1 = T2T3u−
(
I +

h2

12
Λ2 +

h2

12
Λ3

)
u

turns into

η1 =

∫ 1

−1

∫ 1

−1

(1 − |t2|)(1 − |t3|)ũ(0, t2, t3) dt2dt3

− 1

12

(
ũ(0, 1, 0) + ũ(0,−1, 0) + ũ(0, 0, 1) + ũ(0, 0,−1) + 8ũ(0, 0, 0)

)
.
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Consequently, |η1| ≤ c||ũ||
C(ẽ)

≤ c||ũ||
W s

2 (ẽ)
as W s

2 ⊂ C when s > 1.5. Utilizing

the fact that η1, as a functional of ũ, vanishes on π3 (which can be verified directly)
and using Lemma 3.4, we obtain |η1| ≤ c|ũ|

W s
2 (ẽ)

, s ∈ (1.5, 4]. Reverting to the old

variables, this yields |η1| ≤ chs−1.5|u|W s
2 (e), s ∈ (1.5, 4]. Consequently, we have

||η1||2 =
∑
ω

h3|η1|2 ≤ ch2s
∑
ω

|u|2W s
2 (e) ≤ ch2s|u|2W s

2 (Ω).

The other estimates in (26) can be obtained analogously, using the fact that the
functionals ηαx̄α

and Λαηα vanish on π4 and π5, respectively.
The boundedness of the other error functionals is evident when u ∈ W s

2 (Ω), s >
3/2. Only the term S−

α T(α)Δu involved in ηα needs a special consideration. For
instance, for α = 1 we have

S−
1 T2T3Δu =

(
T2T3

∂u

∂x1

)
x̄1

+ Λ2S
−
1 T3u + Λ3S

−
1 T2u.

It follows from u ∈ W s
2 that (∂u/∂x1) ∈ W s−1

2 and for fixed x1 this derivative, as a

function of variables x2, x3, belongs to W
s−3/2
2 . Therefore the averaging T2T3(∂u/∂x1)

makes sense and can be estimated by ||u||W s
2 (Ω).

The expressions ηα and ηαx̄α
vanish on π3 and π4, respectively, and the following

estimates can be obtained in a similar manner:

||ηα|| ≤ chs|u|W s
2 (Ω), s ∈ (1.5, 4],(27)

||ηαx̄α
||(α) ≤ chs−1|u|W s

2 (Ω), s ∈ (1.5, 5].(28)

From (27), it follows that

||ηα|| ≤ chs−1|u|W s
2 (Ω), s ∈ (1.5, 5].(29)

Similarly, for ηαα , ηααx̄α
, and Λαη

α
α , which vanish, respectively, on π1, π2, and π3,

we have the following estimates:

||ηαα || ≤ chs+2|u|W s
2 (Ω), s ∈ (1.5, 2],

||ηααx̄α
||(α) ≤ chs+1|u|W s

2 (Ω), s ∈ (1.5, 3],

||Λαη
α
α || ≤ chs|u|W s

2 (Ω), s ∈ (1.5, 4].

Consequently, we obtain

||ηαα || ≤ chs|u|W s
2 (Ω), s ∈ (1.5, 4],

||ηααx̄α
||(α) ≤ chs−1|u|W s

2 (Ω), s ∈ (1.5, 5],(30)

||Λαη
α
α || ≤ chs−2|u|W s

2 (Ω), s ∈ (1.5, 6].
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The expressions ηαβ , ηαβx̄β
, and ηαβxαxβ

vanish, respectively, on π1, π2, and π3.
Consequently,

||ηαβ || ≤ chs+2|u|W s
2 (Ω), s ∈ (1.5, 2],

||ηαβx̄β
||(α) ≤ chs+1|u|W s

2 (Ω), s ∈ (1.5, 3].

||ηαβxαxβ
|| ≤ chs|u|W s

2 (Ω), s ∈ (1.5, 4].

From this we obtain

||ηαβ || ≤ chs|u|W s
2 (Ω), s ∈ (1.5, 4],

||ηαβx̄β
||(α) ≤ chs−1|u|W s

2 (Ω), s ∈ (1.5, 5],(31)

||ηαβxαxβ
|| ≤ chs−2|u|W s

2 (Ω), s ∈ (1.5, 6].

As a result, using estimates (26)–(31) and Lemma 3.3, we arrive at the following
proposition.

Theorem 4.1. Let the exact solution of the boundary-value problem (1) belong to
W s

2 (Ω), s > 1.5 . Then, the discretization error of the finite difference scheme (10) in
the discrete Wm

2 -norm is determined by the estimate (2) for s satisfying max(1.5,m) <
s ≤ m + 4, m = 0, 1, 2.

5. Comparisons with other methods. Let σ = (σ1, σ2, σ3) be a multi-index
with components −1, 0, or 1, |σ| = |σ1|+ |σ2|+ |σ3|, and yσ = yi+σ1,j+σ2,k+σ3 . At the
node (ih, jh, kh) the finite difference scheme (10) may be represented in the form

2∑
|σ|=0

aσyσ = 6h2ϕ,(32)

where

aσ = −24 − h2(λ2
1 + λ2

2 + λ2
3) if σ = (0, 0, 0),

aσ = 2 + h

3∑
k=1

σkλk +
h2

2

3∑
k=1

(σkλk)
2 if |σ| = 1,

aσ = 1 +
h

2

3∑
k=1

σkλk +
h2

4

3∑
k,l=1

σkσlλkλl if |σ| = 2.

The left-hand side of (32) is the same as that of the 19-point finite difference
scheme defined by Gupta and Zhang [4].

In the case when u ∈ W s
2 (Ω), s > 3.5, and thus f ∈ W s−2

2 (Ω) is continuous, the
right-hand side of the finite difference scheme (32) can be written as

F = 3h2f +
h4

2

3∑
α=1

λα∂αf +
h2

2

∑
|σ|=1

fσ,

and the resulting scheme,

2∑
|σ|=0

aσyσ = F,(33)

is exactly the same as in [4].
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Table 5.1

Maximum errors for (34).

Re = 1 Re = 1000

h = 1/16 1.50 × 10−5 9.04 × 10−3

h = 1/32 9.45 × 10−7 1.15 × 10−3

h = 1/64 5.96 × 10−8 8.36 × 10−5

Using the imbedding W 2
2 (ω) into C(ω) for discrete functions of three variables,

we obtain for both schemes (32) and (33) the discretization error estimate in uniform
metric

||y − u||C(ω) ≤ chs−2||u||W s
2 (Ω)

with s ∈ (2, 6] and s ∈ (3.5, 6], respectively. This proves the fourth order discretiza-
tion error estimates for both of the compact difference schemes for three-dimensional
convection-diffusion equations.

As an illustration, we present numerical data from Gupta and Zhang [4] where the
following convection diffusion equation was solved for various values of the parameter
Re:

Δu− Re

[
cosα cosβ

∂u

∂x1
+ cosα sinβ

∂u

∂x2
+ sinα

∂u

∂x3

]
= f(x).(34)

In Table 5.1, we give data for the parameters α = 35◦, β = 45◦ and the exact solution
given by u = sinπx1 sinπx2 sinπx3. The maximum errors of the numerical solutions
are exhibited in Table 5.1 for h = 1/16, h = 1/32, and h = 1/64 and for Re = 1 and
Re = 1000. As shown in [4], the maximum norms of the numerical errors decay
according to O(h4), and this rate of convergence has now been theoretically established
by the results of this paper.

Remark 1. Our results are also valid in the case when the grid ω̄ is uniform in
each direction x1, x2, and x3 with steps h1, h2, and h3, respectively. High accuracy
compact finite difference schemes for problem (1) cannot, generally, be defined on
irregular grids.

Remark 2. Equations of the type (1) often arise in problems of fluid dynamics
as a linearized version of the momentum equation, and it is desirable for the corre-
sponding finite difference schemes to have high accuracy, especially for large values
of λα. Therefore it is important to represent the convergence estimates in terms of
the parameter λ. Such estimates, e.g., in W 1

2 (ω)-norm for the difference scheme (10)
have the form

‖z‖W 1
2 (ω) ≤ cM(λ)hs−1‖u‖W s

2 (Ω), s ∈ (1.5, 5],

where c is independent of h, λ, and u(x) and

M(λ) = 1 + λh + λ2h2 if s ∈ (1.5, 3],

M(λ) = 1 + λh + λ2h5−s if s ∈ (3, 4],

M(λ) = 1 + λ2h5−s if s ∈ (4, 5].

Remark 3. As noted above, a few finite difference schemes for (1) (with variable
coefficients λα) are known for approximation of the considered problem (see, e.g.,
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[4, 16, 17] for three-dimensional problems and [19] for two-dimensional problems).
However, the rate of convergence (of any order) can be exhibited only computationally
in such cases as has been done through a number of test examples in the cited papers.

In some special cases, the fourth order convergence can be proved only when
u ∈ C6(Ω̄) whereas we have obtained convergence estimate of order hs for s ∈ (1.5, 4]:

‖y − u‖ ≤ chs‖u‖W s
2 (Ω), s ∈ (1.5, 4].

At present we do not have sufficient mathematical tools to establish estimates such as
(12) for variable coefficient operators Lh, and we plan to work on the error estimates
for variable coefficient problems in the future.

Remark 4. Certain streamline-diffusion finite element methods (SDFEM) for
problem (1) are also known in the literature (see, e.g., [12, 13, 14, 15]). For such
methods, typically the convergence is obtained in the so-called streamline-diffusion
norm. This norm weakens as the diffusion parameter tends to zero (in our case
λ → ∞). However, unlike our finite difference scheme (10), theoretical convergence
estimates better than O(h2) are not available for SDFEM.

Acknowledgment. The authors wish to thank the referees for their helpful
comments and for pointing out the SDFEM schemes. We hope that the confluence
of these two methods (SDFEM and ours) will lead to strong and useful results in the
future.
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Abstract. Parabolic systems with p-structure are considered on convex polyhedral domains
under Dirichlet boundary conditions. A fully discrete scheme is studied using C0-piecewise linear
finite elements in space and the backward Euler difference scheme in time. A priori error estimates
in quasi norms are proved, and optimal convergence rates are obtained.
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1. Introduction. Let Ω ⊂ R
d, d ≥ 2, be a convex polyhedral domain, and

let T ∈ (0,∞), I = [0, T ], and QT be the time-space cylinder I × Ω. For a given
right-hand side f : QT → R

d and a given initial value u0 : Ω → R
d we seek u =

(u1, . . . , ud)
� : QT → R

d solving the system

∂tu − div S(∇u) = f in QT ,

u(0) = u0 in Ω ,(1.1)

u = 0 on I × ∂Ω ,

where S has p-structure (cf. (2.1), (2.2)). Typical prototypes are

S(∇u) =
∣∣∇u

∣∣p−2∇u and S(∇u) =
(
1 +
∣∣∇u

∣∣2) p−2
2 ∇u,(1.2)

where 1 < p < ∞.
In this paper we deal with a fully discrete scheme using continuous piecewise

linear finite elements in space and the backward Euler time discretization. In the case
of the heat equation, which corresponds to the case p = 2, it is well known that

‖u− U‖2
L∞(I,L2(Ω)) +

∫ T

0

‖∇u−∇U‖2
2 dt ≤ c

(
k2 + h2

)
if the data are suitable. Here U denotes the space-time discretization of u, k is the
size of each time step, and h is the mesh size; cf. [24]. The aim of this paper is
to generalize this result to problem (1.1). Therefore, we estimate the approximation
error in suitable quasi norms. Moreover, we give assumptions on the data that provide
the regularity required for u for deriving these optimal convergence rates.
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Extensive research has been carried out for time discretizations and finite element
approximations of problems with p-structure; cf. [1, 2, 3, 4, 7, 10, 13, 16, 19, 20, 21, 25].
However, with the exception of [1, 10, 21], all results are suboptimal in the sense that
either the order of the error estimate is not optimal or the assumed regularity of the
solution is too high and not realistic for general situations. For instance, in the case of
the elliptic degenerate p-Laplace equation it is well known that sharp error estimates
cannot be obtained if the error is estimated in Sobolev or weighted Sobolev norms.
A significant development in the error estimation for such degenerate problems is the
quasi-norm approach of Barrett and Liu; cf. [2, 3, 19]. The key idea is to introduce a
quasi norm ‖ · ‖(∇u) satisfying

‖∇u −∇U‖2
(∇u)

∼=
∫

Ω

(
S(∇u) − S(∇U)

)
· (∇u −∇U) dx,

where 1 < p < ∞. Utilizing this quasi norm, sharp error estimates can be established;
e.g., for elliptic problems with p-structure it was shown in [2] that

‖∇u−∇uh‖(∇u) ≤ c inf
vh∈Vh

‖∇u−∇vh‖(∇u),

where u is the weak solution, uh is the finite element approximation of u, and Vh

is the finite element space of continuous piecewise linear functions vanishing on ∂Ω.
Moreover, in [10] the finite element interpolation error estimation theory in the quasi
norms was established. It was proved that

inf
vh∈Vh

‖∇u−∇vh‖2
(∇u) ≤ c h2

∫
Ω

|∇u|p−2|∇2u|2,

where h is the mesh size. Since regularity results for problems with p-structure are
available (cf. [15, 6, 12, 11]), the integral on the right-hand side is finite and thus the
optimal convergence rate for elliptic problems

‖∇u−∇uh‖2
(∇u) ≤ c h2

was obtained. In the case of time discretizations most results again are only subopti-
mal. Usually, error estimates of the form

‖u− uk‖2
l∞(Ik,L2(Ω)) + ‖∇u−∇uk‖2

lp(Ik,Lp(Ω)) ≤ c k2α(p),

where u is the solution of the parabolic problem with p-structure, uk is the backward
Euler time discretized solution, and α(p) ∈ (0, 1), are proved. In [21] optimal estimates
for the time discretization by means of the Yoshida approximation are proved; i.e.,
one has α(p) = 1. However, no spatial discretization is treated there and it seems to
be difficult to include further nonmonotone nonlinearities in this approach. Recently,
abstract error estimates for a full space-time discretization with α(p) = 1 were given
in [1]. Under additional regularity assumptions explicit error estimates in terms of
the time-step size and mesh size are derived there. The approach presented here is
completely different.

In this paper we treat parabolic systems with p-structure for all 2d
d+2 < p < ∞.

We will estimate the approximation error between the solution u of problem (1.1)
and the solution U of the fully discrete scheme using continuous piecewise linear
finite elements in space and the backward Euler time discretization in quasi norms
and show the optimal convergence rate

‖u − U‖2
L∞(I,L2(Ω)) +

∫ T

0

‖∇u −∇U‖2
(∇u) dt ≤ c (k2 + h2),
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where k is the time-step size and h the mesh size, which are related by the mesh ratio
condition hα(p,d) ≤ c k (cf. (5.1)). This result is derived for the natural regularity of
the problem, which is available under rather general assumptions on the data. Note
that the condition (5.1) is present even for p = 2. We believe that this condition
is only of technical character and hope that it can be removed by an appropriate
argument.

2. Preliminaries. For matrices A,B ∈ R
d×d with components Aij and Bij we

denote A · B =
∑d

i,j=1 AijBij . We write f ∼= g if and only if there exist constants
c0, c1 > 0, such that

c0f ≤ g ≤ c1f ,

where we always indicate on what the constants may depend. We use the usual nota-
tion of Lebesgue-, Sobolev-, and Bochner-spaces, respectively, namely

(
Lp(Ω), ‖ · ‖p

)
,(

W k,p(Ω), ‖ · ‖k,p
)
, and

(
Lp(I,X), ‖ · ‖Lp(I,X)

)
, where X is some Banach space, re-

spectively. We denote 〈f, g〉 :=
∫
Ω
f(x) g(x) dx. Moreover, for f : I ×Ω → R we often

write f(t) instead of f(t, ·).
Concerning the structure of the system (1.1) we assume that the operator induced

by −div S(∇u) has p-structure; i.e., there exist p > 1, κ ≥ 0, and γ1, γ2 > 0 such that

d∑
i,j,k,l=1

∂Sij(A)

∂Akl
BijBkl ≥ γ1

(
κ + |A|

)p−2|B|2(2.1)

is satisfied for all B,A ∈ R
d×d, and that∣∣∣∣∂Sij(A)

∂Akl

∣∣∣∣ ≤ γ2

(
κ + |A|

)p−2
(2.2)

is satisfied for all i, j, k, l = 1, . . . , d. Note that the above prototypes (1.2) satisfy
these assumptions. Closely related to the operator S with p-structure is the function
F : R

d×d → R
d×d defined by

F(B) := (κ + |B|)
p−2
2 B .

This is clarified by the following algebraic lemma.

Lemma 2.1. For all A,B ∈ R
d×d there holds(

S(A) − S(B)
)
·
(
A − B

) ∼= |A − B|2
(
κ + |B| + |A|

)p−2
(2.3a)

∼= |F(A) − F(B)|2(2.3b)

with constants depending on p only.

The proof can be found in the appendix. For A,B : Ω → R
d×d we introduce the

quasi norm (cf. [2, 3, 19])

‖A‖(B) :=

(∫
Ω

(
κ + |B(x)| + |A(x)|

)p−2|A(x)|2 dx
) 1

2

.

Lemma 2.1 and the fact that |B| + |A − B| ∼= |B| + |A| imply the following lemma.
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Lemma 2.2. For all v,w ∈ W 1,p(Ω) there holds

‖∇v −∇w‖2
(∇w)

∼=
〈
S(∇v) − S(∇w),∇v −∇w

〉
∼= ‖F(∇v) − F(∇w)‖2

2

(2.4)

with constants depending on p only.
Furthermore, for δ > 0 there is a constant cδ > 0 such that for all λ, μ, ν ≥ 0

(cf. [3])

(λ + μ)p−2μ ν ≤ δ(λ + μ)p−2μ2 + cδ(λ + ν)p−2ν2 .

Due to this inequality, (2.3a), and (6.8) there holds the following result.
Lemma 2.3. For δ > 0 there exists cδ > 0 such that for all A,B,C ∈ R

d×d there
holds (

S(A) − S(B)
)
·
(
A − C

)
≤ δ
(
S(A) − S(B)

)
·
(
A − B

)
+ cδ

(
S(A) − S(C)

)
·
(
A − C

)
and (

S(A) − S(B)
)
·
(
A − C

)
≤ δ
∣∣F(A) − F(B)

∣∣2 + cδ
∣∣F(A) − F(C)

∣∣2 .
Especially for v,w1,w2 ∈ W 1,p(Ω) we easily deduce from this that〈

S(∇v) − S(∇w1),∇v −∇w2

〉
≤ δ ‖∇v −∇w1‖2

(∇v) + cδ ‖∇v −∇w2‖2
(∇v)

and 〈
S(∇v) − S(∇w1),∇v −∇w2

〉
≤ δ ‖F(∇v) − F(∇w1)‖2

2 + cδ ‖F(∇v) − F(∇w2)‖2
2 .

(2.5)

3. The continuous problem. In this section we investigate the regularity of
solutions of system (1.1). Throughout the remainder of the paper we assume that

u0 ∈ W 1,2
0 (Ω) ∩W 1,p

0 (Ω),

div
(
S(∇u0)

)
∈ L2(Ω),

f ∈ Lp′
(I, Lp′

(Ω)) ∩ C(I, L2(Ω)) ∩ L2(I,W 1,2(Ω)),

∂tf ∈ L2(I, L2(Ω)),

(3.1)

where p′ is the dual exponent of p. We call u a weak solution of problem (1.1) if
u ∈ L∞(I, L2(Ω))∩Lp(I,W 1,p

0 (Ω)) with ∂tu ∈ Lp′
(I, (W 1,p

0 (Ω))∗) satisfies for almost
all t ∈ I 〈

∂tu,w
〉
W 1,p

0 (Ω)
+
〈
S(∇u),∇w

〉
= 〈f ,w〉 ∀w ∈ W 1,p

0 (Ω),

u(0) = u0,
(3.2)

where 〈v,w〉W 1,p
0 (Ω) denotes the duality pairing in W 1,p

0 (Ω). It is well known (cf. [18,

14]) that for p ≥ 2d
d+2 there exists a unique weak solution of (1.1) with

‖u‖2
L∞(I,L2(Ω)) + ‖u‖pLp(I,W 1,p(Ω)) ≤ C

(
‖f‖p

′

Lp′ (I,Lp′ (Ω))
+ ‖u0‖2

2

)
.
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Lemma 3.1. The solution u of (1.1) satisfies under the assumptions (3.1)

‖∂tu‖2
C(I,L2(Ω)) +

∫ T

0

∥∥∂t(F(∇u)
)∥∥2

2
dt ≤ c(f ,u0).

Proof. In [14, Theorem 6.2.1]1 (cf. [18] for p ≥ 2) it is shown that problem (1.1)
possesses under the above assumptions a solution u ∈ C1

w(I, L2(Ω))∩Cw(I,W 1,p
0 (Ω));

i.e., ∂tu is weakly continuous in L2(Ω), and u is weakly continuous in W 1,p
0 (Ω). In

particular we have

sup
t∈[0,T ]

‖∂tu(t)‖L2(Ω) ≤ c ,(3.3)

which is the first part of the assertion. In order to prove the second part we use the
difference quotient with respect to time. Let Dτu(t, x) := 1

τ (u(t + τ, x) − u(t, x)),
τ > 0. We apply Dτ to (3.2) and set w := Dτu. Then for all t〈

∂tD
τu, Dτu

〉
+
〈
Dτ
(
S(∇u)

)
, Dτ∇u

〉
= 〈Dτ f , Dτu〉.

This and (2.4) yield

1

2
∂t ‖Dτu‖2

2 + c
∥∥Dτ

(
F(∇u)

)∥∥2

2
≤ ‖Dτ f‖2‖Dτu‖2.

Integration over t ∈ [0, t∗], 0 ≤ t∗ ≤ T , and taking the supremum over t∗ ∈ [0, T ]
imply

‖Dτu‖2
C(I,L2(Ω)) +

∫ T

0

∥∥Dτ
(
F(∇u)

)∥∥2

2
dt

≤ c
(
‖Dτu(0)‖2

2 + ‖∂tf‖2
L2(I,L2(Ω)) + ‖∂tu‖2

L2(I,L2(Ω))

)
≤ c ,

where we used (3.1) and (3.3). The second assertion now follows from the properties
of the difference quotient.

4. Backward time discretization. We introduce the notation tn := nk, N :=
�T/k�, In := (tn−1, tn),

un(x) := u(tn, x), and un(x) := k−1

∫
In

u(s, x) ds.

We define y0 := u0 and successively let yn, n = 1, . . . , N , be the solutions of

dty
n(x) − div

(
S(∇yn(x))

)
= f

n
(x) in Ω,

yn = 0 on ∂Ω,
(4.1)

where dty
n := 1

k (yn − yn−1). Since each yn is the solution of a stationary problem,
yn is well defined and unique. Using the test function yn and the properties of S
yields

sup
n

‖yn‖2
2 + k

∑
n

‖yn‖p1,p ≤ C

(
1 + k

∑
n

∥∥∥fn∥∥∥p′

p′
+ ‖u0‖2

2

)
.

1Note that in [14] only f = 0 is treated. However, under the above assumptions the proof
continues to hold without any changes.
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Furthermore, we have the following regularity results.
Lemma 4.1. The solutions yn of (4.1) satisfy

sup
1≤n≤N

‖∇yn‖2
2 + k

N∑
n=1

∥∥∇(F(∇yn)
)∥∥2

2
≤ C(f ,u0).

Proof. We only sketch the idea and refer the reader to [11, 12] for details. Let
us define Dσyn(x) := 1

|σ| (y
n(x + σ) − yn(x)), σ ∈ R

d \ {0}. We multiply (4.1) with

D−σDσyn and find

〈dtDσyn, Dσyn〉 +
〈
Dσ
(
S(∇yn)

)
, Dσ∇yn

〉
= 〈Dσf

n
, Dσyn〉.

In view of (2.4) we obtain

1

2
dt ‖Dσyn‖2

2 + c
∥∥Dσ

(
F(∇yn)

)∥∥2

2
≤
∥∥Dσf

n∥∥
2
‖Dσyn‖2.

Summation over n = 1, . . . ,M implies

∥∥DσyM
∥∥2

2
+ k

M∑
n=1

∥∥Dσ
(
F(∇yn)

)∥∥2

2

≤ c

(
‖Dσu0‖2

2 + k

M∑
n=1

(∥∥Dσf
n∥∥2

2
+
∥∥Dσyn

∥∥2

2

))
.

We take the supremum over M = 1, . . . , N and get

sup
n

‖Dσyn‖2
2 + k

N∑
n=1

∥∥Dσ
(
F(∇yn)

)∥∥2

2

≤ c

(
‖∇u0‖2

2 + ‖∇f‖2
L2(I,L2(Ω)) + k

N∑
n=1

‖Dσyn‖2
2

)
.

The discrete Gronwall lemma yields for k < 1/(2c)

sup
n

‖Dσyn‖2
2 + k

N∑
n=1

∥∥Dσ
(
F(∇yn)

)∥∥2

2
≤ C(f ,u0).

The properties of the difference quotient prove the lemma.
Lemma 4.2. The solutions yn of (4.1) satisfy

k

N∑
n=1

‖yn‖2

W
2, 4

4−p (Ω)
≤ C(f ,u0) if p ≤ 2

and

k

N∑
n=1

‖yn‖p
N 1+ 2

p
,p

(Ω)
≤ C(f ,u0) if p > 2,

where N 1+ 2
p ,p(Ω) denotes a Nikol ′skĭı space (cf. [17]).
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Proof. First, we consider the case that p ≤ 2. Hölder’s inequality yields

k

N∑
n=1

∥∥∇2yn
∥∥2

4
4−p

(4.2)

= k
N∑

n=1

[∫
Ω

(κ + |∇yn|)
4−2p
4−p (κ + |∇yn|)

2p−4
4−p |∇2yn| 4

4−p

] 4−p
2

≤ k

N∑
n=1

[(∫
Ω

(κ + |∇yn|)2
) 2−p

4−p
(∫

Ω

(κ + |∇yn|)p−2 |∇2yn|2
) 2

4−p

] 4−p
2

≤ sup
n

‖κ + |∇yn|‖2−p
2

[
k

N∑
n=1

∫
Ω

(κ + |∇yn|)p−2 |∇2yn|2
]
.

Note that in the case κ = 0 one carries out the above calculation with some κ̃ > 0
and bounds in the last line the term (κ̃+ |∇yn|)p−2 |∇2yn|2 by |∇yn|p−2 |∇2yn|2. A

straightforward calculation shows that (κ+ |∇yn|)p−2 |∇2yn|2 ∼=
∣∣∇(F(∇yn)

)∣∣2, with
constants depending only on p. Thus it follows from Lemma 4.1 that the right-hand
side of (4.2) is finite.

Now let us treat the case that p > 2. The proof of Lemma 4.1 entails

k

N∑
n=1

〈Dσ(S(∇yn)), Dσ∇yn〉 ∼= k

N∑
n=1

∥∥Dσ
(
F(∇yn)

)∥∥2

2
≤ C(f ,u0).

Noting that(
S(A) − S(B)

)
·
(
A − B

) ∼= |A − B|2
(
κ + |A| + |A − B|

)p−2

≥ |A − B|p,
it follows that

k
N∑

n=1

∫
Ω

σ−2 |∇yn(x + σ) −∇yn(x)|p dx ≤ C(f ,u0).

Thus, difference quotients of order 2
p of ∇yn are bounded in Lp(Ω). This yields the

assertion.
Remark 4.3. Note that one can improve for p ≤ 2 the regularity stated above by

using methods from [8], [7, Prop. 3.7], [22, Prop. 3.23]. Essentially one uses d2
ty

n

and −Δyn (treating the term with dty
n as a right-hand side) as test functions to

derive better regularity properties for yn. This implies, with the help of a parabolic
embedding theorem, that yn ∈ l∞(Ik,W

1,r(Ω)) with r = r(p, d) > 2. Thus (4.2)
can be improved. The improved Lemma 4.2 would lead to an improvement of the
mesh ratio condition (5.1). Due to the complicated dependence on p and d we do not
proceed this way here, since it does not lead to optimal results.

We will now estimate the error between u and yn.
Lemma 4.4. There is a constant c independent of k such that

sup
1≤n≤N

‖un − yn‖2
2 +

N∑
n=1

∫
In

∥∥F(∇u(t)) − F(∇yn)
∥∥2

2
dt

≤ c

N∑
n=1

∫
In

∥∥F(∇u(t)) − F(∇un)
∥∥2

2
dt.



464 L. DIENING, C. EBMEYER, AND M. RŮŽIČKA

Proof. Averaging (1.1) over In we find

dtu
n − div(S(∇u)

n
) = f

n
.(4.3)

Let en := un − yn. Taking the difference between (4.3) and (4.1) and multiplying by
en we get 〈

dte
n, en

〉
+
〈
S(∇u)

n − S(∇yn),∇en
〉

= 0.

Let 1 ≤ M ≤ N . Multiplying by k and summing over n from 1 to M we obtain

1

2
〈eM , eM 〉 +

k2

2

M∑
n=1

‖dten‖2
2 +

M∑
n=1

∫
In

〈
S(∇u(t)) − S(∇yn),∇en

〉
dt = 0.

Hence,

1

2
〈eM , eM 〉 +

M∑
n=1

∫
In

〈
S(∇u(t)) − S(∇yn),∇u(t) −∇yn

〉
dt

≤
M∑
n=1

∫
In

〈
S(∇u(t)) − S(∇yn),∇u(t) −∇un

〉
dt.

Inequality (2.5) yields〈
S(∇u(t)) − S(∇yn),∇u(t) −∇un

〉
≤ δ
∥∥F(∇u(t)) − F(∇yn)

∥∥2

2
+ cδ

∥∥F(∇u(t)) − F(∇un)
∥∥2

2
.

We absorb the first term of the right-hand side and utilize (2.4) to prove the
lemma.

Corollary 4.5. There is a constant c independent of k such that

sup
1≤n≤N

‖un − yn‖2
2 + k

N∑
n=1

∥∥F(∇un) − F(∇yn)
∥∥2

2

≤ c

N∑
n=1

∫
In

‖F(∇u(t)) − F(∇un)‖2
2 dt.

(4.4)

Proof. The left-hand side of (4.4) is bounded by

sup
1≤n≤N

‖un − yn‖2
2 + 2

N∑
n=1

∫
In

‖F(∇un) − F(∇u(t))‖2
2 + ‖F(∇u(t)) − F(∇yn)‖2

2 dt .

The statement now follows from Lemma 4.4.

Lemma 4.6. There holds

N∑
n=1

∫
In

∥∥(F(∇u(t)) − F(∇un)
∥∥2

2
dt ≤ c k2

∥∥∂t(F(∇u)
)∥∥2

L2(I,L2(Ω))
.
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Proof. We estimate

∫
In

∫
Ω

|F(∇un) − F(∇u)|2 dx dt =

∫
In

∫
Ω

∣∣∣∣∫ tn

t

∂τ

(
F
(
∇u(τ)

))
dτ

∣∣∣∣2 dx dt

≤ k

∫
In

∫
Ω

∫ tn

t

∣∣∣∂τ(F(∇u(τ)
))∣∣∣2 dτ dx dt

≤ k2

∫
In

∫
Ω

|∂t
(
F(∇u)

)
|2 dx dt.

Summing over n, this yields the assertion.

From Lemmas 3.1, 4.4, and 4.6 and Corollary 4.5 we now deduce the following
theorem.

Theorem 4.7. There is a constant c independent of k such that

sup
1≤n≤N

‖un − yn‖2
2 + k

N∑
n=1

∥∥F(∇un) − F(∇yn)
∥∥2

2

+

N∑
n=1

∫
In

‖F(∇u(t)) − F(∇yn)‖2
2 dt ≤ c k2.

5. Finite element discretization. Let Th be a decomposition of Ω into closed
d-simplices, where h denotes the mesh size. We suppose that Th is a regular triangu-
lation in the sense of [5, section 3.2]. Moreover, let

hα(p,d) ≤ c k ,(5.1)

where α(p, d) = 2− d(1− p
2 ) if p ∈ (1, 2] and α(p, d) = 2 + (d− 2)(1− 2

p ) = d+ 2(2−d)
p

if p ∈ [2,∞). We define the space of continuous piecewise linear finite elements,

Vh :=
{
χ ∈ C0(Ω; Rd) : χ|K is linear for all K ∈ Th and χ|∂Ω = 0

}
.

Further, let Phu ∈ Vh be some appropriate interpolant of u.2

For U0 := Phu0 let the functions Un ∈ Vh, n = 1, . . . , N , be the solutions of the
algebraic equations〈

dtU
n,χn

〉
+
〈
S(∇Un),∇χn

〉
=
〈
f
n
,χn
〉

∀χn ∈ Vh.(5.2)

The solvability of (5.2) follows easily from Brouwer’s fixed point theorem and the
properties of S. We define U : I × Ω → R

d by

U(t, x) :=

{
U0(x) for t = 0,

Un(x) for tn−1 < t ≤ tn.

The aim of the this section is to prove the following theorem.

2In the case p > d
2

one can take the Lagrange interpolation operator (cf. [10])and for smaller

values of p the interpolation operator from [23] (cf. [9]).
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Theorem 5.1. Under the assumptions (3.1) and (5.1) there is for any p > 2d
d+2

a constant c independent of h and k such that

sup
1≤n≤N

‖un − Un‖2
2 + k

N∑
n=1

∥∥F(∇un) − F(∇Un)
∥∥2

2

+

N∑
n=1

∫
In

‖F(∇u(t)) − F(∇Un)‖2
2 dt ≤ c

(
h2 + k2

)
.

In terms of quasi norms this reads

‖u − U‖2
L∞(0,T ;L2(Ω)) +

∫ T

0

‖∇u −∇U‖2
(∇u(t)) dt ≤ c

(
h2 + k2

)
.

Corollary 5.2. Under the assumptions (3.1) and (5.1) there exists for any
p ∈ ( 2d

d+2 , 2] a constant c independent of h and k such that

‖∇u −∇U‖Lp(I;Lp(Ω)) ≤ c (h + k).

We proceed in several steps. First we estimate yn − Un.
Lemma 5.3. There is a constant c independent of h and k such that

sup
1≤n≤N

‖yn − Un‖2
2 + k

N∑
n=1

‖F(∇yn) − F(∇Un)‖2
2

≤c

[
N∑

n=0

‖yn − Phy
n‖2

2 + k

N∑
n=1

‖F(∇yn) − F(∇Phy
n)‖2

2

]
.

Proof. Let En = yn − Un. Taking the difference between (4.1) and (5.2) and
multiplying by PhE

n we get〈
dtE

n, PhE
n
〉

+
〈
S(∇yn) − S(∇Un),∇PhE

n
〉

= 0.

Notice that 〈dtEn,En〉 = 〈dtEn, PhE
n〉 + 〈dtEn,yn − Phy

n〉 and

k

M∑
n=1

〈
dtE

n,En
〉

=
1

2

∥∥EM
∥∥2

2
− 1

2

∥∥E0
∥∥2

2
+

k2

2

M∑
n=1

∥∥dtEn
∥∥2

2
.

Thus, we find

1

2

∥∥EM
∥∥2

2
+

k2

2

M∑
n=1

‖dtEn‖2
2 + k

M∑
n=1

〈
S(∇yn) − S(∇Un),∇yn −∇Un

〉
≤ k

M∑
n=1

〈
S(∇yn) − S(∇Un),∇yn −∇Phy

n
〉

+
1

2

∥∥y0 − Phy
0
∥∥2

2

+ k

M∑
n=1

〈
dtE

n,yn − Phy
n
〉
.

Inequality (2.5) yields〈
S(∇yn) − S(∇Un),∇yn −∇Phy

n
〉

≤ δ ‖F(∇yn) − F(∇Un)‖2
2 + cδ ‖F(∇yn) − F(∇Phy

n)‖2
2 .
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Furthermore,

k

M∑
n=1

〈
dtE

n,yn − Phy
n
〉
≤ δk2

M∑
n=1

‖dtEn‖2
2 + cδ

M∑
n=1

‖yn − Phy
n‖2

2 .

We absorb the terms with δ into the left-hand side and use (2.4). Taking the supremum
over M = 1, . . . , N , the assertion follows.

Theorem 5.4. Under the assumptions (3.1) and (5.1) there is for any p > 2d
d+2

a constant c independent of h and k such that

sup
1≤n≤N

‖yn − Un‖2
2 + k

N∑
n=1

‖F(∇yn) − F(∇Un)‖2
2 ≤ c h2.

Proof. Below we will show that under the assumption (5.1) there holds

N∑
n=0

‖yn − Phy
n‖2

2 ≤ c h2.(5.3)

Further, it holds that

‖F(∇yn) − F(∇Phy
n)‖2

2 ≤ c ‖∇yn −∇Phy
n‖2

(∇yn) ≤ c h2 ‖∇F(∇yn)‖2
2 .(5.4)

The proof of this inequality can be found in [10] for the cases d = 2, 3 and p > d
2 .

The method there, however, works for any d ≥ 2. The case p > 1 will be treated in
[9]. Due to Lemma 4.1 we obtain

k
∑
n

‖F(∇yn) − F(∇Phy
n)‖2

2 ≤ c h2.(5.5)

In view of (5.3), (5.5), and Lemma 5.3 the assertion follows.
Next we prove (5.3). Let us note that y0 ∈ W 1,2(Ω) and thus∥∥y0 − Phy

0
∥∥2

2
≤ c h2.

Now let us distinguish two cases.
Case 1. p ≤ 2. It is well known that (cf. [5, Theorem 3.1.5])

‖yn − Phy
n‖2

2 ≤ c h2β
∥∥∇2yn

∥∥2
4

4−p ,

where β = 2 + d
(

1
2 − 4−p

4 ). Notice that due to (5.1) we have h2−d(1− p
2 ) ≤ c k. Thus,

h2β = h2 h2−d(1− p
2 ) ≤ c h2 k. We get

N∑
n=1

‖yn − Phy
n‖2

2 ≤ c h2 k

N∑
n=1

∥∥∇2yn
∥∥2

4
4−p

.

In view of Lemma 4.2, estimate (5.3) follows.
Case 2. p > 2. Since the proof of Theorem 3.1.5 in [5] is based on the chain

rule and the formula of change of variables, the result can be easily generalized to
Nikol′skĭı spaces. Thus we have

‖yn − Phy
n‖2

2 ≤ c h2β ‖yn‖2

N 1+ 2
p
,p

(Ω)
,
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where β = (1 + 2
p ) + d

(
1
2 − 1

p

)
. Recalling (5.1), that is, hd+ 2(2−d)

p ≤ c k, we have

h2β = h2 hd+ 2(2−d)
p ≤ c h2 k. Hence,

N∑
n=1

‖yn − Phy
n‖2

2 ≤ c h2 k

N∑
n=1

‖yn‖2

N 1+ 2
p
,p

(Ω)
.

Using Lemma 4.2 we obtain estimate (5.3).
We now get to the proof of our main result.
Proof of Theorem 5.1. For t ∈ In there holds

‖F(∇u) − F(∇Un)‖2
2 ≤ c

(
‖F(∇u) − F(∇yn)‖2

2 + ‖F(∇yn) − F(∇Un)‖2
2

)
.

Moreover, we have

sup
t∈In

‖u − Un‖2
2 ≤ c

(
sup
t∈In

‖u − un‖2
2 + ‖un − yn‖2

2 + ‖yn − Un‖2
2

)
and

sup
t∈In

‖u − un‖2
L2(Ω) ≤ c k2 ‖∂tu‖2

L∞(In,L2(Ω)) .

From Theorems 4.7 and 5.4 and the calculations above we conclude the assertion.
Proof of Corollary 5.2. Let ω := κ+ |∇u|+ |∇(u−U)|. Hölder’s inequality (with

q1 = 2
p and q2 = 2

2−p ) entails∫ T

0

∫
Ω

|∇(u − U)|p dx dt =

∫ T

0

∫
Ω

ω
(2−p)p

2 ω
(p−2)p

2 |∇(u − U)|p dx dt

≤
∫ T

0

[∫
Ω

ωp dx

] 2−p
2
[∫

Ω

ωp−2 |∇(u − U)|2 dx
] p

2

dt

≤ c

∫ T

0

‖∇(u − U)‖2
(∇u) dt .

Here we have used the fact that ‖ω‖2−p
L∞(0,T ;Lp(Ω) ≤ c. In the case of κ = 0 we proceed

as in the proof of Lemma 4.2. Utilizing Theorem 5.1 we obtain

‖∇(u − U)‖2
Lp(0,T ;Lp(Ω) ≤ c

∫ T

0

‖∇(u − U)‖2
(∇u) dt ≤ c (h2 + k2).

This yields the assertion.

6. Appendix. We will prove Lemma 2.1 in several steps.
Lemma 6.1. Let α > −1 and A,B ∈ R

d×d with |A| + |B| > 0; then

c0(α)
(
|A| + |B|

)α ≤
∫ 1

0

|θA + (1 − θ)B|α dθ ≤ c1(α)
(
|A| + |B|

)α
(6.1)

with

c0(α) := min
{ 1

α + 1
,

2−α

α + 1
, 2−α

}
, c1(α) := max

{ 1

α + 1
,

2−α

α + 1
, 2−α

}
.
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The constants c0 and c1 are optimal.
Proof. Let f(A,B) denote the middle expression of (6.1). We have∣∣(1 − θ)|A| − θ|B|

∣∣ ≤ |(1 − θ)A + θB| ≤ (1 − θ)|A| + θ|B|,(6.2)

and for all α > −1, |A| + |B| > 0 it holds that∫ 1

0

∣∣(1 − θ)|A| − θ|B|
∣∣α dθ =

|A|α+1
+ |B|α+1

(α + 1)(|A| + |B|) ,∫ 1

0

∣∣(1 − θ)|A| + θ|B|
∣∣α dθ =

|A|α+1 − |B|α+1

(α + 1)(|A| − |B|) ,
(6.3)

where the last expression can be continuously extended for |A| = |B| by |A|α. Define
g, h : R

≥0 × R
≥0 → R by

g1(s, t) :=
sα+1 + tα+1

(α + 1)(s + t)α+1
, g2(s, t) :=

sα+1 − tα+1

(α + 1)(s− t)(s + t)α
,

with g2 continuously extended on {s = t} by g2(s, s) = 2−α. Then (6.2) and (6.3)
imply

min
{
g1(|A|, |B|), g2(|A|, |B|)

}
≤ f(A,B) ≤ max

{
g1(|A|, |B|), g2(|A|, |B|)

}
.(6.4)

Since the gj are scaling invariant under (s, t) �→ λ(s, t) it suffices to estimate gj on
the set N := {s + t = 1, s ≥ 0, t ≥ 0}. On this set N the functions gj simplify to

h1(s, t) :=
sα+1 + tα+1

α + 1
, h2(s, t) :=

sα+1 − tα+1

(α + 1)(s− t)
;

i.e., hj(s, t) = gj(s, t) for (s, t) ∈ N . We will see that the hj |N assumes its extrema
at (1, 0), (0, 1), ( 1

2 ,
1
2 ). At these points

h1(0, 1) = h1(1, 0) = 1/(α + 1) , h2(0, 1) = h2(1, 0) = 1/(α + 1) ,

h1

(
1
2 ,

1
2

)
= 2−α/(α + 1) , h2

(
1
2 ,

1
2

)
= 2−α .

Let (s0, t0) ∈ N \ {(1, 0), (0, 1), (1/2, 1/2)} be another extremum of hj |N . Then by
the method of Langrange multipliers (∇hj)(s0, t0) = λ0 (1, 1) for some λ0 ∈ R. For
(s, t) ∈ N \ {(1, 0), (0, 1), (1/2, 1/2)} it holds that

(∇h1)(s, t) = (sα, tα),

(∇h2)(s, t) =

(
αsα+1 + (α + 1)sαt− tα+1

(α + 1)(s− t)2
,
αtα+1 + (α + 1)tαs− sα+1

(α + 1)(s− t)2

)
.

If (∇h1)(s0, t0) = λ0 (1, 1), then s0 = t0. If (∇h2)(s0, t0) = λ0 (1, 1), then αsα+1
0 +

(α+ 1)sα0 t0 − tα+1
0 = αtα+1

0 + (α+ 1)tα0 s0 − sα+1
0 , which also implies s0 = t0. In both

cases s0 = t0, which contradicts the choice of (s0, t0). Therefore, (1, 0), (0, 1), (1/2, 1/2)
are the only extrema of hj on N . Thus the extreme values of g1 are 1/(α + 1) and
2−α/(α + 1), and the extreme values of g2 are 1/(α + 1) and 2−α. This and (6.4)
prove (6.1). The optimality of the constants in (6.2) follows from

f(A,A) = g2(|A|, |A|) = 2−α ,

f(A, 0) = g2(|A|, 0) = 1/(α + 1) ,

f(A,−A) = g1(|A|, |A|) = 2−α/(α + 1) .



470 L. DIENING, C. EBMEYER, AND M. RŮŽIČKA

The assertion follows.
Lemma 6.2. For all A,B ∈ R

d×d with |A| + |B| > 0, all α > −1, and κ ≥ 0,
there holds ∫ 1

0

(
κ + |θA + (1 − θ)B|

)α
dθ ∼=

(
κ + |B| + |A|

)α
,(6.5)

with constants depending on p only.
Proof. Let Aθ := θA+(1− θ)B. Using the convexity of t �→ (κ+ t)α+2 and (6.1)

we deduce ∫ 1

0

(κ + |Aθ|)α dθ ≥
∫ 1

0

(κ + |Aθ|)α+2

(κ + |A| + |B|)2 dθ

≥
(κ +

∫ 1

0
|Aθ| dθ)α+2

(κ + |A| + |B|)2

≥
(κ + 1

4 (|A| + |B|))α+2

(κ + |A| + |B|)2

≥ 4−(α+2)(κ + |A| + |B|)α.

Since α > −1, there exists r > 1 with rα > −1, and the mapping t �→ (κ + t)rαt is
nondecreasing on [0,∞). We estimate with (6.1)∫ 1

0

(κ + |Aθ|)α dθ =

∫ 1

0

(
(κ + |Aθ|)rα|Aθ|

) 1
r |Aθ|−

1
r dθ

≤
∫ 1

0

(
(κ + |A| + |B|)rα(|A| + |B|)

) 1
r |Aθ|−

1
r dθ

≤ 21/r

1 − 1
r

(κ + |A| + |B|)α.

This proves the lemma.
Lemma 6.3. Let S satisfy (2.1), (2.2). Then for all A,B ∈ R

d×d it holds that

S(A) · A ∼= |A|2
(
κ + |A|

)p−2
,(6.6) (

S(A) − S(B)
)
·
(
A − B

) ∼= ∣∣A − B
∣∣2(κ + |B| + |A|

)p−2
,(6.7) ∣∣S(A) − S(B)

∣∣ ∼= ∣∣A − B
∣∣(κ + |B| + |A|

)p−2
(6.8)

with constants depending on p but not on κ.
Proof. Note that statement (6.6) is a special case of (6.7) by setting B = 0. In

the case B = A = 0, nothing has to be proved. In the case |A|+ |B| > 0, Lemma 6.2
and the assumptions (2.1), (2.2) imply that(

S(A) − S(B)
)
· (A − B)

=

d∑
i,j,k,l=1

∫ 1

0

∂Sij(θA + (1 − θ)B)

∂Dkl
(A−B)ij(A−B)kl dθ

∼= |A − B|2
∫ 1

0

(
κ + |θA + (1 − θ)B|

)p−2
dθ

∼= |A − B|2
(
κ + |B| + |A|

)p−2
.
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In the same manner we get

∣∣S(A) − S(B)
∣∣ =
⎛⎝ d∑

i,j=1

∣∣∣∣ d∑
k,l=1

∫ 1

0

∂Sij(θA + (1 − θ)B)

∂Dkl
dθ (A−B)kl

∣∣∣∣
2
⎞⎠

1
2

≤ c |A − B|
(
κ + |B| + |A|

)p−2
.

This yields the upper estimate of (6.8). The lower estimate follows from (6.7).
Lemma 6.4. For all A,B ∈ R

d×d there holds∣∣F(A) − F(B)
∣∣ ∼= (κ + |B| + |A|

) p−2
2 |A − B|

with constants depending on p but not on κ.
Proof. For q := p+2

2 we have

F(B) = (κ + |B|)
p−2
2 B = (κ + |B|)q−2B .

Thus F satisfies (2.1), (2.2) with p replaced by q. Now (6.8) reads as follows:∣∣F(A) − F(B)
∣∣ ∼= ∣∣A − B

∣∣(κ + |B| + |A|
)q−2

.

This proves the lemma.
Now, Lemmas 6.3 and 6.4 immediately imply Lemma 2.1.
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[7] L. Diening, A. Prohl, and M. Růžička, On time-discretizations for generalized Newtonian

fluids, in Nonlinear Problems in Mathematical Physics and Related Topics, II. Int. Math.
Ser. (N.Y.) 2, Kluwer Academic Publishers, New York, 2002, pp. 89–118.
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SAMPLING EIGENVALUES IN HARDY SPACES∗
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Abstract. In this work we extend the sampling method to compute eigenvalues of singular
non–self-adjoint Sturm–Liouville problems in the presence of a continuous spectrum. We first show
that the characteristic function, whose zeros are the eigenvalues, belongs to a Hardy space, and then
develop a new sampling formula for its reconstruction. We estimate the truncation error, obtain
computable error bounds, and test the method with a few numerical experiments.
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1. Introduction. In this work, we would like to develop a new sampling tech-
nique to compute eigenvalues in the presence of a continuous spectrum. Consider the
following singular Sturm–Liouville problem, which is a widely used model in scattering
theory: {

Ly(x) := −y′′(x, λ) + q(x)y(x, λ) = λ2y(x, λ), x ∈ [0,∞),
y(0, λ) = 0,

(1.1)

where q is complex valued and satisfies
∫∞
0

(1 + x) |q(x)| dx < ∞.
Observe that the differential operator L, which is acting in the Hilbert space

L2
dx (0, ∞), is regular at x = 0 but singular at x = ∞. It also follows from the

asymptotics of the solutions [12, p. 221] that L is in the limit point case at x = ∞,
and so no boundary condition is required at x = ∞. If q is real valued, then L is
self-adjoint, the positive part of its spectrum is continuous, and there are at most a
finite number of negative isolated eigenvalues which are known as the bound states
in scattering theory. The case �(q(x)) �= 0 leads to complex eigenvalues, and our
work is concerned with their computational aspects. Recall that classical eigenvalue
solvers [2, 3] cannot handle the singular non–self-adjoint case due to the presence of
a continuous spectrum. For example, when L−λI has a compact inverse and thus no
continuous spectrum is present, finite element or Galerkin-type methods can be used.
In the case when the inverse operator is bounded but not compact, then a spectral
approximation for bounded operators is possible, as shown in [11]. Also, for closed
not necessarily bounded operators in Banach spaces, spectral projectors and analytic
properties of the resolvent operator are used to locate the spectrum; see [5, 6, 7].
These methods, which usually either are direct or use the inverse operator, detect the
spectrum by contour integration. The next type of numerical methods is shooting-
type methods, which integrate numerically the solution of (1.1) and then find the
values λ for which the boundary condition y(0, λ) = 0 is satisfied. For instance, if
y(0, λ) and all the eigenvalues are real, then a zero crossing argument may help detect
simple roots. However, when numerical integration is over an infinite interval and
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ber 12, 2006; published electronically February 26, 2007.
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there are no boundary conditions at infinity or the roots are off the real line, then
the shooting method is extremely hard to implement, if not impossible. To overcome
these difficulties, the sampling method reconstructs the function y(0, λ) for λ ∈ C and
then finds its roots. For example, in the regular non–self-adjoint case, it interpolates
the characteristic function by a rational function and then computes its zeros in the
complex plane [1]. A crucial step is the fact that the characteristic function is an
entire function and belongs to a Paley–Wiener space, which allows its recovery by the
Shannon theorem; see [15]. Unfortunately in (1.1) the presence of a continuous or
essential spectrum signals that the characteristic function y(0, λ) cannot be an entire
function of λ. The main difficulty in any reconstruction problem is uniqueness, which
is settled by finding the right space. For example, in a Paley–Wiener space of type
π, one must use all values {F (n)}n∈Z

in order to recover the function F uniquely.
The key to determining the analytic properties of y(0, λ) is provided by the Gelfand–
Levitan–Marchenko integral representation of the solution [4, p. 77] for x ≥ 0,

y(x, λ) = eiλx +

∫ ∞

x

K(x, t)eiλtdt, �(λ) ≥ 0.(1.2)

We now give a brief outline of the paper. In the second section, we show that if
y(x, λ) ∈ L2

dx(0,∞), then y(0, λ), up to a constant, must be a Hardy function. In the
third section, we show how to reconstruct or interpolate a function in a Hardy space
from a sequence of its values, and in the fourth section, we outline the main steps in
the algorithm and convergence results. This leads to the approximation of y(0, λ) by
rational functions, whose zeros yield the sought eigenvalue approximation of problem
(1.1). In the fifth section, we estimate the truncation error and show that it leads
to computable error bounds. The last section covers a few examples which illustrate
how the method is implemented numerically.

2. The Hardy space. Denote the Hardy space of complex valued functions
defined in the right half-plane by

H2
(
R

2
+

)
=

{
F (s) : F (σ + iτ) is analytic for σ > 0 and

sup
σ>0

∫ ∞

−∞
|F (σ + iτ)|2dτ < ∞

}
.

It is also well known that F is a Hardy function if and only if it is the Laplace
transform of a function f(t) ∈ L2

dt(0,∞):

F ∈ H2
(
R

2
+

)
⇐⇒ F (s) = L(f)(s) :=

∫ ∞

0

f(t) e−st dt, 	(s) > 0.(2.1)

In all that follows, y(x, λ) is a solution of (1.1) represented by (1.2). Since K is a
continuous function, then we have from (1.2)

y(0, λ) = 1 +

∫ ∞

0

K(0, t)eiλtdt,(2.2)

and thus y(0, λ)− 1 is a Fourier transform. To say more on the analytic properties of
y(0, λ) we need the following result.

Proposition 1. Assume that
∫∞
0

(1+x)|q(x)|dx < ∞; then K(0, t) ∈ L1
dt(0,∞)∩

L2
dt(0,∞).
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Proof. The proof follows from the estimate [9, p. 16]

|K(x, t)| ≤ 1

2

∫ ∞

x+t
2

|q(η)|dη e
∫∞
x

η|q(η)|dη(2.3)

and the fact that as t → ∞,∫ ∞

t
2

|q(η)|dη =

∫ ∞

t
2

(1 + η)

(1 + η)
|q(η)|dη

≤ sup
t
2≤η

(
1

1 + η

)∫ ∞

t
2

(1 + η)|q(η)|dη

≤ 2

2 + t

∫ ∞

t
2

(1 + η)|q(η)|dη.

In other words, K(0, t) = O( 1
2+t ), and thus K(0, t) ∈ L2

dt(0,∞). The Hardy inequality∫ ∞

0

∣∣∣∣1t
∫ ∞

t

f(x) dx

∣∣∣∣ dt ≤ ∫ ∞

0

|f(x)| dx

also guarantees that K(0, t) ∈ L1
dt(0,∞).

Proposition 2. If
∫∞
0

(1 + x) |q(x)| dx < ∞, then y(0, is) − 1 ∈ H2(R2
+).

Proof. From (2.2), if we replaced λ by is, then

y(0, is) − 1 =

∫ ∞

0

K(0, t)e−stdt

= L (K(0, t)) (s),(2.4)

while by Proposition 1, K(0, .) ∈ L2
dt(0,∞). Thus its Laplace transform y(0, is) − 1

belongs to the Hardy space H2
(
R

2
+

)
; see [8].

In order to find the eigenvalues of (1.1) by sampling, we first need to reconstruct
y(0, is) by interpolation and then solve y(0, is) = 0 for 	(s) > 0. As far as the
authors are aware, there is no sampling formula in Hardy spaces; see [13]. Therefore
we develop a new sampling formula for functions in Hardy spaces in the next section.

3. Sampling in Hardy spaces. Recall the shifted factorial

(a)k = a (a + 1) . . . (a + k − 1) =
Γ (a + k)

Γ (a)
.(3.1)

Theorem 1. Let F ∈ H2
(
R

2
+

)
. Then

F (s) =

∞∑
k=0

(2k + 1)
(

1
2 − s

)
k

(s + 1
2 )k+1

k∑
n=0

(−k)n (k + 1)n
(n!)2

F

(
n +

1

2

)
,(3.2)

where the series converges uniformly on any compact subset of the right half-plane.
Proof. First, if we set e−t = x, then (2.1) becomes

F (s) =

∫ ∞

0

e−stf(t)dt

=

∫ 1

0

g(x)xs−1/2dx, 	(s) > 0,(3.3)
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where g(x) := f(− lnx)x−1/2. It is very easy to see that F ∈ H2(R2
+), i.e., f(t) ∈

L2
dt(0,∞) if and only if g(x) ∈ L2

dx(0, 1).
Next we need to expand xs−1/2 in terms of xn−1/2 to bring out the sampled

values F (n). Since {xn}∞n=0 is not an orthogonal family in L2
dx(0, 1), we use the set

P ∗
n(x) =

√
2n + 1Pn(1−2x), the normalized Legendre orthogonal polynomials on the

interval [0, 1]. From their connection with the hypergeometric function

Pk(1 − 2x) = F (−k, k + 1; 1, x)

we obtain

P ∗
k (x) =

√
2k + 1

k∑
n=0

(−k)n (k + 1)n
(n!)2

xn =

k∑
n=0

aknx
n,

where

akn :=
√

2k + 1
(−k)n (k + 1)n

(n!)2
.

We start with the expansion formula of the power function in a series of Legendre
polynomials [14],

(a− 1)

(
1 − x

2

)a−2

=

∞∑
k=0

(2k + 1)
(2 − a)k

(a)k
Pk(x),

where −1 < x < 1 and a > 3/2. Replacing 1−x
2 and a− 5/2 by x and s, respectively,

leads to

xs−1/2 =

∞∑
k=0

(2k + 1)
(

1
2 − s

)
k(

s + 1
2

)
k+1

Pk(1 − 2x), 0 < x < 1.(3.4)

So

xs−1/2 =

∞∑
k=0

ck(s)P
∗
k (x) =

∞∑
k=0

ck(s)

k∑
n=0

aknx
n,

where

ck(s) =

√
2k + 1

(
1
2 − s

)
k(

s + 1
2

)
k+1

.(3.5)

Since

ck(s) =

∫ 1

0

xs−1/2P ∗
k (x)dx

is the Fourier coefficient of xs−1/2 ∈ L2
dx(0, 1), 	(s) > 0, and P ∗

k (x) ∈ L2
dx(0, 1), we

must have ck(s) ∈ H2(R2
+). Now let g be any function from L2

dx(0, 1); then∫ 1

0

g(x)xs−1/2dx =

∫ 1

0

g(x)

∞∑
k=0

ck(s)P
∗
k (x) dx.(3.6)
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We can interchange the order of integration and infinite summation in the last ex-
pression to get

F (s) =

∞∑
k=0

ck(s)

∫ 1

0

g(x)P ∗
k (x) dx(3.7)

=

∞∑
k=0

ck(s)

∫ 1

0

g(x)

k∑
n=0

aknx
n dx

=

∞∑
k=0

ck(s)

k∑
n=0

akn

∫ 1

0

g(x)xn dx

=

∞∑
k=0

ck(s)

k∑
n=0

aknF

(
n +

1

2

)
.

Thus we can interpolate a function F ∈ H2
(
R

2
+

)
from a sequence of its values

{F (n + 1/2)}n≥0.
To see that the series converges uniformly in any compact of 	(s) > 0, let s ∈ Ω,

where Ω is compact, and use (3.7) to write∣∣∣∣∣F (s) −
N∑

k=0

ck(s)

∫ 1

0

g(x)P ∗
k (x) dx

∣∣∣∣∣ =
∣∣∣∣∣
∫ 1

0

g(x)

∞∑
k=N+1

ck(s)P
∗
k (x) dx

∣∣∣∣∣
≤ ‖g‖2

∥∥∥∥∥
∞∑

k=N+1

ck(s)P
∗
k (x)

∥∥∥∥∥
2

= ‖g‖2

√√√√ ∞∑
k=N+1

|ck(s)|2,(3.8)

since P ∗
k (x) form an orthonormal system in L2

dx(0, 1). All that we need to show
uniform convergence is

sup
s∈Ω

∞∑
k=N+1

|ck(s)|2 → 0 as N → ∞.(3.9)

To estimate the remainder we first express the ck through the gamma function

ck(s) =

√
2k + 1

(
1
2 − s

)
k(

s + 1
2

)
k+1

=
√

2k + 1
Γ
(

1
2 − s + k

)
Γ
(
s + 1

2 + k + 1
) Γ
(
s + 1

2

)
Γ
(

1
2 − s

)(3.10)

and use its asymptotics

Γ (k + a)

Γ (k + b)
≈ ka−b as k → ∞.

We next use the fact that we have

sup
s∈Ω

∣∣∣∣∣Γ
(
s + 1

2

)
Γ
(

1
2 − s

) ∣∣∣∣∣ < ∞
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to deduce from (3.10) that

|ck(s)| = O
(
k

1
2 k

1
2−	(s)−	(s)− 3

2

)
,

|ck(s)|2 = O
(
k−1−4	(s)

)
(3.11)

uniformly in Ω, which implies (3.9), and the proof is complete.
Combining Proposition 2 and Theorem 1, we can write

y(0, is) = 1 +

∞∑
k=0

ck(s)

k∑
n=0

akn

[
y

(
0, in +

i

2

)
− 1

]
.(3.12)

4. Algorithm. We now describe the algorithm that would allow us to use (3.12).
Recall that for −λ2 ∈ C to be an eigenvalue, we need

y(x, iλ) ∈ L2
dx(0,∞) and y(0, iλ) = 0.

Use (1.2) and (2.3) to see that for each fixed λ, with �(λ) > 0, there are two possible
solutions whose asymptotic behavior is either eiλx or e−iλx, the so-called Jost solutions

φ±(x, λ) = e±iλx + o (1) as x → ∞,(4.1)

and any solution of (1.1) is their combination. Obviously only φ+(x, iλ) ∈ L2
dx(0,∞),

and so

y(x, iλ) = e−λx +

∫ ∞

x

K(x, t)e−λtdt, 	(λ) > 0.(4.2)

Thus we need to solve the following boundary value problem at x = ∞, namely,{ −y′′(x, iλ) + q(x)y(x, iλ) = −λ2y(x, iλ),

lim
x→∞

y(x, iλ)exλ = 1,
(4.3)

to ensure that the solution is L2
dx(0,∞). From the computational point of view, the

best we can hope for is to replace integration over (0,∞) by (0, L), where L is large
enough. The asymptotic behavior of the solution is used to bound the difference. To
this end, integration by parts in (4.2) and the fact 2K(x, x) =

∫∞
x

q(η)dη [4] reduces
(4.2) to

y(x, iλ) = e−λx +
e−λx

2λ

∫ ∞

x

q(η)dη +

∫ ∞

x

Kt(x, t)
e−λt

λ
dt, 	(λ) > 0.(4.4)

Thus since the solution of (4.3) decays rapidly, we can start integration from x = L <
∞, instead of x = ∞, and from (4.4) we deduce the initial value problem⎧⎪⎪⎨⎪⎪⎩

−y′′L(x, iλ ) + q(x)yL(x, iλ ) = −λ2yL(x, iλ ), x ∈ [0, L],

yL(L, iλ) = e−λL + e−λL

2λ

∫∞
L

q(η)dη,

y′L(L, iλ) = −λe−λL − e−λL

2

∫∞
L

q(η)dη.

(4.5)

Equation (4.5) allows us to compute the values yL(0, iλ ) for λ = 1
2 ,

3
2 ,

5
2 , . . . , n +

1
2 , . . . , which are needed for sampling by formula (3.12).
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It is easy to see that the error function

θ(x, iλ) = y(x, iλ) − yL(x, iλ)

satisfies, by linearity,{
−θ′′(x, iλ) + q(x)θ(x, iλ ) = −λ2θ(x, iλ ), x ∈ [0, L],

θ(L, iλ) = 1
λ

∫∞
L

Kt(L, t)e
−λtdt and θ′(L, iλ) =

∫∞
L

Kx(L, t)e−λtdt
(4.6)

or the equivalent Volterra integral equation, with 0 ≤ x ≤ L,

θ(x, iλ) = ψ(x, iλ) +

∫ x

L

sinhλ(x− t)

λ
q(t)θ(t, iλ)dt,

where

ψ(x, iλ) = θ(L, iλ) cosh (λ(x− L)) + θ′(L, iλ)
1

λ
sinh (λ(x− L)) .(4.7)

Thus from (4.7) it follows that

|ψ(x, iλ)| ≤ Ξ(λ)e	(λ)(L−x),

where 	(λ) > 0 and

Ξ(λ) = |θ(L, iλ)| + 1

|λ| |θ
′(L, iλ)| .

Now define the successive iterations by

θ0(x, iλ) = ψ(x, iλ),

θn(x, iλ) =

∫ x

L

sinhλ(x− t)

λ
q(t)θn−1(t, iλ)dt,

from which it follows that, for 0 ≤ x ≤ L,

|θn(x, iλ)| ≤ 1

n!

(
1

|λ|

∫ L

x

|q(t)| dt
)n

Ξ(λ)e	(λ)(L−x).(4.8)

Indeed, (4.8) is true for n = 0, and if it holds true for n− 1, then

|θn(x, iλ)| =

∣∣∣∣∫ x

L

sinh (λ(x− t))

λ
q(t)θn−1(t, iλ)dt

∣∣∣∣
≤
∫ L

x

e	(λ)(t−x)

∣∣∣∣q(t)λ

∣∣∣∣ |θn−1(t, iλ)| dt

≤ Ξ(λ)

∫ L

x

e	(λ)(t−x)e	(λ)(L−t) 1

(n− 1)!

(
1

|λ|

∫ L

t

|q(η)| dη
)n−1 ∣∣∣∣q(t)λ

∣∣∣∣ dt
≤ 1

n!

(
1

|λ|

∫ L

x

|q(η)| dη
)n

Ξ(λ)e	(λ)(L−x).

Thus for 	(λ) > 0 the series θ(x, iλ) =
∑

n≥0 θn(x, iλ) converges, and we have

|θ(x, iλ)| ≤ e
1

|λ|
∫L
x
|q(η)|dηΞ(λ)e	(λ)(L−x).(4.9)
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We now have the following lemma.

Lemma 1. For any x ≥ 0 and 	(λ) > 0 we have Ξ(λ)e	(λ)(L−x) → 0 as L → ∞.

Proof. Recall that when q satisfies
∫∞
0

(1 + x) |q(x)| dx < ∞, then [10, Lemma
3.1.2, p. 178]

|Kt(x, t)| ≤
1

4

∣∣∣∣q(x + t

2

)∣∣∣∣+ Ce
∫∞
0

ζ|q(ζ)|dζ
∫ ∞

x

|q(ζ)|dζ
∫ ∞

x+t
2

|q(ζ)|dζ,(4.10)

from which it follows that Kt is integrable at ∞. Thus for x < L we have

∣∣∣θ(L, iλ)e	(λ)(L−x)
∣∣∣ ≤ 1

|λ|

∫ ∞

L

|Kt(L, t)| e−	(λ)tdte	(λ)(L−x)

≤ 1

|λ|e
	(λ)x

∫ ∞

L

|Kt(L, t)| dt,

which yields that |θ(L, iλ)e	(λ)(L−x)| → 0 as L → ∞. Since Kx satisfies the same
estimates in (4.10) as Kt, a similar argument leads to θ′(L, iλ) 1

λe
	(λ)(L−x) → 0 as

L → ∞.

Combining the lemma and (4.9), we obtain the convergence result.

Proposition 3. We have, for 	 (λ) > 0, yL(0, iλ) → y(0, iλ) as L → ∞.

Thus we can approximate y(0, iλ) by using the values yL(0, is) for s = 1
2 ,

3
2 ,

5
2 , . . . ,

in the sampling formula (3.12).

5. Truncation error. In this section, we show that it takes only a few values, N
say, to recover a good approximation of y(0, is)− 1. The truncation error has already
been estimated in (3.8), and combining it with (3.11) leads to√√√√ ∞∑

k=N+1

|ck(s)|2 = O

⎛⎝√√√√ ∞∑
k=N+1

k−1−4	(s)

⎞⎠
= O

(
N−2	(s)

)
.

We recall that by (2.4) and (3.3) we can recast (3.8) as∣∣∣∣∣y(0, is) − 1 −
N∑

k=0

(2k + 1)
(

1
2 − s

)
k(

s + 1
2

)
k+1

k∑
n=0

(−k)n (k + 1)n
n!n!

(
y

(
0, i

(
n +

1

2

))
− 1

)∣∣∣∣∣
≤

√∫ 1

0

∣∣∣∣ 1√
x
K (0,− ln(x))

∣∣∣∣2 dx
√√√√ ∞∑

k=N+1

|ck(s)|2

≤

√∫ ∞

0

|K (0, t)|2 dt

√√√√ ∞∑
k=N+1

|ck(s)|2,

which is valid for 	 (s) > 0. Since, by Proposition 1, K(0, t) ∈ L2
dt (0,∞) if

∫∞
0

(1 + x)
· |q(x)| dx < ∞, we have the following proposition.
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Proposition 4. Assume that
∫∞
0

(1 + x) |q(x)| dx < ∞; then the truncation
error for 	 (s) > 0 is given by∣∣∣∣∣y(0, is) − 1 −

N∑
k=0

(2k + 1)
(

1
2 − s

)
k(

s + 1
2

)
k+1

k∑
n=0

(−k)n (k + 1)n
n!n!

(
y

(
0, i

(
n +

1

2

))
− 1

)∣∣∣∣∣
= O

(
1

N−2	(s)

)
.

Thus we can recover the boundary function y(0, is) by using the N + 1 values{
y(0, i

(
n + 1

2

)}N
n=0

or their approximations yL
(
0, i
(
n + 1

2

))
for n = 0, . . . , N . Using

the previous notation, an error on the sampled values

y

(
0, i

(
n +

1

2

))
= yL

(
0, i

(
n +

1

2

))
+ θ

(
0, i

(
n +

1

2

))
leads to an error εN (s) on the recovered function,

y(0, is) = yε(0, is) + εN (s),

where

yε(0, is) = 1 +

N∑
k=0

(2k + 1)
(

1
2 − s

)
k(

s + 1
2

)
k+1

k∑
n=0

(−k)n (k + 1)n
n!n!

(
yL(0, i

(
n +

1

2

)
− 1

)
.

Both truncation errors are included in εN (s), which can be estimated for 	 (s) > 0
by

|εN (s)| ≤
∣∣∣∣∣

N∑
k=0

(2k + 1)
(

1
2 − s

)
k(

s + 1
2

)
k+1

k∑
n=0

(−k)n (k + 1)n
n!n!

θn

∣∣∣∣∣
+

√∫ ∞

0

|K (0, t)|2 dt

√√√√ ∞∑
k=N+1

|ck(s)|2.

Note that
∫∞
0

|K(0, t)|2 dt can be estimated in terms of q only by (2.3) and yields a
computable error bound.

6. Examples. We use simple examples where the exact values are available, so
that a comparison with our numerical results is possible. In Examples 1 and 3 below,
we sample with N = 10 and L = 100, while N = 5 only in Example 2.

Example 1. Consider the singular Sturm–Liouville problem{
−y′′(x, λ) − 16H(3 − x)y(x, λ) = λ2y(x, λ), 0 ≤ x,
y(0, λ) = 0.

Its exact solution is

y(0, iλ) = e−3λλ
sin
(
3
√

16 − λ2
)

√
16 − λ2

+ e−3λ cos
(
3
√

16 − λ2
)
.

The eigenvalues λ2 obtained by sampling compare well with the “exact” ones:

Exact Sampling
λ1 −1.7341473181761 −1.74403065715701
λ2 −7.7381824457812 −7.73145171424856
λ3 −12.287216856980 −12.2871029333224
λ4 −15.067032974543 −15.0694822812548
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Example 2. Consider the singular Sturm–Liouville problem{
−y′′(x, λ) − xH(4 − x)y(x, λ) = λ2y(x, λ), 0 ≤ x,
y(0, λ) = 0,

whose boundary y(0, λ) is in terms of the Airy functions

y(0, λ)

=
exp(−4λ)

(
AiryBi(−4 + λ2)λ−AiryBi(1,−4 + λ2)

)
AiryAi(λ2)

(AiryBi(−4 + λ2)AiryAi(1,−4 + λ2) −AiryBi(1,−4 + λ2)AiryAi(−4 + λ2))

− exp(−4λ)(λAiryAi(−4 + λ2) −AiryAi(1,−4 + λ2))AiryBi(λ2)

(AiryBi(−4 + λ2)AiryAi(1,−4 + λ2) −AiryBi(1,−4 + λ2)AiryAi(−4. + λ2))
.

The operator has two negative eigenvalues, and a sampling at five points gives the
following values:

Exact Sampling

λ2
1 −0.408 556 101 −0.407 847 606

λ2
2 −2.199 310 808 −2.199 274 885

Example 3. Here we consider a complex potential, i.e., the non–self-adjoint case.
For simplicity we take q(x) = (−3 + 4I)H(2−x), which satisfies the integral condition,
since its support is finite. The “exact” eigenvalues are

λ2
1 = −2.366244570422974900 + 2.77959479317720 ∗ I,

λ2
2 = 2.331242100943824884 + 1.444609392874578 ∗ I.

Sampling returns the characteristic function y(0, λ) whose roots are

−24.478660334593254119478447594810 + 1.1206639329822685979014894191629 ∗ I,
−11.880762137293417570328509302643 − 12.256428855012470888743443305746 ∗ I,
−10.773223452406265088447046330037 + 11.183480685054562021984436680059 ∗ I,
−3.8519787493649076861966496878496 + 6.8204421555226407447367784761412 ∗ I,
−3.3938761621982832484858723147606 − 7.7657241075216925272381260190095 ∗ I,
−1.8921464941233367693672075401885 + 3.3808116235901076812663421007454 ∗ I,
−1.1634750532301934400202052858474 + .93472882666245288040721469126573 ∗ I,
−0.96361921678575809159119990885440 − 3.9455147524162014804499730142901 ∗ I,
−0.40762402885134292283945583695323 − 0.000025337806145023868811196176 ∗ I,
0.41736287894332993590912261490337 − 1.5911692342192539784847384602663 ∗ I,
1.7345622222525341119365648943936 − 0.80129333547085371521107116138591 ∗ I.

Discarding the first nine, since their 	 (λ) < 0, and keeping the last two yields

λ2
1 = −2.366635093395643431 + 2.779786297300938674 ∗ I,

λ2
2 = 2.3576277592060224472 + 1.328189944959602990 ∗ I.

Future work will deal with making the code more automatic in its selection of
roots, so as to keep only the ones with a positive real part. We shall also investigate the
case of imbedded eigenvalues in the continuous spectrum, which would have interesting
applications in quantum mechanics and in scattering theory.
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MAXIMUM L2-CONVERGENCE RATES OF THE
CRANK–NICOLSON SCHEME TO THE STOKES INITIAL VALUE

PROBLEM∗

JUERGEN RODENKIRCHEN†

Abstract. Let A denote the Stokes operator and DAα the domain of its fractional powers Aα.
We consider the homogeneous Stokes initial value problem with initial data u(0) = u0 ∈ DA1+ε ,
ε ∈ (0, 1). For Stokes-like equations the range ε ∈ (0, 1

4
) is of special interest, as any solution derived

from ε ≥ 1
4

would necessarily have to satisfy an additional, in practice unverifiable compatibility

condition at time t = 0. Approximating any strong solution u ∈ C0([0,∞), DA1+ε ) in time direction

on a finite time interval [0, T ] with a Crank–Nicolson scheme, we show convergence of order O( τ2

t1−ε )
which is maximal for the assumed regularity of the data and reflects the loss of regularity as t → 0.
The error estimates are derived by energy and semigroup methods combined with a parabolic duality
argument.
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1. Introduction. We consider a viscous incompressible flow at time t ≥ 0 in
a bounded open domain Ω ⊂ R

3, ∂Ω being sufficiently smooth (e.g., a compact 2-
dimensional C3-submanifold of R

3; see [23, p. 1082]), described by the Stokes initial
and boundary value problem

∂
∂tu− Δu + ∇p = 0 in Ω, t > 0,
∇ · u = 0 , u(·, x)|∂Ω

= 0, u(0, ·) = u0.

}
(1.1)

Here we assume without loss of generality the constant kinematic viscosity ν > 0 to
equal 1. The unknown u = (u1, u2, u3), ui = ui(t, x) and p = p(t, x) ≥ 0 denote the
velocity field and the scalar kinematic pressure, respectively. Let H(Ω) be the space of
solenoidal L2-vector fields on Ω (see section 2). Applying Weyl’s orthogonal projection
P : L2(Ω) → H(Ω) to (1.1), which in virtue of the Helmholtz decomposition of L2(Ω)
maps into zero the gradients ∇q ∈ L2(Ω), we obtain the homogeneous1 Stokes initial
value problem in the form of the evolution system

∂tu + Au = 0, t > 0,
u(0) = u0

}
(1.2)

for the unknown function u : [0,∞) → DA. Here ∂t means the time derivative and
A = −PΔ denotes the Stokes operator on Ω (see section 2).

Let u be a strong solution of (1.2) on a finite time interval [0, T ], i.e., a function u
differentiable a.e. on [0, T ] such that ∂tu ∈ L1(0, T ;H), u(0) = u0 and ∂tu = −Au(t)

∗Received by the editors March 7, 2006; accepted for publication (in revised form) September 21,
2006; published electronically February 26, 2007.
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1The inhomogeneous case with outer force density f being a gradient field f = ∇q ∈ L2(Ω) is

thus included in the considered homogeneous case.
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a.e. on [0, T ] (see [18, Definition 2.8, p. 109], [14, Definition 6.1.2(i), p. 174]). Then,
approximating u on an equidistant time grid of [0, T ] (with fixed but arbitrary time
step of size τ = T

N > 0, N ∈ N) by a modified Crank–Nicolson sequence (Uτ
k )k=1,...,N ,

we give explicit τ -dependent estimates of the error u(tk) − Uτ
k at time t = tk = k · τ

in L2(Ω). Here the modification is due to two initial steps of Rothe’s scheme (see
section 3).

The convergence rate of the formally second order Crank–Nicolson scheme is
known to depend on the regularity properties of the solution to be approximated (see
[2], [8], [11], [17], [31], [32, pp. 110–120]). To obtain full second order convergence
in L2(Ω), the solution u of (1.2) has to be at least strong H4-continuous [31], [32].
However, for Stokes-like equations such regularity assumptions cannot realistically be
assumed, as any H3-continuous solution already has to satisfy an additional compat-
ibility condition at time t = 0, which turns out to be virtually uncheckable for given
data (see [29], [15, p. 91], [27, p. 97], [21, p. 134], [10, p. 281], [25, p. 254]).

The question of how smooth a solution can be in practice has been answered
by Rautmann [21, Theorem 4.1, p. 147]: Any solution u of (1.2) which is strongly
DAη -continuous has to satisfy a compatibility condition if η > 5

4 . And, conversely
(see [21, Theorem 3.1, p. 143]), for η < 5

4 assume u0 ∈ DAη . Then (1.2) yields a
strong DAη -continuous solution without any nonrealistic compatibility condition to
be satisfied at time t = 0.

For realistically assumable initial data u0 ∈ DA, Heywood and Rannacher proved

optimal convergence of order O( τ
2

t ) in L2 [11]. Thus, our aim was to provide error

estimates in L2 of order O( τ2

t1−ε ) for initial data u0 ∈ DA1+ε , ε ∈ (0, 1), with special
emphasis on the realistic range ε ∈ (0, 1

4 ).2

2. Preliminaries. Let H0(Ω) = L2(Ω) and Hm(Ω), m ∈ N, denote the Hilbert
spaces

Hm(Ω) = {u ∈ L2(Ω) | ∂α
x u ∈ L2(Ω), |α| ≤ m, m ∈ N}

equipped with the norms

‖u‖
Hm(Ω)

=

⎛⎝ ∑
|α|≤m

∫
Ω

|∂α
x u(x)|2dx

⎞⎠
1
2

, ∂α
x u(x) =

∂|α|

∂α1
x1 ∂

α2
x2 ∂

α3
x3

u(x),

where α = (α1, α2, α3), αi ≥ 0, |α| = α1 + α2 + α3, and | · | is the Euclidean norm in
R

3 [1]. For abbreviation in the following we let ‖ · ‖ and 〈·, ·〉 denote norm and inner
product in L2(Ω):

〈f, g〉 =

∫
Ω

f(x) · g(x) dx, ‖f‖ = 〈f, f〉 1
2 .

Let D(Ω) = C∞
0,σ(Ω) be the set of all real divergence-free C∞ vector functions

having compact support in Ω. Then H(Ω) and V (Ω) denote the closure of D(Ω) in
L2(Ω) and H1(Ω), respectively:

H(Ω) = D(Ω)
‖·‖

, V (Ω) = D(Ω)
‖·‖

H1(Ω) .

2Corresponding maximal convergence rates can be derived in higher order spaces including H2

and DA1+ε up to the order ε < 1
4
. This will be studied separately.
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In virtue of the Helmholtz decomposition

L2 = H ⊕G,G =
{
v ∈ L2 | ∃ q ∈ H1 : v = ∇q

}
(2.1)

of L2 (see [6], [7], [25, pp. 81–89]), let P be Weyl’s orthogonal projection P : L2 → H
[34]. Then the Stokes operator A is defined as the closure in H of the operator −PΔ,
which is positive definite and symmetric on the dense subset D ⊂ H, hence positive
and self-adjoint; its domain is DA = H2∩V (see [5, pp. 270, 275–276], [15, pp. 44–45],
[3], [26], [25, pp. 127–132]). For the Stokes resolvent (A+λ)−1 : H → DA there holds
the following.

Lemma 2.1. The resolvent set of the Stokes operator A contains the origin and
there exist positive constants c and λ0 such that

‖(A + λ)−1‖ ≤ c

1 + |λ| ∀λ ∈ C : Re(λ) ≥ −λ0(2.2)

See [33, p. 74], which leads to the following.
Lemma 2.2. −A generates the analytic strictly contractive semigroup {e−tA; t ≥

0} on H, e−tA : H → H is uniformly bounded for t ≥ 0, e−tAH ⊂ DA for t > 0, and

d

dt
e−tAu + Ae−tAu = 0 ∀ u ∈ H.(2.3)

See [5, pp. 279–280], [4, pp. 101–108], [12], [13], [19], [35], [25, p. 203].
Let α ∈ R, α > 0. Then the fractional powers A−α exist as bounded operators

by means of the spectral representation

A−α =
1

Γ(α)

∫ ∞

0

tα−1e−tAdt,(2.4)

where Γ denotes Euler’s Gamma function (see [28, p. 10 and Theorem 2.3.2, p. 44]).
These operators are invertible, and thus Aα = (A−α)−1 define the fractional powers of
A for positive exponents (see [25, pp. 134, 203]). In addition, let DAα be the domain
of Aα. Then DAα ⊂ H. For α > β, the imbedding DAα ↪→ DAβ is compact and DAα

is dense in DAβ (see [30, p. 98], [4, p. 158]).
For Lemmas 2.3 and 2.4 see [5, Lemma 2.10, p. 280] and [22, Lemma 1.3], respec-

tively.
Lemma 2.3. Let u ∈ DAβ and 0 < α ≤ e. Then

‖Aα+βe−tAu‖ ≤ t−α · ‖Aβu‖ ∀t > 0.(2.5)

Lemma 2.4. For each f ∈ H and each real τ > 0 let

f∗ = (1 + τA)−1f(2.6)

denote the Yosida approximation of f . Then f∗ ∈ DA and

‖Aαf∗‖ ≤ c · τβ−α · ‖Aβf‖(2.7)

for each f ∈ DAβ with 0 ≤ β ≤ α ≤ 1.
Additionally, we will make frequent use of the Cauchy–Young inequality: Let

a, b ∈ R with a, b > 0. Then

a · b ≤ η · aq + cη · bq
′

(2.8)

with η = rq

q , cη = r−q′

q′ , r > 0, and 1
q + 1

q′ = 1, q > 1.
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3. A modified Crank–Nicolson scheme. Let ε ∈ (0, 1), u0 ∈ DA1+ε , and
consider a unique strong solution u ∈ C0([0,∞), DA1+ε) of (1.2), which exists in
virtue of Lemma 2.2 due to the representation u(t) = e−tAu0. Here A1+εe−tAu0 =
e−tAA1+εu0 ∈ H for all t > 0 because the fractional powers A1+ε commute with e−tA

on DA1+ε (see [23, p. 1087]). Consider a finite time interval J = [0, T ], T > 0, and let

τ =
T

N
> 0, tk = k · τ, k = 0, 1, . . . , N, N ∈ N,

be an equidistant time grid on J . On J we approximate u by a Crank–Nicolson
sequence (Uτ

k )k=1,...,N with step size τ > 0:

Uτ
k − Uτ

k−1

τ
+

1

2
·A(Uτ

k + Uτ
k−1) = 0, k = 1, . . . , N,(3.1)

where Uτ
0 = u0 is the given initial value. To obtain optimum convergence we modify

the Crank–Nicolson scheme (3.1) with two steps of the locally second order Rothe
scheme:

Uτ
k − Uτ

k−1

τ
+ AUτ

k = 0, k = 1, . . . , N,(3.2)

at initial times t = t1, t2. Thus, our final approximation scheme reads

Uτ
k − Uτ

k−1 + τ
2 ·A(Uτ

k + Uτ
k−1) = 0, k = 3, . . . , N,

Uτ
k = (1 + τA)−1Uτ

k−1, U
τ
0 = u0, k = 1, 2.

}
(3.3)

The approximation error at time t = tk > 0 is then measured by means of the
error function

Eτ
k = Uτ

k − u(tk).(3.4)

Lemma 3.1. Let Uτ
0 ∈ DA1+ε , ε ∈ (0, 1). Then the solution (Uτ

k )k=1,...,N of (3.3)
is unique and Uτ

k ∈ DA1+ε for each k = 1, . . . , N .
Proof. Let Uτ

0 ∈ DA1+ε ↪→ DA. Then, in virtue of Lemmas 2.1 and 2.4, we obtain
by rewriting (3.3)

Uτ
k = (1 + τ ·A)−kUτ

0 ∈ DA

exist uniquely for k = 1, 2. Thus,

Uτ
k =

(
1 +

τ

2
·A

)−1 (
1 − τ

2
·A

)
Uτ
k−1 ∈ DA(3.5)

exist uniquely for k ≥ 3, . . . , N by successively calculating Uτ
k starting from the last

Rothe step Uτ
2 ∈ DA. Moreover, in virtue of Lemma 2.4 and because the operators

Aε commute with (1 + τ ·A)−1 on DAε (see [24, p. 65], [12]), we obtain by observing
A1+εUτ

0 ∈ H

AεUτ
k = Aε(1 + τ ·A)−kUτ

0 = (1 + τ ·A)−kAεUτ
0 ∈ DA

for k = 1, 2. Thus,

AεUτ
k = Aε

(
1 +

τ

2
·A

)−1 (
1 − τ

2
·A

)
Uτ
k−1

=
(
1 +

τ

2
·A

)−1 [
Aε

(
1 − τ

2
·A

)
Uτ
k−1

]
∈ DA

for k = 3, . . . , N by induction, which implies Uτ
k ∈ DA1+ε , k = 1, . . . , N .
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4. Convergence in L2(Ω). Our main result reads as follows.
Theorem 4.1. Assume u0 ∈ DA1+ε , ε ∈ (0, 1), and let u ∈ C0([0,∞), DA1+ε) be

a strong solution of the Stokes initial value problem (1.2). Let (Uτ
k )k=1,...,N ⊂ DA1+ε

with τ = T
N , T > 0, N ∈ N, be the solution of the modified Crank–Nicolson scheme

(3.3). Then the error estimate

‖Uτ
m − u(tm)‖ ≤ c · τ2

t1−ε
m

· ‖A1+εu0‖(4.1)

holds for each 1 ≤ m ≤ N . The constant c = c(ε) is independent of τ and tm, but
c(ε) → ∞ as ε → 0+.

For the proof a parabolic duality argument to be introduced later on is essential.
As a preparatory step we need a couple of a priori estimates of the error function (3.4),
which we collect in Lemmas 4.2–4.4. Note that all constants appearing are positive
and generic; i.e., they may have different values in different places.

Lemma 4.2. Assume u0 ∈ DA1+ε , ε ∈ (0, 1), and let u ∈ C0([0,∞), DA1+ε) be
a strong solution of the Stokes initial value problem (1.2). Let the modified Crank–
Nicolson scheme (3.3) be started at any time tn > 0 with initial value Uτ

n ∈ DA1+ε .
Then the estimates

‖A−(1+ε)Eτ
m‖ ≤ c1 ·

(
‖A−(1+ε)Eτ

n‖ +
τ2

t1−ε
n

· ‖u0‖
)
,(4.2)

‖Eτ
m‖ ≤ c2 ·

(
‖Eτ

n‖ +
τ2

t1−ε
n

· ‖A(1+ε)u0‖
)

(4.3)

hold for each m,n ∈ N with 0 < n ≤ m ≤ N . The constants ci = ci(ε), i = 1, 2, are
independent of τ and tm.

Proof. We first show that the estimates (4.2), (4.3) are valid for the nonmodified
Crank–Nicolson scheme (3.1): We integrate (1.2) over [tk−1, tk] and add

Zk :=
τ

2
·A(u(tk) + u(tk−1))

on both sides to get

u(tk) − u(tk−1) +

∫ tk

tk−1

Au(t)dt + Zk = Zk.(4.4)

Thus, subtracting (4.4) from (3.1) gives

Eτ
k − Eτ

k−1 +
τ

2
·A(Eτ

k + Eτ
k−1) = φk,(4.5)

where

φk =

∫ tk

tk−1

Au(t)dt− Zk =

∫ tk

tk−1

Au(t)dt− τ

2
·A(u(tk) + u(tk−1)).(4.6)

Equation (4.6) can be rewritten in the equivalent form

φk =

∫ tk

tk−1

A

[
tk − t

τ
· (u(t) − u(tk−1)) +

t− tk−1

τ
· (u(t) − u(tk))

]
dt.(4.7)
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Observing that u can be differentiated twice (see Lemma 2.2), we can expand u near
t in the Taylor series

u(t) = u(tk−1) + (t− tk−1) · ∂tu(t) −
∫ t

tk−1

(s− tk−1) · ∂2
su(s)ds(4.8)

and

u(t) = u(tk) − (tk − t) · ∂tu(t) −
∫ tk

t

(tk − s) · ∂2
su(s)ds.(4.9)

Using the expansions (4.8), (4.9) in (4.7), we find in virtue of the linearity of A

φk = φk1 + φk2,(4.10)

where

φk1 = −
∫ tk

tk−1

[
tk − t

τ
·
∫ t

tk−1

(s− tk−1) ·A∂2
su(s)ds

]
dt,(4.11)

φk2 = −
∫ tk

tk−1

[
t− tk−1

τ
·
∫ tk

t

(tk − s) ·A∂2
su(s)ds

]
dt.(4.12)

Note that A∂2
t u exists for t ≥ τ > 0 (see [9, Theorem 3, pp. 660–661 and Theorem

3′, p. 672]). Because Eτ
k ∈ DA1+ε for all k ≥ 1 (see Lemma 3.1) and because of the

compact imbedding DAα ↪→ DAβ for α > β, we can take the inner product of (4.5)
with A−2(1+ε)(Eτ

k + Eτ
k−1) in H0, which in virtue of the symmetry of A gives

‖A−(1+ε)Eτ
k‖2 − ‖A−(1+ε)Eτ

k−1‖2 +
τ

2
· ‖A−( 1

2+ε)(Eτ
k + Eτ

k−1)‖2 ≤ gτk(4.13)

with right-hand side

gτk = gτk1 + gτk2,(4.14)

where

gτki = |〈φki, A
−2(1+ε)(Eτ

k + Eτ
k−1)〉|, i = 1, 2.(4.15)

We estimate gτk with the help of the representation (4.11) and (4.12) of φki, i = 1, 2,

in virtue of the boundedness of A−( 3
2+ε), recalling the symmetry of A, as follows:

gτk1 = |〈φk1, A
−2(1+ε)(Eτ

k + Eτ
k−1)〉| = |〈A−( 3

2+ε)φk1, A
−( 1

2+ε)(Eτ
k + Eτ

k−1)〉|

≤ τ−1 ·
∣∣∣∣∣
∣∣∣∣∣
∫ tk

tk−1

(tk − t) ·
∫ t

tk−1

(s− tk−1) ·A−( 3
2+ε)A∂2

su(s)ds dt

∣∣∣∣∣
∣∣∣∣∣ · Tk,

where

T τ
k = ‖A−( 1

2+ε)(Eτ
k + Eτ

k−1)‖.(4.16)

Using the integral inequality∣∣∣∣∣
∣∣∣∣∣
∫ b

a

ϕ(t)dt

∣∣∣∣∣
∣∣∣∣∣ ≤ (b− a)

1
2 ·

∣∣∣∣∣
∫ b

a

‖ϕ(t)‖2dt

∣∣∣∣∣
1
2

,(4.17)
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which follows from the Cauchy–Schwarz inequality for each ϕ ∈ L2(a, b;H0(Ω)), we
conclude that

gτk1 ≤ τ−
1
2 ·

∣∣∣∣∣∣
∫ tk

tk−1

(tk − t)2 ·
∥∥∥∥∥
∫ t

tk−1

|(s− tk−1)| ·A−( 1
2+ε)∂2

su(s)ds

∥∥∥∥∥
2

dt

∣∣∣∣∣∣
1
2

· T τ
k

≤
∣∣∣∣∣
∫ tk

tk−1

(tk − t)2 ·
∫ tk

tk−1

(s− tk−1)
2 · ‖A−( 1

2+ε)∂2
su(s)‖2ds dt

∣∣∣∣∣
1
2

· T τ
k

=
τ

3
2

√
3
·
∣∣∣∣∣
∫ tk

tk−1

(s− tk−1)
2 · ‖A−( 1

2+ε)∂2
su(s)‖2ds

∣∣∣∣∣
1
2

· T τ
k

≤ τ
5
2

√
3
·
∣∣∣∣∣
∫ tk

tk−1

‖A−( 1
2+ε)∂2

su(s)‖2ds

∣∣∣∣∣
1
2

· T τ
k .

Due to an analog estimate of gτk2 we arrive at

gτk = gτk1 + gτk2 ≤ 2
τ

5
2

√
3
·
∣∣∣∣∣
∫ tk

tk−1

‖A−( 1
2+ε)∂2

su(s)‖2ds

∣∣∣∣∣
1
2

· T τ
k .(4.18)

Applying the Cauchy–Young inequality (2.8) to (4.18) we conclude by definition (4.16)
of T τ

k that

gτk ≤ cη · τ4 ·
∫ tk

tk−1

‖A−( 1
2+ε)∂2

t u(t)‖2dt + η · τ · ‖A−( 1
2+ε)(Eτ

k + Eτ
k−1)‖2,(4.19)

which in virtue of (4.13) gives

‖A−(1+ε)Eτ
k‖2 − ‖A−(1+ε)Eτ

k−1‖2 + τ ·
(

1

2
− η

)
· ‖A−( 1

2+ε)(Eτ
k + Eτ

k−1)‖2

≤ cη · τ4 ·
∫ tk

tk−1

‖A−( 1
2+ε)∂2

t u(t)‖2dt.

Thus, summing up from k = n + 1 to m and neglecting

τ ·
(

1

2
− η

)
· ‖A−( 1

2+ε)(Eτ
k + Eτ

k−1)‖2 ≥ 0

by assuming η ≤ 1
2 , we obtain the a priori estimate

‖A−(1+ε)Eτ
m‖2 − ‖A−(1+ε)Eτ

n‖2 ≤ cη · τ4 ·
∫ tm

tn

‖A−( 1
2+ε)∂2

t u(t)‖2dt.(4.20)

Recalling the semigroup representation u(t) = e−tAu0 for the solution of the homo-
geneous Stokes initial value problem (1.2), we differentiate ∂tu + Au = 0, which in
virtue of Lemma 2.2 and the closedness of A implies ∂2

t u(t) = A2e−tAu0 (see [24,
pp. 75–76]). Then Lemma 2.3 can be applied to find

‖A−( 1
2+ε)∂2

t u(t)‖ = ‖A 3
2−εe−tAu0‖ ≤ c · t− 3

2+ε · ‖u0‖, t > 0.(4.21)
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Finally, estimating the integrand of the right-hand side of (4.20) by (4.21), we are led
to

‖A−(1+ε)Eτ
m‖2 = ‖A−(1+ε)Eτ

n‖2 − c0 · τ4 · (t−2+2ε
m − t−2+2ε

n ) · ‖u0‖2

≤ ‖A−(1+ε)Eτ
n‖2 + c1 · τ4 · t−2+2ε

n · ‖u0‖2

≤ c ·
(
‖A−(1+ε)Eτ

n‖ + τ2 · t−1+ε
n · ‖u0‖

)2

with c = max{1, c1}. This proves (4.2) for the nonmodified Crank–Nicolson scheme
(3.1).

For (4.3), taking the inner product of (4.5) with Eτ
k + Eτ

k−1 in H0, a similar
procedure as above leads to

‖Eτ
k‖2 − ‖Eτ

k−1‖2 + τ ·
(

1

2
− η

)
· ‖A 1

2 (Eτ
k + Eτ

k−1)‖2 ≤ cη · τ4 ·
∫ tk

tk−1

‖A 1
2 ∂2

t u(t)‖2dt.

This gives

‖Eτ
m‖2 − ‖Eτ

n‖2 ≤ cη · τ4 ·
∫ tm

tn

‖A 1
2 ∂2

t u(t)‖2dt(4.22)

by choosing η ≤ 1
2 , neglecting τ · ( 1

2 − η) · ‖A 1
2 (Eτ

k + Eτ
k−1)‖2 ≤ 0, and summing up

from k = n + 1 to m. Estimating the integrand of the right-hand side of (4.22) with
the help of Lemma 2.3 by

‖A 1
2 ∂2

t u(t)‖ = ‖A 3
2−εe−tAA1+εu0‖ ≤ c · t−( 3

2−ε) · ‖A1+εu0‖(4.23)

for t > 0 proves (4.3) for the nonmodified Crank–Nicolson scheme (3.1) similarly
as above by integrating the right-hand side of (4.22) using (4.23). Next, we show
that (4.2), (4.3) hold locally for Rothe’s scheme (3.2): Again, we integrate (1.2) over
[tk−1, tk], but this time adding

Z̃k := τ ·Au(tk)

on both sides yields

Eτ
k − Eτ

k−1 + τ ·AEτ
k = ϕk,(4.24)

where

ϕk =

∫ tk

tk−1

Au(t)dt− τ ·Au(tk) =

∫ tk

tk−1

∫ t

tk

A∂su(s)ds dt.(4.25)

Similarly as above, taking the inner product of (4.24) with A−2(1+ε)(Eτ
k +Eτ

k−1)
in H0, we obtain by substituting (4.25) for the right-hand side of (4.24)

‖A−(1+ε)Eτ
k‖2 − ‖A−(1+ε)Eτ

k−1‖2 + τ · ‖A−( 1
2+ε)(Eτ

k + Eτ
k−1)‖2 ≤ Gτ

k(4.26)

with

Gτ
k = |〈ϕk, A

−2(1+ε)(Eτ
k + Eτ

k−1)〉| = |〈A−( 3
2+ε)ϕk, A

−( 1
2+ε)(Eτ

k + Eτ
k−1)〉|

≤ ‖
∫ tk

tk−1

∫ t

tk−1

A−( 3
2+ε)A∂su(s)dsdt‖ · T τ

k ,
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where T τ
k is again defined by (4.16). Thus, applications of the integral inequality

(4.17) and the Cauchy–Young inequality (2.8) to Gτ
k yield

Gτ
k ≤ τ

1
2 ·

∣∣∣∣∣∣
∫ tk

tk−1

∥∥∥∥∥
∫ t

tk−1

A−( 1
2+ε)∂su(s)ds

∥∥∥∥∥
2

dt

∣∣∣∣∣∣
1
2

· T τ
k

≤ τ
1
2 ·

∣∣∣∣∣
∫ tk

tk−1

(t− tk−1) ·
∫ tk

tk−1

‖A−( 1
2+ε)∂su(s)‖2ds dt

∣∣∣∣∣
1
2

· T τ
k

=
τ

3
2

√
2
·
∣∣∣∣∣
∫ tk

tk−1

‖A−( 1
2+ε)∂su(s)‖2ds

∣∣∣∣∣
1
2

· T τ
k

≤ cη · τ2 ·
∫ tk

tk−1

‖A−( 1
2+ε)∂tu(t)‖2dt + η · τ · (T τ

k )2.

From this we find the a priori error bound

‖A−(1+ε)Eτ
m‖2 − ‖A−(1+ε)Eτ

n‖2 ≤ c · τ2 ·
∫ tm

tn

‖A−( 1
2+ε)∂tu(t)‖2dt(4.27)

by absorbing η · τ · (T τ
k )2 = η · τ · ‖A−( 1

2+ε)(Eτ
k +Eτ

k−1)‖2 for η ≤ 1 into the left-hand
side of (4.26) and subsequently neglecting the resulting term

(1 − η) · τ · (T τ
k )2 = (1 − η) · τ · ‖A−( 1

2+ε)(Eτ
k + Eτ

k−1)‖2 ≥ 0

and summing up from k = n + 1 to k = m.
Observing ∂tu(t) = −Ae−tAu0 in virtue of Lemma 2.2 and recalling the bound-

edness of A−( 1
2+ε), we estimate the integrand of the right-hand side of (4.27) with the

help of Lemma 2.3 by

‖A−( 1
2+ε)∂tu(t)‖ = ‖A 1

2−εe−tAu0‖ ≤ c · t− 1
2+ε · ‖u0‖.(4.28)

Thus, integrating (4.27) using (4.28), we are led to

‖A−(1+ε)Eτ
m‖2 − ‖A−(1+ε)Eτ

n‖2 ≤ c · τ2 ·
∫ tm

tn

t−1+2εdt · ‖u0‖2

= c · τ2 ·
∫ tm

tn

t−2+2ε · t dt · ‖u0‖2 ≤ c · τ2 · t−2+2ε
n · (t2m − t2n) · ‖u0‖2

= c · τ4 · t−2+2ε
n · (m2 − n2) · ‖u0‖2 ≤ c · τ4 · t−2+2ε

n · (m− n)2 · ‖u0‖2

for fixed n < m. Therefore,

‖A−(1+ε)Eτ
m‖ ≤ c ·

(
‖A−(1+ε)Eτ

n‖ + (m− n) · τ2

t1−ε
n

· ‖u0‖
)
,(4.29)

which is locally (4.2). Similarly there hold

‖Eτ
m‖2 − ‖Eτ

n‖2 ≤ c · τ2 ·
∫ tm

tn

‖A 1
2 ∂tu(t)‖2dt = c · τ2 ·

∫ tm

tn

‖A 1
2−εe−tAA1+εu0‖2dt

≤ c · τ2 ·
∫ tm

tn

t−1+2εdt · ‖A1+εu0‖2

≤ c · τ4 · t−2+2ε
n · (m− n)2 · ‖A1+εu0‖2,
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and thus

‖Eτ
m‖ ≤ c ·

(
‖Eτ

n‖ + (m− n) · τ2

t1−ε
n

· ‖A1+εu0‖
)
,(4.30)

which is locally (4.3).
Finally, combining the global estimates (4.2) (resp., (4.3)) for the nonmodified

Crank–Nicolson scheme (3.1) with the local estimates, (4.29) (resp., (4.30)) yields the
desired estimates for the modified Crank–Nicolson scheme (3.3).

Lemma 4.3. Assume u0 ∈ DA1+ε , ε ∈ (0, 1), and let u ∈ C0([0,∞), DA1+ε) be
a strong solution of the Stokes initial value problem (1.2). Let the modified Crank–
Nicolson scheme (3.3) be started at time t0 = 0 with initial value Uτ

0 = u0 ∈ DA1+ε .
Then the estimate

‖Eτ
m‖ ≤ c · τ1+ε · ‖A1+εu0‖(4.31)

holds for 1 ≤ m ≤ N . The constant c = c(ε) is independent of τ , but c(ε) → ∞ as
ε → 0+.

Proof. For Rothe’s scheme, we recall

‖Eτ
m‖2 − ‖Eτ

n‖2 ≤ c · τ2 ·
∫ tm

tn

‖A 1
2−εe−tAA1+εu0‖2dt(4.32)

from the proof of Lemma 4.2. Thus, setting n = 0 and observing Eτ
0 = 0, we conclude

that

‖Eτ
m‖2 ≤ c · τ2 ·

∫ tm

0

t−1+2εdt · ‖A1+εu0‖2

=
c

2ε
· τ2 · t2εm · ‖A1+εu0‖2 =

c

2ε
·m2ε · τ2+2ε · ‖A1+εu0‖2.

Therefore,

‖Eτ
m‖ ≤ c√

2ε
·mε · τ1+ε · ‖A1+εu0‖ ≤ c√

2ε
·m · τ1+ε · ‖A1+εu0‖(4.33)

because 0 < ε < 1. Finally, combining the local estimate (4.33) for Rothe’s scheme
(3.2) and (4.3) of Lemma 4.2 gives the desired estimate (4.31) for the modified Crank–
Nicolson scheme (3.3) as follows. For 0 ≤ m ≤ 2 is nothing to prove, just take (4.33)
for the Rothe scheme. For m > 2 we have in virtue of (4.3)

‖Eτ
m‖ ≤ c0 ·

(
‖Eτ

2 ‖ + τ2 · t−1+ε
2 · ‖A1+εu0‖

)
≤ c0 ·

(
2 · c1 · τ1+ε + 2−1+ε · τ1+ε

)
· ‖A1+εu0‖ ≤ c2 · τ1+ε · ‖A1+εu0‖

because Eτ
2 is calculated by Rothe’s scheme and Eτ

0 = 0 by assumption.
Additionally, the following lower order “smoothing” estimate holds (see [20]; see

also [17] for the more general case of time-dependent operators).
Lemma 4.4. Assume u0 ∈ DA1+ε , ε ∈ (0, 1), and let u ∈ C0([0,∞), DA1+ε) be

a strong solution of the Stokes initial value problem (1.2). Let the modified Crank–
Nicolson scheme (3.3) be started at time t0 = 0 with initial value Uτ

0 = u0 ∈ DA1+ε .
Then the estimate

‖Eτ
m‖ ≤ c · τ

1−ε

t1−ε
m

· ‖u0‖(4.34)
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holds for 1 ≤ m ≤ N . The constant c is independent of τ and tm.
Proof. Let u0 ∈ DA1+ε ↪→ H. Then

‖Eτ
m‖ ≤ c · τ

tm
· ‖u0‖(4.35)

for m ≥ 1 (see [20, p. 347], [17, Lemma 3.6]). Thus,

‖Eτ
m‖ ≤ c · τ

1−ε

t1−ε
m

· τ
ε

tεm
· ‖u0‖ ≤ c · τ

1−ε

t1−ε
m

· ‖u0‖(4.36)

for m ≥ 1.
We now introduce the parabolic duality argument (see [16], [17]). For that we

recall the self-adjointness of A, i.e., A = A′ (see section 2). Consider the “backward
evolution system” to the Stokes initial value problem (1.2)

∂tv −Av = 0, T ≥ tm > t ≥ 0,
v(tm) = vm.

}
(4.37)

Its corresponding backward discrete analogon of the modified Crank–Nicolson scheme
(3.3) with given initial values v(tm) = V τ

m at time tm with 0 < m ≤ N reads

V τ
k − V τ

k−1 − τ
2 ·A(V τ

k + V τ
k−1) = 0, k = m, . . . , 3,

V τ
k−1 = (1 + τ ·A)−1V τ

k , k = 2, 1.

}
(4.38)

Lemma 4.5. Let vm ∈ DA1+ε , ε ∈ (0, 1), 0 < m ≤ N . Then the backward
problems (4.37) and (4.38) have unique solutions v and (V τ

k )k=m−1,...,0, with

v ∈ C0([0, tm], DA1+ε), v(t) = e−(tm−t)Avm, tm > t ≥ 0,
V τ
k ∈ DA1+ε , m > k ≥ 0.

Proof. Let vm ∈ DA1+ε . Then v ∈ C0([0, tm], DA1+ε) in virtue of Lemma 2.2 with
time reversed. Let s(t) = tm − t > 0. Then d

dse
−sAvm + Ae−sAvm = 0 for vm ∈

DA1+ε ↪→ H by Lemma 2.2. Let v(t) = e−(tm−t)Avm. Then d
dtv(t) = − d

dse
−sAvm and

v(tm) = vm. Let m ≥ k ≥ 3. Rewriting (4.38) we obtain

V τ
k−1 =

(
1 +

τ

2
·A

)−1 (
1 − τ

2
·A

)
V τ
k =

(
1 − τ

2
·A

)(
1 +

τ

2
·A

)−1

V τ
k ∈ DA1+ε

by successively calculating V τ
k starting from the given initial value V τ

m ∈ DA1+ε (see
the proof of Lemma 3.1). Thus

V τ
k−1 = (1 + τ ·A)−(3−k)V τ

2 ∈ DA1+ε

for k = 2, 1.
For abbreviation in the following we let

uμ := u(tμ), vμ := v(tμ)(4.39)

for the solution u and v of (1.2) and (4.37), respectively. Lemma 4.6 provides de-
cisive inner product identities connecting the solutions of (1.2) and (3.3) with the
corresponding solutions of the backward problems (4.37) and (4.38), respectively.
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Lemma 4.6. Let u, (Uτ
k )k=1,...,m be the solutions of (1.2), (3.3), respectively, and

v, (V τ
k )k=m−1,...,0 be the solutions of (4.37), (4.38), respectively. Then

〈up, vp〉 − 〈uq, vq〉 = 0,(4.40)

〈Uτ
p , V

τ
p 〉 − 〈Uτ

q , V
τ
q 〉 = 0(4.41)

hold for each p, q with 0 ≤ p ≤ q ≤ m ≤ N .

Proof. Let u and v be the solutions of (1.2) and (4.37), respectively. Then

d

dt
〈u(t), v(t)〉 = 〈∂tu(t), v(t)〉 + 〈u(t), ∂tv(t)〉

= 〈−Au(t), v(t)〉 + 〈u(t), Av(t)〉
= 〈u(t),−Av(t)〉 + 〈u(t), Av(t)〉 = 0

in virtue of Lemmas 2.2 and 4.5 because of the self-adjointness of A. Thus, the identity
(4.40) follows by integration over [tp, tq].

For the discrete solutions, for 3 ≤ μ ≤ m ≤ N , rewriting (3.3) and (4.38) in the
equivalent forms

Uτ
μ =

(
1 +

τ

2
·A

)−1 (
1 − τ

2
·A

)
Uτ
μ−1, V

τ
μ−1 =

(
1 +

τ

2
·A

)−1 (
1 − τ

2
·A

)
V τ
μ ,

we find in virtue of the commutativity of (1 + τ
2 · A)−1 and (1 − τ

2 · A) on DA (see
[24, p. 65]) and due to the symmetry of the Stokes resolvent (see [12, p. 279])

〈Uτ
μ , V

τ
μ 〉 = 〈(1 + τ

2 ·A)−1(1 − τ
2 ·A)Uτ

μ−1, V
τ
μ 〉

= 〈Uτ
μ−1, (1 + τ

2 ·A)−1(1 − τ
2 ·A)V τ

μ 〉 = 〈Uτ
μ−1, V

τ
μ−1〉.

Similarly, the same holds true for the corresponding resolvent equations of the
Rothe steps (1 ≤ μ ≤ 2), and thus

〈Uτ
μ , V

τ
μ 〉 − 〈Uτ

μ−1, V
τ
μ−1〉 = 0(4.42)

for 1 ≤ μ ≤ m ≤ N . The desired identity (4.41) follows by summing up (4.42) from
μ = p + 1 to q , 0 ≤ p ≤ q ≤ m ≤ N .

In view of Lemmas 4.2–4.6 we are now prepared to finish the following proof.

Proof of Theorem 4.1. For estimating the error ‖Eτ
m‖, we will use that

‖Eτ
m‖ = ‖Eτ

m‖
H

≤ sup {|〈Eτ
m, vm〉| : vm ∈ H, ‖vm‖ = 1}

holds for Eτ
m ∈ DA1+ε ↪→ H. Thus,

‖Eτ
m‖ ≤ sup {|〈Eτ

m, vm〉| : vm ∈ DA1+ε , ‖vm‖ = 1}(4.43)

because DAα is dense in H for α > 0. Therefore, our aim is to derive an identity for
the inner product 〈Eτ

m, vm〉, which we then estimate with the help of Lemmas 4.2–4.4
and Lemma 4.6. For that let v and (V τ

μ )μ=m−1,...,0 be the solutions of (4.37) and
(4.38), respectively, corresponding to the given initial values vm = V τ

m at initial time
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tm with 1 ≤ m ≤ N . In addition, let M := [m2 ] be the largest integer less than or
equal to m

2 . Then, applying Lemma 4.6, we obtain by observing vm − V τ
m = 0

〈Eτ
m, vm〉 = 〈Uτ

m, vm〉 − 〈um, vm〉
= 〈Uτ

m, vm − V τ
m〉 + 〈Uτ

m, V τ
m〉 − 〈um, vm〉

= 〈Uτ
m, V τ

m〉 − 〈um, vm〉
= 〈Uτ

M , V τ
M 〉 − 〈uM , vM 〉

= 〈Eτ
M , vM 〉 + 〈Uτ

M , V τ
M − vM 〉.

Therefore, substituting Uτ
M = Eτ

M +uM into the latter equation, we will estimate the
right-hand side of

〈Eτ
m, vm〉 = 〈Eτ

M , vM 〉 + 〈Eτ
M , V τ

M − vM 〉 + 〈uM , V τ
M − vM 〉(4.44)

in view of (4.43) as follows:
A bound for |〈Eτ

M , vM 〉|. Let (Ṽ τ
μ )μ=M−1,...,0 be the solution of (4.38) correspond-

ing to the given initial value Ṽ τ
M = vM at initial time tM ≤ tm. Then, using Lemma

4.6, we find

〈Eτ
M , vM 〉 = 〈Uτ

M , vM 〉 − 〈uM , vM 〉
= 〈Uτ

M , vM − Ṽ τ
M 〉 − 〈uM , vM 〉 + 〈Uτ

M , Ṽ τ
M 〉

= 〈Uτ
M , Ṽ τ

M 〉 − 〈uM , vM 〉
= 〈Uτ

0 , Ṽ
τ
0 〉 − 〈u0, v0〉

= 〈u0, Ṽ
τ
0 〉 − 〈u0, v0〉

= 〈u0, Ṽ
τ
0 − v0〉

= 〈A1+εu0, A
−(1+ε)(Ṽ τ

0 − v0)〉

because Uτ
0 = u0 by the assumption of Theorem 4.1. Here the latter equation is due

to the symmetry of A. Thus, application of the Cauchy–Schwarz inequality yields

|〈Eτ
M , vM 〉| ≤ ‖A1+εu0‖ · ‖A−(1+ε)(Ṽ τ

0 − v0)‖.(4.45)

Next, in virtue of Lemma 4.5, we can apply (4.2) of Lemma 4.2 with time reversed
to the right-hand side of (4.45) to obtain

‖A−(1+ε)(Ṽ τ
0 − v0)‖ ≤ c0 ·

τ2

(tm − tM )1−ε
· ‖vm‖(4.46)

because Ṽ τ
M − vM = 0. Let m ≥ 1. Then M = [m2 ] ≤ m

2 , i.e., tm − tM ≥ tm
2

or
1

tm−tM
≤ 2

tm
. Thus, combining (4.45) and (4.46) gives

|〈Eτ
M , vM 〉| ≤ c · τ2

t1−ε
m

· ‖A1+εu0‖ · ‖vm‖,(4.47)

where c = 21−ε · c0.
A bound for |〈Eτ

M , V τ
M − vM 〉|. Let M = [m2 ] ≥ 0. Then, applying (4.31) of

Lemma 4.3 to Eτ
M yields

‖Eτ
M‖ ≤ c0 · τ1+ε · ‖A1+εu0‖.(4.48)
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Let M ≥ 1, i.e., m ≥ 2. Then, with similar arguments as above, in virtue
of Lemma 4.5, applying (4.34) of Lemma 4.4 with time reversed to V τ

M − vM , we
conclude that

‖vM − V τ
M‖ ≤ c1 ·

τ1−ε

(tm − tM )1−ε
· ‖vm‖ ≤ c2 ·

τ1−ε

t1−ε
m

· ‖vm‖,(4.49)

where c2 = 21−ε · c1. Therefore, applying the Cauchy–Schwarz inequality and com-
bining (4.48) and (4.49), we are led to

|〈Eτ
M , V τ

M − vM 〉| ≤ c0 · c2 ·
τ2

t1−ε
m

· ‖A1+εu0‖ · ‖vm‖(4.50)

for m ≥ 2.

A bound for |〈uM , V τ
M −vM 〉|. Let (Ũτ

μ )μ=M+1,...,m be the solution of the modified

Crank–Nicolson scheme (3.3) corresponding to the given initial value Ũτ
M = uM at

initial time tM ≤ tm. Then, in virtue of Lemma 4.6, observing V τ
m = vm, we find

〈uM , V τ
M − vM 〉 = 〈uM , V τ

M 〉 − 〈uM , vM 〉
= 〈uM − Ũτ

M , V τ
M 〉 + 〈Ũτ

M , V τ
M 〉 − 〈uM , vM 〉

= 〈Ũτ
M , V τ

M 〉 − 〈uM , vM 〉
= 〈Ũτ

m, V τ
m〉 − 〈um, vm〉

= 〈Ũτ
m − um, vm〉.

Thus, in virtue of the Cauchy–Schwarz inequality, it remains to estimate the right-
hand side of

|〈uM , V τ
M − vM 〉| ≤ ‖Ũτ

m − um‖ · ‖vm‖.(4.51)

Applying (4.3) of Lemma 4.2 with n = M to the right-hand side of (4.51) yields

‖Ũτ
m − um‖ ≤ c0 ·

τ2

t1−ε
M

· ‖A1+εu0‖(4.52)

because Ũτ
M − uM = 0 by construction of (Ũτ

μ ). Next, let m ≥ 2. Then M = [m2 ] ≥
m−1

2 ≥ m
4 , i.e., 1

tM
≤ 4

tm
. Then, from (4.51) and (4.52), we conclude that

|〈uM , V τ
M − vM 〉| ≤ c1 ·

τ2

t1−ε
m

· ‖A1+εu0‖ · ‖vm‖,(4.53)

where c1 = 41−ε · c0. Finally, combining the bounds (4.47), (4.50), and (4.53) with
(4.44), we arrive at

|〈Eτ
m, vm〉| ≤ c · τ2

t1−ε
m

· ‖A1+εu0‖ · ‖vm‖,(4.54)

which gives the desired estimate (4.1) by applying (4.43) to (4.54). This completes
the proof of Theorem 4.1.
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Abstract. The FETI method with a natural coarse grid is combined with recently proposed
optimal algorithms for the solution of bound and/or equality constrained quadratic programming
problems in order to develop a scalable solver for elliptic boundary variational inequalities such as
those describing equilibrium of a system of bodies in mutual contact. A discretized model problem is
first reduced by the duality theory of convex optimization to the quadratic programming problem with
bound and equality constraints. The latter is then modified by means of orthogonal projectors to the
natural coarse grid introduced by Farhat, Mandel, and Roux [Comput. Methods Appl. Mech. Engrg.,
115 (1994), pp. 365–385]. Finally, the classical results on linear scalability for linear problems are
extended to boundary variational inequalities. The results are validated by numerical experiments.
The experiments also confirm that the algorithm enjoys the same parallel scalability as its linear
counterpart.
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1. Introduction. The FETI (finite element tearing and interconnecting) do-
main decomposition method was originally proposed by Farhat and Roux [26] for
parallel solving of the linear problems described by elliptic partial differential equa-
tions. Its key ingredient is decomposition of the spatial domain into nonoverlapping
subdomains that are “glued” by Lagrange multipliers, so that, after eliminating the
primal variables, the original problem is reduced to a small, relatively well condi-
tioned, typically equality constrained quadratic programming problem that is solved
iteratively. The time that is necessary for both the elimination and iterations can be
reduced nearly proportionally to the number of the processors, so that the algorithm
enjoys parallel scalability. Observing that the equality constraints may be used to
define so-called natural coarse grid, Farhat, Mandel, and Roux [25] modified the basic
FETI algorithm so that they were able to adapt the results by Bramble, Pasciak, and
Schatz [5] to prove its numerical scalability, i.e., asymptotically linear complexity. A
comprehensive review of the mathematical results related to the FETI methods may
be found in the monograph by Tosseli and Widlund [38].

If the FETI procedure is applied to an elliptic variational inequality, the resulting
quadratic programming problem has not only the equality constraints but also the
nonnegativity constraints. Even though the latter is a considerable complication as
compared with linear problems, it seems that the FETI procedure should be even
more powerful for the solution of variational inequalities than for linear problems.
The reason is that FETI not only reduces the original problem to a smaller and
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better conditioned one, but it also replaces for free all the inequalities by the bound
constraints. Promising experimental results by Dureisseix and Farhat [22] supported
this claim and even indicated numerical scalability of their method. Similar results
were achieved also for the FETI–DP (dual–primal) method introduced by Farhat
et al. [24]. The FETI–DP method is very similar to the original FETI; the only
difference is that it enforces the continuity of displacements at corners on primal level.
A new Lagrange multipliers algorithm, FETI–C, based on FETI–DP and on active
set strategies with additional planning steps and preconditioning, was introduced by
Avery et al. [1] and Dureisseix and Farhat [22]. Its scalability was demonstrated
experimentally.

Another approach yielding experimental evidence of scalability was proposed by
Dostál et al. [12, 13, 14]. The algorithm combined FETI with a special variant of
the augmented Lagrangian method [10]. Scalability was later proved for an algorithm
that enforced the equality constraints by the optimal dual penalty [15, 16] and solved
the resulting bound constrained problem by recent, in a sense optimal, algorithms
[7, 21]. Using the same algorithms, Dostál, Horák, and Stefanica then proved numer-
ical scalability for a FETI–DP algorithm applied to two-dimensional (2D) coercive
model problems discretized by means of either nodal [18] or mortar [19] Lagrange
multipliers. Most recently, the scalability results were extended to include semicoer-
cive problems [20]. The results used the effective condition number of the dual Schur
complement of the stiffness matrix which was proved to be bounded by CH2/h2,
where C is a constant independent of the discretization and decomposition parame-
ters h and H, respectively. The results did not assume any preconditioning. Indeed,
numerical experiments by the present authors, V. Vondrák, and M. Lesoinne indi-
cated that the performance of our FETI–DP based algorithms may be considerably
improved by preconditioning.

It should be noted that the effort to develop scalable solvers for variational in-
equalities was not restricted to FETI. For example, using ideas related to Mandel [34],
Kornhuber, Krause, Sander, and Wohlmuth [30, 31, 40, 32, 33] gave experimental ev-
idence of numerical scalability of the algorithm based on monotone multigrid. Prob-
ably the first theoretical results concerning development of scalable algorithms were
proved by Schöberl [36, 37].

In this paper, we use the FETI method with a natural coarse grid to develop a
scalable algorithm for numerical solution of both coercive and semicoercive variational
inequalities. The result exploits the classical FETI1 upper bound CH/h [25] on the
condition number of the regular part of the corresponding Hessian and remains valid
for more general elliptic variational inequalities, including those describing equilibrium
of a system of elastic bodies in mutual contact.

The paper is organized as follows. After describing a model problem, we briefly
review the FETI methodology [12] that turns the variational inequality into a well
conditioned quadratic programming problem with bound and equality constraints.
Then we review our algorithms for the solution of the resulting bound and equality
constrained quadratic programming problem whose rate of convergence may be ex-
pressed in terms of bounds on the spectrum of the dual Schur complement matrix
[21, 8, 9]. Finally, we present the main results about optimality of our method and
give results of numerical experiments with parallel implementation of the algorithm
in PETSc [3].

2. Model problem. For the sake of simplicity, we shall reduce our analysis
to a simple model problem, but our reasoning is valid also in more general cases,
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including contact problems of 2D and three-dimensional (3D) elasticity, provided that
the conditions exploited in the proof of the results by Farhat, Mandel, and Roux [25]
are satisfied. Let Ω = Ω1 ∪ Ω2, Ω1 = (0, 1) × (0, 1), and Ω2 = (1, 2) × (0, 1) denote
open domains with boundaries Γ1,Γ2 and their parts Γi

u,Γ
i
f ,Γ

i
c formed by the sides

of Ωi, i = 1, 2, as in Figure 1(a) or 1(b). Let H1(Ωi), i = 1, 2, denote the Sobolev
space of the first order in the space L2(Ωi) of the functions on Ωi whose squares are
integrable in the sense of Lebesgue. Let

V i =
{
vi ∈ H1(Ωi) : vi = 0 on Γi

u

}
denote the closed subspaces of H1(Ωi), i = 1, 2, and let

V = V 1 × V 2 and K =
{
(v1, v2) ∈ V : v2 − v1 ≥ 0 on Γc

}
denote the closed subspace and the closed convex subset of H = H1(Ω1) ×H1(Ω2),
respectively. The relations on the boundaries are in terms of traces. On H we shall
define a symmetric bilinear form

a(u, v) =
2∑

i=1

∫
Ωi

(
∂ui

∂x

∂vi

∂x
+

∂ui

∂y

∂vi

∂y

)
dΩ

and a linear form

�(v) =
2∑

i=1

∫
Ωi

f ividΩ,

where f i ∈ L2(Ωi), i = 1, 2, are the restrictions of

f(x, y) =

⎧⎨⎩
−1 for (x, y) ∈ (0, 1) × [0.75, 1),

0 for (x, y) ∈ (0, 1) × [0, 0.75) and (x, y) ∈ (1, 2) × [0.25, 1),
−3 for (x, y) ∈ (1, 2) × [0, 0.25)

for a coercive problem and

f(x, y) =

⎧⎨⎩
−3 for (x, y) ∈ (0, 1) × [0.75, 1),

0 for (x, y) ∈ (0, 1) × [0, 0.75) and (x, y) ∈ (1, 2) × [0.25, 1),
−1 for (x, y) ∈ (1, 2) × [0, 0.25)

for a semicoercive problem. Thus we can define a problem to find

min q(u) =
1

2
a(u, u) − �(u) subject to u ∈ K.(2.1)

We shall consider two variants of the Dirichlet data. In the first case, both the
membranes are fixed on the outer edges as in Figure 1(a), so that

Γ1
u = {(0, y) ∈ R

2 : y ∈ [0, 1]}, Γ2
u = {(2, y) ∈ R

2 : y ∈ [0, 1]}.

Since the Dirichlet conditions are prescribed on parts Γi
u, i = 1, 2, of the boundaries

of both the membranes with positive measure, the quadratic form a is coercive, which
guarantees both existence and uniqueness of the solution [28, 27]. In the second case,
only the left membrane is fixed on the outer edge and the right membrane has no
prescribed displacement as in Figure 1(b), so that

Γ1
u = {(0, y) ∈ R

2 : y ∈ [0, 1]}, Γ2
u = ∅.
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Fig. 2. Domain decomposition and discretization.

Even though a is in this case only semidefinite, the form q is still coercive due to the
choice of f so that it has again the unique solution [28, 27].

More details about this particular model problem may be found in [12]. The solu-
tion of the model problem may be interpreted as the displacement of two membranes
under the traction f . The left edge of the right membrane is not allowed to penetrate
below the right edge of the left membrane.

3. Domain decomposition and discretization. In our definition of the prob-
lem, we have so far used only the natural decomposition of the spatial domain Ω into
Ω1 and Ω2. However, to enable efficient application of the domain decomposition
methods, we can optionally decompose each Ωi into subdomains Ωi1, . . . ,Ωip, p > 1,
as in Figure 2. The continuity in Ω1 and Ω2 of the global solution assembled from the
local solutions uij will be enforced by the “gluing” conditions uij(x) = uik(x) that
should be satisfied for any x on the interface Γij,ik of Ωij and Ωik. After modifying
appropriately the definition of problem (2.1), introducing regular grids in the subdo-
mains Ωij that match across the interfaces Γij,kl, indexing contiguously the nodes and
entries of corresponding vectors in the subdomains, and using the Lagrangian finite
element discretization, we get the discretized version of problem (2.1) with auxiliary
domain decomposition that reads

min
1

2
u�Ku− f�u s.t. BIu ≤ 0 and BEu = 0.(3.1)

In (3.1), K denotes a block diagonal positive semidefinite stiffness matrix, the full rank
matrices BI and BE describe the discretized nonpenetration and gluing conditions,
respectively, and f represents the discrete analogue of the linear term �(u). The rows
of BE and BI are filled with zeros except 1 and −1 in positions that correspond to the
nodes with the same coordinates on the artificial or contact boundaries, respectively.
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In particular, if bi denotes a row of BE or BI , then bi will not have more than four
nonzero entries, and for any displacement vector u, biu will denote the difference or
jump between the displacements on each side of the boundary. Some more details
may be found in [12].

Our next step is to simplify the problem, in particular to replace the general
inequality constraints BIu ≤ 0 by the nonnegativity constraints using the duality
theory. To this end, let us introduce the Lagrangian associated with problem (3.1) by

L(u, λI , λE) =
1

2
u�Ku− f�u + λ�

I BIu + λ�
E BEu,(3.2)

where λI and λE are the Lagrange multipliers associated with inequalities and equal-
ities, respectively. Introducing the notation

λ =

[
λI
λE

]
and B =

[
BI
BE

]
,

we can observe that B is a full rank matrix and write the Lagrangian briefly as

L(u, λ) =
1

2
u�Ku− f�u + λ�Bu.

It is well known [4] that (3.1) is equivalent to the saddle point problem

Find (u, λ) so that L(u, λ) = sup
λI≥0

inf
u

L(u, λ).(3.3)

For fixed λ, the Lagrange function L(·, λ) is convex in the first variable and the
minimizer u of L(·, λ) satisfies

Ku− f + B�λ = 0.(3.4)

Equation (3.4) has a solution iff

f −B�λ ∈ ImK,(3.5)

which can be expressed more conveniently by means of a matrix R whose columns
span the null space of K as

R�(f −B�λ) = 0.(3.6)

The matrix R may be formed directly so that each floating subdomain is assigned
to a column of R with ones in positions of the nodal variables that belong to the
subdomain, and zeros elsewhere. It may be checked that R�B� is a full rank matrix.
The matrix R may also be extracted from K [23]. Now assume that λ satisfies (3.5)
and denote by K† any matrix that satisfies

KK†K = K.(3.7)

Let us note that a generalized inverse K† that satisfies (3.7) may be evaluated at a
cost comparable with the Cholesky decomposition of regularized K [23]. It may be
verified directly that if u solves (3.4), then there is a vector α such that

u = K†(f −B�λ) + Rα.(3.8)
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After substituting expression (3.8) into problem (3.3) and changing signs, we shall get
the minimization problem to find

min Θ(λ) s.t. λI ≥ 0 and R�(f −B�λ) = 0,(3.9)

where

Θ(λ) =
1

2
λ�BK†B�λ− λ�BK†f.(3.10)

Once the solution λ of (3.9) is known, the vector u that solves (3.1) can be
evaluated by (3.8) and the formula [12]

α = −(R�B̃�B̃R)−1R�B̃�B̃K†(f −B�λ),(3.11)

where B̃ = [B̃�
I , B�

E ]�, and the matrix B̃I is formed by the rows bi of BI that
correspond to the positive components of the solution λ characterized by λi > 0.

4. Natural coarse grid. Even though the problem (3.9) is much more suitable
for computations than (3.1) and was used to solve the discretized variational inequal-
ities efficiently [11], further improvement may be achieved by adapting some simple
observations and the results of Farhat, Mandel, and Roux [25]. Let us denote

F = BK†B�, d̃ = BK†f,

G̃ = R�B�, ẽ = R�f,

and let T denote a regular matrix that defines orthonormalization of the rows of G̃
so that the matrix

G = TG̃

has orthonormal rows. After denoting

e = T ẽ,

problem (3.9) reads

min
1

2
λ�Fλ− λ�d̃ s.t. λI ≥ 0 and Gλ = e.(4.1)

Next we shall transform the problem of minimization on the subset of the affine
space to that on the subset of the vector space by looking for the solution of (4.1) in

the form λ = μ+ λ̃, where Gλ̃ = e. The following lemma shows that we can even find
λ̃ such that λ̃I = 0.

Lemma 4.1. Let B be such that the negative entries of BI are in the columns
that correspond to the nodes in the floating subdomain Ω2. Then there is λ̃I ≥ 0 such
that Gλ̃ = ẽ.

Proof. See [15] (coercive problem) or [16] (semicoercive problem).

To carry out the transformation, denote λ = μ + λ̃ so that

1

2
λ�Fλ− λ�d̃ =

1

2
μ�Fμ− μ�(d̃− Fλ̃) +

1

2
λ̃�Fλ̃− λ̃�d̃
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and the problem (4.1) is, after returning to the old notation, equivalent to

min
1

2
λ�Fλ− λ�d s.t. Gλ = 0 and λI ≥ −λ̃I ,(4.2)

where d = d̃− Fλ̃ and λ̃I ≥ 0.
Our final step is based on observation that the problem (4.2) is equivalent to

min
1

2
λ�(PFP + ρQ)λ− λ�Pd s.t. Gλ = 0 and λI ≥ −λ̃I ,(4.3)

where ρ is arbitrary positive constant and

Q = G�G and P = I −Q

denote the orthogonal projectors on the image space of G� and on the kernel of G,
respectively. The regularization term is introduced in order to simplify the reference
to the results of quadratic programming that assume regularity of the Hessian matrix
of the quadratic form. The problem (4.3) turns out to be a suitable starting point for
development of an efficient algorithm for variational inequalities due to the classical
estimates of the extreme eigenvalues. To formulate them, we shall denote by αmin(A)
and αmax(A) the smallest and the largest eigenvalue of a given symmetric matrix A,
respectively.

Theorem 4.2. There are constants C1 > 0 and C2 > 0 independent of the
discretization parameter h and the decomposition parameter H such that

αmin(PFP |ImP ) ≥ C1 and αmax(PFP |ImP ) ≤ ||PFP || ≤ C2
H

h
.(4.4)

Proof. See Theorem 3.2 of Farhat, Mandel, and Roux [25].
Note: The statement of Theorem 3.2 in [25] gives only an upper bound on the

spectral condition number κ(PFP |ImP ). However, the reasoning that precedes and
substantiates their estimate proves both bounds of (4.4).

5. Optimal solvers to bound and equality constrained problems. We
shall now briefly review our, in a sense, optimal algorithms for the solution of the
bound and equality constrained problem (4.3). They combine our semimonotonic
augmented Lagrangian method [8] which generates approximations for the Lagrange
multipliers for the equality constraints in the outer loop with the working set algorithm
for bound constrained auxiliary problems in the inner loop [21]. If a new Lagrange
multiplier vector μ is used for the equality constraints, the augmented Lagrangian for
problem (4.3) can be written as

L(λ, μ, ρ) =
1

2
λ�(PFP + ρQ)λ − λ�Pd + μ�Gλ + ρλ�Qλ.

The gradient of L(λ, μ, ρ) is given by

g(λ, μ, ρ) = (PFP + ρQ)λ− Pd + GT (μ + ρGλ).

Let I denote the set of the indices of the bound constrained entries of λ ≥ −λ̃. The
projected gradient gP = gP (λ, μ, ρ) of L at λ is given componentwise by

gPi =

{
gi for λi > −λ̃i or i /∈ I,
g−i for λi = −λ̃i and i ∈ I,



SCALABLE FETI FOR VARIATIONAL INEQUALITIES 507

where g−i = min{gi, 0}. Our algorithm is a variant of that proposed by Conn, Gould,
and Toint [6] for identifying stationary points of more general problems. Its modifica-
tion by Dostál, Friedlander, and Santos [10] was used by Dostál and Horák to develop
a scalable FETI based algorithm, as shown experimentally in [14]. The key to proving
optimality results is to combine the adaptive precision control of auxiliary problems
in Step 1 with the new update rule for the penalty parameter ρ in Step 4. All the
necessary parameters are listed in Step 0, and typical values of these parameters for
our model problem are given in brackets.

Algorithm 5.1. Semimonotonic augmented Lagrangian method for bound and
equality constrained problems (SMALBE).
Step 0. {Initialization of parameters.}

Given η > 0 [η = ‖Pd‖], β > 1 [β = 10], M > 0 [M = 1],
ρ0 > 0 [ρ0 = 100], and μ0 [μ0 = 0], set k = 0.

Step 1. {Inner iteration with adaptive precision control.}
Find λk such that λk

I ≥ −λ̃I
||gP (λk, μk, ρk)|| ≤ min{M‖Gλk‖, η}.

Step 2. {Stopping criterion.}
If ||gP (λk, μk, ρk)|| and ||Gλk|| are sufficiently small,

then λk is the solution.
end if.

Step 3. {Update of the Lagrange multipliers.}
μk+1 = μk + ρkGλk

Step 4. {Update the penalty parameter.}
If k > 0 and L(λk, μk, ρk) < L(λk−1, μk−1, ρk−1) + ρk‖Gλk‖2/2

then ρk+1 = βρk
else ρk+1 = ρk

end if.
Step 5. Increase k and return to Step 1.

Step 1 may be implemented by any algorithm for minimization of the augmented

Lagrangian L with respect to λ subject to λI ≥ −λ̃I , which guarantees convergence
of the projected gradient to zero. More about the properties and implementation of
SMALBE algorithm may be found in [8].

The unique feature of the SMALBE algorithm is its capability to find an approx-
imate solution to problem (4.3) in a number of steps which is uniformly bounded
in terms of the bounds on the spectrum of PFP + ρQ [8]. To get a bound on the
number of matrix multiplication, it is necessary to have an algorithm which can solve
the problem

minimize L(λ, μ, ρ) s.t. λI ≥ −λ̃I(5.1)

with the rate of convergence in terms of the bounds on the spectrum of the Hessian
matrix of L.

To describe such an algorithm, let us recall that the unique solution λ = λ(μ, ρ)
of (5.1) satisfies the Karush–Kuhn–Tucker (KKT) conditions

gP (λ, μ, ρ) = 0.(5.2)

Let A(λ) and F(λ) denote the active set and free set of indices of λ, respectively,
i.e.,

A(λ) = {i ∈ I : λi = −λ̃i} and F(λ) = {i : λi > −λ̃i or i /∈ I}.
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To enable an alternative reference to the KKT conditions [4], let us define the free
gradient ϕ(λ) and the chopped gradient β(λ) by

ϕi(λ) =

{
gi(λ) for i ∈ F(λ),
0 for i ∈ A(λ)

and βi(λ) =

{
0 for i ∈ F(λ),
g−i (λ) for i ∈ A(λ)

so that the KKT conditions are satisfied iff the projected gradient gP (λ) = ϕ(λ)+β(λ)

is equal to zero. We call λ feasible if λi ≥ −λ̃i for i ∈ I. The projector P to the set
of feasible vectors is defined for any λ by

P (λ)i = max{λi,−λ̃i} for i ∈ I, P (λ)i = λi for i /∈ I.

Let A denote the Hessian of L with respect to λ. The expansion step is defined
by

λk+1 = P
(
λk − αϕ(λk)

)
(5.3)

with the steplength α ∈ (0, ‖A‖−1]. This step may expand the current active set. To
describe it without P , let ϕ̃(λ) be the reduced free gradient for any feasible λ, with
entries

ϕ̃i = ϕ̃i(λ) = min{λi/α, ϕi} for i ∈ I, ϕ̃i = ϕi for i ∈ E

such that

P (λ− αϕ(λ)) = λ− αϕ̃(λ).(5.4)

If the inequality

||β(λk)||2 ≤ Γ2ϕ̃(λk)�ϕ(λk)(5.5)

holds, then we call the iterate λk strictly proportional. The test (5.5) is used to decide
which component of the projected gradient gP (λk) will be reduced in the next step.

The proportioning step is defined by

λk+1 = λk − αcgβ(λk).

The steplength αcg is chosen to minimize L(λk − αβ(λk), μk, ρk) with respect to α,
i.e.,

αcg =
β(λk)�g(λk)

β(λk)�Aβ(λk)
.

The purpose of the proportioning step is to remove indices from the active set.
The conjugate gradient step is defined by

λk+1 = λk − αcgp
k,(5.6)

where pk is the conjugate gradient direction [2] which is constructed recurrently. The
recurrence starts (or restarts) with ps = ϕ(λs) whenever λs is generated by the
expansion step or the proportioning step. If pk is known, then pk+1 is given by the
formulae [2]

pk+1 = ϕ(λk) − γpk, γ =
ϕ(λk)�Apk

(pk)�Apk
.(5.7)
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The conjugate gradient steps are used to carry out the minimization in the face
WJ = {λ : λi = 0 for i ∈ J } given by J = A(λs) efficiently. The algorithm that we
use may now be described as follows.

Algorithm 5.2. Modified proportioning with reduced gradient projections
(MPRGP).

Let λ0 be an n-vector such that λi ≥ −λ̃i for i ∈ I, α ∈ (0, ‖A‖−1], and Γ > 0 be
given. For k ≥ 0 and λk known, choose λk+1 by the following rules:
Step 1. If gP (λk) = 0, set λk+1 = λk.
Step 2. If λk is strictly proportional and gP (λk) �= 0, try to generate λk+1 by the
conjugate gradient step. If λk+1

i ≥ 0 for i ∈ I, then accept it, else generate λk+1 by
the expansion step.
Step 3. If λk is not strictly proportional, define λk+1 by proportioning.

The MPRGP algorithm has an R-linear rate of convergence in terms of the spec-
tral condition number of the Hessian A of L [21]. More about the properties and
implementation of the SMALBE algorithm may be found in [21] and [9].

6. Optimality. To show that Algorithm 5.1 with the inner loop implemented
by Algorithm 5.2 is optimal for the solution of problem (or a class of problems) (4.3),
we shall introduce new notation that complies with that used in [9].

We shall use

T = {(H,h) ∈ R
2 : H ≤ 1, 2h ≤ H and H/h ∈ N}

as the set of indices. Given a constant C ≥ 2, we shall define a subset TC of T by

TC = {(H,h) ∈ R
2 : H ≤ 1, 2h ≤ H, H/h ∈ N and H/h ≤ C}.

For any t ∈ T , we shall define

At = PFP + ρQ, bt = Pd,

Ct = G, �t,I = −λ̃I , and �t,E = −∞

by the vectors and matrices generated with the discretization and decomposition
parameters H and h, respectively, so that the problem (4.3) is equivalent to the
problem

minimize Θt(λt) s.t. Ctλt = 0 and λt ≥ �t,(6.1)

where Θt(λ) = 1
2λ

�Atλ − b�t λ. Using these definitions, Lemma 4.1, and GG� = I,
we obtain

‖Ct‖ ≤ 1 and ‖�+t ‖ = 0,(6.2)

where for any vector v with the entries vi, v+ denotes the vector with the entries
v+
i = max{vi, 0}. Moreover, it follows by Theorem 4.2 that for any C ≥ 2 there are

constants aCmax > aCmin > 0 such that

aCmin ≤ αmin(At) ≤ αmax(At) ≤ aCmax(6.3)

for any t ∈ TC . Moreover, there are positive constants C1 and C2 such that aCmin ≥ C1

and aCmax ≤ C2C. In particular, it follows that the assumptions of Theorem 5 (i.e.,
the inequalities (6.2) and (6.3)) of [9] are satisfied for any set of indices TC , C ≥ 2,
and we have the following result.
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Theorem 6.1. Let C ≥ 2 denote a given constant; let {λk
t }, {μk

t }, and {ρt,k}
be generated by Algorithm 5.1 (SMALBE) for (6.1) with ‖bt‖ ≥ ηt > 0, β > 1,
M > 0, ρt,0 = ρ0 > 0, and μ0

t = 0. Let s ≥ 0 denote the smallest integer such that
βsρ0 ≥ M2/amin and assume that Step 1 of Algorithm 5.1 is implemented by means
of Algorithm 5.2 (MPRGP) with parameters Γ > 0 and α ∈ (0, (amax + βsρ0)

−1], so

that it generates the iterates λk,0
t , λk,1

t , . . . , λk,l
t = λk

t for the solution of (6.1) starting

from λk,0
t = λk−1

t with λ−1
t = 0, where l = lt,k is the first index satisfying

‖gP (λk,l
t , μk

t , ρt,k)‖ ≤ M‖Ctλ
k,l
t ‖(6.4)

or

‖gP (λk,l
t , μk

t , ρt,k)‖ ≤ ε‖bt‖min{1,M−1}.(6.5)

Then for any t ∈ TC and problem (6.1), Algorithm 5.1 generates an approximate
solution λkt

t which satisfies

M−1‖gP (λkt
t , μkt

t , ρt,kt
)‖ ≤ ‖Ctλ

kt
t ‖ ≤ ε‖bt‖(6.6)

at O(1) matrix-vector multiplications by the Hessian of the augmented Lagrangian Lt

for (6.1) and ρt,k ≤ βsρ0.

7. Numerical experiments. In this section we report some results of numerical
solution of the semicoercive model problem of section 2 in order to illustrate the
performance of the algorithm, in particular its numerical and parallel scalability. To
this end, we have implemented Algorithm 5.1 with the solution of auxiliary bound
constraints by Algorithm 5.2 in C exploiting PETSc [3] to solve problem (4.3) with
varying decomposition and discretization parameters.

The experiments were run on the Lomond 18-processor Sun HPC 6500 Ultra
SPARC-II based SMP system with 400 MHz, 18 GB of shared memory, 90 GB disc
space, nominal peak performance 14.4 GFlops, 16 kB level 1 and 8 MB level 2 cache
in EPCC Edinburgh, and on the Turing Cray T3E 1200, 788 applications processors,
each 1.2 GFlops with 256 MB, 209 GB memory, 28 command processors, 2TB disk
space, high-speed network with low latency in the University of Manchester. All the
computations were carried out with parameters

M = 1, ρ0 = 10, Γ = 1, λ0 = max

{
−λ̃,

1

2
Bf

}
, ε = 10−4.

The solutions of our benchmarks are in Figure 3. The results of computations are
summarized in Tables 1–3.

Table 1 illustrates numerical scalability of Algorithm 5.1. In particular, for vary-
ing decompositions and discretization parameters, the upper row of each field of the ta-
ble gives the corresponding primal dimension/dual dimension/times in seconds, while
the number in the lower row gives a number of the conjugate gradient iterations that
were necessary for the solution of the problem to the given precision. We can see that
the number of the conjugate gradient iterations for a given ratio H/h (in rows) varies
very moderately.

Table 2 indicates that the algorithm presented enjoys high parallel scalability.
The results for the largest problems are in Table 3.
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Fig. 3a: Coercive problem Fig. 3b: Semicoercive problem

Fig. 3. Solution of model problems.

Table 1

Performance for varying decomposition and discretization.

H 1 1/2 1/4 1/8
H/h \ procs 2 8 16 16

128 33282/129/41.95 133128/1287/89.50 532512/6687/74.9 2130048/29823/421.5
28 59 36 47

64 8450/65/2.04 33800/647/4.14 135200/3359/7.10 540800/14975/53.48
22 47 33 43

32 2178/33/0.20 8712/327/0.50 34848/1695/1.48 139392/7551/11.66
17 33 30 37

16 578/17/0.04 2312/167/0.18 9248/863/0.68 36992/3839/4.30
13 29 26 32

8 162/9/0.03 648/87/0.10 2592/447/0.39 10365/1983/2.06
10 20 23 27

4 50/5/0.01 200/47/0.04 800/239/0.28 3200/1055/1.30
7 19 22 25

Table 2

Parallel scalability for 128 subdomains.

Processors 1 2 4 8 16 32
Time[sec] 2907.13 1022.03 462.4 165.8 68.06 51.40

Table 3

Highlights.

h H Prim. Dual. Num. of Procs Out. Cg. Time
dim. dim. subdom. iter. iter. [sec]

1/1024 1/8 2130048 29823 128 32 of Lomond 2 47 167
1/2048 1/8 8454272 59519 128 32 of Lomond 2 65 1202

8. Comments and conclusion. We have presented scalability results related
to the application of the augmented Lagrangians with the FETI based domain decom-
position method using the natural coarse grid to the solution of variational inequalities
by recently developed algorithms for the solution of special quadratic programming
problems. In particular, we have shown that the solution of the discretized elliptic vari-
ational inequality to a prescribed precision may be found in a number of matrix vector
multiplications bounded independently of the discretization parameter provided the
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ratio of the decomposition and the discretization parameters is kept bounded. Nu-
merical experiments with a model variational inequality are in agreement with the
theory and indicate that the algorithm may be efficient. The results remain valid also
for the solution of frictionless 2D and 3D contact problems of elasticity and may be
adapted to the solution of problems with Coulomb friction as indicated in [17]. The
solution of auxiliary linear problems in the inner loop may be improved by standard
preconditioners [29, 35, 38] and may be adapted to the mortar discretization [39];
however, since the preconditioning transforms the bound constraints to more general
inequality constraints, it is nontrivial to get improved convergence results in this way.
We shall discuss these topics elsewhere.
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libre, Comptes Rendus de l’Academie des Sciences Sr. I, 298, 1984, pp. 469–472 (in French).

[35] J. Mandel and R. Tezaur, Convergence of substructuring method with Lagrange multipliers,
Numer. Math., 73 (1996), pp. 473–487.
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1. Introduction. In this paper we study a generalized version of the Runge–
Kutta discontinuous Galerkin (RK-DG) approximation of Cockburn and Shu (see
[10, 7, 11]) for nonlinear scalar conservation laws in several space dimensions. As a
prototype conservation law, consider the Cauchy initial value problem

∂tu + ∇ · f(u) = 0 in R
d × R

+ ,(1.1)

u(x, 0) = u0(x) in R
d.(1.2)

Here u : R
d × R

+ → R denotes the dependent solution variable, f ∈ C1(R) denotes
the flux function, and u0 ∈ BV(Rd) ∩ L∞(Rd) the initial data with u0 ∈ [A,B] a.e.
It is well known (see, for example, [15, 12]) that (1.1)–(1.2) admits a unique entropy
weak solution in the class of functions of bounded variation (BV). For later use let
us briefly recall that an entropy weak solution is a weak solution of (1.1)–(1.2) which
satisfies for all entropy pairs (S, FS) and all test functions φ ∈ C1

0 (Rd × R
+,R+):

−
∫

Rd

∫
R+

(S(u)∂tφ + FS(u) · ∇φ) dt dx−
∫

Rd

S(u0)φ(x, 0) dx ≤ 0 .(1.3)

Recall that (S, FS) is called an entropy-entropy flux pair or, more simply, an entropy
pair for (1.1), iff S is convex and F ′

S = S′f ′.
Numerical methods for nonlinear hyperbolic conservation laws are usually rather

complicated since they need to approximate a partial differential equation with non-
standard stability behavior. It turns out that in many successful computational meth-
ods the theoretical backup is very limited. This is partly because when constructing
high-order methods, stabilization terms have to be added so that in the limit the
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solution satisfying (1.3) is computed. These mechanisms include shock capturing
terms or limiters that result in complicated and highly nonlinear schemes; see [8] for a
comprehensive review of high-order finite difference, finite volume, and finite element
methods for hyperbolic conservation laws. The RK-DG approximation of Cockburn
and Shu [11] is a very successful method that combines many desirable properties. It is
based on totally discontinuous finite element spaces for the space discretization, while
the time discretization is based on appropriate Runge–Kutta schemes. The available
theory for RK-DG methods for nonlinear problems is limited to certain stability and
TVD (total variation diminishing) properties proved in [9, 11] and to error estimates
for one dimensional smooth solutions (see [35]). The problem of showing convergence
towards the unique entropy solution for the high-order version of these methods seems
rather difficult.

In this paper we consider a generalized version of RK-DG methods designed for
use with dynamic mesh modification. We are interested in the following question: Is
it possible to establish a rigorous error control for RK-DG methods in mesh adap-
tive computations? An answer to this question will be based on certain a posteriori
estimates and does not necessarily depend on available a priori convergence results
for the method. As a consequence, it provides a (nonstandard) way of theoretical
backup for a method with no available convergence theory. In this context we also
refer to [16], where this was done for MUSCL finite difference schemes.

First, we prove a posteriori error estimates for generalized DG methods. We then
use these estimates to provide an hp-adaptive algorithm that is used together with a
rigorous error control. The computational performance of the resulting methods and
algorithms is tested in one dimensional examples.

The literature on a posteriori error control and adaptive solution algorithms for
(RK-DG) approximations is scant. We refer, for instance, to Hartmann and Hous-
ton [18] and Larson and Barth [27], where duality techniques were used for designing
adaptive schemes. We also refer to Süli and Houston and coworkers [20, 19, 33] for
hp-adaptive DG methods for hyperbolic problems. Another approach towards error
control for DG methods was introduced by Adjerid et al. [1], where asymptotically
correct a posteriori estimates of spatial discretization errors were derived in one di-
mension for smooth solutions.

2. Formulation of the generalized DG methods and main results. Let
T denote an element decomposition of R

d with control volumes Tj ∈ T , j ∈ J
such that ∪T∈T T = R

d. Let hT denote a length scale associated with each control
volume T , e.g., hT ≡ diam(T ). For two distinct control volumes Ti and Tj in T ,
the intersection is either an oriented edge (d = 2) or face (d = 3) Sij with oriented
normal νij , or else a set of measure at most d − 2. The set N(j) denotes the index
set of neighboring control volumes to Tj , and the index set of the oriented edges or
faces of the grid is given by E = {(j, l)|Tj ∈ T , l ∈ N(j), j > l}. The set of edges
or faces of the element decomposition T will be denoted by Γ. On T we define the
space of (possible) discontinuous piecewise polynomials of degree p by V p

h := {vh ∈
BV (Rd)| vT := vh|T ∈ Pp for all T ∈ T }. Let us denote by ΠV p

h
the L2-projection

into V p
h . Furthermore, following standard notation, [vh]|Sij := (vj |Sij − vi|Sij )νij is

the jump of vh on the edge Sij , and {vh}Sij := 1/2(vj |Sij + vi|Sij ) denotes the mean
of vh at an interface.
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Definition 2.1 (space-discrete DG approximation). uh ∈ C1(0, T ;V p
h ) is called

a semidiscrete DG approximation of (1.1)–(1.2) iff

uh(0) = ΠV p
h
(u0),(2.1)

d

dt
(uh(t), vh) − (f(uh(t)),∇vh) + (fh(uh(t)), [vh])Γ = 0 for all vh ∈ V p

h .(2.2)

Here (·, ·) denotes the L2 inner product, (·, ·)Γ denotes the L2 inner product on the
set of interfaces in Γ, and fh denotes a given numerical flux function that is uniquely
defined on the interfaces of the element decomposition (see Assumption 2.2).

Note that due to the fact that both uh and the test space V p
h are discontinuous,

the global definition of the scheme (2.2) is equivalent to the following local one:

d

dt
(uj(t), vj)Tj − (f(uj(t)),∇vj)Tj +

∑
l∈N(j)

(fjl(uj(t), ul(t)), vj)Sjl
= 0(2.3)

for all vj ∈ Pp, Tj ∈ T .

Here (·, ·)Tj
, (·, ·)Sjl

denote the local inner product on Tj , Sjl, respectively, and
fjl(uj(t), ul(t)) is the restriction of fh(uh) to Sjl. Note that the numerical fluxes
fjl are usually defined via a standard finite difference “upwind-type” one dimensional
flux, and it is the only source of “artificial viscosity” in the scheme (2.2). We make
the following standard assumptions on the numerical flux function.

Assumption 2.2 (numerical flux function). The numerical fluxes are supposed
to be functions fjl ∈ C1(R2,R) which satisfy for all u, v, u′, v′ ∈ [A,B] the following
conditions (respectively, monotony, conservation, regularity, and consistency):

∂ufjl(u, v) ≥ 0, ∂vfjl(u, v) ≤ 0, fjl(u, v) = −flj(v, u),(2.4)

fjl(u, u) = njl|Sjl|f(u), |fjl(u, v) − fjl(u
′, v′)| ≤ LSjl|(|u− u′| + |v − v′|).(2.5)

In the literature of DG methods the stabilization due to the “upwinding” of the
discrete fluxes is usually accompanied by extra artificial “shock capturing” terms
as in [21, 22, 5] or limiting projections as in [11]. (Error estimates for the shock
capturing DG method were obtained in [5].) The RK-DG methods introduced by
Cockburn and Shu are based on a combination of limiting projections and Runge–
Kutta discretization of the ODE (2.2). Therefore, in the next step we are going to
introduce limiting projections in the discretization that will be chosen in section 5.

2.1. Generalized semidiscrete DG approximation. We introduce a hybrid
scheme that incorporates all the characteristics of a RK-DG scheme used with mesh
modification with time, but assumes that the ODE in time is solved exactly in each
time step. To this end we introduce a partition of the time interval (0, Tmax), {0 =
t0, . . . , tN = Tmax}, and we define the time step Δtn := tn+1 − tn. With each time
interval (tn, tn+1] we associate a (possibly different) finite element space V p

h,n on a
grid Tn defined as

V p
h,n := {vh ∈ BV (Rd)| vh|T ∈ Pp for all T ∈ Tn}.(2.6)

The associated index set of the grid Tn is denoted by Jn. In what follows we might
often drop the index n in objects related to the finite element space.

To define a local projection operator we proceed as follows: We define vh through
vj := ΠV 0

h
(v)|Tj for any v ∈ L2(Ω); i.e., vh is the elementwise average of v. Further-

more, with each n we associate projections Λn,t
h with the following properties.
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Assumption 2.3 (projection operator). The projection Λn,t
h is supposed to be a

continuous function with respect to t on the interval [tn, tn+1]. If t ∈ (tn, tn+1], the
operators act Λn,t

h : V p
h,n → V p

h,n and satisfy

Λn,t
h (vh(·, t)) = vh(t), t ∈ (tn, tn+1] .(2.7)

In addition, Λn,tn

h : V p
h,n−1 → V p

h,n is a projection to the new mesh, with the property

Λn,tn

h (vh(·, tn)) = vh(tn) .(2.8)

In the last equation the elementwise average is taken in the new mesh, i.e., corresponds
to the projection ΠV 0

h,n
. At tn the two operators Λn,tn

h and Λn−1,tn

h satisfy

‖Λn,tn

h (uh) − uh‖∞ ≤ ‖Λn−1,tn

h (uh) − uh‖∞.(2.9)

Properties (2.7), (2.8) lead to a conservation of mass, whereas assumption (2.9)
guarantees that the gradients in the discrete solution are not increased between time
steps. Note that Λn,t

h accounts for both limiting projections and projections to the

new spaces. We define the restriction of Λn,t
j through Λn,t

j ≡ Λn,t
h in Tj × [tn, tn+1],

j ∈ Jn.
Definition 2.4 (generalized semidiscrete DG approximation). Suppose that Λn,t

h

with the above properties is given, and assume that the fluxes fij are monotone. uh is
called a generalized semidiscrete DG approximation of (1.1)–(1.2) if u−1

h := ΠV p
h,0

(u0)

and for n = 0, . . . , N − 1, un
h|[tn,tn+1] ∈ C1(tn, tn+1;V p

h,n) is defined through

un
h(tn) := Λn,tn

h (un−1
h (tn)) ,(2.10)

d

dt
(un

j (t), vj)Tj = −
∑

l∈N(j)

(fjl(Λ
n,t
j (un

h(t)),Λn,t
l (un

h(t))), vj)Sjl
(2.11)

+ (f(Λn,t
j (un

h(t))),∇vj)Tj
for all vj ∈ Pp, j ∈ Jn, t ∈ (tn, tn+1) .

We then define uh ∈ L∞(0, Tmax;V
p
h,n) as uh(0) := u−1

h , and uh|(tn,tn+1] := un
h|(tn,tn+1].

In section 5 we combine the above method with Runge–Kutta time discretizations
to obtain the generalized class of fully discrete RK-DG methods. This class includes
the method of Cockburn and Shu, but we consider alternative choices for the limiting
projections motivated by the a posteriori result for (2.10)–(2.11), proved in what
follows.

2.2. A posteriori error estimate for the semidiscrete DG method. We
will show a posteriori estimates for the error ‖(u − uh)(Tmax)‖L1 . To do that we
compare u and uh with ũh defined as

ũh(t) = Λn,t
h (uh(t)) for t ∈ (tn, tn+1], n = 0, . . . , N − 1.(2.12)

Then ‖(ũh − uh)(Tmax)‖L1 is an a posteriori quantity, and the control of ‖(u −
ũh)(Tmax)‖L1 will be obtained in what follows by employing Kruzkov estimates.

Note that, by definition, ũh might be discontinuous at the time nodes tn. This will
be the case either when the spatial mesh is modified at this node, or when we decide
to use different projections on (tn−1, tn] and (tn, tn+1]. In fact, due to the definitions
of uh and the projections, we have

ũh(tn+) − ũh(tn) = Λn,tn

h uh(tn) − Λn−1,tn

h uh(tn) = (Λn,tn

h − Λn−1,tn

h )uh(tn) .

(2.13)
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Before stating our main result we introduce the following notation:

ũj = ũh in Tj , ũn = ũh in (tn, tn+1], ũn(tn) = ũh(tn+),

with the obvious extension for combined indexes.
Theorem 2.5 (a posteriori error estimate for the semidiscrete DG method). Let

uh be given by the semidiscrete generalized DG method (2.10)–(2.11). For ũh given
by (2.12) we have the following a posteriori error estimate:

||(u− uh)(Tmax)||L1(BR(x0)) ≤ ||(ũh − uh)(Tmax)||L1(BR(x0)) + ηh,

where ηh := η0 +
√
K1η1 +

√
K2η2, η0 :=

∑
j∈J0 η0,j, ηi :=

∑
n

∑
j∈Jn ηni,j, i = 1, 2,

and the local contributions ηni,j are given as

η0,j :=

∫
Tj

|u0 − ũ0
j (0)|, ηn1,j := hjR

n
T,j +

1

2
hjlR

n
S,j + hjR

n
Λ,j ,

(2.14)

ηn2,j := ||ũn
j − ũn

j ||L∞((tn,tn+1)×Tj)R
n
T,j +

1

2
max

k∈{j,l}
||ũn

k − ũn
k ||L∞((tn,tn+1)×Sjl)R

n
S,j

+ ||ũn−1(tn) − ũn−1(tn)||L∞(Tj)R
n
Λ,j .(2.15)

Here, we used the notation

Rn
T,j :=

∫ tn+1

tn

∫
Tj

∣∣∣∂tũj + ∇ · f(ũj)
∣∣∣, Rn

Λ,j :=

∫
Tj

|ũn(tn+1) − ũn+1(tn+1)|,(2.16)

Rn
S,j :=

∫ tn+1

tn

∑
l∈N(j)

∫
Sjl

Qjl(ũj , ũl)|ũj − ũl|, hjl := max
l∈N(j)

diam(Tj ∪ Tl),(2.17)

and Qjl(u, v) :=
2fjl(u, v) − fjl(u, u) − fjl(v, v)

u− v
.(2.18)

K1,K2 are constants depending on the total variation of the initial data and on the
maximal slope of the flux, but they are independent of the maximal time Tmax. The
independence of Tmax is due to the fact that we consider only the semidiscrete scheme.
For a detailed definition of the constants, see the proof on page 525.

The error estimator in Theorem 2.5 is composed of the two parts η1, η2. The first
part corresponds to the standard estimates known for first order schemes [6, 25, 30],
and the second part of the estimate corresponds to error terms which are present only
in higher order approximations. In the following Corollary 2.6 we have rearranged
these terms so that the estimate is more suitable for designing an adaptive scheme.

Corollary 2.6. With the assumptions and notations of Theorem 2.5, we have

ηh ≤ η0 + Rh, with R2
h = 2

∑
n

∑
j∈Jn

ρnj

(
Rn

T,j + Rn
S,j + Rn

Λ,j

)
,(2.19)

and ρnj := K1hj + K2 max
k∈{j, l∈N(j)}

||ũn
k − ũn

k ||L∞((tn,tn+1)×Tk).(2.20)

Proof. The estimate ηh ≤ η0 + Rh is a direct consequence of Theorem 2.5 if we
estimate

√
K1η1 +

√
K2η2 ≤

√
2K1η1 + 2K2η2. By rearranging terms in K1η1 +K2η2

and using hjl ≤ hj + hl, we obtain (2.19).
We are now going to discuss some aspects of the error estimate.
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Semidiscrete versus fully discrete estimates. The above a posteriori result
is extended in a straightforward manner when the ODE (2.1) is discretized by Euler’s
method. RK-DG methods, though, use high-order Runge–Kutta schemes for time
discretization. The proof of a result for high-order Runge–Kutta schemes is nontrivial
and requires new ideas. Therefore, an analysis of the fully discrete case is left for future
work.

The error bound of Theorem 2.5 is used to design our adaptive algorithm in section
5. To do that we introduce in section 4 the fully discrete generalized RK-DG method
and express it as an ODE for each time slab [tn, tn+1]. This is done by using the
natural continuous extension for Runge–Kutta schemes introduced by Zennaro [34].

First-order versus high-order estimates. In the case p = 0 the DG method
reduces to a standard finite volume scheme that allows mesh modification with n.
Then the first term in ηn1,j and the whole ηn2,j will be zero. The last term in ηn1,j
will account for coarsening errors due to mesh modification. Such terms were not
included in the previous a posteriori estimates for finite volume schemes [6, 25, 29].
Another implication due to higher-order polynomials used in the finite element spaces
is the appearance of ũn

j − ũn
j in various norms in the term ηn2,j . A comparison with

ηn1,j leads to the conclusion that it would be desirable to have ũn
j − ũn

j = O(hj).
In general this is not guaranteed unless ũn

j is a result of certain limiting projections
which restrict gradients or/and polynomial degrees of uh. This observation is one of
the main motivations for the choice of the limiting projections and the design of the
adaptive algorithm in section 5.

Computational “convergence” of the estimators. Theorem 2.5 is a rather
general result that covers any projection Λn,t

h with the properties (2.7) and (2.8). In
addition, due to the generality of Kruzkov’s estimates used in the proof above, an a
posteriori bound can be seen as a “worst case scenario” upper bound. It is clear that
if in the computational runs the estimators converge to zero, then the error will do
the same. In this sense Theorem 2.5 allows for the design of error control algorithms
based on upper bound estimates. This issue is discussed in detail in sections 5 and 6.
At this point we would like to note that, among many other choices presented in
section 5, h− p versions of RK-DG methods allow error control algorithms based on
the estimators of Theorem 2.5. In addition, for the test problems discussed in this
paper we examine the computational behavior for the RK-DG method with limiters
from [10, 7] and the corresponding estimator of Theorem 2.5. Concluding, we are
able to provide adaptive error control based algorithms for both h− p and derivative
restriction generalized versions of DG methods.

The rest of the paper is organized as follows: In section 3 we prove Theorem 2.5.
The proof is based on an abstract Kruzkov estimate for approximations of the entropy
solution of the conservation law (Theorem 3.3) and on a weak cell entropy inequality
for the method (Lemma 3.4). In section 4 we present the fully discrete generalized
RK-DG method and its continuous in time form with the help of the “continuous
extension” for Runge–Kutta schemes. In section 5 we present the limiting projections
and the adaptive error control-based algorithms for the corresponding DG methods.
In section 6 we discuss the computational performance of the various methods in
several test cases.

3. Proof of the a posteriori error estimate. In this section we establish an
error estimate for approximations of conservation laws. It is an extension to smooth
entropies of the corresponding results in [24, 23, 4]. The notation and the form of the
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result follows [23, Lemma 4.1]. We start with the definition of the entropy residual.
Definition 3.1 (entropy residual RS). Let ũ ∈ L∞(Rd × R

+) be an arbitrary
function. Then, corresponding to the definition of an entropy weak solution, we define
the entropy residual RS by

〈RS(ũ), φ〉 :=

∫ ∫
Rd×R+

S(ũ)∂tφ + FS(ũ) · ∇φ +

∫
Rd

S(u0)φ(·, 0).(3.1)

For the error estimate we require a regularization of the Kruzkov entropy |v− k|.
Definition 3.2 (δ-regularized Kruzkov entropy). Let S̄ ∈ C2(R,R+) be given as

S̄(v) = (6v2 − v4)/8 if |v| ≤ 1 and S̄(v) = |v| − 3/8 otherwise. For any δ > 0, v ∈ R

let us define Sδ : R → R
+ by Sδ(v) := δS̄( vδ ). Furthermore, define FS,δ : R

2 → R for

any v, k ∈ R by FS,δ(v, k) :=
∫ v

κ
f ′(w)S′

δ(w − k)dw.
In the following result, uh stands for any approximation of problem (1.1)–(1.2).
Theorem 3.3 (abstract Kruzkov estimate). Let uh, u ∈ L∞

loc([0,∞), L1
loc(R

d)) be
right continuous in t, with values in L1

loc(R
d). Assume that u is the entropy solution

of (1.1)–(1.2). Let S(v) = S(v − k) = Sδ(v − k) be the δ-regularized Kruzkov entropy
and FS(v) = FS(v , k) = FS,δ(v , k) the corresponding entropy flux. Let Ψ ≥ 0 be a
test function Ψ ∈ C∞

c ((0,∞) × R
d), and assume that uh satisfies

−〈RS(uh),Ψ〉 = −
∫∫

(0,∞)×Rd

(
S(uh − k)∂tΨ + FS(uh , k) · ∇xΨ

)
dtdx

≤
∫∫

(0,∞)×Rd

⎛⎝βOBO(Ψ) + αG|∂tΨ| +
∑
j

βj
HBj

H

(
∂Ψ

∂xj

)⎞⎠ dxdt for all k ∈ R,

where αG, βO, β
j
H are nonnegative k-independent but possibly δ-dependent functions

in L1
loc([0,∞) × R

d) and αG ∈ L∞
loc([0,∞), L1

loc(R
d)).

For fixed Δ, δ > 0, let Th = {K} be a given element decomposition of [0,∞) ×
R

d into elements K such that diam(Kt) ≤ Δ in the case where BO or Bj
H is not

identically zero; here Kt = {x : (t, x) ∈ K}. If, in addition, for all (t, x) ∈ K,
1 ≤ i, j ≤ d,

|BO(Ψ)(t, x)| ≤ C sup
x′∈Kt

|Ψ(t, x′)| ,
∣∣∣∣Bj

H

(
∂Ψ

∂xj

)
(t, x)

∣∣∣∣ ≤ C sup
x′∈Kt

∣∣∣∣ ∂Ψ

∂xj
(t, x′)

∣∣∣∣ ,
(3.2)

where C is a constant independent of Ψ and the decomposition Th, then the following
estimate holds: for any Tmax ≥ 0, x0 ∈ R

d, R > 0, ρ > 0 with M = Lip(f), we have∫
|x−x0|<R

|uh(Tmax, x) − u(Tmax, x)|dx ≤
∫
B0

|uh(0, x) − u(0, x)|dx

+ C (M + 1)TV (u0) Δ + C{k1TV (u0) + k0 χsupp(uh−u)(Tmax) (R + Δ)d } δ

+ C

(
1 +

Tmax(1 + M)

Δ

)
sup

0≤t≤Tmax+ρ

∫
Bt

αG(t, x)dx

+ C

∫∫
0≤t≤Tmax x∈BΔ

t

⎛⎝βO(t, x) +
1

Δ

d∑
j=1

βj
H(t, x)

⎞⎠ dxdt ,
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where Bt = B(x0, R + M(Tmax − t) + Δ), BΔ
t = B(x0, R + M(Tmax − t) + 2Δ), and

χD denotes the characteristic function of the set D.
Proof. The proof follows the lines of [4, 24], where special attention has to be

paid to the treatment of the smooth approximation Sδ of the Kruzkov entropies. This
is done analogously to [6] and [28]. For a detailed version of the proof, we refer
to [13].

3.1. Estimate on the entropy residual. To apply the abstract theorem of
the previous subsection we need to estimate 〈RS(ũh), φ〉 for φ being a test function
and ũh defined in (2.12). This will be done in the following lemmas.

Lemma 3.4 (weak cell entropy inequality). Let (S, FS) denote a smooth entropy
pair. Then the following cell entropy inequality holds for ũh:

Inj := In1,j + In2,j + In3,j + In4,j = −Dn
j ≤ 0,(3.3)

where, for φ ∈ C1
0 (Rd × R

+,R+),

In1,j = (∂tS(ũn
j ) + ∇ · FS(ũn

j ), φj)Tj ,

In2,j =
∑

l∈N(j)

(
Fjl(ũ

n
j , ũ

n
l ) − FS(ũn

j ) · njl, φj

)
Sjl

,

In3,j = (∂tũ
n
j + ∇ · f(ũn

j ), (S′(ũn
j ) − S′(ũn

j ))φj)Tj ,

In4,j =
∑

l∈N(j)

(
fjl(ũ

n
j , ũ

n
l ) − f(ũn

j ) · njl, (S
′(ũn

j ) − S′(ũn
j ))φj

)
Sjl

,

Dn
j =

∑
l∈N(j)

(∫ ũn
l

ũn
j

∂wfjl(ũ
n
j , w)

∫ ũn
j

w

S′′(s)dsdw, φj

)
Sjl

.

Here Fjl(α, β) =
∫ β

α
∂sfjl(α, s)S

′(s)ds + FS(α) is a discrete entropy flux that is con-
sistent with FS.

Proof. Let p ≥ 0. We start by choosing vh = S′(ũn
h)φh in the local form, the

scheme (2.11). This yields

(∂tu
n
j , S

′(ũn
j )φj)Tj

+
∑

l∈N(j)

(fjl(ũ
n
j , ũ

n
l ), S′(ũn

j )φj)Sjl
= 0.

Next, (2.7) implies (∂tu
n
j , vj)Tj = (∂tũ

n
j , vj)Tj for all vh ∈ V 0

h,n. Therefore

(∂tũ
n
j , S

′(ũn
j )φj)Tj +

∑
l∈N(j)

(fjl(ũ
n
j , ũ

n
l ), S′(ũn

j )φj)Sjl
= 0.

We insert zeros to get

0 = (∂tũ
n
j + ∇ · f(ũn

j ), S′(ũn
j )φj)Tj +

∑
l∈N(j)

(
fjl(ũ

n
j , ũ

n
l ) − f(ũn

j ) · njl, S
′(ũn

j )φj

)
Sjl

+ (∂tũ
n
j + ∇ · f(ũn

j ), (S′(ũn
j ) − S′(ũn

j ))φj)Tj

+
∑

l∈N(j)

(
fjl(ũ

n
j , ũ

n
l ) − f(ũn

j ) · njl, (S
′(ũn

j ) − S′(ũn
j ))φj

)
Sjl

.
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We complete the proof with the following identity:

(fjl(ũ
n
j , ũ

n
l ) − f(ũn

j ) · njl)S
′(ũn

j ) = (fjl(ũ
n
j , ũ

n
l ) − fjl(ũ

n
j , ũ

n
j ))S′(ũn

j )

=

∫ ũn
l

ũn
j

∂wfjl(ũ
n
j , w)S′(w)dw +

∫ ũn
l

ũn
j

∂wfjl(ũ
n
j , w)

(
S′(ũn

j ) − S′(w)
)
dw

= Fjl(ũ
n
j , ũ

n
l ) − Fjl(ũ

n
j , ũ

n
j ) +

∫ ũn
l

ũn
j

∂wfjl(ũ
n
j , w)

∫ ũn
j

w

S′′(s)dsdw .

Remark 3.5. (1) Note that the dissipation term Dn
j in the cell entropy inequality

(3.3) is positive because of the monotonicity of the numerical flux and the convexity
of S. (2) If p = 0, we have In3,j , I

n
4,j = 0. (3) As expected for a high-order scheme,

the weak cell entropy inequality is, in general, not a real cell entropy inequality in
the classical sense. However, its use is important to conclude the following estimates;
compare to [16].

Lemma 3.6 (entropy residual for the semidiscrete DG approximation). Let uh, ũh

as before. Then the following estimate holds true for all φ ∈ C1
0 (Rd × (0, Tmax),R

+):

〈RS(uh), φ〉 ≥ T1 + T2 + T3 + T4 + T5 + T6,(3.4)

where

T1 :=

∫ ∫
Rd×R+

(
∂tS(ũh) + ∇ · FS(ũh)

)(
φh − φ

)
,

T2 :=

∫ T

0

∑
j∈Jn

∑
l∈N(j)

(
Fjl(ũ

n
j , ũ

n
l ) − FS(ũn

j ), φh − φ
)
Sjl

,

T3 :=
∑
n

∫ tn+1

tn

∑
j∈Jn

(
∂tũ

n
j + ∇ · f(ũn

j ), (S′(ũn
j ) − S′(ũn

j ))φj

)
Tj

,

T4 :=
∑
n

∫ tn+1

tn

∑
j∈Jn

∑
l∈N(j)

(
fjl(ũ

n
j , ũ

n
l ) − f(ũn

j ) · njl, (S
′(ũn

j ) − S′(ũn
j ))φj

)
Sjl

,

T5 :=
∑
n

∑
j∈Jn

(
ũn
j (tn) − ũn−1

j (tn),

∫ 1

0

S′(uj(θ))dθ (φh(tn) − φ(tn))

)
Tj

,

T6 :=
∑
n

∑
j∈Jn

(
ũn
j (tn) − ũn−1

j (tn), (S′(ũn−1
j (tn)) −

∫ 1

0

S′(vn(θ))dθ) φh(tn)

)
Tj

,

where in the definition of T5 and T6 we use the abbreviation

vn(θ) := ũn−1(tn) + θ(ũn(tn) − ũn−1(tn)).

Note that T1 is the element residual, and T2 is the jump residual in space. T3 and
T4 are to be seen as kinds of stability errors coming from the higher-order approxima-
tion, and T5, T6 account for possible discontinuities in time of the projected function
ũh.

Proof. A summation of the cell entropy-like inequality (3.3) on all elements Tj ∈
Tn and an integration in time leads to

Ih :=
∑
n

∫ tn+1

tn

∑
j∈Jn

(
In1,j + In2,j + In3,j + In4,j

)
≤ 0.
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Next, let us look at the entropy residual. Using integration by parts in time and
locally in space, we get

〈RS(ũh), φ〉 = −
∑
n

∫ tn+1

tn

∑
j∈Jn

⎡⎣∫
Tj

∂tS(ũn
j )φ + ∇ · FS(ũn

j )φ +
∑

l∈N(j)

∫
Sjl

F (ũn
j ) · njlφ

⎤⎦
+
∑
n

∑
j∈Jn

∫
Tj

(S(ũn
j )(tn+1)φ(tn+1) − S(ũn

j )(tn))φ(tn)) .

Due to the conservation property of the numerical flux and since φ is continuous we

have
∫ T

0

∑
j∈Jn

∑
l∈N(j)

∫
Sjl

Fjl(ũ
n
j , ũ

n
l )φ = 0. Thus, by rearranging the summation,

we get

〈RS(ũh), φ〉 = −
∑
n

∫ tn+1

tn

∑
j∈Jn

(
∂tS(ũn

j ) + ∇ · FS(ũn
j ), φ

)
Tj

+
∑
n

∫ tn+1

tn

∑
j∈Jn

∑
l∈N(j)

(
Fjl(ũ

n
j , ũ

n
l ) − F (ũn

j ) · njl, φ
)
Sjl

−
∑
n

∑
j∈Jn

(
S(ũn)(tn) − S(ũn−1)(tn), φ(tn)

)
Tj

.(3.5)

Note that, regarding the last term, since the above sums are reduced to integrals over
the spatial domain, we have decided to split them into sums over Tj ∈ Tn, although
ũn−1(tn) ∈ V p

h,n−1. Next, using the property (2.8) of the projections, we obtain∑
n

∑
j∈Jn

(
ũn
j (tn) − ũn−1

j (tn), S′(ũn−1
j (tn))φh(tn)

)
Tj

= 0.

Using the definition of vn(θ), we rewrite the last summand (3.5) of the residual as
follows:

−
∑
n

∑
j∈Jn

(
S(ũn)(tn) − S(ũn−1)(tn), φ(tn)

)
Tj

= −
∑
n

∑
j∈Jn

(
S(ũn)(tn) − S(ũn−1)(tn), φ(tn)

)
Tj

+
∑
n

∑
j∈Jn

(
(ũn − ũn−1)(tn), S′(ũn−1(tn))φh(tn)

)
Tj

=
∑
n

∑
j∈Jn

(
(ũn − ũn−1)(tn), S′(ũn−1(tn))φh(tn) −

∫ 1

0

S′(vn(θ))dθφ(tn)

)
Tj

=
∑
n

∑
j∈Jn

(
(ũn − ũn−1)(tn),

∫ 1

0

S′(vn(θ))dθ (φh(tn) − φ(tn))

)
Tj

+
∑
n

∑
j∈Jn

(
(ũn − ũn−1)(tn),

(
S′(ũn−1(tn)

)
−
∫ 1

0

S′(vn(θ))dθ) φh(tn)

)
Tj

.

Finally by comparing the residual with Ih, we arrive at the final result, noticing

〈RS(uh), φ〉 ≥ 〈RS(uh), φ〉 + Ih = T1 + T2 + T3 + T4 + T5 + T6.
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We conclude by further estimating the Ti terms in (3.4).
Lemma 3.7 (estimate on the residual). The following estimates on the contribu-

tions to the residual hold true:

|T1 + T2 + T5| ≤ ||S′||L∞ ||∇φ||L∞

∑
n

∑
j∈Jn

ηn1,j ,

|T3 + T4 + T6| ≤ ||S′′||L∞ ||φ||L∞

∑
n

∑
j∈Jn

ηn2,j ,

where the local error indicators ηni,j are defined in Theorem 2.5 above.
Proof. The goal of estimating the terms Ti is to get some power of the mesh size

h from the differences in the test functions. On the other hand, every power of h
that we might gain must be paid for by a higher derivative of either φ or S. Since
we will later choose φ to approximate certain δ-functions and S to approximate the
nonsmooth Kruzkov entropies, derivatives of φ and S′ will blow up with a certain rate,
depending on the corresponding approximation parameters. The goal is therefore to
restrict to first derivatives of φ and second derivatives of S.

Estimate on T1. To estimate this term, we need a local estimate on the differ-
ence of the test functions. As ΠV 0

h
is exact on polynomials of degree p = 0, we get

|(ΠV 0
h
(φ)(x) − φ(x))|Tj | ≤ hj ||∇φ||L∞(Tj), which finally leads to the estimate on T1.

Estimate on T2. We get, by rearranging the summation in space,

T2 =

∫ T

0

∑
(j,l)∈En

∫
Sjl

(Fjl(ũj , ũl)

− Fjl(ũj , ũj))(φj − φ) − (Fjl(ũj , ũl) − Fjl(ũl, ũl))(φl − φ).

From here we get the estimate

|T2| ≤ ||S′||L∞

∑
n

∫ tn+1

tn

∑
(j,l)∈En

hjl||∇φ||L∞(Tj∪Tl)

∫
Sjl

Qjl(ũj , ũl)|ũj − ũl|

≤ ||S′||L∞ ||∇φ||L∞

∑
n

∑
j∈Jn

1

2

∫ tn+1

tn

∑
l∈N(j)

hjl

∫
Sjl

Qjl(ũj , ũl)|ũj − ũl|,

where we have used the monotonicity of the numerical fluxes fjl.
Analogous to the estimates for T1, T2, we derive for T3 and T4

|T3| ≤ ||S′′||L∞ ||φ||L∞

∑
n

∑
j∈Jn

∫ tn+1

tn
||ũn

j − ũn
j ||L∞(Tj)

∫
Tj

|∂tũh + ∇ · f(ũh)|,

|T4| ≤ ||S′′||L∞ ||φ||L∞

∑
n

∑
j∈Jn

1

2

∫ tn+1

tn

∑
l∈N(j)

max
k∈{j,l}

||ũn
k − ũn

k ||L∞(Sjl)

·
∫
Sjl

Qjl(ũj , ũl)|ũj − ũl|.
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Estimate on T5 and T6.

|T5| ≤ ||S′||L∞ ||∇φ(tn)||L∞(Tj)

∑
n

∑
j∈Jn

hj

∫
Tj

|ũn(tn) − ũn−1(tn)|,

|T6| ≤ ||S′′||L∞ ||φ(tn+1)||L∞(Tj)

·
∑
n

∑
j∈Jn

||ũn−1
j (tn) − ũn−1

j (tn)||L∞(Tj)

∫
Tj

|ũn(tn) − ũn−1(tn)|.

For the last estimate we used∣∣∣∣S′(ũn−1
j (tn)) −

∫ 1

0

S′(vn(θ))dθ

∣∣∣∣
≤ ||S′′||L∞

∫ 1

0

|ũn−1(tn) − ũn−1(tn) + θ(ũn(tn) − ũn−1(tn))|dθ,

which gives us the bound on T6, since the function under the integral is monotone
decreasing in θ due to (2.9). The estimate of the theorem now follows by introducing
the notation from Theorem 2.5.

We are ready now to complete the proof of Theorem 2.5.
Proof of Theorem 2.5. Lemma 3.7 shows that ũh satisfies the assumption of

Theorem 3.3 with αG := 0 and βO,
∑

k β
k
H given by the following local contributions:

βO|Tj×[tn,tn+1) :=
1

Δt |Tj |
||S′′||L∞ηn2,j ,

∑
k

βk
H |Tj×[tn,tn+1) :=

1

Δt |Tj |
ηn1,j .

Using the definition of the entropy S = Sδ (see Definition 3.2), we estimate ||S′′||L∞ ≤
KS

1
δ . Theorem 2.5 now follows from Theorem 3.3 by choosing the regularization

parameters Δ, δ as

Δ :=

√∑
n

∑
j∈Jn ηn1,j
K1

, δ :=

√∑
n

∑
j∈Jn ηn2,j
K2

,(3.6)

where K1 := (M + 1)TV (u0), K2 := K−1
S (k1TV (u0) + k0 χsupp(uh−u)(Tmax) (R +

1)d).

4. Fully discrete RK-DG method and continuous in time extension. In
this section we will present the generalized class of RK-DG methods that result from
time discretization of the semidiscrete method of Definition 2.4 (see also [11]). Thus
let us suppose that we can write the semidiscrete DG method as a system of ODEs
for a vector valued function U : (0, Tmax) → R

N , where N corresponds to the degrees
of freedom of uh. Then (2.2) can be written in the general form

d

dt
U(t) = L(U(t), t).(4.1)

A general explicit m-stage Runge–Kutta method for (4.1) can be represented as

W l := Un + Δt

l−1∑
k=1

alkL
k, Ll := L(W l, tn + clΔt), l = 1, . . . ,m,(4.2)

Un+1 := Un + Δt

m∑
k=1

bkL
k.(4.3)
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To ensure consistency, the additional constraints
∑m

k=1 bk = 1, cl =
∑l−1

k=1 alk ∈ [0, 1]
have to be imposed. The scheme is characterized by the values bk, k = 1, . . . ,m, and
a lower triangular matrix alk, l = 2, . . . ,m, k < l. For particular strongly stability
preserving Runge–Kutta methods we refer to [32] and to the review articles [17, 31].

The Runge–Kutta method, as presented above, gives only approximations at the
discrete time steps tn. In order to obtain a continuous approximation in time, we
seek a polynomial approximation Uh in time, such that in each interval [tn, tn+1] the
Runge–Kutta scheme can be written in the form

d

dt
Uh(t) = Lh(Uh(t), t).

A way to construct such polynomials is given by the so-called natural continuous
extension (NCE) of Runge–Kutta methods, introduced by Zennaro [34]. The main
result of [34] can be summarized as follows. Each m-stage Runge–Kutta method of
order m̃ has a natural continuous extension Uh of polynomial degree p̃ with m̃+1

2 ≤
p̃ ≤ min{m∗, m̃}, where m∗ is the number of distinct values of the coefficients cl, in
the sense that there exist m polynomials bl ∈ P

p̃(0, 1), l = 1, . . . ,m, such that

Uh(tn) = Un, Uh(tn+1) = Un+1,

Uh(tn + sΔt) := Un + Δt

m∑
k=1

bk(s)L
k, 0 ≤ s ≤ 1.(4.4)

Let us suppose that Uh is given by the m-stage NCE Runge–Kutta scheme (for an
explicit construction, see [34]). From (4.4) we get

Uh(tn) = Un,
d

dt
Uh(t) =

m∑
k=1

b′k

(
t− tn

Δt

)
Lk, t ∈ [tn, tn+1].(4.5)

Defining the discrete operator Lh as Lh(Uh, t) :=
∑m

k=1 b
′
k(

t−tn

Δt )Lk, we have
reached our desired goal. The Runge–Kutta method can now be written

Uh(tn) = Un,
d

dt
Uh(t) = Lh(Uh, t).(4.6)

Let us further define the fully discrete RK-DG method in a form equivalent to
(4.6). Starting from Definition 2.4, we first define the local operators Ln

j by

〈Ln
j (uh(t)), vj〉|Tj := (f(un

j (t)),∇vj)Tj −
∑

l∈N(j)

(fjl(u
n
j (t), un

l (t)), vj)Sjl
(4.7)

for all Tj ∈ Th, n = 0, . . . , N , vh ∈ V p
h , and Ln

h through

〈Ln(uh(t)), vh〉 :=
∑
j∈Jn

〈Ln
j (uh(t)), vj〉|Tj .

Definition 4.1 (fully discrete generalized RK-DG approximation). Let an m-
stage Runge–Kutta method be given according to (4.2), (4.3), and let us suppose that
a projection Λn,t

h with the properties (2.7), (2.8) is given. Furthermore, let the natural
continuous extension of highest possible degree p̃ be given according to (4.4). Let us

denote Λn,k
h := Λn,tn+ckΔt

h for k = 1, . . . ,m. Uh is called a generalized fully discrete
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RK-DG approximation of (1.1)–(1.2) if U−1
h := Λ0,0

h (u0), and for n = 0, . . . , N − 1,
Un
h := Uh|(tn,tn+1] ∈ C1(tn, tn+1;V p

h,n) is defined through

Un
h (tn) := Λn,tn

h (Un−1
h (tn)),(4.8)

(Wn,l
j , vj) = (Un

j (tn), vj) + Δt

l−1∑
k=1

alk〈Ln
j (Λn,k

h (Wn,k
h )), vj〉,(4.9)

(Un
j (t), vj) = (Un

j (tn), vj) + Δt

m∑
k=1

bk

(
t− tn

Δt

)
〈Ln

j (Λn,k
h (Wn,k

h )), vj〉(4.10)

for all vj ∈ Pp, j ∈ Jn, t ∈ [tn, tn+1] .

Thus, with the definition of Ln
h, the fully discrete generalized RK–DG approxima-

tion satisfies on each time slab (tn, tn+1) the ODE

(∂tU
n
h (t), vh) =

m∑
k=1

b′k

(
t− tn

Δt

)
〈Ln

h(Λn,k
h (Wn,k

h )), vh〉 for all vh ∈ V p
h,n.(4.11)

Remark 4.2. In our numerical experiments we used polynomial degree p = 1, 2, 3
for the space discretization combined with the NCE Runge–Kutta method of the same
degree. In [34] extensions of Runge–Kutta methods are constructed with optimal order
up to p = 4, but for p = 3 and p = 4 it is necessary to include a stage reuse procedure
to obtain the desired order. In our examples we have included stage reuse since this
does not increase the computational cost of the scheme.

5. Choice of the projections and adaptive strategy. In Definition 2.1 we
introduced a class of semidiscrete DG methods for arbitrary limiting projections Λn,t

h

and computational grids. In this subsection we describe specific choices of projec-
tion operators that are motivated by the a posteriori error estimate (Theorem 2.5).
Furthermore, we give an adaptive strategy for local mesh refinement.

The numerical solution in the interval (tn, tn+1] is defined in the following algo-
rithm. We start with a guess T̃ n for the grid and Λ̃n,t

h for the limiting projection.

• given: grid T̃ n, projection Λ̃n,t
h for t ∈ [tn, tn+1], and un(tn, x)

• do
1. Let T n = T̃ n and Λn,t

h = Λ̃n,t
h for t ∈ [tn, tn+1].

2. Compute un(t, x) for t ∈ (tn, tn+1] on T n using Λn,t
h .

3. Compute indicators and new limiting projection Λ̃n,t
h on T n;

i.e., for j ∈ Jn compute the following:
– ρnj , R

n
T,j , R

n
S,j (cf. Corollary 2.6),

– Λ̃n,t
h for t ∈ (tn, tn+1] (cf. section 5.1),

– R̃n
Λ,j :=

∫
Tj

|ũn+1
j − Λ̃n,tn+1

h un
j (tn+1)|.

4. Compute error indicator for interval (tn, tn+1] on T n:
Rn := 2

∑
j∈Jn ρnj (Rn

T,j + Rn
S,j + R̃n

Λ,j).

5. Refine grid T n → T̃ n, and project Λ̃n,t
h for t ∈ (tn, tn+1] onto T̃ n.

• while Rn > TOLn

• define T̃ n+1 by coarsening T̃ n so that

Rn + 2
∑

j∈J̃n ρnj (
∫
Tj

|Λ̃n,tn+1

h un
j (tn+1) − Πn→n+1Λ̃n,tn+1

h un
j (tn+1)|) < TOLn.

• define Λ̃n+1,tn+1

h := Πn→n+1Λ̃n,tn+1

h and Λ̃n+1,t
h for t ∈ (tn+1, tn+2] on T̃ n+1

using Λ̃n,tn

h .
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The algorithm is based on the assumption that

K1hj + K2 max
k∈{j,l∈N(j)}

||Λ̃n,t
h un

k − Λ̃n,t
h un

k ||L∞((tn,tn+1)×Tk)

≤K1hj + K2 max
k∈{j,l∈N(j)}

||Λn,t
h un

k − Λn,t
h un

k ||L∞((tn,tn+1)×Tk).

With the restrictive choice Λ̃n,t
h (v) = v we have maxk ||Λ̃n,t

h un
k − Λ̃n,t

h un
k ||L∞ = 0, and

therefore ρnj = K1hj , as in the first-order case. In fact, with this limiting operator the
DG scheme reduces to the first-order finite volume scheme for which the convergence
of the error indicator can be shown rigorously for h → 0. Therefore, with a suitable
choice of T n the iteration (1)–(5) always terminates, and in practice our scheme
requires hardly any iterations. Note that from our strategy it follows that∑

j∈Jn

ρnj

(
Rn

T,j + Rn
S,j + Rn

Λ,j

)
≤ TOLn.

Thus, the error ||(u− ũh)(Tmax)||L1(BR(x0)) is bounded by some prescribed tolerance
TOL which satisfies

∑
n TOLn ≤ TOL. This is summarized in the following lemma.

Lemma 5.1. Let ηh denote the global error estimator from Theorem 2.5, and let
a prescribed tolerance TOL be given. If the computational mesh is adapted due to the
strategy described above using the methods described in the following subsections, then
it follows that ηh ≤ TOL.

Thus, the adaptive strategy together with Theorem 2.5 yields a rigorous control
on the error ||(u− ũh)(Tmax)||L1(BR(x0)).

5.1. Choice of the projection operator in one space dimension. Our al-
gorithm is based on an initial guess for the projection operator, which we denote
with Λ̃n,t

h . It is used to define the final projection operators Λn,t
h in the generalized

RK-DG method of Definition 2.4 or 4.1. We now introduce two different approaches
for constructing Λ̃n,t

h . The first approach is based on a restriction of the gradients of
the approximate solution based on the error estimate in Corollary 2.6. The second
approach is a p-adaptive projection where the local polynomial degree of the ap-
proximate solution is chosen in accordance with the error indicators in Corollary 2.6.
Together with the local mesh adaption strategy that we will discuss in the next sub-
section, both methods are then used in an hp-adaptive manner. The operator Λ̃n,t

h is
always constructed on a fixed mesh T n and then prolonged/restricted onto a modified
mesh in such a way that refinement of cells does not change the projected function.

The goal of the choice of the projection Λ̃n,t
h is twofold. On the one hand, we

need a projection or limiting of the solution in order to stabilize the scheme. On the
other hand, the factor ρnj should be of the order of hj . Together with a reasonable
assumption on the boundedness of the residual terms Rn

T,j , R
n
S,j , R

n
Λ,j , this require-

ment guarantees the convergence of the error estimate ηh for h → 0. We expect
that in regions where the solution u is smooth the stated requirement is met even
if we choose Λn,t

j = id, whereas near discontinuities the term ||uh − uh||L∞ grows
without bound. The projection should therefore be active only on mesh cells near
discontinuities. Thus, we suggest defining a projection parameter λh as

λn
j (t) := λ̃n

j +
t− tn

Δtn
λ̃n+1
j , λ̃n

j :=
hj(

hj + 1
Δtn

(
Rn

T,j + Rn
S,j

)) p+2
p+1

(5.1)
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and ensuring that our projection operators yield a solution with the property

||ũn
j (·, t) − ũn

j (·, t)||L∞(Tj) ≤ λn
j (t).(5.2)

We expect that the upper bound λn
j is of order hj near discontinuities, whereas it is of

order h
− 1

p+1

j in smooth regions. As the error ||un
j (·, t)− un

j (·, t)||L∞(Tj) is expected to
converge with order hj in smooth regions and to remain constant near discontinuities,
the upper restriction leads to a projection of the solution near discontinuities, and at
the same time ||ũn

j (·, t)− ũn
j (·, t)||L∞(Tj) would be at least of order O(hj). The bound

(5.2) dictates how to construct the operator Λ̃n,t
j from a given projection Λn,t

j .

In what follows we propose two possible choices for the projection Λ̃n,t
h in one

space dimension, which both satisfy the upper bound (5.2) for given limiter function
λh. The resulting projections fall into the class of moment-limiters as introduced
in [3]. In order to define the methods, let ϕl, l = 0, . . . , pmax, denote the orthogonal
basis of Legendre polynomials on the cell Tj := (xj−1/2, xj+1/2) such that ϕl ∈ Pl(Tj).

We then have ϕ0 = 1 and thus un
j (·, t) = un

j,0(t) with the local expansion un
j (x, t) =∑pmax

l=0 un
j,l(t)ϕl(x).

5.1.1. P-adaptive method in one dimension. Let 1 ≤ l∗ ≤ pmax denote the
maximal index such that

l∗∑
l=1

un
j,l(t

n)ϕl(x) ≤ λn
j (tn) for all x ∈ Tj .

Then, the p-adaptive projection on the cell Tj is defined through

Λ̃n,t
j (uh(·, t)) :=

l∗∑
l=0

un
j,l(t)ϕl(x).(5.3)

5.1.2. Derivative-restriction method in one dimension. For fixed t ∈
[tn, tn+1] let 1 ≤ l∗ ≤ pmax denote the maximal index such that

l∗∑
l=1

un
j,l(t)ϕl(x) ≤ λn

j (t) for all x ∈ Tj .

In contrast to the p-adaptive strategy, we allow that the derivative of degree l∗ + 1
is not switched off completely but is reduced in such a way that the bound (5.2) still
holds:

Λ̃n,t
j (uh(·, t)) :=

l∗∑
l=0

un
j,l(t)ϕl(x) + ũn

j,l∗+1(t)ϕl∗+1(x),(5.4)

where ũn
j,l∗+1(t) is given as

ũn
j,l∗+1(t) := sgn(un

j,l∗+1(t)) min

⎧⎨⎩|un
j,l∗+1(t)|, λn

j (t) −
∥∥∥∥∥

l∗∑
l=0

un
j,l(t)ϕl

∥∥∥∥∥
L∞(Tj)

⎫⎬⎭ .

After the refinement of a cell Tj or the coarsening of a set of cells (Tjk)lk=1 the operator

Λ̃n,t
h has to be modified to operate on the new grid. Both of the choices described

above require the definition of λn
j on the new grid cells:

• refinement (Tj → (Tjk)lk=1): let λn
jk

= 1
l λ

n
j ;

• coarsening ((Tjk)lk=1 → Tj): let λn
j =

∑l
k=0 λ

n
jk

.
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5.2. Adaptive strategy for local mesh refinement. In this subsection we
describe an adaptive strategy for local mesh adaptation that is based on an equidis-
tribution strategy of the error indicator ηh of Theorem 2.5. However, there are two
significant modifications of the equidistribution strategy when compared with the
strategy presented in [25] or [28]. The first modification is that we distribute the
error only among those elements that significantly contribute to the error, and sec-
ondly we also incorporate the projection error from mesh coarsening into the adaptive
strategy. These modifications are of minor importance for smooth solutions but result
in quite different adaptive convergence behavior for problems with discontinuities. In
detail, the new adaptive strategy is given as follows.

Using the notation of Corollary 2.6, let us define for a prescribed tolerance TOL
the local error indicators ηnj for some given Θ ∈ (0, 1) as

η0
j (M) :=

M

(1 − Θ) TOL
η0,j , ηnj (M) :=

2 Tmax M

Δtn (Θ TOLn)2
ρnj (Rn

T,j + Rn
S,j + R̃n

Λ,j),

where we again have used the abbreviation R̃n
Λ,j :=

∫
Tj

|ũn+1
j (tn+1)−Λ̃n,tn+1

h un
j (tn+1)|.

The operator Λ̃n,tn+1

h is again a suitable projection operator defined on the mesh Tn
used to stabilize the scheme and to guarantee that ρnj converges for hj → 0. The

adaptive strategy at the time tn+1 is then given as follows. For α ∈ (0, 0.5), M ∈ N

let us define the set of significant elements as

Ins (M) := {j ∈ In| ηnj (M) ≥ α},

and let Mn implicitly be defined through Mn = |Ins (Mn)|, where | · | denotes the
cardinality of the set. We define εn as

εn :=
∑

j∈In\In
s (Mn)

ηnj (1)

and suppose that α is chosen small enough to ensure εn ∈ (0, 0.5). We then define for
given β ∈ (0, 1) the sets

Ir := {Tj | ηnj (Mn) ≥ (1 − εn)}, Ĩc := {Tj | ηnj (Mn) ≤ β(1 − εn)}

and mark all elements of the set Ir for refinement and those in the set Ĩc as candidates
for coarsening. Coarsening of the mesh leads to an additional projection error of
the approximate solution that contributes to the indicator Rn

Λ,j . We split this error

into two parts according to Rn
Λ,j ≤ R̃n

Λ,j + Rn
c,j with Rn

c,j :=
∫
Tj

|Λ̃n,tn+1

h un
j (tn+1) −

Πn→n+1Λ̃n,tn+1

h un
j (tn+1)|, using the operator Πn→n+1 to denote the L2-projection

from one grid to another. We calculate the error terms ηnc,j(M
n) := ηnj (Mn) +

2 Tmax M
Δtn (Θ TOLn)2 ρ

n
j R

n
c,j for all Tj ∈ Ĩc, define the updated set Ic as

Ic := {Tj ∈ Ĩc| ηnc,j(Mn) ≤ β(1 − εn)},

and mark all elements of the set Ic for coarsening. Finally, all elements in the set Ir
are refined, until the refinement set Ir is an empty set. Then, all elements of the set
Ic are coarsened.
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5.3. Evaluation of the semidiscrete error indicators. In Theorem 2.5 we
give an a posteriori error estimate for the semidiscrete DG method from Definition 2.4.
Conventionally, Runge–Kutta time discretizations that are used in practice provide
values only for the approximate solution at the discrete time steps tn. Thus, our error
indicators could not be evaluated continuously in time. In order to give a suitable
interpretation of the fully discrete Runge-Kutta solution (see Definition 4.1) we use the
natural continuous extension as defined through (4.4). Thus, the approximate fully
discrete solution is continuous in time on each time slab [tn, tn+1], and all contributions
of the error indicators ηni,j of Theorem 2.5 are computable.

6. Adaptive numerical experiments in one space dimension. In this sec-
tion we numerically examine the RK-DG methods defined in Definition 4.1 together
with the projections from subsection 5.1 and the local adaptive grid refinement from
subsection 5.2. We study the convergence behavior of the estimator ηh from Theo-
rem 2.5, as well as the convergence of the error itself. As test problems, we look at
a linear transport problem with smooth and discontinuous regions in the solution.
This example is a scalar prototype for contact discontinuities. As a second very chal-
lenging example we choose the Buckley–Leverett equation. Here, the flux function is
nonconvex, and thus the solution consists of compound waves. For such fluxes there
exist several weak solutions that are compatible with a single entropy, but only one of
those solutions is the unique entropy solution in the Kruzkov sense. It is well known
that higher-order numerical schemes may have difficulties in selecting this unique
Kruzkov entropy solution (see also [2] and [26]). In order to compare the efficiency
of the selected RK-DG methods we are going to plot the error estimators and errors
against the overall number of grid cells Mtot(Th) :=

∑N
n=1

∑
Tj∈T n

h
1. As Mtot is avail-

able for uniform refined grids, as well as for adaptively refined grids, and as Mtot is
proportional to the degrees of freedom for fixed polynomial degree p, this is a good
way to compare our adaptive method with standard approaches on uniform grids.
Furthermore, let us define the experimental order of convergence of a grid-dependent
quantity eh as

EOC(eH→h) := log

(
e(TH)

e(Th)

)
log−1

(
Mtot(Th)

Mtot(TH)

)
.(6.1)

Note that a convergence rate O(hp) on uniform grids in one space dimension corre-
sponds to EOC(e2h→h) = p

2 , as a refinement from grids with cells of size 2h to grids
with cells of size h leads to two times the number of grid cells per time step and two
times the number of time steps. This yields Mtot(Th) = 4Mtot(T2h).

6.1. Linear transport equation. As a first numerical example we look at the
linear transport equation

∂tu + a∂xu = 0, u(·, 0) = u0(·)

with the constant transport velocity a = 2. For fixed initial data the solution u is then
given by u(x, t) = u0(x − at). We study the setting on [−1, 1] × [0, 2] with periodic
boundary conditions for the following nonsmooth initial data:

u0(x) :=

⎧⎨⎩
1 − (x + 1.5)2, for x < −0.5,
sin((x + 0.5)π), for − 0.5 ≤ x < 0.5,
1 − (x− 0.5)2, for 0.5 ≤ x.
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Fig. 6.1. Comparison of the approximate solutions obtained with the p-adaptive method (left-
hand side) and the derivative-restriction method (right-hand side) on adaptively refined grids with
pmax = 2. For both computations we used the prescribed tolerance TOL = 0.5 and Tmax = 2.0.
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Fig. 6.2. Comparison of the approximate solutions obtained with the derivative-restriction
method for pmax = 2 with TOL = 1 (right-hand side) and TOL = 0.25 (left-hand side) on adaptively
refined grids at Tmax = 2.0.

Since x−2a = x−4 is equal to x on a [−1, 1] periodic domain it follows that u(x, 2) =
u0(x). We first compare the two projection methods described in subsection 5.1 for
pmax = 2 (see Figure 6.1). All results are computed with the adaptation strategy
from subsection 5.2 with TOL = 0.5. In Figure 6.1 both the exact solution and the
approximate solution are shown together with the grid density function.

The comparison of the projection methods for fixed maximal polynomial degree
shows that both methods lead to a good resolution of the smooth region as well as of
the discontinuity. The p-adaptive method (Figure 6.1(left)) produces slight overshoots
in front of the discontinuity, but these decrease on finer grids. The refinement strategy
together with the derivative-restriction method produces a slightly finer grid in the
region of the discontinuity, whereas the grid is coarser in the smooth regions.

Results with pmax = 2 and the derivative-restriction method for different values
of TOL are shown in Figure 6.2. It can be clearly seen that the grid is hardly
refined in the smooth regions of the solution, whereas the fineness in the region of
the discontinuity and also around the kink increases for smaller tolerance values. The
coarsest grid level corresponds to a grid with 13 cells. With TOL = 1 only seven cells
are added to the final grid—two in the region of the kink and five in the shock region.
With TOL = 0.25, 30 cells are added—about 50% of which are located in the shock
region.

A comparison of the efficiency of our new method on uniform grids for pmax =
0, 1, 2 is shown in Figure 6.3. The increase in efficiency due to an increase of the
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Fig. 6.3. Convergence study for our new schemes for the linear transport problem on uniformly
refined grids.

Table 6.1

Experimental order of convergence for the error and the estimator of the new p-adaptive method
and the derivative-restriction method on adaptively refined grids for the linear transport problem.

derivative-restriction method p-adaptive method

pmax EOC(eH→h) EOC(ηH→h) EOC(eH→h) EOC(ηH→h)
0 0.292 0.193 0.292 0.193
1 0.431 0.228 0.476 0.368
2 0.544 0.342 0.515 0.450

polynomial degree can be clearly seen. Furthermore, the difference between our two
projection methods is hardly significant. For pmax = 1 there is hardly any difference,
and also for pmax = 2 there is no clear indication of which method is the more efficient.

Next we compare our adaptive schemes for pmax = 0, 1, 2. In Table 6.1 the
convergence rates as defined in (6.1) are given for the error EOC(eH→h) and the
estimator EOC(ηH→h). The error and the estimator show better convergence rates
for higher polynomial degree. The convergence rates of the error are even better than
what we expect to be optimal for discontinuous solutions on uniform computational

grids. On uniform grids with mesh size h the optimal rate is supposed to be h
pmax+1
pmax+2 ,

which corresponds to EOC(eH→h) = 1
2
pmax+1
pmax+2 (i.e., 0.250, 0.333, 0.375 for pmax =

0, 1, 2). Although the convergence rate of the indicator differs from the convergence
rate of the error, the ratio between the prescribed tolerance and the indicator is about
constant. In the optimal case this ratio should be close to one. Our adaptive strategy
leads to an efficiency index of about 0.5 − 0.8.

6.2. Buckley–Leverett problem. As a second example we look at the Buck-
ley–Leverett equation, which is a one dimensional model for two-phase flow in porous
media where capillary pressure effects are neglected. The unknown variable u :
(−1, 1) × (0, 0.4) → R is the saturation of the wetting phase within a two-phase
mixture. It satisfies the nonlinear conservation law

ut + ∂xf(u) = 0 on (−1, 1) × (0, 0.4), u(·, 0) = u0 on (−1, 1),
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Fig. 6.4. Comparison of the approximate solutions obtained with the derivative-restriction
method on adaptively refined grids with pmax = 1 (left) and pmax = 2 (right) with TOL = 0.5 and
Tmax = 0.4.

where the fractional flow rate f is given as f(s) = u2

u2+ 1
2 (1−u)2

. We look at this

problem for the following initial data:

u0(x) :=

{
1 for x < −0.6, 0.2 ≤ x,
0 for − 0.6 ≤ x < 0.2.

Thus, the solution of our Buckley–Leverett problem consists of the solution of two
distinct Riemann problems for t smaller than some critical time T ∗ > 0.4. The
solution of each Riemann problem is a composed wave consisting of a rarefaction
wave and an attached shock.

In Figure 6.4 we plot the exact solution together with the approximation using
our adaptive strategy for pmax = 1, 2. Since the structure of the solution away from
the discontinuities is far simpler than in the advection problem studied above, the
advantage of the quadratic ansatz functions is not evident. The grid density function
hardly depends on the polynomial degree since almost all grid points are located in
the shock regions. Only the kinks at the beginning of the rarefaction waves lead
to additional slight refinement. Since the highest grid resolution produced by our
refinement strategy is the same for pmax = 1 and pmax = 2 and the approximation
error is dominated by the shocks, the pmax = 2 version of the DG method does
not lead to a more efficient scheme, as can be seen from Figure 6.5. This must
be attributed to the smaller CFL stability restriction required in the higher-order
schemes and the resulting smaller time steps. A more complicated structure of the
solution—as can be found only in systems in higher space dimension—is required to
demonstrate the advantage of an hp-adaptive strategy for nonlinear conservation laws
with discontinuous solutions.

The results so far show that our adaptive strategy and our projection methods
based on the error estimate from Theorem 2.5 lead to good schemes for both linear
and nonlinear test problems. We conclude our numerical experiments with results
demonstrating the advantage of including the coarsening error in the indicator. Re-
sults computed with and without using this “jump” indicator are shown in Figure 6.6.
Including the error due to coarsening leads to a higher grid resolution around the kink
at the left side of the rarefaction waves. Without this indicator the grid is coarsened to
such a degree that the rarefaction wave is not sufficiently resolved and the convergence
rate of the adaptive scheme is severely reduced.
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Fig. 6.5. Convergence study for the derivative-restriction approximation of the Buckley–
Leverett problem on adaptively refined grids.
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Fig. 6.6. Comparison of the new adaptive derivative-restriction scheme with (top left) and
without (top right) incorporated coarsening projection error. In the top row the solutions are plotted
at Tmax = 0.4 with TOL = 0.125. In the bottom figure the error is plotted versus Mtot for the
derivative-restriction scheme with and without incorporated coarsening projection error.

6.3. Local comparison of error indicator and error. In this subsection
we compare the local distribution of the error indicator values (ρnj (Rn

T,j + Rn
S,j))

1/2,
j ∈ Jn, from the a posteriori error estimate in Corollary 2.6 with the distribution of
the local L1-error ||u(tn) − un

h||L1(Tj), j ∈ Jn. We compare the local distribution of



536 A. DEDNER, C. MAKRIDAKIS, AND M. OHLBERGER

1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

sq
rt

(ρ
 (

R
T
 +

 R
S
)

800 el
6400 el

1e-12
1e-11
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05
1e-04
0.001

0.01

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

L1 -e
rr

or

x

800 el
6400 el

1e-07

1e-06

1e-05

1e-04

0.001

0.01

0.1

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

sq
rt

(ρ
 (

R
T
 +

 R
S
)

800 el
6400 el

1e-12
1e-11
1e-10
1e-09
1e-08
1e-07
1e-06
1e-05
1e-04
0.001
0.01

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

L1 -e
rr

or

x

800 el
6400 el

Fig. 6.7. Comparison of the local indicator values for the limiter of Cockburn and Shu (left)
and the p-adaptive method (right) for the linear transport problem. The diagrams on the top show
the local distribution of the indicator values on uniform grids with 800 and 6400 elements, while the
diagrams at the bottom give the corresponding distribution of the exact local L1-error.
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Fig. 6.8. Comparison of the local indicator values for the limiter of Cockburn and Shu (left)
and the p- adaptive method (right) for the Buckle–Leverett problem. The diagrams on the top show
the local distribution of the indicator values on uniform grids with 800 and 6400 elements, while the
diagrams at the bottom give the corresponding distribution of the exact local L1-error.

the indicator and exact error for the p-adaptive scheme and the method of Cockburn
and Shu (see [10, 7]). In Figure 6.7 the comparison is given for the linear transport
problem from subsection 6.1 on the interval (−0.67, 0.67), while in Figure 6.8 the
comparison for the Buckley–Leverett problem is shown on the interval (−0.7, 0). The
underlying computations were done with pmax = 2.

From the comparison it can be seen that the local distribution of the error indica-
tor captures very well the behavior of the exact error for both methods. In addition,
it can be seen that the error and the indicator decrease with the expected higher-
order rate within the smooth regions and show a reduction of the decrease rate near
discontinuities or kinks. A more detailed analysis of the convergence behavior of the
indicators within the regions of discontinuity reveals that the indicator for the method
of Cockburn and Shu does not decrease within the few elements that form the dis-
continuity, while the indicator for the p-adaptive method does decrease significantly.
As the local indicator quantities are L1-quantities, we expect also that the global
estimator is not asymptotically reduced for the method of Cockburn and Shu, and
thus we have to use the indicators with great care to steer grid adaptivity for this
method, as there would be no stopping criteria for the mesh refinement within this
shock region. On the other hand, the indicator may be used outside the shock region
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without problems and thus could be used in combination with a restriction on the
maximal refinement level within the shock regions.

7. Conclusion. We have proved an a posteriori error estimate for a class of
semidiscrete discontinuous Galerkin methods on adaptively refined computational
meshes (see Theorem 2.5 and section 3). The estimate provides a rigorous error
control and is used for the design of stabilizing limiting projection operators (see sec-
tion 5.1) as well as for the design of a local grid adaptation strategy (see section 5.2).
Numerical examples in one space dimension demonstrate that the resulting adaptive
schemes converge with higher order compared with the standard first-order method.
In addition, it was shown that the error estimator ηh from the a posteriori Theo-
rem 2.5 converges with higher order for higher-order methods. The analysis of the
more involved fully discrete case needs additional new ideas and is therefore left for
further study. The application of the principle ideas to the multidimensional case and
to systems of conservation laws is of special importance and will be the subject of
future work. For first results in two space dimensions that show a very nice behavior
of the resulting hp-adaptive schemes, we refer to [14].
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[15] T. Gallouët and R. Herbin, A uniqueness result for measure-valued solutions of nonlinear
hyperbolic equations, Differential Integral Equations, 6 (1993), pp. 1383–1394.

[16] L. Gosse and C. Makridakis, Two a posteriori error estimates for one-dimensional scalar
conservation laws, SIAM J. Numer. Anal., 38 (2000), pp. 964–988.

[17] S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-order time dis-
cretization methods, SIAM Rev., 43 (2001), pp. 89–112.

[18] R. Hartmann and P. Houston, Adaptive discontinuous Galerkin finite element methods for
nonlinear hyperbolic conservation laws, SIAM J. Sci. Comput., 24 (2002), pp. 979–1004.
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[33] E. Süli and P. Houston, Adaptive finite element approximation of hyperbolic problems, in
Error Estimation and Adaptive Discretization Methods in Computational Fluid Dynamics,
Lecture Notes in Comput. Sci. Eng. 25, Springer, Berlin, 2003, pp. 269–344.

[34] M. Zennaro, Natural continuous extensions of Runge-Kutta methods, Math. Comput., 46
(1986), pp. 119–133.

[35] Q. Zhang and C.-W. Shu, Error estimates to smooth solutions of Runge–Kutta discontinuous
Galerkin methods for scalar conservation laws, SIAM J. Numer. Anal., 42 (2004), pp.
641–666.



SIAM J. NUMER. ANAL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 45, No. 2, pp. 539–557

VARIATIONAL MULTISCALE ANALYSIS: THE FINE-SCALE
GREEN’S FUNCTION, PROJECTION, OPTIMIZATION,

LOCALIZATION, AND STABILIZED METHODS∗

T. J. R. HUGHES† AND G. SANGALLI‡

Abstract. We derive an explicit formula for the fine-scale Green’s function arising in variational
multiscale analysis. The formula is expressed in terms of the classical Green’s function and a projector
which defines the decomposition of the solution into coarse and fine scales. The theory is presented
in an abstract operator format and subsequently specialized for the advection-diffusion equation. It
is shown that different projectors lead to fine-scale Green’s functions with very different properties.
For example, in the advection-dominated case, the projector induced by the H1

0 -seminorm produces
a fine-scale Green’s function which is highly attenuated and localized. These are very desirable
properties in a multiscale method and ones that are not shared by the L2-projector. By design, the
coarse-scale solution attains optimality in the norm associated with the projector. This property,
combined with a localized fine-scale Green’s function, indicates the possibility of effective methods
with local character for dominantly hyperbolic problems. The constructs lead to a new class of
stabilized methods, and the relationship between H1

0 -optimality and the streamline-upwind Petrov-
Galerkin (SUPG) method is described.

Key words. multiscale, advection-diffusion
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1. Introduction. The variational multiscale (VMS) method [12, 13] was intro-
duced as a framework for incorporating missing fine-scale effects into numerical prob-
lems governing coarse-scale behavior. It has provided a rationale for stabilized meth-
ods and a platform for the development of new methods (see, e.g., [11, 14, 15, 16, 18]
for application to turbulence modeling). The fundamental mathematical object in
the method is the so-called fine-scale Green’s function, introduced in [13]. Although
it is a simple matter to characterize coarse-scale and fine-scale subspaces, not much
is known about the fine-scale Green’s function. In this paper, we study the fine-scale
Green’s function and present a formula for explicitly computing it from the classi-
cal Green’s function. This is accomplished by observing that the decomposition of
a function into a sum of coarse-scale and fine-scale components is uniquely specified
by identifying a projector from the space of all scales onto the coarse-scale subspace.
Different projectors produce different decompositions. The problem for the fine-scale
Green’s function is then posed in terms of the fine-scale subspace. Compared with the
problem for the classical Green’s function, this amounts to a constrained formulation.
The constraint can be released by invoking the Lagrange multiplier method and the
unconstrained problem can be solved in terms of the classical Green’s function and the
projector. The fine-scale Green’s function enjoys orthogonality relations with respect
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to the projector. If a scalar product is introduced with a corresponding projector, the
coarse-scale solution of the original problem is the optimal approximation in terms of
the induced norm. The theory summarizing these ideas is presented in section 2 in
an abstract operator format for a general linear isomorphism.

These ideas are applied to the advection-diffusion equation in section 3. The fine-
scale Green’s function is explicitly calculated in one dimension for linear, quadratic,
and cubic finite elements when the projector is defined by the H1

0 -seminorm. In this
case, the fine-scale Green’s function is local in that it is confined to individual elements
and is not coupled from one element to another, even in advection-dominated cases.
This is a highly desirable property in multiscale analysis and in complete contrast with
the classical Green’s function which exhibits global support in advection-dominated
cases. It also suggests that efficient, approximate, multiscale methods possessing
local character may be possible for dominantly hyperbolic phenomena. On the other
hand, selecting the L2-projector results in a fine-scale Green’s function with global
coupling. These results show clearly that the choice of projector is of key importance
in the development of a multiscale method.

The fine-scale Green’s function becomes increasingly complicated as the order of
the coarse-scale space is increased. However, it is observed that due to the orthogo-
nality properties of the fine-scale Green’s function, it only interacts with the highest-
order polynomial term in the residual. This means that for a kth-order coarse-scale
space, the fine-space Green’s function modification to the coarse-scale equation can
be replaced by an equivalent stabilization term involving a computable, elementwise
constant (i.e., a “τ” in the notation of stabilized methods) and derivatives of the
residual and weighting operator of order k − 1. Remarkably, the modification re-
duces to elementwise constant terms requiring no quadrature despite the complexity
of the fine-scale Green’s function. This results in optimal higher-order methods of
extraordinary simplicity.

To assess the situation in multiple dimensions, the two-dimensional advection-
diffusion equation is studied. Here, rather than proceeding analytically, numeri-
cal procedures involving very fine meshes are utilized to determine Green’s func-
tions. As in the one-dimensional case, the classical Green’s function exhibits global
character with support in the form of a tail surrounding the upwind characteristic
through the point of application of the Dirac mass. When advection-dominated,
this tail is not attenuated with distance. However, the fine-scale Green’s function
for the H1

0 -projector is highly attenuated under the same circumstances and is es-
sentially confined to a small number of elements (in the coarse-scale space) sur-
rounding the point of application of the Dirac mass. The L2-projector engenders
a fine-scale Green’s function which is not localized, and one concludes that the main
observations made for the one-dimensional case are essentially true in two dimen-
sions.

The H1
0 -projector produces a method which is highly localized and attains an

optimal approximation in the H1
0 -seminorm, a combination of desirable properties. It

is also noted that the modification it introduces to a classical Galerkin formulation
involves an additional stabilization term in which the coarse-scale residual is weighted
by the fine-scale Green’s function convolved only with the advective part of the oper-
ator, i.e., the diffusive operator does not appear in the weighting. These are features
that the H1

0 -optimal method has in common with streamline-upwind Petrov-Galerkin
(SUPG) [9].

In section 4 we draw conclusions.
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2. The abstract framework.

2.1. The abstract problem. Let V be a Hilbert space endowed with a norm
‖ · ‖V and a scalar product (·, ·)V . Let V ∗ be the dual of V , and let V ∗〈·, ·〉V be the
pairing between them. Let L : V → V ∗ be a linear isomorphism. Given f ∈ V ∗, we
consider the abstract problem of finding u ∈ V such that

(2.1) Lu = f.

The variational formulation of (2.1) is find u ∈ V such that

(2.2) V ∗〈Lu, v〉V = V ∗〈f, v〉V ∀v ∈ V.

The solution u can be expressed as u = Gf , where G : V ∗ → V is the Green’s operator,
i.e., G = L−1.

2.2. The variational multiscale formulation. Let V̄ be a closed subspace of
V , and let P be a linear projector onto V̄ ; i.e., P2 = P and Range(P) = V̄ . We
assume P to be continuous in V . Since P v̄ = v̄ for all v̄ ∈ V̄ , we have the obvious
inf-sup condition

(2.3) inf
v̄∈V̄

sup
w∈V

(Pw, v̄)V
‖w‖V ‖v̄‖V

≥ 1.

We define V ′ = Ker(P), which is a closed subspace of V , thanks to the continuity of
P. As a consequence,

(2.4) V = V̄ ⊕ V ′;

i.e., any v ∈ V can be written uniquely as v = v̄ + v′, where v̄ ∈ V̄ and v′ ∈ V ′:
indeed, v̄ = Pv and v′ = v − Pv. In particular, we split the solution u of (2.1) as
u = ū + u′. In the VMS approach, V̄ represents the space of computable coarse
scales, while V ′ contains the unresolved fine scales. The aim of the VMS approach is
to obtain ū = Pu.

The variational formulation (2.2) splits into

V ∗〈Lū, v̄〉V + V ∗〈Lu′, v̄〉V = V ∗〈f, v̄〉V ∀v̄ ∈ V̄ ,(2.5)

V ∗〈Lū, v′〉V + V ∗〈Lu′, v′〉V = V ∗〈f, v′〉V ∀v′ ∈ V ′.(2.6)

We assume that (2.5) is a well-posed problem for ū alone, meaning that it admits a
unique solution ū ∈ V̄ given u′ and f . Analogously, we assume that (2.6) is well-posed
for u′ ∈ V ′ given ū and f . For that, we ask the inf-sup conditions for L on V̄ and V ′

inf
w̄∈V̄

sup
v̄∈V̄

V ∗〈Lw̄, v̄〉V
‖w̄‖V ‖v̄‖V

> 0 and sup
w̄∈V̄

V ∗〈Lw̄, v̄〉V
‖w̄‖V

> 0 ∀v̄ ∈ V̄ \{0},(2.7)

inf
w′∈V ′

sup
v′∈V ′

V ∗〈Lw′, v′〉V
‖w′‖V ‖v′‖V

> 0 and sup
w′∈V ′

V ∗〈Lw′, v′〉V
‖w′‖V

> 0 ∀v′ ∈ V ′\{0}.(2.8)

If L is coercive on V , i.e., V ∗〈Lv, v〉V ≥ C‖v‖2
V for C > 0 and for all v ∈ V , then

(2.7)–(2.8) hold.
We associate with (2.6) the fine-scale Green’s operator G′ : V ∗ → V ′, which gives

u′ from the coarse-scale residual f − Lū, i.e.,

(2.9) u′ = G′(f − Lū).
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Having G′, we can eliminate u′ from (2.5), and we obtain the VMS formulation for ū:

(2.10) V ∗〈Lū, v̄〉V − V ∗〈LG′Lū, v̄〉V = V ∗〈f, v̄〉V − V ∗〈LG′f, v̄〉V ∀v̄ ∈ V̄ .

Because of (2.4), the formulation (2.10) admits a unique solution, which is precisely
ū = Pu.

2.3. The fine-scale Green’s operator. We denote by PT : V̄ ∗ → V ∗ the
adjoint of P, i.e.,

V ∗〈PT μ̄, v〉V = V̄ ∗〈μ̄,Pv〉V̄ ∀v ∈ V, μ̄ ∈ V̄ ∗,

where V̄ ∗ is the dual of V̄ and V̄ ∗〈·, ·〉V̄ is the pairing between them.
In the next result we express G′ in terms of G and P.
Theorem 2.1. Under the assumptions of sections 2.1 and 2.2, we have

(2.11) G′ = G − GPT (PGPT )−1PG,

(2.12) G′PT = 0, and PG′ = 0.

Proof. Since (2.6) is a constrained problem, we can rephrase it making use of a
Lagrange multiplier in mixed (unconstrained) form: Find u′ ∈ V and λ̄ ∈ V̄ ∗ such
that

Lu′ + PT λ̄ = r,(2.13)

Pu′ = 0,(2.14)

where r = f −Lū. The well-posedness of (2.13)–(2.14), for any r ∈ V ∗, is guaranteed
by our previous assumptions. Indeed, following [2], we need (2.8) and the inf-sup
condition for P

inf
μ̄∈V̄ ∗

sup
w∈V

V̄ ∗〈μ̄,Pw〉V̄
‖μ̄‖V̄ ∗‖w‖V

,

which is equivalent to (2.3) in this Hilbert space setting. From (2.13) we get u′ = G(r−
PT λ̄); substituting in (2.14) gives PGr − PGPT λ̄ = 0; the well-posedness of (2.13)–
(2.14) guarantees the invertibility of PGPT ; and hence we obtain λ̄ = (PGPT )−1PGr.
Finally, using this in the expression for u′ yields

(2.15) u′ = (G − GPT (PGPT )−1PG)r,

which gives (2.11).
From (2.11), we immediately have

G′PT = GPT − GPT (PGPT )−1(PGPT ) = GPT − GPT = 0

and

PG′ = PG − (PGPT )(PGPT )−1PG = PG − PG = 0,

which are (2.12).
Using the expression (2.11) in (2.10), we see that the left-hand side of (2.10) is

(2.16) V ∗〈Lū, v̄〉V − V ∗〈LG′Lū, v̄〉V = V̄ ∗〈(PGPT )−1ū, v̄〉V̄ .
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As (PGPT )−1 is obviously invertible, (2.16) confirms that (2.10) is a well-posed for-
mulation.

In the cases of practical interest, V̄ is a finite-dimensional subspace of V . If the
dimension of V̄ is N , then we can find a set of functionals {μi}i=1,...,N such that for
all v ∈ V

(2.17) V ∗〈μi, v〉V = 0 ∀i = 1, . . . , N ⇔ Pv = 0.

In other words, the equations V ∗〈μi, v〉V = 0 for 1 ≤ i ≤ N characterize v as a
fine-scale function, i.e., v ∈ V ′. From the mathematical standpoint, {μi}i=1,...,N is a

basis for the image of PT . Therefore, it is clear that (2.12) is equivalent to

(2.18) G′μi = 0 ∀i = 1, . . . , N

and

(2.19) V ∗〈μi,G′ν〉V = 0 ∀ν ∈ V ∗ ∀i = 1, . . . , N.

Moreover, after introducing the vector μ ∈ (V ∗)N and its transpose,

μ =

⎡⎢⎣μ1

...
μN

⎤⎥⎦ and μT =
[
μ1 . . . μN

]
;

the vector GμT ∈ V N ,

GμT =
[
Gμ1 . . . GμN

]
;

the matrix μGμT ∈ R
N×N ,

μGμT =

⎡⎢⎣ V ∗〈μ1,Gμ1〉V . . . V ∗〈μ1,GμN 〉V
...

. . .
...

V ∗〈μN ,Gμ1〉V . . . V ∗〈μN ,GμN 〉V

⎤⎥⎦ ;

and the vector of functionals μG : (V ∗) → R
N (i.e., μG ∈ (V ∗∗)N ) such that

μG(ν) =

⎡⎢⎣ V ∗〈μ1,Gν〉V
...

V ∗〈μN ,Gν〉V

⎤⎥⎦ ∀ν ∈ V ∗,

it is easy to see that (2.11) is equivalent to

(2.20) G′ = G − GμT
[
μGμT

]−1
μG.

2.4. Orthogonal projectors and optimization. An interesting case, and the
only one considered in what follows, is when P is an orthogonal projector.

Given a scalar product (·, ·) defined on V × V , possibly different than (·, ·)V , the
related orthogonal projector P is obviously defined by

(2.21) (Pw, v̄) = (w, v̄) ∀w ∈ V,∀v̄ ∈ V̄ .

Recall that, in order to fit in the abstract framework of section 2.2, P must be a
continuous operator in V . However, when V̄ is a finite-dimensional space, this holds
for any scalar product (·, ·) which is continuous on V × V .

In this context, V ′ and V̄ are orthogonal complements with respect to (·, ·), and
the VMS formulation provides the optimal approximation ū ∈ V̄ of u, with respect
to the norm ‖ · ‖ induced by the scalar product (·, ·).
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3. The advection-diffusion model problem. Let d be the space dimension
(d = 1 and d = 2 will be taken into consideration in the examples), and let Ω ⊂ R

d

be a regular domain. We consider the advection-diffusion model problem

Lu = −κΔu + β · ∇u = f in Ω with u|∂Ω = 0,(3.1)

where f ∈ L2(Ω) is the source term, κ > 0 is the scalar diffusivity, and β : Ω → R
d is

the advection field, for which we assume div(β) = 0. For the variational formulation of
(3.1), within the framework of section 2, we set V = H1

0 ≡ H1
0 (Ω) whence V ∗ = H−1.

Typical finite element spaces will be considered as coarse spaces V̄ .
In this context, it is convenient to represent the Green’s operator G through the

Green’s function g : Ω × Ω → R such that

(3.2) u(y) =

∫
Ω

g(x, y)f(x) dx

for almost every y in Ω. Note that in (3.2) and in what follows the integrals have to
be interpreted in the sense of distributions. We refer to [22] for details. Some explicit
representations are given in [13].

We recall that g|∂(Ω×Ω) = 0 and, for all y ∈ Ω, L∗g(·, y) = δ(· − y), where δ is the
Dirac mass at the origin and L∗ = −κΔ − β · ∇ denotes the dual of L.

Furthermore, we introduce the fine-scale Green’s function g′ : Ω × Ω → R, which
represents the fine-scale Green’s operator G′ and gives the fine-scale component u′ of
u from the coarse-scale residual r = f − Lū by

(3.3) u′(y) =

∫
Ω

g′(x, y)r(x) dx.

Recall, however, that the space of fine scales V ′ as well as the fine-scale Green’s
function g′ depend on the underlying projector P. With an abuse of notation, in
the next sections we shall write V ′ and g′ without distinction among the different
projectors taken into consideration. In particular, we will deal with the H1

0 -projector
P = PH1

0
, associated with the scalar product (w, v) = (w, v)H1

0
=

∫
Ω
∇w(x)·∇v(x) dx,

and the usual L2-projector P = PL2 . Having a set of functionals {μi}i=1,...,N as in
(2.17), i.e., giving

(3.4)

∫
Ω

μi(x)v(x) dx = 0 ∀i = 1, . . . , N ⇔ Pv = 0,

then g′ is obtained straightforwardly by (2.20) as
(3.5)

g′(x, y) =g(x, y) −
[∫

Ω
g(x̃, y)μ1(x̃) dx̃ · · ·

∫
Ω
g(x̃, y)μN (x̃) dx̃

]
×

⎡⎢⎣
∫
Ω
g(x̃, ỹ)μ1(x̃)μ1(ỹ) dx̃dỹ · · ·

∫
Ω
g(x̃, ỹ)μN (x̃)μ1(ỹ) dx̃dỹ

...
. . .

...∫
Ω
g(x̃, ỹ)μ1(x̃)μN (ỹ) dx̃dỹ · · ·

∫
Ω
g(x̃, ỹ)μN (x̃)μN (ỹ) dx̃dỹ

⎤⎥⎦
−1

×

⎡⎢⎣
∫
Ω
g(x, ỹ)μ1(ỹ) dỹ

...∫
Ω
g(x, ỹ)μN (ỹ) dỹ

⎤⎥⎦ ,

while (2.18) and (2.19) mean that, for all x, y ∈ Ω and for all i = 1, . . . , N ,

(3.6)

∫
Ω

g′(x̃, y)μi(x̃) dx̃ = 0 and

∫
Ω

g′(x, ỹ)μi(ỹ) dỹ = 0.
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In this context, the VMS formulation (2.10) reads as follows: Find ū ∈ V̄ such
that

(3.7)

∫
Ω

(κ∇ū(x) − βū) · ∇v̄(x) dx−
∫

Ω

∫
Ω

Lū(x)g′(x, y)L∗v̄(y) dxdy

=

∫
Ω

f(x)v̄(x) dx−
∫

Ω

∫
Ω

f(x)g′(x, y)L∗v̄(y) dxdy ∀v̄ ∈ V̄ .

3.1. Linear elements and H1
0 -optimality in one dimension. Let d = 1 and

Ω = (0, L). Consider a grid of nodes 0 = x0 < x1 < · · · < xnel−1 < xnel
= L and the

related subdivision of (0, L) into nel elements (xi−1, xi), i = 1, . . . , nel. Let V̄ ⊂ H1
0

be the space of piecewise-linear (with respect to the subdivision) functions, which is
of dimension N = nel − 1.

In this context, the H1
0 -projector P = PH1

0
plays a special role; indeed, (Pv)(xi) =

v(xi) for all i = 1, . . . , N . Then, the VMS approach provides in this case a nodally
exact approximation ū of the exact solution u (see [3, 8, 12, 13]).

In order to have (3.4), we set μi = δ(x−xi). The abstract property (3.6) becomes,
in this case,

(3.8) g′(x, xi) = g′(xi, y) = 0 ∀i = 1, . . . , N, 0 ≤ x, y ≤ L;

i.e., g′ vanishes if one of its two arguments is a node of the grid. Moreover, (3.5) gives

(3.9)

g′(x, y) = g(x, y)−
[
g(x1, y) · · · g(xN , y)

]
×

⎡⎢⎣ g(x1, x1) · · · g(xN , x1)
...

. . .
...

g(x1, xN ) · · · g(xN , xN )

⎤⎥⎦
−1

×

⎡⎢⎣ g(x, x1)
...

g(x, xN )

⎤⎥⎦ .

Recalling that L∗g(·, y) = δ(· − y), from (3.9) we get

L∗g′(·, y) = δ(· − y) −
[
g(x1, y) · · · g(xN , y)

]
×

⎡⎢⎣ g(x1, x1) · · · g(xN , x1)
...

. . .
...

g(x1, xN ) · · · g(xN , xN )

⎤⎥⎦
−1

×

⎡⎢⎣ δ(· − x1)
...

δ(· − xN )

⎤⎥⎦ .

If xi−1 < y < xi, then

(3.10) L∗g′(·, y) = δ(· − y) in (xi−1, xi),

while when y > xi or y < xi−1,

(3.11) L∗g′(·, y) = 0 in (xi−1, xi).

This, with (3.8), fully characterizes g′: By (3.8) and (3.11), we see that g′(x, y) = 0
if x and y belong to two different elements; moreover, (3.8) and (3.10) say that g′

is, on each (xi−1, xi) × (xi−1, xi), the so-called element Green’s function gel, i.e., the
Green’s function for the restriction of L to the element (xi−1, xi), with homogeneous
Dirichlet boundary conditions at the endpoints xi−1 and xi. Since g′(x, y) �= 0 only
when x and y belong to the same element, (3.3) can be localized within each element

(3.12) u′(y) =

∫ xi

xi−1

g′(x, y)r(x) dx ∀y ∈ (xi−1, xi).
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Fig. 3.1. Comparison between the Green’s function g (left) and the fine-scale Green’s function
g′ (right) for the one-dimensional problem and linear elements, with P = PH1

0
, κ = 10−3, β = 1,

L = 1, and a uniform grid of nel = 16 elements. Note that the support of g′ is local in that there is
no coupling between elements. This is an advantage of P = PH1

0
.

See a plot of g′ in Figure 3.1 where we consider the case of a uniform mesh of 16
elements (for κ = 10−3, β = 1, and L = 1) and we compare with the plot of the
Green’s function g.

As stated above, the structure of g′ for this case is well known in the literature
[3, 8, 12, 13]. Indeed, recognizing that V ′ is the space of bubbles

(3.13) V ′ =
⊕

i=1,...,nel

H1
0 (xi−1, xi),

the fine-scale variational equation (2.6) splits element by element and admits the
strong form

(3.14) Lu′ = f − Lū on (xi−1, xi) with u′(xi−1) = u′(xi) = 0

for each i = 1, . . . , nel; u′ is the solution of the advection-diffusion problem at the
element level with the coarse-scale residual acting as the right-hand side. This is why
g′ = gel at the element level.

Moreover, assuming piecewise-constant coefficients κ, β and source term f , the
fine-scale effect on the coarse-scale variational equation is

(3.15)

∫ L

0

∫ L

0

L∗v̄(y)g′(x, y)r(x) dxdy =

nel∑
i=1

∫ xi

xi−1

∫ xi

xi−1

L∗v̄(y)g′(x, y)r(x) dxdy

=

nel∑
i=1

∫ xi

xi−1

∫ xi

xi−1
g′(x, y) dxdy

xi − xi−1

∫ xi

xi−1

r(x)L∗v̄(x) dx,

which is recognized as a classical stabilization term depending on the parameter [12,
13]

(3.16) τ1 ≡ τ1,(xi−1,xi) =

∫ xi

xi−1

∫ xi

xi−1
g′(x, y) dxdy

xi − xi−1
=

h

2β

(
coth (α) − 1

α

)
,

where α = (hβ)/(2κ) is the mesh Peclét number and h = xi − xi−1 is the local mesh-
size. We show plots of g′ on the shifted element domain (0, h)× (0, h) in the diffusive
and in the advective regime in Figure 3.2. A plot of τ1 is presented in Figure 3.5.
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Fig. 3.2. Fine-scale Green’s functions g′ at the element level (0, h) × (0, h) for the one-
dimensional problem and linear elements. In the diffusive regime α = 10−2 (left), and in the
advective regime α = 102 (right). P = PH1

0
.

3.2. Higher-order elements and H1
0 -optimality in one dimension. We

consider now higher-order piecewise-polynomial coarse scales on the grid 0 = x0 <
x1 < · · · < xnel−1 < xnel

= L; i.e., we set

V̄ =
{
v̄ ∈ H1

0 (0, L) such that v̄|(xi−1,xi) ∈ Pk, 1 ≤ i ≤ nel

}
,

where Pk is the space of polynomials of degree at most k. We still deal with P = PH1
0
.

The case of higher-order elements (k ≥ 2) has not been studied in the literature of
VMS methods, as far as we know. There are indeed additional difficulties with respect
to the case of linear elements: V ′ is still a space of bubbles, but unlike the case k = 1,
V̄ also contains some (polynomial) bubbles, which are therefore missing in V ′. This
means that V ′ is a strict subset of bubbles

(3.17) V ′ ⊂
�=

⊕
i=1,...,nel

H1
0 (xi−1, xi),

or equivalently, V ′ is a space of bubbles with additional constraints. As a result, the
fine-scale variational equation (2.6) can still be split element by element into
(3.18)∫ xi

xi−1

Lu′(x)v′(x) dx =

∫ xi

xi−1

(f(x) − Lū(x))v′(x) dx ∀v′ ∈ V ′, i = 1, . . . , nel;

however, (3.18) is no longer equivalent to the strong form (3.14).
We can use the theory of section 2 for dealing with (3.18). Taking advantage of

(3.17), we restrict from the beginning to a single element (xi−1, xi) and to the bubbles
supported on it. Then, we take as the fine-scale space V ′

i = V ′
|(xi−1,xi)

. The space
of the bubbles which are polynomials of degree at most k plays the role of a coarse
space on (xi−1, xi); we set V̄i = V̄|(xi−1,xi) ∩H1

0 (xi−1, xi). The space of unconstrained
bubbles is Vi = H1

0 (xi−1, xi) = V̄i ⊕ V ′
i . Precisely, w ∈ Vi belongs to V ′

i if and only if
(integrating by parts)

(3.19) 0 =

∫ xi

xi−1

d

dx
w(x)

d

dx
v̄(x) dx = −

∫ xi

xi−1

w(x)
d2

dx2
v̄(x) dx ∀v̄ ∈ V̄i.

The second-order derivatives of V̄i functions are the polynomials of degree at most
k−2. We need, as {μj}j=1,...,N (where N = k−1, now), a basis of Pk−2. For example,
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we can set μj(x) = (x − xi−1)
j−1 for 1 ≤ j ≤ N . The constraint is expressed, as in

(2.17), by N scalar equations: v ∈ Vi belongs to V ′
i if and only if

(3.20)

∫ xi

xi−1

μj(x)v(x) dx = 0, 1 ≤ j ≤ N.

The Green’s function of the unconstrained bubble problem is the element Green’s
function gel. Then, we can use the formula (2.20) and derive an expression for g′ in
terms of gel: on (0, h) × (0, h) we have

(3.21)

g′(x, y) = gel(x, y) −
[∫ h

0
gel(x̃, y)dx̃ · · ·

∫ h

0
x̃k−2gel(x̃, y)dx̃

]

×

⎡⎢⎢⎣
∫ h

0

∫ h

0
gel(x̃, ỹ)dx̃dỹ · · ·

∫ h

0

∫ h

0
x̃k−2gel(x̃, ỹ)dx̃dỹ

...
. . .

...∫ h

0

∫ h

0
ỹk−2gel(x̃, ỹ)dx̃dỹ · · ·

∫ h

0

∫ h

0
x̃k−2ỹk−2gel(x̃, ỹ)dx̃dỹ

⎤⎥⎥⎦
−1

×

⎡⎢⎢⎣
∫ h

0
gel(x, ỹ)dỹ

...∫ h

0
ỹk−2gel(x, ỹ)dỹ

⎤⎥⎥⎦ .

We recall that g′(x, y) = 0 if x and y belong to different elements, while g′ on each
(xi−1, xi) × (xi−1, xi) can be obtained from (3.21) straightforwardly.

We discuss now in more detail the case of quadratic (k = 2) and cubic (k = 3)
coarse-scale elements. If k = 2, then (3.21) yields

(3.22) g′(x, y) = gel(x, y) −
∫ h

0
gel(x̃, y)dx̃

∫ h

0
gel(x, ỹ)dỹ∫ h

0

∫ h

0
gel(x̃, ỹ)dx̃dỹ

.

For k = 3, (3.21) gives

(3.23)

g′(x, y) = gel(x, y) −
[∫ h

0
gel(x̃, y)dx̃

∫ h

0
x̃gel(x̃, y)dx̃

]
×

⎡⎣ ∫ h

0

∫ h

0
gel(x̃, ỹ)dx̃dỹ

∫ h

0

∫ h

0
x̃gel(x̃, ỹ)dx̃dỹ∫ h

0

∫ h

0
ỹgel(x̃, ỹ)dx̃dỹ

∫ h

0

∫ h

0
x̃ỹgel(x̃, ỹ)dx̃dỹ

⎤⎦−1

×

⎡⎣ ∫ h

0
gel(x, ỹ)dỹ∫ h

0
ỹgel(x, ỹ)dỹ

⎤⎦ .

Plots of g′ on (0, h) × (0, h) are shown in Figures 3.3 and 3.4. (See [17] for explicit
formulas.)

Observe that, from (2.18)–(2.19), g′ is L2-orthogonal to Pk−2 in both variables x
and y on each (xi−1, xi) × (xi−1, xi). Still assuming that the coefficients κ and β are
piecewise-constant and the source term f is a piecewise-polynomial of degree at most
k − 1, then on (xi−1, xi) we have

r(x) =
dk−1r

dxk−1

xk−1

(k − 1)!
+ “polynomial of degree ≤ k − 2”

and

L∗v̄(y) =
dk−1L∗v̄

dxk−1

yk−1

(k − 1)!
+ “polynomial of degree ≤ k − 2”.
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Fig. 3.3. Fine-scale Green’s functions g′ at the element level (0, h) × (0, h) for the one-
dimensional problem and quadratic elements. In the diffusive regime α = 10−2 (left), and in the
advective regime α = 102 (right). P = PH1

0
.

Fig. 3.4. Fine-scale Green’s functions g′ at the element level (0, h) × (0, h) for the one-
dimensional problem and cubic elements. In the diffusive regime α = 10−2 (left), and in the
advective regime α = 102 (right). P = PH1

0
.

Therefore, exploiting both the locality and the orthogonality of g′ with respect to
polynomials of degree k − 2, the fine-scale effect on the coarse-scale equation can be
written as

(3.24)

∫ L

0

∫ L

0

L∗v̄(y)g′(x, y)r(x) dxdy

=

nel∑
i=1

∫ xi

xi−1

∫ xi

xi−1

L∗v̄(y)g′(x, y)r(x) dxdy

=
1

((k − 1)!)
2

nel∑
i=1

∫ xi

xi−1

∫ xi

xi−1

yk−1 d
k−1L∗v̄

dxk−1
g′(x, y)xk−1 d

k−1r

dxk−1
dxdy

=

nel∑
i=1

∫ xi

xi−1

∫ xi

xi−1
yk−1g′(x, y)xk−1dxdy

((k − 1)!)
2
(xi − xi−1)

∫ xi

xi−1

dk−1r

dxk−1

dk−1L∗v̄

dxk−1
dx

=

nel∑
i=1

τk,(xi−1,xi)

∫ xi

xi−1

dk−1r

dxk−1

dk−1L∗v̄

dxk−1
dx.
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Fig. 3.5. Stabilization parameters τ1, τ2, and τ3 versus α.

The stabilization term acts only locally and depends only on the derivative of degree
k − 1 of the residual; its effect is modulated by the parameter

τk ≡ τk,(xi−1,xi) =

∫ xi

xi−1

∫ xi

xi−1
yk−1g′(x, y)xk−1dxdy

((k − 1)!)
2
(xi − xi−1)

.

In the case of quadratic elements, from the previous formulas one can derive

τ2 =
h3

72β

−3e2αα−1 + e2α + 3e2αα−2 − 3α−2 − 1 − α−1

e2α − e2αα−1 + 1 + α−1
,

while for cubic elements,

τ3 =
h5

7200β

15e2αα−2 − 6e2αα−1 − 15e2αα−3 + e2α + 15α−3 + 6α−1 + 15 + 1

e2α − 3e2αα−1 + 3e2αα−2 − 1 − 3α−2 − 3α−1
.

Plots of τ1, τ2, and τ3 are compared in Figure 3.5.
Remark 1. From Figure 3.5 we see that the τk are positive and of order h2k−1/β

and αh2k−1/β = h2k/κ in the advective and in the diffusive regimes, respectively.
Remark 2. For linear elements, in one dimension, the H1

0 -optimal ū is the nodal
interpolant of u, which is a monotonicity preserving approximant. For higher-order
elements, the H1

0 -optimal ū is still nodally exact at the endpoints of each element,
but we lose monotonicity inside the elements.

Remark 3. The format of (3.24) is reminiscent of the gradient least-squares
stabilized method proposed by Franca and Dutra do Carmo [10].

3.3. L2-optimality in one dimension and the localization of g′. We have
shown that, for the one-dimensional problem and for the H1

0 -projector based VMS
formulation (i.e., with P = PH1

0
), the fine-scale Green’s function is supported on the

union of the (xi−1, xi)× (xi−1, xi) for 1 ≤ i ≤ nel. In this case, the g′ is fully localized
within each element, in that there is no coupling between elements. This allows a
convenient evaluation of the fine-scale effect in the VMS formulation (see (3.15) and
(3.24)). This feature, though, is not guaranteed for any projector P. Take, e.g.,
the L2-projector P = PL2 , with piecewise-linear elements. We can still compute g′

from (3.5), where now, in order to have (3.4), {μi}i=1,...,N is a basis for V̄ itself. For
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Fig. 3.6. Fine-scale Green’s function g′ for the one-dimensional problem and linear elements,
with P = PL2 , κ = 10−3, β = 1, L = 1, and a uniform grid of nel = 16 elements. Note that in the
case of P = PL2 , g′ is global and unattenuated when advection dominates.

κ = 10−3, β = 1, L = 1, and nel = 16 elements, a plot of g′ is presented in Figure
3.6; we see that the support of g′ includes the entire upwind region x ≤ y.

Remark 4. In practical applications, g′ needs to be approximated, leading to
classical stabilized methods. It is obviously more convenient and easy to approximate
a highly localized g′ than one that is global. This strongly suggests that the selection
of the projector is crucial in the development of a multiscale method.

3.4. Linear elements in two dimensions. Turning to problems in two dimen-
sions (as well as in multiple dimensions), we face two important differences.

First, it is technical and more difficult to obtain the analytical expression of the
Green’s function g and therefore of the fine-scale Green’s function g′ through (3.5).
To overcome this difficulty, in this section we use the standard Galerkin method to
numerically compute g and g′ on a fine mesh of 524, 288 elements, which is able to
resolve the fine scales of the problem under consideration.1 We take here Ω = (0, 1)2,
the diffusivity is κ = 10−3, and the unit advection velocity is β = [1/2 1]/

√
1.25.

Since both g and g′ are defined on (0, 1)2 × (0, 1)2, for the purposes of a graphical
representation we fix y = y∗ = [39/64 51/64] ≈ [0.6 0.8] (see Figure 3.7), and we
plot the Green’s function g, and the fine-scale Green’s function g′ versus the argument
x. The plot of x �→ g(x, y∗) is presented in Figure 3.8. As is known, x �→ g(x, y∗) is
singular when x = y∗, and indeed the left graph in Figure 3.8 has been truncated at
g = 50. Roughly speaking, g is supported around the upwind characteristic passing
through y∗.

The second major difference, compared to the one-dimensional case, is that if the
coarse scales are piecewise-polynomial, then the fine scales are not localized within
each element (i.e., they are not bubble functions), and this happens for any choice
of projector P, including the H1

0 -projector. Indeed, since the coarse scales are poly-
nomials on the edges of the elements of the triangulation, while the exact solution is
arbitrary, the fine scales do not vanish there. Our aims here are the calculation of g′

1Let {φi} be a basis for piecewise-linear functions on the fine mesh, and think of V ≈ span{φi},
roughly speaking. Let L be the matrix representation of L (i.e., Lij = V ∗ 〈Lφj , φi〉V ), then the

approximation of the Green’s operator G is associated with G = L−1. The approximation of G′ in
matrix form is obtained by G′ = G − G × PT × (P × G × PT )−1 × P × G, analogous to (2.11),
where P is the matrix associated with the projector P. The Green’s function and fine-scale Green’s
function can be approximated as g(x, y) ≈

∑
i,j Gijφj(x)φi(y) and g′(x, y) ≈

∑
i,j G

′
ijφj(x)φi(y).
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Fig. 3.7. Mesh of the coarse-scale space V̄ used for the calculation of the Green’s functions in
the two-dimensional case and the location of y∗ = [y∗1 y∗2 ].

Fig. 3.8. Plot (left) and contour plot (right) of x �→ g(x, y∗).

and the assessment of its attenuation compared with g and its locality for different
choices of P. We test both P = PH1

0
and P = PL2 , which gave, in the one-dimensional

case, a fully localized and a globally supported g′, respectively. We take the space
V̄ formed by linear elements on the uniform triangulation shown in Figure 3.7. The
plots of x �→ g′(x, y∗) for P = PH1

0
and P = PL2 are presented in Figures 3.9 and 3.10,

respectively. The singularity at x = y∗ is truncated at g′ = 50 in the left-hand plots
and at g′ = 5 in the right-hand plots. Observe that in the case P = PH1

0
, the fine-scale

Green’s function is more localized around y∗, compared with the case P = PL2 , for
which oscillations are spread over the entire domain. In addition, the g′ for the case
P = PH1

0
seems to be negligible outside a layer of a few elements around y∗. This is

better seen in the (right-hand) contour plots of Figure 3.9 and 3.10, where the coarse
mesh is overlaid.

Changing the position of y∗ inside Ω and taking y∗ on an edge or a vertex of the
coarse triangulation produces similar results (not shown).

Remark 5. The upwind tail of g is global in the advection-dominated case,
whereas it is highly attenuated for g′ when P = PH1

0
(cf. Figure 3.8 with Figure

3.9). This has important implications for multiscale analysis of dominantly hyperbolic
phenomena. In addition, the g′ for P = PH1

0
is much more localized than that for
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Fig. 3.9. Plot (left) and contour plot (right) of x �→ g′(x, y∗) for P = PH1
0
.

Fig. 3.10. Plot (left) and contour plot (right) of x �→ g′(x, y∗) for P = PL2 .

P = PL2 . These results are consistent with the one-dimensional case and suggest
that local approximations of g′ for P = PH1

0
may achieve near H1

0 -optimality in
multidimensional, advection-dominated cases.

Let us return to the model problem (3.1) with κ and β defined as above. We now
consider a right-hand side f = +1 if x2 ≥ 2x1, f = −1 if x2 < 2x1. The exact solution
has an internal layer along x2 = 2x1, due to the discontinuity of f , and boundary
layers at x1 = 1 and x2 = 1.

We consider three different meshes: The first two are shown in Figure 3.11, and
the third is the same as the one depicted in Figure 3.7. The three meshes are quite
coarse for the problem considered. The coarse-scale approximations ū are given in
Figures 3.12–3.14 for PH1

0
and PL2 . In Figure 3.12 it is very clear that the solution

for PH1
0

is much better than that for PL2 . In Figure 3.13, the solution for PH1
0

is
better than that for PL2 but not by as wide margin as in Figure 3.12. The trend
continues in Figure 3.14, but the solution for PH1

0
is only slightly better than that

for PL2 . We have tested other meshes, obtaining results (not shown) similar to the
ones of Figures 3.12–3.14. The superiority of PH1

0
seems to be a general fact, though

it is more apparent for finer meshes than coarser meshes. One might conclude that
H1

0 -optimality is not as strong a condition as it is often thought to be and may not
be enough in many practical cases for which monotonicity is deemed essential.
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Fig. 3.11. First two meshes associated with the coarse-scale spaces V̄ , used for the calculations
of the coarse-scale components ū of the model problem.
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Fig. 3.12. Coarse-scale component ū for the model problem. P = PH1
0

(left) and P = PL2

(right). The coarse-scale space V̄ is based on the left-hand mesh in Figure 3.11.
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Fig. 3.13. Coarse-scale component ū for the model problem. P = PH1
0

(left) and P = PL2

(right). The coarse-scale space V̄ is based on the right-hand mesh in Figure 3.11.

Remark 6. In the case P = PH1
0
, because of (3.6) we have, in the sense of

distributions,
∫
Ω
g′(x, y)Δv̄(y) dy = 0 for all v̄ ∈ V̄ . Therefore, the fine-scale effect on
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Fig. 3.14. Coarse-scale component ū for the model problem. P = PH1
0

(left) and P = PL2

(right). The coarse-scale space V̄ is based on the mesh in Figure 3.7.

the coarse-scale equation (3.7) becomes

(3.25)

∫
Ω

∫
Ω

(f(x) − Lū(x)) g′(x, y)L∗v̄(y) dxdy

= −
∫

Ω

∫
Ω

(f(x) − Lū(x)) g′(x, y)β · ∇v̄(y) dxdy.

In one dimension, where g′ is fully localized, the right-hand side of (3.25) is precisely
the classical SUPG stabilization (see [9]); i.e., the residual is weighted only by the
advective part of the operator, and the g′ gives rise to the elementwise optimal τ ,
as described in sections 3.1 and 3.2. (Recall that f was assumed to be a piecewise-
polynomial of degree at most k − 1.) Note also that the diffusion operator in the
residual in (3.25) may also be eliminated due to the aforementioned orthogonality
property. These observations hold in higher dimensions as well, except g′ is not
fully localized within individual elements. In the classical multidimensional SUPG
method [9], instead of (3.25) we have −

∑nel

e=1

∫
Ωe

(f(x) − Lū(x)) τ(x)β · ∇v̄(x) dx,
where Ωe, e = 1, . . . , nel, are the elements of the mesh on Ω. The primary difference
between SUPG and (3.25) is that g′ is replaced by the elementwise constant τ . This
approximation may be justified in light of the localized nature of g′. Indeed, SUPG
has been shown to converge at optimal rates in higher dimensions (see, e.g., [19]),
although in advection-dominated cases, the “stability” norm is not as strong as the
H1

0 -seminorm in that it only contains the streamline derivative.
Remark 7. The residual-free bubble approach [4, 5, 6, 7, 8, 20, 21] has been shown

in [3] to be equivalent to a multiscale method in which the fine-scale Green’s function
is approximated by a local element Green’s function [12, 13]. Use of a local Green’s
function, in light of the framework described herein, can be rigorously justified only
in the one-dimensional case in which the H1

0 -projector is employed. However, this
amounts to a very convenient approximation in practice and one that is known to
generate effective stabilized methods [1, 5, 6, 20]. With a better knowledge of g′ in
the multidimensional case, we would anticipate that improved stabilization schemes
could be devised.

4. Conclusions. In this paper we have derived an expression for the fine-scale
Green’s function arising in VMS analysis. The specification of a projector, defining
the direct-sum decomposition into coarse-scale and fine-scale components, renders the
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problem for the fine-scale Green’s function well-posed. Different projectors give rise
to different fine-scale Green’s functions, and their properties can vary considerably.
It is felt to be beneficial if the fine-scale Green’s function is more attenuated than the
classical Green’s function, and its support is dominantly local. It is found that the
projector induced by the H1

0 -seminorm enjoys these properties whereas the projector
induced by the L2-norm does not.

The primary practical result of these studies is in the development of a framework
for approximate multiscale methods. Indeed, in general it is not possible to exactly
calculate the fine-scale Green’s function. Despite its complexity, its orthogonality
properties suggests simplified constructs in the form of stabilized methods. This is
instantiated precisely in one dimension for the H1

0 -projector, and its possibility in
higher dimensions is suggested as well. In fact, it is shown that the H1

0 -optimal
method and SUPG have features in common.

The results obtained clarify the relationship between the fine-scale Green’s func-
tion and the properties of the coarse-scale solution. However, we considered projectors
associated only with inner products, and in particular, we studied only the H1

0 - and
L2-projectors. The coarse-scale solution achieves optimality in terms of the corre-
sponding norm. One could conceive of requiring the coarse-scale solution to achieve
optimality in other measures giving rise to nonlinear structure. This is an intriguing
possibility in that one could, e.g., require monotonicity, or other desirable behavior.
In the past, ad hoc procedures have been used to instill such properties in numerical
methods, but the present ideas seem to have the potential for studying these issues
in a more fundamental way.

Presently, most numerical methods are given as recipes, and they are evaluated
ex post facto by the way they satisfy desired objectives. The present developments
suggest a different approach: designing numerical methods to satisfy desired objectives
ab initio. We are a long way from making this a practical reality, but we believe some
small steps have been taken in this direction.
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COMPUTING THE GAMMA FUNCTION USING CONTOUR
INTEGRALS AND RATIONAL APPROXIMATIONS∗
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Abstract. Some of the best methods for computing the gamma function are based on numerical
evaluation of Hankel’s contour integral. For example, Temme evaluates this integral based on steepest
descent contours by the trapezoid rule. Here we investigate a different approach to the integral: the
application of the trapezoid rule on Talbot-type contours using optimal parameters recently derived
by Weideman for computing inverse Laplace transforms. Relatedly, we also investigate quadrature
formulas derived from best approximations to exp(z) on the negative real axis, following Cody,
Meinardus, and Varga. The two methods are closely related, and both converge geometrically. We
find that the new methods are competitive with existing ones, even though they are based on generic
tools rather than on specific analysis of the gamma function.
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1. The gamma function. In his childhood Gauss rediscovered that the sum of
the first n positive integers is given by

n∑
k=1

k =
n (n + 1)

2
,

a formula which can be considered as an interpolation valid even for nonintegers.
Starting in 1729 Euler discussed in a series of three letters to Goldbach, well known
for the Goldbach conjecture, the problem of the product of the first n integers, which
is today known as the factorial of n, n!. Davis [6] gives details about the history of
the gamma function. We start here with the standard definition

(1.1) Γ (z) =

∫ ∞

0

tz−1e−tdt, Re z > 0,

where

tz−1 = e(z−1) log t and log t ∈ R.

The gamma function is analytic in the open right half-plane. Partial integration yields

(1.2) Γ (z + 1) = zΓ (z) ,

and since Γ (1) = 1, we have

Γ (n + 1) = n!.
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Any confusion caused by this identity dates back to Legendre. It is possible to continue
the gamma function analytically into the left half-plane. This is often done by a
representation of the reciprocal gamma function as an infinite product [1, eq. 6.1.2]:

1

Γ (z)
= lim

n→∞

n−z

n!
z (z + 1) . . . (z + n)

valid for all z. This representation shows that Γ(z) has poles for z = 0,−1,−2, . . . .
Of more practical use is the reflection formula [1, eq. 6.1.17]:

(1.3) Γ (z) Γ (1 − z) =
π

sinπz
, z /∈ Z.

This identity implies Γ (1/2) =
√
π. It is standard to approximate the gamma function

only for Re z ≥ 1/2 and to exploit (1.3) for Re z < 1/2.

2. Hankel’s representation. An alternative representation for the reciprocal
gamma function, which is an entire function, is due to Hankel [11]. Substituting
t = su in (1.1) yields

F (s) :=
Γ (z)

sz
=

∫ ∞

0

uz−1e−sudu,

which can be regarded as the Laplace transform of uz−1 for fixed complex z. Hence
uz−1 can be interpreted as an inverse Laplace transform:

uz−1 = L−1{F (s)} =
1

2πi

∫
C
ekuF (k)dk =

1

2πi

∫
C
eku

Γ(z)

kz
dk.

The path C is any deformed Bromwich contour such that C winds around the negative
real axis in the anticlockwise sense (see Figure 1). Now we substitute s = ku, which
yields

uz−1 =
1

2πi

∫
C
es

Γ(z)uz

szu
ds

and hence

(2.1)
1

Γ (z)
=

1

2πi

∫
C
s−zesds.

The numerical evaluation of integrals of the form

(2.2) I =
1

2πi

∫
C
esf(s)ds

Fig. 1. A typical Hankel contour, winding around the negative real axis (dashed) in the anti-
clockwise sense.



560 THOMAS SCHMELZER AND LLOYD N. TREFETHEN

has been discussed by Trefethen, Weideman, and Schmelzer [22]. The function s−z

has a branch cut on R
− = (−∞, 0] but is analytic everywhere else. Hence (2.2) is

independent of C under mild assumptions. The freedom to choose the path for inverse
Laplace transforms has aroused a good deal of research interest. Recently Weideman
and co-workers [22, 25, 24] have optimized parameters for the cotangent contours
introduced by Talbot [19] as well as for other contours in the form of parabolas and
hyperbolas. Here we focus on different numerical methods for which (2.1) is the
common basis. In particular we shall compare

1. steepest descent contours,
2. Talbot-type contours,
3. rational approximation of es on (−∞, 0].

The first of these methods is an existing one, and the other two are new. Methods we
do not compare are those of Spouge, Lanczos, and Stirling. Comments on these and
on what is done in practice can be found in section 7.

In addition we mention in section 6 a generalization of (2.1) for matrices and
introduce an idea for solving linear systems of the form Γ(A)x = c without computing
Γ(A).

3. Saddle point method. Saddle point methods in general are extensively dis-
cussed in the book by Bender and Orszag [3, sect. 6.6]. The reciprocal gamma function
is a standard example for this technique presented in this and many other textbooks.
We keep the details to a minimum and follow an approach of Temme [20], who ad-
vocates the numerical evaluation of the integral along a steepest descent contour.
A zero of the first derivative of an analytic function f indicates a saddle point of∣∣ef ∣∣. Through this point runs a path C where f has a constant imaginary part and
a decreasing real part. This is a very desirable property for asymptotic analysis and
numerical quadrature schemes. In order to apply these ideas here we fix the movable
saddle by a change of variable s = zt. We get

(3.1)
1

Γ (z)
=

ezz1−z

2πi

∫
C
ezφ(t)dt,

where φ(t) = t − 1 − ln t. If z is real and positive, then the integrand in (3.1)
decreases exponentially as t moves away from 1 along the steepest descent contour.
For complex z, on the other hand, the decrease becomes oscillatory, and in the limit
of pure imaginary z, there is no decrease at all. Thus let us assume that z is a positive
real number. Let t = ρeiθ be the steepest descent path parameterized by the radius
ρ and the argument θ. The vanishing imaginary part at t = 1 induces the equation

0 = Im φ(t) = ρ sin θ − θ.

Hence the path is given by ρ = θ/ sin θ. Temme [20] gives the reparameterization

1

Γ (z)
=

ezz1−z

2π

∫ π

−π

e−zΦ(θ)dθ,

where

Φ(θ) = 1 − θ cot θ + ln
θ

sin θ

with Φ(0) = 0. Note that the real part of dt/dθ =
(
cot θ − θ csc2 θ

)
+ i is an odd

function of θ.
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The integral can be approximated by the midpoint rule, which is exponentially ac-
curate. See [21] for a review of this phenomenon of high accuracy. The approximated
integral is

(3.2) IN (z) =
ezz1−z

N

N∑
k=1

e−zΦ(θk),

where the nodes are

θk = −π +

(
k − 1

2

)
2π

N
, 1 ≤ k ≤ N.

This set of nodes is exponentially accurate, but it is not optimal for large z, for the
nodes closer to −π and π contribute negligibly because of the fast decay along the
path. We could delete some of these points to make the method even more efficient,
truncating the interval to [−τ, τ ] instead of [−π, π].

4. Direct contour integration. Instead of working with saddle points, another
approach is to apply the trapezoidal rule directly to (2.1). This makes it easy to
evaluate Γ(z) for complex as well as real arguments. Let φ(θ) be an analytic function
that maps the real line R onto the contour C. Then (2.1) can be written as

(4.1) I =
1

2πi

∫ ∞

−∞
φ(θ)−zeφ(θ)φ′(θ) dθ.

Because of the term eφ(θ), the integrand decreases exponentially as |θ| → ∞ so that
one commits an exponentially small error by truncating R to a finite interval. For
simplicity we shall arbitrarily fix this interval as [−π, π]. In [−π, π] we take N points
θk spaced regularly at a distance 2π/N , and our trapezoid approximation to (2.1)
becomes

(4.2) IN = −iN−1
N∑

k=1

esks−z
k wk,

where sk = φ(θk) and wk = φ′(θk). MATLAB codes are given in Figure 2.
Note that there is still the freedom left to choose a particular path. In Program

31 of the textbook [23], a closed circle with center c = −11 and radius r = 16 is used
with 70 equidistant nodes on it. Although this contour crosses the branch cut, it does
so sufficiently far down the real axis that the error introduced thereby is less than
10−11.

A more systematic approach has been pursued by Weideman and co-workers
[22, 25, 24], who have proposed, in particular, parameters for parabolic, hyperbolic,
and cotangent contours:

1. Parabolic contour

(4.3) s(θ) = N
[
0.1309 − 0.1194θ2 + 0.2500iθ

]
,

2. Hyperbolic contour

(4.4) s(θ) = 2.246N [1 − sin(1.1721 − 0.3443iθ)] ,

3. Cotangent contour

(4.5) s(θ) = N [0.5017θ cot(0.6407θ) − 0.6122 + 0.2645iθ] .
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function I = ContourIntegral(z,contour,N,f)

[s,w] = feval(contour,N); % contour is a function

I = zeros(size(z)); % the different sums

for k = 1:N % quadrature via

I = I+w(k)*exp(s(k)).*feval(f,s(k),z); % evaluating f at the nodes

end

function [s,w] = contourCot(N)

t = (-N+1:2:N-1)*pi/N; % angles theta

a = 0.5017; b = 0.2645i; ct = 0.6407*t; d = 0.6122;

s = N*(a*t.*cot(ct)-d+b*t).’; % poles

w = -i*(a*cot(ct)-a*ct./sin(ct).^2+b).’; % weights

function f = IntGamma(s,z)

% for the reciprocal gamma function

f = s.^(-z);

Fig. 2. MATLAB codes to evaluate (2.2) by (4.2). The function f(s) = s−z and the contour C
are defined in separate M-files and addressed as handles.

0 5 10 15 20 25 30 35 40

10
–15

10
– 10

10
 5

10
0

N

re
la

tiv
e 

er
ro

r

0.5
1
2
5
2+i
2+2i

Fig. 3. Convergence of IN to 1/Γ(z) for the cotangent contour (4.2), (4.5), for six different
values of z. The dashed line shows 3.89−N , confirming Weideman’s analysis.

Using equidistant nodes with respect to θ, all of these contours show geometric conver-
gence at rates approximately O(3−N ). Figure 3 illustrates this behavior by showing
convergence as N → ∞ for six values of z. According to Weideman the convergence
rate for the cotangent contour is O(3.89−N ), which is shown as a dashed line in the
figure.

In Figure 4, this behavior is compared in a region of the z-plane to the conver-
gence for the parabolic and hyperbolic contours, the steepest descent contours, and
the method of rational approximation to be introduced in the next section. All the
methods are geometrically convergent (except steepest descents near the imaginary
axis), and the cotangent contours and rational approximations are the best.

For all of these Talbot-type contours we encounter the same nonoptimality effect
as for the saddle point method: The decay of the integrand is so fast that the left-
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(a) Saddle point method (3.2), N = 32.
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(b) Circular contour from [23], N =70.

0 5 10 15
0

2

4

6

8

Re z

Im
 z

(c) Parabolic contour (4.3), N = 32.
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(d) Hyperbolic contour (4.4), N = 32.
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(e) Cotangent contour (4.5), N = 32.
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(f) CMV approximation (5.1) with no
shift, N = 16.
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(g) CMV approximation (5.1) with
shift b = 1, N = 16.

Fig. 4. Relative error in evaluating Γ(z) in various points of the z-plane. The color bar in (a)
indicates the scale for all seven plots (logs base 10). In practice, one would improve accuracy by
reducing values of z to a fundamental strip, as shown in Figures 5 and 8.



564 THOMAS SCHMELZER AND LLOYD N. TREFETHEN

0 5 10 15
0

2

4

6

8

Re z

Im
 z

Fig. 5. Relative error in evaluating Γ(z) using a cotangent contour (4.5), N = 32 in 1
2

≤
Re z < 3

2
and applying (1.2) and (1.3) for other points of the z-plane. The shading is the same as

in Figure 4.

% gammatalbot - Thomas Schmelzer & Nick Trefethen November 2005

%

% For real arguments this is around 20 times slower than Matlab’s

% gamma, a factor roughly equal to the product of:

% 5 since this is an M-file rather than a .mex file

% 2 since it uses Talbot quadrature rather than best approximation

% 2 since the real symmetry is not exploited in the sum

function g = gammatalbot(z) % complex Gamma function

r = find(real(z)<0.5); % reflect to real(z)>=0.5

z(r) = 1-z(r);

shift = floor(real(z)-0.5); % shift to fundamental strip

zz = z-shift;

g = 1./ContourIntegral(zz,@contourCot,32,@IntGamma);

while any(shift)>0

f = find(shift>0);

g(f) = g(f).*zz(f);

shift(f) = shift(f)-1;

zz(f) = zz(f)+1;

end

g(r) = -pi./(g(r).*sin(pi*(z(r)-1))); % reflect back

j = find(imag(z)==0); g(j) = real(g(j)); % real inputs -> real outputs

Fig. 6. A MATLAB routine for computing the gamma function. The fundamental identities
(1.2) and (1.3) are used to reduce all arguments to the strip 1

2
≤ Re z < 3

2
. The code makes use of

the functions listed in Figure 2.

most nodes make a negligible contribution. The source of this phenomenon is the fact
that Weideman’s analysis considers only the factor es in (2.1), treating the factor s−z

as of order 1, whereas in fact, when z has a large real part, s−z is very small. This
effect is ubiquitous when computing with a fixed path and fixed nodes for all z ∈ C.
We could take advantage of it by fine-tuning Weideman’s parameters in a manner
specific to the gamma function, but we shall not do that here since our interest is in
the application of generic methods for integrals of the form (2.2). Also, it is simpler
and just as effective to use the fundamental identities (1.2) and (1.3) to reduce all
arguments to the strip 1

2 ≤ Re z < 3
2 . The effect of such reductions is illustrated for

the cotangent contour in Figure 5. A MATLAB routine implementing this strategy
is given in Figure 6.
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5. Rational approximation. In a recent paper we, along with Weideman,
interpreted the trapezoidal rule on a Hankel contour as a rational approximation
of exp(z) on the negative real axis [22]. The analysis of best Chebyshev approx-
imations of this kind is a problem made famous by Cody, Meinardus, and Varga
(CMV) [5]; the errors are known to decrease asymptotically at the rate O(HN ),
where H = 1/9.28903 . . . is known as Halphen’s constant [10]. As shown in [22],
these approximations can be used directly to evaluate integrals (2.2), bypassing the
consideration of Talbot contours and the trapezoid rule. Given N , we define the best
type (N,N) approximation to exp(s) to be the unique real rational function r∗N of
type (N,N) such that

sup
s∈R−

|r∗N (s) − exp(s)| = inf
r∈RN

sup
s∈R−

|r(s) − exp(s)| ,

where RN denotes the set of all rational functions of type (N,N). The coefficients of
the polynomials in the numerator and denominator of r∗N are given to very high accu-
racy in a paper by Carpenter, Ruttan, and Varga [4]. A practical way of determining
these approximants on the fly is the Carathéodory–Fejér (CF) method. (In principle,
the CF approximation is not best but near-best, but its difference from the true best
approximation is negligible for N ≥ 2 [22].) The function r∗N can be represented in
a partial fraction representation, i.e., by N poles p1, . . . , pN and residues c1, . . . , cN
such that

r∗N (s) =

N∑
k=1

ck
s− pk

+ c0.

We define r̃N (s) to be the portion of this expression in the sum, i.e., r̃N (s) = r∗N (s)−
r∗N (∞), a rational function of type (N − 1, N) whose deviation from exp(s) on R

−

decreases at the same asymptotic rate as that of r∗N as N → ∞.
These rational approximants can be used as the basis of another method for

evaluating 1/Γ(z). We simply replace es in (2.1) by r̃N to obtain, with the aid of
residue calculus,

(5.1) IN =
1

2πi

∫
C
r̃N (s)s−zds = −

N∑
k=1

ckp
−z
k ,

which converges for Re z > 0 as the decay of the integrand at infinity is fast enough.
For Re z > 1 we also have

(5.2) IN =
1

2πi

∫
C
r∗N (s)s−zds.

For even N the poles come in conjugate pairs and (5.1) simplifies for real z to

IN = −
N/2∑
k=1

2Re
(
ckp

−z
k

)
provided the first N/2 poles are all in the upper half-plane or all in the lower half-
plane.
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Fig. 7. Convergence for the near-best rational approximation (5.1) of type (N − 1, N) with no
shift. The convergence is about twice as fast as in Figure 3, with fifteen integrand evaluations suffic-
ing to produce near machine precision. The dashed line shows 9.28903−N , confirming Theorem 5.2.
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Fig. 8. Relative error in evaluating Γ(z) using a CMV approximation, N = 16 with no shift
solely in 1

2
≤ Re z < 3

2
, and applying (1.2) and (1.3) for other points of the z-plane. The shading

is the same as in Figure 4.

For each z satisfying Re z > 0 or Re z > 1 as appropriate, IN appears to converge
to 1/Γ(z) at a geometric rate controlled by the same constant H = 1/9.28903 . . . as
indicated in Figures 7 and 8. A proof of this claim would follow from the following
result, which we believe is true but have not yet proved.

Conjecture 5.1. Let {r∗N} be the best approximations over R
− as defined above,

let K be a compact set in C, and let ‖·‖K denote the supremum norm over K. Then

lim sup
N→∞

‖exp(s) − r∗N (s)‖1/N
K ≤ H =

1

9.28903 . . .
.

Here is the result that follows from the conjecture.
Theorem 5.2. Let {r̃N} and {r∗N} be the rational approximations defined above

and let z be fixed with Re z > 0. Then the approximations (5.1) and (5.2) (provided
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Re z > 1) satisfy

lim sup
N→∞

∣∣∣∣ 1

Γ(z)
− IN (z)

∣∣∣∣1/N ≤ H =
1

9.28903 . . .
.

Partial proof, assuming the validity of Conjecture 5.1. We introduce a special
Hankel contour Cρ. It consists of a circle of radius ρ enclosing the origin and two rays
joining ρe−iπ and ρe+iπ with the point −∞. An upper bound for the error is deduced
on Cρ. For the case of r∗N , for example, we get by using (2.1) and (5.2)∣∣∣∣ 1

Γ(z)
− IN (z)

∣∣∣∣ ≤ 1

2π
‖r∗N (s) − exp(s)‖Cρ

∫
Cρ

∣∣s−z
∣∣ |ds| ,

and we note that for any s, |s−z| ≤ |s|−a
eπ|b| for z = a + bi with a > 1. From here

we readily obtain ∫
Cρ

∣∣s−z
∣∣ |ds| ≤ (

2π +
2

a− 1

)
e|b|πρ1−a.

The convergence of r∗N (s) to exp(s) on the circle of radius ρ can be estimated by
Conjecture 5.1, and therefore

lim sup
N→∞

∣∣∣∣ 1

Γ(z)
− IN (z)

∣∣∣∣1/N ≤ H.

It remains to show that the result just proved for r∗N and Re z > 1 also holds for r̃N
and Re z > 0. To do this split up the integral to obtain the estimate∣∣∣∣ 1

Γ(z)
− IN (z)

∣∣∣∣ ≤ 1

2π
‖s (r̃N (s) − exp(s))‖Cρ

∫
Cρ

∣∣s−z−1
∣∣ |ds| .

The function s (r̃N − exp(s)) in the left-hand term of this estimate approaches a con-
stant as s → −∞ for each N , since r̃N − exp(s) decreases at the rate O(s−1). The
essential point in showing that these Nth roots approach H as required is to make
sure that the leftmost extremum of r̃N (s) − exp(s) does not occur at a value of s
that is exponentially large, in which case the Nth root of this value of s might fail to
converge to 1. In fact, the results of Aptekarev [2] and Magnus [13] appear to confirm
numerical evidence that the location of this extremum grows just algebraically, but
we will not attempt a rigorous proof here.

The fundamental property exp(a+ b) = exp(a) exp(b) for any two complex argu-
ments can be exploited in our algorithm. Given a positive parameter b, the function
r̃bN (s) = exp(b)r̃N (s−b) can be regarded as an approximation of exp(s) in the interval
(−∞, b]. In particular, (5.1) is the special case of this approximation for b = 0:

(5.3) IbN =
1

2πi

∫
C
r̃bN (s)s−zds = −

N∑
k=1

ebck(pk + b)−z.

It is easily proved that the shifted rational approximation r̃bN (s) still converges with
the same asymptotic rate HN . In experiments we have observed that a shift of O(1)
gives better results especially for real arguments, as illustrated in Figures 7 and 9 and
4(f) and 4(g), where we used a shift of b = 1.
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Fig. 9. Convergence for the near-best rational approximation (5.1) of type (N−1, N) with shift
b = 1. Though the asymptotic behavior is the same, the constants are better than in Figure 7, and
the use of such a shift might be a good idea in practice.

6. Matrix arguments. Hankel’s contour integral (2.1) can be generalized to
square matrices A, and one can apply the methods introduced here to compute Γ(A)−1

or to compute the solution vector x in a linear system Γ(A)x = c without computing
Γ(A). We have confirmed this by numerical experiments not reported here. A draw-
back of such methods is that it is expensive to compute s−A

k c for every node; methods
based on the algorithms of Spouge [18] and Lanczos [12] might be more efficient. We
are currently not aware of applications where Γ(A) is used for matrix arguments.

7. Other methods and existing software. There are a variety of existing
methods for computing the gamma function. Are our methods competitive with
these? As far as we can tell, the answer seems to be yes; they are “in the ballpark”
in the sense of coming within a factor of 1–10 of the best methods, notably

• the method of Lanczos [12],
• the method of Spouge [18],
• the asymptotic Stirling series [1, eq. 6.1.37].

We emphasize that these methods are specialized algorithms designed for computing
the gamma function and its close relatives, whereas our ideas are applicable in a much
larger framework.

7.1. The method of Spouge. The method of Spouge [18] is attractive because
of its simplicity and precise error estimates. Spouge introduced the approximation

Γ(z + 1) ≈ (z + γ)z+1/2e−(z+γ)
√

2π

[
c0 +

N∑
k=1

ck(γ)

z + k

]
,

which is valid for Re (z + γ) > 0 and dependent on a positive real parameter γ with
N = 
γ� − 1, which converges to an equality as γ → ∞. Here c0 = 1, and the other



COMPUTING THE GAMMA FUNCTION 569

coefficients are given by

ck(γ) =
1√
2π

(−1)k−1

(k − 1)!
(−k + γ)k−1/2e−k+γ , 1 ≤ k ≤ N.

The absolute error for this approximation can be bounded [18, Thm. 1.3.1] by

EN (z) ≤
∣∣∣∣γ(z)

1√
N + 1(2π)N+3/2

∣∣∣∣ .
Note that the relative error does not depend on z, making Spouge’s method especially
attractive for uniform approximations in the right half-plane. The above inequality
implies that the method converges at least as fast as (6.28−N ), a rate lying midway
between (3.89−N ) for Talbot contours and (9.29−N ) for best rational approximations.
Actually, experiments suggest a better convergence rate, closer to O(10−N ).

7.2. The method of Lanczos. The method of Lanczos [12] is closely related
to that of Spouge. Lanczos’s method is based on the fast evaluation of the integral

Fγ(z) =

∫ e

0

[v(1 − log v)]
z
vγdv,

where γ is a positive free parameter. The integral is approximated by a rational
function

FN,γ(z) = a0 +

N∑
k=1

ak/(z + k).

A variety of methods for computing the coefficients are discussed in a recent thesis by
Pugh [16]. Their rate of decay depends strongly on a good choice for γ. However, it is
unclear if it makes sense to ask about the asymptotic behavior for N → ∞. Little is
known about the decay of the error |Fγ(z) − FN,γ(z)| [16, Chap. 11]. Lanczos claimed
that the higher γ becomes, the smaller is the value of the coefficients at which the
convergence begins to slow down. At the same time, however, we have to wait longer
before the asymptotic stage is reached. Pugh [16] calls this behavior the Lanczos shelf
and is interested in finding good pairs of γ and N in order to guarantee a certain
precision in the right half-plane. Godfrey [9] gives a 15-term expansion that provides
an accuracy of about 15 significant digits along the real axis and about 13 digits in the
rest of the complex plane. Because of the simple form of FN,γ(z), Lanczos’s method
is particularly suitable for matrix arguments.

7.3. Stirling’s method. The asymptotic series that generalizes Stirling’s for-
mula1 is still a standard and powerful method for evaluating the gamma function.
There is a great deal of literature discussing efficient strategies and error estimates
for these series (see the references in [14]). The goal here is to minimize the number
of terms used to achieve the desired accuracy. This can be done in two ways, by
either shifting the argument to the right or enforcing a faster asymptotic decay of the
relative error using more terms in the series. (For fixed z and N → ∞ the series does
not converge.) The method is especially attractive for arguments with a large real
part working in an arbitrary precision environment. Using an asymptotic series for
log Γ(z), the error is bounded for Re z ≥ 0 by |B2N/(2N − 1)| |z|1−2N

, where B2N

denotes a Bernoulli number. This simple error estimate is due to Spira [17].

1Stirling was a student at the same Oxford college we both belong to, Balliol.
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7.4. Software. Software libraries and programming environments for scientific
computing all have routines to compute the gamma function, although quite a few do
not deal with complex arguments. For our small survey we explored online documen-
tation for various products, and yet it often remains unclear exactly which methods
are used. For real arguments, a popular trick is to work with a rational Chebyshev
approximation on the interval [1, 2] and map this interval by the recurrence relation
(1.2) to larger regions of the real line. The routine in the NAG library seems to map
this interval to the whole real line, whereas MATLAB2 uses a Stirling approximation
for arguments larger than 12. On the fundamental interval, MATLAB uses a rational
Chebyshev approximation of type (8, 8). As the MATLAB routine was originally de-
signed for Fortran, we imagine that many Fortran libraries use essentially the same
method.

None of the above products provides a function for complex arguments. For
Fortran the IMSL library has a routine of this kind. As there are no references
to the work of Lanczos and Spouge in the IMSL documentation, we presume that
it is based on asymptotic series. The Gnu Scientific Library provides a C function
gsl_sf_lngamma_complex_e that evaluates log Γ(z) via the complex Lanczos method.

Mathematica uses the asymptotic Binet formula, which is another name for the
Stirling series. We presume Maple uses the same method since the Maple documen-
tation gives a reference to the classic book on special functions [7], which appeared
before the methods of Lanczos and Spouge were introduced. Somewhat more inter-
esting are the comments in [15]:

There are a variety of methods in use for calculating the function
Γ(z) numerically, but none is quite as neat as the approximation
derived by Lanczos. This scheme is entirely specific to the gamma
function, seemingly plucked from thin air.

8. Conclusions. We have shown that Γ(z) can be evaluated with geometric
accuracy by two types of generic related methods:

• applying the trapezoidal rule on Talbot contours.
• using best rational approximations on the negative real axis.

Typically the second method is about twice as fast as the first. However, the first is
simpler to implement as the construction of the best rational approximation is not
trivial.

Amongst the Talbot contours, the cotangent contour has the best results. Using
a shift from (−∞, 0] to (−∞, 1], one can improve the results for the best rational
approximation a bit. For smaller values of z in the right half-plane, the approximations
are excellent, and using the fundamental recurrence relation for the gamma function,
one can extend the region of accuracy.

Even though the methods we have introduced are based on generic tools rather
than on specific analysis of the gamma function, they are competitive with existing
ones. The gamma function is just one of many special functions that have integral
representations which can be evaluated efficiently by Talbot-type contours and ratio-
nal approximations (see [8] for further examples). We believe that these methods can
be useful in many areas of scientific computing.
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2In MATLAB 7.0 the command type gamma gives the source code of the corresponding mex-file.
Previous versions do not offer this possibility.



COMPUTING THE GAMMA FUNCTION 571

Alphonse Magnus and Alexander Aptekarev for advice about Conjecture 5.1 and the
challenges involved in proving it.

REFERENCES

[1] M.. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, Dover, New York, 1965.

[2] A. I. Aptekarev, Sharp constants for rational approximations of analytic functions, Mat. Sb.,
193 (2002), pp. 1–72.

[3] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engi-
neers, McGraw–Hill, New York, 1978.

[4] A. J. Carpenter, A. Ruttan, and R. S. Varga, Extended numerical computations on the
“1/9” conjecture in rational approximation theory, in Rational Approximation and Inter-
polation, Lecture Notes in Math. 1105, P. R. Graves-Morris, E. B. Saff, and R. S. Varga,
eds., Springer, Berlin, 1984, pp. 383–411.

[5] W. J. Cody, G. Meinardus, and R. S. Varga, Chebyshev rational approximations to e−x

in [0, +∞) and applications to heat-conduction problems, J. Approx. Theory, 2 (1969),
pp. 50–65.

[6] P. J. Davis, Leonhard Euler’s integral: A historical profile of the gamma function, Amer.
Math. Monthly, 66 (1959), pp. 849–869.
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Abstract. In this article we analyze a fully discrete numerical approximation to a time de-
pendent fractional order diffusion equation which contains a nonlocal quadratic nonlinearity. The
analysis is performed for a general fractional order diffusion operator. The nonlinear term studied
is a product of the unknown function and a convolution operator of order 0. Convergence of the
approximation and a priori error estimates are given. Numerical computations are included, which
confirm the theoretical predictions.
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1. Introduction. In this paper we study the numerical approximation to time
dependent fractional order diffusion equations containing a nonlocal quadratic non-
linearity. Specifically, we consider equations of the form

ut + D2αu − ∇ · (uB(u)) = f(x), x ∈ Ω , t ∈ (0, T ],(1.1)

u(x, t) = 0, x ∈ ∂Ω , t ∈ (0, T ],(1.2)

u(x, 0) = u0(x), x ∈ Ω,(1.3)

which arise from models in statistical mechanics. In such a setting, u can be thought

of as describing the density of particles filling up a domain Ω ⊂ R
d́. In (1.1), D2α

denotes a general fractional order diffusion operator of order 2α, 1/2 < α ≤ 1. The
term ∇ · (uB(u)) models particle interactions.

For the classical diffusion case (α = 1) the diffusion operator models a Brownian
diffusion process. For fractional diffusion (1/2 < α < 1) the D2α operator is commonly
referred to as anomalous diffusion, where the underlying stochastic process is a Lévy
α-stable flight. A key difference between fractional diffusion operators and the usual
diffusion operator is that fractional diffusion operators are nonlocal operators. Equa-
tions containing fractional diffusion have also been investigated in modeling turbulent
flow [6, 18], chaotic dynamics of classical conservative systems [19], and contaminant
transport in groundwater flow [2, 12].
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There are a number of definitions for fractional derivatives in R
1, for example

the Riemann–Liouville, Grüwald–Letnikov, and Caputo fractional derivatives [13],
the Riemann–Liouville being the most commonly used. In higher dimensions there
are also several definitions for the fractional diffusion operator. In this article (see
section 2.2) we describe two: the fractional Laplacian operator, and the weighted
directional, fractional diffusion operator. For problems posed on bounded domains,
a disadvantage of the fractional Laplacian operator is that it is formally defined in
terms of the Fourier transform. From practical considerations we have focused our
attention on the weighted directional, fractional diffusion operator.

From the fact that D2α is a strongly elliptic operator, the existence and unique-
ness for the space-fractional diffusion equation parallels that of the usual diffusion
equation, the difference being in the function spaces, i.e., Hα

0 (Ω) instead of H1
0 (Ω).

(See [7, 8, 14].) The existence of solutions to (1.1)–(1.3) has been studied by Biler
and Woyczyński in [4]. For B(·) given by (2.8), (2.9) they showed the existence of a
local in time weak solution. In this paper we do not investigate the existence of u
satisfying (1.1)–(1.3) but, assuming a sufficiently regular solution u exists, the exis-
tence and convergence properties of its approximation uh. The results presented in
this paper extend the work developed in [7], [8] (see also [15]) for a steady-state linear
fractional advection dispersion equation.

A finite element approximation scheme is described and shown to be computable
in section 3. A priori error estimates for the approximation are presented in section 4.
Hölder-type inequalities for Sobolev spaces, used in the analysis, are derived in sec-
tion 2.4. Our analysis does not rely on the particular form of the fractional diffusion
operator, requiring only that it satisfy properties of continuity and coercivity (see
(2.2), (2.3)). Several examples of nonlocal operators B(·) are given in section 2.3.
Again, our analysis does not assume a particular form for B(·), only that it is linear
and an operator of order 0 (see (2.4)). Finally, in section 5 we present some numerical
experiments which support the theoretical estimates.

2. Mathematical preliminaries.

2.1. Mathematical notation. In this section we summarize the mathemat-
ical notation used and state our assumptions regarding properties satisfied by the
fractional diffusion operator D2α and the operator B(·).

The following notation is used. The L2(Ω) inner product is denoted by (·, ·), and
the Lp(Ω) norm by ‖ · ‖Lp , with the special cases of L2(Ω) and L∞(Ω) norms being
written as ‖ · ‖ and ‖ · ‖∞, respectively. For k ∈ N, we denote the norm associated
with the Sobolev space W k,p(Ω) by ‖ · ‖Wk,p , with the special case W k,2(Ω) being
written as Hk(Ω) with norm ‖·‖k and seminorm |·|k. For the definition of fractional
order Sobolev spaces W s,p(Ω), s ∈ R

+\N, we use the real method of interpolation
between two Banach spaces [3, 16].

When v(x, t) is defined on the entire time interval (0, T ), we define

‖v‖∞,k := sup
0<t<T

‖v(·, t)‖k , ‖v‖0,k :=

(∫ T

0

‖v(·, t)‖2
k dt

)1/2

,

‖v‖(t) := ‖v(·, t)‖.

For convenience we let X denote the space

X := Hα
0 (Ω) := closure of C∞

0 (Ω) in Hα(Ω).(2.1)
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We use H−α(Ω) to denote the dual space of Hα
0 (Ω), with norm denoted ‖ · ‖−α.

Throughout the paper we use C to denote a generic constant whose actual value
may change from line to line.

We make the following general assumptions regarding the diffusion operator.
There exist constants Cc, Ct > 0 such that for v, w ∈ X

〈D2αv, w〉 ≤ Ct ‖v‖α ‖w‖α (continuity on X ×X),(2.2)

〈D2αv, v〉 ≥ Cc ‖v‖2
α (coercivity on X),(2.3)

where 〈·, ·〉 denotes the duality pairing of H−α(Ω) and Hα
0 (Ω).

For the nonlocal operator B(·) we assume the following:
(i) B(·) is linear,
(ii) B(·) is an operator of order 0; i.e., for β ≥ 0, u ∈ Hβ(Ω),

‖B(u)‖β ≤ CB‖u‖β .(2.4)

2.2. Examples of fractional diffusion operators satisfying (2.2), (2.3).
1. Fractional Laplacian operator. In the context of pseudo differential operators

[17], a fractional diffusion operator may be defined in terms of the negative Laplacian
operator, −Δ [4].

We have that for ω the Fourier transform variable,

F(−Δu(x)) = |ω|2 û(ω).

The fractional Laplacian operator is then defined via the inverse Fourier transform as

(−Δ)
γ/2

u(x) := F−1 (|ω|γ û(ω)) .(2.5)

Associated with (2.5), a fractional differential operator of order 2α may be formally
defined as

D2αu(x) := (−Δ)
α
u(x).(2.6)

For D2α defined by (2.6), we have for v, w ∈ Hα
0 (Ω), α > 1/2,

〈D2αv, w〉 =
(
(−Δ)

α/2
v, (−Δ)

α/2
w
)

≤ C1 ‖v‖α ‖w‖α.

Also,

〈D2αv, v〉 =
(
(−Δ)

α/2
v, (−Δ)

α/2
v
)

≥ C2 ‖v‖2
α.

2. Weighted directional, fractional diffusion operator. In [8, 14] the following
fractional diffusion operator was introduced and analyzed:

D2α
M u(x) := −

∫
‖ν‖=1

D2α
ν u(x)M(dν),(2.7)

where M(dν) denotes a general probability measure on the unit sphere in R
d́; for

σ > 0,

D−σ
ν v(x) :=

1

Γ(σ)

∫ ∞

0

ξσ−1v(x − ξν) dξ ,
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and for n− 1 < β ≤ n, σ = n− β,

Dβ
ν v(x) := (ν · ∇)n D−σ

ν v(x) .

Properties (2.2), (2.3) were established in [8, 14] for D2α
M .

2.3. Examples of operators B(·) satisfying (2.4). Typically B(·) is of the
form

B(u)(x) =

∫
b(x, y)u(y) dy .(2.8)

For the ordinary diffusion equation the following operators have been considered. The
choice

b(x, y) = c (x− y) |x− y|−d́(2.9)

has been used in a model for Brownian diffusion of charge carriers interacting via
Coulomb forces. For c > 0, (2.8) has been used to model the mutual gravitational

attraction of particles in a cloud [4]. For d́ = 2 and

b(x, y) = (x2 − y2, −(x1 − y1)) |x− y|−2(2.10)

the ordinary diffusion equation becomes the vorticity equation for the Navier–Stokes
equations.

A general potential kernel for B(·) has the form

b(x, y) = c (x− y) |x− y|−d́+β−1 for 0 < β ≤ d́− 1.(2.11)

To determine the order of the operators B(·) defined above we have the following
from [9]:

1. For P (x1, . . . , xd́) a polynomial in d́ variables,

F(P (x1, . . . , xd́))(ω) = (2π)d́ P

(
−i∂

∂ω1
, . . . ,

−i∂

∂ωd́

)
δ(ω) .(2.12)

2. For r = |x|, ρ = |ω|, m ∈ {0, 1, 2, . . . }, c−1, c0 constants dependent on d́+ 2m,

F(r−λ) = 2d́−λπd́/2 Γ((d́− λ)/2) ρλ−d́

Γ(λ/2)
, λ 
= d́ + 2m,(2.13)

F(r−d́−2m) =
1

2
Γ

(
d́

2

)
π−d́/2

(
c−1ρ

2m ln ρ + c0ρ
2m

)
.(2.14)

For the kth component of x/|x|λ = xk/|x|λ, λ 
= d́ + 2m, combining (2.12) and
(2.13), and using the Fourier transform property of the convolution operator 
,

F
(

xk

|x|λ

)
= (2π)d́

(
−i ∂

∂ωk

)
δ(ω) 
 2d́−λπd́/2 Γ((d́− λ)/2) ρλ−d́

Γ(λ/2)

= C

∫ (
−i ∂

∂σk

)
δ(σ) |ω − σ|λ−d́ dσ

= C i

∫
δ(σ) (σk − ωk)|ω − σ|λ−d́−2 dσ

= C iωk |ω|λ−d́−2 .(2.15)
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The zero extension of f ∈ Hγ
0 (Ω), f̃ , satisfies f̃ ∈ Hγ(Rd́). Thus, f ∈ Hγ

0 (Ω)

implies |ω|jF(f̃) ∈ L2(Rd́) for 0 ≤ j ≤ γ.

For the kth component of B(u)(x) defined by (2.8), (2.11) with β 
= 1, we have,
as B(·) is a convolution operator,∫

Rd́

|ω|2j |F(B(u)k)|2 dω =

∫
Rd́

|ω|2j
∣∣C ωk |ω|−β−1û(ω)

∣∣2 dω

≤ C

∫
Rd́

|ω|2(j−β) |û|2 (ω) dω .

Thus, if u ∈ Hγ
0 (Ω), then (B(u))k ∈ Hβ+γ(Ω) for k = 1, . . . d́. Hence B(u) ∈

Hβ+γ(Ω). Consequently, B(·) is an operator of order −β. (Also, then an operator of
order 0.) For β = 1, using (2.14), B(·) is an operator of order −1.

2.4. Hölder-type inequalities for Sobolev spaces. In this section we present
a number of estimates which are useful in handling the nonlinear term in the error
analysis.

Lemma 1. Let Ω ⊂ R
d́ be bounded, ∂Ω ∈ C1. Then for u and v such that the

given norms are finite we have

‖uv‖ ≤ C

⎧⎪⎨⎪⎩
‖u‖s ‖v‖d́/2−s, 0 < s < d́

2 ,

‖u‖∞ ‖v‖
‖u‖s ‖v‖, s > d́/2.

(2.16)

Proof. For z ∈ W j,p(Ω) ∩Wm,r(Ω) we have the following embedding properties
for Sobolev spaces [1, p. 218]. For 1 < r ≤ p < ∞,

‖z‖W j,p ≤ C ‖z‖Wm,r ,(2.17)

where
1

p
=

j

d́
+

1

r
− m

d́
and

⎧⎨⎩
j ≥ 0, if r < p, or
j > 0, j not an integer, or
j ≥ 0, 1 < r ≤ 2.

Note that the above inequality (2.17) holds for m ∈ R, m > 0. Using Hölder’s
inequality, with p, p̃ > 1, satisfying 1/p + 1/p̃ = 1, and the embedding theorem

‖uv‖ ≤ ‖u‖L2p ‖v‖L2p̃

= ‖u‖W 0,2p ‖v‖W 0,2p̃

≤ C‖u‖W d́(p−1)/(2p),2 ‖v‖W d́/(2p),2

= C‖u‖d́(p−1)/(2p) ‖v‖d́/(2p).(2.18)

The first inequality in (2.16) follows from (2.18) with the choice s = d́(p − 1)/(2p).
The second and third inequalities are straightforward to establish.

Remark. The boundary regularity assumption on Ω in Lemma 1, ∂Ω ∈ C1, can
be relaxed. The Sobolev embedding theorems on bounded domains require sufficient
regularity of the domain to enable functions defined in Ω to be appropriately extended

to R
d́. In particular, for the analysis presented in sections 3 and 4 it suffices for Ω to

be a Lipschitz domain.

The following results are Hölder-type inequalities for Sobolev spaces.
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Theorem 1. Let Ω ⊂ R
d́ be bounded, ∂Ω ∈ C1. Then for 0 ≤ α, β ≤ 1, ε̃ > 0,

p > 1, 0 < s ≤ 1/2, u, and v such that the given norms are finite we have

‖uv‖α ≤ C

{
‖u‖1 ‖v‖α+ε̃, d́ = 2,

‖u‖3/2− s ‖v‖α+s+ε̃, d́ = 3, 0 < s ≤ 1
2 ,

(2.19)

‖uv‖αβ ≤ C‖u‖β + d́(p−1)(1−β)/2p ‖v‖d́(1−α+αp)/(2p) + ε̃ for

{
d́ = 2, 1 < p

d́ = 3, 1 < p ≤ 3.

(2.20)

Proof. We have that

‖uv‖1 ≤ ‖uv‖ + |uv|1(2.21)

and

|uv|1 ≤ ‖u∇v‖ + ‖∇u v‖.

Proceeding as in the proof of Lemma 1, with q, q̃ > 1, 1/q + 1/q̃ = 1,

‖u∇v‖ ≤ ‖u‖L2q ‖∇v‖L2q̃ ≤ ‖u‖W 0,2q ‖v‖W 1,2q̃

≤ C‖u‖d́(q−1)/(2q) ‖v‖(d́+2q)/(2q).(2.22)

Also, for ε > 0

‖u∇v‖ ≤ C‖u‖d́/2 + ε ‖v‖1.(2.23)

Similarly, with r > 1

‖∇u v‖ ≤ C‖u‖(d́+2r)/(2r) ‖v‖d́(r−1)/(2r) and ‖∇u v‖ ≤ C‖u‖1 ‖v‖d́/2 + ε.
(2.24)

Combining (2.21), (2.22), (2.24), (2.18), for s > 1, we have

‖uv‖1 ≤ C
(
‖u‖d́(s−1)/(2s) ‖v‖d́/(2s) + ‖u‖d́(q−1)/(2q) ‖v‖(d́+2q)/(2q)(2.25)

+ ‖u‖(d́+2r)/(2r) ‖v‖d́(r−1)/(2r)

)
.

From (2.22), (2.24)(b), and (2.25) it follows that

‖uv‖1 ≤ C ‖u‖1 ‖v‖d́(1+ε)/2, d́ = 2, 3.(2.26)

Also, equating the norms for u in the last two terms of (2.25), we have, for s appro-
priately chosen,

‖uv‖1 ≤ C ‖u‖d́(q−1)/(2q) ‖v‖(d́+2q)/(2q) for q > 3, d́ = 3.(2.27)

Next we interpolate between spaces to obtain the stated estimates.
For u fixed, let operators T0, T1 be dependent on v defined by

T0(v) = T1(v) = uv.
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Using (2.26), we consider T1 as a bounded linear operator between H d́(1+ε)/2 and H1,
with norm ≤ C‖u‖1. Also, using (2.18), we consider T0 as a bounded linear operator

between H d́/(2p) and L2, with norm ≤ C‖u‖d́(p−1)/(2p). By interpolation [3, 16] we
obtain

‖uv‖α = ‖uv‖[L2,H1]α,2

≤ ‖T1‖α‖T0‖1−α‖v‖[Hd́/(2p),Hd́(1+ε)/2]α,2

≤ C‖u‖α1 ‖u‖1−α

d́(p−1)/(2p)
‖v‖d́(1−α+αp)/(2p) + ε̃

≤ C‖u‖1 ‖v‖d́(1−α+αp)/(2p) + ε̃(2.28)

for 1 < p ≤ 3 in R
3 (i.e., d́ = 3) and no restriction in R

2 (i.e., d́ = 2). Note that

(d́(1 − α + αp)/(2p)) is a decreasing function of p. Minimizing with respect to p, we
obtain (2.19)(a) and (2.19)(b) for s = 1/2.

Next we interpolate with v held fixed. Let S1 : H1 → Hα be the operator defined
by S1(u) = u v. Using (2.28), we have that S1 is a bounded linear operator with norm

≤ C‖v‖d́(1−α+αp)/(2p) + ε̃. From (2.18), for S0 : H d́(p−1)/(2p) → L2 given by S0(u) =

u v, S0 is a bounded linear operator with norm ≤ C‖v‖d́/(2p). By interpolation we
obtain

‖uv‖αβ = ‖uv‖[L2,Hα]β,2

≤ ‖S1‖β‖S0‖1−β‖u‖[Hd́(p−1)/(2p),H1]β,2

≤ C‖v‖β
d́(1−α+αp)/(2p) + ε̃

‖v‖1−β

d́/(2p)
‖u‖β + d́(p−1)(1−β)/(2p)

≤ C‖u‖β + d́(p−1)(1−β)/(2p) ‖v‖d́(1−α+αp)/(2p) + ε̃.(2.29)

For the case (2.19)(b), in view of (2.18), for the choice q = p, for p > 3, from
(2.27),

‖uv‖1 ≤ C‖u‖d́(p−1)/(2p) ‖v‖d́/(2p) + 1.(2.30)

Interpolating, as above, with u fixed, we obtain

‖uv‖α ≤ C‖u‖d́(p−1)/(2p) ‖v‖α(d́/(2p) + 1) + (1−α)(d́/2p)

= C‖u‖d́(p−1)/(2p) ‖v‖d́/(2p) +α.(2.31)

Letting s = d́/(2p) in (2.31), the stated result follows.
Also used below is the following lemma.

Lemma 2. For Ω ⊂ R
d́, α > d́/4, v, w ∈ X, ε > 0, there exists C > 0 such that

(v B(w), ∇v) ≤ C
(q ε)−p/q

p
‖∇ ·B(w)‖p‖v‖2 + ε ‖v‖2

α,(2.32)

where p = 4α/(4α− d́), q = 4α/d́.
Proof. We begin by rewriting the inner product as

(v B(w), ∇v) =
1

2

(
B(w), ∇v2

)
= −1

2

(
∇ ·B(w), v2

)
≤ 1

2
‖v‖2

L4 ‖∇ ·B(w)‖.
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For Ω ⊂ R
d́, H d́/4(Ω) is continuously imbedded in L4(Ω) (cf. (2.17)), and as an

interpolation space

H d́/4(Ω) =
[
L2, Hα

]
d́
4α , 2

.

Hence,

‖v‖2
L4 ≤ C ‖v‖2

Hd́/4 ≤ C
(
‖v‖1−d́/4α ‖v‖d́/4αα

)2

≤ C‖v‖2−d́/2α ‖v‖d́/2αα .

Thus,

‖v‖2
L4 ‖∇ ·B(w)‖ ≤ C ‖v‖2−d́/2α ‖∇ ·B(w)‖ ‖v‖d́/2αα .(2.33)

Applying Young’s inequality, ab ≤ |a|p/p + |b|q/q for 1/p + 1/q = 1, with the choice

p = 4α/(4α− d́), q = 4α/d́, the stated results (2.32) follow.

3. Finite element approximation. In this section we formulate a fully dis-
crete finite element method for (1.1)–(1.3). We begin by describing the finite element
approximation framework and listing the approximating properties and inverse esti-
mates used in the analysis.

Let Ω ⊂ R
d́ be a polygonal domain, and let Th be a triangulation of Ω made of

triangles (in R
2) or tetrahedrons (in R

3). Thus, the computational domain is defined
by

Ω =
⋃

K; K ∈ Th.

We assume that there exist constants c1, c2 such that

c1h ≤ hK ≤ c2ρK ,

where hK is the diameter of triangle (tetrahedron) K, ρK is the diameter of the
greatest ball (sphere) included in K, and h = maxK∈Th

hK . For k ∈ N, let Pk(A)
denote the space of polynomials on A of degree no greater than k. Then we define
the finite element space Xh as follows:

Xh :=
{
v ∈ X ∩ C(Ω̄) : v|K ∈ Pk(K) ∀K ∈ Th

}
.(3.1)

We summarize several properties of finite element spaces and Sobolev spaces
which we will use in our subsequent analysis. For w ∈ Hk+1(Ω) we have (see [10])
that there exists W ∈ Xh such that

‖w −W‖ + h‖∇(w −W)‖ ≤ CIh
k+1‖w‖k+1.(3.2)

Lemma 3 (see [5]). Let {Th}, 0 < h ≤ 1, denote a quasi-uniform family of

subdivisions of a polyhedral domain Ω ⊂ R
d́. Let (K̂, P,N) be a reference finite

element such that P ⊂ W l,p(K̂)∩Wm,q(K̂) is a finite-dimensional space of functions
on K̂, N is a basis for P ′, where 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and 0 ≤ m ≤ l. For K ∈ Th,
let (K,PK , NK) be the affine equivalent element, and Vh = {v : v is measurable and
v|K ∈ PK ∀K ∈ Th}. Then there exists C = C(l, p, q) such that[ ∑

K∈Th

‖v‖p
W l,p(K)

]1/p

≤ C hm−l+min(0, d́
p−

d́
q )

[ ∑
K∈Th

‖v‖qWm,q(K)

]1/q

(3.3)
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for all v ∈ Vh.
Let Δt denote the step size for t so that tn = nΔt, n = 0, 1, 2, . . . , N . For

notational convenience, we denote vn := v(·, tn) and

dtf
n :=

f(tn) − f(tn−1)

Δt
.(3.4)

The following norms are also used in the analysis:

|‖v‖|∞,k := max
1≤n≤N

‖vn‖k,

|‖v‖|0,k :=

[
N∑

n=1

‖vn‖2
kΔt

]1/2

.

Approximating system. For n = 1, 2, . . . , N , find un
h ∈ Xh such that

(dtu
n
h, v) + 〈D2αun

h, v〉 + (un
hB(un−1

h ), ∇v) = (fn, v) ∀ v ∈ Xh.(3.5)

For notational convenience we define A(w;u, v) as

A(w;u, v) := 〈D2αu, v〉 + (uB(w), ∇v).(3.6)

Then, the linear system of equations (3.5) can be written equivalently as

(dtu
n
h, v) + A(un−1

h ;un
h, v) = (fn, v) ∀ v ∈ Xh.(3.7)

To ensure computability of the algorithm, we begin by showing that (3.5) is
uniquely solvable for un

h at each time step n. We use the following induction hypoth-
esis, which simply states that the computed iterates un

h are bounded independent of
h and n:

(IH1) ‖uj
h‖1 ≤ K, j = 0, . . . , n− 1.(3.8)

Lemma 4. Assume that (IH1) holds; i.e., ‖uj
h‖1 ≤ K for j = 0, 1, . . . , n− 1. For

a sufficiently small step size Δt, there exists a unique solution un
h ∈ Xh satisfying

(3.5).
Proof. As (3.5) represents a finite system of linear equations, the positivity of

(un
h, u

n
h)/Δt+A(un−1

h ;un
h, u

n
h) is a sufficient condition for the existence and uniqueness

of un
h.
We have, using (2.3) and (2.32),

(un
h, u

n
h)

Δt
+ A(un−1

h ;un
h, u

n
h)

=
1

Δt
‖un

h‖2 + 〈D2αun
h, u

n
h〉 + (un

hB(un−1
h ), ∇un

h)

≥ 1

Δt
‖un

h‖2 + Cc‖un
h‖2

α − C1ε
−C2
2 ‖∇ ·B(un−1

h )‖C3‖un
h‖2 − ε2‖un

h‖2
α

=

(
1

Δt
− C1ε

−C2
2 ‖∇ ·B(un−1

h )‖C3

)
‖un

h‖2 + (Cc − ε2) ‖un
h‖2

α(3.9)

≥
(

1

Δt
− C̃1ε

−C2
2 CC3

B ‖un−1
h ‖C3

1

)
‖un

h‖2 + (Cc − ε2) ‖un
h‖2

α(3.10)

≥
(

1

Δt
− C̃1ε

−C2
2 CC3

B KC3

)
‖un

h‖2 + (Cc − ε2) ‖un
h‖2

α.(3.11)
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Hence, for Δt chosen sufficiently small we have that (3.5) is uniquely solvable for
un
h.

The discrete Gronwall’s lemma plays an important role in the following analysis.
Lemma 5 (discrete Gronwall’s lemma [11]). Let Δt, H, and an, bn, cn, γn (for

integers n ≥ 0) be nonnegative numbers such that

al + Δt

l∑
n=0

bn ≤ Δt

l∑
n=0

γn an + Δt

l∑
n=0

cn + H for l ≥ 0.

Suppose that Δt γn < 1 for all n, and set σn = (1 − Δt γn)−1. Then,

al + Δt

l∑
n=0

bn ≤ exp

(
Δt

l∑
n=0

σn γn

){
Δt

l∑
n=0

cn + H

}
for l ≥ 0.(3.12)

4. A priori error estimate. In this section we analyze the error between the
finite element approximation given by (3.5) and the true solution. A priori error
estimates for the approximation are given in Theorem 2.

Theorem 2. Assume that for d́/4 < α < 1, (1.1)–(1.3) has a solution u satisfying
ut ∈ L2(0, T ;Hk+1(Ω)), utt ∈ L2(0, T ;L2(Ω)), with u0 ∈ Hk+1(Ω). In addition,
assume that Δt ≤ c h. Then, the finite element approximation (3.5) is convergent to
the solution of (1.1)–(1.3) on the interval (0, T ) as Δt, h → 0. The approximation uh

satisfies the following error estimates:

(4.1)

|‖u− uh‖|0,α ≤ C
(
hk+1‖ut‖0,k+1 + h(k+1−α) |‖u‖|0,k+1 + Δt ‖ut‖0,1 + Δt‖utt‖0,0

)
,

|‖u− uh‖|∞,0 ≤ C
(
hk+1‖ut‖0,k+1 + h(k+1−α) |‖u‖|0,k+1 + Δt ‖ut‖0,1 + Δt‖utt‖0,0

+hk+1 |‖u‖|∞,k+1

)
.(4.2)

Remarks. 1. ut ∈ L2(0, T ;Hk+1(Ω)), u0 ∈ Hk+1(Ω) implies u ∈ L2(0, T ;Hk+1(Ω))
∩L∞(0, T ;Hk+1(Ω)).

2. As previously defined in (3.1), k is the polynomial order of the approximation
functions un

h.
In order to establish the estimates (4.1), (4.2), we begin by introducing the fol-

lowing notation. Let un = u(tn) represent the solution of (1.1)–(1.3), and un
h denote

the solution of (3.5).
For Un ∈ Xh, define Λn, En, εu, as

Λn = un − Un, En = Un − un
h, εu = un − un

h.

The proof of Theorem 2 is established in three steps:
1. Prove a lemma, assuming the induction hypothesis.
2. Show that the induction hypothesis is true.
3. Prove the error estimates given in (4.1), (4.2).

Step 1. We prove the following lemma.
Lemma 6. Under the induction hypothesis ‖uj

h‖1 ≤ K for j = 0, 1, . . . , l − 1, we
have that

‖El‖2 ≤ G(Δt, h),(4.3)
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where

G(Δt, h) = C
(
h2(k+1)‖ut‖2

0,k+1 + h2(k+1−α) |‖u‖|20,k+1

+ (Δt)2 ‖ut‖2
0,1 + (Δt)2‖utt‖2

0,0

)
.

Proof of Lemma 6. We present the proof for Ω ⊂ R
2; the case for Ω ⊂ R

3 follows
analogously.

From (1.1), (1.2) we have that the true solution u satisfies

(dtu
n, v) + 〈D2αun, v〉 + (unB(un−1

h ), ∇v) = (fn, v) − (ut − dtu
n, v)

− (unB(un − un−1
h ), ∇v), v ∈ Xh.(4.4)

Subtracting (3.5) from (4.4), we obtain the following equation for εu:

(dtεu, v) + 〈D2αεu, v〉 + (εuB(un−1
h ), ∇v) = − (ut − dtu

n, v)

− (unB(un − un−1
h ), ∇v), v ∈ Xh.(4.5)

Substituting εu = En + Λn, v = En into (4.5), we obtain

(dtE
n, En) + 〈D2αEn, En〉 + (EnB(un−1

h ), ∇En) = F (En),(4.6)

where

F (En) := −(dtΛ
n, En) − 〈D2αΛn, En〉 − (ΛnB(un−1

h ), ∇En)

− (ut − dtu
n, En) − (unB(un − un−1

h ), ∇En).

Note that

(dtE
n, En) =

1

Δt

(
(En, En) − (En−1, En)

)
≥ 1

2Δt

(
‖En‖2 − ‖En−1‖2

)
,

and from (2.32)

(EnB(un−1
h ), ∇En) ≤ ε2 ‖En‖2

α + C1ε
−C2
2 ‖∇ ·B(un−1

h )‖C3‖En‖2.(4.7)

Multiplying (4.6) by 2 Δt, summing from n = 1 to l, and using (2.3), we have

(
‖El‖2 − ‖E0‖2

)
+ 2 (Cc − ε2)

l∑
n=1

Δt‖En‖2
α

≤ 2Δt

l∑
n=1

C1ε
−C2
2 ‖∇ ·B(un−1

h )‖C3‖En‖2 + 2Δt

l∑
n=1

F (En).(4.8)
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We now estimate each term in F(En):

(dtΛ
n, En) ≤ ‖En‖ ‖dtΛn‖

≤ 1

2
‖En‖2 +

1

2
‖dtΛn‖2.(4.9)

Using (2.2),

〈D2αΛn, En〉 ≤ Ct‖En‖α ‖Λn‖α

≤ ε4‖En‖2
α +

C2
t

4ε4
‖Λn‖2

α.(4.10)

Using duality with respect to the L2 inner product,

(ΛnB(un−1
h ), ∇En) ≤ ‖∇En‖−(1−α) ‖ΛnB(un−1

h )‖(1−α)

≤ ε5‖En‖2
α +

C4

4ε5
‖ΛnB(un−1

h )‖2
(1−α).(4.11)

For the next term in F (En) we use

(ut − dtu
n, En) ≤ ‖En‖ ‖ut − dtu

n‖ ≤ 1

2
‖En‖2 +

1

2
‖ut − dtu

n‖2.(4.12)

The remaining term is rewritten as the sum of three terms.

(unB(un − un−1
h ), ∇En) = (unB(un − un−1), ∇En) + (unB(un−1 − un−1

h ), ∇En)

= (unB(un − un−1), ∇En) + (unB(Λn−1), ∇En)

+ (unB(En−1), ∇En) .

Each of these terms is rewritten in a similar fashion as in (4.11):

(unB(un − un−1), ∇En) ≤ ε7‖En‖2
α +

C4

4ε7
‖unB(un − un−1)‖2

(1−α),(4.13)

(unB(Λn−1), ∇En) ≤ ε8‖En‖2
α +

C4

4ε8
‖unB(Λn−1)‖2

(1−α),(4.14)

(unB(En−1), ∇En) ≤ ε9‖En‖2
α +

C4

4ε9
‖unB(En−1)‖2

(1−α).(4.15)

Combining (4.8)–(4.15), for ε1, . . . , ε9 appropriately chosen, there exist constants
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Cj > 0 such that

(
‖El‖2 − ‖E0‖2

)
+ C12

l∑
n=1

Δt‖En‖2
α

≤ Δt

l∑
n=1

(
C13‖∇ ·B(un−1

h )‖C3 + C14

)
‖En‖2

+ Δt

l∑
n=1

C15‖unB(En−1)‖2
(1−α)

+ Δt

l∑
n=1

C16‖dtΛn‖2 + Δt

l∑
n=1

C17‖Λn‖2
α

+ Δt

l∑
n=1

C18‖ΛnB(un−1
h )‖2

(1−α)

+Δt

l∑
n=1

C19‖unB(un − un−1)‖2
(1−α)

+ Δt

l∑
n=1

C20‖unB(Λn−1)‖2
(1−α)

+ Δt

l∑
n=1

C21‖ut − dtu
n‖2.(4.16)

We now apply the interpolation property of the approximation space to estimate the
terms on the right-hand side (RHS) of (4.16).

l∑
n=1

Δt‖dtΛn‖2 =

l∑
n=1

Δt

∥∥∥∥∥ 1

Δt

∫ tn

tn−1

1
∂Λ

∂t
dt

∥∥∥∥∥
2

≤
l∑

n=1

Δt

(
1

Δt

)2 ∫
Ω

(∫ tn

tn−1

1 dt

)(∫ tn

tn−1

(
∂Λ

∂t

)2

dt

)
dx

≤ Ch2k+2‖ut‖2
0,k+1.(4.17)

Note that (dtu
n − un

t ) may be expressed as

dtu
n − un

t =
1

Δt

∫ tn

tn−1

utt(·, t)(tn−1 − t) dt.

Also,

(
1

Δt

∫ tn

tn−1

utt(·, t)(tn−1 − t) dt

)2

≤ 1

(Δt)2

∫ tn

tn−1

u2
tt(·, t) dt

∫ tn

tn−1

(tn−1 − t)2 dt

=
1

3
Δt

∫ tn

tn−1

u2
tt(·, t) dt.
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Therefore it follows that

l∑
n=1

Δt ‖ut − dtu
n‖2 ≤

l∑
n=1

Δt

∫
Ω

1

3
Δt

∫ tn

tn−1

u2
tt(·, t) dt dx

=
1

3
(Δt)2‖utt‖2

0,0.(4.18)

Next we estimate the terms in (4.16) involving B(·) using (2.4), (2.19), and (3.8).

These estimates for B(·) are dimension-specific. We present the case for d́ = 2.
For the first term on the RHS,

‖∇ ·B(un−1
h )‖ ≤ C‖B(un−1

h )‖1 ≤ C‖un−1
h ‖1 ≤ CK .(4.19)

Using interpolation between L2 and Hα and Young’s inequality, we obtain, for δ ∈
(0, 2α− 1),

‖unB(En−1)‖2
(1−α) ≤ C ‖B(En−1)‖2

(1−α+δ) ‖un‖2
1

≤ C‖En−1‖2(2α−1−δ)/α ‖En−1‖2(1−α+δ)/α
α ‖un‖2

1

≤ ε10‖En−1‖2
α + C ‖un‖2(α/(2α−1−δ))

1 ‖En−1‖2.(4.20)

With the interpolation error bound ‖Λn‖(1−α+δ) ≤ Chk+α−δ ‖un‖k+1,

‖ΛnB(un−1
h )‖(1−α) ≤ C ‖Λn‖(1−α+δ)‖B(un−1

h )‖1

≤ CKhk+α−δ ‖un‖k+1.(4.21)

To estimate ‖unB(Λn−1)‖(1−α) we proceed similarly.

‖unB(Λn−1)‖(1−α) ≤ C ‖un‖1 ‖B(Λn−1)‖(1−α+δ)

≤ Chk+α−δ ‖un−1‖k+1 ‖un‖1.(4.22)

Using

‖un − un−1‖2
1 ≤ Δt

∫ tn

tn−1

‖ut‖2
1 dt,

we have that

‖unB(un − un−1)‖2
(1−α) ≤ C ‖un‖2

(1−α+δ) ‖B(un − un−1)‖2
1

≤ C‖un‖2
(1−α+δ) ‖un − un−1‖2

1

≤ CΔt ‖un‖2
(1−α+δ)

∫ tn

tn−1

‖ut‖2
1 dt.(4.23)

From (4.17)–(4.23) and ‖E0‖ = 0, estimate (4.16) becomes (using that ‖u‖1 is
bounded for t ∈ [0, T ])

‖El‖2 + C12

l∑
n=1

Δt‖En‖2
α ≤ Δt

l∑
n=1

C22‖En‖2

+Ch2(k+1)‖ut‖2
0,k+1 + Ch2(k+1−α) |‖u‖|20,k+1

+C(Δt)2 ‖ut‖2
0,1

+C h2(k+α−δ) |‖u‖|20,k+1

+C (Δt)2‖utt‖2
0,0.(4.24)
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Finally, as α > 0.5, with Δt < 1/C22 and the associations al = ‖El‖2, bn =

C12‖En‖2
α, γn = C22, cn = 0, H = C̃ (h2(k+1)‖ut‖2

0,k+1 + h2(k+1−α) |‖u‖|20,k+1 +

(Δt)2 ‖ut‖2
0,1+(Δt)2‖utt‖2

0,0), applying Gronwall’s lemma, we obtain the bound given

in (4.3), where C = C̃ exp(TC22/(1 − ΔtC22)).
Step 2. We show that the induction hypothesis (IH1) is true.
Assume that ‖uj

h‖1 ≤ K for j = 0, 1, . . . , l − 1. Using the interpolation property,
inverse estimate (3.3), and (4.3), we have that

‖∇ul
h‖ ≤ ‖∇(ul

h − ul)‖ + ‖∇ul‖
≤ ‖∇El‖ + ‖∇Λl‖ + ‖∇ul‖
≤ C

(
h−1‖El‖ + ‖∇ul‖

)
≤ Ch−1(hk+1−α + Δt) + C‖∇ul‖.(4.25)

Thus as C is independent of l, u ∈ L∞(0, T ;H1(Ω)), for Δt ≤ ch, we have that ‖∇ul
h‖

is bounded.
An analogous argument shows that ‖ul

h‖ is also bounded independent of h and
l.

Step 3. We derive the error estimates in (4.1) and (4.2).
Proof of Theorem 2. To establish (4.1), from (4.24) and (4.3), and using T = NΔt,

|‖E‖|20,α =

N∑
n=1

Δt ‖En‖2
α ≤ C (T + 1)G(Δt, h).

Hence, using the interpolation property and that

|‖u− uh‖|0,α ≤ |‖E‖|0,α + |‖Λ‖|0,α ,

estimate (4.1) then follows.
Using estimates (4.3) and approximation properties, we have

|‖u− uh‖|2∞,0 ≤ |‖E‖|2∞,0 + |‖Λ‖|2∞,0

≤ G(Δt, h) + h2k+2 |‖u‖|2∞,k+1 ,

which yields estimate (4.2).

5. Numerical results. In this section we illustrate the predicted convergence
results given in Theorem 2 with numerical computations for Ω ⊂ R

2. For points
x, y ∈ R

2 we use x = (x1, x2) and y = (y1, y2). For ease of notation, for θ ∈ [0, 2π) we
let D−σ

θ u := D−σ
ν u, where ν = [cos θ, sin θ]T .

It is noteworthy to again remark that fractional derivatives/diffusion operators are
nonlocal operators. Consequently, a sparse coefficient matrix, characteristic of using
a finite element basis for the test and trial space, does not occur when approximating
space-fractional diffusion equations. For the fractional diffusion operator given by
(2.7) it is computationally convenient to use the bilinear form (see (3.5))

B(un
h, v) :=

1

Δt
(un

h, v) −
∫ 2π

0

a (D2α−1
θ un

h, Dθ+πv)M(dθ) + (un
h B(un−1

h ), ∇v).

Note that supp(Dθ+πv) ⊆ supp(v), whereas, in general supp(Dα
θ+πv) ⊃ supp(v). For

a discussion on the implementation of the finite element method approximation for
the fractional diffusion operator (5.1) in R

2 see [15].
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Table 5.1

Experimental error results for Example 1 for the fractional diffusion operator and no B term.

h |‖u− uh‖|∞,0 Cvge. rate |‖u− uh‖|0,0 Cvge. rate

1/4 7.44283 · 10−3 5.735602 · 10−3

1/8 2.991413 · 10−3 1.32 2.281621 · 10−3 1.33

1/12 1.784701 · 10−3 1.27 1.365371 · 10−3 1.27

1/16 1.232144 · 10−3 1.29 9.449112 · 10−4 1.28

1/20 9.411762 · 10−4 1.21 7.232338 · 10−4 1.20

1/24 7.470209 · 10−4 1.27 5.748151 · 10−4 1.26

Table 5.2

Experimental error results for Example 1 for the fractional diffusion operator and b(x, y) =
(x− y).

h |‖u− uh‖|∞,0 Cvge. rate |‖u− uh‖|0,0 Cvge. rate

1/4 7.160147 · 10−3 5.603630 · 10−3

1/8 2.907621 · 10−3 1.30 2.242255 · 10−3 1.32

1/12 1.729328 · 10−3 1.28 1.336439 · 10−3 1.28

1/16 1.185318 · 10−3 1.31 9.186409 · 10−4 1.30

1/20 8.977671 · 10−4 1.25 6.978723 · 10−4 1.23

1/24 7.053820 · 10−4 1.32 5.498338 · 10−4 1.31

Table 5.3

Experimental error results for Example 1 for the fractional diffusion operator and b(x, y) =
(x− y)/|x− y|2.

h |‖u− uh‖|∞,0 Cvge. rate |‖u− uh‖|0,0 Cvge. rate

1/4 6.940074 · 10−3 5.532543 · 10−3

1/8 2.735276 · 10−3 1.34 2.160750 · 10−3 1.36

1/12 1.564182 · 10−3 1.38 1.248073 · 10−3 1.35

1/16 1.041509 · 10−3 1.41 8.274240 · 10−4 1.43

1/20 7.742380 · 10−4 1.33 6.060513 · 10−4 1.40

1/24 5.960361 · 10−4 1.50 4.586714 · 10−4 1.53

The fractional differential operator used in our computations was (see (2.7))

D2α
M u(x) := − 1

π

∫ 2π

θ=0

D2α
θ u(x) dθ,(5.1)

which we approximate as

D2α
M u(x) ≈ − 1

2
D2α

0 u(x) − 1

2
D2α

π/2u(x) − 1

2
D2α

π u(x) − 1

2
D2α

3π/2u(x) .(5.2)

The value of α used was α = 0.75.
The approximation space Xh was taken to be the space of continuous piecewise

linear functions, i.e., k = 1.
From Theorem 2, (4.1), and (4.2), we have the predicted rates of convergence for

Δt = Chk+1−α (= Ch1.25 for k = 1, α = 0.75) of

|‖u− uh‖|0,α ∼ O(h1.25), |‖u− uh‖|∞,0 ∼ O(h1.25).(5.3)

In Tables 5.1–5.6 we give the results for |‖u− uh‖|0,0, which from (4.1) and (5.3) are
predicted to satisfy

|‖u− uh‖|0,0 ∼ O(h1.25).
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Table 5.4

Experimental error results for Example 1 for the usual diffusion operator and no B term.

h |‖u− uh‖|∞,0 Cvge. rate |‖u− uh‖|0,0 Cvge. rate

1/4 1.478687 · 10−3 1.228611 · 10−3

1/8 8.125659 · 10−4 0.86 6.938199 · 10−4 0.82

1/12 5.538746 · 10−4 0.95 4.874202 · 10−4 0.87

1/16 4.180683 · 10−4 0.98 3.751933 · 10−4 0.91

1/20 3.353536 · 10−4 0.99 3.048365 · 10−4 0.93

1/24 2.798554 · 10−4 0.99 2.566538 · 10−4 0.94

Table 5.5

Experimental error results for Example 1 for the usual diffusion operator and b(x, y) = (x− y).

h |‖u− uh‖|∞,0 Cvge. rate |‖u− uh‖|0,0 Cvge. rate

1/4 1.470130 · 10−3 1.223586 · 10−3

1/8 8.119423 · 10−4 0.87 6.874692 · 10−4 0.83

1/12 5.527071 · 10−4 0.95 4.812465 · 10−4 0.88

1/16 4.172209 · 10−4 0.98 3.690746 · 10−4 0.92

1/20 3.346173 · 10−4 0.99 2.987263 · 10−4 0.95

1/24 2.791593 · 10−4 0.99 2.505369 · 10−4 0.96

Table 5.6

Experimental error results for Example 1 for the usual diffusion operator and b(x, y) = (x −
y)/|x− y|2.

h |‖u− uh‖|∞,0 Cvge. rate |‖u− uh‖|0,0 Cvge. rate

1/4 1.481271 · 10−3 1.203806 · 10−3

1/8 8.093125 · 10−4 0.87 6.612167 · 10−4 0.86

1/12 5.477165 · 10−4 0.96 4.556000 · 10−4 0.92

1/16 4.135933 · 10−4 0.98 3.436790 · 10−4 0.98

1/20 3.314616 · 10−4 0.99 2.734522 · 10−4 1.02

1/24 2.761739 · 10−4 1.00 2.253575 · 10−4 1.06

For comparison, computations were also performed with the usual diffusion oper-
ator in place of D2α

M u, namely on the equation

ut − Δu − ∇ · (uB(u)) = f(x).(5.4)

For the usual diffusion operator, Δt was chosen as Δt = Ch. From Theorem 2, the
predicted rate of convergence is then

|‖u− uh‖|0,0 ∼ O(h), |‖u− uh‖|∞,0 ∼ O(h).(5.5)

Example 1. For the problem described in (1.1)–(1.3) we take Ω = (0, 1) × (0, 1),
and a known solution u(x1, x2, t) = (4t2 −4t+1)(x1 −x2

1)(x2 −x2
2), with u0(x1, x2) =

u(x1, x2, 0). The RHS of (1.1) was computed using the true solution, and the approx-
imation to D2α

M u(x) given in (5.2).
Computations were performed for B(u) given by (2.8) with
(a) b(x, y) = 0, i.e., B(u) = 0 (see Tables 5.1, 5.4),
(b) b(x, y) = x− y, i.e., a smooth operator B (see Tables 5.2, 5.5),
(c) b(x, y) = (x− y)/|x− y|2 (see Tables 5.3, 5.6).
The results presented in Tables 5.1–5.6 are consistent with those predicted by

Theorem 2, given in (5.3). (“Cvge. rate” stands for convergence rate.)
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Fig. 5.1. Time evolution of (1.1) for c = 0.
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Fig. 5.2. Time evolution of (5.4) for c = 0.
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Fig. 5.3. Time evolution of (1.1) for c = −1.
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Fig. 5.4. Time evolution of (5.4) for c = −1.

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
t=0.00
t=0.01
t=0.02
t=0.03
t=0.04

Fig. 5.5. Time evolution of (1.1) for c = 1.
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Fig. 5.6. Time evolution of (5.4) for c = 1.

Example 2. In order to demonstrate the influence of the nonlocal quadratic non-
linearity ∇· (uB(u)), we present in Figures 5.1–5.10 the plots of the time evolution of
the approximation uh for the initial value u0(x1, x2) = 16(x1−x2

1)(x2−x2
2). Plots for

the fractional diffusion equation are displayed on the left, the usual diffusion equation
on the right. Note that u0 has height 1 at (1/2, 1/2) and is symmetric with respect
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Fig. 5.7. Time evolution of (1.1) for c = −5.
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Fig. 5.8. Time evolution of (5.4) for c = −5.
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Fig. 5.9. Time evolution of (1.1) for c = 5.
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Fig. 5.10. Time evolution of (5.4) for c = 5.

to x1 and x2. The profiles given are along the line segment [x1, 1/2], 1/2 ≤ x1 ≤ 1.
The operator B(u) was chosen as in (2.8) with b(x, y) given by (2.9). Values for c = 0
(Figures 5.1, 5.2), c = ±1 (Figures 5.3–5.6), and c = ±5 (Figures 5.7–5.10) were used.

For the negative values of c the diffusion of u away from the maximum at (1/2, 1/2)
is enhanced. For positive values of c the ∇ · (uB(u)) term acts “against the diffusion
operator” to try and concentrate u at (1/2, 1/2). This behavior is consistent with
the case c < 0 modeling Brownian diffusion and c > 0 being used to model mutual
gravitational attraction of particles in clouds (see [4]).
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ALMOST SURE AND MOMENT EXPONENTIAL STABILITY IN
THE NUMERICAL SIMULATION OF STOCHASTIC

DIFFERENTIAL EQUATIONS∗
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Abstract. Relatively little is known about the ability of numerical methods for stochastic
differential equations (SDEs) to reproduce almost sure and small-moment stability. Here, we focus
on these stability properties in the limit as the timestep tends to zero. Our analysis is motivated by
an example of an exponentially almost surely stable nonlinear SDE for which the Euler–Maruyama
(EM) method fails to reproduce this behavior for any nonzero timestep. We begin by showing that
EM correctly reproduces almost sure and small-moment exponential stability for sufficiently small
timesteps on scalar linear SDEs. We then generalize our results to multidimensional nonlinear SDEs.
We show that when the SDE obeys a linear growth condition, EM recovers almost surely exponential
stability very well. Under the less restrictive condition that the drift coefficient of the SDE obeys a
one-sided Lipschitz condition, where EM may break down, we show that the backward Euler method
maintains almost surely exponential stability.

Key words. backward Euler, Euler–Maruyama, implicit, one-sided Lipschitz condition, linear
growth condition, Lyapunov exponent, stochastic theta method
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1. Introduction. Stability theory for numerical simulations of stochastic differ-
ential equations (SDEs) typically deals with mean-square behavior. Asymptotic, or
almost sure, stability is at least as relevant in typical applications, but does not benefit
from a well-developed theory. Our general aim here is to address this imbalance.

We begin with a brief overview of relevant work.

A characterization of asymptotic linear stability for a wide class of SDE methods
was given in [10, Lemma 5.1], but this turns out to be of limited use in proving
analytical results. Some properties for weak methods were derived in [10, section 6],
and results for the related T -stability concept can be found in [19]. The issue of
whether the asymptotic linear stability region is bounded was analyzed in [5]. Other
authors [7, 8, 17] have tested asymptotic stability via numerical experiments.

The related concept of pth moment stability for 0 < p ≤ 2 is interesting in
its own right, and in the linear scalar SDE case it is known that as p → 0 this
property is equivalent to asymptotic stability; see Theorem 4.1. We note that some
analysis in [1] on stochastic difference equations is relevant to the application of a
weak Euler–Maruyama (EM) method to a scalar SDE, and further strengthens the
connection between pth moment and asymptotic stability. Similarly, the results in [2]
are relevant to EM on a scalar SDE; in this case the emphasis is on polynomial, rather
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than the generic exponential, rates of convergence. In [4], moment stability for SDEs
with delay is studied in the presence of a suitable Lyapunov function.

Unlike in the mean-square case [10], we are not aware of any numerical methods
that, on a reasonable class of SDEs, have been proved to possess an asymptotic
stability analogue of deterministic A-stability [9]; “problem stable implies numerical
method stable for all stepsizes.”

In this work, we focus on a more fundamental property of the form “problem
stable implies numerical method stable for sufficiently small stepsizes,” where stability
is meant in the exponential asymptotic sense and independently of the size of initial
data. To show that this is a nontrivial issue, we give a nonlinear example in section 3
where, for arbitrarily small timesteps, the basic EM method may fail to preserve
stability. This motivates the subsequent analysis. We find conditions under which
EM does preserve exponential asymptotic stability for small timesteps, and we show
that introducing implicitness, in the form of the backward Euler method, produces
good results on a class of SDEs that includes our motivating example.

More precisely, we prove positive results for scalar-noise SDEs that are linear
(section 4) or satisfy linear growth conditions (section 5). Then in section 6 we show
that backward Euler is successful under a one-sided Lipschitz condition on the drift.
Section 7 shows how the results generalize to multidimensional noise.

2. Notation. Throughout this paper, we let (Ω,F , {Ft}t≥0,P) be a complete
probability space with a filtration {Ft}t≥0 that is increasing and right continuous,
with F0 containing all P-null sets. Let B(t) be a scalar Brownian motion defined on
the probability space. Let | · | denote both the Euclidean norm in R

n and the trace
(or Frobenius) norm in R

n×m. The inner product of x, y in R
n is denoted by 〈x, y〉.

We use a ∨ b to denote max(a, b), a ∧ b to denote min(a, b), and a.s. to mean almost
surely.

We are concerned with the n-dimensional nonlinear Itô SDE

dx(t) = f(x(t))dt + g(x(t))dB(t), t ≥ 0, given 0 	= x(0) ∈ R
n.(2.1)

As a standing hypothesis, we assume that f, g : R
n → R

n are smooth enough for the
SDE (2.1) to have a unique global solution x(t) on [0,∞) (see, for example, [15], for
sufficient conditions). We make two remarks.

• Scalar Brownian motion B(t) is used to make the analysis in sections 5 and 6
more accessible. In section 7 we state how our results extend to the case of
multidimensional noise.

• The restriction to a deterministic initial condition is convenient and does not
lose any generality when asymptotic stability is studied; see, for example, [15,
section 4.2].

The EM method applied to (2.1) produces approximations Xk ≈ x(kΔt), where
X0 = x(0) and

Xk+1 = Xk + Δtf(Xk) + g(Xk)ΔBk.(2.2)

Here Δt > 0 is the timestep and ΔBk := B((k + 1)Δt) − B(kΔt) is the Brownian
increment. We will also consider the more general stochastic theta (ST) method which
takes the form

Xk+1 = Xk + Δt ((1 − θ)f(Xk) + θf(Xk+1)) + g(Xk)ΔBk,(2.3)

where θ ∈ [0, 1] is a fixed parameter. For θ = 0, ST reduces to EM. For θ 	= 0 (2.3)
defines Xk+1 implicitly. We will refer to the θ = 1 case as backward Euler (BE).



594 DESMOND J. HIGHAM, XUERONG MAO, AND CHENGGUI YUAN

3. Motivating example. For the scalar cubic SDE

dx(t) =
(
x(t) − x(t)3

)
dt + 2x(t)dB(t)(3.1)

it follows from Theorem 6.1 in section 6 below that

lim sup
t→∞

1

t
log |x(t)| ≤ −1 a.s.(3.2)

The EM method (2.2) applied to (3.1) produces

Xk+1 = Xk

(
1 + Δt− ΔtX2

k + 2ΔBk

)
.(3.3)

Lemma 3.1. Suppose 0 < Δt < 1. If |X1| ≥ 24/
√

Δt in (3.3), then

P

(
|Xk| ≥

2k+3

√
Δt

∀ k ≥ 1

)
≥ exp

(
−4e−2/

√
Δt

)
.

Proof. First, we show that

|Xk| ≥
2k+3

√
Δt

and |ΔBk| ≤ 2k ⇒ |Xk+1| ≥
2k+4

√
Δt

.(3.4)

To see this, suppose |Xk| ≥ 2k+3/
√

Δt. Then

|Xk+1| ≥ |Xk|
∣∣Δt|X2

k | − 1 − Δt− 2|ΔBk|
∣∣

≥ 2k+3

√
Δt

∣∣22k+6 − 1 − Δt− 2|ΔBk|
∣∣ .

Hence, |Xk+1| ≥ 2k+4/
√

Δt if

22k+6 − 1 − Δt− 2|ΔBk| ≥ 2;

that is,

2|ΔBk| ≤ 22k+6 − 3 − Δt.

Since 22k+6 − 3 − Δt ≥ 22k+6 − 4 ≥ 2k+1 ∀ k ≥ 0, the implication (3.4) follows.
From (3.4), given that |X1| ≥ 24/

√
Δt, the event that {|Xk| ≥ 2k+3/

√
Δt, ∀ 1 ≤

k ≤ K} contains the event that {|ΔBk| ≤ 2k ∀ 1 ≤ k ≤ K}. So, because the {ΔBk}
are independent,

P

(
|Xk| ≥

2k+3

√
Δt

∀ 1 ≤ k ≤ K

)
≥

K∏
k=1

P
(
|ΔBk| ≤ 2k

)
.(3.5)

Now, because ΔBk ∼ N(0,Δt), we have

P
(
|ΔBk| ≥ 2k

)
= P

(
|ΔBk|√

Δt
≥ 2k√

Δt

)
=

2√
2π

∫ ∞

2k/
√

Δt

e−x2/2 dx

≤ 2√
2π

∫ ∞

2k/
√

Δt

e−x dx

=
2√
2π

exp

(
− 2k√

Δt

)
.
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Hence, in (3.5)

P

(
|Xk| ≥

2k+3

√
Δt

∀ 1 ≤ k ≤ K

)
≥

K∏
k=1

(
1 − exp

(
− 2k√

Δt

))
.

Since

log(1 − u) ≥ −2u for 0 < u <
1

2
,

we then have

log

(
P

(
|Xk| ≥

2k+3

√
Δt

∀ 1 ≤ k ≤ K

))
≥

K∑
k=1

log

(
1 − exp

(
− 2k√

Δt

))

≥ −2
K∑

k=1

exp

(
− 2k√

Δt

)
.(3.6)

Next, using 2k ≥ 2k,

K∑
k=1

exp

(
−2k√

Δt

)
≤

K∑
k=1

exp

(
− 2k√

Δt

)
.

The right-hand side is a geometric series that converges monotonically from below to

e−2/
√

Δt/(1 − e−2/
√

Δt) ≤ 2e−2/
√

Δt. Hence, in (3.6),

log

(
P

(
|Xk| ≥

2k+3

√
Δt

∀ 1 ≤ k ≤ K

))
≥ −4e−2/

√
Δt,

and the result follows.
To interpret Lemma 3.1, we note that given any x(0) 	= 0 and any Δt > 0, there

is a nonzero probability that the first Brownian increment, ΔB1, will cause |X1| ≥
24/

√
Δt. Hence, there is a nonzero probability that EM will produce a numerical

solution that blows up at a geometric rate. This contrasts with the initial-data-
independent exponential stability of the underlying SDE, shown by (3.2).

In sections 4 and 5 we show that this poor behavior cannot happen when EM
is applied to linear scalar problems or an appropriate class of nonlinear SDEs. In
section 6 we study a class of SDEs that includes (3.1) and show that the correct
stability can be retained by moving to an implicit method. We note that in all
results, when we state the existence of a suitable upper limit, Δt�, on the stepsize,
we implicitly mean that Δt� does not depend on the initial data.

4. Linear scalar SDEs. In this section we focus on the linear scalar SDE

dx(t) = αx(t)dt + σx(t)dB(t), with 0 	= x(0) ∈ R,(4.1)

where α and σ are real numbers. The following result is classical; see, e.g., [3, 13, 14].
Theorem 4.1. The sample Lyapunov exponent of the solution to the SDE (4.1)

is

lim
t→∞

1

t
log |x(t)| = α− 1

2
σ2 a.s.,
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and the pth moment Lyapunov exponent is

lim
t→∞

1

t
log E (|x(t)|p) = pα +

1

2
p(p− 1)σ2,

for any p > 0. Hence, the zero solution of the SDE (4.1) is a.s. exponentially stable
if and only if α− 1

2σ
2 < 0, while it is pth moment exponentially stable if and only if

α + 1
2 (p− 1)σ2 < 0.
We hence observe that the zero solution of the SDE (4.1) is a.s. exponentially

stable if and only if it is pth moment exponentially stable for some sufficiently small
positive p.

In the following three subsections we show that for small Δt, EM and ST recover
almost sure and pth moment exponential stability of (4.1).

4.1. Almost sure exponential stability of Euler–Maruyama.
Theorem 4.2. If α − 1

2σ
2 < 0 in (4.1), then for any ε ∈ (0, 1) there is a

Δt� ∈ (0, 1) such that for any Δt < Δt�, the EM approximation has the property that

lim
k→∞

1

kΔt
log |Xk| ≤ (1 − ε)

(
α− 1

2
σ2

)
< 0 a.s.(4.2)

Proof. The EM method (2.2) applied to (4.1) has the form

Xk+1 = Xk(1 + αΔt + σΔBk).(4.3)

It follows that Xk = x0

∏k−1
j=0 (1 + αΔt + σΔBj), and thus

log |Xk| = log |x0| +
k−1∑
j=0

log |1 + αΔt + σΔBj |.

Dividing both sides by k, letting k → ∞, and then applying the classical strong law
of large numbers we obtain

lim
k→∞

1

kΔt
log |Xk| =

1

Δt
E log |1 + αΔt + σ

√
ΔZ| a.s., where Z ∼ N(0, 1).(4.4)

Writing

log |1 + αΔt + σ
√

ΔtZ| = 1
2 log([1 + αΔt + σ

√
ΔtZ]2)

= 1
2 log(1 + 2[αΔt + σ

√
ΔtZ] + [αΔt + σ

√
ΔtZ]2),

and recalling the fundamental inequality

log(1 + u) ≤ u− 1

2
u2 +

1

3
u3, u ≥ −1,

we have

log |1 + αΔt + σ
√

ΔtZ| ≤ 1

2

(
2[αΔt + σ

√
ΔtZ] + [αΔt + σ

√
ΔtZ]2

− 1

2

(
2[αΔt + σ

√
ΔtZ] + [αΔt + σ

√
ΔtZ]2

)2
+

1

3

(
2[αΔt + σ

√
ΔtZ] + [αΔt + σ

√
ΔtZ]2

)3)
.
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Making use of the properties E(Z2n) = (2n−1)!! and E(Z2n−1) = 0, for n = 1, 2, 3, . . . ,
we can compute⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

E[αΔt + σ
√

ΔtZ] = αΔt,

E([αΔt + σ
√

ΔtZ]2) = α2Δt2 + σ2Δt,

E([αΔt + σ
√

ΔtZ]3) = α3Δt3 + 3ασ2Δt2,

E([αΔt + σ
√

ΔtZ]4) = α4Δt4 + 6α2σ2Δt3 + 3σ4Δt2,

E([αΔt + σ
√

ΔtZ]5) = α5Δt5 + 10α3σ2Δt4 + 15ασ4Δt3,

E([αΔt + σ
√

ΔtZ]6) = α6Δt6 + 15α4σ2Δt5 + 45α2σ4Δt4 + 15σ6Δt3,

(4.5)

and hence obtain

E log |1 + αΔt + σ
√

ΔtZ| ≤ (α− 1
2σ

2)Δt + C1Δt2,(4.6)

where C1 = C1(α, σ) > 0 is a constant independent of Δt. Now, choose Δt� ∈ (0, 1)
so small that C1Δt� ≤ ε( 1

2σ
2 − α). Then for any Δt < Δt� we can substitute (4.6)

into (4.4) to obtain (4.2).

4.2. Moment exponential stability of Euler–Maruyama.
Theorem 4.3. Let p ∈ (0, 2]. If α + 1

2 (p − 1)σ2 < 0 in (4.1), then for any
ε ∈ (0, 1) there is a Δt� ∈ (0, 1) such that for any Δt < Δt�, the EM approximation
has the property that

lim
k→∞

1

kΔt
log E(|Xk|p) ≤ (1 − ε)p

(
α +

1

2
(p− 1)σ2

)
< 0.(4.7)

Proof. It follows from (4.3) that E(|Xk|p) = |x0|p
∏k−1

j=0 E(|1 + αΔt + σΔBj |p),
and hence

E(|Xk|p) = |x0|p(E|1 + αΔt + σ
√

ΔZ|p)k, where Z ∼ N(0, 1).

This implies

lim
k→∞

1

kΔt
log E(|Xk|p) =

1

Δt
log E(|1 + αΔt + σ

√
ΔZ|p).(4.8)

Writing

|1 + αΔt + σ
√

ΔtZ|p = ([1 + αΔt + σ
√

ΔtZ]2)p/2

= (1 + 2[αΔt + σ
√

ΔtZ] + [αΔt + σ
√

ΔtZ]2)p/2,

and recalling the fundamental inequality

(1 + u)p/2 ≤ 1 +
p

2
u +

p(p− 2)

8
u2 +

p(p− 2)(p− 4)

23 × 3!
u3, u ≥ −1,(4.9)

we have

|1 + αΔt + σ
√

ΔtZ|p ≤ 1 +
p

2

(
2[αΔt + σ

√
ΔtZ] + [αΔt + σ

√
ΔtZ]2

)
+

p(p− 2)

8

(
2[αΔt + σ

√
ΔtZ] + [αΔt + σ

√
ΔtZ]2

)2

+
p(p− 2)(p− 4)

48

(
2[αΔt + σ

√
ΔtZ] + [αΔt + σ

√
ΔtZ]2

)3

.
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Making use of (4.5), we obtain

E(|1 + αΔt + σ
√

ΔtZ|p) ≤ 1 + p[α + 1
2 (p− 1)σ2]Δt + C3Δt2,

where C3 = C3(α, σ, p) > 0 is a constant independent of Δt. Now, choose Δt� ∈ (0, 1)
so small that for all Δt < Δt�

C3Δt ≤ εp|α + 1
2 (p− 1)σ2| and −1 < (1 − ε)p[α + 1

2 (p− 1)σ2]Δt < 0.

Then

E(|1 + αΔt + σ
√

ΔtZ|p) ≤ 1 + (1 − ε)p[α + 1
2 (p− 1)σ2]Δt.

Substituting this into (4.8) we obtain

lim
k→∞

1

kΔt
log E(|Xk|p) ≤

1

Δt
log

(
1 + (1 − ε)p

[
α +

1

2
(p− 1)σ2

]
Δt

)
.

But log(1 + u) ≤ u for −1 < u < 0, and thus (4.7) follows.

4.3. Exponential stability of the stochastic theta method. If we assume
that Δt is chosen so small that Δtαθ < 1, then the ST method (2.3) applied to the
linear SDE (4.1) may be written in the form

Xk+1 = Xk

(
1 +

α

1 − θαΔt
Δt +

σ

1 − θαΔt
ΔBk

)
.

This approximation coincides with the EM method applied to the modified linear
SDE

dy(t) =
α

1 − θαΔt
y(t)dt +

σ

1 − θαΔt
y(t)dB(t).

Using this observation, it follows almost immediately that the statements of Theorems
4.2 and 4.3 also apply to the ST method.

5. Generalization to multidimensional nonlinear SDEs. To analyze the n-
dimensional nonlinear SDE (2.1), we begin by imposing the linear growth assumption

|f(x)| ∨ |g(x)| ≤ K|x| ∀x ∈ R
n.(5.1)

This implies

f(0) = 0, g(0) = 0,(5.2)

and we will be concerned with pathwise convergence of the solution x(t) of (2.1) to the
zero solution, as t → ∞, and the preservation of this property under discretization.
We also note that condition (5.1) ensures that, with probability one, the solution will
never reach the origin; see, for example, [15, Lemma 3.2].

We begin by giving sufficient conditions for almost sure exponential stability of
the SDE.

Theorem 5.1. Let (5.1) hold. If

−λ := sup
x∈Rn,x 	=0

( 〈x, f(x)〉 + 1
2 |g(x)|2

|x|2 − 〈x, g(x)〉2
|x|4

)
< 0,(5.3)
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then the solution of (2.1) obeys

lim sup
t→∞

1

t
log |x(t)| ≤ −λ a.s.,(5.4)

and given any ε ∈ (0, λ) there exists a p� ∈ (0, 1) such that for all 0 < p < p�

lim sup
t→∞

1

t
log E(|x(t)|p) ≤ −p(λ− ε).(5.5)

Proof. See Appendix A.
Next, we analyze the EM discretization (2.2).
Theorem 5.2. Let (5.1) and (5.3) hold. Then for any ε ∈ (0, λ) there is a

constant Δt� ∈ (0, 1) such that for any 0 < Δt < Δt� the EM approximation (2.2)
satisfies

lim sup
k→∞

1

kΔt
log |Xk| ≤ −(λ− ε) a.s.(5.6)

Further, for any ε ∈ (0, λ) and any sufficiently small p > 0, there is a constant
Δt� ∈ (0, 1) such that for any 0 < Δt < Δt� the EM approximation (2.2) satisfies

lim sup
k→∞

1

kΔt
log E(|Xk|p) ≤ −p(λ− ε).(5.7)

Proof. By condition (5.2), we compute from (2.2) that

|Xk+1|2 = |Xk|2 + 2〈Xk, f(Xk)Δt + g(Xk)ΔBk〉 + |f(Xk)Δt + g(Xk)ΔBk|2

= |Xk|2(1 + ξk),

where

ξk =
1

|Xk|2
[
2〈Xk, f(Xk)Δt + g(Xk)ΔBk〉 + |f(Xk)Δt + g(Xk)ΔBk|2

]
if Xk 	= 0, otherwise it is set to −1. Clearly, ξk ≥ −1. For any p ∈ (0, 1), by inequality
(4.9) we have

|Xk+1|p = |Xk|p(1 + ξk)
p/2

≤ |Xk|p
(

1 +
p

2
ξk +

p(p− 2)

8
ξ2
k +

p(p− 2)(p− 4)

23 × 3!
ξ3
k

)
.

Hence the conditional expectation

E(|Xk+1|p
∣∣∣FkΔt) ≤ |Xk|p E

(
1 +

p

2
ξk +

p(p− 2)

8
ξ2
k +

p(p− 2)(p− 4)

23 × 3!
ξ3
k

∣∣∣FkΔt

)
= |Xk|p1{Xk 	=0}E

(
1 +

p

2
ξk +

p(p− 2)

8
ξ2
k +

p(p− 2)(p− 4)

23 × 3!
ξ3
k

∣∣∣FkΔt

)
,(5.8)

where 1A denotes the indicator function for A. Now,

1{Xk 	=0}E(ξk|FkΔt)

= 1{Xk 	=0}E

(
1

|Xk|2
[
2〈Xk, f(Xk)Δt + g(Xk)ΔBk〉 + |f(Xk)Δt + g(Xk)ΔBk|2

] ∣∣∣FkΔt

)
.
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Since ΔBk is independent of FkΔt, we have E(ΔBk|FkΔt) = E(ΔBk) = 0 and
E((ΔBk)

2|FkΔt) = E((ΔBk)
2) = Δt. It is then easy to obtain that

1{Xk 	=0}E(ξk|FkΔt) = 1{Xk 	=0}

(
1

|Xk|2
[
2〈Xk, f(Xk)Δt〉 + |f(Xk)|2Δt2 + |g(Xk)|2Δt

])
≤ 1{Xk 	=0}

(
1

|Xk|2
[
2〈Xk, f(Xk)Δt〉 + |g(Xk)|2

]
Δt + K2Δt2

)
,(5.9)

where (5.1) has been used. Similarly, we can show that

1{Xk 	=0}E(ξ2
k|FkΔt) ≥

4

|Xk|4
〈Xk, g(Xk)〉2Δt− cKΔt2(5.10)

and

1{Xk 	=0}E(ξ3
k|FkΔt) ≤ cKΔt2,(5.11)

where cK > 0 is a constant dependent only on K. Substituting (5.9), (5.10), and
(5.11) into (5.8) and then using (5.3) and (5.1) we derive that

E(|Xk+1|p
∣∣FkΔt) ≤ |Xk|p1{Xk 	=0}

(
1 +

p

2|Xk|2
[
2〈Xk, f(Xk)Δt〉 + |g(Xk)|2

]
Δt

+
p(p− 2)

2|Xk|4
〈Xk, g(Xk)〉2Δt + CΔt2

)
= |Xk|p1{Xk 	=0}

{
1 + pΔt

( 〈Xk, f(Xk)〉 + 1
2 |g(Xk)|2

|Xk|2
− 〈Xk, g(Xk)〉2

|Xk|4

)
+

p2Δt〈Xk, g(Xk)〉2
2|Xk|4

+ CΔt2
}

≤ |Xk|p
(

1 − pλΔt +
p2ΔtK2

2
+ CΔt2

)
,(5.12)

where C = C(K, p) > 0 is a constant independent of Δt. Now, for any given ε ∈ (0, λ)
and p ∈ (0, 1) sufficiently small for pK2 < ε, choose Δt� ∈ (0, 1) sufficiently small for
pλΔt� < 1 and CΔt� < 1

2pε. It then follows from (5.12) that for any Δt < Δt�

E(|Xk+1|p
∣∣FkΔt) ≤ |Xk|p(1 − p(λ− ε)Δt).

Taking expectations on both sides yields

E(|Xk+1|p) ≤ E(|Xk|p)(1 − p(λ− ε)Δt).

Since this holds for any k ≥ 0, we have

E(|Xk|p) ≤ |x(0)|p(1 − p(λ− ε)Δt)k ≤ |x(0)|pe−pk(λ−ε)Δt ∀k ≥ 1.(5.13)

This implies (5.7). Moreover, we have

P{|Xk|p > k2e−pk(λ−ε)Δt} ≤ |x(0)|p
k2

∀k ≥ 1.

By the Borel–Cantelli lemma, we see that for almost all ω ∈ Ω

|Xk|p ≤ k2e−pk(λ−ε)Δt(5.14)
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holds for all but finitely many k. Hence, there exists a k0(ω), for all ω ∈ Ω excluding
a P-null set, for which (5.14) holds whenever k ≥ k0. Consequently, for almost all
ω ∈ Ω,

1

kΔt
log |Xk| ≤ −(λ− ε) +

2 log(k)

pkΔt

whenever k ≥ k0. Letting k → ∞ we obtain (5.6).

Let us now apply Theorem 5.2 to the linear SDE system

dx(t) = Ax(t)dt + Gx(t)dB(t), t ≥ 0, given 0 	= x(0) ∈ R
n,(5.15)

where A,G ∈ R
n×n. This corresponds to f(x) = Ax and g(x) = Gx in (2.1). Note

1
2λmin(A + AT )|x|2 ≤ 〈x,Ax〉 = 1

2 〈x, (A + AT )x〉 ≤ 1
2λmax(A + AT )|x|2

and

λmin(GTG)|x|2 ≤ 〈x,GTGx〉 = |Gx|2 ≤ ‖G‖2|x|2,

where λmax(·) and λmin(·) denote the maximum and minimum eigenvalues of a sym-
metric matrix, respectively. Moreover,

0 ≤ 〈x,Gx〉2 = 1
4 〈x, (G + GT )x〉2 ≤ 1

4λ
2
max(G + GT )|x|2,

while if G + GT is either nonpositive definite or nonnegative definite,

〈x,Gx〉2 ≥ 1
4

[
|λmax(G + GT )| ∧ |λmin(G + GT )|

]2|x|4.
We hence observe that

〈x,Ax〉 + 1
2 |Gx|2

|x|2 − 〈x,Gx〉2
|x|4 ≥ 1

2λmin(A + AT ) + 1
2λmin(GTG)

− 1
4λ

2
max(G + GT ),

while if G + GT is either nonpositive definite or nonnegative definite,

〈x,Ax〉 + 1
2 |Gx|2

|x|2 − 〈x,Gx〉2
|x|4 ≤ 1

2λmax(A + AT ) + 1
2‖G‖2

− 1
4

[
|λmax(G + GT )| ∧ |λmin(G + GT )|

]2
.

By Theorem 5.2 we reach the following conclusion.

Corollary 5.3. If G+GT is either nonpositive definite or nonnegative definite
and

−λ := 1
2λmax(A + AT ) + 1

2‖G‖2 − 1
4

[
|λmax(G + GT )| ∧ |λmin(G + GT )|

]2
< 0,

then for any ε ∈ (0, λ) there is a pair of constants p ∈ (0, 1) and Δt� ∈ (0, 1) such that
for any Δt < Δt� the EM approximation of the linear SDE (5.15) has the properties
(5.7) and (5.6).
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6. Backward Euler. So far, we have proved positive results about EM for
sufficiently small Δt. However, we saw in section 3 that this behavior does not extend
to the cubic example (3.1). This SDE does not satisfy the linear growth condition
(5.1); thus, of course, the theorems in section 5 do not apply. However, (3.1) does
satisfy (5.3), since

sup
x∈R,x 	=0

( 〈x, f(x)〉 + 1
2 |g(x)|2

|x|2 − 〈x, g(x)〉2
|x|4

)
= sup

x∈R,x 	=0

(
x2 − x4 + 2x2

x2
− 4x4

x4

)
≤ −1,

and we note that the proof of Theorem 5.1 did not use the condition |f(x)| ≤ K|x|
explicitly, though |g(x)| ≤ K|x| was used. Of course, the linear growth condition (5.1)
was used implicitly to guarantee that the solution stays away from the origin with
probability one. However, for this property we need only a weaker condition (see [15,
Lemma 3.2 on p. 120]). Let us form this improved result as a new theorem.

Theorem 6.1. The conclusions of Theorem 5.1 still hold if condition (5.1) is
replaced by the following: for each integer i ≥ 1 there is a Ki > 0 such that

|f(x)| ≤ Ki|x| ∀x ∈ R
n with |x| ≤ i,(6.1)

while there is a K > 0 such that

|g(x)| ≤ K|x| ∀x ∈ R
n.(6.2)

An application of this theorem to the SDE (3.1) shows that its solution obeys (3.2),
as claimed in section 3. We also saw from Lemma 3.1 that EM does not preserve this
almost sure asymptotic stability for any Δt > 0. Hence, it is not possible to extend
Theorem 5.2 to the case where (5.1) is replaced by (6.1) and (6.2).

An interesting open question is whether any other numerical methods preserve
exponential asymptotic stability for small Δt under (6.1) and (6.2).

In this section we pursue a different approach. We consider a structural constraint
that is known to allow positive results to be proved for the BE method in other
contexts. More precisely, we assume that there is a constant μ ∈ R such that

〈x− y, f(x) − f(y)〉 ≤ μ|x− y|2 ∀x, y ∈ R
n.(6.3)

This one-sided Lipschitz condition has been applied in the deterministic and stochastic
literature [9, 11, 12, 16, 20] to establish results about long-term behavior and bound-
edness in a manner that is connected with the use of Lyapunov functions [6, 18]. In
particular, we note that under (6.3) the condition μΔt < 1 ensures that (2.3) with
θ = 1 can be solved uniquely for Xk+1.

The next theorem concerns the exponential stability of BE under conditions (6.3)
and (6.2). Although (6.2) implies g(0) = 0, (6.3) may not force f(0) = 0, and thus
we still need to assume it for the purpose of stability analysis.

Theorem 6.2. Let (6.2) and (6.3) hold and f(0) = 0. Assume also that μ+ 1
2ρ <

0, where

ρ := sup
x∈Rn,x 	=0

( |g(x)|2
|x|2 − 2〈x, g(x)〉2

|x|4
)
.(6.4)

Then (5.4) holds with −λ = μ + 1
2ρ, and for any ε ∈ (0, |μ + 1

2ρ|) there is a pair of
constants p ∈ (0, 1) and Δt� ∈ (0, 1) with μΔt� < 1 such that for any Δt < Δt�, the



ALMOST SURE STABILITY 603

BE method (that is, (2.3) with θ = 1) has the properties that

lim sup
k→∞

1

kΔt
log E(|Xk|p) ≤ p

(
μ +

1

2
ρ + ε

)
< 0(6.5)

and

lim sup
k→∞

1

kΔt
log |Xk| ≤ μ +

1

2
ρ + ε < 0 a.s.(6.6)

Proof. It is straightforward to adapt the proof of Theorem 5.1 in order to establish
(5.4) under (6.2) and (6.3). From (2.3) with θ = 1, we have

|Xk+1|2 = 〈Xk+1, Xk + g(Xk)ΔBk〉 + 〈Xk+1, f(Xk+1)Δt〉.

By (6.3) and f(0) = 0, we have

〈Xk+1, f(Xk+1)Δt〉 ≤ μΔt|Xk+1|2.

But,

〈Xk+1, Xk + g(Xk)ΔBk〉 ≤ 1
2 |Xk+1|2 + 1

2 |Xk + g(Xk)ΔBk|2.

We hence obtain

|Xk+1|2 ≤ 1

1 − 2μΔt
|Xk + g(Xk)ΔBk|2

≤ 1

1 − 2μΔt

(
|Xk|2 + 2〈Xk, g(Xk)〉ΔBk + |g(Xk)|2ΔB2

k

)
=

|Xk|2
1 − 2μΔt

(1 + ζk),

where

ζk =
1

|Xk|2
(
2〈Xk, g(Xk)〉ΔBk + |g(Xk)|2ΔB2

k

)
if Xk 	= 0, otherwise it is set to −1. Clearly, ζk ≥ −1. For any p ∈ (0, 1), by inequality
(4.9) we can then show that

E(|Xk+1|p
∣∣FkΔt) ≤

|Xk|p
(1 − 2μΔt)p/2

1{Xk 	=0}E

(
1 +

p

2
ζk

+
p(p− 2)

8
ζ2
k +

p(p− 2)(p− 4)

23 × 3!
ζ3
k

∣∣∣FkΔt

)
.(6.7)

In the same way as in the proof of Theorem 5.2 we can show that

1{Xk 	=0}E(ζk|FkΔt) = 1{Xk 	=0}
|g(Xk)|2
|Xk|2

Δt,

1{Xk 	=0}E(ζ2
k |FkΔt) ≥

4〈Xk, g(Xk)〉2
|Xk|4

Δt−K4Δt2,
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and

1{Xk 	=0}E(ζ3
k |FkΔt) ≤ cKΔt2,

where cK > 0 is a constant dependent only on K. Substituting the three inequalities
above into (6.7) and then using (6.4) and (6.2) we derive that

E(|Xk+1|p
∣∣FkΔt) ≤

|Xk|p
(1 − 2μΔt)p/2

1{Xk 	=0}

(
1 +

p

2

|g(Xk)|2
|Xk|2

Δt

+
p(p− 2)

8

[
4〈Xk, g(Xk)〉2

|Xk|4
Δt−K4Δt2

]
+

p(p− 2)(p− 4)

23 × 3!
cKΔt2

)
≤ |Xk|p

(1 − 2μΔt)p/2

(
1 +

1

2
pρΔt +

1

2
p2K2Δt + CΔt2

)
,

where C = C(p,K) is a positive constant. Taking expectations on both sides, we
arrive at

E(|Xk+1|p) ≤
1 + 1

2pρΔt + 1
2p

2K2Δt + CΔt2

(1 − 2μΔt)p/2
E(|Xk|p).(6.8)

Now, for any ε ∈ (0, |μ + 1
2ρ|), we may choose p sufficiently small for pK2 ≤ 1

4ε.
Then we have

(1 − 2μΔt)p/2 ≥ 1 − pμΔt− ĈΔt2 > 0,(6.9)

for sufficiently small Δt, where Ĉ = Ĉ(p, μ) is a positive constant. By further reducing
Δt, if necessary, we may ensure that

CΔt < 1
8pε, ĈΔt < 1

4ε, |p(μ + 1
4ε)Δt| ≤ 1

2 .(6.10)

Using (6.9) and (6.10) in (6.8) gives

E(|Xk+1|p) ≤
1 + 1

2p(ρ + 1
2ε)Δt

1 − p(μ + 1
4ε)Δt

E|Xk|p.(6.11)

Note that for any u ∈ [− 1
2 ,

1
2 ]

1

1 − u
= 1 + u + u2

∞∑
i=0

ui ≤ 1 + u + u2
∞∑
i=0

( 1
2 )i = 1 + u + 2u2.

By further reducing Δt, if necessary, so that

4p(μ + 1
4ε)

2Δt + (ρ + 1
2ε)

(
p(μ + 1

4ε)Δt + 2[p(μ + 1
4ε)Δt]2

)
≤ ε,

and using (6.11), we compute that

E(|Xk+1|p) ≤
(
1 + 1

2p(ρ + 1
2ε)Δt

) (
1 + p(μ + 1

4ε)Δt + 2[p(μ + 1
4ε)Δt]2

)
E(|Xk|p)

≤ [1 + p(μ + 1
2ρ + ε)Δt]E(|Xk|p).

From this we can show the assertions (6.5) and (6.6) in the same way as in the proof
of Theorem 5.2.
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Let us return to the scalar SDE (3.1), where f(x) = x − x3 and g(x) = 2x. In
this case, we have 〈x−y, f(x)−f(y)〉 ≤ |x−y|2, so we may take μ = 1 in (6.3), while

ρ := sup
x∈R,x 	=0

(
|g(x)|2
|x|2 − 2〈x, g(x)〉2

|x|4

)
= −4,

whence μ + 1
2ρ = −1, which gives another confirmation of (3.2).

By Theorem 6.2, for any given ε ∈ (0, 1), there is a Δt� > 0 sufficiently small so
that if Δt < Δt�, the BE approximate solution of the SDE (3.1) obeys

lim sup
k→∞

1

kΔt
log |Xk| ≤ −1 + ε a.s.,

which recovers property (3.2) very well indeed.
It is also interesting to observe that in the scalar case (that is, n = 1),

ρ = sup
x∈R,x 	=0

(
−|g(x)|2

|x|2

)
≤ 0.

In this case, if (6.3) also holds with μ < 0, then the BE method is a.s. exponentially
stable as long as the stepsize is sufficiently small. For example, the BE approximate
solution to the scalar SDE

dx(t) = (μx− x3)dt + g(x)dB(t)

is always a.s. exponentially stable as long as the stepsize is sufficiently small, μ < 0,
and g obeys the linear growth condition (6.2). However, in the case μ ≥ 0, we will
need that

|g(x)|2 ≥ ρx2, x ∈ R,

holds for some ρ > 2μ in order to conclude that the BE method is a.s. exponentially
stable.

7. Multidimensional noise. So far, in order to streamline the presentation,
we have only considered scalar noise. In this section we state, without proof, how the
nonlinear results generalize to the multinoise case, as follows:

dx(t) = f(x(t))dt +
d∑

j=1

gj(x(t))dBj(t), t ≥ 0, given 0 	= x(0) ∈ R
n.(7.1)

Here (B1(t), . . . , Bd(t)) is a d-dimensional Brownian motion. As before, we assume,
as a standing hypothesis, that f, g1, . . . , gd : R

n → R
n are smooth enough for the SDE

(7.1) to have a unique global solution x(t) on [0,∞).
The following generalization of Theorem 6.1 gives a criterion for the almost sure

and moment exponential stability of the SDE.
Theorem 7.1. Assume that for each integer i ≥ 1 there is a Ki > 0 such that

|f(x)| ≤ Ki|x| ∀x ∈ R
n with |x| ≤ i,(7.2)

while there is a K > 0 such that

|gj(x)| ≤ K|x| ∀x ∈ R
n and 1 ≤ j ≤ d.(7.3)
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If

−λ := sup
x∈Rn,x 	=0

(
〈x, f(x)〉 + 1

2

∑d
j=1 |gj(x)|2

|x|2 −
∑d

j=1〈x, gj(x)〉2

|x|4

)
< 0,

then the solution of (7.1) obeys

lim sup
t→∞

1

t
log |x(t)| ≤ −λ a.s.,(7.4)

and given any ε ∈ (0, λ) there exists a p� ∈ (0, 1) such that for all 0 < p < p�

lim sup
t→∞

1

t
log E(|x(t)|p) ≤ −p(λ− ε).

This theorem can be proved in a similar way that Theorem 5.1 is proved in the
appendix.

The EM method applied to (7.1) produces approximations Xk ≈ x(kΔt) with
X0 = x(0) and

Xk+1 = Xk + Δtf(Xk) +

d∑
j=1

g(Xk)ΔBjk,(7.5)

where ΔBjk := Bj((k + 1)Δt) − Bj(kΔt). Recalling the motivating example in sec-
tion 3, we will replace the local linear growth condition (7.2) by a global one.

Theorem 7.2. Assume that all the conditions of Theorem 7.1 hold with condition
(7.2) replaced by

|f(x)| ≤ K|x| ∀x ∈ R
n.

Then for any ε ∈ (0, λ) there is a constant Δt� ∈ (0, 1) such that for any 0 < Δt < Δt�

the EM approximation (7.5) satisfies

lim sup
k→∞

1

kΔt
log |Xk| ≤ −(λ− ε) a.s.

Further, for any ε ∈ (0, λ) and any sufficiently small p > 0, there is a constant
Δt� ∈ (0, 1) such that for any 0 < Δt < Δt� the EM approximation (7.5) satisfies

lim sup
k→∞

1

kΔt
log E(|Xk|p) ≤ −p(λ− ε).

The BE method applied to (7.1) produces approximations Xk ≈ x(kΔt) with
X0 = x(0) and

Xk+1 = Xk + Δtf(Xk+1) +

d∑
j=1

gj(Xk)ΔBjk.(7.6)

Theorem 7.3. Let (7.3) and (6.3) hold and f(0) = 0. Assume also that μ+ 1
2ρ <

0, where

ρ := sup
x∈Rn,x 	=0

(∑d
j=1 |gj(x)|2

|x|2 −
2
∑d

j=1〈x, gj(x)〉2

|x|4

)
.
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Then (7.4) holds with −λ = μ + 1
2ρ, and for any ε ∈ (0, |μ + 1

2ρ|) there is a pair of
constants p ∈ (0, 1) and Δt� ∈ (0, 1) with μΔt� < 1 such that for any Δt < Δt�, the
BE method (7.6) has the properties that

lim sup
k→∞

1

kΔt
log E(|Xk|p) ≤ p

(
μ +

1

2
ρ + ε

)
< 0

and

lim sup
k→∞

1

kΔt
log |Xk| ≤ μ +

1

2
ρ + ε < 0 a.s.

Theorems 7.2 and 7.3 can be proved in the same way as the scalar noise versions,
Theorems 5.2 and 6.2.

Appendix A. Proof of Theorem 5.1.
Proof. The result (5.4) may be proved by generalizing the analysis in [15, pp.

121–123], so we give only an outline. By the Itô formula, we can show that

log(|x(t)|2) = log(|x(0)|2) + M(t)

+

∫ t

0

2

( 〈x(s), f(x(s))〉 + 1
2 |g(x(s))|2

|x(s)|2 − 〈x(s), g(x(s))〉2
|x(s)|4

)
ds,

where

M(t) =

∫ t

0

2〈x(s), g(x(s))〉
|x(s)|2 dB(s).

From the condition |g(x)| ≤ K|x|, it is straightforward to show that

lim
t→∞

M(t)

t
= 0 a.s.

Now, if (5.3) holds, then

log(|x(t)|2) ≤ log(|x0|2) + M(t) − 2λt.

Dividing both sides by 2t and then letting t → ∞ we obtain (5.4).
Now we show (5.5). For 0 < p < 1 we have, from the Itô formula,

d (|x(t)|p) = d
((

|x(t)|2
) 1

2p
)

=
p

2

(
|x(t)|2

) 1
2p−1

dx(t)

+
1

2

p

2

(p
2
− 1

) (
|x(t)|2

) 1
2p−2

4〈x(t), g(x(t))〉2 dt

= p|x(t)|p
[ 〈x(t), f(x(t))〉 + 1

2 |g(x(t))|2
|x(t)|2 − 〈x(t), g(x(t))〉2

|x(t)|4

+
p

2

〈x(t), g(x(t))〉2
|x(t)|4

]
dt

+ p|x(t)|p 〈x(t), g(x(t))〉
|x(t)|2 dB(t).(A.1)
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Under (5.1) and (5.3) this implies

d (|x(t)|p) ≤ p|x(t)|p
(
−λ +

p

2
K2

)
dt

+ p|x(t)|p 〈x(t), g(x(t))〉
|x(t)|2 dB(t).

Given ε ∈ (0, λ) we may choose p ∈ (0, 1) so small that pK2/2 < ε, whence

d
(
e(λ−ε)pt|x(t)|p

)
≤ e(λ−ε)pt|x(t)|p

[
(λ− ε)p + p

(
−λ +

1

2
pK2

)]
dt

+ e(λ−ε)ptp|x(t)|p 〈x(t), g(x(t))〉
|x(t)|2 dB(t)

≤ e(λ−ε)ptp|x(t)|p 〈x(t), g(x(t))〉
|x(t)|2 dB(t).

We deduce that

e(λ−ε)pt
E|x(t)|p ≤ E|x(0)|p,

and (5.5) follows.
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A GALERKIN BOUNDARY ELEMENT METHOD FOR HIGH
FREQUENCY SCATTERING BY CONVEX POLYGONS∗
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Abstract. In this paper we consider the problem of time-harmonic acoustic scattering in two
dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering
problems have a computational cost that grows at least linearly as a function of the frequency of
the incident wave. Here we present a novel Galerkin boundary element method, which uses an
approximation space consisting of the products of plane waves with piecewise polynomials supported
on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that
the best approximation from the approximation space requires a number of degrees of freedom to
achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency.
Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin
method solution. Our boundary element method is a discretization of a well-known second kind
combined-layer-potential integral equation. We provide a proof that this equation and its adjoint
are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general
Lipschitz domains.

Key words. Galerkin boundary element method, high frequency scattering, convex polygons,
Helmholtz equation, large wave number, Lipschitz domains
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1. Introduction. The scattering of time-harmonic acoustic waves by bounded
obstacles is a classical problem that has received much attention in the literature
over the years. Much effort has been put into the development of efficient numerical
schemes, but an outstanding question yet to be fully resolved is how to achieve an
accurate approximation to the scattered wave with a reasonable computational cost
in the case that the scattering obstacle is large compared to the wavelength of the
incident field.

The standard boundary or finite element method approach is to seek an approxi-
mation to the scattered field from a space of piecewise polynomial functions. However,
due to the oscillatory nature of the solution, such an approach suffers from the lim-
itation that a fixed number of degrees of freedom K are required per wavelength in
order to achieve a good level of accuracy, with the accepted guideline in the engi-
neering literature being to take K = 10 (see, e.g., [53] and the references therein). A
further difficulty, at least for the finite element method, is the presence of “pollution
errors,” phase errors in wave propagation across the domain, which can lead to even
more severe restrictions on the value of K when the wavelength is short [9, 39].

Let L be a linear dimension of the scattering obstacle, and set k = 2π/λ, where
λ is the wavelength of the incident wave, so that k is the wave number, proportional
to the frequency of the incident wave. Then a consequence of fixing K is that the
number of degrees of freedom will be proportional to (kL)d, where d = N in the case
of the finite element method, d = N − 1 in the case of the boundary element method,
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and N = 2 or 3 is the number of space dimensions of the problem. Thus, as either the
frequency of the incident wave or the size of the obstacle grows, so does the number
of degrees of freedom, and hence the computational cost of the numerical scheme.
As a result, the numerical solution of many realistic physical problems is intractable
using current technologies. In fact, for some of the most powerful recent algorithms
for three-dimensional (3D) scattering problems (e.g., [13, 21]), the largest obstacles
for which numerical results have been reported have diameter not more than a few
hundred times the wavelength.

For boundary element methods, the cost of setting up and solving the large linear
systems which arise can be reduced substantially through a combination of precondi-
tioned iterative methods [4, 22, 36] combined with fast matrix-vector multiply meth-
ods based on the fast multipole method [5, 26, 21] or the FFT [13]. However, this does
nothing to reduce the growth in the number of degrees of freedom as kL increases
(linear with respect to kL in two dimensions, quadratic in three dimensions). Thus
computations become infeasible as kL → ∞.

1.1. Reducing the number of degrees of freedom for kL large. To achieve
a dependence of the number of degrees of freedom on kL which is lower than (kL)d,
it seems essential to use an approximation space better able to replicate the behavior
of the scattered field at high frequencies than piecewise polynomials. To that end,
much attention in the recent literature has focused on enriching the approximation
space with oscillatory functions, specifically plane waves or Bessel functions.

A common approach (see, e.g., [8, 16, 27, 37, 53]) is to form an approximation
space consisting of standard finite element basis functions multiplied by plane waves
travelling in a large number of directions, approximately uniformly distributed on the
unit circle (in two dimensions) or sphere (in three dimensions). Theoretical analysis
(e.g., [8]) and computational results (e.g., [53]) suggest that these methods converge
rapidly as the number of plane wave directions increases, with a significant reduction
in the number of degrees of freedom required per wavelength, compared to standard
finite and boundary element methods. But the number of degrees of freedom is still
proportional to (kL)d, and serious conditioning problems occur when the number of
plane wave directions is large.

A related idea is to attempt to identify the important wave propagation directions
at high frequencies, and to incorporate the oscillatory part of this high frequency
asymptotic behavior into the approximation space. This is the idea behind the finite
element method of [34] and the boundary element methods of [25, 19, 12, 33, 45]. This
idea has been investigated most thoroughly in the case that the scattering obstacle
is smooth and strictly convex. In this case the leading order oscillatory behavior is
particularly simple on the boundary of the scattering obstacle, so that this approach is
perhaps particularly well adapted for boundary element methods. If a direct integral
equation formulation is used, in which the solution to be determined is the trace of
the total field or its normal derivative on the boundary, the most important wave
direction to include is that of the incident wave (see, e.g., [1, 25, 12, 28]). This
approach is equivalent, in the case of a sound hard scatterer, to approximating the
ratio of the total field to the incident field, with physical optics predicting that this
ratio is approximately constant on the illuminated side and approximately zero on
the shadow side of the obstacle at high frequencies.

In [1], Abboud, Nédélec, and Zhou consider the two-dimensional (2D) problem
of scattering by a smooth, strictly convex obstacle. They suggest that the ratio
of the scattered field to the incident field can be approximated with error of order



612 S. N. CHANDLER-WILDE AND S. LANGDON

N−ν +((kL)1/3/N)ν+1 using a uniform mesh of piecewise polynomials of degree ν, so
that the total number of degrees of freedom N need be proportional only to (kL)1/3 in
order to maintain a fixed level of accuracy. In fact, this paper appears to be the first
in which the dependence of the error estimates on the wave number k is indicated, and
the requirement that the number of degrees of freedom is proportional to (kL)1/3 is a
big improvement over the usual requirement for proportionality to kL. This approach
is coupled with a fast multipole method in [25], where impressive numerical results
are reported for large scale 3D problems.

The same approach is combined with a mesh refinement concentrating degrees of
freedom near the shadow boundary in [12]. The numerical results in [12] for scattering
by a circle suggest that, with this mesh refinement, both the number of degrees
of freedom and the total computational cost required to maintain a fixed level of
accuracy remain constant as kL → ∞. The method of [12] has recently been applied
to deal with each of the multiple scatters which occur when a wave is incident on
two, separated, smooth convex 2D obstacles [33]. Numerical experiments have also
recently been presented in [29], where the convergence of this iterative approach to
the multiple scattering problem is analyzed.

In [28] a numerical method in the spirit of [12] is proposed, namely a p-version
boundary element method with a k-dependent mesh refinement in a transition region
around the shadow boundary. A rigorous error analysis, which combines estimates
using high frequency asymptotics of derivatives of the solution on the surface with
careful numerical analysis, demonstrates that the approximation space is able to rep-
resent the oscillatory solution to any desired accuracy provided the number of degrees
of freedom increases approximately in proportion to (kL)1/9 as kL increases. And, in
fact, numerical experiments in [28], using this approximation space as the basis of a
Galerkin method, suggest that a prescribed accuracy can be achieved by keeping the
number of degrees of freedom fixed as the wave number increases.

The boundary element method and its analysis that we will present in this paper
for the problem of scattering by a convex polygon are most closely related to our
own recent work [19, 45] on the specific problem of 2D acoustic scattering by an in-
homogeneous, piecewise constant impedance plane. In [19, 45] a Galerkin boundary
element method for this problem is proposed, in which the leading order high fre-
quency behavior as k → ∞, consisting of the incident and reflected ray contributions,
is first subtracted off. The remaining scattered wave, consisting of rays diffracted
by discontinuities in impedance, is expressed as a sum of products of oscillatory and
nonoscillatory functions, with the nonoscillatory functions being approximated by
piecewise polynomials supported on a graded mesh, with larger elements away from
discontinuities in impedance. For the method in [19] it was shown in that paper that
the number of degrees of freedom needed to maintain accuracy as k → ∞ grows only
logarithmically with k. This result was improved in [45], where it was shown, via
sharper regularity results and a modified mesh, that for a fixed number of degrees of
freedom the error is bounded independently of k.

1.2. The oscillatory integral problem. In the above paragraphs we have
reviewed methods for reducing the dependence on k of the number of degrees of
freedom necessary to achieve a required accuracy. Indeed some of the methods we have
described above [12, 45, 33, 28] appear, in numerical experiments, to require only a
number of degrees of freedom M = O(1) as k → ∞. Further, for one specific scattering
problem [45] this has been shown by a rigorous numerical analysis. However, it should
be emphasised strongly that this is not the end of the story; M = O(1) as k → ∞
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does not imply a computational cost which is O(1) as k → ∞. The reason is that,
while M fixed implies a fixed size of the approximating linear system, the matrix
entries become increasingly difficult to evaluate, at least by conventional quadrature
methods, as k → ∞. This observation is perhaps particularly true for boundary
integral equation based methods where the difficulty arises from the high frequency
behavior of both the oscillatory basis functions (necessary to keep M fixed as k → ∞)
and the oscillatory kernels of the integral operators. As a consequence, each matrix
entry is a highly oscillatory integral when k is large. We discuss only briefly in this
paper the effective evaluation of the matrix entries in the Galerkin method we will
propose, referring the reader to [44] for most of the details. And the methods we
describe in [44] are O(1) in computational cost as k → ∞ for many but not all of the
matrix entries, so that further work is required to make the algorithm we will propose
fully effective at high frequency. But we note that, of the papers cited above, only the
methods of Bruno et al. [12], Geuzaine, Bruno, and Reitich [33], and Langdon and
Chandler-Wilde [45] appear to achieve an O(1) computational cost as k → ∞.

The issue in evaluating the matrix entries is one of numerical evaluation of oscil-
latory integrals. In Bruno et al. this is achieved by a “localized integration” strategy
described in [12]. This strategy might be termed a “numerical method of stationary
phase,” in which the integrals are approximated by localized integrals over small, wave
number-dependent neighborhoods of the stationary points of the oscillatory integrand.
A similar strategy for integrals of the same type arising in high frequency boundary in-
tegral methods for 3D problems is developed in [32]. Promising alternative approaches
are two older methods for oscillatory integrals due to Filon [31] (recently reanalyzed
by Iserles [40, 41]; see [6] for a discussion of its application to the matrix entries in a
high frequency collocation boundary element method) and Levin [47], and methods
based on deformation of paths of integration into the complex plane to steepest de-
scent paths [38]. We note that, in contrast to [12, 33, 6], where Nyström/collocation
methods are used and the oscillatory integrals are one-dimensional, the matrix entries
in our Galerkin methods are, of course, 2D oscillatory integrals, so that development
of a robust method for their evaluation is a harder problem.

1.3. The main results of the paper. In this paper, we consider specifically
the problem of scattering by convex polygons. This is, in at least one respect, a more
challenging problem than the smooth convex obstacle since the corners of the polygon
give rise to strong diffracted rays which illuminate the shadow side of the obstacle
much more strongly than the rays that creep into the shadow zone of a smooth convex
obstacle. These creeping rays decay exponentially, so that it is enough to remove the
oscillation of the incident field to obtain a sufficiently simple field to approximate by
piecewise polynomials, though a wave number-dependent, carefully graded mesh (cf.
[12, 28]) must be used to resolve the transition zone between illuminated and shadow
regions.

This approach, of removing the oscillation of the incident field and then approx-
imating by a piecewise polynomial, does not suffice for a scatterer with corners. In
brief, our algorithm for the convex polygon is as follows, inspired by our previously
developed algorithm for scattering by a piecewise constant impedance plane [19], dis-
cussed in the last paragraph of section 1.1. From the geometrical theory of diffraction,
one expects, on the sides of the polygon, incident, reflected, and diffracted ray contri-
butions. On each illuminated side, the leading order behavior as k → ∞ consists of
the incident wave and a known reflected wave. The first stage in our algorithm is to
separate this part of the solution explicitly. (On sides in shadow this step is omitted.)
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The remaining field on the boundary consists of waves which have been diffracted at
the corners and which travel along the polygon sides. We approximate this remaining
field by taking linear combinations of products of piecewise polynomials with plane
waves, the plane waves travelling parallel to the polygon sides. A key ingredient in
our algorithm is to design a graded mesh to go on each side of the polygon for the
piecewise polynomial approximation. This mesh has larger elements away from the
corners and a mesh grading near the corners depending on the internal angles, in such
a way as to equidistribute the approximation error over the subintervals of the mesh,
based on a careful study of the oscillatory behavior of the solution.

The major results of the paper are as follows. We begin in section 2 by intro-
ducing the exterior Dirichlet scattering problem that we will solve numerically via a
second kind boundary integral equation formulation. Our boundary integral equa-
tion is well known (e.g., [23]), obtained from Green’s representation theorem. The
boundary integral operator is a linear combination of a single-layer potential and its
normal derivative, so that the integral equation is precisely the adjoint of the equation
proposed independently for the exterior Dirichlet problem by Brakhage and Werner
[11], Leis [46], and Panič [52]. However, it seems (see, e.g., the introduction to [14])
not to be widely appreciated that these formulations are well-posed for Lipschitz as
well as smooth domains in a range of boundary Sobolev spaces; indeed there exists
only a brief and partial account of these standard formulations for the Lipschitz do-
main case in the literature [50] (the treatment in [23] is for domains of class C2). We
remedy this gap in the literature in section 2, showing that our operator is a bijec-
tion on the boundary Sobolev space Hs−1/2(Γ) and the adjoint operator of [11] is a
bijection on Hs+1/2(Γ), both for |s| ≤ 1/2. Our starting points are known results on
the (Laplace) double-layer potential operator on Lipschitz domains [57, 30] coupled
with mapping properties of the single-layer potential operator [49]. (We note that this
obvious approach of deducing results for the Helmholtz equation as a perturbation
from the Laplace case has previously been employed for second kind boundary inte-
gral equations in Lipschitz domains in [56, 50, 48].) Of course the results we obtain
apply in particular to a polygonal domain in two dimensions.

The design of our numerical algorithm depends on a careful analysis of the oscil-
latory behavior of the solution of the integral equation (which is the normal derivative
of the total field on the boundary Γ). This is the content of section 3 of the paper. In
contrast, e.g., to [28], where this information is obtained by difficult high frequency
asymptotics, we adapt a technique from [19, 45], where explicit representations of the
solution in a half-plane are obtained from Green’s representation theorem. In the
estimates we obtain of high order derivatives, we take care to obtain as precise infor-
mation as possible, with a view to the future design of alternative numerical schemes,
perhaps based on a p- or hp-boundary element method.

Section 4 of the paper contains, arguably, the most significant theoretical and
practical results. In this section we design an approximation space for the normal
derivative of the total field on Γ. As outlined above, on each side we approximate
this unknown as the sum of the leading order asymptotics (known explicitly, and zero
on a side in shadow) plus an expression of the form exp(iks)V+(s) + exp(−iks)V−(s),
where s is arc-length distance along the side and V±(s) are piecewise polynomials.
We show, as a main result of the paper, that the approximation space based on this
representation has the property that the error in best approximation of the normal
derivative of the total field is bounded by Cν(n[1 + log(kL)])ν+3/2M−ν−1

N , where MN

is the total number of degrees of freedom, L is the length of the perimeter, n is the
number of sides of the polygon, ν is the polynomial degree, and the constant Cν
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depends only on ν and the corner angles of the polygon. This is a strong result,
showing that the number of degrees of freedom need only increase like log3/2(kL) as
kL → ∞ to maintain accuracy.

In section 5 we analyze a Galerkin method, based on the approximation space
of section 4. We show that the same bound holds for our Galerkin method approx-
imation to the solution of the integral equation, except that an additional stability
constant is introduced. We do not attempt the (difficult) task of ascertaining the
dependence of this stability constant on k. In section 6 we present some numerical
results which fully support our theoretical estimates, and we discuss, briefly, some nu-
merical implementation issues, including conditioning and evaluation of the integrals,
that arise. We finish the paper with some concluding remarks and open problems.

We note that the Galerkin method is, of course, not the only way to select a
numerical solution from a given approximation space. In [6] we present some results
for a collocation method, based on the approximation space results in section 4.
The attraction of the Galerkin method we present in section 5 is that we are able
to establish stability, at least in the asymptotic limit of sufficient mesh refinement,
which we do not know how to do for the collocation method.

2. The boundary value problem and integral equation formulation.
Consider scattering of a time-harmonic acoustic plane wave ui by a sound-soft convex
polygon Υ, with boundary Γ :=

⋃n
j=1 Γj , where Γj , j = 1, . . . , n, are the n sides of

the polygon with j increasing counterclockwise, as shown in Figure 2.1. We denote
by Pj := (pj , qj), j = 1, . . . , n, the vertices of the polygon, and we set Pn+1 = P1 so
that, for j = 1, . . . , n, Γj is the line joining Pj with Pj+1. We denote the length of Γj

by Lj := |Pj+1 − Pj |, the external angle at each vertex Pj by Ωj ∈ (π, 2π), the unit
normal perpendicular to Γj and pointing out of Υ by nj := (nj1, nj2), and the an-
gle of incidence of the plane wave, as measured counterclockwise from the downward
vertical, by θ ∈ [0, 2π). Writing x = (x1, x2) and d := (sin θ,− cos θ), we then have

ui(x) = eik(x1 sin θ−x2 cos θ) = eikx·d.

We will say that Γj is in shadow if nj · d ≥ 0 and is illuminated if nj · d < 0. If ns is
the number of sides in shadow and it is convenient to choose the numbering so that
sides 1, . . . , ns are in shadow and sides ns + 1, . . . , n are illuminated.

We will formulate the boundary value problem we wish to solve for the total
acoustic field u in a standard Sobolev space setting. For an open set G ⊂ R

N ,
let H1(G) := {v ∈ L2(G) : ∇v ∈ L2(G)} (∇v denoting here the weak gradient
of v). We recall [49] that if G is a Lipschitz domain, then there is a well-defined
trace operator, the unique bounded linear operator γ : H1(G) → H1/2(∂G) which
satisfies γv = v|∂G in the case when v ∈ C∞(Ḡ) := {w|Ḡ : w ∈ C∞(RN )}. Let
H1(G; Δ) := {v ∈ H1(G) : Δv ∈ L2(G)} (Δ the Laplacian in a weak sense), a Hilbert
space with the norm ‖v‖H1(G;Δ) := {

∫
G

[|v|2 + |∇v|2 + |Δv|2]dx}1/2. If G is Lipschitz,
then [49] there is also a well-defined normal derivative operator, the unique bounded
linear operator ∂n : H1(G; Δ) → H−1/2(∂G) which satisfies

∂nv =
∂v

∂n
:= n · ∇v,

almost everywhere on Γ, when v ∈ C∞(Ḡ). H1
loc(G) denotes the set of measurable

v : G → C for which χv ∈ H1(G) for every compactly supported χ ∈ C∞(Ḡ).
The polygonal domain Υ is Lipschitz as is its exterior D := R

2 \ Ῡ. Let γ+ :
H1(D) → H1/2(Γ) and γ− : H1(Υ) → H1/2(Γ) denote the exterior and interior trace



616 S. N. CHANDLER-WILDE AND S. LANGDON

Υ

ui

P1 n1

Γ1

Ω1

P2

n2
Γ2

Ω2

P3

n3
Γ3 Ω3

P4

n4

Γ4

Ω4P5

n5

Γ5

Ω5

P6

n6

Γ6

Ω6

θ

Fig. 2.1. Our notation for the polygon.

operators, respectively, and let ∂+
n : H1(D; Δ) → H−1/2(Γ) and ∂−

n : H1(Υ; Δ) →
H−1/2(Γ) denote the exterior and interior normal derivative operators, respectively,
the unit normal vector n directed out of Υ. Then the boundary value problem we seek
to solve is the following: given k > 0 (the wave number), find u ∈ C2(D) ∩H1

loc(D)
such that

Δu + k2u = 0 in D,(2.1)

γ+u = 0 on Γ,(2.2)

and the scattered field, us := u− ui, satisfies the Sommerfeld radiation condition

lim
r→∞

r1/2

(
∂us

∂r
(x) − ikus(x)

)
= 0,(2.3)

where r = |x| and the limit holds uniformly in all directions x/|x|.
Theorem 2.1 (see, e.g., [49, Theorem 9.11]). The boundary value problem (2.1)–

(2.3) has exactly one solution.
Remark 2.2. While for compatibility with most of the boundary element liter-

ature we formulate the above boundary value problem in a standard Sobolev space
setting, where one looks for a solution in the energy space H1

loc(D), we note that
other alternatives are available. In particular, we might seek the solution in classical
function spaces as u ∈ C2(D) ∩ C(D); this is commonly done when the boundary is
sufficiently smooth [23, 24], but is also reasonable when D is Lipschitz, as it follows
from standard elliptic regularity estimates up to the boundary (e.g., [42]) that if D
is Lipschitz, then every solution to the Sobolev space formulation is continuous up to
the boundary. A weaker requirement than u ∈ C2(D)∩C(D) is usual in the harmonic
analysis literature, namely to seek u ∈ C2(D) which satisfies the boundary condition
(2.2) in the sense of almost everywhere tangential convergence, and to require that the
nontangential maximal function of u is in Lp(Γ) for some p ∈ (1,∞) (most commonly
p = 2). For details of this latter formulation for the sound-soft scattering problem
for the Helmholtz equation, and proofs of its well-posedness (for 2 − ε < p < ∞ and
some ε > 0) via second kind integral equation formulations, see Torres and Welland
[56] for the case Im k > 0, and Liu [48] and Mitrea [50] for the case k > 0.



HIGH FREQUENCY SCATTERING BY CONVEX POLYGONS 617

Suppose that u ∈ C2(D)∩H1
loc(D) satisfies (2.1)–(2.3). Then, by standard elliptic

regularity estimates [35, section 8.11], u ∈ C∞(D̄ \ ΓC), where ΓC := {P1, . . . , Pn} is
the set of corners of Γ. It is, moreover, possible to derive an explicit representation
for u near the corners. For j = 1, . . . , n, let Rj := min(Lj−1, Lj) (with L−1 := LN ).
Let (r, θ) be polar coordinates local to a corner Pj , chosen so that r = 0 corresponds
to the point Pj , the side Γj−1 lies on the line θ = 0, the side Γj lies on the line θ = Ωj ,
and the part of D̄ within distance Rj of Pj is the set of points with polar coordinates
{(r, θ) : 0 ≤ r < Rj , 0 ≤ θ ≤ Ωj}. Choose R so that R ≤ Rj and ρ := kR < π/2, and
let G denote the set of points with polar coordinates {(r, θ) : 0 ≤ r < R, 0 ≤ θ ≤ Ωj}
(see Figure 2.2). The following result, in which Jν denotes the Bessel function of the
first kind of order ν, follows by standard separation of variables arguments.

G

r

Ωj

R

θ

Pj

Γj
Γj−1

Fig. 2.2. Neighborhood of a corner.

Theorem 2.3 (representation near corners). Let g(θ) denote the value of u at the
point with polar coordinates (R, θ). Then, where (r, θ) denotes the polar coordinates
of x, it holds that

u(x) =
∞∑

n=1

anJnπ/Ωj
(kr) sin

(
nθπ

Ωj

)
, x ∈ G,(2.4)

where

an :=
2

ΩjJnπ/Ωj
(kR)

∫ Ωj

0

g(θ) sin

(
nθπ

Ωj

)
dθ, n ∈ N.(2.5)

Remark 2.4. The condition ρ = kR < π/2 ensures that Jnπ/Ωj
(kR) �= 0, n ∈ N,

in fact (see (3.14)), that |anJnπ/Ωj
(kr)| ≤ C(r/R)nπ/Ωj , where the constant C is

independent of n and x, so that the series (2.4) converges absolutely and uniformly
in G. Thus u ∈ C(D̄). Moreover, from this representation and the behavior of the
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Bessel function Jν (cf. Theorem 3.3) it follows that near the corner Pj , ∇u(x) has the
standard singular behavior that

|∇u(x)| = O
(
rπ/Ωj−1

)
as r → 0.(2.6)

From [24, Theorem 3.12] and [49, Theorems 7.15 and 9.6] we see that if u sat-
isfies the boundary value problem (2.1)–(2.3), then a form of Green’s representation
theorem holds, namely

u(x) = ui(x) −
∫

Γ

Φ(x,y)∂+
n u(y) ds(y), x ∈ D,(2.7)

where n is the normal direction directed out of Υ and Φ(x,y) := (i/4)H
(1)
0 (k|x−y|) is

the standard fundamental solution for the Helmholtz equation, with H
(1)
0 the Hankel

function of the first kind of order zero. Note that, since u ∈ C∞(D̄ \ ΓC) and the
bound (2.6) holds, we have in fact that ∂+

n u = ∂u/∂n ∈ L2(Γ) ∩ C∞(Γ \ ΓC).
Starting from the representation (2.7) for u, we will obtain the boundary integral

equation for ∂u/∂n which we will solve numerically later in the paper. This inte-
gral equation formulation is expressed in terms of the standard single-layer potential
operator (S) and the adjoint of the double-layer potential operator (T ), defined, for
v ∈ L2(Γ), by

Sv(x) := 2

∫
Γ

Φ(x,y)v(y) ds(y), T v(x) := 2

∫
Γ

∂Φ(x,y)

∂n(x)
v(y) ds(y), x ∈ Γ \ ΓC .

(2.8)

We note that both S and T are bounded operators on L2(Γ). In fact, more generally
([56, Lemma 6.1] or see [49]), S : Hs−1/2(Γ) → Hs+1/2(Γ) and T : Hs−1/2(Γ) →
Hs−1/2(Γ) for |s| ≤ 1/2, and these mappings are bounded. We state the integral
equation we will solve in the next theorem. Our proof of this theorem is based on
the proof in [23] for domains of class C2, modified to use more recent results on layer
potentials on Lipschitz domains.

Theorem 2.5. If u ∈ C2(D) ∩ H1
loc(D) satisfies the boundary value problem

(2.1)–(2.3), then, for every η ∈ R, ∂+
n u = ∂u

∂n ∈ L2(Γ) satisfies the integral equation

(I + K)∂+
n u = f on Γ,(2.9)

where I is the identity operator, K := T + iηS, and

f(x) := 2
∂ui

∂n
(x) + 2iηui(x), x ∈ Γ \ ΓC .

Conversely, if v ∈ H−1/2(Γ) satisfies (I + K)v = f for some η ∈ R \ {0}, and u is
defined in D by (2.7), with ∂+

n u replaced by v, then u ∈ C2(D)∩H1
loc(D) and satisfies

the boundary value problem (2.1)–(2.3). Moreover, ∂+
n u = v.

Proof. Suppose first that v ∈ H−1/2(Γ) satisfies (I + K)v = f and define u by
u := ui − Sv, where

Sv(x) :=

∫
Γ

Φ(x,y)v(y) ds(y), x ∈ R
2 \ Γ.

Then [49, Chapter 9, Theorem 6.11] u ∈ C2(R2 \ Γ) ∩H1
loc(R

2) and satisfies (2.1) in
R

2 \ Γ and (2.3). Thus u satisfies the boundary value problem as long as γ+u = 0.
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Now standard results on boundary traces of the single-layer potential on Lipschitz
domains [49] give us that

2γ±Sv = Sv, 2∂±
n (Sv) = (∓I + T )v.(2.10)

On the other hand, we have that (I + T + iηS)v = f . Thus

2∂−
n u = 2

∂ui

∂n
− (I + T )v = iηSv − 2iηγ+u

i = −2iηγ−u.

Applying Green’s first identity [49, Theorem 4.4] to u ∈ H1(Υ; Δ), we deduce that

−η

∫
Γ

|γ−u|2 ds = Im

∫
Γ

∂−
n u γ−ū ds = 0.

Thus γ+u = γ−u = 0, so that u satisfies the boundary value problem (2.1)–(2.3).
Further, ∂−

n u = 0 and ∂+
n u = v + ∂−

n u = v.
Conversely, if u satisfies the boundary value problem, in which case ∂+

n u = ∂u
∂n ∈

L2(Γ) ⊂ H−1/2(Γ) and (2.7) holds, then, applying the trace results (2.10), we deduce

2γ+u
i = S∂+

n u, 2
∂ui

∂n
= (I + T )∂+

n u.

Hence (2.9) holds.
The above theorem, together with Theorem 2.1, implies that the integral equation

(2.9) has exactly one solution in H−1/2(Γ), provided that we choose η �= 0.
Remark 2.6. The idea of taking a linear combination of first and second kind

integral equations to obtain a uniquely solvable boundary integral equation equivalent
to an exterior scattering problem for the Helmholtz equation dates back to Brakhage
and Werner [11], Leis [46], and Panič [52] for the exterior Dirichlet problem and
Burton and Miller [15] for the Neumann problem. In fact, the integral equation in
[11, 46, 52] is precisely the adjoint of (2.9) (see the discussion and Corollary 2.8 and
Remark 2.9 below). The above proof is based on that in [23]. But, while Colton and
Kress [23] restrict attention to the case when Γ is sufficiently smooth (of class C2), the
proof of Theorem 2.5 is valid for arbitrary Lipschitz Γ, and in an arbitrary number
of dimensions. (Note, however, that, for general Lipschitz Γ, T v, for v ∈ H−1/2(Γ),
must be understood as the sum of the normal derivatives of Sv on the two sides of Γ
[49, Chapter 7]. This definition of T v is equivalent to that in (2.8) when v ∈ L2(Γ)
[56, section 4],[50, section 7].)

The following theorem, which shows that the operator I + K is bijective on a
range of Sobolev spaces, holds for a general Lipschitz boundary Γ (with T defined as
in Remark 2.6 in the general case) in any number of space dimensions ≥ 2.

Theorem 2.7. Let A := I + K and suppose that η ∈ R \ {0}. Then, for
|s| ≤ 1/2, the bounded linear operator A : Hs−1/2(Γ) → Hs−1/2(Γ) is bijective with
bounded inverse A−1.

Proof. It is enough to show this result for s = ±1/2; it then follows for all s by
interpolation [49]. We note first that, since H1(Γ) is compactly embedded in L2(Γ)
so that L2(Γ) is compactly embedded in H−1(Γ), and since S is a bounded operator
from H−1(Γ) to L2(Γ), it follows that S is a compact operator on H−1(Γ) and L2(Γ).
Let T0 denote the operator corresponding to T in the case k = 0; explicitly, in the
case when Γ is a 2D polygon, T0v, for v ∈ L2(Γ), is defined by (2.8) with Φ(x,y)
replaced by Φ0(x,y) := −(2π)−1 log |x − y|. Then T0 − T is a bounded operator
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from H−1(Γ) to L2(Γ) and thus a compact operator on H−1(Γ) and L2(Γ). (To see
the boundedness of T0 − T it is perhaps easiest to show that the adjoint operator,
T ′

0 −T ′, is a bounded operator from L2(Γ) to H1(Γ), which follows since D(T ′
0 −T ′)

is a bounded operator on L2(Γ). Here D is the surface gradient operator, T ′ and T ′
0

are standard double-layer potential operators [49, Theorem 6.17], in particular

T ′v(x) :=

∫
Γ

∂Φ(x,y)

∂n(y)
v(y)ds(y), x ∈ Γ,

and the boundedness of the integral operator D(T ′
0 − T ′) follows since its kernel is

continuous or weakly singular.) Thus A, as an operator on Hs−1/2(Γ), s = ±1/2, is a
compact perturbation of I+T0. But it is known that I+T ′

0 is Fredholm of index zero
on Hs+1/2(Γ) for |s| ≤ 1/2 (see [57, 30]), from which it follows from [49, Theorem
6.17] that the adjoint operator I + T ′

0 is Fredholm of index zero on Hs−1/2(Γ) for
|s| ≤ 1/2. Thus A is Fredholm of index zero on Hs−1/2(Γ), s = ±1/2. Since A is
Fredholm with the same index on H−1(Γ) and L2(Γ), and L2(Γ) is dense in H−1(Γ),
it follows from a standard result on Fredholm operators (see, e.g., [54, section 1]) that
the null-space of A, as an operator on H−1(Γ), is a subset of L2(Γ). But it follows from
Theorems 2.1 and 2.5 that Av = 0 has no nontrivial solution in H−1/2(Γ) ⊃ L2(Γ).
Thus A : Hs−1/2(Γ) → Hs+1/2(Γ) is invertible for s = ±1/2.

We have observed in Remark 2.6 that an alternative integral equation formulation
for the exterior Dirichlet problem was introduced in [11, 46, 52]. In this formulation
one seeks a solution to the exterior Dirichlet problem in the form of a combined single-
and double-layer potential with some unknown density φ̃ and arrives at the boundary
integral equation A′φ̃ = 2γ+u

i, where

A′ = I + T ′ + iηS

is the adjoint of A in the sense that the duality relation holds that 〈Aφ,ψ〉Γ =
〈φ,A′ψ〉Γ for φ ∈ H−1/2(Γ), ψ ∈ H1/2(Γ), where 〈φ, ψ〉Γ :=

∫
Γ
φ(y)ψ(y)ds(y) [49,

Theorems 6.15 and 6.17]. It is known that A′ maps Hs+1/2(Γ) to Hs+1/2(Γ) and
that this mapping is bounded for |s| ≤ 1/2 [56, 49]. This, the duality relation, and
Theorem 2.7 imply the invertibility of A′. Precisely, we have the following result.

Corollary 2.8. For |s| ≤ 1/2 and η ∈ R \ {0}, the mapping A′ : Hs+1/2(Γ) →
Hs+1/2(Γ) is bijective with bounded inverse A′−1

.
Remark 2.9. We note that brief details of a proof that the related operator

Ã′ := I+T ′+iηSS2
0 , where S0 denotes S in the case k = 0, is invertible as an operator

on L2(Γ) if η ∈ R \ {0} are given in Mitrea [50]. Moreover, the argument outlined in
[50], which follows the same pattern that we have used to prove Theorem 2.7, namely
to show that Ã′ is Fredholm of index zero by perturbation from the Laplace case, and
then to establish uniqueness by mirroring the usual uniqueness argument for smooth
domains [23] (though the details of this are omitted in [50]), could be applied equally
to show that A′ is invertible on L2(Γ) for η ∈ R\{0}. Then, arguing by duality in the
same way in which we deduce Corollary 2.8, we could deduce that A is invertible on
L2(Γ). Thus the argument outlined in [50] offers an alternative route to that written
out above for establishing that A and A′ are invertible as operators on L2(Γ) for
η ∈ R \ {0}.

We also note that for the case η = 0 when A′ = I + T ′, it is shown that A′ is
invertible as an operator on L2(Γ) if Imk > 0 in [56]. This result is sharpened in [50],
where it is shown that A′ is also invertible as an operator on L2(Γ) if k > 0 is not
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an eigenvalue of an appropriately stated interior Neumann problem in Υ. See [50]
(and Liu [48]) for further discussion of the case when k > 0 is an interior Neumann
eigenvalue when A′ has a finite-dimensional kernel.

In the remainder of the paper we will focus on the properties of A as an operator
on L2(Γ). We remark that the result that I + T ′

0 is Fredholm of index zero on L2(Γ)
dates back to [58] in the case when Γ is a 2D polygon. Letting ‖ · ‖2 denote the norm
on L2(Γ), the technique in [58] (or see [17]) is to show that T ′

0 = T ′
1 + T ′

2 , where
‖T ′

1‖2 < 1. Since taking adjoints preserves norms and compactness, and since S and
T − T0 are compact operators on L2(Γ), it holds in the case of a 2D polygon that
A = I +K = I +K1 +K2, where ‖K1‖2 < 1 and K2 is a compact operator on L2(Γ).

Throughout the remainder of the paper we suppose that η ∈ R with η �= 0, so
that A is invertible, and let

CS := ‖A−1‖2 = ‖(I + K)−1‖2.(2.11)

We note that the value of CS depends on k, η, and the geometry of Γ. But recently
an upper bound has been obtained for CS as a function of k, η, and the geometry of
Γ in the case when Γ is (in two dimensions or three dimensions) the boundary of a
piecewise smooth, starlike Lipschitz domain [20, Theorem 4.3], by using Rellich-type
identities. In particular, for the commonly recommended choice |η| = k (see, e.g.,
[28]), this bound implies for the convex polygon that

CS ≤ 1

2

(
1 + 9θ + 4θ2

)
(2.12)

for kR0 ≥ 1. Here it is assumed that the coordinate system is chosen so that the
origin lies inside Γ, and we define R0 := maxx∈Γ |x|, θ := R0/δ−, and δ− to be
the perpendicular distance from the origin to the nearest side of the polygon. For
example, in the case of a square (for which we carry out computations in section 6,
choosing η = k), taking the origin at the center of the square gives θ =

√
2 and so

CS ≤ 9
2 (1 +

√
2) < 11 for kR0 ≥ 1.

3. Regularity results. In this section we aim to understand the behavior of
∂u/∂n, the normal derivative of the total field on Γ, which is the unknown function in
the integral equation (2.9). Precisely, we will obtain bounds on the surface tangential
derivatives of ∂u/∂n in which the dependence on the wave number is completely
explicit. This will enable us in section 4 to design a family of approximation spaces
well adapted to approximating ∂u/∂n.

To understand the behavior of ∂u/∂n near the corners Pj , our technique will be
to use the explicit representation (2.4). To understand the behavior away from the
corners, we will need another representation for ∂u/∂n which we now derive.

Our starting point is the observation that if U = {x = (x1, x2), x1 ∈ R, x2 > 0}
is the upper half-plane and v ∈ C2(U) ∩ C(Ū) satisfies the Helmholtz equation in U
and the Sommerfeld radiation condition, then [18, Theorem 3.1]

v(x) = 2

∫
∂U

∂Φ(x,y)

∂y2
v(y) ds(y), x ∈ U.(3.1)

The same formula holds [18] if v is a horizontally or upwards propagating plane wave,
i.e., if v(x) = eikx.d with d = (d1, d2), |d| = 1, and d2 ≥ 0.

To make use of this observation, we make the following construction. Extend the
line Γj to infinity in both directions; the resulting infinite line comprises Γj and the
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ui

Pj

Pj+1

Υ

Dj

Γj

Γ+
j

Γ−
j

Fig. 3.1. Extension of Γj , for derivation of regularity estimates.

half-lines Γ+
j and Γ−

j , above Pj and below Pj+1, respectively; see Figure 3.1. Let
Dj ⊂ D denote the half-plane on the opposite side of this line to Υ.

Now consider first the case when Γj is in shadow, by which we mean that nj .d ≥ 0.
Then it follows from (3.1) that

us(x) = 2

∫
Γ+
j ∪Γj∪Γ−

j

∂Φ(x,y)

∂n(y)
us(y) ds(y), x ∈ Dj ,(3.2)

and also that

ui(x) = 2

∫
Γ+
j ∪Γj∪Γ−

j

∂Φ(x,y)

∂n(y)
ui(y) ds(y), x ∈ Dj .(3.3)

Since u = ui + us and u = 0 on Γ, we deduce that

u(x) = 2

∫
Γ+
j ∪Γ−

j

∂Φ(x,y)

∂n(y)
u(y) ds(y), x ∈ Dj .

In the case when Γj is illuminated (nj .d < 0), (3.2) holds, but (3.3) is replaced by

ui(x) = −2

∫
Γ+
j ∪Γj∪Γ−

j

∂Φ(x,y)

∂n(y)
ui(y) ds(y), x ∈ R

2\D̄j .(3.4)

Now let ur(x) := −ui(x′) for x ∈ Dj , where x′ is the reflection of x in the line
Γ+
j ∪ Γj ∪ Γ−

j . (The physical interpretation of ur is that it is the plane wave that
would be reflected if Γj were infinitely long.) From (3.4), for x ∈ Dj ,

ur(x) = 2

∫
Γ+
j ∪Γj∪Γ−

j

∂Φ(x′,y)

∂n(y)
ui(y) ds(y) = −2

∫
Γ+
j ∪Γj∪Γ−

j

∂Φ(x,y)

∂n(y)
ui(y) ds(y),

and adding this to (3.2) we find that

u(x) = ui(x) + ur(x) + 2

∫
Γ+
j ∪Γ−

j

∂Φ(x,y)

∂n(y)
u(y) ds(y), x ∈ Dj .
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Thus on an illuminated side it holds that

∂u

∂n
(x) = 2

∂ui

∂n
(x) + 2

∫
Γ+
j ∪Γ−

j

∂2Φ(x,y)

∂n(x)∂n(y)
u(y) ds(y), x ∈ Γj .(3.5)

The same expression, but without the term 2∂ui

∂n (x), holds when Γj is in shadow. The
high frequency Kirchhoff or physical optics approximation to ∂u/∂n is just ∂u/∂n =
2∂ui/∂n on the illuminated sides and zero on the sides in shadow. Thus the integral in
(3.5) is an explicit expression for the correction to the physical optics approximation.

The representation (3.5) is very useful in understanding the oscillatory nature of
the solution on a typical side Γj . In particular we note that, in physical terms, the
integral over Γ+

j can be interpreted as the normal derivative on Γj of the field due to

dipoles distributed along Γ+
j . The point is that the field due to each dipole has the

same oscillatory behavior eiks on Γj . To exhibit this explicitly, we calculate, using
standard properties of Bessel functions [2], that for x ∈ Γj , y ∈ Γ±

j , with x �= y,

∂2Φ(x,y)

∂n(x)∂n(y)
=

ikH
(1)
1 (k|x − y|)
4|x − y| =

ik2

4
eik|x−y|μ(k|x − y|),(3.6)

where μ(z) := e−izH
(1)
1 (z)/z for z > 0. The function μ(z) is singular at z = 0 but

increasingly smooth as z → ∞, as quantified in the next theorem (cf. [19, Lemma 2.5]).
Theorem 3.1. For every ε > 0,

|μ(m)(z)| ≤ Cε(m + 1)! z−3/2−m

for z ≥ ε and m = 0, 1, . . . , where

Cε =
2 4
√

5(1 + ε−1/2)

π
.(3.7)

Proof. From [51, equation (12.31)], μ(z) = (−2i/π)
∫∞
0

(t2 − 2it)1/2e−zt dt for

Rez > 0, where the branch of (t2 − 2it)1/2 is chosen so that Re(t2 − 2it)1/2 ≥ 0. Thus

μ(m)(z) = (−1)m+1 2i

π

∫ ∞

0

tm+1/2(t− 2i)1/2e−zt dt

and hence

|μ(m)(z)| ≤ 2

π

∫ ∞

0

tm+1/2(t2 + 4)1/4e−zt dt.

Now for t ∈ [0, 1], (t2 + 4)1/4 ≤ 51/4 and for t ∈ [1,∞), (t2 + 4)1/4 ≤ 51/4t1/2. So

π

2 4
√

5
|μ(m)(z)| ≤

∫ ∞

0

tm+1/2e−zt dt +

∫ ∞

0

tm+1e−zt dt

= Γ(m+3/2)z−3/2−m+Γ(m+2)z−2−m ≤ (1+ε−1/2)Γ(m+2)z−3/2−m

for z ≥ ε.
To make use of the above result, let x(s) denote the point on Γ whose arc-length

distance measured counterclockwise from P1 is s. Explicitly,

x(s) = Pj +
(
s− L̃j−1

)(
Pj+1 − Pj

Lj

)
for s ∈ [L̃j−1, L̃j ], j = 1, . . . , n,
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where L̃0 := 0 and for j = 1, . . . , n, L̃j :=
∑j

m=1 Lm is the arc-length distance from
P1 to Pj+1. Define

φ(s) :=
1

k

∂u

∂n
(x(s)) for s ∈ [0, L],(3.8)

where L := L̃n so that φ(s) is the unknown function of arc-length whose behavior we
seek to determine. Let

Ψ(s) :=

{
2
k
∂ui

∂n (x(s)) if s ∈ (L̃ns , L),

0 if s ∈ (0, L̃ns),

so that Ψ(s) is the physical optics approximation to φ(s), and set ψj(s) := u(x̃j(s)),
s ∈ R, where x̃j(s) ∈ Γ+

j ∪ Γj ∪ Γ−
j is the point

x̃j(s) := Pj +
(
s− L̃j−1

)(
Pj+1 − Pj

Lj

)
, −∞ < s < ∞.

From (3.5) and (3.6) we have the explicit representation for φ on the side Γj that

φ(s) = Ψ(s) +
i

2
[eiksv+

j (s) + e−iksv−j (s)], s ∈ [L̃j−1, L̃j ], j = 1, . . . , n,(3.9)

where

v+
j (s) := k

∫ L̃j−1

−∞
μ(k|s− t|)e−iktψj(t) dt, s ∈ [L̃j−1, L̃j ], j = 1, . . . , n,

v−j (s) := k

∫ ∞

L̃j

μ(k|s− t|)eiktψj(t) dt, s ∈ [L̃j−1, L̃j ], j = 1, . . . , n.

The terms eiksv+
j (s) and e−iksv−j (s) in (3.9) are the integrals over Γ+

j and Γ−
j , respec-

tively, in (3.5) and can be thought of as the contributions to ∂u/∂n on Γj due to the
diffracted rays travelling from Pj to Pj+1 and from Pj+1 to Pj , respectively, including
all multiply diffracted ray components.

Thus the equation we wish to solve is (2.9), and we have the explicit representa-
tion (3.9) for its solution. At first glance this may not appear to help us, since the
unknown solution u appears (as ψj) on the right-hand side of (3.9). However, (3.9)
is extremely helpful in understanding how φ behaves since it explicitly separates out
the oscillatory part of the solution. The functions v±j are not oscillatory away from
the corners, as the following theorem quantifies. In this theorem and hereafter we let

uM := sup
x∈D

|u(x)| < ∞(3.10)

and note that ‖ψj‖∞ ≤ uM , j = 1, . . . , n.
Theorem 3.2 (solution behavior away from corners). For ε > 0, j = 1, . . . , n,

and m = 0, 1, . . . , it holds for s ∈ [L̃j−1, L̃j ] that

|v+
j

(m)
(s)| ≤ 2Cεm!uMkm(k(s− L̃j−1))

−1/2−m, k(s− L̃j−1) ≥ ε,

|v−j
(m)

(s)| ≤ 2Cεm!uMkm(k(L̃j − s))−1/2−m, k(L̃j − s) ≥ ε,

where Cε is given by (3.7).



HIGH FREQUENCY SCATTERING BY CONVEX POLYGONS 625

Proof. From Theorem 3.1, for s ∈ [L̃j−1 + ε/k, L̃j ]

|v+
j

(m)
(s)| = km+1

∣∣∣∣∣
∫ L̃j−1

−∞
μ(m)(k|s− t|)e−iktψj(t) dt

∣∣∣∣∣
≤ Cε(m + 1)!km+1‖ψj‖∞

∫ L̃j−1

−∞
(k|s− t|)−3/2−m dt

= Cε
(m + 1)!

(m + 1/2)
k−1/2‖ψj‖∞(s− L̃j−1)

−1/2−m

≤ 2Cεm!uMkm(k(s− L̃j−1))
−1/2−m.

The bound on v−j
(m)

(s) is obtained similarly.
The above theorem quantifies precisely the behavior of ∂u/∂n away from the

corners. Complementing this bound, using Theorem 2.3 we can study the behavior of
∂u/∂n near the corners. To state this result it is convenient to extend the definition
of φ from [0, L] to R by the periodicity condition φ(s + L) = φ(s), s ∈ R.

Theorem 3.3 (solution behavior near corners). If kRj = min(kLj−1, kLj) ≥ π/4

for j = 1, . . . , n, then for j = 1, . . . , n and 0 < k|s− L̃j−1| ≤ π/12, it holds that

∣∣∣φ(m)(s)
∣∣∣ ≤ CuM

√
m +

1

2
m!km(k|s− L̃j−1|)−αj−m, m = 0, 1, . . . ,

where

αj := 1 − π

Ωj
∈ (0, 1/2)(3.11)

and C = 72
√

2π−1 e1/e+π/6.
Proof. To analyze the behavior of u using (2.4) we will use the representation for

the Bessel function of order ν [2, equation (9.1.20)],

Jν(z)=
2(z/2)ν

π1/2Γ(ν + 1/2)

∫ 1

0

(1 − t2)ν−1/2 cos(zt) dt for Rez > 0, ν > −1/2,

where the branch of (z/2)ν is chosen so that (z/2)ν > 0 for z > 0 and (z/2)ν is
analytic in Rez > 0. This representation implies that

cos z ≤ Jν(z)π
1/2Γ(ν + 1/2)

2(z/2)ν
∫ 1

0
(1 − t2)ν−1/2 dt

≤ 1, 0 ≤ z ≤ π/2.(3.12)

Recalling the definitions of R and G before Theorem 2.3 and the Definition (2.5) of
the coefficient an, we have that ρ := kR < π/2 and

|an| ≤
2uM

Jnπ/Ωj
(ρ)

.(3.13)

Thus, for 0 < r < R,

∣∣anJnπ/Ωj
(kr)

∣∣ ≤ 2uM

cos ρ

( r

R

)nπ/Ωj

,(3.14)
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confirming that the series (2.4) converges for 0 ≤ r < R. Further, the bound (3.14)
justifies differentiating (2.4) term by term to get that for x ∈ Γj−1 ∩ G, ∂u

∂n (x) =
kF (kr), where

F (z) :=
π

Ωjz

∞∑
n=1

nanJnπ/Ωj
(z), Rez > 0, |z| < ρ.(3.15)

Since | cos z| ≤ e|Imz|, z ∈ C, so that | cos zt| ≤ e|Imz| for z ∈ C, 0 ≤ t ≤ 1, we see
from (3.13) that for Rez > 0,

∣∣nanJnπ/Ωj
(z)

∣∣ ≤ 2uMn

cos ρ
e|Imz|

(
|z|
ρ

)nπ/Ωj

.(3.16)

Thus the series (3.15) is absolutely and uniformly convergent in Rez > 0, |z| < ρ0, for
every ρ0 < ρ, and F is analytic in Rez > 0, |z| < ρ. Further, from (3.16) and since
for 0 ≤ α < 1,

∑∞
n=1 nα

n = α d
dα

∑∞
n=1 α

n = α
(1−α)2 , we see that for Rez > 0, |z| < ρ,

|F (z)| ≤ π

Ωj |z|
2uM

cos ρ

e|Imz|

(1 − |z/ρ|π/Ωj )2

(
|z|
ρ

)π/Ωj

.

We can use this bound to obtain bounds on derivatives of F , and hence bounds
on derivatives of ∂u/∂n. For 0 < t ≤ ρ/3, 0 < ε < t, from Cauchy’s integral formula
we have that

|F (m)(t)| =
m!

2π

∣∣∣∣∫
Γε

F (z)

(z − t)m+1
dz

∣∣∣∣ ,
where Γε is the circle of radius ε centered on t, which lies in Rez > 0, |z| < ρ. Since

|F (z)| ≤ 2πuMe|Imz|(t− ε)π/Ωj−1

Ωjρπ/Ωj cos ρ(1 − (2/3)π/Ωj )2

for z ∈ Γε, we see that

|F (m)(t)| ≤ 2πuMet(t− ε)π/Ωj−1ε−mm!

Ωjρπ/Ωj cos ρ(1 − (2/3)π/Ωj )2
.(3.17)

Now, for α > 0, β > 0, (t−ε)−αε−β is minimized on (0, t) by the choice ε = βt/(α+β).
Setting ε = mt/(m + 1 − π/Ωj) in (3.17), we see that

|F (m)(t)| ≤ 2πuMetm!(m + 1 − π/Ωj)
m+1−π/Ωj tπ/Ωj−1−m

Ωjρπ/Ωj cos ρ(1 − (2/3)π/Ωj )2mm(1 − π/Ωj)1−π/Ωj
.

Now

(m + 1 − π/Ωj)
m+1−π/Ωj

mm
≤ (m + 1/2)m+1/2

mm
=

(
1+

1

2m

)m
√
m +

1

2
≤ e1/2

√
m +

1

2
,

2π

Ωj(1 − π/Ωj)1−π/Ωj (1 − (2/3)π/Ωj )2
≤ 18

(1 − π/Ωj)1−π/Ωj
≤ 18e1/e,

and hence

|F (m)(t)| ≤ 18e1/e+1/2+t
√
m + 1/2m!uM

ρπ/Ωj cos ρ
tπ/Ωj−1−m, 0 < t ≤ ρ/3.(3.18)
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Since ∂u
∂n (x) = kF (kr), this implies that∣∣∣∣∂(m)

∂rm

[
∂u

∂n
(x)

]∣∣∣∣ ≤ C̃uM km+1(kr)π/Ωj−1−m, 0 < r ≤ R/3 <
π

6k
,

where C̃ = (18e1/e+1/2+π/6
√
m + 1/2m!)/(ρπ/Ωj cos ρ). Choosing ρ = π/4, the result

follows.
From Theorems 3.2 and 3.3, and (3.9), which gives that

v±j (s) = −2ie∓iks(φ(s) − Ψ(s)) − e±2iksv∓j (s),

we deduce the following corollary, in which αn+1 := α1.
Corollary 3.4. Suppose that kRj = min(kLj−1, kLj) ≥ π/4 for j = 1, . . . , n.

Then, for m = 0, 1, . . . , there exists Cm > 0, dependent only on m, such that if
j ∈ {1, . . . , n}, then

|v+
j

(m)
(s)| ≤ CmuMkm(k(s− L̃j−1))

−αj−m, 0 < k(s− L̃j−1) ≤ π/12,

|v−j
(m)

(s)| ≤ CmuMkm(k(L̃j − s))−αj+1−m, 0 < k(L̃j − s) ≤ π/12.

The following limiting case suggests that the bounds in Theorem 3.2 and Corollary
3.4 are optimal in their dependence on k, s− L̃j−1, and L̃j − s, in the sense that no
sharper bound holds uniformly in the angle of incidence. Suppose that Υ lies in the
right-hand half-plane with P1 located at the origin and d · n1 = 0, and consider
the limit min(kL0, kL1) → ∞ and Ω1 → 2π. In this limit α1 → 1/2, and it is
plausible that u(x) → uk.e.(x), where uk.e. is the solution to the following “knife
edge” diffraction problem: where Γk.e. := {(x1, 0) : x1 ≥ 0}, given the incident plane
wave ui, find the total field uk.e. ∈ C2(R2\Γk.e.)∩C(R2) such that Δuk.e.+k2uk.e. = 0
in R

2 \Γk.e., uk.e. = 0 on Γk.e., and uk.e. − ui has the correct radiating behavior. The
solution to this problem which satisfies the physically correct radiation condition is
given by [10, equation (8.24)]. This solution implies that ϕ(s) := 1

k
∂uk.e.

∂n ((s, 0)) =
±eiksv(s), where the +/− sign is taken on the upper/lower surface of the knife edge
and v(s) := ĉ(ks)−1/2, where ĉ = e−iπ/4

√
2/π. The function v(s) and its derivatives

satisfy the bounds on v+
1 in Theorem 3.2 and Corollary 3.4 (with αj = 1/2), but do

not satisfy any sharper bounds in terms of dependence on k or s− L̃j−1.

4. The approximation space. Our aim now is to use the regularity results
of section 3 to design an optimal approximation space for the numerical solution of
(2.9). We begin by rewriting (2.9) in parametric form. Defining, for j = 1, . . . , n,

aj :=
pj+1 − pj

Lj
, bj :=

qj+1 − qj
Lj

, cj := pj − ajL̃j−1, dj := qj − bjL̃j−1,

and noting that nj1 = bj , nj2 = −aj , we can rewrite (2.9) as

φ(s) +

∫ L

0

κ(s, t)φ(t) dt = f(s), s ∈ [0, L],(4.1)

where, for x(s) ∈ Γl, y(t) ∈ Γj , i.e., for s ∈ (L̃l−1, L̃l), t ∈ (L̃j−1, L̃j),

κ(s, t) := −1

2

[
ηH

(1)
0 (kR) + ik [(albj − blaj)t + bl(cl − cj) − al(dl − dj)]

H
(1)
1 (kR)

R

]
,
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with R = R(s, t) :=
√

(als− ajt + cl − cj)2 + (bls− bjt + dl − dj)2 and f ∈ L2(0, L)
defined by

f(s) := 2i[bl sin θ + al cos θ + (η/k)]eik((als+cl) sin θ−(bls+dl) cos θ).

The first step in our numerical method is to separate off the explicitly known
leading order behavior, the physical optics approximation Ψ(s). Thus we introduce a
new unknown,

ϕ := φ− Ψ ∈ L2(0, L).(4.2)

Substituting into (4.1) we have

ϕ + Kϕ = F,(4.3)

where the integral operator K : L2(0, L) → L2(0, L) and F ∈ L2(0, L) are defined by

Kψ(s) :=

∫ L

0

κ(s, t)ψ(t) dt, 0 ≤ s ≤ L, F := f − Ψ −KΨ.

Equation (4.3) is the integral equation we will solve numerically. By Theorem 2.7,
(4.3) has a unique solution in L2(0, L) and ‖(I + K)−1‖2 = CS , where CS is defined
in (2.11) and I is the identity operator on L2(0, L).

We will design an approximation space to represent ϕ based on (3.9). The novelty
of the scheme we propose is that on each side Γj , j = 1, . . . , n, of the polygon, we
approximate v±j by conventional piecewise polynomials, rather than approximating

ϕ itself. This makes sense since, as quantified by Theorem 3.2, the functions v±j are
smooth (their higher order derivatives are small) away from the corners Pj and Pj+1.
To approximate v±j we use piecewise polynomials of a fixed degree ν ≥ 0 on a graded
mesh, the mesh grading adapted in an optimal way to the bounds of Theorems 3.2
and 3.3. In [19] the 2D problem of scattering of a plane wave by a straight boundary
of piecewise constant surface impedance was considered. We will construct a similar
mesh on each side of the polygon as was used on each interval of constant impedance
in [19], except that we use a different grading near the corners, with the grading near
each corner dependent on the angle at that corner.

To construct this mesh we choose a constant c∗ > 0 (we take c∗ = 2π in the
numerical examples in section 6) and set λ∗ := c∗/k. Next, for every A > λ∗, we
define a composite graded mesh on [0, A], with a polynomial grading on [0, λ∗] and a
geometric grading on [λ∗, A] (note that the mesh on [0, λ∗] is similar to that classically
used near corners (e.g., [17, 7]) for solving Laplace’s equation on polygonal domains).

Definition 4.1. For A > λ∗, N = 2, 3, . . . , ΛN,A,q := {y0, . . . , yN+NA,q
} is the

mesh consisting of the points

yi = λ∗
(

i

N

)q

, i = 0, . . . , N, and yN+j := λ∗
(

A

λ∗

)j/NA,q

, j = 1, . . . , NA,q,

(4.4)

where NA,q := �N∗�, i.e., NA,q is the smallest integer greater than or equal to N∗,
and

N∗ :=
− log(A/λ∗)

q log(1 − 1/N)
.
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Let us explain the rationale behind this definition. Having the bounds of Theo-
rems 3.2 and 3.3 in mind, the mesh on [0, λ∗] is chosen to be approximately optimal
if q is chosen appropriately (see Theorem 4.2 below), in terms of equidistributing the
error between the subintervals of the mesh when s−α, with 0 < α < 1/2, is approxi-
mated on [0, λ∗] in the L2 norm. That the mesh we propose on [0, λ∗] has this property
and the appropriate choice of q as a function of α is well known and dates back to
Rice [55]. Similarly, the mesh on [λ∗, A] is chosen to be approximately optimal, in
terms of equidistributing the error between the subintervals of the mesh, when s−1/2

is approximated on [λ∗, A] in the L2 norm. Finally, the choice of N∗ ensures a smooth
transition between the two parts of the mesh, and thus approximately the same L2

error in the two adjacent subintervals on either side of λ∗. In particular, in the case
that NA,q = N∗, it holds that yN+1/yN = yN/yN−1, so that yN−1 and yN are points
in both the polynomial and the geometric parts of the mesh. Note that by the mean
value theorem, − log(1 − 1/N) = 1/(ξN) for some ξ ∈ (1 − 1/N, 1), and hence

NA,q <
N log(kA/c∗)

q
+ 1.(4.5)

For a < b let ‖·‖2,(a,b) denote the norm on L2(a, b), ‖f‖2,(a,b) := {
∫ b

a
|f(s)|2ds}1/2.

Similarly, for f ∈ C[a, b], let ‖f‖∞,(a,b) := supa<s<b |f(s)|. For A > λ∗, ν ∈ N ∪ {0},
q ≥ 1, let ΠN,ν ⊂ L2(0, A) denote the set of piecewise polynomials

ΠN,ν := {σ : σ|(yj−1,yj) is a polynomial of degree ≤ ν for j = 1, . . . , N + NA,q},

and let P ∗
N be the orthogonal projection operator from L2(0, A) to ΠN,ν , so that

setting p = P ∗
Nf minimizes ‖f − p‖2,(0,A) over all p ∈ ΠN,ν .

Theorem 4.2. Suppose that f ∈ C∞(0,∞), kA > c∗, and α ∈ (0, 1/2), and that
for m = 0, 1, 2, . . . , there exist constants cm > 0 such that

|f (m)(s)| ≤
{

cmkm(ks)−α−m, ks ≤ 1,
cmkm(ks)−1/2−m, ks ≥ 1.

(4.6)

Then, with the choice q := (2ν + 3)/(1 − 2α), there exists a constant Cν , dependent
only on c∗, ν, and α, such that for N = 2, 3, . . . ,

‖f − P ∗
Nf‖2,(0,A) ≤

Cν c̃ν(1 + log(kA/c∗))1/2

k1/2Nν+1
,

where c̃ν := max(c0, cν+1).
Proof. Throughout the proof let Cν denote a positive constant whose value de-

pends on ν, c∗, and α, not necessarily the same at each occurrence. For 0 ≤ a < b ≤ A,
let pa,b,ν denote the polynomial of degree ≤ ν which is the best approximation to f
in the L2 norm on (a, b). Then it follows from Taylor’s theorem that

‖f − pa,b,ν‖2,(a,b) ≤ Cν(b− a)ν+3/2‖f (ν+1)‖∞,(a,b).(4.7)

Now

‖f − P ∗
Nf‖2

2,(0,A) =

N+NA,q∑
j=1

∫ yj

yj−1

|f − P ∗
Nf |2 ds =

N+NA,q∑
j=1

ej ,(4.8)
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where ej := ‖f − pyj−1,yj ,ν‖2
2,(yj−1,yj)

. From the definition (4.4) we see that

e1 ≤
∫ y1

0

|f(s)|2 ds ≤ c20k
−2α

∫ λ∗/Nq

0

s−2α ds ≤ Cνc
2
0

kN2ν+3
.(4.9)

Using (4.7) we have, for j = 2, 3, . . . , N + NA,q,

ej ≤ Cν(yj − yj−1)
2ν+3‖f (ν+1)‖2

∞,(yj−1,yj)
.(4.10)

Further, for j = 2, . . . , N ,

yj − yj−1 =
c∗

kNq
[jq − (j − 1)q] ≤ c∗qjq−1

kNq
,(4.11)

and, using (4.6) and since N/(j − 1) ≤ 2N/j,

‖f (ν+1)‖∞,(yj−1,yj) ≤ cν+1k
−αy−α−ν−1

j−1 ≤ cν+1k
ν+1

(
2N

j

)q(α+ν+1)

.(4.12)

Combining (4.10)–(4.12) we see that for j = 2, . . . , N ,

ej ≤
Cνc

2
ν+1

kN2ν+3
.(4.13)

For j = N + 1, . . . , NA,q, recalling (4.4) and the choice of N∗ and then using (4.11),

yj − yj−1 = yj−1

(
yj − yj−1

yj−1

)
≤ yj−1

(
yN − yN−1

yN−1

)
≤ yj−1

q

N − 1
≤ 2yj−1

q

N
.

Also, from (4.6),

‖f (ν+1)‖∞,(yj−1,yj) ≤ cν+1k
−1/2y

−ν−3/2
j−1 .

Using these bounds in (4.10), we see that the bound (4.13) holds also for j = N +
1, . . . , N + NA,q. Combining (4.8), (4.9), and (4.13),

‖f − P ∗
Nf‖2

2,(0,A) ≤
Cν c̃

2
ν(N + NA,q)

kN2ν+3
≤ Cν c̃

2
ν(1 + log(kA/c∗))

kN2ν+2
,

using (4.5). Hence the result follows.
We assume through the remainder of the paper that c∗ > 0 is chosen so that

kLj ≥ c∗, j = 1, . . . , n.(4.14)

For j = 1, . . . , n, recalling (3.11), we define qj := (2ν + 3)/(1 − 2αj) and the two
meshes

Γ+
j := L̃j−1 + ΛN,Lj ,qj , Γ−

j := L̃j − ΛN,Lj ,qj+1
.

Letting e±(s) := e±iks, s ∈ [0, L], we then define

VΓ+
j ,ν := {σe+ : σ ∈ ΠΓ+

j ,ν}, VΓ−
j ,ν := {σe− : σ ∈ ΠΓ−

j ,ν}
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for j = 1, . . . , n, where

ΠΓ+
j ,ν := {σ ∈ L2(0, L) : σ|(L̃j−1+ym−1,L̃j−1+ym) is a polynomial of degree ≤ ν

for m = 1, . . . , N + NLj ,qj , and σ|(0,L̃j−1)∪(L̃j ,L) = 0},
ΠΓ−

j ,ν := {σ ∈ L2(0, L) : σ|(L̃j−ỹm,L̃j−ỹm−1)
is a polynomial of degree ≤ ν

for m = 1, . . . , N + NLj ,qj+1 , and σ|(0,L̃j−1)∪(L̃j ,L) = 0},

with 0 = y0 < y1 < · · · < yN+NLj,qj
= Lj the points of the mesh ΛN,Lj ,qj and

0 = ỹ0 < ỹ1 < · · · < ỹN+NLj,qj+1
= Lj the points of the mesh ΛN,Lj ,qj+1

. We define

P+
N and P−

N to be the orthogonal projection operators from L2(0, L) onto ΠΓ+,ν and
ΠΓ−,ν , respectively, where ΠΓ±,ν denotes the linear span of

⋃
j=1,...,n ΠΓ±

j ,ν . We also

define the functions v± ∈ L2(0, L) by

v+(s) := v+
j (s), v−(s) := v−j (s), L̃j−1 < s < L̃j , j = 1, . . . , n.

We then have the following error estimate, in which uM is as defined in (3.10) and we
abbreviate ‖ · ‖2,(0,L) by ‖ · ‖2.

Theorem 4.3. There exists a constant Cν > 0, dependent only on c∗, ν, and Ω1,
Ω2, . . . ,Ωn, such that

‖v+ − P+
N v+‖2 ≤ CνuM

n1/2(1 + log(kL̄/c∗))1/2

k1/2Nν+1
,

where L̄ := (L1 . . . Ln)1/n, with an identical bound holding on ‖v− − P−
N v−‖2.

Proof. From Theorem 3.2, Corollary 3.4, and Theorem 4.2,

‖v+ − P+
N v+‖2

2 =

n∑
j=1

‖v+
j − P+

N v+
j ‖2

2,(L̃j−1,L̃j)
≤ n

C2
νu

2
M (1 + log(kL̄))

kN2ν+2
,

and the result follows.

Our approximation space VΓ,ν is the linear span of⋃
j=1,...,n

{VΓ+
j ,ν ∪ VΓ−

j ,ν}.

The dimension of this approximation space, i.e., the number of degrees of freedom, is

MN = 2(ν + 1)

n∑
j=1

(N + NLj ,qj ) < 2(ν + 1)nN(1 + N−1 + log(kL̄/c∗))(4.15)

by (4.5). We define PN to be the operator of orthogonal projection from L2(0, L)
onto VΓ,ν . It remains to prove a bound on ‖ϕ − PNϕ‖2, showing that our mesh and
approximation space are well adapted to approximating ϕ.

To use Theorem 4.3 we note from (3.9) and (4.2) that ϕ = i
2 (e+v+ + e−v−). But

e+P
+
N v+ +e−P

−
N v− ∈ VΓ,ν and PNϕ is the best approximation to ϕ in VΓ,ν . Applying
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Theorem 4.3 we thus have that

‖ϕ− PNϕ‖2 ≤
∥∥∥∥ϕ− i

2
(e+P

+
N v+ + e−P

−
N v−)

∥∥∥∥
2

=
1

2
‖e+(v+ − P+

N v+) + e−(v− − P−
N )‖2

≤ ‖e+‖∞‖v+ − P+
N v+‖2 + ‖e−‖∞‖v− − P−

N v−‖2

≤ CνuM
n1/2(1 + log1/2(kL̄))

k1/2Nν+1
.

Combining this bound with (4.15), we obtain the following main result of the paper.
We remind the reader that we are assuming throughout that (4.14) holds.

Theorem 4.4. There exist positive constants Cν and C ′
ν , depending only on c∗,

ν, and Ω1, Ω2, . . . ,Ωn, such that

k1/2‖ϕ− PNϕ‖2 ≤ CνuM
n1/2(1 + log(kL̄/c∗))1/2

Nν+1
≤ C ′

νuM
(n[1 + log(kL̄/c∗)])ν+3/2

Mν+1
N

.

A comment on the factor k1/2 on the left-hand side is probably helpful. Reflecting
that the solution of the physical problem must be independent of the unit of length
measurement and that we are designing our numerical scheme to preserve this prop-
erty, it is easy to see that the values of both k1/2‖ϕ‖2 and k1/2‖ϕ − PNϕ‖2 remain
fixed as k changes if we keep kLj fixed for j = 1, . . . , n (and also, of course, keep
Ωj , j = 1, . . . , n, c∗, and ν fixed). Thus inclusion of the factor k1/2 ensures that the
value of k1/2‖ϕ−PNϕ‖2 is independent of the unit of length measurement as are the
bounds on the right-hand side.

5. Galerkin method. Theorem 4.4 has shown that it is possible to approximate
accurately the solution of the integral equation (4.3) with a number of degrees of free-
dom that grows only very modestly as the wave number increases. To select an approx-
imation, ϕN , from the approximation space VΓ,ν we use the Galerkin method. Let (·, ·)
denote the usual inner product on L2(0, L), defined by (χ1, χ2) :=

∫ L

0
χ1(s)χ̄2(s) ds,

so that ‖χ‖2 = (χ, χ)1/2. Then our Galerkin method approximation ϕN ∈ VΓ,ν is
defined by

(ϕN , ρ) + (KϕN , ρ) = (F, ρ) for all ρ ∈ VΓ,ν ;(5.1)

equivalently

ϕN + PNKϕN = PNF.(5.2)

Our goal now is to show that (5.2) has a unique solution ϕN , to establish a bound
on the error ‖ϕ−ϕN‖2 in this numerical method, and to relate this error to the best
approximation error ‖ϕ−PNϕ‖2. We begin by establishing that I+PNK is invertible
if N is large enough. We remind the reader (see the end of section 2) that we are
assuming that η ∈ R, the coupling parameter in the integral equation, is chosen with
η �= 0, which ensures that I + K is invertible.

Theorem 5.1. For all v ∈ L2(0, L), ‖PNv − v‖2 → 0 as N → ∞.
Proof. Since ‖PN‖2 = 1, it is enough to show that PNv → v in L2(0, L) for all

v ∈ C∞[0, L], a dense subset of L2(0, L). But this follows from Theorem 4.2 and the
definition of PN .
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Theorem 5.2. There exists a constant N∗ ≥ 2, dependent only on Γ, k, and η,
such that, for N ≥ N∗, the operator I + PNK : L2(0, L) → L2(0, L) is bijective with

Cs := sup
N≥N∗

‖(I + PNK)−1‖2 < ∞,(5.3)

so that (5.2) has exactly one solution for N ≥ N∗.
Proof. Recalling the discussion at the end of section 2, we note that it holds that

K = K1 + K2, where ‖K1‖2 < 1 and K2 is a compact operator on L2(0, L). Since
‖PNK1‖2 ≤ ‖K1‖2 < 1, I+PNK1 is invertible and ‖(I+PNK1)

−1‖2 ≤ (1−‖K1‖2)
−1.

Since K2 is compact and I +K is injective, it follows from Theorem 5.1 and standard
perturbation arguments for projection methods (e.g., [7, Theorem 8.2.1], [17]) that
(I + PNK)−1 exists and is uniformly bounded for all N sufficiently large.

From (4.3) and (5.2) it follows that ϕ−ϕN = (I +PNK)−1(ϕ−PNϕ), and hence

‖ϕ− ϕN‖2 ≤ ‖(I + PNK)−1‖2‖ϕ− PNϕ‖2.(5.4)

Combining (5.3) and (5.4) with Theorem 4.4, we obtain our final error estimate.
Theorem 5.3. There exist positive constants Cν and C ′

ν , depending only on c∗,
ν, and Ω1, Ω2, . . . ,Ωn, such that

k1/2‖ϕ− ϕN‖2 ≤ CsCνuM
n1/2(1 + log(kL̄/c∗))1/2

Nν+1

≤ CsC
′
νuM

(n[1 + log(kL̄/c∗)])ν+3/2

Mν+1
N

(5.5)

for N ≥ N∗, where N∗ and Cs are as defined in Theorem 5.2.
Note that we will take c∗ = 2π and η = k in all our numerical calculations

in the next section. Note also that, while the constants Cν and C ′
ν , from the best

approximation theorem, Theorem 4.4, depend only on c∗, ν, and the corner angles of
Γ, the numbers N∗ and Cs depend additionally on k, L1, L2, . . . , Ln, and η. We do
not attempt the difficult task of elucidating this dependence in this paper. We note
only that, very recently, for the boundary integral equation formulation (2.9) applied
to scattering by a circle, Domı́nguez, Graham, and Smyshlyaev [28] have shown that
I + K is elliptic if η = ±k and k is sufficiently large, so that every Galerkin method
is automatically stable; specifically, (5.3) holds for every N∗ if PN is the orthogonal
projection from L2(0, L) onto the Galerkin approximation space. Further it follows
from results in [28] that, at worst, Cs = O(k1/3) as k → ∞ in the circle case. Our
numerical results in section 6 will suggest the stronger result that for our particular
scheme and geometry, the bound of Theorem 5.3 holds with a constant Cs independent
of k. We recall from section 2 (2.12) that it has been shown that the corresponding
continuous continuity constant CS = O(1) as k → ∞ if the choice η = k is made.

Of course our aim in approximating ϕ by ϕN is to approximate ∂+
n u and hence,

via (2.7), the solution u of the scattering problem. Clearly, from (3.8) and (4.2), an
approximation to ∂u/∂n is

∂u

∂n
(x(s)) ≈ k(Ψ(s) + ϕN (s)), 0 ≤ s ≤ L.

Using this approximation in (2.7), we conclude that

u(x) ≈ uN (x) := ui(x) − k

∫ L

0

Φ(x,x(s))[Ψ(s) + ϕN (s)] ds, x ∈ D.(5.6)
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Theorem 5.3 implies the following error estimate.
Theorem 5.4. There exist positive constants Cν and C ′

ν , depending only on c∗,
ν, and Ω1, Ω2, . . . ,Ωn, such that

supx∈D |u(x) − uN (x)|
supx∈D |u(x)| ≤ CsCν

n(1 + log(kL̄/c∗))

Nν+1
≤ CsC

′
ν

(n[1 + log(kL̄/c∗)])ν+2

Mν+1
N

for N ≥ N∗, where N∗ and Cs are as defined in Theorem 5.2.
Proof. From (2.7) and (5.6),

|u(x) − uN (x)| = k

∣∣∣∣∣
∫ L

0

Φ(x,x(s)) [ϕ(s) − ϕN (s)] ds

∣∣∣∣∣
≤ k

4

{∫ L

0

|H(1)
0 (k|x − x(s)|)|2 ds

}1/2

‖ϕ− ϕN‖2

≤ k

4

⎧⎨⎩2

n∑
j=1

∫ Lj/2

0

|H(1)
0 (kt)|2 dt

⎫⎬⎭
1/2

‖ϕ− ϕN‖2

≤ Cνk
1/2n1/2(1 + log(kL̄/c∗))1/2‖ϕ− ϕN‖2,

where we have used that |H(1)
0 (t)| is a monotonic decreasing function of t on (0,∞)

and that |H(1)
0 (t)| = O(t−1/2) as t → ∞ (see e.g., [2]). The result now follows from

Theorem 5.3.

6. Numerical results. There has been much work on the optimal choice of the
parameter η in (2.9) (see, e.g., [3, 43]). Here we choose η = k as in [28]. We also
set c∗ = 2π and restrict attention to the case ν = 0. For higher values of ν the
implementation of the scheme is similar. Note that, with c∗ = 2π and ν = 0, there
are approximately N degrees of freedom used to represent the solution in the first
wavelength on each side adjacent to a corner.

The equation we wish to solve is (5.1) with ν = 0. Writing ϕN as a linear
combination of the basis functions of VΓ,0, we have

ϕN (s) =

MN∑
j=1

vjρj(s), 0 ≤ s ≤ L,

where ρj is the jth basis function and MN is the dimension of VΓ,0. For p = 1, . . . , n,
where n is the number of sides of the polygon, we define n±

p to be the number of
points in the mesh Γ±

p , so that n+
p = N +NLp,qp , n

−
p = N +NLp,qp+1 , and we denote

the points of the mesh Γ±
p by s±p,l for l = 1, . . . , n±

p , with s±p,1 < · · · < s±
p,n±

p
. Setting

n1 := 0, np :=
∑p−1

j=1(n+
j + n−

j ) for p = 2, . . . , n− 1, we define, for p = 1, . . . , n,

ρnp+j(s) :=

{
eiksχ(s+p,j−1,s

+
p,j)

(s)/
√
s+
p,j − s+

p,j−1, j = 1, . . . , n+
p ,

e−iksχ(s−p,j−1,s
−
p,j)

(s)/
√
s−p,j − s−p,j−1, j = n+

p + 1, . . . , n+
p + n−

p ,

where χ(y1,y2) denotes the characteristic function of the interval (y1, y2). From (4.15),

MN =
∑n

j=1(n
+
j + n−

j ) < 2nN(3/2 + log(kL̄/c∗)).
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Equation (5.1) with ν = 0 is equivalent to the linear system

MN∑
j=1

vj((ρj , ρm) + (Kρj , ρm)) = (F, ρm), m = 1, . . . ,MN .(6.1)

In order to set up this linear system we need to determine the integrals (ρj , ρm),
(Kρj , ρm), and (F, ρm). We note that many of the integrals (Kρj , ρm) and (F, ρm)
are highly oscillatory; in particular, all these integrals become highly oscillatory in the
limit as k → ∞ with N fixed. The efficient calculation of these integrals is an aspect
of the numerical scheme which requires further research, as discussed in section 1.2.
But note that explicit formulae for the analytic evaluation of some of these integrals,
and a consideration of the quadrature techniques required to evaluate the rest of them
numerically, are presented in [44].

Another important issue is the conditioning of the linear system. Standard anal-
ysis of the Galerkin method for second kind equations [7] implies that, where M :=
[(ρj , ρm)] is the mass matrix (which is necessarily Hermitian and positive definite) and
A = [(ρj , ρm) + (Kρj , ρm)] is the whole matrix, it holds that cond2A ≤ Cscond2M ,
where Cs is defined by (5.3). Thus Theorem 5.2 implies that cond2A is bounded as
N → ∞ if the mass matrix is well conditioned. Unfortunately, it appears that, as
N → ∞ with k fixed, M must ultimately become badly conditioned. However, the
results below will show only moderate condition numbers of A even for large values of
N (see Table 6.1). More positively, in the limit as k → ∞ with N fixed, cond2M → 1.
To see this we observe that if (ρj , ρm) is a nonzero off-diagonal element of the mass
matrix (in which case the supports of ρj and ρm are overlapping subintervals of the

meshes Γ+
p and Γ−

p for some side p), it holds that |(ρj , ρm)| = | sin(ko)|
√
o/(kS1S2),

where S1 and S2 are the lengths of the two subintervals, and o is the length of the
overlap.

As a numerical example, we consider the problem of scattering by a square with
sides of length 2π. In this case n = 4 and Ωj = 3π/2, j = 1, 2, 3, 4. The corners of the
square are P1 := (0, 0), P2 := (2π, 0), P3 := (2π, 2π), P4 := (0, 2π), and the incident
angle is θ = π/4, so the incident field is directed towards P4, with P2 in shadow (as
shown in Figure 6.1, where the total acoustic field is plotted for k = 10).

In Figure 6.2 we plot |ϕN (s)| against s for k = 10 and N = 4, 16, 64, 256. As
we expect, |ϕN (s)| is highly peaked at the corners of the polygon, s = 0, 2π, 4π, 6π
and 8π (which is the same corner as s = 0), where ϕ(s) is infinite. Except at these
corners, |ϕN (s)| appears to be converging pointwise as N increases. (We do not plot
ϕN (s) itself, which is highly oscillatory.)

In order to test the convergence of our scheme, we take the “exact” solution to
be that computed with a large number of degrees of freedom, namely with N = 256.
For k = 5 and k = 320 the relative L2 errors ‖ϕN − ϕ256‖2/‖ϕ256‖2 are shown
in Table 6.1 (all L2 norms are computed by approximating by discrete L2 norms,
sampling at 100000 evenly spaced points around the boundary of the square). For
this example, Theorem 5.3 predicts that for N ≥ N∗, ‖ϕ − ϕN‖2 ≤ CN−1, where
C is a constant. Thus Theorem 5.3 predicts that for N > N∗, the average rate of
convergence is

EOC :=
log(‖ϕ− ϕN‖2/‖ϕ− ϕN∗‖2)

log(N/N∗)
≥ 1 − Ĉ

log(N/N∗)
∼ 1

as N → ∞, where Ĉ := log(‖ϕ−ϕN‖2/C). This behavior is clearly seen in the EOC
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Fig. 6.1. Total acoustic field, scattering by a square, k = 10. Incident field is directed from the
top left corner towards the bottom right corner.
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Fig. 6.2. |ϕN (s)| plotted against s, various N , for scattering by a square of side length ten
wavelengths.

values (defined with N∗ = 8) in Table 6.1 for both values of k. We also show in Ta-
ble 6.1 the 2 norm condition number, cond2A, of the matrix A = [(ρj , ρm)+(Kρj , ρm)]
for each example. Unlike methods where the approximation space is formed by mul-
tiplying standard finite element basis functions by many plane waves travelling in a
large number of directions [27, 53, 37], the condition number does not grow signifi-
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Table 6.1

Errors and relative L2 errors, various N , k = 5, and k = 320.

k N MN k1/2‖ϕN − ϕ256‖2 ‖ϕN − ϕ256‖2/‖ϕ256‖2 EOC cond2A
5 8 88 5.7339×10−1 2.4426×10−1 9.5×100

16 176 3.7454×10−1 1.5955×10−1 0.6 4.6×101

32 360 1.6176×10−1 6.8909×10−2 0.9 2.6×101

64 712 7.7267×10−2 3.2916×10−2 1.0 2.4×102

128 1416 3.3541×10−2 1.4289×10−2 1.0 1.5×103

320 8 120 7.0765×10−1 3.6736×10−1 2.4×102

16 240 5.9792×10−1 3.1040×10−1 0.2 6.9×102

32 472 1.9668×10−1 1.0211×10−1 0.9 8.1×102

64 944 7.5808×10−2 3.9354×10−2 1.1 1.1×103

128 1888 4.8814×10−2 2.5341×10−2 1.0 3.8×103

Table 6.2

Errors and relative L2 errors, various k, N = 64.

k MN k1/2‖ϕ64 − ϕ256‖2 ‖ϕ64 − ϕ256‖2/‖ϕ256‖2 cond2A

5 712 7.7267×10−2 3.2916×10−2 2.4×102

10 752 6.6373×10−2 2.8702×10−2 8.4×101

20 792 3.8309×10−1 1.6914×10−1 5.1×103

40 824 1.3162×10−1 5.9856×10−2 1.2×103

80 864 7.4315×10−2 3.4801×10−2 2.7×103

160 904 7.0884×10−2 3.4570×10−2 1.4×103

320 944 7.5808×10−2 3.9354×10−2 1.1×103

640 984 6.4280×10−2 3.5693×10−2 1.5×103

Table 6.3

Relative errors, |uN (x) − u256(x)|/|u256(x)|, as a function of N , at three points x.

k N x = (−π, 3π) x = (3π, 3π) x = (3π,−π)

5 4 1.9587×10−2 1.0071×10−3 1.5885×10−2

8 4.2629×10−3 2.8031×10−3 2.3215×10−3

16 3.6284×10−4 3.1410×10−4 1.3513×10−3

32 6.7523×10−5 2.9803×10−5 1.7939×10−5

64 1.2675×10−5 5.9626×10−6 4.6158×10−6

320 4 2.2938×10−3 2.9350×10−3 2.0897×10−2

8 4.3176×10−3 1.5157×10−3 1.1652×10−2

16 3.3908×10−3 9.6409×10−4 9.3922×10−3

32 3.3898×10−4 1.6984×10−4 9.0526×10−4

64 1.0022×10−4 9.6493×10−5 2.6204×10−4

cantly as the number of degrees of freedom increases.
In Table 6.2 we fix N = 64 and show ‖ϕ64−ϕ256‖2/‖ϕ256‖2 and k1/2‖ϕ64−ϕ256‖2

for increasing values of k. Both measures of errors remain approximately constant in
magnitude as k increases. Recall that, keeping N fixed as k increases corresponds to
keeping the number of degrees of freedom per wavelength fixed near each corner and
increasing the total number of degrees of freedom, MN , approximately in proportion
to log(kL̄). Thus these results are consistent with the approximation error estimate of

Theorem 4.2 which suggests that increasing MN proportional to log3/2(kL̄) is enough
to keep the error bounded; indeed these results are suggestive that the bound (5.5) in
the Galerkin error estimate, Theorem 5.3, holds with a constant Cs which is indepen-
dent of k. Note that the condition number of the coefficient matrix A only increases
modestly as k increases, and is approximately constant for k ≥ 40.

In Table 6.3 we show numerical convergence of the total field uN (x) at the three
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points x = (−π, 3π) (illuminated), x = (3π, 3π), and x = (3π,−π) (shadow), for
k = 5 and k = 320. The errors are consistent with the estimate of Theorem 5.4. As
might be expected for the computation of linear functionals of ϕN , the relative errors
in Table 6.3 are a lot smaller and converge to zero more rapidly than the relative
errors in the computation of the boundary data in Tables 6.1 and 6.2.

7. Conclusions. In this paper we have described a novel Galerkin boundary
integral equation method for solving problems of high frequency scattering by convex
polygons. In section 2, building on previous results for Lipschitz domains [56, 48, 50,
49], we have shown that the standard second kind boundary integral equations for the
exterior Dirichlet problem for the Helmholtz equation are well-posed for general Lip-
schitz domains in a scale of Sobolev spaces. We have understood very completely in
section 3 the oscillatory behavior of the normal derivative of the field on the boundary
of the polygon. We have then used this understanding to design an optimal graded
mesh for approximation of the diffracted field by products of piecewise polynomials
and plane waves. Our error analysis demonstrates that the number of degrees of free-
dom required to achieve a prescribed level of accuracy using the best approximation
to the solution from the approximation space grows only logarithmically with respect
to the wave number k as k → ∞. Numerical experiments indicate that the same
statement holds for the Galerkin approximation from the same approximation space.
However, while we have established that the error in the Galerkin approximation
space is bounded by the stability constant Cs times the best approximation error, our
Theorem 5.3 holds only for a sufficiently refined mesh and we have not established
a bound on Cs which is independent of k, to mirror the recently established bound
(2.12) on the corresponding continuous stability constant.

There are very many open problems in extending the results of this paper to more
general scatterers. In this extension we expect that our mesh design and parts of our
analysis will have relevance for representing certain components of the total field. For
example, in the case of 2D convex curvilinear polygons, something close to the mesh
grading we use may be appropriate on each side of the polygon, especially at higher
frequencies when the waves diffracted by the corners become more localized near the
corners. In the case of three-dimensional scattering by convex polyhedra, it seems
to us that the mesh we propose may be useful in representing the variation of edge
scattered waves in the direction perpendicular to the edge.
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[52] O. J. Panič, On the solubility of exterior boundary-value problems for the wave equation and for
a system of Maxwell’s equations, Uspekhi Mat. Nauk, 20 (1965), pp. 221–226 (in Russian).

[53] E. Perrey-Debain, O. Lagrouche, P. Bettess, and J. Trevelyan, Plane-wave basis finite
elements and boundary elements for three-dimensional wave scattering, Philos. Trans. R.
Soc. Lond. Ser. A Math. Phys. Eng. Sci., 362 (2004), pp. 561–577.
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APPROXIMATIONS OF SECOND-ORDER ELLIPTIC PROBLEMS∗
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Abstract. A residual-type a posteriori error estimator is introduced and analyzed for a discon-
tinuous Galerkin formulation of a model second-order elliptic problem with Dirichlet–Neumann-type
boundary conditions. An adaptive algorithm using this estimator together with specific marking
and refinement strategies is constructed and shown to achieve any specified error level in the energy
norm in a finite number of cycles. The convergence rate is in effect linear with a guaranteed error
reduction at every cycle. Results of numerical experiments are presented.
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1. Introduction. Let Ω ⊂ Rd, d = 2, 3, be a bounded open polyhedral domain.
We consider the following boundary value problem:

−Δu = f in Ω,(1.1)

u = gD on ΓD,(1.2)

∇u · n = gN on ΓN ,(1.3)

where ∂Ω := Γ = ΓD ∪ ΓN and n is the unit normal vector exterior to Ω. We assume
that ΓD has positive measure, f ∈ L2(Ω), gN ∈ L2(ΓN ). Assumptions on f , gD, and
gN are given later.

Recently there has been a flurry of activity concerning a posteriori error estimates
for the discontinuous Galerkin (DG) method for elliptic as well as other problems.
In [7], Becker, Hansbo, and Larson use a Helmholtz-type decomposition of the error
to derive estimates in the energy norm. Bustinza, Gatica, and Cockburn [11] use a
similar technique to derive estimates for linear and nonlinear elliptic problems for the
local discontinuous Galerkin (LDG) method. (See also the article by Castillo [12] in
the same issue.) Creusé and Nicaise [13] consider the interesting issue of anisotropic
elements, i.e., those with large aspect ratio, in the context of the stationary Stokes
problem. Houston, Schötzau, and Wihler [15] derive energy norm a posteriori esti-
mates for the hp-version of the DG method for elliptic problems. The fact that the
penalty parameter γ appears with a different exponent in their a posteriori estimates
provides an interesting alternative to ours. We also mention [21] and [16] for L2-norm
or functional error estimation for the DG method.

In [17] we presented residual-type a posteriori estimates in the energy norm for
DG approximations of a special case of the boundary value problem (1.1)–(1.3) cor-
responding to ΓD = Γ and gD = 0. In the present work, we extend these estimates
to encompass the more general mixed boundary conditions (1.2), (1.3), continuing
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work already begun in [18]. These estimates are used to provide a mesh modification
strategy which is then shown to be convergent in the energy norm induced by the
bilinear form defining the DG method.

The principal goal of an adaptive algorithm is to achieve a user specified error
level in a finite number of cycles. While it is typical for the error to be measured
in the energy norm (‖∇e‖ for the standard Galerkin method for second-order elliptic
problems, and an appropriate energy norm for the DG method), other interesting and
useful measures of the error, “quantities of interest” (QOI), are emerging; see, e.g.,
[8]. To date, however, no convergence results are known except with respect to the
energy norm, given that the proofs make use in an essential way of an orthogonality
relation and such relations are not known for other QOI’s.

A typical cycle consists of the following basic steps: (1) Given a mesh TH , calculate
the approximation on this mesh. (2) Estimate the error of the approximation at hand
using an error estimator. (3) Refine/coarsen TH using the information to obtain a
new mesh Th.

The rigorous treatment of the convergence of adaptive algorithms for elliptic prob-
lems can be said to have started with the paper of Babuşka and Vogelius [4] where a
detailed treatment of the one-dimensional case was given. In 1996 Dörfler [14] gave
a convergence proof for the two-dimensional case for the standard Galerkin method
using linear elements while outlining an extension to quadratic elements. One of the
highlights of this work is that bounds on the convergence rate were provided, which
was not the case for [4]. On the other hand, the initial mesh had to be fine enough
to essentially resolve the solution. The latter issue provided the starting point for the
work of Morin, Nochetto, and Siebert [19], [20], who introduced the concept of data
oscillation osc(f, TH) = (

∑
K∈TH

‖H(f − fK)‖2)1/2 to circumvent this requirement.
The nagging issue of calculating this quantity accurately on a coarse mesh is not re-
solved and should be treated within the larger and important framework of accounting
for the quadrature errors arising from the implementation of the finite element formu-
lation as well as from the calculation of certain terms in the a posteriori estimators.
More recently, Binev, Dahmen, and DeVore [9] have proposed a modification of the
algorithm in [20] that incorporates coarsening to prove optimal work estimates. More
specifically, they have shown that if the solution u can be approximated by a piece-
wise linear function to an accuracy of O(n−s) on a triangulation with n cells, then
the algorithm constructs an approximation with the same asymptotic accuracy at a
cost of O(n) arithmetic operations.

In this paper we take up the issue of convergence of an adaptive algorithm in the
context of a DG formulation for the problem (1.1)–(1.3). The specific DG method
used is of an interior penalty type that can be traced to the work of [5] and [2]. We
refer to [3] for a survey and unified view of DG methods. Our main result can be
summarized as follows: With aγh(·, ·), h > 0, denoting the bilinear form associated
with the DG formulation of the problem, we have aγh(eh, eh) ≤ ρaγH(eH , eH), ρ < 1.
The principal assumptions which enable this result are the following:

(i) The data of the problem f, gD, gN belong to the same polynomial spaces
which contain the numerical solution.

(ii) The mesh Th is not too fine with respect to the mesh TH .
(iii) The penalty parameter is not too small; specifically, it must be larger than

a constant depending only on the minimum angle of the triangles and the
degree of the polynomials in the discontinuous finite element spaces.

(iv) While the marking strategy used is the one used by Dörfler, the refinement
strategy is designed to accommodate the DG approach.
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While the assumption on the data of the problem may seem to be restrictive,
we should note that for one there are practically important cases satisfying these
assumptions, e.g., piecewise constant data. Another mitigating argument is that the
numerical integration rules cannot distinguish between the data functions and their
Lagrange interpolants. Therefore, these assumptions can be relaxed in tandem with
an effort to take into account the effect of numerical integration.

The paper is organized as follows. Section 2 is devoted to preliminaries. In
addition to establishing notation, we quote a result whose details can be found in
[17] and [18] concerning the approximation of discontinuous piecewise polynomial
functions by continuous functions of the same type. This result has so far played a
key role in the a posteriori estimates as well as in the convergence proof. Section 3
is devoted to the derivation of the residual-type a posteriori estimates extending the
results of [17] to include the more general mixed boundary conditions (1.2), (1.3). A
novel contribution is estimate (3.12) (Theorem 3.2(iv)). It completes the a posteriori
error estimates of [17] by providing lower bounds for the gradients of the error. That
the jump terms in (3.12) are multiplied by γ2 is significant in that γ appears with
exponent one in the bilinear form. Interestingly, this fact plays an important role
in the proof of convergence of the adaptive algorithm. In section 4 we outline the
marking and refinement strategies and prove convergence of the adaptive scheme. It
is worth noting that the analysis of the DG formulation presents some complications
not present in the standard method. One is due to the fact that the energy norm
is mesh dependent. Another more basic one is due to the fact that the bilinear
form which defines the method is not coercive on the energy space. Both issues
are successfully resolved. Let us also note that while the marking and refinement
strategies are couched in two dimensions, we believe that appropriate modifications
can be introduced to obtain convergence in three dimensions as well. In particular,
only the refinement strategy, Lemma 4.1, and Corollary 4.1 need be extended. Finally,
in section 5 we present the results of some numerical experiments.

2. Preliminaries.

2.1. Notation. For a domain D ⊆ Rd and integer m ≥ 0, Hm(D) will denote
the (Hilbert) Sobolev space with inner product (u, v)m,D =

∑
|α|≤m

∫
D
DαuDαv dx

and norm ‖u‖m,D = (u, u)
1/2
m,D (cf. [1]). To simplify the notation, we shall drop m

when its value is zero. Also, we shall often encounter functions that vanish on ΓD,
and thus we let H1

0,ΓD
= {v ∈ H1(Ω), v = 0 on ΓD}.

Extensive use will be made of edge/surface integrals. Therefore, for a (d − 1)-

dimensional subset e of Rd, we set 〈u, v〉e =
∫
e
u v ds and |u|e = 〈u, u〉1/2e .

2.2. Triangulations. Let Th = {Ki : i = 1, 2, . . . ,mh} be a family of star-like
partitions (triangulations) of the domain Ω parametrized by 0 < h ≤ 1. We assume
the following:

(i) The elements of Th satisfy the minimal angle condition.
(ii) Th is locally quasi-uniform; that is, if two elements Kj and K� are adjacent

in the sense that μd−1(∂Kj ∩ ∂K�) > 0, then diam(Kj) ≈ diam(K�).
We define EI

h and EB
h to be the set of all interior and boundary edges (faces in the

case d = 3), respectively, as follows:

EI
h = {e = ∂Kj ∩ ∂K�, μd−1(∂Kj ∩ ∂K�) > 0},

EB
h = {e = ∂K ∩ ∂Ω, μd−1(∂K ∩ ∂Ω) > 0}, Eh = EI

h ∪ EB
h .
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For each e ∈ EI
h, we denote the two triangles that “share” it by K+ and K−, respec-

tively. Which of the two is K+ is completely arbitrary but not irrelevant! If e ∈ EB
h ,

then e = ∂K+ ∩ ∂Ω ≡ ∂K ∩ ∂Ω.
We assume that for each e ∈ EB

h , either e ⊂ ΓD or e ⊂ ΓN . We then set
EB
h = ED

h ∪ EN
h , where ED

h and EN
h are, respectively, the set of boundary edges on ΓD

and on ΓN . From the previous assumption, we have ED
h ∩ EN

h = ∅.
Given a partition or mesh Th of Ω, we find it convenient to use the spaces

Hm(Th) = ΠK∈Th
Hm(K). In this context we consider K to be open so that ele-

ments of Hm(Th) are single-valued. In particular, the “energy space” for the DG
method for this problem will be Eh = H2(Th).

We shall also use the discontinuous finite element spaces V r
h = ΠK∈Th

Pr−1(K),
r ≥ 2, where Pk(K) is the space of polynomials of total degree k defined on K.

It is essential to be able to define values of functions in Hm(Th) and V r
h on the

edges e. Thus, for v ∈ Hm(Th), m ≥ 1, and e ∈ EI
h ∪ EB

h , v+
e will denote the trace on

e of the restriction v+ of v to K+. Similarly we define v−e for e ∈ EI
h.

We also define jumps and averages of such traces as follows:

[v] = v+
e − v−e , e ∈ EI

h, [v] = v+
e , e ∈ EB

h ,

{v} = 1
2

(
v+
e + v−e

)
, e ∈ EI

h, {v} = v+
e , e ∈ EB

h .

Finally, for v ∈ H2(Th) we let {∂nv} = 1
2

(
∇v+ + ∇v−

)
· n+, e ∈ EI

h, where n+ is

the unit outward normal to K+ and [∂nv] = ∇v+ · n+ −∇v− · n+, e ∈ EI
h.

2.3. Some useful results. We shall make frequent use of the following trace
and inverse inequalities (cf. [10], [17]):

|v|2∂D ≤ c
(
h−1
D ‖v‖2

D + hD‖∇v‖2
D

)
∀v ∈ H1(D),(2.1)

where hD = diam(D);

|v|j,D ≤ chi−j
D |v|i,D ∀v ∈ Pk(D), 0 ≤ i ≤ j ≤ 2.(2.2)

We shall also make essential use of the fact that an element of V r
h can be ap-

proximated by continuous piecewise polynomial functions, specifically by elements of
V r
h ∩ H1(Ω); the degree of approximation being controlled, not surprisingly, by the

jumps of the discontinuous function. Here we extend the result established in [17]
to allow approximation by functions that also satisfy Dirichlet-type conditions on
the boundary. We also include a significant observation that the approximation re-
sult holds in the L2-norm as well. We omit the proof since its essential points were
provided in [17] and [18].

Theorem 2.1. Let Th be a conforming or nonconforming mesh consisting of
triangles when d = 2, and tetrahedra when d = 3. Then for any vh ∈ V r

h and multi-
index α with |α| = 0, 1 the following approximation results hold:

(i) Let g be the restriction to Γ of a function in V r
h ∩H1(Ω). Then there exists

χ ∈ V r
h ∩H1(Ω) satisfying χ

∣∣
Γ

= g and

∑
K∈Th

‖Dα(vh − χ)‖2
K ≤ c

( ∑
e∈EI

h

h1−2|α|
e |[vh]|2e +

∑
e∈EB

h

h1−2|α|
e |vh − g|2e

)
.

(2.3)
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(ii) Let g be the restriction to ΓD of a function in V r
h ∩H1(Ω). Then there exists

χ ∈ V r
h ∩H1(Ω) satisfying χ

∣∣
ΓD

= g and

∑
K∈Th

‖Dα(vh − χ)‖2
K ≤ c

( ∑
e∈EI

h

h1−2|α|
e |[vh]|2e +

∑
e∈ED

h

h1−2|α|
e |vh − g|2e

)
.

(2.4)

(iii) There exists χ ∈ V r
h ∩H1(Ω) satisfying∑

K∈Th

‖Dα(vh − χ)‖2
K ≤ c

∑
e∈EI

h

h1−2|α|
e |[vh]|2e(2.5)

for some constant C independent of h and vh but which may depend on r and the
minimal angle θ0 of the triangles in Th.

Remark 2.1. The proof of this result is constructive and is based on an averaging
process. It should also hold for more general partitions of Ω such as quadrilaterals
and parallelepipeds.

3. A posteriori error estimates.

3.1. The discrete problem. In order to construct a weak formulation for the
problem (1.1)–(1.3), we introduce the bilinear form aγh : Eh × Eh → R:

aγh(u, v) =
∑

K∈Th

(∇u,∇v)K −
∑

e∈EI
h∪ED

h

(
〈{∂nu} , [v]〉e + 〈{∂nv} , [u]〉e − γh−1

e 〈[u], [v]〉e
)
,

where he = diam(e) and γ is the interior penalty parameter. We point out that
we have adopted the averaged value {∂nv}e of the normal derivatives attributed to
Arnold [2]. The results of this paper also apply to the so-called Baker formulation for
which {∂nv} = ∇v+ · n+.

The bilinear form aγh is consistent with the BVP (1.1)–(1.3) in the following sense:
If u ∈ H2(Ω) satisfies (1.1)–(1.3), then

aγh(u, v) = F (v) := (−Δu, v)Ω −
∑
e∈ED

h

〈
u, ∂nv − γh−1

e v
〉
e
+

∑
e∈EN

h

〈∂nu, v〉e ∀v ∈ Eh.

Thus, we define the DG approximation uγ
h of the solution u of the BVP (1.1)–(1.3)

as the element of V r
h that satisfies

aγh(uγ
h, v) = F (v) ∀v ∈ V r

h .(3.1)

We thus have the orthogonality relation

aγh(u− uγ
h, v) = 0 ∀v ∈ V r

h ,(3.2)

which will play an important role in the derivation of the a posteriori estimates as
well as the proof of the convergence of the adaptive scheme.

Concerning the continuity and coercivity of the form aγh, we can prove the follow-
ing result.

Lemma 3.1. (i)

|aγh(u, v)| ≤ 2‖u‖1,h‖v‖1,h ∀u, v ∈ Eh.
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(ii) There exist positive constants γ0 and ca such that for all γ ≥ γ0

aγh(v, v) ≥ ca‖v‖2
1,h ∀v ∈ V r

h ,

where

‖v‖1,h =

( ∑
K∈Th

‖∇v‖2
K +

∑
e∈EI

h∪ED
h

(
he |{∂nv}|2e + γh−1

e |[v]|2e
))1/2

.

Let us mention here that γ0 depends only on r and θ0. Also, the proof of (i) is
merely an application of the Cauchy–Schwarz inequality. To prove (ii), we have to
use the trace and inverse inequalities (2.1), (2.2).

3.2. A residual-type a posteriori estimate. This section is devoted to the
generalization of the residual-type a posteriori estimates given in [17]. The estimators
as well as the exposition follow the lines found in Verfürth [23], with the exception of
the technical details stemming from the discontinuous nature of V r

h .
Theorem 3.1. Suppose that gD in (1.2) is the restriction to ΓD of a function in

V r
h ∩H1(Ω). Then with e = u− uγ

h there holds∑
K∈Th

‖∇e‖2
K ≤ c

{ ∑
K∈Th

h2
K‖f + Δuγ

h‖2
K +

∑
e∈EI

h

he

∣∣[∂nuγ
h

]∣∣2
e

+
∑
e∈EN

h

he

∣∣gN − ∂nu
γ
h

∣∣2
e

+ γ2
∑
e∈EI

h

h−1
e

∣∣[uγ
h]
∣∣2
e

+ γ2
∑
e∈ED

h

h−1
e

∣∣gD − uγ
h

∣∣2
e

}
.(3.3)

In particular, the constant c is independent of the meshsize and γ.
Proof. Integrating by parts, we obtain∑
K∈Th

(∇e,∇η)K =
∑

K∈Th

(f + Δuγ
h, η)K +

∑
e∈EI

h

(
〈{∂ne} , [η]〉e + 〈{η} , [∂ne]〉e

)
+

∑
e∈ED

h

〈∂ne, η〉e +
∑
e∈EN

h

〈∂ne, η〉e ∀η ∈ H1(Th).(3.4)

Letting η = e− vh, where vh is piecewise constant on Th, we have∑
K∈Th

‖∇e‖2
K =

∑
K∈Th

(f + Δuγ
h, η)K −

∑
e∈EI

h

(
〈{∂ne} , [uγ

h + vh]〉
e
+ 〈{η} , [∂nuγ

h]〉
e

)
−

∑
e∈ED

h

〈∂ne, uγ
h + vh − gD〉

e
+

∑
e∈EN

h

〈gN − ∂nu
γ
h, η〉e .(3.5)

Now, from the orthogonality relation (3.2), for all χ in V r
h ∩H1(Ω) with χ

∣∣
ΓD

= gD,
we have

0 = aγh(e, uγ
h + vh − χ)

=
∑

K∈Th

(∇e,∇(uγ
h − χ))K −

∑
e∈EI

h∪ED
h

〈{∂n(uγ
h − χ)} , [e]〉

e

−
∑
e∈EI

h

〈{∂ne} , [uγ
h + vh]〉

e
−

∑
e∈ED

h

〈∂ne, uγ
h + vh − gD〉

e

+
∑
e∈EI

h

γh−1
e 〈[e], [uγ

h + vh]〉
e
+

∑
e∈ED

h

γh−1
e 〈gD − uγ

h, u
γ
h + vh − gD〉

e
.
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Using this relation in (3.5) to eliminate the terms containing ∂ne, we obtain∑
K∈Th

‖∇e‖2
K =

∑
K∈Th

(f + Δuγ
h, η)K −

∑
K∈Th

(∇e,∇(uγ
h − χ))K

−
∑
e∈EI

h

(
〈{∂n(uγ

h − χ)} , [uγ
h]〉

e
+ γh−1

e 〈[uγ
h], [η]〉

e
+ 〈{η} , [∂nuγ

h]〉
e

)
+

∑
e∈ED

h

(
〈∂n(uγ

h − χ), gD − uγ
h〉e + γh−1

e 〈gD − uγ
h, η〉e

)
+

∑
e∈EN

h

〈gN − ∂nu
γ
h, η〉e .(3.6)

We now obtain bounds for the terms on the right-hand side of (3.6). Those that
contain η are bounded by 1

2 times,

1

ε1

∑
K∈Th

h2
K‖f + Δuγ

h‖2
K +

1

ε2

∑
e∈EI

h

he

∣∣[∂nuγ
h

]∣∣2
e

+
1

ε3
γ
∑
e∈EI

h

h−1
e |[uγ

h]|2e(3.7)

+
1

ε4
γ

∑
e∈ED

h

h−1
e |gD − uγ

h|2e +
1

ε5

∑
e∈EN

h

he|gN − ∂nu
γ
h|2e

+ ε1
∑

K∈Th

h−2
K ‖η‖2

K + ε2
∑
e∈EI

h

h−1
e | {∂nη} |2e + ε3γ

∑
e∈EI

h

h−1
e |[η]|2e

+ ε4γ
∑
e∈ED

h

h−1
e |η|2e + ε5

∑
e∈EN

h

h−1
e |η|2e,

for any εi > 0, i = 1, . . . , 5. To estimate the “η” terms in (3.7) we choose as vh the
best piecewise constant approximation of e that gives, using an approximation result
of [6], the estimate

‖η‖K ≤ chK‖∇e‖K , K ∈ Th.

Since the mesh is locally quasi-uniform, using this approximation result and the trace
inequality (2.1), we obtain∑

K∈Th

h−2
K ‖η‖2

K ≤ c
∑

K∈Th

‖∇e‖2
K ,

∑
e∈EI

h

h−1
e

(
| {∂nη} |2e + |[η]|2e

)
≤ c

∑
e∈EI

h

∑
K=K+,K−

h−1
e (h−1

K ‖η‖2
K + hK‖∇η‖2

K)

≤ c
∑

K∈Th

‖∇e‖2
K ,

∑
e∈EB

h

h−1
e |η|2e ≤ c

∑
e∈EB

h

∑
K=K+

h−1
e (h−1

K ‖η‖2
K + hK‖∇η‖2

K)

≤ c
∑

K∈Th

‖∇e‖2
K .

We can now hide the “η” terms in the left-hand side of (3.6) by taking the ε’s suffi-
ciently small. In particular, we must take ε3 ≈ 1/γ and ε4 ≈ 1/γ.
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To obtain (3.3), we also need to estimate the terms containing uγ
h − χ. Indeed,

these are bounded by

ε
∑

K∈Th

‖∇e‖2
K +

1

ε

∑
K∈Th

‖∇(uγ
h − χ)‖2

K +
∑
e∈EI

h

he

∣∣ {∂n(uγ
h − χ)}

∣∣2
e

(3.8)

+
∑
e∈EI

h

h−1
e |[uγ

h]|2e +
∑
e∈ED

h

he

∣∣∂n(uγ
h − χ)

∣∣2
e

+
∑
e∈ED

h

h−1
e |gD − uγ

h|2e.

Using the trace and inverse inequalities, we see that the two terms in (3.8) that contain
∂n(uγ

h − χ) are bounded by
∑

K∈Th
‖∇(uγ

h − χ)‖2
K . In view of Theorem 2.1(ii), the

latter is bounded by
∑

e∈EI
h
h−1
e |[uγ

h]|2e +
∑

e∈ED
h
h−1
e |gD − uγ

h|2e.
Theorem 3.2. The following estimates hold:
(i) Suppose that f is a piecewise polynomial on Th. Then for each K ∈ Th

h2
K‖f + Δuγ

h‖2
K ≤ c ‖∇e‖2

K .(3.9)

(ii) For e = ∂K+ ∩ ∂K− ∈ EI
h,

he

∣∣[∂nuγ
h

]∣∣2
e
≤ c(‖∇e‖2

K+ + ‖∇e‖2
K−).(3.10)

(iii) Suppose that gN is a piecewise polynomial on EN
h . Then for e = ∂K+ ∩ ∂Ω ∈

EN
h

he

∣∣gN − ∂nu
γ
h

∣∣2
e
≤ c‖∇e‖2

K+ .(3.11)

(iv) Suppose that gD is the restriction to ΓD of a function in V r
h ∩H1(Ω). Then

there exists γ1 depending only on r and θ0 such that for γ ≥ γ1

γ2
∑
e∈EI

h

h−1
e

∣∣[uγ
h

]∣∣2
e

+ γ2
∑
e∈ED

h

h−1
e

∣∣gD − uγ
h

∣∣2
e
≤ c

∑
K∈Th

‖∇e‖2
K .(3.12)

The constants c in (3.9)–(3.12) depend on r, θ0 the degrees of f and gN , but are
independent of the meshsize and γ.

Proof. Proofs of assertions (i), (ii), (iii) are similar to the proof of Theorem 3.2
in [17].

Concerning assertion (iv), let uG
h ∈ V r

h ∩ H1(Ω) with uG
h

∣∣
ΓD

= gD denote the
“standard” continuous Galerkin approximation of u given as the solution of

(∇uG
h ,∇χ) = (f, χ) +

∑
e∈EN

h

〈χ, gN 〉e ∀χ ∈ V r
h ∩H1

0,ΓD
.(3.13)

It is easily seen that uG
h satisfies

aγh(uG
h , χ) = (f, χ) −

∑
e∈ED

h

〈gD, ∂nχ〉e +
∑
e∈EN

h

〈χ, gN 〉e ∀χ ∈ V r
h ∩H1

0,ΓD
,(3.14)

and then one gets the following orthogonality relation for uG
h :

aγh(uG
h − u, χ) = 0 ∀χ ∈ V r

h ∩H1
0,ΓD

.(3.15)
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Now for all χ ∈ V r
h ∩H1

0,ΓD
,

aγh(uγ
h − uG

h , u
γ
h − uG

h ) = aγh(u− uG
h , u

γ
h − uG

h )

= aγh(u− uG
h , u

γ
h − uG

h − χ)

=
∑

K∈Th

(∇(u− uG
h ),∇(uγ

h − uG
h − χ))K

−
∑
e∈EI

h

〈{
∂n(u− uG

h )
}
, [uγ

h]
〉
e
−

∑
e∈ED

h

〈
∂n(u− uG

h ), uγ
h − gD

〉
e

=
∑

K∈Th

(∇e + ∇(uγ
h − uG

h ),∇(uγ
h − uG

h − χ))K

−
∑
e∈EI

h

〈
{∂ne} +

{
∂n(uγ

h − uG
h )

}
, [uγ

h]
〉
e

−
∑
e∈ED

h

〈
∂ne + ∂n(uγ

h − uG
h ), uγ

h − gD
〉
e
.

Then integration by parts of (∇e,∇(uγ
h − uG

h − χ))K gives

aγh(uγ
h − uG

h , u
γ
h − uG

h )

=
∑

K∈Th

((
f + Δuγ

h, u
γ
h − uG

h − χ
)
K

+
(
∇(uγ

h − uG
h ),∇(uγ

h − uG
h − χ)

)
K

)
−

∑
e∈EI

h

(〈
[∂nu

γ
h], {uγ

h − uG
h − χ}

〉
e
+
〈{

∂n(uγ
h − uG

h )
}
, [uγ

h]
〉
e

)
−

∑
e∈ED

h

〈
∂n(uγ

h − uG
h ), uγ

h − gD
〉
e
−

∑
e∈EN

h

〈
∂nu

γ
h − gN , uγ

h − uG
h − χ

〉
e
.

In view of the coercivity of aγh on V r
h , using the arithmetic-geometric mean inequality,

we obtain

ca
∑

K∈Th

‖∇(uγ
h − uG

h )‖2
K + (γ − γ0)

∑
e∈EI

h∪ED
h

h−1
e |[uγ

h − uG
h ]|2e

≤ ε1
2

∑
K∈Th

‖∇(uγ
h − uG

h )‖2
K +

1

2ε1

∑
K∈Th

‖∇(uγ
h − uG

h − χ)‖2
K

+
1

2ε2γ

∑
K∈Th

h2
K‖f + Δuγ

h‖2
K +

ε2γ

2

∑
K∈Th

h−2
K ‖uγ

h − uG
h − χ‖2

K

+
1

2ε2γ

∑
e∈EI

h

he|[∂nuγ
h]|2e +

ε2γ

2

∑
e∈EI

h∪EN
h

h−1
e |{uγ

h − uG
h − χ}|2e

+
ε1
2

∑
e∈EI

h∪ED
h

he|
{
∂n(uγ

h − uG
h )

}
|2e +

1

2ε1

∑
e∈EI

h∪ED
h

h−1
e |[uγ

h − uG
h ]|2e

+
1

2ε2γ

∑
e∈EN

h

he|∂nuγ
h − gN |2e,(3.16)

where ca and γ0 are as in Lemma 3.1. Using the trace and inverse inequalities, it
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follows that ∑
e∈EI

h∪ED
h

he|
{
∂n(uγ

h − uG
h )

}
|2e ≤ c1

∑
K∈Th

‖∇(uγ
h − uG

h )‖2
K ,(3.17)

∑
e∈EI

h∪EN
h

h−1
e |{uγ

h − uG
h − χ}|2e ≤ c2

∑
K∈Th

h−2
K ‖uγ

h − uG
h − χ‖2

K ,(3.18)

where c1 and c2 depend only on r and θ0. Now choose χ ∈ V r
h ∩H1

0,ΓD
to approximate

uγ
h − uG

h as in Theorem 2.1(ii). Using (3.18) and (3.17) in (3.16), we have

ca
∑

K∈Th

‖∇(uγ
h − uG

h )‖2
K + (γ − γ0)

∑
e∈EI

h∪ED
h

h−1
e |[uγ

h − uG
h ]|2e

≤ ε1
2

(1 + c1)
∑

K∈Th

‖∇(uγ
h − uG

h )‖2
K +

1

2ε2γ

∑
K∈Th

h2
K‖f + Δuγ

h‖2
K

+
1

2ε2γ

∑
e∈EI

h

he|[∂nuγ
h]|2e +

1

2ε2γ

∑
e∈EN

h

he|∂nuγ
h − gN |2e

+

(
1 + c3
2ε1

+
ε2(1 + c2)c3γ

2

) ∑
e∈EI

h∪ED
h

h−1
e |[uγ

h − uG
h ]|2e,(3.19)

where c3 is the constant in (2.4). Now choose ε1 small so that ε1(1 + c1) ≤ ca and
choose ε2 small so that ε2(1 + c2)c3 ≤ 1. Then for γ ≥ γ1 := 4

(
γ0 + 1+c3

2ε1

)
we will

have γ − γ0 − 1+c3
2ε1

− γ
2 ≥ 1

4γ. Note that ca, γ0, c1, c2, c3 and consequently ε1, ε2, γ1

depend only on r and θ0. Thus, from (3.19) we obtain

ca
2

∑
K∈Th

‖∇(uγ
h − uG

h )‖2
K +

1

4
γ

∑
e∈EI

h∪ED
h

h−1
e |[uγ

h − uG
h ]|2e

≤ 1

2ε2γ

( ∑
K∈Th

h2
K‖f + Δuγ

h‖2
K +

∑
e∈EI

h

he|[∂nuγ
h]|2e +

∑
e∈EN

h

he|∂nuγ
h − gN |2e

)
.(3.20)

Using assertions (3.9)–(3.11) in (3.20), we obtain (3.12). This concludes the
proof.

Remark 3.1.

(i) In view of (3.20), one may obtain lower and upper bounds for
∑

K∈Th
‖∇e‖2

K

with only the three terms on the left sides of (3.9), (3.10), and (3.11).
(ii) Inequality (3.12) is important in that it confirms the right side of (3.3) as both

an upper and a lower bound for the error
∑

K∈Th
‖∇e‖2

K and thus completes
Theorem 3.2 of [17].

(iii) In [15] the upper bound analogous to (3.3) contains only γ and thus constitutes
a stronger result than ours in this respect. On the other hand, the fact that
the lower bound (3.12) contains γ2 is significant and plays an important role
in the convergence proof of the adaptive algorithm.

4. Convergence of the adaptive scheme. In this section we will describe in
detail our adaptive algorithm and prove its convergence under appropriate assump-
tions. The algorithm, which is iterative in nature, consists of constructing a sequence
of meshes and corresponding approximations whereby each cycle consists of the fol-
lowing four steps:
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1. Given a mesh TH , a DG approximation uγ
H is constructed by solving (3.1)

exactly (to machine precision). In practice, however, only an approximate
solution is found by a fast iterative method, e.g., Multigrid. In that case, the
additional errors caused must be taken into account.

2. An (a posteriori) estimation of the error eH is obtained by calculating, e.g.,
the right side of (3.3) without the terms containing γ, their exclusion being
motivated by (3.20).

3. Based on the information supplied by the a posteriori error estimate certain
triangles and edges of TH are marked for refinement. This is the marking
strategy. It is patterned after that of [14].

4. The triangles and edges marked for refinement in step 3 lead to a set of
triangles to be refined in a specific way. This is the refinement strategy and
defines the new mesh Th.

Our convergence result can be summarized as follows: Let TH be a mesh with V r
H

denoting the corresponding discontinuous finite element space, and let Th denote a
refinement of TH obtained by following the above steps. Let uγ

h and uγ
H denote the DG

solutions in V r
h and V r

H , respectively, and eh and eH the corresponding errors. Then,
under certain assumptions on the data of the BVP (1.1)–(1.3) and for γ sufficiently
large, there holds

aγh(eh, eh) ≤ ρ aγH(eH , eH), 0 < ρ < 1.(4.1)

Let us note that such convergence results are based in an essential manner on an
orthogonality relation which in this context is written as

aγh(eH , eH) = aγh(eh, eh) + aγh(uγ
h − uγ

H , uγ
h − uγ

H).(4.2)

The convergence of the algorithm hinges on obtaining a fixed reduction in the
error, and this depends in a crucial manner on the nonnegative quantity aγh(uγ

h − uγ
H ,

uγ
h − uγ

H) being sufficiently large with respect to the other two terms in (4.2). How-
ever, examples of problems can be constructed, in particular when the solution u is
oscillatory, whereby aγh(uγ

h − uγ
H , uγ

h − uγ
H) = 0 on an arbitrarily long sequence of

meshes, each one obtained from the previous one by full refinement. See, e.g., [19],
[20], [14]. It turns out that our assumptions on the data preclude such occurrences,
resulting in the linear convergence rate (4.1).

Before engaging in the proof of the theorem, we immediately notice a difficulty
presented by the fact that we have aγh(eH , eH) on the left-hand side of (4.2) instead
of aγH(eH , eH). Another basic problem is that aγh(·, ·) is not coercive on the energy
space. We will show below that aγh(eh, eh) behaves like a norm, thus giving a meaning
to the convergence result limh→0 a

γ
h(eh, eh) = 0 implied by (4.1).

We deal with the first problem by showing that aγh(eH , eH) is bounded by
aγH(eH , eH) plus a nonnegative quantity that can be absorbed in other terms.

Proposition 4.1. Suppose the mesh Th is not too fine with respect to TH . Then

aγh(eH , eH) ≤ aγH(eH , eH) + cγ
∑

e∈EI
H∪ED

H

h−1
e | [eH ] |2e

= aγH(eH , eH) + cγ
∑
e∈EI

H

h−1
e | [uγ

H ] |2e + cγ
∑
e∈ED

H

h−1
e |gD − uγ

H |2e.(4.3)

Proof. Indeed, we have

aγh(eH , eH) =
∑

K∈Th

‖∇eH‖2
K −

∑
e∈EI

h∪ED
h

(
2 〈{∂neH} , [eH ]〉e − γh−1

e | [eH ] |2e
)
.(4.4)
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Since u is smooth and uγ
H is a polynomial on each K ∈ TH , we have

∑
K∈Th

‖∇eH‖2
K =∑

K∈TH
‖∇eH‖2

K . Now if e ∈ EI
h is a “completely” new edge, i.e., is in the interior of

some K ∈ TH , then [eH ]
∣∣
e

= 0. Also, since Γ is polygonal, edges e ∈ ED
h are parts of

edges in ED
H . Thus∑

e∈EI
h∪ED

h

〈{∂neH} , [eH ]〉e =
∑

e∈EI
H∪ED

H

〈{∂neH} , [eH ]〉e .

As for the terms in (4.4) that contain γ, the problem is to contend with the weights
h−1
e of the new edges. Again, there are no contributions from the completely new

edges. Thus

γ
∑

e∈EI
h∪ED

h

h−1
e | [eH ] |2e ≤ γ

∑
e∈EI

H∪ED
H

ν(e)h−1
e | [eH ] |2e,

where for e ∈ EI
H ∪ ED

H , ν(e) = max{ he

he′
| e′ ∈ EI

h ∪ ED
h , e′ ∈ e} ≥ 2 is a number

that measures the fineness of Th with respect to TH . Assuming that ν(e) is uniformly
bounded, i.e., Th is not too fine relative to TH , we finally obtain (4.3).

We next tackle the lack of coercivity of aγh(., .) on the energy space Eh by showing
that, nevertheless, as far as eh is concerned, aγh(., .) behaves like a norm!

Proposition 4.2. There exists a constant γ2 depending only on r and θ0 such
that if γ ≥ γ2, then for some constant C1 > 0 depending only on r and θ0 there holds

aγh(eh, eh) ≥ 1

2

∑
K∈Th

‖∇eh‖2
K + C1γ

2
∑
e∈EI

h

h−1
e | [uγ

h] |2e + C1γ
2
∑
e∈ED

h

h−1
e |gD − uγ

h|2e.
(4.5)

Proof. We have

aγh(eh, eh) =
∑

K∈Th

‖∇eh‖2
K −

∑
e∈EI

h∪ED
h

(
2 〈{∂neh} , [eh]〉e − γh−1

e | [eh] |2e
)
.(4.6)

Moreover, for all χ ∈ V r
h ∩H1(Ω) satisfying χ

∣∣
ΓD

= gD, we have∑
e∈EI

h∪ED
h

〈{∂neh} , [eh]〉e =
∑

e∈EI
h∪ED

h

〈{∂neh} , [χ− uγ
h]〉

e
.

On the other hand, by virtue of the orthogonality identity (3.2),

0 = aγh(eh, χ− uγ
h) =

∑
K∈Th

(∇eh,∇(χ− uγ
h))K −

∑
e∈EI

h∪ED
h

(
〈{∂n(χ− uγ

h)} , [eh]〉
e

+ 〈{∂neh} , [χ− uγ
h]〉

e
− γh−1

e 〈[eh] , [χ− uγ
h]〉

e

)
.

Thus∑
e∈EI

h∪ED
h

〈{∂neh} , [eh]〉e =
∑

K∈Th

(∇eh,∇(χ− uγ
h))K

+
∑
e∈EI

h

(
〈{∂n(χ− uγ

h)} , [uγ
h]〉

e
+ γh−1

e | [uγ
h] |2e

)
−

∑
e∈ED

h

(
〈{∂n(χ− uγ

h)} , gD − uγ
h〉e − γh−1

e |gD − uγ
h|2e

)
.(4.7)
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We now choose χ in (4.7) as in Theorem 2.1(ii). Also, using the trace and inverse
inequalities, for any ε > 0 we obtain∣∣∣∣∣ ∑

e∈EI
h∪ED

h

〈{∂neh} , [eh]〉e

∣∣∣∣∣ ≤ cε
∑

K∈Th

‖∇eh‖2
K +

(
γ +

c

ε

) ∑
e∈EI

h

h−1
e | [uγ

h] |2e

+
(
γ +

c

ε

) ∑
e∈ED

h

h−1
e |gD − uγ

h|2e.(4.8)

Using this in (4.6), we obtain

aγh(eh, eh) ≥ (1 − 2cε)
∑

K∈Th

‖∇eh‖2
K

−
(
γ +

2c

ε

)( ∑
e∈EI

h

h−1
e | [uγ

h] |2e +
∑
e∈ED

h

h−1
e |gD − uγ

h|2e

)
.(4.9)

Now note that the last two sums in (4.9) are dominated by c
γ2

∑
K∈Th

‖∇eh‖2
K as

shown by the a posteriori estimate (3.12). Hence, choosing ε = 1
8c and then using

(3.12), for γ sufficiently large we obtain the desired result.
Remark 4.1. The proof of Proposition 4.2 also yields

aγh(eh, eh) ≤
(
1 +

1

γ

) ∑
K∈Th

‖∇eh‖2
K + C2γ

∑
e∈EI

h

h−1
e | [uγ

h] |2e + C2γ
∑
e∈ED

h

h−1
e |gD − uγ

h|2e.
(4.10)

We now begin the proof of (4.1). Let Th be a refinement of TH . Since eH ∈ EH ⊆
Eh, we integrate

∑
K∈Th

(∇eH ,∇v)K by parts to obtain∑
K∈Th

(∇eH ,∇v)K =
∑

K∈Th

(f + Δuγ
H , v)K +

∑
e∈EI

h

(
〈{∂neH} , [v]〉e + 〈{v} , [∂neH ]〉e

)
+

∑
e∈ED

h

〈∂neH , v〉e +
∑
e∈EN

h

〈gN − ∂nu
γ
H , v〉e ∀v ∈ Eh.(4.11)

It then follows from (4.11) and the definition of aγh(·, ·) that∑
K∈Th

(f + Δuγ
H , v)K −

∑
e∈EI

h

〈[∂nuγ
H ] , {v}〉e +

∑
e∈EN

h

〈gN − ∂nu
γ
H , v〉e = aγh(eH , v)

+
∑
e∈EI

h

(
〈{∂nv} , [eH ]〉e − γh−1

e 〈[eH ] , [v]〉e
)

(4.12)

+
∑
e∈ED

h

(
〈∂nv, eH〉e − γh−1

e 〈eH , v〉e
)

∀v ∈ Eh.

At this point we write aγh(eH , v) = aγh(uγ
h − uγ

H , v) + aγh(eh, v) and note that
aγh(eh, v) = 0 ∀v ∈ V r

h . Also, it turns out that it is crucial to eliminate the troublesome
terms containing γ. These considerations lead us to use test functions from the
subspaces V r

h ∩H1
0,ΓD

of Eh encountered in the proof of Theorem 3.2. We then have
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the key identity∑
K∈Th

(f + Δuγ
H , v)K −

∑
e∈EI

h

〈[∂nuγ
H ] , {v}〉e +

∑
e∈EN

h

〈gN − ∂nu
γ
H , v〉e

= aγh(uγ
h − uγ

H , v) −
∑
e∈EI

h

〈{∂nv} , [uγ
H ]〉e +

∑
e∈ED

h

〈∂nv, gD − uγ
H〉e(4.13)

=
∑

K∈Th

(∇(uγ
h − uγ

H),∇v)K −
∑
e∈EI

h

〈{∂nv} , [uγ
h]〉

e
+

∑
e∈ED

h

〈∂nv, gD − uγ
h〉e

∀v ∈ V r
h ∩H1

0,ΓD
. The principal thrust of the proof of convergence is to use (4.13) to

bound the terms h2
K‖f+Δuγ

H‖2
K , he| [∂nuγ

H ] |2e, and he|gN−∂nu
γ
H |2e by an appropriate

functional of uγ
h − uγ

H . This estimation is accomplished by, on the one hand, marking
certain triangles and edges of TH for refinement (marking strategy) and, on the other
hand, ensuring that the test function space V r

h ∩H1
0,ΓD

is large enough to yield the
desired estimates. Consequently, the refinement must be done according to some
specific rules (refinement strategy).

We next describe our marking strategy, which is modeled after the one in Dörfler
[14].

Marking Strategy.

For some number θ ∈ (0, 1), let RK
H , RI

H , and RN
H be any subsets of TH , EI

H , and
EN
H , respectively, such that∑

K∈RK
H

h2
K‖f + Δuγ

H‖2
K ≥ θ

∑
K∈TH

h2
K‖f + Δuγ

H‖2
K ,

∑
e∈RI

H

he| [∂nuγ
H ] |2e ≥ θ

∑
e∈EI

H

he| [∂nuγ
H ] |2e,

∑
e∈RN

H

he|gN − ∂nu
γ
H |2e ≥ θ

∑
e∈EN

H

he|gN − ∂nu
γ
H |2e.

With ER and E denoting the sums on the left and right sides, respectively, we
have

ER ≥ θE.(4.14)

Refinement Strategy.

(I) A marked triangle K ∈ RK
H will be cut into a number of equivalent triangles.

This number depends on r, as shown in Figure 4.1.

r = 2 r = 3 r = 4

Fig. 4.1.
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e −→

e

−→

Fig. 4.2.

(II) Let e = ∂K+ ∩ ∂K− ∈ RI
H be a marked interior edge. Then one or both of

K+ and K− will be cut in a manner depending on whether e is a full edge of
both K+ and K− (see Figure 4.2).

(III) Let e = ∂K ∩ ΓN be a marked edge in RN
H . Then K will be cut into four

equivalent triangles.
Remark 4.2. (i) There may be some overlap between requirements (I), (II),

and (III).
(ii) Additional requirements may also be imposed. For instance, one may wish to

curtail the number of hanging nodes after refinement. Indeed, to simplify the program-
ming we impose a maximum of one hanging node per interior edge. The combination
of (I), (II), and such rules may lead to a finer mesh. This is acceptable since larger
spaces V r

h and V r
h ∩H1

0,ΓD
will correspond to a finer mesh.

Estimation of h2
K‖f+Δuγ

H‖2
K . For K ∈ RK

H consider the partition TK shown
in Figure 4.1, corresponding to a given r with the understanding that the eventual
refinement of K may be finer than TK . We introduce the finite-dimensional spaces
SK given by

SK = {v ∈ C0(K), v
∣∣
K′ ∈ Pr−1(K

′) ∀K ′ ∈ TK , v = 0 on ∂K}.

It is clear that SK is a subspace of V r
h ∩ H1

0,ΓD
. Also, it is easily seen that a

function in SK is uniquely determined by its values at the nodes shown in Figure 4.1.
Thus dim(SK) ≤ d := r(r + 1)/2 = dim(Pr−1(K)). Furthermore, for each r, a basis
{φi}di=1 for SK can be constructed by “gluing” together Lagrangian-type functions
corresponding to the individual triangles in the partition TK . Indeed, it is not hard
to show that the functions {φi}di=1 are linearly independent.

Now letting {ψi}di=1 be the usual Lagrangian basis for Pr−1(K) corresponding
to the nodes shown in Figure 4.3, we form the “Gramian” matrix G given by Gij =
(φj , ψi)K , i, j = 1, . . . , d. We have the following lemma.

Lemma 4.1. G is nonsingular.
Proof. We will consider only the case r = 2; the remaining cases may be handled

in a similar manner or verified by direct (and tedious) calculation. With ν1, ν2, ν3

denoting the three nodes shown in Figure 4.1, let v2,v3 be the vectors emanating from
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r = 2 r = 3 r = 4

Fig. 4.3.

ν1 and terminating at ν2 and ν3, respectively. Let also φ1, φ2, φ3 be the (pyramidal)
basis functions corresponding to the nodes ν1, ν2, ν3 and denote their supports by
S1, S2, S3. Clearly,

φ2(x, y) = φ1(x− v2
1 , y − v2

2) ∀(x, y) ∈ S2 and

φ3(x, y) = φ1(x− v3
1 , y − v3

2) ∀(x, y) ∈ S3.

Suppose there exists ψ = ax + by + c ∈ P1(K) such that (φj , ψ) = 0, j = 1, 2, 3. We
will show that a = b = c = 0, thus implying the linear independence of the rows of G.

0 = (ψ, φ2)K =

∫
S2

ψ(x, y)φ2(x, y)dxdy =

∫
S2

ψ(x, y)φ1(x− v2
1 , y − v2

2)dxdy

=

∫
S1

ψ(x + v2
1 , y + v2

2)φ1(x, y)dxdy

=

∫
S1

ψ(x, y)φ1(x, y)dxdy + (av2
1 + bv2

2)

∫
S1

φ1(x, y)dxdy.

Now
∫
S1 ψ(x, y)φ1(x, y)dxdy = (ψ, φ1)K = 0. On the other hand, φ1 is nonnegative

and nonzero; thus we conclude from the above that av2
1 + bv2

2 = 0. In a similar way,
we obtain av3

1 + bv3
2 = 0. Since the vectors v2,v3 are linearly independent, it follows

that a = b = 0. Now that this has been shown, the fact that c = 0 readily follows
from (ψ, φ1)K = 0.

Corollary 4.1. Let P : Pr−1(K) → SK denote the operator given by (Pv, χ)K =
(v, χ)K ∀χ ∈ SK . Then ‖P · ‖K is a norm equivalent to ‖ · ‖K on Pr−1(K) with con-
stants that are independent of hK .

Proof. We only need to check the positivity of ‖P · ‖K to see that it is a norm.
Indeed, suppose Pv = 0 for some v ∈ Pr−1(K). It then follows that (v, φ)K = 0
∀φ ∈ SK . Since G is nonsingular, it follows that v = 0. The equivalence of the norms
is a consequence of finite dimensionality. The fact that the constants involved are
O(1) follows from a scaling argument.

To estimate f + Δuγ
H we take v = P (f + Δuγ

H) in (4.13). We get

‖P (f + Δuγ
H)‖2

K = (f + Δuγ
H , P (f + Δuγ

H))K

=
∑

K′∈Th,K

(∇(uγ
h − uγ

H),∇P (f + Δuγ
H))K′

−
∑

e∈EI
h,K

〈{∂nP (f + Δuγ
H)} , [uγ

h]〉
e

+
∑

e∈ED
h ∩∂K

〈∂nP (f + Δuγ
H), gD − uγ

h〉e ,(4.15)
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(b)

Fig. 4.4.

where Th,K = {K ′ ∈ Th, K ′ ⊆ K} and EI
h,K = {e ∈ EI

h, e ⊆ K}.
Now using the trace and inverse inequalities for any ε > 0, we have∑
K′∈Th,K

(∇(uγ
h − uγ

H),∇P (f + Δuγ
H))K′ ≤ cε‖f + Δuγ

H‖2
K

+
c

ε

∑
K′∈Th,K

h−2
K′‖∇(uγ

h − uγ
H)‖2

K′ .(4.16)

Moreover,∑
e∈EI

h,K

〈{∂nP (f + Δuγ
H)} , [uγ

h]〉
e
≤ cε‖f + Δuγ

H‖2
K +

c

ε

∑
e∈EI

h,K

h−3
e | [uγ

h] |2e,(4.17)

and

∑
e∈ED

h ∩∂K

| 〈∂nP (f + Δuγ
H), gD − uγ

h〉e | ≤ cε‖f + Δuγ
H‖2

K +
c

ε

∑
e∈ED

h ∩∂K

h−3
e |gD − uγ

h|2e.
(4.18)

Now using (4.16), (4.17), and (4.18) with a small ε in (4.15), it follows from Corol-
lary 4.1 that

h2
K‖f + Δuγ

H‖2
K ≤ c

∑
K′∈Th,K

‖∇(uγ
h − uγ

H)‖2
K′ + c

∑
e∈EI

h,K

h−1
e | [uγ

h] |2e

+
∑

e∈ED
h ∩∂K

h−1
e |gD − uγ

h|2e.(4.19)

Estimation of he| [∂nu
γ
H ] |2e. Let e ∈ RI

H be a marked edge. It follows from
the refinement strategy (see Figure 4.2) that e is a full edge of both K+ and K−,
where K+,K− may belong to TH or one of them at most may have been formed after
refinement. We construct a test function v ∈ V r

h ∩H1
0,ΓD

as follows:

(i) Let ṽ be the extension of [∂nu
γ
H ] |e to K̃ := K+∪K− by constants along lines

normal to e.
(ii) Let 
 be the continuous piecewise linear function whose support is the shaded

region in Figure 4.4(b) and which assumes the value 1 at the midpoint of e.
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We take v = ṽ
. Note that v belongs to V r
h ∩H1

0,ΓD
. Using this v in (4.13), we

obtain

〈[∂nuγ
H ] , {v}〉e =

∑
K′∈Th,K̃

(
(f + Δuγ

H , v)K′ − (∇(uγ
h − uγ

H),∇v)K′

)
+

∑
e∈EI

h,K̃

〈{∂nv} , [uγ
h]〉

e
−

∑
e∈ED

h ∩∂K̃

〈∂nv, gD − uγ
h〉e ,(4.20)

where Th,K̃ = {K ′ ∈ Th, K ′ ⊆ K̃} and EI
h,K̃

= {e ∈ EI
h, e ⊆ K̃}. Now note that

〈[∂nuγ
H ] , {v}〉e =

∫
e

| [∂nuγ
H ] |2
(s)ds.(4.21)

With 
 acting as a weight function, we have

he

∫
e

| [∂nuγ
H ] |2
(s)ds ≥ che| [∂nuγ

H ] |2e,(4.22)

where c is independent of he. Moreover, since 0 ≤ 
 ≤ 1 and ṽ is constant along lines
normal to e,

‖v‖2
K̃

≤ ‖ṽ‖2
K̃

=

∫
e

| [∂nuγ
H ] |2ν(s)ds ≤ che| [∂nuγ

H ] |2e,(4.23)

where ν is as in Figure 4.4(a). Now using the trace and inverse inequalities in (4.20),
for any ε > 0 we obtain

he| [∂nuγ
H ] |2e ≤ cε‖v‖2

K̃
+

c

ε

⎛⎝ ∑
K′∈Th,K̃

(
h2
K′‖f + Δuγ

H‖2
K′ + ‖∇(uγ

h − uγ
H)‖2

K′

)

+
∑

e∈EI
h,K̃

h−1
e | [uγ

h] |2e +
∑

e∈ED
h ∩∂K̃

h−1
e |gD − uγ

h|2e

⎞⎠ .(4.24)

Hence using (4.21)–(4.23) in (4.24), and choosing ε sufficiently small, we arrive at

he| [∂nuγ
H ] |2e ≤ c

∑
K′∈Th,K̃

(
h2
K′‖f + Δuγ

H‖2
K′ + ‖∇(uγ

h − uγ
H)‖2

K′

)
+ c

∑
e∈EI

h,K̃

h−1
e | [uγ

h] |2e + c
∑

e∈ED
h ∩∂K̃

h−1
e |gD − uγ

h|2e.(4.25)

Estimation of he|gN − ∂nu
γ
H |2e. We define a test function v ∈ V r

h ∩H1
0,ΓD

as
follows: Let ṽ be the extension of gN − ∂nu

γ
H by constants along lines normal to e,

and let 
 be the continuous piecewise linear function that vanishes outside of K and
that assumes the value 1 at the midpoint of e. We let v = ṽ
 and note that since
gN − ∂nu

γ
H is a polynomial of degree less than or equal to r − 2, v ∈ V r

h ∩ H1
0,ΓD

.
Using this v in (4.13), we obtain

〈gN − ∂nu
γ
H , v〉e = −(f + Δuγ

H , v)K +
∑

K′∈Th,K

(∇(uγ
h − uγ

H),∇v)K′

−
∑

e∈EI
h,K

〈{∂nv} , [uγ
h]〉

e
.(4.26)
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Using the trace and inverse inequalities, we obtain

he 〈gN − ∂nu
γ
H , v〉e ≤ cε‖v‖2

K +
c

ε

⎛⎝h2
K‖f + Δuγ

H‖2
K +

∑
K′∈Th,K

‖∇(uγ
h − uγ

H)‖2
K′

+
∑

e∈EI
h,K

h−1
e | [uγ

h] |2e

⎞⎠ .(4.27)

As in steps (4.21), (4.22), and (4.23), we have

he|gN − ∂nu
γ
H |2e ≤ che 〈gN − ∂nu

γ
H , v〉e and ‖v‖2

K ≤ che|gN − ∂nu
γ
H |2e.(4.28)

Thus, from (4.27) it follows that

he|gN − ∂nu
γ
H |2e ≤ ch2

K‖f + Δuγ
H‖2

K + c
∑

K′∈Th,K

‖∇(uγ
h − uγ

H)‖2
K′ + c

∑
e∈EI

h,K

h−1
e | [uγ

h] |2e.
(4.29)

We are now ready to state and prove the main result of this paper.
Theorem 4.1. Let uγ

h and uγ
H denote the DG solutions in V r

h and V r
H , respec-

tively, and eH and eh the corresponding errors. Assume that
(i) The data of the BVP (1.1)–(1.3) is such that f ∈ Pr−1(Ω), gD ∈ Pr−1(ΓD),

and gN ∈ Pr−2(ΓN ).
(ii) Th is not too fine with respect to TH .
(iii) For some θ ∈ (0, 1) the marking of triangles and edges of the mesh TH and

their refinement is done according to the rules specified above.
Then, there exists γ3 depending only on r, θ0, and θ such that for all γ ≥ γ3, (4.1)
holds with ρ given by (4.36).

Proof. First, using the trace and inverse inequalities, we have for γ ≥ γ4(r, θ0)

aγh(uγ
h − uγ

H , uγ
h − uγ

H) ≥ 1

2

∑
K∈Th

‖∇(uγ
h − uγ

H)‖2
K +

1

2

∑
e∈EI

h∪ED
h

h−1
e | [uγ

h − uγ
H ] |2e.

(4.30)

On the other hand, from (4.19), (4.25), and (4.29), it follows that for some con-
stant C3 > 0 depending only on r and θ0

ER ≤ C3

( ∑
K∈Th

‖∇(uγ
h − uγ

H)‖2
K +

∑
e∈EI

h

h−1
e | [uγ

h] |2e +
∑
e∈ED

h

h−1
e |gD − uγ

h|2e
)
.(4.31)

Next, using (4.2), (4.3), (4.30), and (4.31), we obtain

aγH(eH , eH) + cγ
∑
e∈EI

H

h−1
e | [uγ

H ] |2e + cγ
∑
e∈ED

H

h−1
e |gD − uγ

H |2e ≥ aγh(eH , eH)

= aγh(eh, eh) + aγh(uγ
h − uγ

H , uγ
h − uγ

H)

≥ aγh(eh, eh) +
1

2

∑
K∈Th

‖∇(uγ
h − uγ

H)‖2
K(4.32)

≥ aγh(eh, eh) +
ER
2C3

− 1

2

⎛⎝∑
e∈EI

h

h−1
e | [uγ

h] |2e +
∑
e∈ED

h

h−1
e |gD − uγ

h|2e

⎞⎠ .
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Now from (3.20) it follows for γ ≥ γ5(r, θ0, θ) that

cγ

⎛⎝ ∑
e∈EI

H

h−1
e | [uγ

H ] |2e +
∑
e∈ED

H

h−1
e |gD − uγ

H |2e

⎞⎠ ≤ cE

γ
≤ θE

4C3
.(4.33)

Also, from (4.5) we have∑
e∈EI

h

h−1
e | [uγ

h] |2e +
∑
e∈ED

h

h−1
e |gD − uγ

h|2e ≤ 1

C1γ2
aγh(eh, eh).(4.34)

Thus, using (4.33) and (4.34) in (4.32), we obtain

aγH(eH , eH) ≥
(

1 − 1

2C1γ2

)
aγh(eh, eh) +

θE

4c3
.(4.35)

We choose γ large so that 1 − 1
2C1γ2 > 0. On the other hand, using (4.10) with H

instead of h (recall that this result holds for a generic mesh), it follows from (3.20)
and (3.3) that for some constant C4 > 0 depending only on r and θ0 one has

E ≥ C4a
γ
H(eH , eH).

Using this in (4.35), it follows that(
1 − θC4

4C3

)
aγH(eH , eH) ≥

(
1 − 1

2C1γ2

)
aγh(eh, eh).

If θC4

4C3
≥ 1, then this means that aγh(eh, eh) = 0. If, on the other hand, 0 < θC4

4C3
< 1,

then we obtain (4.1) with ρ given by

ρ =
1 − θC4

4C3

1 − 1
2C1γ2

.(4.36)

The conclusion of the theorem now follows for γ sufficiently large.
Remark 4.3. The conditions on the data of the BVP (1.1)–(1.3) are restrictive

and are the price paid to simplify the proofs. We believe that they can be relaxed or
dispensed with by introducing appropriate projections of the data functions. See, e.g.,
[15] and [20]. The generalization of our results including an accounting for the effects
of quadrature errors is being pursued.

5. Numerical experiments. In this section we present the results of some
numerical experiments to exhibit the performance of the adaptive strategy outlined in
section 4. We used the Baker version of the method since the forms {∂nv} = ∇v+ ·n+

are easier to implement.
As a representative of a problem with a smooth solution we chose

−Δu = 2π2 sinπx sinπy in Ω = [0, 1]2, u = 0 on ∂Ω,(P1)

with u = sinπx sinπy. The next problem has the smooth but oscillatory solution
u = sin 8πx sin 8πy:

−Δu = 128π2 sin 8πx sin 8πy in Ω = [0, 1]2, u = 0 on ∂Ω.(P2)
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Fig. 5.1. Effectivity indices; r = 3, γ = 6.3.

Finally, as an example of a solution with a singularity we considered the problem

−Δu = 0 in Ω, u = gD on ΓD = ∂Ω,(P3)

where Ω is the polygon with vertices (0, 0), (−1,−1), (1,−1), (1, 1), (−1, 1), (0, 0)
and has a reentrant corner at (0, 0). The datum gD is adjusted so that the solution
is u = r2/3 sin 2θ

3 in polar coordinates.
We generated an adaptive code written in the C language and ran the experiments

on a workstation with an Intel Pentium 4 chip rated at 3.06 GHz. The linear systems
were solved by Multigrid with point Gauss–Seidel smoothing as a preconditioner for
the conjugate gradient method. To assess the performance of the estimator and the
adaptive algorithm, we monitored the following three quantities:

aγh(e, e) =
∑

K∈Th

‖∇e‖2
K − 2

∑
e∈EI

h∪ED
h

〈{∂ne} , [e]〉e + γ(r − 1)2
∑

e∈EI
h∪ED

h

h−1
e |[e]|2e,

‖e‖1,h =

( ∑
K∈Th

‖∇e‖2
K +

∑
e∈EI

h∪ED
h

(
he |{∂ne}|2e + γ(r − 1)2h−1

e |[e]|2e
))1/2

,

η =

( ∑
K∈Th

h2
K‖f + Δuγ

h‖2
K +

∑
e∈EI

h

he

∣∣[∂nuγ
h

]∣∣2
e

+
∑
e∈EN

h

he

∣∣gN − ∂nu
γ
h

∣∣2
e

+ γ2(r − 1)4
∑
e∈EI

h

h−1
e

∣∣[uγ
h]
∣∣2
e

+ γ2(r − 1)4
∑
e∈ED

h

h−1
e

∣∣gD − uγ
h

∣∣2
e

)1/2

.

These quantities are modified versions of the bilinear form, the energy norm, and
the residual error estimator. Since the coercivity threshold is known to increase
quadratically as a function of the degree r− 1, we replaced γ by γ(r− 1)2. This way,
the calculations could be performed without the need for adjusting γ with r. Following
the same reasoning, we attached γ2(r−1)4 to the jump terms of the residual estimator
since γ2 accompanied these terms both in the upper and lower bounds.

The first set of experiments concerned a study of the effectivity index η/‖e‖1,h as
a function of the degrees of freedom (dof’s). Figure 5.1 shows the effectivity indices
for all three test problems. Starting with an initial mesh of 16 triangles (96 dof’s),
the mesh was refined uniformly until a maximum of about 106. In particular, the
indices behaved rather well with values close to 1 (more so for (P1) and (P2) than
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Fig. 5.2. Dependence of effectivity indices on γ; r = 3.

Table 5.1

Total CPU time (sec).

θ P1 P2 P3
0.3 65 95 35
0.5 24 34 17
0.9 11 13 11

Table 5.2

Adaptive iterations.

θ P1 P2 P3
0.3 108 75 89
0.5 40 26 39
0.9 9 6 14

Table 5.3

Total triangles in final mesh.

θ P1 P2 P3
0.3 12853 16943 4458
0.5 12823 17780 5064
0.9 20170 22394 8208

for (P3)), and the index for (P2) took longer to stabilize given the oscillatory nature
of the solution. Similar behavior was observed for r = 2, 4, 5.

We also wanted to study the effect of γ on the effectivity indices. Figure 5.2 shows
the results of experiments concerning test problems (P2) and (P3), r = 3, and values
of γ from 5 to 1000. While such an effect does indeed exist, it is nevertheless quite
mild, as evidenced by the narrow range of the changes in the effectivity indices. We
also note that the effectivity indices seem to be convergent as γ increases. Similar
results were obtained for (P1) and r = 2, 4, 5.

The remaining experiments were devoted to the validation of the convergence
characteristics of the adaptive algorithm. We ran several experiments with r = 2, 3, 4,
all three test problems, and several values of θ and γ. In all cases all three quantities
aγh(e, e), ‖e‖1,h, and η decreased monotonically. We should also mention that in
order to simplify the program, we cut the marked triangles into four triangles only,
in variance with the patterns shown in Figure 4.1. The plots in Figure 5.3 show
the excellent agreement between the error ‖e‖1,h and the estimator η. On the other
hand, the bilinear form aγh(e, e) seems to follow a very similar but parallel trajectory,
evidence of its equivalence to the other two. The two plots of Figure 5.4 show the
corresponding final meshes for (P2) and (P3), respectively.

Next, we wanted to study the effect of the choice of θ on the performance of the
adaptive algorithm. Indeed, the experiments indicate that while convergence is not in
doubt, the patterns of refinement are strongly influenced by this choice, as evidenced
by the final triangle count and, more importantly, the CPU time. Postponing a
detailed study of this important issue to a future work, we nevertheless maintain that
if we accept the criterion that the most efficient algorithm is the one with the least
execution time, then larger values of θ should be preferred. Tables 5.1–5.3 show,
respectively, the CPU time, the number of iterations to convergence, and the triangle
count in the final mesh for the three test problems and θ = 0.3, 0.5, 0.9. While smaller
values of θ lead to a smaller number of triangles, they are up to six times costlier in
CPU time. This is due to the fact that at every cycle, relatively few triangles and
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Fig. 5.4. Final meshes for (P2), (P3); r = 3, γ = 6.3, θ = 0.5.

edges are refined, resulting in a large, one could say unacceptable, number of cycles.

Tables 5.4, 5.5, and 5.6 encapsulate the results of an attempt to study the effect
of θ on both the number of refinement levels and the distribution of triangles over
the levels; in a sense they provide a spectral analysis of the mesh hierarchy. For test
problem (P1), the value θ = 0.9 caused a shift of the refinement to a higher level with
a substantial number of triangles on level 6 (Table 5.4). On the other hand, Table 5.6
shows the opposite behavior for test problem (P3), whereby the smaller values of
θ = 0.3, 0.5 created five additional levels, albeit with a relatively small number of
additional triangles.

These experiments, although limited in scope, provide a validation of the theo-
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Table 5.4

(P1) ( |T0| = 16) Level leaf triangle distribution.

Level / θ 0.3 0.5 0.9
0–3 0 0 0
4 1177 1187 36
5 11676 11636 14942
6 - - 5192

Table 5.5

(P2) ( |T0| = 128) Level leaf triangle distribution.

Level / θ 0.3 0.5 0.9
0–2 0 0 0
3 5275 4996 3458
4 11668 12784 18936

Table 5.6

(P3) ( |T0| = 12) Level leaf triangle distribution.

Level / θ 0.3 0.5 0.9
0–2 0 0 0
3 374 314 57
4 1311 1496 2256
5 873 1065 1955
6 625 715 1316
7 409 483 910
8 275 325 587
9 192 208 416
10 120 148 281
11 78 92 186
12 60 66 110
13 42 50 94
14 18 18 40
15 18 18 -
16 18 18 -
17 18 18 -
18 23 22 -
19 4 8 -

retical results of the paper. They also point to the importance of further exploration
of the mechanisms of marking and refinement. In particular, a static choice of θ
is far from being satisfactory and must be replaced by a more dynamic (adaptive!)
mechanism.

Acknowledgments. The authors thank Mr. Mike Saum for help in the devel-
opment of the code and the generation of tables and figures. The initial meshes were
generated by the program “Triangle” developed by J. R. Shewchuk [22].
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OPTIMIZED SCHWARZ WAVEFORM RELAXATION METHODS
FOR ADVECTION REACTION DIFFUSION PROBLEMS∗
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Abstract. We study in this paper a new class of waveform relaxation algorithms for large sys-
tems of ordinary differential equations arising from discretizations of partial differential equations
of advection reaction diffusion type. We show that the transmission conditions between the subsys-
tems have a tremendous influence on the convergence speed of the waveform relaxation algorithms,
and we identify transmission conditions with optimal performance. Since these optimal transmission
conditions are expensive to use, we introduce a class of local transmission conditions of Robin type,
which approximate the optimal ones and can be used at the same cost as the classical transmission
conditions. We determine the transmission conditions in this class with the best performance of
the associated waveform relaxation algorithm. We show that the new algorithm is well posed and
converges much faster than the classical one. We illustrate our analysis with numerical experiments.
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1. Introduction. Waveform relaxation algorithms have been invented to solve
extremely large systems of ordinary differential equations arising in circuit simulation
[26]. They use a partition of the original problem into subproblems, which are then
solved separately, and an iteration with information exchange between subproblems
leads to the solution of the original problem. Since the solution of the subproblems
can be done in parallel, these algorithms are very well suited for implementations
on parallel computers. The main drawback of waveform relaxation algorithms is in
general their slow convergence, for a review, see [1].

There are two main classical approaches in the literature to solve parabolic prob-
lems in parallel. The first approach consists of discretizing the equations uniformly in
time with an implicit scheme and then applying a domain decomposition technique to
the elliptic problems obtained at each time step, see, for example, [2, 32, 3] and refer-
ences therein. This approach has the disadvantage that a uniform time discretization
needs to be enforced across different subdomains, and one thus loses one of the main
features of domain decomposition algorithms, namely, to be able to treat different
subdomains numerically differently with an adapted procedure for each subdomain.
A second disadvantage is that small amounts of information need to be exchanged
at every time level, which can be costly in a parallel environment where the startup
cost to send information is significant. In addition, the iteration in time cannot pro-
ceed before all the subdomains have converged. An interesting variant, which avoids
iterating by making explicit predictions at the interfaces, can be found in [36].

The second classical approach consists of discretizing the equations in space first
and then applying a waveform relaxation algorithm to the large system of ordinary
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‡LAGA, Institut Galilée, Université Paris XIII, 93430 Villetaneuse, France (halpern@math.

univ-paris13.fr).

666



OPTIMIZED SCHWARZ WAVEFORM RELAXATION 667

differential equations obtained from the spatial discretization. A formulation using
discretized subdomains can be found in [25]. The main disadvantage of this approach
is that spatial information of the connectivity of the subsystems in the large system of
ordinary differential equations is lost, and parameters like physical overlap and infor-
mation exchange are difficult to interpret in this context. Using a different approach
and abandoning the idea of subsystems, efficient waveform relaxation algorithms of
multigrid type, see [29, 38, 21, 22], and also convolution waveform relaxation algo-
rithms, see [20, 23], have been introduced and analyzed.

To avoid the inherent problems of the classical decomposition approaches, wave-
form relaxation algorithms for problems in space-time were formulated in [16, 14, 13]
and independently in [18] directly at the continous level without discretization. The
spatial domain is decomposed into subdomains, and time dependent problems are
solved iteratively on subdomains, exchanging information at the interfaces between
subdomains. This approach permits a different numerical treatment in both space
and time of the subdomain problems, and information is exchanged less often be-
tween subdomains. The iteration is defined as in the classical Schwarz case, but
as in waveform relaxation, time dependent subproblems are solved, which explains
the names of these methods. Unfortunately these algorithms, although robust with
respect to refinement, if the overlap is held constant, are still converging only slowly.

We show in this paper for a model problem of advection reaction diffusion type
why the convergence of the Schwarz waveform relaxation algorithm is slow. By analyz-
ing the convergence behavior of the classical overlapping Schwarz waveform relaxation
algorithm applied to the model problem, we show that the classical algorithm is using
ineffective transmission conditions. The classical transmission conditions inhibit the
information exchange between subdomains and therefore slow down the convergence
of the algorithm. Using ideas introduced in [10], we derive optimal transmission con-
ditions for the Schwarz waveform relaxation algorithm. These transmission conditions
coincide with the transparent boundary conditions used to truncate computational do-
mains, which were first studied in [7] for hyperbolic problems and in [19] for advection
diffusion problems. Transparent transmission conditions lead to Schwarz waveform re-
laxation algorithms which converge in a finite number of steps, equal to the number of
subdomains, see [11] for the wave equation case. In general, however, the transparent
boundary conditions are expensive to compute since they involve nonlocal operators.
Similar to the approach for stationary problems in [34, 24, 8, 17], we approximate
the transparent transmission conditions locally at the interfaces between subdomains,
see [10, 12, 31]. This leads to algorithms which converge even without overlap and
are well suited to couple different numerical methods, like finite element and finite
differences methods, see [4]. We then optimize the convergence rate, including an
overlap in the optimization if desired.

Since the algorithms are eventually discretized to be used on a parallel computer,
we analyze the performance of the optimized algorithms asymptotically as the dis-
cretization parameter goes to zero. This analysis reveals an interesting relationship
between the space-time discretization (implicit-explicit) and the convergence of the
optimized algorithm. Numerical experiments show that the convergence rates are
improved by orders of magnitude over the rate of the classical overlapping Schwarz
waveform relaxation methods.

This paper is organized as follows: In section 2, we present the model problem
for which we study the overlapping Schwarz waveform relaxation algorithm in what
follows. We include fundamental existence results for the solution, which are later
used to prove well posedness and convergence of the algorithm. In section 3, we intro-
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duce the classical overlapping Schwarz waveform relaxation algorithm, show that it
is well posed when applied to the advection reaction diffusion equation, and analyze
its convergence. In section 4, we introduce the optimal Schwarz waveform relaxation
algorithm, an algorithm that uses, instead of Dirichlet transmission conditions, trans-
parent ones. Because such transmission conditions can be expensive to use, we also
introduce local approximations of these transmission conditions. The core of this
paper is contained in section 5, where we analyze the optimized Schwarz waveform
relaxation algorithm with Robin transmission conditions. We show that the algorithm
is well posed and convergent. We also derive the optimal parameters in the Robin
transmission conditions and their dependence on the problem parameters, and we
study the asymptotic dependence of the discretized algorithm on the mesh parame-
ters. In section 6, we show numerical results for the classical and optimized Schwarz
waveform relaxation algorithms, which show how drastically the convergence behavior
is improved using optimized transmission conditions. We present our conclusions in
section 7. All our analysis is performed for the simple case of a two subdomain de-
composition, since we improve the algorithm locally between subdomains. We show,
however, numerical experiments for more than two subdomains, which indicate that
the results of our analysis are valid in that case as well.

2. Model problem and function spaces. Our guiding example is the one
dimensional advection reaction diffusion equation

Lu := ∂tu− ν∂xxu + a∂xu + bu = f in Ω × (0, T ),(2.1)

where Ω = R, ν > 0, and a and b are constants which do not both vanish simul-
taneously. The case of the heat equation needs special treatment and can be found
in [12]. Without loss of generality, we can assume that the advection coefficient a is
nonnegative since a < 0 amounts to changing x into −x. We can also assume that
the reaction coefficient b is nonnegative. If not, a change of variables v = ue−σt with
σ + b > 0 will lead to (2.1) with a positive reaction coefficient.

A weak solution of (2.1) for Ω = R is defined to be a u ∈ C(0, T ;L2(Ω)) ∩
L2(0, T ;H1(Ω)) such that for any v in H1(Ω)

d

dt
(u, v) + ν(∂xu, ∂xv) +

a

2
((∂xu, v) − (∂xv, u)) + b(u, v) = (f, v) in D′(0, T ),(2.2)

where (·, ·) denotes the inner product in L2(Ω). Problem (2.1) is completed by the
initial condition

u(x, 0) = u0(x) in Ω.(2.3)

We have a first existence and uniqueness result, proved in [27].
Theorem 2.1. For Ω = R, if the initial value u0 is in L2(Ω) and the right-hand

side f is in L2(0, T ;L2(Ω)), then there exists a unique weak solution u of (2.1), (2.3).
With the transmission conditions we will introduce later, we will need more

regularity in our analysis, in the anisotropic Sobolev spaces Hr,s(Ω × (0, T )) =
L2(0, T ;Hr(Ω)) ∩Hs(0, T ;L2(Ω)) defined in [27].

Theorem 2.2. For Ω = R, if the initial value u0 is in H1(Ω) and the right-hand
side f is in L2(0, T ;L2(Ω)), then the weak solution u of (2.1), (2.3) is in H2,1(Ω ×
(0, T )). If u0 is in H2(Ω) and f is in H1,1/2(Ω × (0, T )), then u is in H3,3/2(Ω ×
(0, T )).

For the proof, and the trace theorems in Hr,s, we refer to [27].
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3. Classical Schwarz waveform relaxation. We decompose the spatial do-
main Ω = R into two overlapping subdomains Ω1 = (−∞, L) and Ω2 = (0,∞), L > 0.
The overlapping Schwarz waveform relaxation algorithm consists then of solving iter-
atively subproblems on Ω1 × (0, T ) and Ω2 × (0, T ) using as a boundary condition at
the interfaces x = 0 and x = L the values obtained from the previous iteration. The
algorithm is thus for iteration index k = 1, 2, . . . , given by

Luk
1 = f in Ω1 × (0, T ), Luk

2 = f in Ω2 × (0, T ),
uk

1(·, 0) = u0 in Ω1, uk
2(·, 0) = u0 in Ω2,

uk
1(L, ·) = uk−1

2 (L, ·) in (0, T ), uk
2(0, ·) = uk−1

1 (0, ·) in (0, T ),
(3.1)

where an initial guess u0
1(0, t) and u0

2(L, t), t ∈ (0, T ), needs to be provided. We
first study the well posedness of algorithm (3.1) and then analyze its convergence
properties. While algorithm (3.1) is also well defined without overlap, L = 0, it is not
convergent, since no information is exchanged in that case. This will be different for
the optimized algorithms proposed in section 5.

3.1. Well posedness of the algorithm. We first need to show the well posed-
ness of each subdomain problem. Without loss of generality, we consider the subdo-
main problem on Ω1 only:

Lv = f in Ω1 × (0, T ),
v(·, 0) = u0 in Ω1,
v(L, ·) = g in (0, T ).

(3.2)

Theorem 3.1. If f ∈ L2(0, T ;L2(Ω1)), u0 ∈ H1(Ω1), and g ∈ H
3
4 (0, T ) and if

the compatibility condition

u0(L) = g(0)(3.3)

is satisfied, then problem (3.2) has a unique solution v in H2,1(Ω1× (0, T )). Moreover

v(0, ·) is in H
3
4 (0, T ), and the following compatibility property holds:

lim
t→0+

v(0, t) = u0(0).(3.4)

Proof. The proof of existence and uniqueness in H2,1(Ω1 × 0, T )) can be found in
[27]. The compatibility relation follows from the trace theorem in [27].

By the Sobolev embedding theorem, u0 is continuous on Ω̄1 and g is continuous
on [0, T ], which gives a classical meaning to the compatibility condition (3.3). The
preceding result ensures that the subdomain problems are well posed in the classi-
cal algorithm, provided the initial and boundary conditions satisfy the compatibility
condition (3.3) for each iteration step.

To show that this is indeed the case, let u0
2(L, ·) and u0

1(0, ·) be given in H
3
4 (0, T )

such that u0
2(L, ·) = u0(L) and u0

1(0, ·) = u0(0). Then, by Theorem 3.1, the first
iteration of the overlapping Schwarz waveform relaxation algorithm (3.1) defines a
unique first iterate (u1

1, u
1
2) in H2,1(Ω1 × (0, T )) × H2,1(Ω2 × (0, T )). Furthermore,

u1
1(0, ·) and u1

2(L, ·) are in H
3
4 (0, T ), limt→0+ u1

1(0, t) = u0(0), and limt→0+ u1
2(L, t) =

u0(L). Hence by induction, the algorithm is well posed.

3.2. Convergence of the algorithm. By linearity, the error between the so-
lution u and the iterates uk

j , j = 1, 2, of the overlapping Schwarz waveform relaxation
algorithm (3.1) satisfies a homogeneous advection reaction diffusion equation with a
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homogeneous initial condition. We therefore study in what follows the homogeneous
problem with data on the interfaces only. Let hL and h0 be given in H

3
4 (0, T ) with

hL(0) = 0 and h0(0) = 0, to satisfy the compatibility conditions, and let (e1, e2) be
the solution in H2,1(Ω1 × (0, T )) ×H2,1(Ω2 × (0, T )) of the equations

Le1 = 0 in Ω1 × (0, T ), Le2 = 0 in Ω2 × (0, T ),
e1(·, 0) = 0 in Ω1, e2(·, 0) = 0 in Ω2,
e1(L, ·) = hL in (0, T ), e2(0, ·) = h0 in (0, T ).

(3.5)

Our analysis is based on the Fourier transform, which we denote for any function h ∈
L2(R) by ĥ := Fh. We define the one-sided space 0H

3
4 (0, T ) = {ϕ ∈ H

3
4 (0, T ), ϕ(0) =

0}, equipped with the norm ‖ϕ‖
0H

3
4 (0,T )

:= inf { ‖Φ‖
H

3
4 (R)

,Φ = ϕ a.e. in (0, T ),Φ =

0 a.e. in (−∞, 0)}.
Lemma 3.2. Let L > 0. If a > 0 or a = 0 and b > 0, then the map GD associated

with equations (3.5),

GD : (hL, h0) �→ (e2(L, ·), e1(0, ·)),(3.6)

is defined from (0H
3
4 (0, T ))2 into itself, and G2

D is a strict contraction on (0H
3
4 (0, T ))2.

Proof. Since hL and h0 are in 0H
3
4 (0, T ), we can extend them in H

3
4 (R) to obtain

h̃L and h̃0 vanishing on (−∞, 0). We then extend equations (3.5) in time to R, and
their solution coincides with (e1, e2) on (0, T ). Therefore, we still call it (e1, e2). By
Fourier transform in time, we find in each subdomain the same ordinary differential
equation

iωêj − ν∂xxêj + a∂xêj + bêj = 0, j = 1, 2,(3.7)

with the characteristic roots

r+ =
a +

√
d

2ν
, r− =

a−
√
d

2ν
, d = a2 + 4ν(b + iω),(3.8)

where
√
d is the complex square root with positive real part. Therefore, 	(r+) > 0

and 	(r−) < 0, and we find, using that ej is in L2(Ωj),

ê1(x, ω) = F h̃L(ω)er
+(x−L), ê2(x, ω) = F h̃0(ω)er

−x.(3.9)

On the interfaces of the subdomains, we therefore have

F(GD(h̃L, h̃0))(ω) = (F h̃0(ω)er
−L,F h̃L(ω)e−r+L).

Since h̃0 and h̃L vanish in R−, their Fourier transforms are analytic in the half-plane

τ < 0, and by (3.9) and the Paley–Wiener theorem [37], e1(0, ·) and e2(L, ·) vanish

in R−. Since they are in H
3
4 (R), they are continuous, and therefore e2(L, 0) = 0 and

e1(0, 0) = 0: the map GD maps (0H
3
4 (0, T ))2 into itself. We have furthermore

F(G2
D(h̃L, h̃0))(ω) = e(r−−r+)L(F h̃0(ω),F h̃L(ω)).(3.10)

Denoting by

CD := sup
ω∈R

e(r−−r+)L = e−
L
ν (

√
a2+4νb),(3.11)
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we get for any extension (h̃0, h̃L) of (h0, hL)

‖G2
D(hL, h0)‖

(0H
3
4 (0,T ))2

≤ ‖G2
D(h̃L, h̃0)‖

(H
3
4 (R))2

≤ CD‖(h̃L, h̃0)‖
(H

3
4 (R))2

.

Taking the infimum on all the extensions on the right-hand side, we get

‖G2
D(hL, h0)‖

(0H
3
4 (0,T ))2

≤ CD‖(hL, h0)‖
(0H

3
4 (0,T ))2

,

and since CD is positive and strictly less than 1, we have proved that G2
D is a con-

traction.
We now prove convergence of the overlapping Schwarz waveform relaxation algo-

rithm.
Theorem 3.3. Let L > 0. For a > 0 or a = 0 and b > 0, the iterates (uk

1 , u
k
2) of

algorithm (3.1) converge to the solution of (2.1), (2.3) for any initial guess g0 and gL
in H

3
4 (0, T ) such that g0(0) = u0(0) and gL(0) = u0(L).

Proof. The errors ekj = uk
j − u, j = 1, 2, satisfy for k ≥ 1 (3.1) with f = 0

and u0 = 0. For positive k, we introduce the interface functions hk
L = ek2(L, ·) and

hk
0 = ek1(0, ·) and denote by h0

0 = h0 and h0
L = hL. Using the map GD, we obtain by

induction

(h2k
L , h2k

0 ) = G2k
D (h0

L, h
0
0),

and thus by Lemma 3.2

‖(h2k
L , h2k

0 )‖
(0H

3
4 (0,T ))2

≤ Ck
D‖(h0

L, h
0
0)‖(0H

3
4 (0,T ))2

,

with CD given in (3.11). Solving (3.5) and using (3.9), we obtain for e1

‖e1‖2
L2(0,T ;H2(Ω1))

≤
∫ ∞

−∞
|r+|4

∫
Ω1

e2	(r+)(x−L)|F h̃L|2dx dω =

∫ ∞

−∞

|r+|4
2	(r+)

|F h̃L|2dω.

For a > 0 or a = 0 and b > 0, the denominator in the factor in front of |F h̃L|2 is
bounded from below, and for |ω| large, the factor behaves like |ω|3/2. Therefore

‖e1‖L2(0,T ;H2(Ω1)) ≤ C‖h̃L‖
H

3
4 (R)

,

and the same result also holds for ‖e1‖H1(0,T ;L2(Ω1)). Hence

‖e1‖H2,1((Ω1)×(0,T )) ≤ MD‖hL‖
0H

3
4 (0,T )

,(3.12)

and similarly for e2. Now we apply (3.12) to the errors e2k+1
1 and e2k+1

2 in the iteration
and obtain

‖(e2k+1
1 , e2k+1

2 )‖H2,1(Ω1×(0,T ))×H2,1(Ω2×(0,T ))

≤ MD‖(h2k
L , h2k

0 )‖
(0H

3
4 (0,T ))2

≤ MDCk
D‖(gL − u(L, ·), g0 − u(0, ·))‖

(0H
3
4 (0,T ))2

,

which together with Lemma 3.2 completes the proof. A similar argument also holds
for even iteration numbers.

Theorem 3.3 shows that the overlapping Schwarz waveform relaxation algorithm
converges and that the convergence rate is at least linear and is independent of the
length of the time interval. It does however depend on the problem parameters ν,
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a, and b and the overlap L. Using also the preceding Lemma 3.2, the error in the
overlapping Schwarz waveform relaxation algorithm satisfies on the interfaces over a
double iteration step in Fourier space relation (3.10) or equivalently

êk+1
1 (L, ω) = ρD êk−1

1 (L, ω), êk+1
2 (0, ω) = ρD êk−1

2 (0, ω),(3.13)

where the convergence factor ρD = ρD(ω,L, ν, a, b) is given by

ρD(ω,L, ν, a, b) := e(r−−r+)L = e−
√

a2+4ν(b+iω)
ν L.(3.14)

Note that the convergence factor ρD is uniformly bounded in modulus for all ω by a
quantity strictly less than 1,

RD(ω,L, ν, a, b) := |ρD(ω,L, ν, a, b)|≤R̄D(L, ν, a, b) :=RD(0, L, ν, a, b)=e−
√

a2+4νb
ν L,

(3.15)

and for L small, we have

R̄D = 1 −
√
a2 + 4νb

ν
L + O(L2).(3.16)

Using the convergence factor ρD from Fourier analysis allows us to obtain a
sharper convergence result for bounded time intervals.

Theorem 3.4 (superlinear convergence). For the advection reaction diffusion
equation on a bounded time interval (0, T ), the asymptotic convergence rate of the
overlapping Schwarz waveform relaxation algorithm (3.1) is superlinear:

||e2k
j (0, ·)||L∞(0,T ) ≤ erfc

(
kL√
νT

)
||e0

j (0, ·)||L∞(0,T ), j = 1, 2,

where the error function complement is defined by erfc(x) := 2√
π

∫∞
x

e−s2ds.

Proof. By induction on the relations (3.13), we obtain

ê2k
1 (0, ω) = ρkD ê0

1(0, ω), ê2k
2 (L, ω) = ρkD ê0

2(L, ω).(3.17)

Using the inverse Fourier transform and the convolution theorem, we find

e2k
1 (0, t) = (F−1ρkD) ∗ e0

1(0, t), e2k
2 (L, t) = (F−1ρkD) ∗ e0

2(L, t).(3.18)

Now the inverse Fourier transform of ρkD is

F−1ρkD =
kL√
νπt3/2

e
− (kL)2

νt −
(

a2

4ν +b
)
t
,

and we can therefore estimate for j = 1, 2

‖e2k
j (0, ·)‖L∞(0,T )≤‖F−1ρkD‖L1(0,T )‖e0

j (0, ·)‖L∞(0,T )≤erfc

(
kL√
νT

)
‖e0

j (0, ·)‖L∞(0,T ),

where the last inequality follows from estimating the term e−( a2

4ν +b)t by 1. By a similar
argument for the second subdomain, the result follows.
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Fig. 3.1. On the left, the first few iterates of the classical Schwarz waveform relaxation algo-
rithm (dashed) at the end of the time interval t = T , together with the exact solution (solid), and
on the right the first iterates of the new optimized Schwarz waveform relaxation algorithm.

This result was first proved for bounded domains in [18], see also [15]. It also holds
in higher dimensions and for general decompositions, for the heat equation, see [14],
and for advection diffusion, see [5]. The result differs significantly from the classical
linear convergence result of the overlapping Schwarz method for elliptic problems and
also from the classical superlinear convergence results for waveform relaxation, which
is slower, see [35]. Furthermore, one can show that the convergence rate depends only
on the number of subdomains in higher order terms, see [15], and hence coarse grid
preconditioners are not necessary for evolution problems of this type.

The Dirichlet transmission conditions at the interfaces are however responsible for
slow convergence in the classical Schwarz waveform relaxation algorithm: in Figure
3.1 on the left, we show the first few iterations at the end of the time interval for a
model problem. On the right, we show the first few iterations of the new, much faster
algorithm we will develop in what follows.

4. Optimal Schwarz waveform relaxation. We now introduce transmission
conditions which are more effective for the information exchange between subdomains.
The new algorithm is

Luk
1 =f in Ω1 × (0, T ), Luk

2 =f in Ω2 × (0, T ),
uk

1(·, 0)=u0, uk
2(·, 0)=u0,

(∂x + S1)u
k
1(L, ·)=(∂x + S1)u

k−1
2 (L, ·), (∂x + S2)u

k
2(0, ·)=(∂x + S2)u

k−1
1 (0, ·),

(4.1)

where S1 and S2 are linear operators in time, possibly pseudodifferential.

4.1. Optimal transmission conditions. The following theorem gives the op-
timal choice for S1 and S2.

Theorem 4.1. For a > 0 or a = 0 and b > 0, algorithm (4.1) converges to the
solution u of (2.1) in two iterations for all initial guesses u0

1 ∈ H2,1(Ω1 × (0, T )) and
u0

2 ∈ H2,1(Ω2 × (0, T )), independently of the size of the overlap L ≥ 0, if and only if
the operators S1 and S2 have the corresponding symbols

σ1 = −r−, σ2 = −r+,(4.2)

where r± are defined in (3.8).
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Proof. Using the Fourier transform with parameter ω as in Lemma 3.2, we find
for the error

êk1(x, ω) = αk(ω)er
+(x−L), êk2(x, ω) = βk(ω)er

−x, k ≥ 1,(4.3)

where αk and βk are constants, which, using the new transmission conditions, satisfy
for k ≥ 1 the recurrence relation

αk+1(r+ + σ1) = βk(r− + σ1)e
r−L,

βk+1(r− + σ2) = αk(r+ + σ2)e
−r+L.

(4.4)

Now for an arbitrary initial guess u0
1 and u0

2, the coefficients α1 and β1 will in general
not vanish. Since r− + σ1 = r+ + σ2 = 0 implies r+ + σ1 �= 0 and r− + σ2 �= 0, we
obtain from (4.4) that α2 and β2 are identically zero if and only if r− + σ1 = r+ + σ2

= 0.
Note that the symbols σ1, σ2 given in (4.2) are not polynomials in iω, and hence

the optimal corresponding transmission operators S1, S2 are nonlocal operators in
time; they correspond to integral transfer operators in time along the interfaces be-
tween subdomains. Even though such operators can be efficiently implemented, see,
for example, [30], they are more costly than local transfer operators and the latter are
in general preferred. It is therefore of interest to approximate the nonlocal operators
by local ones, whose symbols are polynomials in iω. Using each equation in (4.4) at
iteration k in the other one at iteration k + 1, we find

αk+1 = ραk−1, βk+1 = ρβk−1

with the new convergence factor

ρ =
r− + σ1

r+ + σ1
· r

+ + σ2

r− + σ2
e(r−−r+)L.(4.5)

4.2. Approximations of the optimal transmission conditions. We approx-
imate the symbols σ1 and σ2 from (4.2) corresponding to the optimal transmission
operators by constants, which leads to Robin transmission conditions in the Schwarz
waveform relaxation algorithm (4.1), i.e.,

S1 :=
−a + p

2ν
, S2 :=

−a− p

2ν
.(4.6)

The choice of the parameter p is restricted by the requirement that the subdomain
problems need to be well posed, and a good choice should lead to a rapidly converging
algorithm; both issues we will analyze in detail in the following section.

Notice that using the knowledge of the symbols (4.2) of the optimal transmission
conditions, we have chosen a particular form for the low order approximation, leading
to (4.6). In general one is not required to do so; in particular, we could have chosen,
for example, two different parameters p in (4.6), which would have given more free-
dom in the optimization process we study later, or even chosen a different p at each
iteration, as it was done for a steady problem in [9]. One could also choose higher
order transmission conditions, i.e., approximations by polynomials in iω. Having one
parameter only however greatly simplifies the optimization process, so we leave the
more general cases for future studies.
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5. Optimized Schwarz waveform relaxation. We now study the Schwarz
waveform relaxation algorithm with Robin transmission conditions. We start with the
overlapping case, L > 0. We first show under what conditions on the free parameter
p the algorithm is well posed and then prove convergence of the algorithm for a
general choice of p satisfying these conditions. We also study the influence of p on the
performance of the algorithm and propose two choices for p: one choice motivated by a
low frequency approximation and a second choice which optimizes the performance of
the algorithm. We then prove that the algorithm converges also without overlap, and
we again study the influence of p on the performance of the nonoverlapping algorithm.

5.1. Well posedness of the algorithm. As in the case of the classical Schwarz
waveform relaxation algorithm studied in section 3, we first need to analyze under
which conditions the subdomain problems of the algorithm with Robin transmission
conditions is well posed. Without loss of generality, we study only the well posedness
of the subdomain problem on Ω1:

Lv = f in Ω1 × (0, T ),
v(·, 0) = u0 in Ω1,

(∂xv + S1v)(L, ·) = gL in (0, T ).
(5.1)

We first show an extension result, which allows us to reduce the study of the well
posedness to the case with homogeneous initial and boundary conditions.

Lemma 5.1. If u0 is in H1(Ω1) and gL is in H
1
4 (0, T ), then there exists an

extension w in H2,1(Ω1×(0, T )) such that w(·, 0) = u0 in Ω1 and (∂xw+S1w)(L, ·) =
gL on (0, T ).

Proof. Let g̃L be in H
3
4 (0, T ) such that g̃L(0) = u0(L). By the continuous

extension theorem, there exists a w1 in H2,1(Ω × (0, T )) such that

w1(·, 0) = u0, w1(L, ·) = g̃L, ∂xw1(L, ·) = 0

and a w2 in H2,1(Ω × (0, T )) such that

w2(·, 0) = 0, w2(L, ·) = 0, ∂xw2(L, ·) = gL − S1g̃L.

Now the sum w := w1 + w2 is the desired extension in H2,1(Ω × (0, T )).
Thus it suffices to analyze the well posedness of the problem with homogeneous

initial and boundary conditions:

Lṽ = F in Ω1 × (0, T ),
ṽ(·, 0) = 0 in Ω1,

(∂xṽ + S1ṽ)(L, ·) = 0 in (0, T ),
(5.2)

where ṽ = v − w and the right-hand side function F = f − Lw is in L2(0, T ;L2(Ω1))
if f is in L2(0, T ;L2(Ω1)). We start with the weak formulation: for any ϕ in H1(Ω1),
we multiply the equation by ϕ, integrate, and use Green’s formula and the boundary
condition to obtain in D′(0, T )

d

dt
(ṽ, ϕ) + ν(∂xṽ, ∂xϕ) +

a

2
((∂xṽ, ϕ) − (∂xϕ, ṽ)) + b(ṽ, ϕ) +

p

2
ṽ(L)ϕ(L) = (F,ϕ).

(5.3)

The following Theorem gives existence, uniqueness, and regularity of the weak solu-
tion.
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Theorem 5.2. Suppose F is in L2(0, T ;L2(Ω1)). Then, for any p, problem (5.2)
has a unique weak solution ṽ in H2,1(Ω1 × (0, T )).

Proof. The proof is based on a priori estimates.
1. Multiplying equation (5.2) by ṽ, integrating in space, and using the boundary

condition, we obtain

1

2

d

dt
‖ṽ‖2 + ν‖∂xṽ‖2 + b‖ṽ‖2 +

p

2
ṽ2(L) = (F, ṽ).(5.4)

(a) Suppose first p ≥ 0.
• If b > 0, by the Cauchy–Schwarz inequality, and using the inequality

αβ ≤ η

2
α2 +

1

2η
β2 for all α, β ∈ R and η > 0(5.5)

in the form ||F || ||ṽ|| ≤ 1
2b ||F ||2 + b

2 ||ṽ||2, we obtain

1

2

d

dt
‖ṽ‖2 + ν‖∂xṽ‖2 +

b

2
‖ṽ‖2 ≤ 1

2b
‖F‖2,

which gives, after integration on any time interval (0, t),

1

2
||ṽ||2(t) + ν

∫ t

0

||∂xṽ||2 +
b

2

∫ t

0

||ṽ||2 ≤ 1

2b

∫ t

0

||F ||2.(5.6)

• If b = 0, we use (5.5) with η = 1 and get through integration on
(0, t)

1

2
‖ṽ‖2(t) + ν

∫ t

0

‖∂xṽ‖2 ≤ 1

2
‖F‖2

L2(0,T ;L2(Ω1))
+

1

2

∫ t

0

‖ṽ‖2.

We then apply the Gronwall lemma and obtain

‖ṽ‖2(t) + 2ν

∫ t

0

‖∂xṽ‖2 ≤ eT ‖F‖2
L2(0,T ;L2(Ω1)

.

(b) Suppose now p < 0. We move the boundary term in (5.4) to the right-
hand side; using the Sobolev inequality in H1(Ω1),

‖ṽ‖2
L∞(Ω1)

≤ 2‖∂xṽ‖ ‖ṽ‖,(5.7)

we bound the boundary term, applying again (5.5),

−p

2
ṽ2(L) ≤ ν

2
‖∂xṽ‖2 +

p2

2ν
‖ṽ‖2;

and we conclude using the Gronwall lemma as before.
Thus, in both cases, we have a bound for ṽ in L∞(0, T ;L2(Ω1)) ∩ L2(0, T ;
H1(Ω1)),

‖ṽ‖L∞(0,T ;L2(Ω1)), ‖ṽ‖L2(0,T ;H1(Ω1)) ≤ C(T )‖F‖L2(0,T ;L2(Ω1)).(5.8)



OPTIMIZED SCHWARZ WAVEFORM RELAXATION 677

2. To obtain the higher regularity result in the theorem, we need to show that
∂2
xṽ and ∂tṽ are also in L2(0, T ;L2(Ω1)). Multiplying the equation by −∂2

xṽ
and integrating in space, we get

1

2

d

dt
||∂xṽ||2 + ν||∂2

xṽ||2 + b||∂xṽ||2

−
(
(∂tṽ)∂xṽ +

a

2
(∂xṽ)

2
+ b(∂xṽ)ṽ

)
(L) = −

∫ L

−∞
F∂2

xṽ.

Now using the boundary condition to replace ∂xṽ, we obtain

d

dt

(
1

2
‖∂xṽ‖2 +

p− a

4ν
ṽ2(L)

)
+ ν‖∂2

xṽ‖2 + b‖∂xṽ‖2

+
p− a

2ν

(
b− a

2

p− a

2ν

)
ṽ2(L) = −

∫ L

−∞
F∂2

xṽ.

Again using the Cauchy–Schwarz inequality and (5.5) on the right, we find
after integrating in time(

1

2
‖∂xṽ‖2 +

p− a

4ν
ṽ2(L)

)
(t) +

ν

2

∫ t

0

‖∂2
xṽ‖2 + b

∫ t

0

‖∂xṽ‖2

+
p− a

2ν

(
b− a

2

p− a

2ν

)∫ t

0

ṽ2(L) ≤ 1

2ν

∫ t

0

||F ||2.
(5.9)

First the term p−a
2ν

(
b− a

2
p−a
2ν

) ∫ t

0
ṽ2(L) is handled as in 1, using (5.7) and

(5.8). Then, if p ≥ a, we obtain

‖∂xṽ‖2 + ν‖∂2
xṽ‖L2(0,T ;L2(Ω1)) ≤ C(T )‖F‖L2(0,T ;L2(Ω1)).

If p < a, then we pass the term containing ṽ(L) to the right-hand side, and
using (5.7), we obtain

1

2
‖∂xṽ‖2 +

ν

2

∫ t

0

‖∂2
xṽ‖2 ≤ a− p

4ν

(
α||∂xṽ||2 +

1

α
||ṽ||2

)
+ C(T )

∫ t

0

||F ||2.

Now choosing α = ν/(a− p) and using (5.8), we obtain

‖∂xṽ‖L∞(0,T ;L2(Ω1)), ‖∂2
xṽ‖L2(0,T ;L2(Ω1)) ≤ C(T )‖F‖L2(0,T ;L2(Ω1)),

where we omit the dependence of the constant C on a, p, b, and ν.
Now using (5.2), we have

∂tṽ = ν∂2
xṽ − a∂xṽ − bṽ + F,

and since all the terms on the right-hand side are in L2(0, T ;L2(Ω1)) by the previous
estimates, it follows that ∂tṽ is in L2(0, T ;L2(Ω1)), which concludes the a priori
estimates in H2,1(Ω1 × (0, T )). Existence and uniqueness can now be shown using a
Galerkin method [27].

Using Lemma 5.1 and Theorem 5.2, we obtain now the well posedness of the
subdomain problems.

Theorem 5.3. If f is in L2(0, T ;L2(Ω1)), u0 is in H1(Ω1), and gL is in

H
1
4 (0, T ), then, for any p, problem (5.1) has a unique solution v in H2,1(Ω1×(0, T )).
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The same result also holds on subdomain Ω2, the only difference being that −a
becomes +a in the estimate (5.9).

Theorem 5.4. Let gL and g0 be given in H
1
4 (0, T ). If algorithm (4.1) with Sj

defined in (4.6) is initialized by (∂xu
1
1 +S1u

1
1)(L, ·) = gL and (∂xu

1
2 +S2u

1
2)(0, ·) = g0,

then, for any p, (4.1) and (4.6) define a sequence of iterates (uk
1 , u

k
2) in H2,1(Ω1 ×

(0, T )) ×H2,1(Ω2 × (0, T )).
Proof. The proof is done by induction: for k = 1, (4.1) defines a unique first

iterate (u1
1, u

1
2) in H2,1(Ω1 × (0, T )) ×H2,1(Ω2 × (0, T )) by Theorem 5.3. Assuming

now that (uk
1 , u

k
2) is in H2,1(Ω1 × (0, T )) ×H2,1(Ω2 × (0, T )), by the trace theorem,

we have that (∂xu
k
2 + S1u

k
2)(L, ·) and (∂xu

k
1 + S2u

k
1)(0, ·) are in H

1
4 (0, T ), and thus

by Theorem 5.3, (uk+1
1 , uk+1

2 ) must be in H2,1(Ω1 × (0, T ))×H2,1(Ω2 × (0, T )), which
concludes the proof.

For the proof of convergence in the overlapping case, we need however more
regularity.

Theorem 5.5. For a > 0 or a = 0 and b > 0, let p ≥ 0 and f be in H1, 12 (Ω1 ×
(0, T )), u0 be in H2(Ω), and gL be in H

3
4 (0, T ), with the compatibility conditions

gL(0) = ∂xu0(L) + S1u0(L).(5.10)

Then the solution v of the subdomain problem (5.1) is in H3, 32 (Ω1 × (0, T )). Further-
more the following compatibility property at x = 0 is satisfied:

lim
t→0+

(∂xv + S2v)(0, t) = ∂xu0(0) + S2u0(0).(5.11)

Proof. In this more regular situation, the solution u of (2.1) is in H3, 32 (Ω× (0, T ))

by Theorem 2.2. Furthermore g̃L = (∂xu + S1u)(L, ·) is in H
3
4 (0, T ). Subtracting

u from v, the difference e is in H3, 32 (Ω1 × (0, T )), the solution of (5.1) with data
(0, 0, hL = gL − g̃L). By Fourier transform, the same calculation as in Lemma 3.2
gives with h̃L being an extension of hL on R vanishing in R−

ê =
2ν√
d + p

F h̃L(ω)er
+(x−L).(5.12)

The norm of ∂3
xe is therefore given by

‖∂3
xe‖2

L2(Ω1×R) =

∫
R

4ν2|r+|6

2	r+|
√
d + p|2

|F h̃L(ω)|2dω,

and the norm of e in H
3
2 (R, L2(Ω1)) is

‖e‖2
H3/2(R,L2(Ω1))

=

∫
R

4ν2(1 + ω2)3/2

2	r+|
√
d + p|2

|F h̃L(ω)|2dω.

In both cases, for a > 0 or a = 0 and b > 0, and p ≥ 0, the denominator in the factor
in front of |F h̃L(ω)|2 is bounded from below, and it is easy to see that for large |ω|,
it is equivalent to a constant times |ω|3/2. Therefore we have the bound

‖e‖
H3, 3

2 (Ω1×(0,T ))
≤ C‖h̃L‖

H
3
4 (R)

.(5.13)

For the compatibility condition, since h̃L vanishes in R−, its Fourier transform is
analytic in the half-plane 
τ < 0, and by (5.12) and the Paley–Wiener theorem [37],
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e(0, ·) and ∂xe(0, ·) vanish in R−. Since they are in H
5
4 (R) and H

3
4 (R), respectively,

they are continuous, and therefore limt→0+(∂xe + S2e)(0, t) = 0, which gives the
compatibility property for v.

This regularity result shows the well posedness of the algorithm in H3, 32 (Ω1 ×
(0, T )).

Theorem 5.6. For a > 0 or a = 0 and b > 0, and p ≥ 0, let f be in
H1, 12 (Ω1 × (0, T )), u0 be in H2(Ω), and gL and g0 be in H

3
4 (0, T ), with the com-

patibility conditions

gL(0) = ∂xu0(L) + S1u0(L), g0(L) = ∂xu0(0) + S2u0(0).(5.14)

Then, algorithm (4.1) with transmission operators (4.6) defines a sequence of iterates

(uk
1 , u

k
2) in H3, 32 (Ω1 × (0, T )) ×H3, 32 (Ω2 × (0, T )).

5.2. Convergence of the overlapping algorithm. Let hL and h0 be given
in 0H

3
4 (0, T ). Let (e1, e2) be the solution in H3, 32 (Ω1 × (0, T ))×H3, 32 (Ω2 × (0, T )) of

the problem

Le1=0 in Ω1 × (0, T ), Le2=0 in Ω2 × (0, T ),
e1(·, 0)=0 in Ω1, e2(·, 0)=0 in Ω2,

(∂xe1 + S1e1)(L, ·)=hL in (0, T ), (∂xe2 + S2e2)(0, ·)=h0 in (0, T ).
(5.15)

Lemma 5.7. For a > 0 or a = 0 and b > 0, if p ≥ 0 and L > 0, the map G0

associated with (5.15),

G0 : (hL, h0) �→ ((∂xe2 + S1e2)(L, ·), (∂xe1 + S2e1)(0, ·)),(5.16)

is defined from (0H
3
4 (0, T ))2 into itself, and G2

0 is strictly contracting.
Proof. The proof is analogous to the proof of Lemma 3.2 using Fourier analysis.

Defining h̃L and h̃0 as any extensions of hL and h0 in H
3
4 (R), vanishing in R

−, we
obtain after a short calculation

F(G2
0(h̃L, h̃0))(ω) =

(√
d− p√
d + p

)2

(F h̃0(ω)e(r−−r+)L,F h̃L(ω)e(r−−r+)L),

where d and r± are defined in (3.8). Since p ≥ 0, we have
∣∣∣√d−p√

d+p

∣∣∣ ≤ 1 and thus

‖G2
0(hL, h0)‖

(0H
3
4 (0,T ))2

≤ CD‖(hL, h0)‖
(0H

3
4 (0,T ))2

,

and since CD defined in (3.11) satisfies CD < 1, the result follows.
From the proof of this Lemma, we can see that the contraction of the overlap-

ping Schwarz waveform relaxation map with Robin transmission conditions, G0 given
in (5.16), is at least as good as the contraction of the classical map with Dirichlet
transmission conditions, GD given in (3.6), no matter what one chooses for the pa-
rameter p ≥ 0 in the Robin transmission conditions. Before doing a more thorough
comparison, we use the contraction property from Lemma 5.7 to prove convergence
of the new algorithm.

Theorem 5.8. Let f be in H1, 12 (Ω1 × (0, T )) and u0 be in H2(Ω). For a > 0 or
a = 0 and b > 0, if p ≥ 0 and L > 0, then the solution (uk

1 , u
k
2) of algorithm (4.1),

(4.6) converges to the solution u of (2.1) for any initial guess (g0, gL) ∈ (H
3
4 (0, T ))2

with the compatibility conditions (5.14).
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Proof. The errors ekj = uk
j −u, j = 1, 2, satisfy for k ≥ 1 (4.1) with f = 0 and u0 =

0. Introducing the interface functions hk
L = (∂xe

k
2+S1e

k
2)(L, ·), hk

0 = (∂xe
k
1+S2e

k
1)(0, ·)

and using the map G0, we obtain by induction (h2k
L , h2k

0 ) = G2k
0 (h0

L, h
0
0), and thus by

Lemma 5.7

‖(h2k
L , h2k

0 )‖
(H

3
4 (0,T ))2

≤ Ck
D‖(h0

L, h
0
0)‖(H

3
4 (0,T ))2

.

We have by (5.13)

‖(e2k+1
1 , e2k+1

2 )‖
H3, 3

2 (Ω1×(0,T ))×H3, 3
2 (Ω2×(0,T ))

≤ C‖(h2k
L , h2k

0 )‖
(H

3
4 (0,T ))2

≤ CCk
D‖(h0

L, h
0
0)‖(H

3
4 (0,T ))2

,

which together with Lemma 5.7 completes the proof.
Having proved convergence, we now compare the performance of the classical

Schwarz waveform relaxation algorithm and the new one with Robin transmission
conditions. We do this first at the continuous level, which motivates the optimization
procedure we introduce in subsections 5.4 and 5.7 for the discretized case. Using The-
orem 5.8 and Lemma 5.7, the error in the overlapping Schwarz waveform relaxation
algorithm with Robin transmission conditions satisfies on the interfaces over a double
iteration step in Fourier the relation

F(G2
0(h̃L, h̃0))(ω) =

(√
d− p√
d + p

)2

e(r−−r+)L(F h̃L(ω),F h̃0(ω)),

where d, r−, and r+ are defined in (3.8). Equivalently, we have

êk+1
1 (L, ω) = ρ0ê

k−1
1 (L, ω), êk+1

2 (0, ω) = ρ0ê
k−1
2 (0, ω),(5.17)

where the convergence factor ρ0 = ρ0(ω, p, L, ν, a, b) of the new algorithm with Robin
transmission conditions is given by

ρ0(ω, p, L, ν, a, b) :=

(√
a2 + 4ν(b + iω) − p√
a2 + 4ν(b + iω) + p

)2

e−
√

a2+4ν(b+iω)
ν L.(5.18)

For any frequency ω, we can therefore directly compare the performance of the classi-
cal Schwarz waveform relaxation algorithm with the new one with Robin transmission

conditions: we have ρ0 = (
√
d−p√
d+p

)2ρD, where ρD is the classical convergence factor de-

fined in (3.14). This shows that for each ω we have |ρ0| < |ρD| for p > 0. Furthermore,
for any ε > 0 there exists an ωε such that∫

|ω|>ωε

(1 + ω2)3/4|ê0
1(L, ω)|2dω ≤ ε

because we assume that e0
1(L, ·) is in H

3
4 . Since |ρ0| < 1, we obtain

‖ê2k
1 (L, ·)‖2

H
3
4 (0,T )

≤ ε +

∫
|ω|≤ωε

(1 + ω2)
3
4 |ρ0(ω, p, L, ν, a, b)|2k|ê0

1(L, ω)|2dω,

and taking the supremum of the convergence factor out of the integral, we have

‖ê2k
1 (L, ·)‖2

H
3
4 (0,T )

≤ ε + sup
|ω|≤ωε

|ρ0(ω, p, L, ν, a, b)|2k‖ê0
1(L, ·)‖2

H
3
4 (0,T )

.



OPTIMIZED SCHWARZ WAVEFORM RELAXATION 681

A similar estimate for the classical algorithm gives

‖ê2k
1 (L, ·)‖2

H
3
4 (0,T )

≤ ε + sup
|ω|≤ωε

|ρD(ω,L, ν, a, b)|2k‖ê0
1(L, ·)‖2

H
3
4 (0,T )

,

which shows that improving the convergence factor on a sufficiently large bounded
frequency range improves the overall convergence of the algorithm. The choice of a
bounded frequency range is further motivated by the fact that computations are per-
formed on a discretized problem, whose grid cannot carry arbitrarily high frequencies.
We carefully analyze how to chose the free parameter p for optimal performance of
the algorithm in the next subsections.

5.3. Low frequency approximation for the algorithm with overlap. We
have seen that the convergence factor of the new algorithm with Robin transmission
conditions is given by (5.18), and any choice of the free parameter p ≥ 0 is admissible
to obtain a well posed algorithm. But how should p be chosen, apart from p ≥ 0? A
simple choice is to use a low frequency approximation of the symbols σj , j = 1, 2, of
the optimal transmission operators given in (4.2), based on a Taylor expansion about
ω = 0. This is motivated by the fact that with overlap, L > 0, the exponential term
in the convergence factor (5.18) is exponentially small for ω large, and hence p should
be used to make the transmission conditions effective for ω small. Using a Taylor
expansion of the square root

√
a2 + 4ν(b + iω) in (4.2) about ω = 0, we find√

a2 + 4ν(b + iω) =
√
a2 + 4νb +

2ν√
a2 + 4νb

iω + O(ω2),(5.19)

and hence the low frequency approximation choice for p in the Robin transmission
condition is

p = pT :=
√

a2 + 4νb.(5.20)

With this choice, the convergence factor vanishes for ω = 0 and also when ω goes
to infinity, since L > 0. To further analyze the convergence factor, we introduce a
change of variables based on the real part of the square root in the convergence factor
(5.18),

x := 	(
√

a2 + 4ν(b + iω)).(5.21)

In this new variable, the convergence factor (5.18) in modulus becomes

R0(x, p, x0, L) := |ρ0| =
(x− p)2 + x2 − x2

0

(x + p)2 + x2 − x2
0

e−
Lx
ν ,(5.22)

where x2
0 := a2 + 4νb. Note that R0 ≥ 0 by definition, which can also be seen from

x2 ≥ a2 + 4νb = x2
0 from the change of variables (5.21). Using now the parameter pT

from the Taylor expansion, we find for the Taylor–Robin method (T0 for Taylor of
order 0) the convergence factor in modulus to be

RT0(x, x0, L) := R0(x, pT , x0, L) =
x− x0

x + x0
e−

Lx
ν ≥ 0, x ≥ x0.(5.23)

Theorem 5.9 (T0 performance with overlap). Let L > 0 and x0 :=
√
a2 + 4νb.

The convergence factor RT0 in (5.23) of the overlapping Schwarz waveform relaxation
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algorithm with Robin transmission conditions (4.1),(4.6) and p = pT from the Taylor
low frequency approximation (5.20) is for x0 ≤ x < ∞ uniformly bounded by

RT0(x, x0, L) ≤ R̄T0(x0, L) := RT0(x̄, x0, L) =
x̄− x0

x̄ + x0
e−

Lx̄
ν , x̄ =

√
x2

0 +
2νx0

L
.

(5.24)

For L small, we have R̄T0(x0, L) = 1 − 2
√

2x0

ν

√
L + O(L).

Proof. Taking a derivative of RT0 with respect to x shows that there is a unique
maximum of RT0 for x0 ≤ x < ∞ at x̄, which leads to the bound given in (5.24). An
expansion for L small leads then to the asymptotic result of the theorem.

Now in a numerical calculation, two additional issues come into play: First the
frequency parameter ω cannot be arbitrarily high, there is a maximum frequency that
can be represented on a grid with spacing Δt, and an estimate for this maximum
frequency is ωmax = π

Δt , the signal that oscillates between ±1 from grid point to grid
point. Second, the overlap L is in general not a fixed quantity, one can afford only
a few grid cells overlap, and often L = Δx. The question therefore arises, if for a
particular discretization, which might have to satisfy a stability constraint, the bound
on the contraction factor in (5.24) is really relevant, or if the highest frequencies rep-
resented on the grid of the particular discretization stay below ω̄ where the maximum
of RT0 is attained, which corresponds to x̄ given in (5.24) in the transformed problem.
To answer this question, we need to study for which cases the maximum numerical
frequency ωmax stays below ω̄ or, in the transformed problem, under which conditions

xmax =

√√
x4

0 + 16ν2ω2
max + x2

0

2
(5.25)

stays below x̄ given in (5.24). A direct comparison shows that for

L > L0 :=
4νx0√

x4
0 + 16ν2ω2

max − x2
0

(5.26)

the maximum numerical frequency ωmax > ω̄, and hence the bound given in Theorem
5.9 determines the convergence rate of the algorithm. If however L ≤ L0, then
the maximum on the numerically relevant convergence factor is attained at ωmax.
Numerically, we therefore have

RT0(x, x0, L) ≤ R̃T0(x0, L) :=

⎧⎪⎨⎪⎩
RT0(x̄, x0, L) =

x̄− x0

x̄ + x0
e−

Lx̄
ν if L > L0,

RT0(xmax, x0, L) =
xmax − x0

xmax + x0
e−

Lxmax
ν if L ≤ L0.

(5.27)

To obtain a concrete asymptotic result for the case where the overlap L is linked to
the space discretization Δx, L = C1Δx, and the space discretization Δx is linked to
the time discretization Δt by a stability or accuracy constraint, Δt = C2Δxβ , β > 0,
we insert these relations into L0 and expand to find

L0 =
x0

π
Δt + O(Δt2),(5.28)

which leads to the following asymptotic results.



OPTIMIZED SCHWARZ WAVEFORM RELAXATION 683

Theorem 5.10 (T0 discrete convergence estimate with overlap). Let x0 :=√
a2 + 4νb. If L = C1Δx and Δt = C2Δxβ, then the bound R̃T0 in (5.27) on the con-

vergence factor estimate of the discretized overlapping Schwarz waveform relaxation
algorithm with Robin transmission conditions (4.1),(4.6) and p = pT from the Taylor
low frequency approximation (5.20) is for Δx small given by

R̃T0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 − 2

√
2C1x0

ν

√
Δx + O(Δx) if β > 1 or β = 1 and C1

C2
> x0

π ,

1 −
√

2(C2x0 + C1π)√
C2πν

√
Δx + O(Δx) if β = 1 and C1

C2
≤ x0

π ,

1 − x0

√
2C2

πν
Δx

β
2 + o(Δx

β
2 ) if β < 1.

(5.29)

Proof. Comparing L = C1Δx with the expansion of L0 given in (5.28) and using
that Δt = C2Δxβ , we see that for Δx small the first case in (5.27) corresponds to
the first case given in (5.29). The asymptotic bound on the convergence factor then
follows by simply expanding for L = C1Δx and Δx small. For the second case, one
can set β = 1 and directly expand the second case of (5.27) to find the result given.
For the last case, we first notice that xmax satisfies

xmax =
√

2πν
1√
Δt

+ O(
√

Δt) =

√
2πν

C2
Δx− β

2 + O(Δx
β
2 ),(5.30)

which together with L = C1Δx gives for the exponential the expansion

e−
Lxmax

ν = 1 − C1

√
2π

C2ν
Δx1− β

2 + O(Δx2−β).(5.31)

Multiplying this with the expansion for the coefficient in front of the exponential in
(5.27), whose expansion is

xmax − x0

xmax + x0
= 1 − x0

√
2C2

πν
Δx

β
2 + O(Δxβ),(5.32)

the result follows.
The preceding theorem shows that for explicit discretizations, which have a sta-

bility constraint of the type Δt = C2Δx2 for this problem and for which the present
algorithm would still be of interest for nonmatching time grids, the optimized Schwarz
waveform relaxation algorithm with Robin transmission conditions based on a low fre-
quency approximation and an overlap of the order of the spatial discretization Δx will
have an asymptotic convergence factor 1 − O(

√
Δx), as one could expect from the

continuous analysis in Theorem 5.9. This is still true for implicit discretizations, as
long as Δt is of the same order as Δx. Once Δt becomes much larger than Δx,
however, one can expect the algorithm to converge faster asymptotically because of
the last relation in (5.29).

5.4. Optimization of the algorithm with overlap. We investigate now if
there exists a better choice for p such that the overall convergence factor is smaller
than with the parameter from the low frequency approximation. We will use the label
O0 for these methods, which stands for optimized of order 0. We place ourselves first
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again in the continuous context, where ω ∈ R, and thus ωmax = ∞. Later, we will also
investigate the discretized case where ωmax < ∞. We introduce a change of variables,
which will greatly simplify the analysis of the optimal parameter p. Setting x := yν

L ,

p := p̃ν
L , and x0 := y0ν

L in the convergence factor (5.22), we obtain

R0(y, p̃, y0) =
(y − p̃)2 + y2 − y2

0

(y + p̃)2 + y2 − y2
0

e−y,(5.33)

which is now an expression independent of the overlap parameter L and the viscosity
parameter ν. The best choice for the parameter p̃ is the one that makes R0 as small
as possible uniformly for all y ≥ y0 and is hence the solution of the min-max problem

min
p̃

(
max
y≥y0

R0(y, p̃, y0)

)
= min

p̃≥0

(
max
y≥y0

(y − p̃)2 + y2 − y2
0

(y + p̃)2 + y2 − y2
0

e−y

)
,(5.34)

where minimizing over nonnegative p̃ is equivalent to minimizing over all p̃, as one can
see from (5.33). Note that p̃ nonnegative is also a requirement for the convergence
proof of the algorithm in Theorem 5.8. To analyze the min-max problem (5.34), we
need two lemmas.

Lemma 5.11. The function y �→ R0(y, p̃, y0) defined in (5.33) has a unique local
maximum at

ȳ(y0, p̃) =

√
y2
0 + 2p̃ +

√
d(y0, p̃)

2
, d(y0, p̃) = p̃(−p̃3 − 4p̃2 + (4 + 2y2

0)p̃ + 8y2
0),

(5.35)

if 0 ≤ p̃ < p̃1(y0), where p̃1(y0) is the unique positive root of d(y0, p̃) for y0 > 0. If
p̃ ≥ p̃1(y0), then R0(y, p̃, y0) is a monotonically decreasing function of y.

Proof. A partial derivative of R0(y, p̃, y0) with respect to y gives

∂R0

∂y
= −e−y(4y4 − 4(2p̃ + y2

0)y2 + (p̃2 − y2
0)(y2

0 − 4p̃− p̃2))

((p̃ + y)2 + y2 − y2
0)2

,

and therefore R0(y, p̃, y0) can have at most two extrema, ȳ =
√

(y2
0 + 2p̃ +

√
d(y0, p̃))/2

and y =
√

(y2
0 + 2p̃−

√
d(y0, p̃))/2, with the discriminant d(y0, p̃) given in (5.35). The

larger of the two, ȳ, must be a maximum, since R0 ≥ 0 and R0 goes to 0 as y goes to ∞.
Since the discriminant is positive for small positive p̃ and is negative for large positive
p̃, it must have by continuity at least one real positive root p̃1(y0) > 0, d(y0, p̃1) = 0.
To prove that this root is unique, we use the derivative of d(y0, p̃)/p̃ with respect to p̃,
which shows that there are two extrema, one at r1 = − 1

3 (4 −
√

28 + 6y2
0) and one at

r2 = − 1
3 (4+

√
28 + 6y2

0). The larger one, r1, must be a maximum, since the discrimi-
nant goes to −∞ as p̃ goes to ∞, and thus r2 is a minimum. Since r2 is negative, p̃1 is
the only positive root of the discriminant, since this latter is still positive for arbitrary
small p̃. For p̃ ≥ p̃1, R0 has no extrema in y and hence decreases monotonically to 0
as y goes to infinity.

Lemma 5.12. For fixed y > y0 and p̃ > 0, we have ∂R0(y,p̃,y0)
∂p̃ (p̃ − p̃2(y)) ≥ 0,

where p̃2(y) :=
√

2y2 − y2
0.

Proof. A partial derivative of R0(y, p̃, y0) with respect to p̃ gives

∂R0

∂p̃
= −4e−yy(−p̃2 + 2y2 − y2

0)

((p̃ + y)2 + y2 − y2
0)2

,
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which has only one root in p̃, p̃2(y) =
√

2y2 − y2
0 , which is positive. For p̃ < p̃2,

∂R0

∂p̃

is negative and hence R0(y, p̃, y0) decreases when p̃ increases, whereas for p̃ > p̃2,
R0(y, p̃, y0) increases when p̃ increases.

Theorem 5.13 (O0 performance with overlap). Let L > 0 and x0 :=
√
a2 + 4νb.

The best performance of the optimized overlapping Schwarz waveform relaxation al-
gorithm at the continuous level with Robin transmission conditions (4.1),(4.6) is ob-

tained for p = p∗ := p̃∗ν
L , where p̃∗, the solution of the min-max problem (5.34), is for

y0 := x0L
ν < yc given by the unique solution p̃∗ ≥ y0 of the nonlinear equation

R0(y0, p̃
∗, y0) = R0(ȳ(y0, p̃

∗), p̃∗, y0),(5.36)

where R0(y, p̃, y0) is given in (5.33) and ȳ(y0, p̃) is given in (5.35). For y0 ≥ yc, p̃
∗ is

given by the unique solution of

y0 = p̃∗

√
p̃∗

(4 + p̃∗)
.(5.37)

The constant yc is universal, yc = 1.618386576 . . . , and the convergence factor with
the optimal p∗ is uniformly bounded by

R0(y, p̃
∗, y0) ≤ R̄O0(y0, p̃

∗) := R0(ȳ(y0, p̃
∗), p̃∗, y0).(5.38)

For L small, we have the asymptotic result

p∗ =
p̃∗ν

L
≈ (2x2

0ν)
1
3L− 1

3 , R̄O0 ≈ 1 −
(

25x0

ν

) 1
3

L
1
3 .(5.39)

Proof. By Lemma 5.12, the optimal p̃∗ ≥ y0 since for p̃ < p̃2(y0) = y0, increasing
p̃ decreases R0(y, p̃, y0) for all y > y0. Now Lemma 5.11 implies that for y0 ≤ p̃ ≤
p̃1(y0), the maximum of R0 in the min-max problem can be attained at y = y0 or
at the interior maximum at ȳ given in (5.35). For p̃ = y0, we have R0(y0, p̃, y0) =
R0(y0, y0, y0) = 0 and d(y0, p̃) = d(y0, y0) = y2

0(2 + y0)
2 ≥ 0, and hence R0(y, p̃, y0)

has for y ≥ y0 a unique maximum at ȳ(y0, y0) =
√
y0(2 + y0) > y0. Increasing p̃

from y0 increases R0(y0, p̃, y0) by Lemma 5.12 monotonically for all p̃ > p̃2(y0) = y0.
Increasing p̃ from y0 also decreases R0(ȳ(y0, p̃), p̃, y0) by Lemma 5.12, as long as it
exists, p̃ < p̃1(y0) according to Lemma 5.11, and p̃ < p̃2(ȳ(y0, p̃)) =

√
2ȳ2 − y2

0 , after
which R0(ȳ, p̃, y0) will increase again according to Lemma 5.12. By continuity, the
maximum of R0 is minimized either for p̃∗1 satisfying

R0(y0, p̃
∗
1, y0) = R0(ỹ, p̃

∗
1, y0),(5.40)

provided that p̃∗1 ≤ p̃2(ȳ(y0, p̃
∗
1)) =

√
2(ȳ(y0, p̃∗1))

2 − y2
0 , or for p̃∗2 given by

p̃∗2 = p̃2(ȳ(y0, p̃
∗
2)) =

√
2(ȳ(y0, p̃∗2))

2 − y2
0 .(5.41)

It depends on the only parameter left, y0, which of these two cases is the solution.
Imposing p̃∗1 = p̃∗2 and both (5.40) and (5.41), we can solve for the value of y0 where
both are equally optimal. We find

y0 = yc = 1.618386576 . . . , p̃∗1 = p̃∗2 = 2.583490822 . . . .
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Fig. 5.1. The top curve is the convergence factor RT0 from the Taylor low frequency approx-
imation, and the curve below is the optimized convergence factor RO0, for an example from the
numerical section.

Table 5.1

Comparison of the optimal p̃∗ from Theorem 5.13 and its asymptotic approximation.

y0 0.1 0.01 0.001 0.0001 0.00001
p̃∗ 0.2936 0.05952 0.01265 0.002717 0.0005849

Asymptotic p̃∗ 0.2714 0.05848 0.01260 0.002714 0.0005848

Hence for y0 < yc and for y0 ≥ yc (5.40) and (5.41), respectively, give the solution.
(5.41) can be simplified by solving it for y0, which gives (5.37) stated in the theorem,
and a derivative with respect to p̃∗ shows that there is a unique positive root p̃∗ for
y0 > 0.

The uniform bound given in (5.38) is a direct consequence of (5.36) and (5.37),
since in both cases the maximum is attained at ȳ.

To show the asymptotic result (5.39), we note that for L small and the other
problem parameters a, b, and ν fixed, we have y0 small, since from the variable

transform we have y0 = x0

ν L =
√
a2+4νb

ν L and therefore the first result (5.36) applies
asymptotically, y0 < yc. To solve (5.36) asymptotically, we insert the ansatz p̃∗ =
Cpy

α
0 into (5.36) and expand both sides for y0 small. Using that p̃∗ ≥ y0, we find

from its definition that asymptotically ȳ ≈
√

2Cpy
α
2
0 . Using this in equation (5.36),

we find for the leading order terms

1 − 2
5
3 y1−α

0 − y0 + 2
5
3 y1−α+1

0 y0 + · · · = 1 − 2
3
2

√
Cpy

α
2
0 + 4Cpy

α
0 + · · · ,

which implies 1 − α = α
2 and thus α = 2

3 and Cp = 2
1
3 , which leads to (5.39).

In Figure 5.1 we show the convergence factors RT0 and RO0 for an example
with x0 = 1, L = 0.08, and ν = 0.2 from the numerical section. One can see the
better performance of the optimized Robin transmission conditions over the Taylor
transmission conditions and also the equioscillation of the optimal choice.

Table 5.1 gives a comparison of the optimal p̃∗ from (5.36) with the asymptotic
approximation (5.39). One can see that the asymptotic approximation is very close to
the optimal p̃∗ already for moderately small values of y0, which corresponds to a small
overlap L. For larger values of y0, the asymptotic approximation can be a valuable
initial guess for the nonlinear equation solver to find the optimal p̃∗ from (5.36).

In Figure 3.1 on the right, we show the first few iterations, at the end of the
time interval, of the optimized Schwarz waveform relaxation algorithm with Robin



OPTIMIZED SCHWARZ WAVEFORM RELAXATION 687

transmission conditions for the same model problem for which the iterates of the
classical Schwarz waveform relaxation algorithm are shown on the left. One can clearly
see that the new algorithm with Robin transmission conditions converges much faster
than the algorithm with Dirichlet transmission conditions.

Theorem 5.13 gives the optimal choice for the parameter in the Robin transmission
conditions of the optimized Schwarz waveform relaxation algorithm at the continuous
level. In a numerical setting, however, not all the frequencies are present, as we have
seen, and we have to address the question again if the maximum of the convergence
factor attained at ȳ is relevant in a computation. Letting L = C1Δx and Δt = C2Δxβ

as before, the maximum numerical frequency we can expect on the time discretization
grid is ωmax = π

Δt = π
C2Δxβ , which corresponds with the variable transform to

ymax =
Lxmax

ν
= C1Δx

√√√√√
√
x4

0 +
(

4νπ
C2Δxβ

)2

+ 2x2
0

2
= C1

√
2π

νC2
Δx1− β

2 + O(Δx1+ β
2 ),

(5.42)

whereas ȳ from the optimization in (5.36) has the expansion

ȳ = 2
2
3

(
x0C1

ν

) 1
3

Δx
1
3 + O(Δx).(5.43)

Hence, if 1 − β
2 = 1

3 or β = 4
3 and C1 =

√
x0

(
2νC3

2

π3

) 1
4

=: Cc, the numerical ymax and

ȳ from the optimization are asymptotically at the same location, which represents the
boundary between the usefulness of the continuous optimization result (5.36) and a
different optimization for the discretized algorithm, which we show in the following
theorem.

Theorem 5.14 (O0 discrete convergence estimate with overlap). Let x0 :=√
a2 + 4νb. If L = C1Δx and Δt = C2Δxβ, then the convergence factor R0(y, p̃, y0) of

the discretized overlapping Schwarz waveform relaxation algorithm with Robin trans-
mission conditions (4.1),(4.6) is for Δx small bounded for all y ∈ [y0, ymax] by R̃O0,
where ymax is given in (5.42), R̃O0 and p̃∗ satisfy

R̃O0 ≈ 1 −
(

25C1x0

ν

) 1
3

Δx
1
3 , p∗ ≈

(
2x2

0ν
C1

) 1
3

Δx− 1
3 if β > 4

3 or β = 4
3 and C1 > Cc,

R̃O0 ≈ 1 − 8C1x0

Cpν
Δx

1
3 , p∗ ≈ CpΔx− 1

3 if β = 4
3 and C1 ≤ Cc,

R̃O0 ≈ 1 − 2
(

2C2x
2
0

νπ

) 1
4

Δx
β
4 , p∗ ≈

(
23x2

0νπ
C2

) 1
4

Δx− β
4 if β < 4

3 ,

(5.44)

and the constants are given by Cp = 1
2C2

(

√
π2C2

1 + 8
√

2νπC
3
2
2 x0 − πC1), Cc =

√
x0(

2νC3
2

π3 )
1
4 .

Proof. The first case is a direct consequence of Theorem 5.13, which applies in
this case, since the maximum ȳ is relevant for the numerical discretization if β > 4

3 or
β = 4

3 and C1 > Cc, as can be see from (5.42) and (5.43). For case two and three, the
local maximum at ȳ lies outside of the numerical frequencies, ȳ > ymax, and hence
the min-max problem needs to be adapted to this situation; the maximum needs now
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be minimized only for y ∈ [y0, ymax]. For a small overlap, which corresponds to y0

small, the solution is achieved according to Theorem 5.13 when

R0(y0, p̃
∗, y0) = R0(ymax, p̃

∗, y0).(5.45)

Expanding both sides asymptotically for small Δx, we find, using the ansatz p̃∗ =
C̃pΔxα, that the leading order terms of (5.45) are

1 − 4x0C1

C̃pν
Δx1−α + · · · = 1 − 2C̃p

C1

√
νC2

2π
Δxα−1+ β

2 − C1

√
2π

νC2
Δx1− β

2 + · · · .

Hence in the limiting case, where β = 4
3 , we have α = 2

3 , and both terms on the right
have the same exponent. This leads to the constant Cp given in the theorem in case

two, after having used the back transform p∗ = p̃∗ν
C1Δx . If however β < 4

3 , then the last
term on the right-hand side is of lower order. Balancing the remaining two, we find

for the exponents 1−α = α− 1 + β
2 or α = 1− β

4 and the constant C̃p = C1(
23x2

0π
ν3C2

)
1
4 ,

which leads after the back transform to the last case stated in the theorem.

5.5. Convergence for the nonoverlapping algorithm. We now assume that
the overlap is zero, L = 0. We first analyze convergence of the algorithm in the
appropriate Sobolev spaces. The convergence analysis for the nonoverlapping case is
based on energy estimates and follows an idea from [28], which has also been used
in [6] and [33] for Schwarz algorithms applied to steady problems and in [11] for
a nonoverlapping Schwarz waveform relaxation algorithm for hyperbolic evolution
equations.

Theorem 5.15. Without overlap, L = 0, the Schwarz waveform relaxation al-
gorithm (4.1),(4.6) converges for p > 0 in (L∞(0, T ;L2(Ω1)) ∩ L2(0, T ;H1(Ω1))) ×
(L∞(0, T ;L2(Ω2)) ∩ L2(0, T ;H1(Ω2))) to the solution u of (2.1) for any initial guess

g0 ∈ H
1
4 (0, T ) and gL ∈ H

1
4 (0, T ).

Proof. As in the proof of Theorem 5.2 we obtain the energy estimates

1

2

d

dt
‖ek1‖2 + ν‖∂xek1‖2 + b‖ek1‖2 −

(
ν∂xe

k
1 − a

2
ek1

)
(0)ek1(0) = 0,(5.46)

1

2

d

dt
‖ek2‖2 + ν‖∂xek2‖2 + b‖ek2‖2 +

(
ν∂xe

k
2 − a

2
ek2

)
(0)ek2(0) = 0.(5.47)

Introducing the boundary operators B+ = ∂x + S1, B− = ∂x + S2 and rewriting the

terms on the interface in the form (ν∂xe − a
2e)e = ν2

2p ((B+e)2 − (B−e)2), we obtain
the new energy estimates

1

2

d

dt
‖ek1‖2 + ν‖∂xek1‖2 + b‖ek1‖2 +

ν2

2p
(B−ek1)2(0) =

ν2

2p
(B+ek1)2(0),(5.48)

1

2

d

dt
‖ek2‖2 + ν‖∂xek2‖2 + b‖ek2‖2 +

ν2

2p
(B+ek2)2(0) =

ν2

2p
(B−ek2)2(0).(5.49)

Now note that the transmission conditions can be expressed with the operators B±,

B+ek1 = B+ek−1
2 , B−ek2 = B−ek−1

1 on {0} × (0, T ).

Replacing the corresponding terms in the two equations (5.48) and (5.49), adding the
resulting equations, and summing in k, we get a telescopic sum on the interfaces and
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therefore∑K
k=1

[
1
2

d
dt (‖ek1‖2 + ‖ek2‖2) + ν(‖∂xek1‖2 + ‖∂xek2‖2) + b(‖ek1‖2 + ‖ek2‖2)

]
+

+ν2

2p ((B−eK1 )2 + (B+eK2 )2)(0) = ν2

2p ((B−e1
1)

2 + (B+e1
2)

2)(0).
(5.50)

We can now integrate in time, and since the initial values of the error vanish, the sum
of the energies over all the iterates remains bounded. Hence the energy in the iterates
needs to go to zero and the algorithm converges.

5.6. Low frequency approximation for the algorithm without overlap.
One can choose the free parameter p in the Robin transmission conditions based on a
low frequency Taylor approximation, as given in (5.20). But now there is no overlap
to be effective on the high frequencies, the convergence factor (5.23) becomes

RT0(x, x0) =
x− x0

x + x0
,(5.51)

where x ≥ x0 is given by the variable transform (5.21). Clearly RT0 is a monotonically
increasing function of x for x ≥ x0 and tends to one as x tends to infinity. There is
therefore no uniform bound on RT0 which is strictly less than one for all x ≥ x0 in
the case without overlap. But we have already seen that in a numerical calculation
the frequency parameter ω cannot be arbitrarily high. It suffices therefore for the
numerical case to find a bound for RT0 for x0 ≤ x ≤ xmax, where xmax is given in
(5.25).

Theorem 5.16 (T0 discrete convergence estimate without overlap). Let x0 :=√
a2 + 4νb and L = 0. Then the convergence factor estimate RT0 of the discretized

nonoverlapping Schwarz waveform relaxation algorithm with Robin transmission con-
ditions (4.1),(4.6) and p = pT from the Taylor low frequency approximation (5.20) is
for x0 ≤ x ≤ xmax, where xmax is defined in (5.25), bounded by

RT0(x, x0) ≤ R̃T0(x0) := RT0(xmax, x0) =

√√
Δt2x4

0 + 16ν2π2 + x2
0Δt−

√
2Δtx0√√

Δt2x4
0 + 16ν2π2 + x2

0Δt +
√

2Δtx0

.

(5.52)

For Δt small, we have R̃T0(x0) = 1 − x0

√
2
νπ

√
Δt + O(Δt).

Proof. By the monotonicity of RT0 in x, the bound for x0 ≤ x ≤ xmax on RT0 is
attained at x = xmax, which leads, using the variable transform (5.21) and ωmax = π

Δt ,
to the bound given in (5.52).

Now we can compare the asymptotic performance of the algorithm without over-
lap to the performance of the algorithm with overlap. If in the discretization the time
step Δt is linked to the spatial discretization step Δx by the relation Δt = C2Δxβ ,
then we see by comparing the results of Theorem 5.10 with the results of Theorem
5.16 that for β ≥ 1 adding an overlap of size Δx does improve the asymptotic per-
formance of the algorithm, whereas for β < 1 adding an overlap of the order of Δx
does not improve the asymptotic performance. In particular this shows that with the
Taylor transmission conditions and using an explicit time discretization with the sta-
bility constraint Δt = C1Δx2, an overlap is helpful. Note that if an explicit scheme
is used with the same time steps in both subdomains, there is no need to iterate,
since one can explicitly advance the algorithm on the interface as well. A subdomain
iteration would still be of interest if one uses nonmatching time grids, however, see,
for example, [11].
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5.7. Optimization of the algorithm without overlap. As in the case with
overlap, there is a better choice for p than the low frequency approximation based on
a Taylor expansion of the optimal symbol. We can again try to choose p such that
the convergence factor

R0(x, p, x0) =
(x− p)2 + x2 − x2

0

(x + p)2 + x2 − x2
0

(5.53)

is minimized over all x0 ≤ x ≤ xmax. Hence the optimal choice for p for the discretized
algorithm is the solution of the min-max problem

min
p

(
max

x0≤x≤xmax

R0(x, p, x0)

)
= min

p≥0

(
max

x0≤x≤xmax

(x− p)2 + x2 − x2
0

(x + p)2 + x2 − x2
0

)
,(5.54)

where minimizing over nonnegative p is equivalent to minimizing over all p, as one
can see from (5.53). The following theorem can be proved as in the case with overlap.

Theorem 5.17 (O0 performance without overlap). Let L = 0, x0 :=
√
a2 + 4νb,

and xmax < ∞ be given. Then the best performance of the optimized nonoverlapping
Schwarz waveform relaxation algorithm with Robin transmission conditions (4.1),(4.6)
is obtained for p = p∗, where p∗, the solution of the min-max problem (5.54), is for

xmax ≥ 1+
√

5
2 x0 given by

p∗ =
√
x0(2xmax + x0), R0(x, p

∗, x0) ≤ R̃O0 =
xmax + x0 −

√
2xmaxx0 + x2

0

xmax + x0 +
√

2xmaxx0 + x2
0

,

(5.55)

and for xmax < 1+
√

5
2 x0 we have

p∗ =
√

2x2
max − x2

0, R0(x, p
∗, x0) ≤ R̃O0 =

√
2x2

max − x2
0 − xmax√

2x2
max − x2

0 + xmax

.(5.56)

Theorem 5.18 (O0 discrete convergence estimate without overlap). Let L = 0
and x0 :=

√
a2 + 4νb. If the nonoverlapping Schwarz waveform relaxation algorithm

with optimized Robin transmission conditions is discretized in time with time step Δt,
then for Δt small we have

p∗ = (23x2
0πν)

1
4 Δt−

1
4 + O(Δt

1
4 ), R̃O0 = 1 − 2

(
2x2

0

πν

) 1
4

Δt
1
4 + O(

√
Δt).(5.57)

Proof. Using the variable transform (5.21), xmax behaves like

xmax =
√

2πνΔt−
1
2 + O(

√
Δt),

and thus the first result of (5.55) in Theorem 5.17 applies. Expanding p∗ and R̃O0

from (5.55) leads to (5.57).
To summarize the results of this section, we show in Table 5.2 an overview of

the performance one can obtain with the various choices of the parameter p in the
transmission conditions. It is interesting to note that, for optimized Schwarz waveform
relaxation methods, without overlap does not necessarily mean less performance than
with overlap: in the T0 case, if β ≤ 1, the performance of the overlapping and
nonoverapping algorithms is the same, and the same holds in the O0 case if β ≤ 4

3 .
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Table 5.2

Summary of the asymptotic convergence factors for the various parameter choices in the Robin
transmission conditions for Δt = Δxβ .

Method Convergence factor Parameter p

T0 overlap Δx

{
1 −O(

√
Δx) if β ≥ 1

1 −O(Δx
β
2 ) if β < 1

√
a2 + 4νb

O0 overlap Δx

{
1 −O(Δx

1
3 ) if β ≥ 4

3

1 −O(Δx
β
4 ) if β < 4

3

(2ν(a2 + 4νb))
1
3 Δx− 1

3

(8νπ(a2 + 4νb))
1
4 Δx− β

4

T0 no overlap 1 −O(
√

Δt)
√
a2 + 4νb

O0 no overlap 1 −O(Δt
1
4 ) (8νπ(a2 + 4νb))

1
4 Δt−

1
4

6. Numerical results. We perform in this section numerical experiments to
measure the convergence factors of the numerical implementation of the Schwarz
waveform relaxation algorithms analyzed at the continuous level in this paper. We
use the parabolic model problem (2.1) with Ω = (0, 6). We impose homogeneous
boundary conditions, u(0, t) = 0 and u(6, t) = 0, and use various initial conditions
u(x, 0), x ∈ Ω. We first use a decomposition of the domain Ω into the two subdomains
Ω1 = (0, L2) and Ω2 = (L1, 6), L1 ≤ L2, and hence L = L2 − L1. We refer with
the term iteration to a double iteration of the respective algorithms, since for two
subdomains one can perform all the iterations in an alternating fashion and thus
obtain the even iterates on one subdomain and the odd ones on the other without
having to compute the remaining ones. We show results of numerical experiments
for only the algorithm with overlap since with overlap we can compare the results
to the classical Schwarz waveform relaxation algorithm with Dirichlet transmission
conditions, which does not converge without overlap.

6.1. Dirichlet transmission conditions. In this first set of experiments, we
use the classical Schwarz waveform relaxation algorithm with Dirichlet transmission
conditions analyzed in section 3. We chose for the problem parameters ν = 0.2, a = 1,
and b = 0. We discretize (2.1) using an upwind finite difference discretization in space
with mesh parameter Δx = 0.02 and a backward Euler discretization in time, with
time step Δt = 0.005. We chose L1 = 2.96 and L2 = 3.04, which means the overlap
is L = 0.08, and we compute the numerical solution in the time interval [0, T ]. Using
as initial condition

u(x, 0) = e−3(1.2−x)2 ,

we have already shown in Figure 3.1 for this example the first few iterations at the end
of the time interval T = 2.5, where we started the algorithm with a zero initial guess.
We show in Figure 6.1 the convergence behavior of the classical Schwarz waveform
relaxation algorithm for this example for three different lengths of the time interval,
T = 1, T = 2.5, and T = 10, together with the linear bound on the convergence
rate from Theorem 3.3 and the superlinear convergence bound from Theorem 3.4.
The dashed curve shows the error measured in the L2 norm between the converged
solution and the iterates at the interface L2. One can clearly see that the behavior of
the algorithm depends on the length of the time interval T , as predicted by Theorem
3.4. For short time intervals, the superlinear bound on the convergence rate is sharper,
and hence the algorithm must converge superlinearly, as shown in Figure 6.1 on the
left. If the time interval becomes longer, as in the middle graph of Figure 6.1, the
linear bound of Theorem 3.3 is sharper than the superlinear one early in the iteration,
and hence the algorithm converges linearly. But later the superlinear bound becomes
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Fig. 6.1. Convergence rate of the classical Schwarz waveform relaxation algorithm with Dirich-
let transmission conditions together with the theoretical linear and superlinear bounds on the con-
vergence rates: on the left for T = 1, in the middle for T = 2.5, and on the right for T = 10.

sharper and hence a transition to the superlinear convergence regime occurs. For long
time intervals, the initial linear convergence regime also prevails for more iterations,
as one can see in Figure 6.1 on the right.

6.2. Robin transmission conditions. We now change the transmission condi-
tions in the Schwarz waveform relaxation algorithm to Robin transmission conditions.
Using the same numerical configuration as in the previous subsection, we obtain for
the parameter p in the transmission conditions using a Taylor expansion p = pT = 1,
and using the optimization from Theorem 5.13, we obtain p = p∗ = 2.054275607. In
Figure 3.1 on the right, we have already seen the first few iterations at the end of
the time interval T = 2.5 for this example with the optimal parameter p∗, starting
the iteration with the zero initial guess. In Figure 6.2 one can see how much faster
the algorithm converges with Robin transmission conditions compared to the classi-
cal algorithm. One can also see that the optimized parameter p∗ leads to an even
better performance than the parameter pT from the Taylor transmission conditions.
Note that for all the results comparing the performance of the algorithms, we started
the iteration with a random initial guess. This is important to obtain a relevant
comparison since, for smooth solutions starting with a smooth initial guess, high fre-
quencies would not be present on the mesh and thus a much coarser mesh would have
been sufficient for the computation. The random initial guess has the effect that the
mesh resolution is indeed needed to resolve the iteration and thus corresponds to the
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Fig. 6.2. Left: Convergence rates of the classical Schwarz waveform relaxation algorithm with

Dirichlet transmission conditions compared to the same algorithm with the new Robin transmission
conditions, with the low frequency Taylor approximation or optimized. Right: The error obtained
running the algorithm with Robin transmission conditions for 5 steps and various choices of the free
parameter p, and indicated by a star the choice p∗ predicted by the theory.
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Fig. 6.3. Asymptotic behavior as the mesh is refined with an overlap L = Δx: on the left
the case where Δt = O(Δx) and on the right the case where Δt = O(

√
Δx), together with the pre-

dicted rates from the analysis, both for the classical and the optimized Schwarz waveform relaxation
algorithms with Taylor and optimized Robin transmission conditions.

relevant case in practice.
Next, we verify if the optimal choice for the parameter p = p∗ derived using the

continuous Fourier analysis in Theorem 5.13 really corresponds to the best choice one
can make in the fully discretized algorithm. In Figure 6.2 on the right we show the
error obtained after running the Schwarz waveform relaxation algorithm with Robin
transmission conditions for five steps using various values for the free parameter p in
the transmission conditions. The optimal choice p∗ from Theorem 5.13 is indicated by
a star. Clearly the continuous analysis predicts the optimal choice of the parameter
p very well.

Finally, we illustrate the asymptotic analysis by performing two sets of experi-
ments according to Theorems 5.10 and 5.14. We choose the same problem parameters
as before but start now with a coarser mesh both in space and time, Δx = 0.08 and
Δt = 0.02, and we fix the overlap to be L = Δx. We then run the classical and
optimized Schwarz waveform relaxation algorithms with Taylor–Robin transmission
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Fig. 6.4. From left to right, the first iterates uk
j (x, T ), j = 1, . . . , 8, (dashed) at the end of the

time interval t = T together with the exact solution (solid) for the same model problem as before:
top row the classical algorithm and bottom row the optimized algorithm.

conditions until the error becomes smaller than 10−6 and count the number of it-
erations. We repeat this experiment dividing Δx and Δt by 2 several times, which
implies Δt = O(Δx). This corresponds to (3.16) for the classical algorithm, where
the convergence factor should behave like 1 −O(Δx). For the algorithm with Taylor
transmission conditions it corresponds to the case in Theorem 5.10, where the con-
vergence factor should behave like 1 − O(

√
Δx), and for the optimized algorithm it

corresponds to the case in Theorem 5.14, where the convergence factor should behave
like 1 −O(Δx

1
4 ). Figure 6.3 shows on the left the results obtained from these exper-

iments. One can see that the asymptotic analysis predicts very well the numerical
behavior of the algorithms. Next, we perform a similar experiment, starting with
the same values for Δx and Δt, but now we divide Δx by 2 each time and Δt only
by

√
2 (such a refinement is admissible since our scheme is implicit), which implies
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Fig. 6.5. Left: convergence rate comparison for the eight subdomain case. Right: Asymptotic
behavior as the mesh is refined with an overlap L = Δx for the eight subdomain case, with Δt =
O(Δx), together with the predicted rates from the two subdomain analysis.
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Δt = O(
√

Δx). While this does not change anything for the classical algorithm,
which still has the same bad convergence factor 1 − O(Δx), for the algorithm with
Taylor–Robin transmission conditions now case 3 of Theorem 5.10 applies, and the
algorithm should show the much better convergence factor 1 − O(Δx

1
4 ). The op-

timized algorithm has according to Theorem 5.14 now the even better convergence
factor 1 −O(Δx

1
8 ), virtually independent of Δx. In Figure 6.3 on the right, one can

clearly see that this is the case. The algorithm has different asymptotic convergence
factors with the same overlap, depending on the discretization in time, as predicted.

6.3. Experiments with many subdomains. We now show experiments which
indicate that the results we obtained for two subdomains are also relevant for many
subdomains. Using the same model problem as before, we now decompose the domain
into eight subdomains. In Figure 6.4, we show in the top row the first three itera-
tions of the classical Schwarz waveform relaxation algorithm, and below we show the
same iterations for the algorithm with optimized Robin transmission conditions. This
clearly shows how important the transmission conditions are in the many subdomain
case. We show the corresponding convergence rates in Figure 6.5 on the left, and on
the right we perform the same asymptotic experiments as in Figure 6.3 on the left
but now with eight subdomains, which indicates that the results of Theorems 5.10
and 5.14 also hold for more than two subdomains.

7. Conclusions. We have analyzed Schwarz waveform relaxation algorithms for
advection reaction diffusion equations. We have shown that these methods, using
the classical Dirichlet transmission conditions, are well defined and have a conver-
gence rate which is bounded both by a linear and a superlinear rate. Both rates
can be sharp, depending on the length of the time interval of the simulation. We
then showed that there exist much better transmission conditions than the classical
Dirichlet conditions. Optimal transmission conditions are transparent conditions, but
they are in general nonlocal and thus less convenient to use. We introduced instead
Robin transmission conditions in the Schwarz waveform relaxation algorithm, showed
that the new algorithm is well posed and convergent, even if there is no overlap, and
analyzed how to chose the free parameter in the new transmission conditions. We
also gave asymptotic results when the overlap or the mesh parameters become small.
We finally illustrated our findings with numerical experiments which document the
relevance of our continuous analysis.
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Abstract. In the framework of the Jacobi-weighted Besov spaces, we analyze the convergence of
the h-p version of finite element solutions on quasi-uniform meshes and the lower and upper bounds
of errors for elliptic problems on polygons. Both lower and upper bounds are proved to be optimal
in h and p, which leads to the optimal convergence of the h-p version of the finite element method
with quasi-uniform meshes for elliptic problems on polygons. The results proved for the h-p version
include the h-version with quasi-uniform meshes and the p-version with quasi-uniform degrees as two
special cases.
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1. Introduction. In this paper we investigate the convergence of the h-p version
of the finite element method (FEM) with quasi-uniform meshes in two dimensions in
the framework of the Jacobi-weighted Besov spaces. In particular, we prove asymp-
totically exact upper and lower bounds for the approximation error in finite element
solutions of the h-p version for elliptic problems on polygonal domains whose solutions
exhibit typical corner singularities. Our analysis is done within the framework of the
Jacobi-weighted Besov spaces, which already has been proved an appropriate tool for
obtaining optimal estimates for the p-version of the FEM for this type of problem; see
[5, 6, 7]. Here we incorporate the mesh dependence into the analysis for the p-version
and provide optimal estimates for any combination of mesh size and polynomial degree
for the case of quasi-uniform meshes and uniform polynomial degrees.

The p-version of FEM uses a fixed mesh and improves the approximation of
the solution by increasing degrees of piecewise polynomials. The h-version is based
on mesh refinement and piecewise polynomials of low and fixed degrees. The h-p
version combines mesh refinement with an increase of degrees. Let us recall the main
theoretical achievements for the h-p version since its beginning. An analysis of the
h-p version of the FEM in one dimension was given by Gui and Babuška [16]. They
considered the approximation of typical singularities xγ and proved optimal upper and
lower bounds of error in the p and h-p finite element solutions in H1 and L2 norms.
The approximation of singularities xγ logν x in one dimension was addressed, and

∗Received by the editors August 4, 2005; accepted for publication (in revised form) October 20,
2006; published electronically April 13, 2007.

http://www.siam.org/journals/sinum/45-2/63756.html
†Department of Mathematics, Shanghai Normal University, Shanghai, China, and Department

of Mathematics, University of Manitoba, Winnipeg, MB R3T 2N2, Canada (guo@cc.umanitoba.ca).
The work of this author was partially supported by the NSERC of Canada under grant OGP0046726,
and partially supported by E-institutes of Shanghai Municipal Education Commission under project
E03004 while this author visited Shanghai Normal University in 2006.

‡Department of Mathematics, City University of Hong Kong, Kowloon Tong, Hong Kong, China
(maweiw@cityu.edu.hk). The work of this author was supported by the Research Grant Council of
the Hong Kong Special Administrative Region, China, under project CityU 102103.

698



OPTIMAL CONVERGENCE OF THE h-p FEM 699

asymptotic analysis on the approximation error was given in [7]. The h-p version of the
FEM with quasi-uniform meshes in two dimensions was analyzed by Babuška and Suri
[10] after improving the approximation results of the p-version of the FEM [9]. They
gave an upper bound of error in finite element approximation for elliptic problems
with singularities rγ logν r (r = |x| is the distance to the origin), which is actually of
order O(h−γp−2γ logν(p/h)). This upper bound is sharp for noninteger γ, and it can
be sharper for integer γ and ν > 0. Since then, the h-p FEM has been widely used for
various scientific and engineering computations such as solid and fluid mechanics and
electromagnetics [2, 3, 4, 13, 15, 29, 30]. The h-p FEM has been generalized to the h-p
versions of the boundary element method (BEM) [19, 20, 28] and the discontinuous
Galerkin method (DG FEM)[24, 25, 27, 26, 31] to solve linear and nonlinear elliptic,
parabolic, and hyperbolic problems as well as multiscale problems. Commercial and
research software packages based on the h-p FEM such as MSC/PROBE (MacNeal
Schwendler, California), Poly FEM (IBM, Massachusetts), PHLEX (Computational
Mechanics, Texas), STRESSCHECK (Engineering Software Research & Development,
Missouri), and STRIPE (Aeronautical Research Institute of Sweden) are now widely
used in engineering computation. While great progress in theory, algorithms, and
applications of the h-p FEM were made in the last two decades, there has been
no breakthrough in the optimal convergence of the h-p FEM for elliptic problems
with singularities of rγ logν r-type on polygonal domains. The lower bound and the
sharpest estimation of the upper bound of the error in the h-p FEM solutions for
elliptic problems with singular solutions of rγ logν r-type have not been addressed
until now. Therefore, the optimal convergence of the h-p version of FEM has not
been well established yet.

The h-p version with quasi-uniform meshes is, from methodology and approxi-
mation theory, the p-version on scaled meshes. The approach of the p-version gives
the p-dependence in the approximation errors, and a proper scaling argument will
fully reveal the information of the h-dependence. Hence, the analysis for the best
approximation of the h-p version with quasi-uniform meshes is not feasible unless the
optimal convergence of the p-version is rigorously proved. Fortunately, the best a
priori error estimation for the p-version has been recently established, and we are now
ready to pursue the best a priori error estimation for the h-p version. In the last few
years, with a series of papers by one of the authors and his collaborators [5, 6, 7, 19],
a new analysis of the p-version has started in the framework of the Jacobi-weighted
Besov and Sobolev spaces. The approximation theory of the FEM and BEM in two
dimensions in this new mathematical framework is systematically developed in these
papers, which demonstrates that Jacobi-weighted Besov and Sobolev spaces are the
most appropriate tools for obtaining optimal upper and lower bounds of approxima-
tion errors when dealing with singular solutions on polygons. This framework has
been generalized to the p-version of the FEM in three dimensions [17] and the h-p
version of the BEM [20]. The Jacobi projection and interpolation have been devel-
oped recently in the spectral methods as well; see, e.g., [12, 21, 22, 23] and references
therein. In this paper we will further develop the approximation theory of the h-p
version of the FEM with quasi-uniform meshes. Based on the analysis of the upper
and lower bounds of approximation error in the FEM solutions in terms of h and p,
we will establish the optimal convergence of the h-p version of the FEM for elliptic
problems on polygonal domains.

The rest of the paper is organized as follows. In section 2 we analyze approx-
imation in the Jacobi-weighted Besov and Sobolev spaces on a standard domain
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Q = (−1, 1)2. We introduce the Jacobi-weighted Besov and Sobolev spaces on a
scaled domain Qh = (−h, h)2 in section 3 and analyze the approximation properties
for smooth and singular functions of rγ logν r-type in the framework of these spaces.
These approximation results on scaled square domains are applied in section 4 to
prove the convergence of the h-p version FEM with quasi-uniform meshes for elliptic
problems with smooth solutions, and to derive the sharpest estimate of lower and
upper bounds of error in FEM solutions of the h-p version for elliptic problems with
singular solutions on polygonal domains, which leads to the optimal convergence of
the h-p version of the FEM with quasi-uniform meshes. In the last section, we will
make some concluding remarks.

2. Approximation in Jacobi-weighted spaces on a square domain.

2.1. Weighted Besov and Sobolev spaces. Let Q = I2 = (−1, 1)2, and let

(2.1) wα,β(x) =

2∏
i=1

(1 − x2
i )

αi+βi

be a weight function with integer αi ≥ 0 and real number βi > −1, which is referred
to as the Jacobi weight. The weighted Sobolev space Hk,β(Q) is defined as a closure
of C∞ functions in the norm with the Jacobi weight

(2.2) ‖u‖2
Hk,β(Q) =

k∑
|α|=0

∫
Q

|Dαu|2 wα,β(x) dx,

where Dαu = ux
α1
1 ,x

α2
2

, α = (α1, α2), |α| = α1 + α2, and β = (β1, β2). By |u|Hk,β(Q)

we denote the seminorm,

(2.3) |u|Hk,β(Q) =
∑
|α|=k

∫
Q

|Dαu|2 wα,β(x) dx.

The Jacobi-weighted Sobolev space Hs,β(Q) and Besov space Bs,β(Q) are defined

as interpolation spaces Bs,β
2,q (Q) = (H�,β(Q), Hk,β(Q))θ,q with q = 2 and q = ∞,

respectively, by the K-method, where 0 < θ < 1, 1 ≤ q ≤ ∞, s = (1− θ)�+ θk, and �
and k are integers, � < k, furnished with norms

(2.4) ‖u‖Bs,β
2,2 (Q) =

(∫ ∞

0

t−2θ |K(t, u)|2 dt
t

)1/q

, ‖u‖Bs,β
2,∞(Q) = sup

t>0
t−θ K(t, u)

with

K(t, u) = inf
u=v+w

(
‖v‖H�,β(Q) + t‖w‖Hk,β(Q)

)
.

The space Hs,β(Q) is called the Jacobi-weighted Sobolev space with fractional order
if s is not an integer, and the space Bs,β(Q) is referred as to the Jacobi-weighted
Besov space.

The modified weighted Besov space Bs,β
ν (Q) with ν ≥ 0 is defined as an interpo-

lation space by a modified K-method,

Bs,β
ν (Q) =

(
H�,β(Q), Hk,β(Q)

)
θ,∞,ν

,
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with a modified norm,

(2.5) ‖u‖Bs,β
ν (Q) = sup

t>0
K(t, u)

t−θ

(1 + | log t|)ν .

Remark 2.1. The spaces Hs,β(Q) and Bs,β(Q) = Bs,β
0 (Q) are exact of θ-exponent,

but Bs,β
ν (Q) with ν > 0 is not. It was proved in [5] that Bs,β

ν (Q) is weakly exact of
θ-exponent. Suppose that E realizes a linear operator: Hl → Hml,β(Q), l = 1, 2, with
norms denoted by ‖E‖l, where Hl, l = 1, 2, are Banach spaces. Then E is a linear
operator: (H1, H2)θ,q → (Hm1,β(Q), Hm2,β(Q))θ,q,ν such that for ν = 0

(2.6) ‖E‖(H1,H2)θ,q→(Hm1,β(Q),Hm2,β(Q))θ,q,0 ≤ ‖E‖1−θ
1 ‖E‖θ2

and for ν > 0

(2.7) ‖E‖(H1,H2)θ,q→(Hm1,β(Q),Hm2,β(Q))θ,∞,ν
≤ ‖E‖1−θ

1 ‖E‖θ2
(

1 + log
‖E‖2

‖E‖1

)ν

.

For the exact interpolation spaces of θ-exponent we refer to [11], and for the weak
exactness of θ-exponent for the space Bs,β

ν (Q), ν > 0, we refer to [5].
We shall introduce the Jacobi projection and analyze its properties. Let Jα,β

n (x)
be the Jacobi polynomial of degree n,

(2.8) Jα,β
n (x) =

(1 − x)−α(1 + x)−β

2n n!

dn (1 − x)α+n(1 + x)β+n

dxn

with α, β > −1. In particular, for α = β, we write Jβ,β
n (x) = Jβ

n (x). The Jacobi
polynomials Jβ

n (x) are orthogonal with the Jacobi weight wβ(x) = (1 − x2)β :∫
I

Jβ
m(x) Jβ

n (x)wβ(x) dx =

{
γβ
n , m = n,

0, m �= n

with

(2.9) γβ
n =

22β+1Γ2(n + β + 1)

(2n + 2β + 1)Γ(n + 1)Γ(n + 2β + 1)
.

Let Jβ
n,k(x) = dk

dxk J
β
n (x). Then for 0 ≤ k ≤ n

Jβ
n,k(x) = 2−k Γ(n + 2β + k + 1)

Γ(n + 2β + 1)
Jβ+k
n−k (x),

which are orthogonal with the Jacobi weight wβ+k(x) = (1 − x2)β+k:

∫
I

Jβ
m,k(x)Jβ

n,k(x)wβ+k(x) dx =

{
γβ
n,k, m = n ≥ k,

0 otherwise

with

(2.10) γβ
n,k =

22β+1 Γ(n + 2β + k + 1) Γ2(n + β + 1)

(2n + 2β + 1) Γ(n + 1 − k) Γ2(n + 2β + 1)
.
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By the Stirling formula [14], there hold asymptotically

γβ
n =

22β+1

(2n + 2β + 1)
(1 + O((n + 1)−1/5)), γβ

n,k =
22β+1n2k

(2n + 2β + 1)
(1 + O((n + 1)−1/5)).

(2.11)

It is known [1, 23] that for x ∈ [−1, 1] there holds

(2.12) |Jβ
n (x)| ≤ C(n + 1)max{β,−1/2}

and for x = ±1, we have the more precise estimation

(2.13) |Jβ
n (1)| = |Jβ

n (−1)| ≤ C(n + 1)β .

For u ∈ Hk,β(Q), k ≥ 0, with β = (β1, β2), there is the Jacobi–Fourier expansion

u =

∞∑
i,j=0

ci,jJ
β1

i (x1)J
β2

j (x2)

with

ci,j =
1

γβ1

i γβ2

j

∫
Q

u(x) Jβ1

i (x1)J
β2

j (x2)wβ(x)dx,

where Jβ1

i (x1) and Jβ2

j (x2) are the Jacobi polynomials and wβ(x) = (1 − x2
1)

β1(1 −
x2

1)
β1 . Then

(2.14) ‖u‖2
L2

β
(Q) =

∞∑
i,j=0

|ci,j |2γβ1

i γβ2

j

and

|u|2Hk,β(Q) =
∑
|α|=k

∑
i≥α1,j≥α2

|ci,j |2γβ1

i, α1
γβ2

j, α2

∼=
∑
|α|=k

∑
i≥α1,j≥α2

|ci,j |2γβ1

i γβ2

j i2α1j2α2 .

(2.15)

Hereafter A ∼= B means c1B ≤ A ≤ c2B with constants c1 and c2 independent of A
and B.

Let Pp(Q) with p ≥ 0 be the set of all polynomials of (separate) degree ≤ p on
Q. Then

up =

β∏
p

u =

p∑
i,j=0

ci,jJ
β1

i (x1)J
β2

j (x2)

is the Jacobi projection of u ∈ Hk,β(Q), k ≥ 0, on Pp(Q).

2.2. Approximation properties of the Jacobi projection on Q = (−1, 1)2.
Theorem 2.1. Let u ∈ Hk,β(Q) with integer k ≥ 0, β = (β1, β2), βi > −1,

1 ≤ i ≤ 2, and let up = Πβ
pu be its Jacobi projection on Pp(Q) with p ≥ 0. Then we

have for integer � ≤ k

(2.16) ‖u− up‖H�,β(Q) ≤ C (p + 1)−(k−l) ‖u‖Hk,β(Q).
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Furthermore, if u ∈ Hk,β(Q) with k > 1, βi ≤ −1/2, 1 ≤ i ≤ 2, then for x ∈ Q̄

‖u− up‖C0(Q̄) ≤ C(p + 1)−(k−l)‖u‖Hk,β(Q),(2.17)

|(u− up)(±1, x2)| ≤ C(p + 1)−(k−3/2−β1)‖u‖Hk,β(Q),(2.18)

|(u− up)(x1,±1)| ≤ C(p + 1)−(k−3/2−β2)‖u‖Hk,β(Q),(2.19)

|(u− up)(±1,±1)| ≤ C(p + 1)−(k−2−β1−β2)‖u‖Hk,β(Q).(2.20)

If p ≥ k − 1, k ≥ 1, l ≤ k, we have estimations in seminorms

(2.21) |u− up|H�,β(Q) ≤ C (p + 1)−(k−�) |u|Hk,β(Q),

and if, in addition, k > 1, βi ≤ −1/2, 1 ≤ i ≤ 2, there hold for x ∈ Q̄

|(u− up)(x)| ≤ C(p + 1)−(k−1)|u|Hk,β(Q),(2.22)

|(u− up)(±1, x2)| ≤ C(p + 1)−(k−3/2−β1)|u|Hk,β(Q),(2.23)

|(u− up)(x1,±1)| ≤ C(p + 1)−(k−3/2−β2)|u|Hk,β(Q),(2.24)

|(u− up)(±1,±1)| ≤ C(p + 1)−(k−2−β1−β2)|u|Hk,β(Q).(2.25)

The constants C in the above inequalities are independent of p and u.
Proof. By (2.15) we have for α = (α1, α2) with |α| = l∫

Q

|Dα(u− up)|2wα,β(x)dx =
∑

i≥max{p+1,α1},j≥max{p+1,α2}
|ci,j |2γβ1

i,α1
γβ2

j,α2
(2.26)

+

⎛⎝ ∑
α1≤i≤p,j≥max{p+1,α2}

+
∑

i≥max{p+1,α1},α2≤j≤p

⎞⎠ |ci,j |2γβ1

i,α1
γβ2

j,α2
.

Due to (2.11) there hold∑
i≥max{p+1,α1},j≥max{p+1,α2}

|ci,j |2γβ1

i,α1
γβ2

j,α2
(2.27)

≤ C
∑

i≥max{p+1,α1},j≥max{p+1,α2}
|ci,j |2γβ1

i γβ2

j i2α1j2α2

≤ C(p + 1)−2(k−l)
∑

i≥max{p+1,α1},j≥max{p+1,α2}
|ci,j |2γβ1

i γβ2

j i2α1j2(k−α1).

Similarly, we have∑
α1≤i≤p,j≥max{p+1,α2}

|ci,j |2γβ1

i,α1
γβ2

j,α2
(2.28)

≤ C(p + 1)−2(k−l)
∑

α1≤i≤p,j≥max{p+1,α2}
|ci,j |2γβ1

i γβ2

j γβ2

j i2α1j2(k−α1)

and ∑
i≥max{p+1,α1},α2≤j≤p

|ci,j |2γβ3,β1

i,α1
γβ4,β2

j,α2
(2.29)

≤ C(p + 1)−2(k−l)
∑

i≥max{p+1,α1},α2≤j≤p

|ci,j |2γβ1

i γβ2

j γβ2

j i2(k−α2)j2α2 .
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A combination of (2.26)–(2.29) leads to (2.17).

We shall next prove (2.17). Since k > 1, β1, β2 ≤ −1/2, u ∈ C0(Q̄) [18], and due
to (2.11) and (2.12), there holds

|(u− up)(x)| ≤

⎛⎝ ∑
i,j≥p+1

+
∑

i≥p+1,0≤j≤p

+
∑

0≤i≤p,j≥p+1

⎞⎠ |ci,j |
√
γβ1

i γβ2

j .(2.30)

By the Schwartz inequality there holds

∑
i≥p+1,0≤j≤p

|ci,j |
√
γβ1

i γβ2

j ≤

⎛⎝ ∑
i≥p+1,0≤j<p

i−2k

⎞⎠
1
2
⎛⎝ ∑

i≥p+1,0≤j≤p

|ci,j |2γβ1

i γβ2

j i2k

⎞⎠
1
2

(2.31)

≤ C(p + 1)−(k−1)

⎛⎝ ∑
i≥p+1,0≤j≤p

|ci,j |2γβ1

i γβ2

j i2k

⎞⎠
1
2

.

Similarly, we can prove that

∑
0≤i≤p,j≥p+1

|ci,j |
√
γβ1

i γβ2

j ≤ C(p + 1)−(k−1)

⎛⎝ ∑
0≤i≤p,j≥p+1

|ci,j |2γβ1

i γβ2

j j2k

⎞⎠
1
2

(2.32)

and

∑
i,j≥p+1

|ci,j |
√
γβ1

i γβ2

j ≤ C(p + 1)−(k−1)

⎛⎝ ∑
p+1≤i,j<∞

|ci,j |2γβ1

i γβ2

j i2k

⎞⎠1/2

.(2.33)

Combining (2.30)–(2.33), we obtain (2.17). The above arguments can be carried out
for (2.18)–(2.20) except that we use (2.13) instead of (2.12).

For p ≥ k − 1 ≥ 0, there holds∫
Q

|Dα(u− up)|2wα,β(x)dx

=

⎛⎝ ∑
i,j≥p+1

+
∑

α1≤i≤p,j≥p+1

+
∑

i≥p+1,α2≤j≤p

⎞⎠ |ci,j |2γβ3,β1

i,α1
γβ4,β2

j,α2
.

Note that∑
i,j≥p+1

|ci,j |2γβ1

i γβ2

j i2α1j2(k−α1) ≤
∑
i,j≥k

|ci,j |2γβ1

i γβ2

j i2α1j2(k−α1) ≤ |u|2Hk,β(Q),

∑
α1≤i≤p,j≥p+1

|ci,j |2γβ1

i γβ2

j i2α1j2(k−α1) ≤
∑

α1≤i≤p,j≥k

|ci,j |2γβ1

i γβ2

j i2α1j2(k−α1)

≤ |u|2Hk,β(Q),
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i≥p+1,α2≤j≤p

|ci,j |2γβ1

i γβ2

j i2(k−α2)j2α2 ≤
∑

i≥k,α2≤j≤p

|ci,j |2γβ1

i γβ2

j i2(k−α2)j2α2

≤ |u|2Hk,β(Q),

∑
i≥p+1,0≤j≤p

|ci,j |2γβ1

i γβ2

j i2k ≤
∑

i≥k,0≤j≤p

|ci,j |2γβ1

i γβ2

j i2k ≤ |u|2Hk,β(Q),

∑
0≤i≤p,j≥p+1

|ci,j |2γβ1

i γβ2

j j2k ≤
∑

0≤i≤p,j≥k

|ci,j |2γβ1

i γβ2

j j2k ≤ |u|2Hk,β(Q),

∑
i,j≥p+1

|ci,j |2γβ1

i γβ2

j i2k ≤
∑
i,j≥k

|ci,j |2γβ1

i γβ2

j i2k ≤ |u|2Hk,β(Q),

which lead to (2.21)–(2.25) immediately.

Remark 2.2. The estimates in seminorms are derived in [5] for p ≥ k − 1. The
estimates in Jacobi-weighted Sobolev norms and C0 norms for p ≥ 0 are available in
this paper for the first time.

The argument of interpolation spaces yields the approximation results in the
spaces Hs,β(Q) and Bs,β

ν (Q), ν ≥ 0. We refer to [11] for the details of the proof for
the spaces Hs,β(Q) and Bs,β(Q), and to [5] for the spaces Bs,β

ν (Q), ν > 0.

Theorem 2.2. Let u ∈ Hs,β(Q) (resp., Bs,β
ν (Q)), s > 0, βi = (β1, β2), βi > −1,

1 ≤ i ≤ 2, integer ν ≥ 0, and let up be the Jacobi projection of u on Pp(Q) with p ≥ 1.
Then for any integer � < s there holds

‖u− up‖H�,β(Q) ≤ C (p + 1)−(s−�) ‖u‖Hs,β(Q)

(
resp., (1+log(p+1))ν

(p+1)s−� ‖u‖Bs,β
ν (Q)

)
.

(2.34)

Furthermore, if u ∈ Hs,β(Q) (resp., Bs,β
ν (Q)) with s > 1, βi ≤ −1/2, 1 ≤ i ≤ 2, then

for x ∈ Q̄

‖u− up‖C0(Q̄) ≤ C(p + 1)−(s−1) ‖u‖Hs,β(Q)

(
resp., (1+log(p+1))ν

(p+1)s−1 ‖u‖Bs,β
ν (Q)

)
,(2.35)

(2.36)

|(u−up)(±1, x2)| ≤ C(p+1)−(s−3/2−β1) ‖u‖Hs,β(Q)

(
resp., (1+log(p+1))ν

(p+1)s−3/2−β1
‖u‖Bs,β

ν (Q)

)
,

(2.37)

|(u−up)(x1,±1)| ≤ C(p+1)−(s−3/2−β2) ‖u‖Hs,β(Q)

(
resp., (1+log(p+1))ν

(p+1)s−3/2−β2
‖u‖Bs,β

ν (Q)

)
,

(2.38)

|(u−up)(±1,±1)| ≤ C(p+1)−(s−2−β1−β2) ‖u‖Hs,β(Q)

(
resp., (1+log(p+1))ν

(p+1)s−2−β1−β2
‖u‖Bs,β

ν (Q)

)
.

The constants C in the above inequalities are independent of p and u.

Remark 2.3. By the usual argument of interpolation spaces defined by the real
method, e.g., the K-method, Theorems 2.1–2.2 stand for noninteger �.
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2.3. Approximability of singular functions on Q = (−1, 1)2. Let (r, θ)
be the polar coordinates with respect to the vertex (−1,−1), where r = {(x1 + 1)2 +

(x2 + 1)2}1/2, θ = arctan(
x2+1
x1+1 ). For γ > 0 and integer ν ≥ 0

(2.39) u(x) = rγ logν r χ(r) Φ(θ)

is a singular function defined on Q = (−1, 1)2, where χ(r) and Φ(θ) are C∞ functions
such that for 0 < r0 < 2

(2.40) χ(r) =

{
1 for 0 < r ≤ r0

2 ,
0 for r ≥ r0.

Let R0 = Rr0,θ0
be a subregion of Q with θ0 ∈ (0, π/4) and r0 ∈ (0, 2):

(2.41) Rr0,θ0
=

{
x ∈ Q

∣∣∣ r < r0, θ0 < θ < π/2 − θ0

}
,

which is shown in Figure 2.1. For x ∈ R0 we have 0 < 2 − r0 < (1 − xi) < 2, and

κ0 = tan θ0 ≤ 1 + x2

1 + x1

≤ 1

κ0

.

Now we characterize the singularity of u(x) in terms of the weighted Besov spaces
Bs,β

ν (Q).
Theorem 2.3 (see [5, Theorem 3.10]). Let u = rγ logν r χ(r) Φ(θ) be as given in

(2.39) with γ > 0 and integer ν ≥ 0. Then u ∈ Bs,β
ν∗ (Q) with s = 2 + 2γ + β1 + β2,

βi > −1, i = 1, 2, and

(2.42) ν∗ =

{
ν if γ is not an integer or ν = 0,
ν − 1 if γ is an integer and ν ≥ 1.

A combination of Theorems 2.3 and 2.1–2.2 leads to the approximabilities of the
singular functions of rγ logν r-type with γ > 0 and integer ν ≥ 0.

X2 X1+1= ( +1 ) / κ

1

2

θ0

1

1

−1(−1,−1)

X

X

−1 0

r

θ0

0

Q

R
r0 , θ0

X2 +1= κ 1( X +1 ) 

Fig. 2.1. Square domain Q and subregion Rρ0,θ0 .
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Theorem 2.4 (see [7, Theorem 3.8]). Let u(x) be as given in (2.39) with γ > 0
and integer ν ≥ 0, and let ψ and ϕ be the Jacobi projection of u on Pp(Q), p ≥ 1,
associated with β = (0, 0) and β = (−1/2,−1/2), respectively. Then

(2.43) ‖u− ψ‖L2(Q) ≤ C (p + 1)−2−2γ(1 + log(1 + p))ν
∗‖v‖B2+2γ,β

ν∗ (Q)

with β = (0, 0), and

(2.44) ‖u− φ‖H1(R0) ≤ C (p + 1)−2γ(1 + log(1 + p))ν
∗‖v‖B1+2γ,β

ν∗ (Q)

with β = (−1/2,−1/2), where R0 and ν∗ are as given in (2.41) and (2.42).
Theorem 2.5 (see [7, Theorems 2.9–2.11]). Let u(x) be as given in (2.39) with

γ > 0 and ν ≥ 1.
(i) If rγ Φ(θ) is not a polynomial and ν = 0, then

(2.45) inf
ϕ∈Pp(Q)

‖u− ϕ‖H1(R0) ≥ C (p + 1)−2γ ;

(ii) If the integer ν ≥ 1, there holds

(2.46) inf
ϕ∈Pp(Q)

‖v − ϕ‖H1(R0) ≥ C (p + 1)−2γ(1 + log(1 + p))ν
∗
.

Here the constant C independent of p, R0 and ν∗ are as given in (2.41) and (2.42).
Remark 2.4. We exclude the trivial case that ν = 0 and rγ Φ(θ) is a polynomial

for which there is no approximation error. Throughout our paper, we assume that
rγ Φ(θ) is not a polynomial while ν = 0.

3. Approximation in Jacobi-weighted spaces on a scaled domain.

3.1. The Jacobi-weighted Besov and Sobolev spaces on Qh = (−h, h)2.
For analyzing the approximation properties for smooth and singular functions on a
scaled region we need to introduce the Jacobi-weighted Sobolev spaces Hk,β(Qh) and
Besov spaces Bs,β

ν (Qh) on a scaled square Qh = (−h, h)2.
Let wh

α,β(x) be a weighted function on Qh = (−h, h)2:

wh
α,β(x) =

2∏
i=1

(
h2 − x2

i

h2

)αi+βi

=

2∏
i=1

(
1 −

(xi

h

)2
)αi+βi

,

where α = (α1, α2), αi ≥ 0, integer, and β = (β1, β2), βi > −1, real, 1 ≤ i ≤ 2.
The Jacobi-weighted Sobolev space Hk,β(Qh), k ≥ 0, is the closure of C∞ func-

tions furnished with the norm

‖u‖2
Hk,β(Qh) =

∑
0≤|α|≤k

∫
Q

|Dαu(x)|2wh
α,β(x)dx,

and |u|Hk,β(Qh) denotes the seminorm involving only the kth derivatives.

The Jacobi-weighted Sobolev spaces Hs,β(Qh) and Besov spaces Bs,β(Qh) can be
introduced as usual interpolation spaces by the K-method:

Hs,β(Qh) =
(
H�,β(Qh), Hk,β(Qh)

)
θ,2

, Bs,β(Qh) =
(
H�,β(Qh), Hk,β(Q)

)
θ,∞

.
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The space Bs,β
ν (Qh) is an interpolation defined by the modified K-method:

Bs,β
ν (Qh) =

(
H�,β(Qh), Hk,β(Qh)

)
θ,∞,ν

.

Due to the definition of interpolation spaces and a simple scaling, the following propo-
sition can be easily proved.

Proposition 3.1. Let u(x) and U(ξ) = u(hξ) be functions defined on Qh and
Q, respectively.

(i) u ∈ Hk,β(Qh) with integer k ≥ 0 if U(ξ) = u(hξ) ∈ Hk,β(Q), and vice versa.
Furthermore, there holds for l ≤ k

(3.1) |u|2H�,β(Qh) = h1−l|U |Hl,β(Q).

(ii) u ∈ Hs,β(Qh) with noninteger s ≥ 0 if U(ξ) ∈ Hs,β(Q), and vice versa.
(iii) u ∈ Bs,β

ν (Qh) with real s > 0 and integer ν ≥ 0 if U(ξ) ∈ Bs,β
ν (Q), and vice

versa.

3.2. Approximation in Jacobi-weighted spaces on Qh = (−h, h)2. Let

Pp(Qh) be a set of polynomials of degree ≤ p on the scaled square Qh, and let
∏β

p,h

be the Jacobi projection operator on Pp(Q). Obviously, for u ∈ Hk,β(Qh) with k ≥ 0,

uhp(x) =
∏β

p,h u is the Jacobi projection of u ∈ Hk,β(Qh) on Pp(Qh) if and only if
Up(ξ) = uhp(hξ) is the Jacobi projection of U(ξ) = u(hξ) on Pp(Q).

Lemma 3.1. Let u ∈ Hk,β(Qh), k ≥ 0. Then

(3.2) ‖U − Up‖Hk,β(Q) ≤ Chμ−1‖u‖Hk,β(Qh),

where μ = min{k, p + 1} and C is independent of p, h, k, and u.
Proof. For k = 0

(3.3) ‖U − Up‖H0,β(Q) ≤ ‖U‖H0,β(Q) ≤ h−1‖u‖H0,β(Qh).

We now assume that the integer k ≥ 1. Then we have by (2.21) of Theorem 2.1

‖U − Up‖Hk,β(Q) ≤ ‖U − Up‖Hμ,β(Q) +

k∑
m=μ+1

(|U |Hm,β(Q) + |Up|Hm,β(Q))

≤ C

(
|U |Hμ,β(Q) +

k∑
m=μ+1

|U |Hm,β(Q)

)
.

Here
∑k

m=μ+1 = 0 if μ + 1 < k. By the scaling argument (3.1), we obtain

‖U − Up‖Hk,β(Q) ≤ C

k∑
m=μ

hm−1|u|Hm,β(Qh) ≤ Chμ−1‖u‖Hk,β(Qh),

which completes the proof.
Theorem 3.2. Let u ∈ Hk,β(Qh) and let uph be its Jacobi projection on Pp(Qh)

with p ≥ 1. Then, for 0 ≤ l ≤ k,

(3.4) ‖u− uhp‖Hl,β(Qh) ≤ C
hμ−l

(p + 1)k−l
‖u‖Hk,β(Qh)
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with μ = min {k, p + 1}. Furthermore, if k > 1, β� ≤ −1/2, 1 ≤ � ≤ 2, then

(3.5) ‖u− uhp‖C0(Q̄) ≤ C
hμ−1

(p + 1)k−1
‖u‖Hk,β(Qk).

The constants C are independent of p, h, k, and u.

Proof. Let ξ = x
h and U(ξ) = u(hξ). Then, due to Proposition 3.1, U ∈ Hk,β(Q),

and

‖U − Up‖Hl,β(Q) = ‖U − Up −
∏β

p (U − Up)‖Hl,β(Q)

≤ C(p + 1)−(k−l)‖U − Up‖Hk,β(Q) ≤ C(p + 1)−(k−l)hμ−1‖u‖Hk,β(Qh),

which together with the scaling argument (3.1) leads to

‖u− uhp‖Hl,β(Qh) ≤ Ch1−l‖(U − Up)‖Hl,β(Q) ≤ Cp−(k−l)hμ−l‖u‖Hk,β(Qh).

If k > 1 and β� ≤ −1/2, 1 ≤ � ≤ 2, then there holds by Theorem 2.1 and
Lemma 3.1

|(u− uhp)(x)| = |U − Up(ξ)| ≤ |(U − Up −
∏β

p (U − Up))(ξ)|
≤ C(p + 1)−(k−1)‖U − Up‖Hk,β(Q) ≤ C(p + 1)−(k−1)hμ−1‖u‖Hk,β(Qh).

By the argument of interpolation spaces, we have the approximation results in
the spaces Hs,β(Qh) and Bs,β

ν (Qh).

Theorem 3.3. Let u ∈ Hs,β(Qh) (resp., Bs,β
ν (Qh)) with ≥ 0, and let uhp be the

projection of u on Pp(Qh) with p ≥ 0. Then for 0 ≤ l ≤ s,

‖u− uhp‖Hl,β(Qh)

≤ C
hμ−l

(p + 1)s−l
‖u‖Hs,β(Qh)

(
resp.,

hμ−1

(p + 1)s−1

(
1 + log

p + 1

h

)ν

Bs,β
ν (Qh)

)
(3.6)

with μ = min {s, p + 1}. Furthermore, if u ∈ Hs,β(Qh) with s > 1, β� ≤ −1/2, 1 ≤
� ≤ 2, then for x ∈ Q̄h

|(u− uhp(x)|

≤ C
hμ−l

(p + 1)s−l
‖u‖Hs,β(Qk)

(
resp.,

hμ−1

(p + 1)s−1

(
1 + log

p + 1

h

)ν

Bs,β
ν (Qh)

)
.(3.7)

The constants C are independent of p, h, and u.

Proof. We will prove the theorem for u ∈ Bs,β
ν (Qh). Let l and k be integers such

that 0 ≤ l < s < k and Hs,β(Qh) =
(
H l,β(Qh), Hk,β(Qh)

)
θ,∞,ν

with θ = s−l
k−l ∈ (0, 1).

We have by Theorem 3.2

(3.8) ‖u− uhp‖Hl,β(Qh) ≤ Chμ1−l‖u‖Hl,β(Qh)

with μ1 = min{p + 1, l}, and

(3.9) ‖u− uhp‖Hl,β(Qh) ≤ C
hμ2−l

pk−l
‖u‖Hk,β(Qh)



710 BENQI GUO AND WEIWEI SUN

with μ2 = min{p + 1, k}. The weak exactness of θ-exponent (2.7) for the modified
Jacobi-weighted Besov space Bs,β

ν (Qh), together with (3.8) and (3.9), leads to

‖u− uhp‖Hl,β(Qh) ≤ C
h(1−θ)(μ1−l)+θ(μ2−l)

(p + 1)θ(k−l)

(
1 + log

(p + 1)−(k−l)hμ2−l

hμ1−l

)ν

‖u‖Bs,β
ν (Qh)

= C
hμ−l

(p + 1)s−l

(
1 + (k − l) log(p + 1) + (μ1 − μ2) log

1

h

)ν

‖u‖Bs,β
ν (Qh)

≤ C
hμ−l

(p + 1)s−l

(
1 + log

p + 1

h

)ν

‖u‖Bs,β
ν (Qh).

If s > 1, β� ≤ −1/2, 1 ≤ � ≤ 2, select l and k such that 1 < l < s < k. Then by
Theorem 3.2 there holds for x ∈ Q̄h

(3.10) ‖u− uhp‖C0(Q̄h) ≤ Cp−(l−1)hμ1−1‖u‖Hl,β(Qh)

and

(3.11) ‖u− uhp‖C0(Q̄h) ≤ Cp−(k−1)hμ2−1‖u‖Hk,β(Qh).

The weak exactness of θ-exponent (2.7) together with (3.10)–(3.11) leads to

‖u− uhp‖C0(Q̄h) ≤ C
h(1−θ)(μ1−1)+θ(μ2−1)

pθ(k−1)+(1−θ)(l−1)

(
1 + log

(p + 1)−(k−l)hμ2−1

(p + 1)−(l−1)hμ1−1

)ν

‖u‖Bs,β
ν (Qh)

= C
hμ−l

(p + 1)s−l

(
1 + (k − l) log(p + 1) + (μ1 − μ2) log

1

h

)ν

‖u‖Bs,β
ν (Qh)

≤ C
hμ−l

(p + 1)s−l

(
1 + log

p + 1

h

)ν

‖u‖Bs,β
ν (Qh).

The proof for u ∈ Hs,β(Qh) is almost the same except that we apply (2.6) instead
of (2.7).

3.3. Approximation of singular functions on a scaled domain Qh =
(−h, h)2. In this section we investigate the approximability of singular functions on
a scaled square Qh = (−h, h)2:

(3.12) u = rγ logν rχh(r) Φ(θ)

with γ > 0 and integer ν ≥ 0, where r =
√

(x1 + h)2 + (x2 + h)2, θ = arctan h+x2

h+x1
,

χh(r) = χ( r
h ), and χ(·) and Φ(·) are C∞ functions defined on the standard square as

in the previous section.
Due to Proposition 3.1 and Theorem 2.3, a simple scaling leads us to the regularity

of u in terms of the Jacobi-weighted Besov spaces.
Theorem 3.4. Let u be as given in (3.12) with γ > 0 and ν ≥ 0. Then u ∈

Bs,β
ν∗ (Qh) with s = 2 + 2γ + β1 + β2, βl > −1, l = 1, 2, and ν∗ as given in (2.42).

Proof. Let ũ(ξ) = u(hξ). Then for ν = 0

(3.13) ũ(ξ) = u(hξ) = hγζγχ(ζ) Φ(θ) = hγw(ξ),

and for ν ≥ 1

ũ(ξ) = hγζγ(log h + log ζ)νχ(ζ) Φ(θ)(3.14)

= hγζγ χ(ζ) Φ(θ)

ν∑
m=0

( ν
m

)
logν−m h logm ζ = hγ

ν∑
m=0

( ν
m

)
ṽm(ξ) logν−m h,
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where w(ξ) = ζγχ(ζ) Φ(θ), ṽm(ξ) = ζγχ(ζ) Φ(θ) logm ζ, ζ =
√

(ξ1 + 1)2 + (ξ2 + 1)2.

Due to Theorem 2.3, w(ξ) ∈ Bs,β(Q) and ṽm(ξ) ∈ Bs,β
m∗ (Q) with s = 2 + γ + β1 +

β2, β� > −1, � = 1, 2, and

m∗ =

{
m− 1 if γ is an integer and m ≥ 1,
m otherwise.

(3.15)

The assertions of the theorem follow immediately from Theorem 2.3 and Proposi-
tion 3.1.

By Rh
0 = Rh

r0,θ0
we denote a subregion of Qh with θ0 ∈ (0, π/4) and r0 ∈ (0, h),

(3.16) Rh
0 = Rh

r0,θ0
= {x ∈ Q | r < r0, θ0 < θ < π/2 − θ0} .

A combination of Theorem 2.4 and a proper scaling gives a sharp estimation on
the upper bound of approximation error in the Jacobi projections for the singular
functions.

Theorem 3.5. Let u(x) be as given in (3.12). Then there exist polynomials
ψhp(x) and ϕhp(x) in Pp(Q), p ≥ 1, such that

(3.17) ‖u− ψhp‖L2(Qh) ≤ C
h1+γ

(p + 1)2(1+γ)
Fν(p, h)

with β = (0, 0), and

(3.18) ‖u− ϕhp‖H1(Rh
0 ) ≤ C

hγ

(p + 1)2γ
Fν(p, h)

with β = (−1/2,−1/2), where Fν(p, h) is a log-polynomial,

(3.19)

Fν(p, h) =

⎧⎪⎪⎨⎪⎪⎩
(1 + log p+1

h )ν for noninteger γ,

(1 + log p+1
h )ν−1 for integer γ and rγΦ(θ) ∈ Pγ(Qh),

max
{

(1 + log p+1
h )ν−1, logν 1

h

}
for integer γ and rγΦ(θ) �∈ Pγ(Qh).

Furthermore, there holds

(3.20) ‖u− ϕhp‖C0(Q̄h) ≤ C
hγ

(p + 1)2γ
Fν(p, h).

The constants C in (3.17)–(3.20) are independent of h and p.
Proof. We shall concentrate on the proof of (3.18); the proofs for (3.17) and (3.20)

are similar to what follows. By (3.13) for ν = 0,

ũ(ξ) = u(hξ) = hγζγχ(ζ) Φ(θ) = hγw(ξ).

Then (3.17) and (3.18) with ν = 0 follow from Theorem 2.4 immediately.
Due to (3.14) for ν ≥ 1,

ũ(ξ) = hγζγ(log h + log ζ)νχ(ζ) Φ(θ) = hγζγ χ(ζ) Φ(θ)

ν∑
m=0

( ν
m

)
logν−m h logm ζ

= hγ
ν∑

m=0

( ν
m

)
ṽm(ξ) logν−m h.
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By Theorem 2.3, ṽm(ξ) ∈ B1+2γ,β
m∗ (Q) with β = (−1/2,−1/2), and then due to

Theorem 2.4, ϕ̃m(ξ) = Πβ
p ṽm with β = (−1/2,−1/2) satisfies

(3.21) ‖ṽm(ξ) − ϕ̃m(ξ)‖H1(R0) ≤ C(p + 1)−2γ(1 + log(1 + p))m
∗‖ṽm‖B1+2γ,β

m∗ (Q)

with m∗ as given in (3.15).

If γ is not an integer, let ϕ̃(ξ) = hγ
∑ν

m=0(
ν
m )ϕ̃m(ξ) logν−m h, and let ϕ(x) =

ϕ̃(x/h) = Πβ
p,hu be associated with β = (−1/2,−1/2). Then there hold

‖ũ(ξ) − ϕ̃(ξ)‖H1(R0) ≤
Chγ

(p + 1)2γ

ν∑
m=0

(
ν
m

)
(1 + log(1 + p))m logν−m 1

h

≤ C
hγ

(
1 + log p+1

h

)ν
(p + 1)2γ

and

‖u(x) − ϕ(x)‖H1(Rh
0 ) = ‖ũ(ξ) − ϕ̃(ξ)‖H1(R0) ≤ C

hγ

(p + 1)2γ

(
1 + log

p + 1

h

)ν

.

Thus (3.18) is proved for noninteger γ.
If γ is an integer, we have by (3.21)

‖ũ(ξ) − ϕ̃(ξ)‖H1(R0) ≤
Chγ

(p + 1)2γ

(
logν

1

h
+

ν∑
m=1

( ν
m

)
(1 + log(p + 1))m−1 logν−m 1

h

)

≤ Chγ

(p + 1)2γ
max

{(
1 + log

p + 1

h

)ν−1

, logν
1

h

}
,

which implies (3.18) for integer γ.
If γ is an integer and rγΦ(θ) is a polynomial of degree γ in Qh, then ζγΦ(θ) is a

polynomial of degree γ in Q. We rewrite (3.14) as

ũ(ξ) = hγ

(
ṽ0(ξ) logν h +

ν∑
m=1

( ν
m

)
ṽm(ξ) logν−m h

)
= hγ

(
ṽ0(ξ) logν h + w̃(ξ)

)
.

By the arguments above, there exists polynomial ϕ̃w(ξ) ∈ Pp(Q) such that

‖w̃(ξ) − ϕ̃w(ξ)‖H1(R0) ≤ C

ν∑
m=1

( ν
m

) (1 + log(p + 1))(m−1)

(p + 1)2γ
logν−m 1

h

≤ C

(
1 + log p+1

h

)ν−1

(p + 1)2γ
.

Let u0(x) = ũ(xh ) = rγχh(r)Φ(θ) logν h and w(x) = hγw̃(xh ). Then

(3.22) u(x) = u0(x) + w(x).

Since u0(x) is a C∞ function, there exists a polynomial ϕ0(x) ∈ Pp(Qh) such that

(3.23) ‖u0 − ϕ0‖H1(Rh
0 ) ≤ C

(
h

(p + 1)2

)γ (
1 + log

p + 1

h

)ν−1

.
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Let ϕhp(x) = ϕ0(x) + ϕw(x) with ϕw(x) = hγϕ̃w(xh ). By (3.22)–(3.23), we have

‖v(x) − ϕhp(x)‖H1(Rh
0 ) ≤ ‖w(x) − ϕw(x)‖H1(Rh

0 ) + ‖u0 − ϕ0‖H1(Rh
0 )

≤ C hγ

p2γ

(
1 + log

p + 1

h

)ν−1

,

which leads to the estimation (3.18) in the case that rγΦ(θ) is a polynomial.
Arguments similar to the above can be carried out for (3.17) and (3.20), and we

will not elaborate here.

3.4. Asymptotic error analysis for Legendre projection for singular
functions of xγ logν x-type on a scaled interval. The estimation of the lower
bounds of approximation error for the singular function v of rγ logν r-type on Qh is
not trivial and has never been addressed in the literature because it is not a simple
generalization of the approximation on standard square Q with a simple scaling. To
this end we need asymptotic error analysis for singular functions of xγ logν x-type on
a scaled interval (−h, h). The asymptotic error analysis of Legendre projection for
singular functions of xγ logν x-type on a standard interval I = (−1, 1) was studied in
[7]. We are here generalizing the result to a scaled interval Ih = (−h, h) in terms of
p and h.

Let

(3.24) wν(x) = (x + h)γ logν(x + h), x ∈ Ih = (−h, h),

with real γ > 0 and integer ν ≥ 1. Let Pp(Ih) be a set of polynomials of degree
≤ p on Ih. We shall analyze the asymptotic of the approximation error of Legendre
projection, which is essential to the sharpest estimates of the lower bounds of error
in the finite element solutions of the h-p versions.

It was shown in [16] that on the standard interval I = (−1, 1) the singular function
(1 + ξ)γ has the Legendre expansion

(1 + ξ)γ =

∞∑
i=0

ai(γ)Li(ξ),

where Li(ξ) is the Legendre polynomial of degree i, and

(3.25) ai(γ) = (−1)i−1

(
i +

1

2

)
C0(γ)

Γ(i− γ)

Γ(i + γ + 2)

with

(3.26) C0(γ) =
21+γΓ2(1 + γ) sinπγ

π
.

For the singular function (1 + ξ)γ logν(1 + ξ), it was proved in [7] that

(1 + ξ)γ logν(1 + ξ) =
dν

dγν
(1 + ξ)γ =

∞∑
i=0

bi(γ)Li(ξ),

where for i > 0

bi(γ) = a
(ν)
i (γ) =

dν

dγν
ai(γ) =

(−1)i−1

i2γ+1

ν∑
�=0

(−1)ν−�C�(γ) logν−� i

(
1 + O

(
1

i

))(3.27)
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with C1(γ) = νC ′
0(γ). By a scaling x = hξ, we have

w0(x) = (h + x)γ = hγ(1 + ξ)γ =

∞∑
i=0

hγai(γ)Li(ξ) = w̃0(ξ)

and

wν(x) = (h + x)γ logν(h + x) =
dν

dγν
(h + x)γ =

∞∑
i=0

bi(γ, h)Li(ξ) = w̃ν(ξ)

with

(3.28) bi(γ, h) =
dν

dγν
(hγai(γ)) = hγ

ν∑
m=0

(
ν
m

)
a
(m)
i (γ) logν−m h.

Due to (3.27),

a
(m)
i (γ)

= (−1)i−1 (−1)mC0(γ) lnm i + (−1)m−1C1(γ) lnm−1 i + · · · + Cm(γ)

i2γ+1

(
1 + O

(
1

i

))
with C1(γ) = mC ′

0(γ).
For noninteger γ,C0(γ) �= 0, and

bi(γ, h) = (−1)i−1+νhγ
ν∑

m=0

( ν
m

)
C0(γ) logν−m 1

h
logm i

(
1 + O

(
1

log i

))
(3.29)

=
(−1)i−1+νhγC0(γ)

i2γ+1
logν

i

h
.

If γ is an integer, then C0(γ) = 0 and C1(γ) = (−1)γ(γ!)2 �= 0. Hence

bi(γ, h) =
(−1)i+νhγ

i2γ+1

ν∑
m=1

( ν
m

)
(−1)ν−mC1(γ) logν−m h logm−1 i

(
1 + O

(
1

log i

))

=
(−1)i+νhγC1(γ)

i2γ+1

ν−1∑
m′=0

( ν − 1
m′

) ν

m′ + 1
logν−1−m′ 1

h
logm

′
i

(
1 + O

(
1

log i

))
.

Note that 1 ≤ ν
m′+1 ≤ ν for 0 ≤ m′ ≤ ν − 1; therefore there holds

logν−1 i

h
≤

ν∑
m′=0

( ν − 1
m′

) ν

m′ + 1
logν−m 1

h
logm−1 i ≤ ν logν−1 i

h
,

which implies that for integer γ

(3.30) |C1(γ)| hγ

i2γ+1
logν−1 i

h
≤ |bi(γ, h)| ≤ ν|C1(γ)| hγ

i2γ+1
logν−1 i

h
.

Let ϕ̃ν
p(ξ) =

∑p
i=0 bi(γ, h)Li(ξ) and ϕν

hp(x) =
∑p

i=0 bi(γ, h)Li(
x
h ), which are the

Legendre projection of w̃ν(ξ) on Pp(I) and the Legendre projection of wν(x) on Pp(Ih),
respectively. Then we have the following asymptotic error estimation.
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Theorem 3.6. Let wν(x) be as given in (3.24), and let ϕν
hp(x) be its Legendre

projection on Pp(Ih). There holds for noninteger γ > 0 and ν ≥ 0

(3.31) ‖wν(x) − ϕν
hp(x)‖L2(Ih)

∼=
hγ+1/2

(p + 1)2γ+1

(
1 + log

p + 1

h

)ν

,

and for integer γ > 0 and ν ≥ 1

(3.32) ‖wν(x) − ϕν
hp(x)‖L2(Ih)

∼=
hγ+1/2

(p + 1)2γ+1

(
1 + log

p + 1

h

)ν−1

.

Proof. By a scaling argument we have

‖wν(x) − ϕν
hp(x)‖L2(Ih) = h1/2‖w̃ν(ξ) − ϕ̃ν

p(ξ)‖L2(I).

It is sufficient to show that for noninteger γ

(3.33) ‖w̃ν(ξ) − ϕ̃ν
p(ξ)‖L2(I)

∼=
hγ

(p + 1)2γ+1
logν

p + 1

h
,

and for integer γ > 0 and ν ≥ 1

(3.34) ‖w̃ν(ξ) − ϕ̃ν
p(ξ)‖L2(I)

∼=
hγ

(p + 1)2γ+1
logν−1 p + 1

h
.

Because of the orthogonality of Legendre polynomials, there holds

‖w̃ν(ξ) − ϕ̃ν
p(ξ)‖2

L2(I) =

∞∑
i=p+1

|bi(γ, h)|2 2

2i + 1
.

Therefore it holds by (3.29) that for noninteger γ and integer ν ≥ 1,

‖w̃ν(ξ) − ϕ̃ν
p(ξ)‖2

L2(I) = |C0(γ)|2h2γ
∞∑

i=p+1

i−(4γ+3) log2ν i

h

(
1 + O

(
1

log i

))
(3.35)

=
|C0(γ)|2h2γ

(4γ + 2)p4γ+2
log2ν p + 1

h

(
1 + O

(
1

log(p + 1)

))
.

For noninteger γ and integer ν = 0, bi(γ, h) = hγai(γ). By (3.25) we have

‖w̃0(ξ) − ϕ̃0
p(ξ)‖2

L2(I) = |C0(γ)|2h2γ
∞∑

i=p+1

|ai(γ)|2 2

2i + 1

=
|C0(γ)|2h2γ

(4γ + 2)(p + 1)4γ+2

(
1 + O

(
1

p + 1

))
,

which together with (3.35) leads to (3.33) for noninteger γ and ν ≥ 0.
For integer γ and ν ≥ 1, (3.30) implies that

‖w̃ν(ξ) − ϕ̃ν
p(ξ)‖2

L2(I)(3.36)

≤ ν|C1(γ)|2h2γ
∞∑

i=p+1

i−(4γ+3) log2(ν−1) i

h

(
1 + O

(
1

log i

))

=
ν|C1(γ)|2h2γ

(4γ + 2)(p + 1)4γ+2
log2(ν−1) p + 1

h

(
1 + O

(
1

log(p + 1)

))
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and

‖w̃ν(ξ) − ϕ̃ν
p(ξ)‖2

L2(I) ≥
|C1(γ)|2h2γ

(4γ + 2)(p + 1)4γ+2
log2(ν−1) p + 1

h

(
1 + O

(
1

log(p + 1)

))
.

(3.37)

Thus, (3.36)–(3.37) lead to (3.34) for integer γ and ν ≥ 1 and complete the proof of
the theorem.

3.5. Lower bound of approximation error for singular functions of
rγ logν r-type. We shall introduce the Jacobi-weighted Sobolev spaces Hk,β(Ih) on
scaled interval Ih = (−h, h) and prove a lemma concerning error in the seminorm of
Hk,β(Ih), which will be used in deriving the lower bound of approximation error for
singular functions of rγ logν r-type.

The Jacobi-weighted Sobolev spaces Hk,β(Ih), k ≥ 0, with β > −1 are furnished
with weighted norm

‖u‖2
Hk,β(Ih) =

k∑
�=0

∫
Ih

|u(�)(x)|2 w�,β(x) dx,

where w�,β(x) = (1−x2

h2 )�+β . The seminorm |u|Hk,β(Ih) is involved in the kth derivative
only. In the special case that β = 0, the Jacobi weight w�,0(x) is called a Legendre
weight, and the corresponding spaces are referred to as Legendre-weighted Sobolev
spaces. For the Jacobi-weighted Sobolev spaces on standard interval I = (−1, 1) and
the approximation theory in the framework of these spaces, including special cases
β = 0 (Legendre) and β = −1/2 (Chebyshev), we refer to [7, 19, 20].

Lemma 3.7. Let w ∈ H1,β(Ih) with β = (0, 0), and let wp be its Legendre
projection on Pp(Ih). Then there holds

(3.38) |w − wp|H1,β(Ih) ≥
p + 1

h
|w − wp|L2(Ih).

Proof. Let x = hξ for ξ ∈ I = (−1, 1), which introduces the functions w̃(ξ) =
w(hξ) and w̃p(ξ) = wp(hξ) on I. By Lemma 2.1 of [7] and a scaling argument we
have∫

Ih

|w′ − w′
p|2

(
1 −

(x
h

)2
)
dx =

∫
I

|w̃′ − w̃′
p|2

1 − ξ2

h
dξ ≥ (p + 1)2

h

∫
I

|w̃ − w̃p|2dξ

=
(p + 1)2

h2

∫
Ih

|w − wp|2dx,

which leads to (3.38).
Theorem 3.8. Let u(x) be as given in (3.12) with γ > 0 and integer ν ≥ 0. Then

(3.39) inf
φ∈Pp(Qh)

‖v − φ‖H1(Rh
0 ) ≥ C

hγ

(p + 1)2γ
Fν(p, h)

with Fν(p, h) as given in (3.19).
Proof. For ν = 0, u(x) = hγw(ξ) with w(ξ) = ζγχ(ζ) Φ(θ), where ζ = {(ξ1 + 1)2

+ (ξ2 + 1)2}1/2. Due to Theorem 2.5, there holds

inf
φ∈Pp(Qh)

‖v − φ‖H1(Rh
0 ) = hγ inf

φ̃∈Pp(Q)
‖w − φ̃‖H1(R0) ≥ Chγ(p + 1)−2γ ,
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which proves (3.39) with ν = 0. We assume that the integer ν ≥ 1 and further assume
without loss of generality that Φ(θ) �≡ 0 and χh(r) ≡ 1 for 0 ≤ r ≤ h. There is an
interval [θ1, θ2] on which |Φ(θ)| > Φ0 > 0. For any ϕ ∈ Pp(Qh)∫

Rh
0

∣∣∣∣ ∂∂r (v − ϕ)

∣∣∣∣2 dx ≥
∫ θ2

θ1

∫ h

0

∣∣∣∣ ∂∂r (rγ logν rΦ(θ) − ϕ)

∣∣∣∣2 rdr
=

∫ θ2

θ1

|Φ(θ)|2
(∫ h

0

∣∣∣∣ ∂∂r (rγ logν r − Φ−1(θ)ϕ)

∣∣∣∣2 rdr
)
dθ.

Since Φ−1(θ)ϕ(r, θ) is a well-defined polynomial of degree p in variable r with θ as a
parameter, by Lemma 3.7, we have that∫ h

0

∣∣∣∣ ∂∂r (rγ logν r − Φ−1(θ)ϕ)

∣∣∣∣2 rdr ≥ h

∫ h

0

∣∣∣∣ ∂∂r (rγ logν r − Φ−1(θ)ϕ)

∣∣∣∣2 ( rh)(h− r

h

)
dr

≥ h

∫ h

0

∣∣∣∣ ∂∂r (rγ logν r − Φ−1(θ)ϕ))

∣∣∣∣2 ( rh)
(
h− r

h

)
dr ≥ (p + 1)2

h
‖rγ logν r − ψν

p‖2
L2(Ih),

where ψ is the Legendre projection of rγ logν r on Pp(Ĩh), Ĩh = (0, h), which gives

(3.40)

∫
Qh

∣∣∣∣ ∂∂r (v − ϕ)

∣∣∣∣2 dx ≥ (θ2 − θ1)Φ0
(p + 1)2

h
‖rγ logν r − ψ‖2

L2(Ĩh)
.

By Theorem 3.6, there holds

(3.41) ‖rγ logν r − ψ‖2
L2(Ĩh)

≥ C
hγ+1/2

(p + 1)2γ+1

(
1 + log

p + 1

h

)ν

if γ is not an integer, and

(3.42) ‖rγ logν r − ψ‖2
L2(Ĩh)

≥ C
hγ+1/2

(p + 1)2γ+1

(
1 + log

p + 1

h

)ν−1

if γ is an integer and ν ≥ 1. The combination of (3.40)–(3.42) leads to the third case
of (3.39).

If logν 1
h is asymptotically larger than logν−1 p

h , the lower bound is not sharp in
the case that γ is an integer and rγΦ(θ) is not a polynomial while comparing the
upper bound. A sharper analysis is needed in that case. According to (3.22), u(x)
can be decomposed as

u(x) = u0(x) + w(x),

where u0(x) = ṽ0(
x
h ) = rγχh(r)Φ(θ) logν h and w(x) = w̃(xh ). It was shown that

inf
ϕ∈Pp(Qh)

‖w − ϕ‖H1(Rh
0 ) ≥ C

(
h

(p + 1)2

)γ (
1 + log

p + 1

h

)ν−1

.

Since we assume that rγΦ(θ) is not a polynomial in variable x, it is a singular function.
By Theorem 3.6,

inf
ϕ∈Pp(Qh)

‖u0 − ϕ‖H1(Rh
0 ) = logν

1

h
inf

ϕ∈Pp(Qh)
‖rγχh(r)Φ(θ) − ϕ̃‖H1(Rh

0 )

≥ C
hγ

(p + 1)2γ
logν

1

h
.
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Therefore for any φ1, φ2 ∈ Pp(Qh) and φ = φ1 + φ1 there holds

‖u− φ‖H1(Rh
0 ) ≥ ‖u0 − φ1‖H1(Rh

0 ) − ‖w − φ2‖H1(Rh
0 ),

which implies

inf
ϕ∈Pp(Qh)

‖u− ϕ‖H1(Rh
0 )(3.43)

≥ inf
ϕ1∈Pp(Qh)

‖u0 − ϕ1‖H1(Rh
0 ) − inf

ϕ2∈Pp(Qh)
‖w − ϕ2‖H1(Rh

0 )

≥ C
hγ

(p + 1)2γ
logν

1

h
− C̃

hγ

(p + 1)2γ

(
1 + log

p + 1

h

)ν−1

≥ C
hγ

(p + 1)2γ
logν

1

h
.

If logν−1 p
h is asymptotically larger than logν 1

h , we can show similarly that

inf
ϕ∈Pp(Qh)

‖u− ϕ‖H1(Rh
0 ) ≥ inf

ϕ2∈Pp(Qh)
‖w − ϕ2‖H1(Rh

0 ) − inf
ϕ1∈Pp(Qh)

‖u0 − ϕ1‖H1(Rh
0 )

≥ C
hγ

(p + 1)2γ

(
1 + log

p + 1

h

)ν−1

− C̃
hγ

(p + 1)2γ
logν

1

h

≥ C
hγ

(p + 1)2γ

(
1 + log

p + 1

h

)ν−1

.

This with (3.43) gives the second case of (3.39) and completes the proof of the
theorem.

Remark 3.1. By the usual argument of interpolation spaces defined by the real
method, e.g., the K-method, Theorems 3.2, 3.3, 3.5, and 3.8 stand for noninteger �.

4. Optimal rate of convergence of the h-p version with quasi-uniform
meshes. In this section we demonstrate how the optimal approximation results ob-
tained in the previous section lead to optimal a priori upper and lower error estimates
for the h-p version of the FEM with quasi-uniform meshes. We follow the notation
and symbols introduced in [6] where we analyzed the performance of the p-version.

Let Ω be a polygon, shown in Figure 4.1, with vertices Ai, 1 ≤ i ≤ M (AM+1 =
A1), and (open) edges Γi connecting the vertices Ai and Ai+1. By ωi we denote the
internal angle between Γi and Γi+1. Let D be a subset of B = {1, 2, . . . ,M} and
N = B \D. We refer to ΓD = ∪i∈DΓi as the Dirichlet boundary and to ΓN = ∪i∈NΓi

as the Neumann boundary. We also allow polygons with internal angle 2π, which is
important in applications.

Consider the following boundary value problem:

(4.1)

−Δu + u = f in Ω,

u|ΓD = 0,
∂u

∂n

∣∣∣∣
ΓN

= g.

By this simple model problem we shall show how to derive the lower and upper bounds
of the approximation error of the h-p version, which can be applied to general elliptic
problems on nonsmooth domains. By Hk(Ω), k ≥ 0, integer, we denote the usual
Sobolev space and H1

D(Ω) =
{
u ∈ H1(Ω) | u|ΓD = 0

}
. The variational form of (4.1)

is to seek u(x) ∈ H1
D(Ω) such that

(4.2) B(u, v) = F (v) ∀ v ∈ H1
D(Ω),
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Fig. 4.1. Polygonal domain Ω.

where B is a bilinear form on H1
D(Ω)×H1

D(Ω) and F is a linear functional on H1
D(Ω),

given by

(4.3) B(u, v) =

∫
Ω

(∇u · ∇v + u v) dx

and

(4.4) F (v) =

∫
Ω

f v dx +

∫
ΓN

g v ds.

4.1. The h-p version of the finite element method for problems with
smooth solutions. Let Ωh = {Ωj , 1 ≤ j ≤ J} be a quasi-uniform mesh over the
domain Ω. The elements Ωi are shape-regular triangular and quadrilateral elements.
We shall assume that Ωi ∩Ωj is either the empty set, an entire side, or a vertex of Ωi

and Ωj , and assume that all vertices of Ω are vertices of some Ωi. By hi we denote
the size of element Ωi; then there exists a constant Cq such that

1 ≤ maxi hi

mini hi
≤ Cq.

By Pp(Ω) (or Pp(Ωi)), we denote the space of all polynomials of degree ≤ p
defined on Ω (or Ωi) and let Sp(Ω; Δh) =

{
u | u|Ωj ∈ Pp(Ωj), j = 1, 2, . . . , J

}
and

Sp,1
D (Ω; Δh) = Sp(Ω; Δh) ∩H1

D(Ω).

In practical applications, the finite element spaces Sp,1
D (Ω; Δh;M) are used in

computations. Here M = {Mj , 1 ≤ j ≤ J} denotes a mapping vector and Mj is
an affine mapping of standard triangle T or square S onto Ωj . Let Sp(Ω; Δh;M) ={
φ(x) |φ |Ωj

= φ̃j ◦M−1
j , φ̃j ∈ Pp(T ) or Pp(S), j = 1, 2, . . . , J

}
, where Pp(T ) or Pp(S)

is a set of polynomials of total or separate degree p on T or S, and let Sp,1
D (Ω; Δh;M) =

Sp(Ω; Δh;M) ∩H1
D(Ω) and Sp,1(Ω; Δh;M) = Sp(Ω; Δh;M) ∩H1(Ω). The polyno-

mials in the space Sp,1
D (Ω; Δh;M) are called piecewise pull-back polynomials, and

Pp(Ωi) denotes a set of pull-back polynomials of degree ≤ p on Ωi.

Obviously, if all elements are triangles or parallelograms, then Sp,1
D (Ω; Δh) =

Sp,1
D (Ω; Δh;M), and if all elements are triangles or quadrilaterals, then Sp,1

D (Ω; Δh) ⊂
Sp,1
D (Ω; Δh;M). We shall establish the results in a general setting, i.e., in Sp,1

D (Ω; Δh;M).
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The h-p version finite element solution uhp ∈ Sp,1
D (Ω; Δh;M) is such that

(4.5) B(uhp, v) = F (v) ∀ v ∈ Sp,1
D (Ω; Δh;M).

Due to the coercivity and continuity of the bilinear form (4.3), one can show that

(4.6) ‖u− uhp‖H1(Ω) ≤ C inf
w∈Sp,1

D (Ω;Δ;M)
‖u− w‖H1(Ω).

Lemma 4.1. Let γh be an edge of Th which is a triangle or a parallelogram, and
let ψ be a polynomial of degree p on γh vanishing at the end points of γh. Then there
exists an extension Ψ(x) ∈ Pp(Th) such that Ψ(x) |γh

= ψ and vanishes on other edges
of Th, and

(4.7) ‖Ψ‖H1(Th) ≤ C‖ψ‖
H

1/2
00 (γh)

with the constant C independent of h.
If Th is a quadrilateral and M is a bilinear mapping of standard square S =

(−1, 1)2 onto Th, then the extension is a pull-back polynomial Ψ = Ψ̃ ◦ M−1 with
Ψ̃ ∈ Pp(S) such that Ψ |γ= ψ and vanishes on other edges of Th, and (4.7) holds. If

Th is a curved triangle or quadrilateral and ψ̃ = ψ ◦ M is a polynomial of degree p
on γ̃h = γh ◦M , where M is a mapping of a standard triangle or square T onto Th,
then there exists an extension Ψ = Ψ̃ ◦M−1 with Ψ̃ ∈ Pp(T ) such that Ψ |γ= ψ and
vanishes on other edges of Th, and (4.7) holds.

Proof. Let M be the mapping of T onto Th and γ = (−1, 1) onto γh, and let
ψ̃ = ψ ◦M ∈. Note that

‖ψ̃‖2
L2(γ) ≤

∫ 0

−1

|ψ̃(τ)|2
1 + τ

dτ +

∫ 1

0

|ψ̃(τ)|2
1 − τ

dτ,

which implies

‖ψ̃‖2

H
1/2
00 (γ)

≤ C|ψ̃|2
H

1/2
00 (γ)

= C

(
|ψ̃|2H1/2(γ) +

∫ 0

−1

|ψ̃(τ)|2
1 + τ

dτ +

∫ 1

0

|ψ̃(τ)|2
1 − τ

dτ

)
.

Due to Theorems 7.4–7.5 of [10], there exists an extension Ψ̃ ∈ Pp(T ) such that

‖Ψ̃‖H1(T ) ≤ C‖ψ̃‖
H

1/2
00 (γ)

≤ C|ψ̃|
H

1/2
00 (γ)

.

Let Ψ = Ψ̃ ◦M−1. Then Ψ ∈ Pp(Th), and by a simple scaling there holds

‖Ψ‖H1(Th) ≤ C‖Ψ̃‖H1(T ) ≤ C|ψ̃|
H

1/2
00 (γ)

≤ C|ψ|
H

1/2
00 (γh)

,

which leads to (4.7).
Lemma 4.2. Let u ∈ Hk(Ωi), k > 1, where Ωi is a curved triangular or quadri-

lateral element of the mesh Δh with size h. Then there exists a polynomial φ ∈ Pp(Ωi)
such that

(4.8) ‖u− φ‖H1(Ωi) ≤ C
hμ−1

pk−1
‖u‖Hk(Ωi)

with μ = min {p + 1, k}, and u(Vl) = φ(Vl), 1 ≤ l ≤ 3 or 4, are the vertices of Ωi.
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Fig. 4.2. Mapping of quadrilateral.

Proof. We assume first that Ωi is a curved quadrilateral. Let Fi be a mapping of
Qh/2 = (−h/2, h/2)2 onto Ωi. Then ũ = u ◦ Fi ∈ Hk(Qh/2), as shown in Figure 4.2,
and it can be extended to Qh such that the extended function has a support contained
in Q3h/4 and preserves the norm, i.e.,

‖ũ‖Hk(Qh) ≤ C‖ũ‖Hk(Qh/2)‖u‖Hk(Ωi).

Since ũ has a compact support in Qh, ũ ∈ Hk,β(Qh) with the Jacobi weight β =
(−1/2,−1/2), and

(4.9) ‖ũ‖Hk,β(Qh) ≤ C‖ũ‖Hk(Qh) ≤ C‖u‖Hk(Ωi).

By Theorem 3.2, there exists a polynomial φ̃ ∈ Pp(Qh), p ≥ 1, such that

(4.10) ‖ũ− φ̃‖H1,β(Qh) ≤ C
hμ−1

pk−1
‖ũ‖Hk,β(Qh) ≤ C

hμ−1

pk−1
‖u‖Hk(Ωi)

and for 1 ≤ l ≤ 4

(4.11) |ũ(Ṽl) − φ̃(Ṽl)| ≤ C
hμ−1

pk−1
‖u‖Hk(Ωi),

where Ṽl = Ṽl ◦Mi = (±h/2,±h/2). Let g1(x1) = h−2x1

2h and g2(x1) = h+2x1

2h , and let

φ̄ = φ̃ + g = φ̃ + (ũ− φ̃)(V1)g1(x1)g1(x2) + (ũ− φ̃)(V2)g2(x1)g1(x2)(4.12)

+ (ũ− φ̃)(V3)g2(x1)g2(x2) + (ũ− φ̃)(V4)g1(x1)g2(x2).

It is trivial that

‖gm‖Ht(γh) ≤ Ch1/2−t, t = 0, 1,m = 1, 2, ‖gl(x1)gm(x2)‖H1(Ω) ≤ C, l,m = 1, 2,

which together with (4.10) and (4.11) implies that ũ(Vm) = φ̃(Vm), 1 ≤ m ≤ 4, and

‖ũ− φ̄‖H1(Qh) ≤ ‖ũ− φ̃‖H1(Qh) + C
∑

1≤m≤4

|(ũ− φ̃)(Vm)|(4.13)

≤ C
hμ−1

pk−1
‖u‖Hk(Ωi).
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Let φ = φ̄ ◦M−1
i . Then φ ∈ Pp(Ωi), u(Vm) = ũ(Vm) = φ̄(Vm) = φ(Vm), 1 ≤ m ≤ 4,

and

‖u− φ‖H1(Ωi) ≤ C‖ũ− φ̄‖H1(Qh) ≤ C
hμ−1

pk−1
‖u‖Hk(Ωi).

If Ωi is a curved triangle, the mapping Fi maps Th/2 = {x = (x1, x2) | −h
2 + x2+h/2√

3
≤

x1 ≤ h
2 − x2+h/2√

3
,−h

2 ≤ x2 ≤
√

3−1
2 h} onto Ωi, and (−h/2,−h/2), (h/2,−h/2), and

(0,
√

3−1
2 h) are the vertices Ṽm, 1 ≤ m ≤ 3, of Th/2, which are mapped to the vertices

Vm, 1 ≤ m ≤ 3, of Ωi, as shown in Figure 4.3. Then ũ = u ◦ Fi ∈ Hk(Th/2),

and it can be extended to Hk(Qh) with a compact support contained in Hk(Q3h/4).

Then ũ ∈ Hk,β(Qh) with the Jacobi weight β = (−1/2,−1/2), and (4.9) holds. By
Theorem 3.2, there exists a polynomial φ̃ ∈ Pp(Qh), p ≥ 1, such that (4.10) and (4.11)
hold.

Let

φ̄ = φ̃ + g = φ̃ +
∑

1≤m≤3

(u− φ̃)(Ṽm)gm(x)

with

g1(x) =
1

2
− x1

h
− x2 + h/2√

3
, g2(x) =

1

2
+

x1

h
− x2 + h/2√

3
, g3(x) =

2x2√
3h

+
1√
3
.

Obviously, φ̄(Ṽm) = ũ(Ṽm), 1 ≤ m ≤ 3, and (4.13) holds. Let φ = φ̄ ◦M−1
i ∈ Pp(Ωi).

Then φ(Vm) = u(Vm), 1 ≤ m ≤ 3, and (4.8) holds.
Theorem 4.3. Let Δh = {Ωj , 1 ≤ j ≤ J} be a quasi-uniform mesh with element

size h over Ω containing triangular and quadrilateral elements, and let Sp,1
D (Ω; Δh;M)

be the finite element space defined as above. The data functions f and g are assumed
such that the solution u of (4.1) is in Hk(Ω) with k ≥ 1. Then the finite element
solution uhp ∈ Sp,1

D (Ω; Δh;M) with p ≥ 0 for the problem (4.1) satisfies

(4.14) ‖u− uhp‖H1(Ω) ≤ C
hμ−1

(p + 1)k−1
‖u‖Hk(Ω),

where μ = min {p + 1, k} and the constant C is independent of p and u.
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Proof. We need to construct a polynomial ϕ ∈ Sp
D(Ω; Δh;M) such that

(4.15) ‖u− ϕ‖H1(Ω) ≤ C
hμ−1

pk−1
‖u‖Hk(Ω).

By Lemma 4.2, there exists a polynomial ϕ[i] ∈ Pp(Ωi), p ≥ 1, such that ϕ[i] = u at
the vertices of Ωi and

(4.16) ‖u− ϕ[i]‖H1(Ωi) ≤ C
hμ−1

pk−1
‖u‖Hk(Ωi).

Let γ = Ω̄i ∩ Ω̄j be a common edge shared by the elements Ωi and Ωj , and let
ψij = (ϕ[i] −ϕ[j]) |γ∈ Pp(γ). Note that ϕ[i](Vm) = ϕ[j](Vm) = u(Vm),m = 1, 2, where
Vm denote the end points of γ. Therefore ψij vanishes at the end points of γ. By
Lemma 4.1 there exists an extension Ψ ∈ Pp(Ωi) such that Ψij |γ= ψij and vanishes
on ∂Ωi\γ, and

‖Ψij‖H1(Ωi) ≤ C ‖ψij‖H1/2
00 (γ)

≤ C
(
‖u− ϕ[i]‖

H
1/2
00 (γ)

+ ‖u− ϕ[j]‖
H

1/2
00 (γ)

)
(4.17)

with the constant C independent of h. If k ≥ 3
2 , by Theorem 3.2 and Remark 3.1,

there holds for t = 0, 1

‖u− ϕ[i]‖Ht(γ) ≤ C ‖u− ϕ[i]‖Ht+1/2(Ωi) ≤ C
hμ−t−1/2

pk−t−1/2
‖u‖Hk(Ωi).

Note that ψij ∈ H1
0 (γ). Since H

1/2
00 (γ) =

(
L2(γ), H1

0 (γ)
)

1
2 ,2

, by the standard

argument of exact interpolation spaces of θ-exponent [11], it follows that

‖u− ϕ[i]‖
H

1/2
00 (γ)

≤ C
hμ−1

pk−1
‖u‖Hk(Ωi)

and

‖u− ϕ[j]‖
H

1/2
00 (γ)

≤ C
hμ−1

pk−1
‖u‖Hk(Ωj),

which imply

(4.18) ‖Ψij‖H1(Ωi) ≤ C ‖ψij‖H1/2
00 (γ)

≤ C
hμ−1

pk−1

(
‖u‖Hk(Ωi) + ‖u‖Hk(Ωj)

)
.

Let ϕ̃
[i]
p = ϕ

[i]
p −Ψ on Ωi and ϕ̃

[j]
p = ϕ

[j]
p . Then ϕ̃

[i]
p |γ= ϕ̃

[j]
p |γ= ϕ

[j]
p |γ , and there

hold

‖u− ϕ̃[j]
p ‖H1(Ωj) = ‖u− ϕ[j]

p ‖H1(Ωj) ≤ C
hμ−1

pk−1
‖u‖Hk(Ωj)

and

‖u− ϕ̃[i]
p ‖H1(Ωi) ≤ C

(
‖u− ϕ[i]

p ‖H1(Ωi) + ‖Ψ‖H1(Ωi)

)
(4.19)

≤ C
hμ−1

pk−1

(
‖u‖Hk(Ωi) + ‖u‖Hk(Ωj)

)
.



724 BENQI GUO AND WEIWEI SUN

Adjusting ϕ[i] and ϕ[j] by Ψij on each internal edge γ = Ω̄i ∩ Ω̄j , we achieve the
continuity across γ. ϕ[i] can be adjusted in the same way to satisfy the homogeneous
Dirichlet boundary condition on each edge γ ⊂ ΓD. Let ϕ = ϕ̃[i] in Ωi, 1 ≤ i ≤ M .
Then ϕ ∈ Sp,1

D (Ω; Δh;M) and satisfies (4.15).
So far we have proved the theorem for k ≥ 3

2 . If 1 < k < 3
2 , k = (1 − θ) + 2θ =

1 + θ with θ = k − 1 ∈ (0, 1). Then Hk
D(Ω) = (H1

D(Ω), H2(Ω) ∩ H1
D(Ω))θ,2 =

(H1(Ω), H2(Ω))θ,2 ∩H1
D(Ω). It was shown in [8] that

Hk
D(Ω) ⊂

(
H1(Ω), H2(Ω)

)
θ,∞ ∩H1

D(Ω) = Bk
2,∞(Ω) ∩H1

D(Ω) = Bk(Ω) ∩H1
D(Ω).

Suppose that v ∈ H1
D(Ω) and w ∈ H2(Ω) ∩ H1

D(Ω) form a decomposition of u ∈
Hk

D(Ω) such that u = v + w. Applying (4.18) for k = 2, we have a polynomial

ϕ̃
[i]
p ∈ Sp,1

D (Ω; Δh;M) with p ≥ 1 such that

‖w − ϕp‖H1(Ω) ≤ C
h

p
‖w‖H2(Ω).

Therefore, we have

‖u− ϕ‖H1(Ω) ≤ ‖v‖H1(Ω) + ‖w − ϕp‖H1(Ω) ≤ C

(
‖v‖H1(Ω) +

h

p
‖w‖H2(Ω)

)
= C

(
‖v‖H1(Ω) + t‖w‖H2(Ω)

)
with t = h

p . Due to the definition of the Besov spaces Bk(Ω) = Bk
2,∞(Ω), we have

‖u− ϕ̃‖H1(Ω) ≤ tθ ‖u‖Bk(Ω) ≤ C

(
h

p

)k−1

‖u‖Hk(Ω),(4.20)

which is (4.15) for p ≥ 1, 1 < k < 3/2, μ = min{k, p + 1} = k.
Remark 4.1. The theorem stands for u ∈ Bs(Ω) with s > 1 by a typical argument

of interpolation spaces as we argued for u ∈ Hk(Ω) with 1 < k < 3/2.
Remark 4.2. The convergence of the h-p version of FEM with quasi-uniform

mesh containing triangular and parallel elements was proved in [10] for problems with
smooth solutions. Lemma 4.1 and Theorem 4.3 generalize it to quadrilateral elements
and curved elements, and the analysis is conducted in the framework of the Jacobi-
weighted Sobolev spaces, which simplifies the proof and make it more robust. It
proves that the Jacobi-weighted spaces not only work perfectly for the problems with
singular solutions, but also work very well for problems with smooth solutions.

4.2. The h-p version finite element method for problems with singular
solutions. Let Sδi =

{
x ∈ Ω | dist(x,Ai) < δi

}
be a neighborhood of the vertices

Ai, shown in Figure 4.4, with δi ∈ (0, 1). δi is selected such that Sδi ∩ Sδj = ∅ for
i �= j. Ω0 = Ω\

⋃
i∈M Sδi/2 contains no vertices of Ω, and Ω0 ∩Sδi �= ∅ for i ∈ M. Ω0

is called the regular part of Ω.
We assume that f and g are such that the solution u of (3.1) is in Hk(Ω0), k ≥ 1,

and in each neighborhood Sδi , u has an expansion in terms of singular functions of
rγ logν r-type:

(4.21) u =
∑

m≥1, 0<γ
[i]
m≤k−1

L[i]
m∑

l=1

C [i]
m r

γ[i]
m

i logν
[i]
l,m riΦ

[i]
m(θi) χ(ri) + u

[i]
0 = v + u

[i]
0 ,
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Fig. 4.4. A neighborhood of the vertex Ai.

where (ri, θi) are polar coordinates with respect to the vertex Ai, u
[i]
0 ∈ Hk(Sδi) is

the smooth part of u, γ
[i]
m > 0 are real, and ν

[i]
m ≥ 0 are integers. We assume that

ν
[i]
l,m > ν

[i]
l+1,m and γ

[i]
m < γ

[i]
m+1, χ(ri) and Φ

[i]
m(θi) are C∞ functions, χ(ri) = 1 for

0 < ri < δi <
1
2 , and χ(ri) = 0 for ri > δi. Let

(4.22) γ = min
i

γ
[i]
1 , νγ = max

i,γ
[i]
1 =γ

ν
[i]
1 .

There exists i0 such that γ
[i0]
1 = γ and νγ = ν

[i0]
1 . We will analyze the asymptotic

rate of convergence of the h-p version of the FEM for problems with singularities on
polygonal domains.

Theorem 4.4. Let Ωh =
{
Ωj , 1 ≤ j ≤ J

}
be a quasi-uniform mesh over Ω

containing triangular and parallelogram elements, and let Sp
D(Ω; Δh;M) with p > γ

be the finite element space defined as above. The data functions f and g are assumed
such that the solution u of (4.1) is in Hk(Ω0) with k > 1+2γ, and u has the expansion

(4.21) with u
[i]
0 ∈ Hk(Sδi) in each neighborhood Sδi . Then the finite element solution

uhp ∈ Sp,1
D (Ω; Δ;M) for the problem (4.1) satisfies

(4.23) ‖u− uhp‖H1(Ω) ≤ C1
hγ

p2γ
Fνγ (p, h)

with the constant C1 depending on u, γ, and νγ , but not on p and h, where γ and νγ
are as given in (4.22) and Fνγ

(p, h) is as given in (3.19).
Proof. Due to (4.6), it suffices to construct a polynomial ϕ ∈ Sp

D(Ω; Δh;M) with
p > γ such that

(4.24) ‖u− ϕ‖H1(Ω) ≤ C
hγ

p2γ
Fνγ (p, h).

For elements Ωi containing no vertices, by Lemma 4.2 there exists a polynomial
ϕ[i] ∈ Pp(Ωi) such that ϕ[i] = u at the vertices of Ωi, and

‖u− ϕ[i]‖H1(Ωi) ≤ C
hμ̃−1

pk−1
≤ C

hγ

p2γ
‖u‖Hk(Ωi)

with μ̃ = min{p + 1, k} ≥ 1 + γ.
Let the element Ωj contain a vertex A1 of Ω. Then (4.21) holds with i = 1 in

Sδ1 . By Lemma 4.2, there exists a polynomial ψ0 ∈ Pp(Ωj) such that ψ0 = u at the
vertices of Ωj , and

‖u0 − ψ0‖H1(Ωj) ≤ C
hμ−1

pk−1
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Fig. 4.5. Mapping of element with a vertex of Ω.

with μ = min{p + 1, k} ≥ 1 + γ. For a sharp approximation to u1, we map Ωj

into Rh
0 ⊂ Qh by an affine mapping Fj such that A1 ◦ Fj = (−h,−h) and Ωj is

contained in Rh
0 , as shown in Figure 4.5. Without loss of generality we may assume

that A1 = (−h,−h) and Ωj ⊆ Rh
0 . Due to Theorem 3.5, there exists a polynomial

ψm ∈ Pp(Ωj) such that vm = ψm at the vertices of Ωj , and

‖vm − ψm‖H1(Ωj) ≤ C
hγ[1]

p2γ
[1]
m

F
ν
[1]
1,m

(p, h),

where vm =
∑L[i]

m

l=1 r
γ[i]
m

i logν
[i]
l,m riΦ

[i]
m(θi) χ(ri). Let ψ =

∑
0<γ

[1]
m ≤k−1

C
[1]
m ψm and ϕj =

ψ + ψ0. Then v = ψ at the vertices of Ωj , and

‖v − ψ‖H1(Ωj) ≤ C
∑

0<γ
[i]
m≤k−1

hγ[1]

p2γ
[1]
m

F
ν
[1]
1,m

(p, h) ≤ C
hγ

p2γ
Fνγ

(p, h),

which implies that u = ϕ[j] at the vertices of Ωj and that

‖u−ϕ
[j]‖H1(Ωj) ≤ C

(
hγ

p2γ
Fνγ

(p, h) +
hμ̃−1

pk−1

)
≤ C

hγ

p2γ
Fνγ

(p, h).

Noting that u ∈ H1+γ−ε(Ω) with ε > 0 arbitrary, we can adjust these ϕ[i] as in
the proof of Theorem 4.3 to achieve the continuity across internal edges γ of elements
and the homogeneous Dirichlet boundary condition on the edges γ ⊂ ΓD. Let ϕ = ϕ[i]

on each Ωi, 1 ≤ i ≤ J ; then ϕp ∈ Sp
D(Ω; Δ;M) and satisfies (4.24).

Remark 4.3. The convergence of the h-p version of the FEM for problems with
singular solutions on polygonal domains was derived in [10], which is sharp for νγ = 0.
It is worth indicating that approximation properties of Chebyshev projection were uti-
lized. Unfortunately, the Jacobi-weighted spaces were not introduced then to precisely
describe the singularity and to fully explore approximability of singular solutions.
Therefore, it was impossible to have the estimation (4.23) in the 1980s.

Theorem 4.5. Let u be the solution of the problem (4.1) such that u ∈ Hk(Ω0)

and u
[i]
0 ∈ Hk(Sδi) with k > 1 + 2γ in each neighborhood Sδi , and let uhp be its finite

element solution in Sp
D(Ω; Δh;M) with p > γ. Then

(4.25) ‖u− uhp‖H1(Ω) ≥ C2

(
h

p2

)γ

Fνγ (p, h)
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with constant C2 depending on u, k, γ, and νγ , but not on p and h, where γ and νγ
are as given in (4.22), and Fνγ (p, h) is as given in (3.19).

Proof. We may assume without loss of generality that the element Ω1 contains

the vertex A1 = (0, 0) where the strongest singularity occurs, i.e., γ = γ[1], νγ = ν
[1]
1 .

According to (4.21),

u = u1 +
∑

m≥2,0<γm≤k−1

um +

Lm∑
l=2

vl + u0(4.26)

with

u1 = c1,1 rγ logνγ rΦ1(θ) χ(r),(4.27)

vl = cl,1 rγ logνl,1 rΦ1(θ) χ(r), l ≥ 2,(4.28)

um =

Lm∑
l=1

cl,m rγm logνl,m r Φm(θ)χ(r), m ≥ 2.(4.29)

Here we omit the index [1].
We now assume that the assertion of the theorem does not hold. Therefore, there

exists a function δ(p, h) such that

(4.30) ‖u− uhp‖H1(Ω1) ≤ ‖u− uhp‖H1(Ω) ≤ C

(
h

p2

)γ

Fνγ (p, h)δ(p, h)

with δ(p, h) → 0 as p → ∞ or h → 0. By the argument of Theorem 4.3, there exist
polynomials wm, zl ∈ Pp(Ω1) such that

‖um − wm‖H1(Ω1) ≤ C

(
h

(p + 1)2

)γm

Fν1,m(p, h)

and

‖vl − zl‖H1(Ω1) ≤ C

(
h

(p + 1)2

)γ

Fνl,1
(p, h).

Also, by Theorem 3.2, there exists a polynomial w0 ∈ Pp(Ω1) such that

‖u0 − w0‖H1(Ω1) ≤ Chμ−1(p + 1)−(k−1),

where μ = min{k, p+ 1}. Therefore, combining the above estimates and the assump-
tion (4.30) we obtain∥∥∥∥∥u1 −

(
uhp − w0 −

∑
m≥2,0<γm≤k−1

wm −
L1∑
l=2

zl

)∥∥∥∥∥
H1(Ω1)

≤ ‖u− uhp‖H1(Ω1) + ‖u0 − w0‖H1(Ω1) +
∑

m≥2,0<γm≤k−1

‖um − wm‖H1(Ω1)

+

L1∑
l=2

‖vl − zl‖H1(Ω1) ≤ C

(
h

(p + 1)2

)γ

Fνγ (p, h) δ̃(p, h)
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with

δ̃(p, h) = δ(p, h) +
hμ−1−γ

(p + 1)k−1−2γ
+

L1∑
l=2

Fνl,1
(p, h)

Fνγ
(p, h)

+
∑

m≥2,0<γm≤k−1

(
h

(p + 1)2

)γm−γ Fν1,m(p, h)

Fνγ
(p, h)

.

Note that γm > γ for m ≥ 2 and νl,1 < νγ for l ≥ 2. Also note that p > γ and

k > 1 + 2γ, which implies μ > 1 + γ. Hence δ̃(p, h) → 0 as p → ∞ or h → 0.
On the other hand, we have by Theorem 3.8∥∥∥∥∥u1 −

(
uhp − w0 −

∑
m≥2,0<γm≤k−1

wm −
L1∑
l=2

zl

)∥∥∥∥∥
H1(Ω1)

≥ inf
φ∈Pp(Ω1)

‖u1 − φ‖H1(Ω1) ≥ C

(
h

(p + 1)2

)γ

Fνγ (p, h),

which leads to a contradiction. Thus we complete the proof.
As a corollary of Theorems 4.4 and 4.5, we have the optimal convergence of

the finite element solutions of the h-p version with quasi-uniform meshes and quasi-
uniform degree for elliptic problems on polygonal domains.

Theorem 4.6. Let u and uhp be the solution of the problem (4.1) and its finite
element solution in Sp

D(Ω; Δh;M), respectively, as in the previous theorem. Then
there exist two constants C1 and C2 depending on u, k, γ, and νγ but not on p and h
such that

(4.31) C2

(
h

p2

)γ

Fνγ
(p, h) ≤ ‖u− uhp‖H1(Ω) ≤ C1

(
h

p2

)γ

Fνγ
(p, h),

where γ and νγ are as given in (4.22) and Fνγ (p, h) is as given in (3.19).

5. Concluding remarks. Based on the approximabilities of smooth and singu-
lar functions in the Jacobi-weighted Besov and Sobolev spaces, we have proved the
convergence of the h-p version of the FEM with quasi-uniform meshes for problems
with smooth and singular solutions. The analysis is conducted in the framework of
the Jacobi-weighted Besov and Sobolev spaces, which proves that the Jacobi-weighted
spaces are not only appropriate for problems with singular solutions but also for
problems with smooth solutions. Hence this framework is the most powerful tool for
analyzing the p and h-p versions of the FEM.

For problems with singular solutions of rγ logν r-type, the optimal convergence
for the h-p version of the FEM is established after deriving the sharpest estimation
of upper and lower bounds for the approximation errors in FEM solutions. Within
the framework of the Jacobi-weighted Besov and Sobolev spaces and by incorporating
properly the well-designed scaling arguments, we have proved the optimal rate of
convergence of the h-p version of the FEM with quasi-uniform meshes for elliptic
problems on polygonal domains where singularities of rγ log r-type occur. The results
include the h- and p-versions of the FEM as two special cases. For fixed h, it coincides
with the optimal convergence of the p-version of the FEM [6], and for fixed p, it gives
the optimal convergence of the h-version. Also the results are parallel to those of the
h-p version of the BEM with quasi-uniform meshes [20].
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The concepts, methods, and techniques in this paper can be generalized to the
h-p of the FEM in three-dimensional problems, but such a generalization will be
substantial and is feasible only when the analysis for the convergence of the p-version
of the FEM in three dimensions becomes available in the future.

REFERENCES

[1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York,
1970.

[2] M. Ainsworth and J. Coyle, Computation of Maxwell eigenvalues on curvilinear domains
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FIRST-ORDER SYSTEM LEAST-SQUARES FOR
DARCY–STOKES FLOW∗
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Abstract. The subject of this paper is a first-order system least-squares formulation for the
Stokes equation which remains uniformly valid in the limit of vanishing viscosity. For this so-called
Darcy–Stokes flow problem we establish continuity and coercivity of the corresponding least-squares
functional in appropriate norms. Two types of finite element spaces for the approximation of the
velocity field are investigated in detail: the well-known Raviart–Thomas elements and an element
recently introduced by Mardal, Tai, and Winther specifically for mixed approaches to Darcy–Stokes
flow. The computational results derived with next-to-lowest order Raviart–Thomas elements as well
as the Mardal–Tai–Winther elements confirm our analysis.

Key words. least-squares finite element method, first-order system, Darcy–Stokes flow, small
viscosity
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1. Introduction. Our purpose in this paper is to present a least-squares finite
element method for Darcy–Stokes flow which remains valid for arbitrarily small vis-
cosity. This type of singular perturbation problem was studied before in [11], where
a successful mixed finite element approach was presented. The mixed variational for-
mulation of [11] is of saddle point structure with its well-known limitation on the
admissible combinations of finite element spaces. One of the motivations for the
development of the least-squares approach presented in this paper is the greater flex-
ibility in the choice of finite element spaces which is not restricted by a compatibility
condition.

In the limit of vanishing viscosity, our least-squares formulation turns into the
one proposed in [8]. The approach in [8] constructs approximations for the pressure
and the velocity in H1(Ω) and H(div,Ω), respectively. In the viscous case, however,
an approximation for the velocity is sought in H1(Ω)2 instead. This is achieved by
an augmentation with a least-squares functional along the edges of the triangulation
over the jump of the tangential component and by introducing the velocity gradient
as an additional variable. The case of small viscosity is handled by an appropriate
weighting of the components in the least-squares functional.

Our main motivation for this work comes from the treatment of shallow water
systems treated with the method of characteristics for time discretization. In this
context, linearization of the boundary value problems at each time-step leads to flow
problems of Darcy–Stokes type. Shallow water flow is described by the scalar water
level and by the velocity field. These process variables are directly approximated
by the first-order system least-squares formulation treated in this paper. The exten-
sion to shallow water systems including a viscosity term is therefore straightforward.
For vanishing viscosity that approach reduces to the first-order system least-squares
method investigated in [14].
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Among the most popular methods for the case μ = 0 is the Raviart–Thomas mixed
finite element method which couples, for example, lowest-order Raviart–Thomas el-
ements for the flux with piecewise constant functions for the scalar variable. This
approach is well studied in the case of the linear first-order Darcy-type system (see,
e.g., [4, section III.5]) as well as for the shallow water system without viscosity (see
[10, 13]). For nonvanishing viscosity different pairs of finite element spaces are used.
Among the most common approaches is the Taylor–Hood element pair which com-
bines quadratic conforming elements for the velocity field with linear conforming ones
on the same mesh for the scalar variable. Again, this approach is well known to be
stable for the mixed variational formulation of the Stokes problem (see, e.g., [4, sec-
tion III.7]). It is also widely used for the numerical treatment of the shallow water
equations with viscosity (see, e.g., [12]).

A smooth transition between both of these situations was achieved only recently
by Mardal, Tai, and Winther in [11]. Their element is nonconforming for the Stokes
system (i.e., with respect to H1(Ω)2), and it is conforming in the case of vanishing vis-
cosity (i.e., with respect to H(div,Ω)). The finite element of the Mardal–Tai–Winther
approach is represented by three basis functions per edge, two for the normal com-
ponent and one for the tangential component of the velocity field. It is shown to be
stable if combined with a piecewise constant pressure approximation (cf. [11]). An-
other nonconforming approach for the Darcy–Stokes problem was studied by Burman
and Hansbo in [7] based on a stabilized Crouzeix–Raviart element.

Our approach proposed in this paper is based on a least-squares formulation
of the Darcy–Stokes system, which is obtained by introducing the velocity flux as
an auxiliary variable. For nonvanishing viscosity it is augmented with an edge func-
tional involving the tangential velocity component. If next-to-lowest order (quadratic)
Raviart–Thomas elements are used for the velocity field, then approximation order 2
is obtained for the case of zero viscosity. In the presence of positive viscosity, only
approximation order 1 is achieved. More precisely, the behavior for small viscosity is
such that the error reduction is of order 2 on coarse meshes and eventually reduces to
order 1 on finer meshes where the viscous error components are no longer negligible.
Of course, the finite elements of Mardal, Tai, and Winther can also be inserted into
our least-squares formulation. This leads to approximation order 1 independently of
the size of the viscosity which is also verified by our numerical computations.

The elementwise evaluation of the least-squares functional constitutes an a pos-
teriori error estimator at no additional cost. This a posteriori error estimator gives
rise to adaptive refinement strategies which dramatically increase the accuracy and
efficiency of numerical methods in many practical situations. However, we do not re-
port on adaptive computations in this paper and refer to the extension for the viscous
shallow water equations in [9] instead.

For the above reasons, among others, least-squares finite element methods have
become increasingly popular in recent years for a number of different application
problems; see [2] for an overview. Several least-squares formulations for the Navier–
Stokes equations have been studied in [1, 3], where the partial derivatives of the
velocity field are also introduced as additional variables.

The structure of this paper is as follows. The first-order system formulation
of Darcy–Stokes flow is presented in the next section. Section 3 investigates the
nonconforming least-squares formulation, which is set in the space H(div,Ω). It is
shown that the least-squares functional satisfies continuity and coercivity estimates
with respect to suitable norms. Finite element approximation estimates which are
uniform in the limit of vanishing viscosity are derived in section 4. Finally, in section 5
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the computational results for a test example with varying viscosity parameter μ are
reported.

2. First-order system formulation of Darcy–Stokes flow. For a region
Ω ⊂ R

2 with boundary Γ = ∂Ω we consider the boundary value problem

δ p + div u = 0 in Ω,

u + ∇p− μΔu = 0 in Ω,

n · u = g on Γ,

μ(t · u) = 0 on Γ,

(2.1)

with nonnegative parameters δ, μ. For (δ, μ) = (0, 1) this constitutes a stationary
Stokes system, while for (δ, μ) = (0, 0), (2.1) is simply a first-order reformulation of
the Laplace equation. Our aim in this work is the development of a discretization
scheme which remains stable uniformly as μ → 0. This involves that the boundary
condition for the tangential velocity component must be smoothly faded out for μ → 0.

For the solution of (2.1) we propose a least-squares finite element method which
starts from the first-order system

R(p,u,U) =

⎛⎝ δ p + div u
u + ∇p + μ1/2 div U

U + μ1/2∇u

⎞⎠ = 0(2.2)

resulting from the introduction of U as an additional variable. Our variational for-
mulation will be based on the Sobolev spaces

H1
Γ(Ω) = {q ∈ H1(Ω) : q = 0 on Γ},

HΓ(div,Ω) = {v ∈ H(div,Ω) : n · v = 0 on Γ}.

H(div,Ω) denotes the Sobolev space corresponding to the norm

‖v‖div,Ω =
(
‖v‖2

0,Ω + ‖div v‖2
0,Ω

)1/2
.

If we construct a function uN ∈ H1(Ω) which satisfies the boundary conditions in
(2.1), then our aim is to solve (2.2) for p ∈ H1(Ω), u = uN + û with û ∈ H1

Γ(Ω)2, and
U ∈ H(div,Ω)2. The associated least-squares variational formulation would consist
in finding (p, û,U) ∈ H1(Ω) ×H1

Γ(Ω)2 ×H(div,Ω)2 such that

‖R(p,uN + û,U)‖2
0,Ω ≤ ‖R(q,uN + v,V)‖2

0,Ω(2.3)

holds for all (q,v,V) ∈ H1(Ω) ×H1
Γ(Ω)2 ×H(div,Ω)2.

Before we turn to the investigation of this least-squares formulation, we consider
the special case μ = 0 in more detail. Let us denote the first-order system (2.2)
corresponding to μ = 0 by

R0(p,u,U) =

⎛⎝δ p + div u
u + ∇p

U

⎞⎠
and observe that

R(p,u,U) = R0(p,u,U) + μ1/2

⎛⎝ 0
div U
∇u

⎞⎠(2.4)
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holds. For μ = 0, (2.3) reduces to the least-squares minimization of ‖R0(p,u,U)‖0,Ω

for p ∈ H1(Ω), u ∈ uN + H1
Γ(Ω)2, and U ∈ H(div,Ω)2. Unfortunately, this formula-

tion is no longer well-posed and needs to be formulated in the larger product space
H1(Ω)× (uN +HΓ(div,Ω))×L2(Ω)2 instead. Moreover, only the normal component
n·uN may be prescribed at the boundary for uN , which only needs to be in H(div,Ω).
The well-posedness of this minimization problem may be deduced from coercivity and
continuity of the associated variational formulation. In other words, it is required that
there be positive constants α0 and β0 such that

α0

(
‖q‖2

1,Ω + ‖v‖2
div,Ω + ‖V‖2

0,Ω

)
≤ ‖R0(q,v,V)‖2

0,Ω

≤ β0

(
‖q‖2

1,Ω + ‖v‖2
div,Ω + ‖V‖2

0,Ω

)(2.5)

holds for all (q,v,V) ∈ H1(Ω) ×HΓ(div,Ω) × L2(Ω)2. As a first step towards such
an estimate we observe that

‖R0(q,v,V)‖2
0,Ω{

≥ min{δ, 1}
(
‖δ1/2q + δ−1/2 div v‖2

0,Ω + ‖v + ∇q‖2
0,Ω + ‖V‖2

0,Ω

)
≤ max{δ, 1}

(
‖δ1/2q + δ−1/2 div v‖2

0,Ω + ‖v + ∇q‖2
0,Ω + ‖V‖2

0,Ω

)(2.6)

holds. For (q,v,V) ∈ H1(Ω) ×HΓ(div,Ω) × L2(Ω)2,

‖δ1/2q + δ−1/2 div v‖2
0,Ω + ‖v + ∇q‖2

0,Ω + ‖V‖2
0,Ω

= δ‖q‖2
0,Ω + 2(q,div v)0,Ω + δ−1‖div v‖2

0,Ω

+ ‖∇q‖2
0,Ω + 2(v,∇q)0,Ω + ‖v‖2

0,Ω + ‖V‖2
0,Ω

= δ‖q‖2
0,Ω + ‖∇q‖2

0,Ω + ‖v‖2
0,Ω + δ−1‖div v‖2

0,Ω + ‖V‖2
0,Ω,

(2.7)

where the mixed terms vanish due to integration by parts. Combined with (2.6),
this proves (2.5) with α0 = min{δ2, δ−1} and β0 = max{δ2, δ−1}. We have therefore
established continuity and coercivity with respect to H1(Ω)×HΓ(div,Ω)×L2(Ω)2 in
this case.

For simplicity, we have assumed δ > 0 in our analysis above, and we will continue
to do so throughout the rest of this paper. The case δ = 0 in (2.2) may be considered
by adding a constraint such as ∫

Γ

p ds = 0,

which makes p unique. Of course, the boundary conditions must be compatible in
this case, which implies that ∫

Γ

g ds = 0

must hold. Such an example will also be included in our numerical results.
The formulation (2.3) based on the first-order system (2.2) is only meaningful

under the assumption μ > 0, while for μ → 0 the problem does not remain uniformly
well-posed with respect to H1(Ω) ×H1

Γ(Ω)2 ×H(div,Ω)2. Our goal in this paper is
to derive an approach which is valid for the entire parameter range of μ ≥ 0. To
this end, a suitable transition from u ∈ H1

Γ(Ω)2 to the space HΓ(div,Ω) is required.
In the next section, we present an approach which treats the velocity in the space
HΓ(div,Ω) in all cases and enforces the condition u ∈ H1

Γ(Ω)2 weakly for μ > 0.
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3. A nonconforming least-squares formulation in H(div,Ω). For the non-
conforming least-squares formulation we define a family of triangulations Th with a
parameter h measuring the mesh resolution. The set of edges associated with the tri-
angulation Th is denoted by Eh. For a piecewise polynomial velocity field u ∈ L2(Ω)2

and an edge E ∈ Eh, the jump term may be defined as

[u]E =

{
u|Kl,E

− u|Kr,E
, E ∈ Eh ∩ Ω,

u|Kl,E
, E ∈ Eh ∩ Γ.

Here, Kl,E and Kr,E denote the left and right triangles, respectively, adjacent to E.
Similarly, the jump term for the tangential velocity component may be defined as

[t · u]E =

{
t · u|Kl,E

− t · u|Kr,E
, E ∈ Eh ∩ Ω,

t · u|Kl,E
, E ∈ Eh ∩ Γ.

For piecewise polynomial u ∈ HΓ(div,Ω), in fact, since the normal jump component
vanishes on all edges,

[u]E = [n · u]E n + [t · u]E t = [t · u]E t(3.1)

holds for all E ∈ Eh.
With this, the least-squares functional may be defined as

F(p,u,U) =
∑

K∈Th

‖R(p,u,U)‖2
0,K + μ

∑
E∈Eh

1

hE
‖[t · u]E‖2

0,E .(3.2)

The least-squares minimization problem consists of finding (p, û,U) ∈ H1(Ω) ×
HΓ(div,Ω) ×H(div,Ω)2 such that

F(p,uN + û,U) ≤ F(q,uN + v,V)(3.3)

holds for all (q,v,V) ∈ H1(Ω)×HΓ(div,Ω)×H(div,Ω)2. Similarly, the corresponding
finite element approximation (ph, ûh,Uh) ∈ Qh × Σh × Θh satisfies

F(ph,u
N + ûh,Uh) ≤ F(qh,u

N + vh,Vh)(3.4)

for all (qh,vh,Vh) ∈ Qh × Σh × Θh. Here, Qh × Σh × Θh ⊂ H1(Ω) ×HΓ(div,Ω) ×
H(div,Ω)2 denote appropriate finite-dimensional spaces to be specified in section 4.
The bilinear form associated with the functional (3.2) is given by

B(p,u,U; q,v,V)

=
∑

K∈Th

(R(p,u,U),R(q,v,V))0,K + μ
∑
E∈Eh

1

hE
([t · u]E , [t · v]E)0,E .

(3.5)

The solution of (3.3) also satisfies the variational formulation

B(p,uN + û,U; r,w,W) = 0(3.6)

for all (r,w,W) ∈ H1(Ω) ×HΓ(div,Ω) ×H(div,Ω)2. Similarly, the solution of (3.4)
is characterized by

B(ph,u
N + ûh,Uh; rh,wh,Wh) = 0(3.7)
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for all (rh,wh,Wh) ∈ Qh × Σh × Θh.
Our aim is to show that the least-squares functional associated with (3.3),∑

K∈Th

‖R(p,u,U)‖2
0,K + μ

∑
E∈Eh

1

hE
‖[t · u]E‖2

0,E ,(3.8)

is also continuous and coercive with respect to suitable norms. Clearly, as in (2.6),
we have

∑
K∈Th

‖R(q,v,V)‖2
0,K ≤ max{δ, 1}

(
‖δ1/2q + δ−1/2 div v‖2

0,Ω

+ ‖v + ∇q + μ1/2 div V‖2
0,Ω +

∑
K∈Th

‖V + μ1/2∇v‖2
0,K

)
,

and therefore∑
K∈Th

‖R(q,v,V)‖2
0,K + μ

∑
E∈Eh

1

hE
‖[t · v]E‖2

0,E

≤ 2 max{δ2, δ−1}
(
‖v‖2

0,Ω + ‖div v‖2
0,Ω + μ

∑
K∈Th

‖∇v‖2
0,Ω + μ

∑
E∈Eh

1

hE
‖[t · v]E‖2

0,E

+ ‖q‖2
0,Ω + ‖V‖2

0,Ω + ‖∇q + μ1/2 div V‖2
0,Ω

)

for all (q,v,V) ∈ H1(Ω) × HΓ(div,Ω) × H(div,Ω)2. The term in brackets clearly
defines a norm on H1(Ω) ×HΓ(div,Ω) ×H(div,Ω)2, which we may abbreviate as

|||(q,v,V)||| =

(
‖v‖2

0,Ω + ‖div v‖2
0,Ω + μ

∑
K∈Th

‖∇v‖2
0,Ω + μ

∑
E∈Eh

1

hE
‖[t · v]E‖2

0,E

+ ‖q‖2
0,Ω + ‖V‖2

0,Ω + ‖∇q + μ1/2 div V‖2
0,Ω

)1/2

.

From now on, we use the symbol � to indicate that an inequality as above holds with
constants which remain bounded as μ tends to 0. The above continuity estimate may
therefore be rewritten as follows.

Theorem 3.1. For the least-squares functional defined in (3.2),

F(q,v,V) � |||(q,v,V)|||2(3.9)

holds for all (q,v,V) ∈ H1(Ω) ×HΓ(div,Ω) ×H(div,Ω)2.
Naturally, the derivation of a coercivity estimate is more complicated. To this

end, we define

R̂(q,v,V) =

⎛⎝ δ1/2q + δ−1/2 div v
v + ∇q + μ1/2 div V

V + μ1/2∇v

⎞⎠(3.10)
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and observe that

‖R(q,v,V)‖2
0,Ω ≥ min{δ, 1}‖R̂(q,v,V)‖2

0,Ω

holds for all (q,v,V) ∈ H1(Ω) × HΓ(div,Ω) × H(div,Ω)2 due to (2.6). This leaves
us with the task of deriving a lower bound for R̂(q,v,V). In fact, since our approx-
imation results will be based on Strang’s lemma (see, e.g., [4, section III.1] or [5,
section 10.1]), it suffices to show coercivity of R̂(q,v,V) with respect to the finite
element spaces Qh × Σh × Θh ⊂ H1(Ω) ×HΓ(div,Ω) ×H(div,Ω)2.

We start with a technical lemma that will be used later in the analysis.
Lemma 3.2. Assume that Θh ⊂ H(div,Ω)2 and Σh ⊂ HΓ(div,Ω) are piecewise

polynomial finite element spaces on Th. Then there is a constant C > 1 such that the
inequality

2

∣∣∣∣∣ ∑
E∈Eh

(Vh · n, [v]E)0,E

∣∣∣∣∣ ≤ 1

2μ1/2
‖Vh‖2

0,Ω + 2Cμ1/2
∑
E∈Eh

1

hE
‖[t · vh]E‖2

0,E(3.11)

holds for all Vh ∈ Θh and v ∈ Σh.
Proof. Using (3.1) and the Cauchy–Schwarz inequality, we are led to∣∣∣∣∣ ∑

E∈Eh

(Vh · n, [v]E)0,E

∣∣∣∣∣ =

∣∣∣∣∣ ∑
E∈Eh

(t(Vh · n), [t · vh]E)0,E

∣∣∣∣∣
≤

∑
E∈Eh

‖t · (Vh · n)‖0,E ‖[t · vh]E‖0,E

≤ ρ

2

∑
E∈Eh

hE‖t · (Vh · n)‖2
0,E +

1

2ρ

∑
E∈Eh

1

hE
‖[t · vh]E‖2

0,E

(3.12)

with ρ ∈ (0, 1) still to be chosen appropriately below. Moreover, for all Vh ∈ Θh,∑
E∈Eh

hE‖t · (Vh · n)‖2
0,E ≤

∑
E∈Eh

hE‖Vh‖2
0,E ≤

∑
K∈Th

∑
E⊂∂K

hE‖Vh‖2
0,E

≤ C
∑

K∈Th

‖Vh‖2
0,K = C‖Vh‖2

0,Ω

holds with a constant C (hE‖Vh‖2
0,E ≤ C‖Vh‖2

0,K is due to a scaling argument).
Assuming, without loss of generality, C > 1/2 and setting ρ = 1/(2C) in (3.12) finally
implies

2
∑
E∈Eh

(Vh · n, [v]E)0,E ≤ 1

2μ1/2
‖Vh‖2

0,Ω + 2Cμ1/2
∑
E∈Eh

1

hE
‖[t · vh]E‖2

0,E ,

which also proves (3.11).
We are now ready to establish our coercivity result.
Theorem 3.3. Assume that Qh ⊂ H1(Ω), Σh ⊂ HΓ(div,Ω), and Θh ⊂

H(div,Ω)2 are piecewise polynomial finite element spaces. Then, for the least-squares
functional defined in (3.2),

|||(qh,vh,Vh)|||2 � F(qh,vh,Vh)(3.13)



738 GARVIN DANISCH AND GERHARD STARKE

holds for all (qh,vh,Vh) ∈ Qh × Σh × Θh.
Proof. The definition of the operator in (3.10) immediately leads to∑

K∈Th

‖R̂(q,v,V)‖2
0,K

= ‖δ1/2q + δ−1/2 div v‖2
0,Ω + ‖v + ∇q + μ1/2 div V‖2

0,Ω +
∑

K∈Th

‖V + μ1/2∇v‖2
0,K

= δ ‖q‖2
0,Ω + δ−1‖div v‖2

0,Ω + ‖v‖2
0,Ω + ‖∇q + μ1/2 div V‖2

0,Ω + ‖V‖2
0,Ω

+ μ
∑

K∈Th

‖∇v‖2
0,K + 2μ1/2

∑
E∈Eh

(V · n, [v]E)0,E

for all (q,v,V) ∈ H1(Ω)×HΓ(div,Ω)×H(div,Ω)2, where integration by parts is used
at appropriate places. With the constant C from Lemma 3.2, using (3.11) gives

∑
K∈Th

‖R̂(qh,vh,Vh)‖2
0,K + (2C + 1)μ

∑
E∈Eh

1

hE
‖[t · vh]E‖2

0,E

≥ ‖vh‖2
0,Ω + δ−1‖div vh‖2

0,Ω + μ
∑

K∈Th

‖∇vh‖2
0,K + μ

∑
E∈Eh

1

hE
‖[t · v]E‖2

0,E

+ δ ‖qh‖2
0,Ω +

1

2
‖Vh‖2

0,Ω + ‖∇qh + μ1/2 div Vh‖2
0,Ω

(3.14)

for all (qh,vh,Vh) ∈ Qh × Σh × Θh, which completes the proof of (3.13).
Theorem 3.4. Let (p,u,U) ∈ H1(Ω) × HΓ(div,Ω) × H(div,Ω)2 be the exact

solution of (3.3), and let (ph,uh,Uh) ∈ Qh×Σh×Θh be the nonconforming approx-
imation (3.4). Then,

|||(p− ph,u − uh,U − Uh)|||

� inf
(qh,vh,Vh)∈Qh×Σh×Θh

|||(p− qh,u − vh,U − Vh)|||.(3.15)

Proof. Strang’s lemma (cf. [5, Lemma 10.1.1]) gives

|||(p− ph,u − uh,U − Uh)||| � inf
(qh,vh,Vh)∈Qh×Σh×Θh

|||(p− qh,u − vh,U − Vh)|||

+ sup
(rh,wh,Wh)∈Qh×Σh×Θh

B(p− ph,u − uh,U − Uh; rh,wh,Wh)

|||(rh,wh,Wh)||| .

We investigate the second term on the right-hand side, the so-called consistency error,
more closely. For its numerator, due to (3.7), we obtain

B(p− ph,u − uh,U − Uh; rh,wh,Wh) = B(p,u,U; rh,wh,Wh)

=
∑

K∈Th

(R(p,u,U),R(rh,wh,Wh))0,K + μ
∑
E∈Eh

1

hE
([t · u]E , [t · wh]E)0,E .

Since, for the exact solution (p,u,U), R(p,u,U) = 0 and μ[t ·u]E = 0 for all E ∈ Eh,
the consistency error vanishes, which completes the proof.
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The norm |||(·, ·, ·)||| contains a term which, for μ > 0, couples ∇q and div V. A
bound without such a coupling can easily be obtained by noting that

‖v‖2
0,Ω + ‖div v‖2

0,Ω + μ
∑

K∈Th

‖∇v‖2
0,Ω + μ

∑
E∈Eh

1

hE
‖[t · v]E‖2

0,E

+ ‖q‖2
0,Ω + ‖V‖2

0,Ω ≤ |||(q,v,V)|||2

holds. Moreover, using

|||(q,v,V)|||2 ≤ ‖v‖2
0,Ω + ‖div v‖2

0,Ω + μ
∑

K∈Th

‖∇v‖2
0,Ω + μ

∑
E∈Eh

1

hE
‖[t · v]E‖2

0,E

+ ‖q‖2
0,Ω + 2‖∇q‖2

0,Ω + ‖V‖2
0,Ω + 2μ‖div V‖2

0,Ω

combined with the interpolation estimates presented in the following section, bounds
for the approximation error may be deduced from Theorem 3.15.

4. Finite element approximation estimates. An appropriate choice of the
combination of finite element spaces for the approximation of the variables in our
least-squares formulation is motivated in the following discussion. To this end, let
m ≥ 1 be an integer. For the approximation ph of p ∈ H1(Ω), we use standard H1-
conforming finite elements of piecewise polynomials of degree m+ 1. We may denote
the corresponding subspace as Qh and get

inf
qh∈Qh

‖q − qh‖1,Ω � hm+1|q|m+2,Ω(4.1)

from standard finite element interpolation results (cf. [4, section II.6]). For the finite
element representation of the velocity field u, H(div,Ω)-conforming elements should
be used. One possibility for the construction of an approximation uh for the ve-
locity field consists of the use of Raviart–Thomas spaces, which consist of piecewise
polynomials of the form

uh|K =

(
p
(I)
m

p
(II)
m

)
+ xp(III)

m

on each triangle K ∈ Th, where p
(I)
m , p

(II)
m , and p

(III)
m denote polynomials of degree

m. For m = 1, this implies

uh|K =

(
αK + βKx1 + γKx2

δK + ρKx1 + σKx2

)
+ (ωKx1 + ξKx2)

(
x1

x2

)
with αK , βK , γK , δK , ρK , σK , ωK , ξK ∈ R. If we denote the Raviart–Thomas space of
degree m by Σh, then [6, Proposition III.3.9] leads to

inf
vh∈Σh

‖u − vh‖div,Ω � hm+1 (|u|m+1,Ω + |div u|m+1,Ω) .

In addition, [6, Proposition III.3.6] generalizes this estimate to

inf
vh∈Σh

(
‖u − vh‖2

div,Ω + μ
∑

K∈Th

‖∇(u − vh)‖2
0,K

)1/2

� hm+1 (|u|m+1,Ω + |div u|m+1,Ω) + hmμ1/2|u|m+1,Ω.

(4.2)
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Let Πh : HΓ(div,Ω) → Σh be the interpolation operator used in association with the
Raviart–Thomas spaces (see [6, section III.3]). If, furthermore, Φh : H1

Γ(Ω)2 → Q2
h

denotes the standard finite element interpolation operator, then we have

‖[t · (Πhu)]E‖2
0,E = ‖[Πhu]E‖2

0,E = ‖Πhu|Kl,E
− Πhu|Kr,E

‖2
0,E

≤ 2‖Πhu|Kl,E
− Φhu‖2

0,E + 2‖Πhu|Kr,E
− Φhu‖2

0,E ,

where the first identity follows from (3.1). This leads to∑
E∈Eh

1

hE
‖[t · (Πhu)]E‖2

0,E ≤ 2
∑

K∈Th

∑
E⊂∂K

1

hE
‖Πhu − Φhu‖2

0,E

� 1

h

∑
K∈Th

‖Πhu − Φhu‖2
0,∂K

� 1

h2

∑
K∈Th

‖Πhu − Φhu‖2
0,K =

1

h2
‖Πhu − Φhu‖2

0,Ω

≤ 2

h2
‖u − Πhu‖2

0,Ω + ‖u − Φhu‖2
0,Ω � h2m|u|2m+1,Ω.

Thus, (4.2) can be augmented to

inf
vh∈Σh

(
‖u − vh‖2

div,Ω + μ
∑

K∈Th

‖∇(u − vh)‖2
0,K + μ

∑
E∈Eh

‖[t · vh]E‖2
0,E

hE

)1/2

� hm+1 (|u|m+1,Ω + |div u|m+1,Ω) + hmμ1/2|u|m+1,Ω.

(4.3)

The auxiliary variable U ∈ H(div,Ω)2 may be approximated rowwise by Raviart–
Thomas elements of order m− 1, i.e.,

Uh|K =

(
αK,1 + γK,1x1 βK,1 + γK,1x2

αK,2 + γK,2x1 βK,2 + γK,2x2

)
with αK,i, βK,i, γK,i ∈ R, i = 1, 2. If Θh ⊂ H(div,Ω)2 denotes the corresponding
finite element subspace, then we obtain, again from [6, Proposition III.3.9],

inf
Vh∈Θh

(
‖U − Vh‖2

0,Ω + μ‖div(U − Vh)‖2
0,Ω

)1/2
� hm

(
|U|m,Ω + μ1/2|div U|m,Ω

)
= hm

(
μ1/2|∇u|m,Ω + μ|Δu|m,Ω

)
= hmμ1/2

(
|u|m+1,Ω + μ1/2|Δu|m,Ω

)
.

(4.4)

All this finally leads to( ∑
K∈Th

‖R(ph,uh,Uh)‖2
0,K + μ

∑
E∈Eh

1

hE
‖[t · uh]E‖2

0,E

)1/2

� hm+1 (|u|m+1,Ω + |div u|m+1,Ω + |p|m+2,Ω)

+ hm
(
μ1/2|u|m+1,Ω + μ|Δu|m,Ω

)
.

(4.5)
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In particular, for m = 1, i.e., using quadratic conforming elements for Qh, next-
to-lowest order Raviart–Thomas elements for Σh, and lowest-order Raviart–Thomas
elements for Θh,( ∑

K∈Th

‖R(ph,uh,Uh)‖2
0,K + μ

∑
E∈Eh

1

hE
‖[t · uh]E‖2

0,E

)1/2

� h2 (|u|2,Ω + |div u|2,Ω + |p|3,Ω) + h
(
μ1/2|u|2,Ω + μ|Δu|1,Ω

)(4.6)

is obtained for the finite element approximation.
As an alternative for the velocity approximation space Σh, the finite element

space by Mardal, Tai, and Winther [11] is considered. The Mardal–Tai–Winther
element was introduced specifically for mixed approaches to Darcy–Stokes flow. In
this case, each component of the velocity field is represented by a piecewise polynomial
of degree 3,

uh|K =

(
p
(I)
3

p
(II)
3

)

on each triangle K ∈ Th, with the restriction that divuh is constant on K and that
n ·uh coincides with a polynomial of degree 1 on each edge. Continuity of n ·uh across
edges makes this finite element space H(div)-conforming. In addition, the mean value
of the tangential component is required to be continuous across edges; in other words,∫

E

[t · uh] ds = 0

for all E ∈ Eh.
In order to analyze the approximation properties of the Mardal–Tai–Winther

element in association with our least-squares formulation, let Πh : HΓ(div,Ω) → Σh

be the corresponding interpolation operator (see [11, section 4]). Estimate (4.5) in [11]
gives (

‖u − Πhu‖2
div,Ω + μ

∑
K∈Th

‖∇(u − Πhu)‖2
0,K

)1/2

� h |u|2,Ω.(4.7)

Similarly as in the case of the Raviart–Thomas elements, (3.1) gives

‖[t · (Πhu)]E‖2
0,E = ‖[Πhu]E‖2

0,E = ‖Πhu|Kl,E
− Πhu|Kr,E

‖2
0,E

≤ 2‖Πhu|Kl,E
− Φhu‖2

0,E + 2‖Πhu|Kr,E
− Φhu‖2

0,E ,

where Φh again denotes the standard finite element interpolation operator. This leads
to ∑

E∈Eh

1

hE
‖[t · (Πhu)]E‖2

0,E

≤ 2
∑
E∈Eh

1

hE

(
‖Πhu|Kl,E

− Φhu‖2
0,E + ‖Πhu|Kr,E

− Φhu‖2
0,E

)
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�
∑
E∈Eh

1

h2
E

(
‖Πhu|Kl,E

− Φhu‖2
0,Kl,E

+ ‖Πhu|Kr,E
− Φhu‖2

0,Kr,E

)
�

∑
K∈Th

1

h2
K

‖Πhu − Φhu‖2
0,K

�
∑

K∈Th

1

h2
K

(
‖u − Πhu‖2

0,K + ‖u − Φhu‖2
0,K

)
�

∑
K∈Th

h2
K |u|22,K � h2|u|22,Ω,

where we used (4.5) in [11] once more for the interpolation estimate associated with
Πh. Combined with (4.7), this implies

inf
vh∈Σh

(
‖u − vh‖2

div,Ω + μ
∑

K∈Th

‖∇(u − vh)‖2
0,K + μ

∑
E∈Eh

‖[t · vh]E‖2
0,E

hE

)1/2

� h |u|2,Ω.

(4.8)

If the Mardal–Tai–Winther elements for the velocity approximation space Σh are
combined with standard conforming linears for Qh and with lowest-order Raviart–
Thomas elements for Θh,( ∑

K∈Th

‖R(ph,uh,Uh)‖2
0,K + μ

∑
E∈Eh

1

hE
‖[t · uh]E‖2

0,E

)1/2

� h (|u|2,Ω + |p|2,Ω + μ|Δu|1,Ω)

(4.9)

is obtained for the overall approximation of the least-squares finite element approach.

5. Computational results. The numerical tests for our least-squares finite el-
ement method are performed for the first-order system (2.2) on the square domain
Ω = [−1, 1] × [−1, 1] with

g(x1, x2) =

⎧⎨⎩
1 − x2

1, if x2 = 1,
x2

1 − 1, if x2 = −1,
0, elsewhere on Γ,

for the boundary conditions. Our interest is in the confirmation of the theoretical
estimates for the finite element approximation properties derived in the previous sec-
tions of this paper. To this end, the computed values of the least-squares functional
F(ph,uh,Uh) are shown in the following tables for variable sizes of μ and h. The
coarsest triangulation (l = 0) consists of 12 triangles, 13 nodes, and 24 edges and
is uniformly refined five times, resulting in a finest triangulation (l = 5) with 12288
triangles, 6337 nodes, and 18624 edges. The dimensions of the finite element spaces
Qh, Σh, and Θh are also given in the tables in order to allow a comparison to the
computational effort.

The first two sets of results listed in Tables 5.1 and 5.2 are computed with (next-
to-lowest order) Raviart–Thomas elements for the velocity approximation space Σh.
In order to achieve quadratic approximation order for μ = 0, piecewise quadratic
standard H1-conforming elements are used for Qh. On the other hand, lowest-order
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Table 5.1

P2/RT2/RT 2
1 : Least squares functional for different values of μ, δ = 1.

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5
dimQh 37 121 433 1633 6337 24961
dimΣh 48 216 912 3744 15168 61056
dimΘh 48 168 624 2400 9408 37248
μ = 1 7.24 e-1 2.49 e-1 6.93 e-2 1.81 e-2 4.61 e-3 1.16 e-3
1 e-1 1.14 e-1 4.61 e-2 1.52 e-2 4.27 e-3 1.13 e-3 2.92 e-4
1 e-2 4.22 e-2 1.91 e-2 1.56 e-2 6.85 e-3 1.97 e-3 5.09 e-4
1 e-3 3.02 e-2 5.70 e-3 4.63 e-3 5.96 e-3 4.01 e-3 1.34 e-3
1 e-4 2.88 e-2 3.47 e-3 7.89 e-4 9.99 e-4 1.65 e-3 1.81 e-3
1 e-5 2.87 e-2 3.23 e-3 3.32 e-4 1.25 e-4 2.05 e-4 3.80 e-4
1 e-6 2.87 e-2 3.21 e-3 2.85 e-4 3.26 e-5 2.24 e-5 4.13 e-5
1 e-7 2.87 e-2 3.20 e-3 2.80 e-4 2.33 e-5 3.76 e-6 4.27 e-6
1 e-8 2.87 e-2 3.20 e-3 2.80 e-4 2.24 e-5 1.89 e-6 5.39 e-7
1 e-9 2.87 e-2 3.20 e-3 2.80 e-4 2.23 e-5 1.71 e-6 1.65 e-7

1 e-10 2.87 e-2 3.20 e-3 2.80 e-4 2.23 e-5 1.69 e-6 1.28 e-7
μ = 0 2.87 e-2 3.20 e-3 2.80 e-4 2.23 e-5 1.69 e-6 1.24 e-7

Table 5.2

P2/RT2/RT 2
1 : Least squares functional for different values of μ, δ = 0.

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5
dimQh 37 121 433 1633 6337 24961
dimΣh 48 216 912 3744 15168 61056
dimΘh 48 168 624 2400 9408 37248
μ = 1 7.09 e-1 2.87 e-1 8.87 e-2 2.41 e-2 6.21 e-3 1.57 e-3
1 e-1 1.30 e-1 7.61 e-2 2.92 e-2 8.23 e-3 2.13 e-3 5.37 e-4
1 e-2 4.36 e-2 3.02 e-2 2.90 e-2 1.33 e-2 3.82 e-3 9.85 e-4
1 e-3 2.75 e-2 7.00 e-3 7.78 e-3 1.05 e-2 7.27 e-3 2.46 e-3
1 e-4 2.56 e-2 3.36 e-3 1.13 e-3 1.70 e-3 2.86 e-3 3.19 e-3
1 e-5 2.54 e-2 2.97 e-3 3.49 e-4 1.98 e-4 3.50 e-4 6.54 e-4
1 e-6 2.54 e-2 2.94 e-3 2.70 e-4 3.88 e-5 3.71 e-5 7.08 e-5
1 e-7 2.54 e-2 2.93 e-3 2.62 e-4 2.28 e-5 5.17 e-6 7.24 e-6
1 e-8 2.54 e-2 2.93 e-3 2.61 e-4 2.12 e-5 1.97 e-6 8.32 e-7
1 e-9 2.54 e-2 2.93 e-3 2.61 e-4 2.11 e-5 1.65 e-6 1.90 e-7

1 e-10 2.54 e-2 2.93 e-3 2.61 e-4 2.11 e-5 1.61 e-6 1.26 e-7
μ = 0 2.54 e-2 2.93 e-3 2.61 e-4 2.11 e-5 1.61 e-6 1.19 e-7

Raviart–Thomas elements are sufficient for (each row of) the finite element space Θ
representing the velocity gradient.

Table 5.1 shows the results with this combination of finite element spaces for δ = 1.
For μ = 0 quadratic convergence (i.e., the functional behaves like h4 and, consequently,
its square root like h2) can clearly be observed in the last row of Table 5.1. For μ = 1
it is also obvious that the square root of the functional decreases only proportional
to h; i.e., only linear convergence is achieved. For intermediate values of μ it appears
that there is an initial phase of almost quadratic convergence, which is then slowed
down once the viscosity becomes dominant. Note that the functional even increases
for certain values during a refinement step. The possibility that this may happen
here is due to the nonconformity of the approach and the fact that the spaces are not
nested. A closer inspection shows that the tangential jump term of the least-squares
functional is actually responsible for this increase.

Table 5.2 shows the results with the same combination of finite element spaces as
above for δ = 0. The convergence behavior is quite similar to the case δ = 1.

The next two sets of results listed in Tables 5.3 and 5.4 are obtained with the
Mardal–Tai–Winther (MTW) elements for the approximation of the velocity field. Ta-
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Table 5.3

P2/MTW/RT 2
1 : Least squares functional for different values of μ, δ = 1.

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5
dimQh 37 121 433 1633 6337 24961
dimΣh 48 204 840 3408 13728 55104
dimΘh 48 168 624 2400 9408 37248
μ = 1 9.06 e-1 3.09 e-1 8.56 e-2 2.22 e-2 5.63 e-3 1.42 e-3
1e− 1 1.61 e-1 6.01 e-2 1.86 e-2 5.03 e-3 1.31 e-3 3.35 e-4
1e− 2 7.56 e-2 3.00 e-2 1.68 e-2 6.53 e-3 1.84 e-3 4.72 e-4
1e− 3 5.97 e-2 1.61 e-2 7.35 e-3 6.09 e-3 3.51 e-3 1.14 e-3
1e− 4 5.76 e-2 1.36 e-2 3.63 e-3 1.70 e-3 1.72 e-3 1.61 e-3
1e− 5 5.74 e-2 1.34 e-2 3.16 e-3 8.57 e-4 3.85 e-4 4.07 e-4
1e− 6 5.74 e-2 1.33 e-2 3.11 e-3 7.64 e-4 2.07 e-4 8.71 e-5
1e− 7 5.74 e-2 1.33 e-2 3.11 e-3 7.55 e-4 1.89 e-4 5.06 e-5
1e− 8 5.74 e-2 1.33 e-2 3.11 e-3 7.54 e-4 1.87 e-4 4.69 e-5
1e− 9 5.74 e-2 1.33 e-2 3.11 e-3 7.54 e-4 1.86 e-4 4.65 e-5

1e− 10 5.74 e-2 1.33 e-2 3.11 e-3 7.54 e-4 1.86 e-4 4.65 e-5
μ = 0 5.74 e-2 1.33 e-2 3.11 e-3 7.54 e-4 1.86 e-4 4.65 e-5

Table 5.4

P2/MTW/RT 2
1 : Least squares functional for different values of μ, δ = 0.

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5
dimQh 37 121 433 1633 6337 24961
dimΣh 48 204 840 3408 13728 55104
dimΘh 48 168 624 2400 9408 37248
μ = 1 6.13 e-1 2.46 e-1 7.38 e-2 1.97 e-2 5.03 e-3 1.27 e-3
1e− 1 1.18 e-1 6.66 e-2 2.46 e-2 6.82 e-3 1.75 e-3 4.40 e-4
1e− 2 3.77 e-2 2.86 e-2 2.50 e-2 1.09 e-2 3.12 e-3 8.03 e-4
1e− 3 1.88 e-2 6.21 e-3 7.38 e-3 9.40 e-3 6.00 e-3 2.01 e-3
1e− 4 1.63 e-2 2.32 e-3 1.04 e-3 1.63 e-3 2.65 e-3 2.75 e-3
1e− 5 1.60 e-2 1.90 e-3 2.53 e-4 1.89 e-4 3.42 e-4 6.21 e-4
1e− 6 1.60 e-2 1.85 e-3 1.72 e-4 3.09 e-5 3.64 e-5 6.99 e-5
1e− 7 1.60 e-2 1.85 e-3 1.63 e-4 1.48 e-5 4.56 e-6 7.19 e-6
1e− 8 1.60 e-2 1.85 e-3 1.63 e-4 1.32 e-5 1.35 e-6 7.86 e-7
1e− 9 1.60 e-2 1.85 e-3 1.62 e-4 1.31 e-5 1.03 e-6 1.45 e-7

1e− 10 1.60 e-2 1.85 e-3 1.62 e-4 1.31 e-5 1.00 e-6 8.08 e-8
μ = 0 1.60 e-2 1.85 e-3 1.62 e-4 1.31 e-5 9.97 e-7 7.37 e-8

ble 5.3 shows that approximation order 2 is not achieved any longer for zero viscosity
with this finite element space. The results for the MTW approximation of the velocity
field clearly show a linear convergence behavior for all values of μ (i.e., the functional is
proportional to h2). In general, for μ > 0, the computed values of the functional are al-
ways somewhat larger for the Mardal–Tai–Winther elements compared to the Raviart–
Thomas elements. It seems that this does not compensate for the slight reduction of
the size of the system resulting from the fewer degrees of freedom associated with Σh.
Since the overall approximation order is only 1 for the Mardal–Tai–Winther elements,
we may as well use piecewise linears for p. This leads to a further reduction of the
number of degrees of freedom and leads to almost the same results as in Table 5.3.

The computed results for the Mardal–Tai–Winther elements in the case δ = 0 are
shown in Table 5.4. Interestingly, the results indicate that for μ = 0 the approximation
order is significantly faster than linear.

Acknowledgment. We would like to thank Zhiqiang Cai for suggesting the
ellipticity bound in the form (3.13), which is stronger than the one in an earlier
version of this manuscript.



FIRST-ORDER SYSTEM LEAST-SQUARES FOR DARCY–STOKES FLOW 745

REFERENCES

[1] P. Bochev, Z. Cai, T. A. Manteuffel, and S. F. McCormick, Analysis of velocity-flux
first-order system least-squares principles for the Navier–Stokes equations: Part I, SIAM
J. Numer. Anal., 35 (1998), pp. 990–1009.

[2] P. B. Bochev and M. D. Gunzburger, Finite element methods of least-squares type, SIAM
Rev., 40 (1998), pp. 789–837.

[3] P. Bochev, T. A. Manteuffel, and S. F. McCormick, Analysis of velocity-flux least-squares
principles for the Navier–Stokes equations: Part II, SIAM J. Numer. Anal., 36 (1999), pp.
1125–1144.

[4] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 2nd
ed., Cambridge University Press, Cambridge, UK, 2001.

[5] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 2nd
ed., Springer, New York, 2002.

[6] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer, New York,
1991.

[7] E. Burman and P. Hansbo, Stabilized Crouzeix–Raviart element for the Darcy–Stokes prob-
lem, Numer. Methods Partial Differential Equations, 21 (2005), pp. 986–997.

[8] Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. McCormick, First-order system least
squares for second-order partial differential equations: Part I, SIAM J. Numer. Anal., 31
(1994), pp. 1785–1799.

[9] G. Danisch, Least-Squares Mixed Finite Element Methods for the Shallow Water Equations
with Small Viscosity, Ph.D. thesis, Department of Mathematics, Universität Hannover,
Hannover, Germany, 2007.

[10] L. Fontana, E. Miglio, A. Quarteroni, and F. Saleri, A finite element method for 3D
hydrostatic water flows, Comput. Vis. Sci., 2 (1999), pp. 85–93.

[11] K. A. Mardal, X.-C. Tai, and R. Winther, A robust finite element method for Darcy–Stokes
flow, SIAM J. Numer. Anal., 40 (2002), pp. 1605–1631.

[12] M. Marrocu and D. Ambrosi, Mesh adaptation strategies for shallow water flow, Internat.
J. Numer. Methods Fluids, 31 (1999), pp. 497–512.

[13] E. Miglio, A. Quarteroni, and F. Saleri, Finite element approximation of quasi-3D shallow
water equations, Comput. Methods Appl. Mech. Engrg., 174 (1999), pp. 355–369.

[14] G. Starke, A first-order system least-squares finite element method for the shallow water
equations, SIAM J. Numer. Anal., 42 (2005), pp. 2387–2407.



SIAM J. NUMER. ANAL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 45, No. 2, pp. 746–769

ON THE ASYMPTOTIC SPECTRUM OF FINITE ELEMENT
MATRIX SEQUENCES∗

BERNHARD BECKERMANN† AND STEFANO SERRA-CAPIZZANO‡

Abstract. We derive a new formula for the asymptotic eigenvalue distribution of stiffness
matrices obtained by applying P1 finite elements with standard mesh refinement to the semielliptic
PDE of second order in divergence form −∇(K∇Tu) = f on Ω, u = g on ∂Ω. Here Ω ⊂ R

2,
and K is supposed to be piecewise continuous and pointwise symmetric semipositive definite. The
symbol describing this asymptotic eigenvalue distribution depends on the PDE, but also both on the
numerical scheme for approaching the underlying bilinear form and on the geometry of triangulation
of the domain. Our work is motivated by recent results on the superlinear convergence behavior of the
conjugate gradient method, which requires the knowledge of such asymptotic eigenvalue distributions
for sequences of matrices depending on a discretization parameter h when h → 0. We compare our
findings with similar results for the finite difference method which were published in recent years. In
particular we observe that our sequence of stiffness matrices is part of the class of generalized locally
Toeplitz sequences for which many theoretical tools are available. This enables us to derive some
results on the conditioning and preconditioning of such stiffness matrices.

Key words. finite element methods, matrix sequence, asymptotic eigenvalue distribution
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1. Introduction and statement of the main results. Consider the semiel-
liptic PDE of second order in divergence form

−∇(K∇Tu) = f on Ω, u = g on ∂Ω,(1)

where Ω ⊂ R
2 is a bounded open “smooth” set (say, with piecewise C1 boundary),

and K : Ω �→ R
2×2 is piecewise continuous in Ω and symmetric semipositive definite

at each point of Ω. In this paper we are interested in describing the asymptotic
distribution of eigenvalues of the matrix of coefficients obtained by approximating the
above elliptic PDE by P1 finite elements in the case where the position of the vertices
can be described by some mapping.

The task of finding the asymptotic eigenvalue distribution is motivated by some
recent results on the (superlinear) convergence behavior for the method of conjugate
gradients (CG) [4, 5, 6]: a discretization of (1) for some sequence of stepsizes h tending
to zero leads to a sequence of systems of linear equations Anxn = bn with An some
symmetric positive definite matrix of order n, where of course n depends on h and
tends to ∞ for h → 0. The CG method is a popular method for solving such systems,
and its convergence properties have been analyzed by many authors (see, e.g., [3, 41]).
For instance, one has a simple upper bound for the CG error in the energy norm in
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terms of the spectral condition number of An, that is, the ratio of the largest divided
by the smallest eigenvalue of An; see, e.g., [24, (6.106)]. Both for finite difference and
finite element approximations, asymptotics for the smallest eigenvalue of An in terms
of h and the smallest eigenvalue of the differential operator of (1) are known; see, for
instance, [20]. By elementary means one also obtains upper bounds for the largest
eigenvalue, and hence upper bounds for the CG error.

However, the (linear) upper bound based on the condition number is usually quite
rough, especially in the range of superlinear convergence of CG. This superlinear con-
vergence behavior is observed numerically to be quite pronounced in the context of
discretized elliptic problems in ≥ 2 dimensions, in particular for small stepsizes h.
Here CG convergence is known to be governed by the distribution of the spectrum
Λ(An) of An, which at least for very simple model problems can be computed explic-
itly. Roughly speaking, superlinear CG convergence occurs if the eigenvalue distri-
bution of An is far from being a worst case eigenvalue distribution. This qualitative
rule of thumb has been known already for some time, but has been quantified only
recently in [4, 5, 6]: here the authors give asymptotic error estimates for CG in terms
of the asymptotic eigenvalue distribution of (An)n≥0, namely the so-called asymptotic
spectrum defined as follows.

A sequence of matrices (An)n≥0, An Hermitian of order n with spectrum Λ(An) ⊂
R, is said to have an asymptotic spectrum given by some measure σ if for all functions
f ∈ Cc(R) (i.e., continuous with compact support) there holds

lim
n→∞

1

n

∑
λ∈Λ(An)

f(λ) =

∫
f(λ) dσ(λ),(2)

where each eigenvalue is counted according to its multiplicity (and hence σ is a prob-
ability measure supported on the extended real line R = R ∪ {±∞}). In the case
where the limit (2) exists and takes the form

lim
n→∞

1

n

∑
λ∈Λ(An)

f(λ) =

∫
D

f(ω(t))
dt

m(D)
(3)

with a domain D ⊂ R
d having finite Lebesgue measure m(D) > 0, the function ω will

be referred to as the symbol of (An).
The probably most classical example of sequences of matrices having an asymp-

totic spectrum is given by Hermitian Toeplitz matrices An = (tj−k)j,k=1,...,n ob-
tained from the Fourier coefficients of the Lebesgue integrable generating function
ω(s) =

∑
j∈Z

tje
ijs, i2 = −1; see, for instance, [8] and references therein. Here the

symbol coincides with the generating function, and D = (−π, π).
In the present paper, the matrices An will result from the same approximation

process when using different (decreasing) stepsizes, and thus one might expect that
the sequence of matrices (An) has an asymptotic spectrum. Indeed, in case of finite
difference discretization for differential operators, explicit formulas for an asymp-
totic spectrum have been given in [23, 38, 33, 26] (one-dimensional setting) and
[31, 32, 30, 28, 35] (two-dimensional and multidimensional setting). Each time, the
underlying symbol includes information on the coefficients and the domain of the PDE
and information on the discretization schemes for the derivatives. To our knowledge,
results for finite element approximations are still lacking (except for some preliminary
results in [26, 31]).
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Before stating our results on stiffness matrices for finite elements in subsection 1.2,
we first recall in subsection 1.1 some known examples of asymptotic spectra in the
finite difference case.

1.1. The case of finite difference discretizations. Consider the discretiza-
tion of the one-dimensional boundary value problem⎧⎪⎨⎪⎩ − d

dx

(
k(x)

d

dx
u(x)

)
= f(x), x ∈ (0, 1),

u(0), u(1) given numbers,

on a uniformly spaced grid using centered finite differences of precision order 2 and
minimal bandwidth. The resulting linear systems are of tridiagonal type with coeffi-
cient matrices (An) having entries which are weighted samples of k:

An =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

k 1
2

+ k 3
2

−k 3
2

−k 3
2

k 3
2

+ k 5
2

−k 5
2

−k 5
2

. . .
. . .

. . .
. . . −k 2n−1

2

−k 2n−1
2

k 2n−1
2

+ k 2n+1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,(4)

with kt = k(t · h), h = (n + 1)−1. When k(x) ≡ 1, the matrix An reduces to the
Toeplitz matrix Tn(a) of size n,

Tn(a) =

⎡⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

⎤⎥⎥⎥⎥⎥⎥⎦ ,(5)

generated by a(s) = 2 − 2 cos(s): note that the numbers −1, 2,−1 are the (nonzero)
Fourier coefficients c1, c0, c−1 of a and represent also the stencil of the finite difference
formula. This latter statement is not a coincidence: if we change the stencil (for
instance, in order to obtain more precise discretization schemes), then we obtain
Toeplitz matrices generated by a new function a having Fourier coefficients given by
the entries of this new stencil [33]. A well-known fact from the theory of Toeplitz
matrices is that (Tn(a))n has an asymptotic spectrum given by ω(s) = a(s) with
D = [−π, π]; see, for instance, the seminal work by Grenander and Szegö [17]. In the
more general case of variable coefficients, it follows from the locally Toeplitz analysis
of [38] that the matrices An of (4) have an asymptotic spectrum given by the symbol

ω(x, s) = k(x)a(s)

with D = (0, 1) × [−π, π] (see also [23]). We observe that the result is in some sense
natural since the samplings of k move along the diagonals of An smoothly (if k is
smooth), and therefore also the algebraic structure of An looks like a Toeplitz if we
restrict our attention to a local portion of the matrix: this nice algebraic behavior has
a natural counterpart in the global spectral behavior. As in the constant coefficient
case, the change of the discretization scheme, i.e., of the stencil, will change only
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the function a in the symbol (compare [33] and [38]). Finally, we observe that the
matrices (An) are essentially of the same type as those which one encounters when
dealing with sequences of orthogonal polynomials with varying coefficients. Here again
locally Toeplitz tools have been used for finding the distribution of the zeros of the
considered orthogonal polynomials under very weak assumptions (only measurability)
on the regularity of the coefficients [22] (see also [40]).

A further variation which could be considered in the discretization of the above
one-dimensional boundary value problem is the use of nonequispaced grids. Indeed,
if the new grid of size n is obtained as the image under a map φ : [0, 1] �→ [0, 1] of a
uniform grid of the same size n or if the new grid can be approximated in this way
(see, e.g., [35, Definition 4.6]), then the corresponding matrix sequence (An) has an
asymptotic spectrum described by the symbol

ω(x, s) =
k(φ(x))

[φ′(x)]2
a(s) with D = (0, 1) × [−π, π].(6)

For these results, motivated by the use of collocation techniques (see, e.g., [21]) for
approximating the solution of one-dimensional and multidimensional boundary value
problems, see [35].

In the case of a two-dimensional problem such as (1), the analysis is also quite
complete concerning finite difference approximations. For instance, when Ω = (0, 1)2

and K = I2, using the classical 5 point stencil or the 7 point stencil (in this case there
is no difference since K1,2 = K2,1 = 0), we obtain the two-level Toeplitz matrix

TN (b) = Tn1(a) ⊗ In2 + In1 ⊗ Tn2(a),(7)

where N = (n1, n2) (n1 is the number of internal points in the x1 direction and
n2 is the number of internal points in the x2 direction), n = n1n2 is the size, and
b(s1, s2) = a(s1)+a(s2) with a(s) = 2−2 cos(s). Also in this case the bivariate stencil
represents the nonzero Fourier coefficients of the bivariate generating function b, and
this property remains valid for other stencils. Moreover, according to relation (3), the
asymptotic spectrum of (TN (b))N is described by the symbol ω(s1, s2) = b(s1, s2) with
D = [−π, π]2 (see, e.g., [39]). We observe that the same matrix, with n1 = n2 = ν−1,
is obtained when employing the P1 finite element approximation with triangles having
the vertices (

(j, k)

ν
,
(j + ε, k)

ν
,
(j, k + ε)

ν

)
, ε = ±1.(8)

More generally, as a consequence of the theory of generalized locally Toeplitz se-
quences presented in [31, 32], asymptotic spectra can be given for finite difference
approximations of (1) for general functions K and a domain Ω, which guarantees the
symmetry of the resulting matrix (e.g., a pluri-rectangle that is a connected finite
union of rectangles with edges parallel to the main axes; see [36]). For instance, for
a 7 point stencil (see the proof of Corollary 1.2(b) below) we know that the resulting
matrix sequence has an asymptotic spectrum with symbol

ω(x, s) =

[
1 − eis1

1 − eis2

]∗
·K(x) ·

[
1 − eis1

1 − eis2

]
,(9)

with D = Ω × [−π, π]2. Notice that if Ω = (0, 1)2 and K(x) = I2, then the above
symbol reduces to that of (7) since[

1 − eis1

1 − eis2

]∗ [
1 − eis1

1 − eis2

]
= |1 − eis1 |2 + |1 − eis2 |2 = a(s1) + a(s2) = b(s).
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Furthermore, for nonequispaced tensor grids obtained as the image under a bijective
map φ(x) = (φ1(x1), φ2(x2))

T of an equispaced tensor grid, the general structure of
the symbol (see [35, 31]) is the natural generalization of (6): denoting by ∇φ the
(diagonal) Jacobian of φ(x) = (φ1(x1), φ2(x2))

T , we have

ω(x, s) =

[
1 − eis1

1 − eis2

]∗
· K̃(x) ·

[
1 − eis1

1 − eis2

]
,(10)

K̃(x) = ∇φ(x)−1K(φ(x))∇φ(x)−T

over D = Ω̃ × [−π, π]2, Ω̃ := φ−1(Ω). We notice that (10) is the natural two-
dimensional generalization of (6) and that the symbol in (10) reduces to that in
(9) if φ1(x1) = x1 and φ2(x2) = x2, i.e., in the case where the grids are uniform.

Finally, recently the above results have been extended to non-Hermitian matrices
An occurring, e.g., in the finite difference discretization of PDEs containing lower order
difference operators: it has been shown in [16, 18] that, provided that the spectral
norm of An is uniformly bounded in n and that the trace norm of Sn = (An−A∗

n)/(2i),
the skew-Hermitian part of An, grows at most as o(n), then the sequence (An) has
the same asymptotic spectrum as the sequence ((An + A∗

n)/2) obtained from the
Hermitian part of An. This result also implies [18, 19] that (9) remains true for more
general domains Ω, even if one uses different approximation schemes for the boundary
conditions.

1.2. The case of finite element approximations. Taking into account the
results of the previous subsection, the natural question arises of whether similar results
on the asymptotic spectrum hold for matrices obtained by applying finite elements
to (1). We mentioned already the well-known fact that for the special case K = I2,
Ω = (0, 1)2 and a uniform triangulation on the square such as (8), the stiffness matrix
for P1 elements is identical to that obtained by finite differences using a 5 point stencil.
However, this connection is no longer true in the general case and is not sufficient for
us to fully understand the asymptotic properties of stiffness matrices, since for finite
elements, for instance, a triangulation does not need to be of tensor form.

Rather than developing a general theory, we will discuss in this paper only the
example of an approximation of (1) using P1 finite elements, together with triangula-
tions Tν allowing for some a priori mesh refinement. More specifically, in the following
we suppose that we have some ν ≥ 1, some open bounded set Ω̃, and a triangulation
Tν of Clos(Ω) with vertices described by a bijective mapping φ : Clos(Ω̃) �→ Clos(Ω)
of the form

(j/ν, k/ν)T ∈ Clos(Ω̃) : Pj,k = φ((j/ν, k/ν))(11)

and triangles

(Pj,k, Pj+ε,k, Pj,k+ε), ε = ±1.(12)

Such a function φ allows us to include also graded triangulations which are suitable if
our domain Ω has nonconvex vertices (e.g., for L-shaped domains); see Examples 1.3
and 1.4 below. The usual procedure for solving (the variational form of) (1) via P1

finite elements (see, e.g., [10, 13]) is to consider for Pj,k ∈ Ω the hat function ψj,k

being linear on each of the triangles, taking the value 1 on the vertex Pj,k and 0 on
any other vertex (and thus having a support given by the set of the six triangles which
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Fig. 1. The vertex (j, k) and its adjacent vertices for P1 finite elements.

share the vertex Pj,k; see Figure 1), and to solve the system of linear equations

Anxn = bn, An =

(∫
Ω

∇ψj,k(x)K(x)∇ψj′,k′(x)T dx

)
Pj,k,Pj′,k′∈Ω

(13)

with a suitable right-hand side bn depending on f and g. The matrix An is usually
referred to as the stiffness matrix. Notice that the same matrix of coefficients but a
different right-hand side is obtained if the Dirichlet boundary conditions are partly
replaced by Neumann boundary conditions. In what follows, the letter n will always
denote the size of the matrix An, i.e., the number of vertices in Ω (which is proportional
to ν2; compare with (18) below).

Theorem 1.1. Consider the above triangulation Tν of Clos(Ω) with vertices (11)

and triangles (12). We suppose that φ : Clos(Ω̃) �→ Clos(Ω) is bijective, m(Ω̃) > 0,

and that there exists an “exceptional” compact set Γ ⊂ Clos(Ω̃) with ∂Ω̃ ⊂ Γ and

with Lebesgue measure m(Γ) = 0 such that K ◦ φ is continuous in Ω̃ \ Γ, and φ is of

class C1 in Ω̃\Γ, with nonsingular Jacobian ∇φ. Then an asymptotic spectrum of the
stiffness matrices An of (13) for ν → ∞ exists and is given by the formula∫

f dσ =
1

(2π)2
1

m(Ω̃)

∫
[−π,π]2

ds

∫
Ω̃

dx f(ω(x, s)),

where

ω(x, s) =

[
1 − eis1

1 − eis2

]∗
· K̃(x) ·

[
1 − eis1

1 − eis2

]
,

K̃(x) = |det∇φ(x)|∇φ(x)−1K(φ(x))∇φ(x)−T .

Moreover, this formula for the asymptotic spectrum remains valid if one uses numeri-
cal integration for evaluating the entries of An, as long as the quadrature formula has
positive weights and integrates constants exactly.

Some consequences of Theorem 1.1 are summarized in the following result.
Corollary 1.2. With the notations and assumptions of Theorem 1.1, the fol-

lowing hold:
(a) The sequence of matrices of coefficients (An) has the same asymptotic spec-

trum as the one obtained by applying P1 elements on the uniform triangulation (8) to
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the PDE

−∇(K̃∇Tu) = f̃ on Ω̃, u = g̃ on ∂Ω̃.(14)

Moreover, the bilinear form in the weak formulation of problems (1) and (14) are
equivalent via variable transformation.

(b) One obtains for (An) the same asymptotic spectrum as that for matrices ob-
tained by applying finite differences based on a 7 point stencil (see Figure 1) to (14).
Moreover, (An) is a (reduced) generalized locally Toeplitz sequence in the sense of [32,
Definition 3.1], with the symbol ω(x, s) of Theorem 1.1.

It is quite instructive to compare the results of Theorem 1.1 and Corollary 1.2
with those of subsection 1.1 for finite difference discretizations. We observe that
the symbol in formula (10) and the expression of ω in Theorem 1.1 have a similar
structure; in particular, we have the same dependency on the domain Ω and on the
matrix-valued coefficient function K. Also, the trigonometric polynomials in s1, s2

occurring in Theorem 1.1 are the same as those in (10). These polynomials translate
the dependency of the asymptotic spectrum on the discretization scheme (5/7 point
stencil or P1 finite elements). The main difference between the two symbols is the
dependency on the triangulation described by our function φ: in case of finite elements
there is an additional factor |det∇φ|, leading to a smoother symbol in neighborhoods
of points x ∈ Γ with |det∇φ(x)| = 0 (corresponding, e.g., to nonconvex edges of Ω;
compare with Example 1.3 below), and implying that the finite element matrix of
coefficients has fewer eigenvalues of “large” magnitude than the corresponding finite
difference matrix of coefficients.

We conclude this section by considering two examples for triangulations Tν in-
duced by some mapping φ.

Example 1.3. Suppose that Ω is some nonconvex polygon Ω, with nonconvex
vertices given by aj , j = 1, . . . , p, and corresponding inner angles βjπ ∈ (π, 2π), and

let d > 0 be sufficiently small. Consider the choice Ω = Ω̃ and

φ(x) =

{
aj + (x− aj) ·

(
||x−aj ||

d

)βj−1

for ||x− aj || < d,

x else,

where || · || denotes the Euclidean norm. By construction, φ : Clos(Ω) �→ Clos(Ω) is

bijective and of class C1 in Ω̃ \ Γ = {z ∈ Ω : ||z − aj || 
= d for j = 1, 2, . . . , p}. Its
Jacobian for ||x− aj || < d is given by

∇φ(x) =
||x− aj ||βj−1

dβj−1

[
I2 + (βj − 1)

(x− aj)(x− aj)
T

||x− aj ||2

]
,

and |det∇φ(x)| = βj(||x− aj ||/d)2βj−2 tends to 0 for x → aj . For the inverse of the
normalized Jacobian occurring in the symbol of Theorem 1.1 we find

√
|det(∇φ(x))|∇φ(x)−1 =

√
βj

[
I2 −

(
1 − 1

βj

)
(x− aj)(x− aj)

T

||x− aj ||2

]
.

Notice also that ||∇φ(x)|| is bounded uniformly in Ω̃ \ Γ, implying that the finesse
parameter of the triangulation Tν , i.e., the largest of the diameters of the triangles of
this triangulation, is of order O(1/ν). We finally observe that for triangles where the
largest of the distances of the three vertices to aj is given by tβj ≤ d have edges with



ASYMPTOTIC SPECTRUM OF FE MATRICES 753

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0. 8 -0. 6 -0.4 -0. 2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2. Triangulation of an L-shape for ν = 12. On the top we find the uniform triangulation,
and on the bottom its image under the map φ(x) = x ·min{1,

√
||x||} leading to some grid refinement

around the origin.

size of order tβj−1/ν: such a mesh refinement based on the grading function t �→ tβj is
often used in order to keep the classical finite element error estimate also for singular
solutions induced by nonconvex vertices.

Example 1.4. A typical example covered by Example 1.3 is a triangulation of an
L-shape with vertices (0, 0), (−1, 0), (−1, 1), (1, 1), (1,−1), (0,−1), the only nonconvex
edge being at the origin a1 = 0, with β1 := β = 3/2. Here we can choose d = 1 in
Example 1.3, leading to the function φ(x) = x · min{1, ||x||β−1}, with the inverse of
the normalized Jacobian given by√

|det(∇φ(x))|∇φ(x)−1 =
√
βI2 −

(√
β − 1√

β

)
xxT

||x||2 , ||x|| < 1.

In Figure 2 we have drawn both the uniform triangulation and its image under φ,
leading to some graduation around the origin.
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We should notice that in the proof of Theorem 1.1 we do not need any properties
of the triangles of Tν having a nonempty intersection with Γ. Thus Theorem 1.1
remains valid if one uses, for instance, curved elements in order to fit more complicated
boundaries.

The remainder of the paper is organized as follows: in section 2 we give the proof
of Theorem 1.1 and Corollary 1.2. In section 3 we discuss relations between stiff-
ness matrices for different triangulations, in order to design efficient preconditioning
strategies. Finally, in section 4 we draw some conclusions.

2. Proof. In what follows we write λ1(An) ≤ λ2(An) ≤ · · · ≤ λn(An) for the
eigenvalues of some symmetric matrix An of order n, and μ(An) = 1

n

∑n
j=1 δλj(An) for

the corresponding counting measure. Moreover, we will write μ(An) → σ for n → ∞
if there is weak-star convergence in the sense of (2), i.e., the matrix sequence (An)
has an asymptotic spectrum described by the measure σ.

For proving the above result we make use of the following result on (reduced)
generalized locally Toeplitz matrix sequences (see [31, 32]), which we will not cite
in its greatest generality: we will focus instead on a subclass of matrix sequences
that are (reduced) generalized locally Toeplitz (see [32, Definition 3.1] for the precise
definitions in full generality) and also banded and symmetric. Let (Mn) be a sequence
of matrices of size n and of level γ ∈ N defined according to the multi-index rule

Mn = (Ma,a′)a,a′∈νD∩Zγ ,(15)

Ma,a′ =
1

(2π)γ

∫
[−π,π]γ

dse−sT (a′−a)ω

(
a + a′

2ν
, s

)
,

and corresponding to some open D ⊂ R
γ , some integer ν ≥ 1, and some symbol

ω : D × [−π, π]γ → R with ω(x, s) = ω(x,−s) being a polynomial in eis, e−is with
coefficients continuous in x. We observe that a matrix Mn of such a type and level 1
is just an ordinary banded matrix, where succeeding elements on any diagonal vary
only slightly (for large ν and therefore a fortiori for large n) since they are values of
some continuous function at arguments differing only by 1/ν (which tends to zero as
n = n(ν) tends to infinity). Also, a matrix Mn of level γ is block banded with blocks
being themselves of the same structure as in (15) of level γ− 1. Finally, if the symbol
ω(x, s) does not depend on x and D =

⊗γ
j=1(0, αj), we obtain the classical Toeplitz

matrices of level γ and order
∏γ

j=1[ν · αj − 1]. A basic result on such symmetric
banded (reduced) generalized locally Toeplitz matrix sequences is that they have an
asymptotic spectrum given by the following formula [31, 32]:

lim
n→∞

μ(Mn) = σ,

∫
f dσ =

1

(2π)γ
1

m(D)

∫
[−π,π]γ

ds

∫
D

dx f(ω(x, s)).(16)

We will also apply the following statement on the behavior of an asymptotic
spectrum under perturbations: the idea relies upon the use of some kind of (matrix)
approximation theory for reducing the computation of the symbol of a complicated
matrix sequence to the computation of the symbol of simpler matrix sequences (see
[29, 31, 32]).

Lemma 2.1. Let An ∈ C
n×n be symmetric, and suppose that there exist probability

measures σ, σ′ such that, for each ε > 0, we may write An = A′
n + A′′

n + A′′′
n with

symmetric matrix sequences A′
n := A′

n(ε), A′′
n := A′′

n(ε), A′′′
n := A′′′

n (ε), where

lim sup
n→∞

||A′′
n|| ≤ ε, lim sup

n→∞

rank (A′′′
n )

n
< ε,
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and (A′
n)n having an asymptotic spectrum μ ≤ εσ′+σ. Then (An) has the asymptotic

spectrum σ.
Proof. Suppose that the assertion of the lemma is not true. Then by Helley’s

theorem [25, Theorem 0.1.3] there exists an infinite set of natural numbers N such
that (μ(An))n∈N tends to some probability measure ν different from the probability
measure σ. By possibly replacing An by −An we may conclude that there exists a
b ∈ R with

ν([−∞, b)) > σ([−∞, b)) = σ([−∞, b]).(17)

Write rn = rank (A′′′
n ). Any V ⊂ C

n can be written as direct sum V ′⊕V ′′, V ′ being a
subset of the kernel of A′′′

n , V ′′ being therefore a subset of the image of (A′′′
n )∗ = A′′′

n ,
implying that dim(V ′) ≥ dim(V ) − rn. Consequently, using the Courant min-max
principle, we obtain for any 1 ≤ j ≤ n− rn

λj(A
′
n) = max

V⊂Cn,dim(V )=n+1−j
min
y∈V

y∗A′
ny

y∗y

≤ max
V⊂Cn,dim(V )=n+1−j

min
y∈V

y∗(A′
n + A′′

n)y

y∗y
+ ||A′′

n||

≤ max
V ′⊂Ker(A′′′

n ),dim(V ′)≥n+1−j−rn
min
y∈V ′

y∗(A′
n + A′′

n)y

y∗y
+ ||A′′

n||

≤ max
V ′⊂Cn,dim(V ′)≥n+1−j−rn

min
y∈V ′

y∗Any

y∗y
+ ||A′′

n|| = λj+rn(An) + ||A′′
n||.

Taking into account [25, Theorem 0.1.4], we conclude that

ν([−∞, b)) ≤ lim sup
n→∞

μ(An)([−∞, b]) = lim sup
n→∞

#{j : λj(An) ≤ b}
n

≤ lim sup
n→∞

rn + #{j > rn : λj−rn(A′
n) ≤ b + ||A′′

n||}
n

≤ ε + lim sup
n→∞

μ(A′
n)([−∞, b + 2ε]) ≤ ε + σ([−∞, b + 2ε]).

For ε → 0, we are left with ν([−∞, b)) ≤ σ([−∞, b]), in contradiction with (17). Hence
the lemma is shown.

The above lemma is essentially contained in original work by Tilli on (one-level)
locally Toeplitz sequences [38] and can be considered an evolution of the low-rank,
low-norm splittings used by Tyrtyshnikov [39]. A form which is closer to the present
approach can be found in [31], where the main role is played by the symbols of the
involved matrix sequences. However, in the present version the language and the tools
of Lemma 2.1 are a bit different since the results are expressed in terms of measures
(recall formulation (2)) rather than symbols (recall formulation (3)).

Proof of Theorem 1.1. We start by establishing the formula

lim
ν→∞

n(ν)

ν2
= m(Ω̃), where n = n(ν) = #

{
(j, k)

ν
∈ Ω̃

}
(18)

is the size of the stiffness matrix (13) for the triangulation with parameter ν. For
d > 0, denote by Γd := {y ∈ R

2 : dist(y,Γ) ≤ d} the closed d-neighborhood of Γ,
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where we recall that ∂Ω̃ ⊂ Γ by assumption on Γ. For any (j,k)
ν ∈ Ω̃ we find an open

square of Lebesgue measure 1/ν2 being a subset of the (2/ν)-neighborhood of Ω̃, any

two of such squares having an empty intersection, and thus n(ν)/ν2 ≤ m(Ω̃ ∪ Γ2/ν).

On the other hand, the set Ω̃ \ Γ2/ν is a subset of the union of closed squares of

Lebesgue measure 1/ν2 centered at (j,k)
ν ∈ Ω̃, implying that n(ν)/ν2 ≥ m(Ω̃ \ Γ2/ν).

Taking into account that m(Γd) → m(Γ) = 0 for d → 0 by assumption of Theorem 1.1,
we arrive at relation (18).

Let ε > 0. We now choose suitable subsets of Ω̃. Let d > 0 with m(Ω̃ \ Γ3d) >(
1 − ε

3

)
m(Ω̃). By compactness of Γ, we may cover Γ with a finite number of open

∞-neighborhoods Ud(xj) = {y ∈ R
2 : ||y − xj ||∞ < d}, j = 1, . . . , p, with xj ∈ Γ.

Defining the pluri-rectangles

Ω̃′ := Ω̃ \
p⋃

j=1

Clos(U2d(xj)), Ω̃′′ := Ω̃ \
p⋃

j=1

Ud(xj),

we find that Ω̃ \ Γ3d ⊂ Ω̃′ ⊂ Ω̃′′ ⊂ Ω̃ \ Γ, with Ω̃′′ being compact, Ω̃′ being open, and

lim
ν→∞

n′(ν)

ν2
= m(Ω̃′) ≥

(
1 − ε

3

)
m(Ω̃), where n′ = n′(ν) = #

{
(j, k)

ν
∈ Ω̃′

}
.

(19)

Thus, for sufficiently large ν,

n′(ν)

n(ν)
> 1 − ε

2
.(20)

We are now prepared to introduce a suitable splitting of the stiffness matrix An

of (13): we first apply a suitable simultaneous permutation of row and columns such

that the first n′(ν) rows and columns of An correspond to indices with (j, k)/ν ∈ Ω̃′.
Then the matrix A′′′

n defined by

An −A′′′
n =

[
Ãn 0
0 0

]
, Ãn =

(∫
Ω

∇ψj,k(x)K(x)∇ψj′,k′(x)T dx

)
(j,k)/ν,(j′,k′)/ν∈Ω̃′

is symmetric and has a rank bounded above by twice the difference of the order
n = n(ν) of An minus the order n′ = n′(ν) of Ãn. A combination with (20) leads to
the relations

(A′′′
n )∗ = A′′′

n , rank (A′′′
n ) ≤ εn.(21)

We want to apply Lemma 2.1 via a splitting Ãn = Ã′
n + Ã′′

n, and

An = A′
n + A′′

n + A′′′
n , A′

n =

[
Ã′

n 0
0 0

]
, A′′

n =

[
Ã′′

n 0
0 0

]
,(22)

where Ã′′
n will be a symmetric matrix of small norm, and Ã′

n symmetric and banded.

Moreover, (Ã′
n) will be (reduced) generalized locally Toeplitz of level 2 in the sense of

(15), and thus we know the existence and the explicit form of the asymptotic spectrum

of (Ã′
n) for ν → ∞.
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We make use of the classical assembling procedure of a P1 finite element matrix
An: starting from the zero matrix, the stiffness matrix An is obtained after applying
for all triangles T of the form (Pj,k, Pj+η,k, Pj,k+η), η = ±1, the updating formula

(23)

An

(
(j, k), (j + η, k), (j, k + η)

(j, k), (j + η, k), (j, k + η)

)

← An

(
(j, k), (j + η, k), (j, k + η)

(j, k), (j + η, k), (j, k + η)

)
+

1

2|det(C−1)|B
TC−1

∫
T
K(x) dx∫
T
dx

C−TB,

where the affine mapping x �→ Pj,k + Cx brings the points (0, 0), (1, 0), (0, 1) to
Pj,k, Pj+η,k, Pj,k+η, respectively, and

B =

[
−1 1 0
−1 0 1

]
.

An important observation in our proof is that the updating term in (23) behaves like
1
2B

T K̃(ζ)B for some ζ ∈ φ−1(T ) for “most” triangles T . In order to make this claim

more precise in (24) below, we notice that, by construction, Ω̃′′ is a compact subset

of Ω̃\Γ, and hence the Jacobian ∇φ of φ, its inverse ∇φ(x)−1, and the function K ◦φ
are uniformly continuous in Ω̃′′. Let

M := sup
x∈Ω̃′′

max
{
||∇φ(x)||, ||∇φ(x)−1||, ||K(φ(x))||,

√
2ε
}
≥ 1,

and choose ν sufficiently large such that a triangle having at least one vertex in Ω̃′

is a subset of Ω̃′′, and that any of the above functions varies at most by ε/(4M5) by

choosing two arguments in any triangle that is a subset of Ω̃′′. For the matrix Ãn

we need to consider only triangles T having at least one vertex with preimage in Ω̃′.

Denoting by T̃ ⊂ Ω̃′′ the corresponding triangle with vertices (j,k)
ν , (j+η,k)

ν , (j,k+η)
ν , we

may conclude with help of the mean value theorem that, for any ζ ∈ T̃ ,∥∥∥∥
∫
T
K(x) dx∫
T
dx

−K(φ(ζ))

∥∥∥∥ ≤ ε

4M5
≤ M,

∥∥∥∥ ν

η
C −∇φ(ζ)

∥∥∥∥ ≤ ε

M5
≤ 1

2||∇φ(ζ)−1|| ,

and hence∥∥∥∥∥
(
ν

η
C

)−1

−∇φ(ζ)−1

∥∥∥∥∥ ≤ 2ε

M3
≤ M,

∥∥∥∥det

(
ν

η
C

)
− det(∇φ(ζ))

∥∥∥∥ ≤ 4ε

M4
≤ M.

Applying the triangular inequality several times, we obtain after some elementary
computations the (quite rough) estimate

max
ζ∈T̃

∥∥∥∥ 1

|det(C−1)|C
−1

∫
T
K(x) dx∫
T
dx

C−T − K̃(ζ)

∥∥∥∥ ≤ 80ε,(24)

with K̃ as in the statement of Theorem 1.1. We remark that the same conclusion holds
if instead of exact integration one uses a quadrature formula with positive weights for



758 BERNHARD BECKERMANN AND STEFANO SERRA-CAPIZZANO

Table 1

The six adjacent vertices of (j,k)
ν

∈ Ω̃′ and the corresponding off-diagonal entries of Ã′
n: in

the first column we find the index (j′, k′) of an adjacent vertex, in the second and third column the
index of the third vertex of the two triangles giving a nontrivial contribution to the entry in row
(j, k) and column (j′, k′) of An, and in the last column the entry of Ã′

n at the same position.

(j′, k′) (j′′, k′′) (j′′′, k′′′) Corresponding entry of Ã′
n

(j − 1, k) (j, k − 1) (j − 1, k + 1) BT
1 K̃( (j+j′,k+k′)

2ν
)B2

(j, k − 1) (j + 1, k − 1) (j − 1, k) BT
1 K̃( (j+j′,k+k′)

2ν
)B3

(j + 1, k − 1) (j + 1, k) (j, k − 1) BT
2 K̃( (j+j′,k+k′)

2ν
)B3

(j + 1, k) (j, k + 1) (j + 1, k − 1) BT
1 K̃( (j+j′,k+k′)

2ν
)B2

(j, k + 1) (j − 1, k + 1) (j + 1, k) BT
1 K̃( (j+j′,k+k′)

2ν
)B3

(j − 1, k + 1) (j − 1, k) (j, k + 1) BT
2 K̃( (j+j′,k+k′)

2ν
)B3

the entries of the stiffness matrix, provided that this quadrature formula integrates
constants exactly.

Notice that, in the updating procedure (23), an off-diagonal entry of An is updated
twice since a fixed edge of the triangulation is adjacent to two triangles, and a diagonal
entry is updated six times since there are six triangles adjacent to a vertex; compare
with Figure 1. More precisely, in row labeled (j, k), the matrix Ãn has nonzero off-
diagonal entries in columns labeled

(j′, k′) ∈ {(j − 1, k + 1), (j, k + 1), (j − 1, k), (j + 1, k), (j, k − 1), (j + 1, k − 1)},

i.e., the indices of adjacent vertices. For instance, for the entry in column (j′, k′) =
(j− 1, k) we have to consider the two triangles T with third vertex labeled (j′′, k′′) =
(j, k− 1), and (j′′′, k′′′) = (j− 1, k+ 1), respectively, and the corresponding updating
quantities can be found at position (1, 2) and (2, 1), respectively, of the symmetric
3×3 updating matrix on the right-hand side of (23). Thus, defining the corresponding

off-diagonal entry of Ã′
n by

Ã′
n

(
(j′, k′)

(j, k)

)
= BT

1 K̃

(
1

2

(
(j, k)

ν
+

(j′, k′)

ν

))
B2

= (−1,−1)K̃

(
(j + j′, k + k′)

2ν

)
(1, 0)T ,

B
 denoting the �th column of B, we find according to (24) that∣∣∣∣Ã′
n

(
(j′, k′)

(j, k)

)
− Ãn

(
(j′, k′)

(j, k)

)∣∣∣∣ ≤ 80ε ||B||2 = 240ε.

The off-diagonal entries of Ã′
n for the other five adjacent vertices (j′, k′) of (j, k) are

given in Table 1, and each time we obtain the same estimate for the off-diagonal
entries of Ã′

n − Ãn. We define the diagonal entries of Ã′
n by

Ã′
n

(
(j, k)

(j, k)

)
= trace

(
BT K̃

(
(j, k)

ν

)
B
)

= −2

(
BT

1 K̃

(
(j, k)

ν

)
B2 + BT

1 K̃

(
(j, k)

ν

)
B3 + BT

2 K̃

(
(j, k)

ν

)
B3

)
(25)
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and find according to (24) that∣∣∣∣Ã′
n

(
(j, k)

(j, k)

)
− Ãn

(
(j, k)

(j, k)

)∣∣∣∣ ≤ 240ε ||B||2 = 720ε,

and thus, by (22),

||A′′
n|| = ||Ãn − Ã′

n|| ≤
√
||Ãn − Ã′

n||1||Ãn − Ã′
n||∞ ≤ (6 · 240 + 720)ε = 2160 ε.

It remains to analyze Ã′
n. Comparing the definition (15) with the last column of

Table 1 and with (25), we see that (Ã′
n) is a banded and symmetric generalized

locally Toeplitz matrix sequence of level 2 corresponding to the domain Ω̃′ and the
symbol

ω(x, s) = (2 cos(s1) − 2)BT
1 K̃(x)B2 + (2 cos(s2) − 2)BT

1 K̃(x)B3

+ (2 cos(s2 − s1) − 2)BT
2 K̃(x)B3

= 4 sin2
(s1

2

)
K̃1,1(x) + 4 sin2

(s2

2

)
K̃2,2(x)

+ 4

[
sin2

(s1

2

)
+ sin2

(s2

2

)
− sin2

(
s2 − s1

2

)]
K̃1,2(x),

that is, the same symbol (but a different domain) as in the statement of Theorem 1.1.

Using (16), we may conclude that (μ(Ã′
n)) has the limit σ̃, with∫

f dσ̃ =
1

(2π)2
1

m(Ω̃′)

∫
[−π,π]2

ds

∫
Ω̃′

dx f(ω(x, s)).

According to (22), for the corresponding counting measures for ν → ∞, we get using
(18), (19),

μ(A′
n) =

n(ν) − n′(ν)

n(ν)
· δ0 +

n′(ν)

n(ν)
μ(Ã′

n) → m(Ω̃) −m(Ω̃′)

m(Ω̃)
· δ0 +

m(Ω̃′)

m(Ω̃)
σ̃

and

m(Ω̃) −m(Ω̃′)

m(Ω̃)
· δ0 +

m(Ω̃′)

m(Ω̃)
σ̃ ≤ ε · δ0 +

m(Ω̃′)

m(Ω̃)
σ̃ ≤ ε · δ0 + σ,

since σ̃ differs from σ by using a different normalization and a smaller set of integration
Ω̃′ ⊂ Ω̃. Thus we may apply Lemma 2.1, giving the asymptotic spectrum for (An) as
claimed in Theorem 1.1.

Proof of Corollary 1.2. The first sentence of part (a) follows immediately by
applying the formulas of Theorem 1.1 twice. With respect to the second one, consider
the variable transformation x = φ(x̃) in (1): with f̃(x̃) = f(φ(x̃)), we have ∇̃f̃(x̃) =
(∇f)(φ(x̃))∇φ(x̃), and hence∫

Ω

(∇u)(x)K(x)(∇v)(x)T dx

=

∫
Ω

(∇̃ũ)(x̃)∇φ(x̃)−1K(φ(x))∇φ(x̃)−T (∇̃ṽ)(x̃)T |det∇φ(x̃)|dx̃

=

∫
Ω̃

(∇̃ũ)(x̃)K̃(x̃)(∇̃ṽ)(x̃)T dx̃.



760 BERNHARD BECKERMANN AND STEFANO SERRA-CAPIZZANO

For a proof of part (b), we consider

yν = (uj,k)(j,k)/ν∈Ω̃′ , ũj,k ≈ u

(
(j, k)

ν

)
and the second order central difference operators using the 7 point stencil of Figure 1,

Δ1uj,k = uj+1/2,k − uj−1/2,k ≈ 1

ν

∂

∂x̃1
u

(
(j, k)

ν

)
,

Δ2uj,k = uj,k+1/2 − uj,k−1/2 ≈ 1

ν

∂

∂x̃2
u

(
(j, k)

ν

)
,

Δ3uj,k = uj+1/2,k−1/2 − uj−1/2,k+1/2 ≈ 1

ν

(
∂

∂x̃1
− ∂

∂x̃2

)
u

(
(j, k)

ν

)
.

Let Ω̃′ and Ã′
n be as in the preceding proof, and let Cn be obtained from the matrix

Ã′
n by replacing the diagonal entries (25) by

Cn

(
(j, k)

(j, k)

)
= −BT

1

(
K̃

(
(2j − 1, 2k)

2ν

)
+ K̃

(
(2j + 1, 2k)

2ν

))
B2

−BT
1

(
K̃

(
(2j, 2k − 1)

2ν

)
+ K̃

(
(2j, 2k + 1)

2ν

))
B3

−BT
2

(
K̃

(
(2j + 1, 2k − 1)

2ν

)
+ K̃

(
(2j − 1, 2k + 1)

2ν

))
B3,

and hence ||Ã′
n − Cn|| is of order ε; compare with (24). For a grid point (j,k)

ν ∈ Ω̃′

having all its adjacent vertices in Ω̃′, the component of Cnyν with index (j, k) can be
written as

[K̃1,1 + K̃1,2]

(
(2j − 1, 2k)

2ν

)
(uj,k − uj−1,k)

+ [K̃1,1 + K̃1,2]

(
(2j + 1, 2k)

2ν

)
(uj,k − uj+1,k)

+ [K̃2,2 + K̃1,2]

(
(2j, 2k − 1)

2ν

)
(uj,k − uj,k−1)

+ [K̃2,2 + K̃2,1]

(
(2j, 2k + 1)

2ν

)
(uj,k − uj,k+1)

+ K̃1,2

(
(2j + 1, 2k − 1)

2ν

)
(uj+1,k−1 − uj,k)

+ K̃1,2

(
(2j − 1, 2k + 1)

2ν

)
(uj−1,k+1 − uj,k)

= −Δ1[K̃1,1 + K̃1,2]Δ1uj,k − Δ2[K̃2,2 + K̃1,2]Δ2uj,k + Δ3K̃1,2Δ3uj,k.
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If some of the vertices (j′,k′)
ν adjacent to (j,k)

ν lie outside of Ω̃′, we get a similar
expression, where the corresponding values uj′,k′ have to be dropped. Therefore the

matrix Cn describes a finite difference discretization in Ω̃′ based on the 7 point stencil
of Figure 1 for the differential expression

− ∂

∂x̃1

(
[K̃1,1 + K̃1,2]

∂u

∂x̃1

)
− ∂

∂x̃2

(
[K̃2,2 + K̃1,2]

∂u

∂x̃2

)

+

(
∂

∂x̃1
− ∂

∂x̃2

)(
K̃1,2

(
∂u

∂x̃1
− ∂u

∂x̃2

))
,

coinciding with −∇(K̃∇u), the differential expression of the PDE of Corollary 1.2(a).
Using the same limit considerations as in the proof of Theorem 1.1, the first assertion
of Corollary 1.2(b) follows. The second assertion now is a simple consequence of the
above relationship between An and the 7 point stencil finite difference matrix and
of the fact that every finite difference discretization of second order PDEs leads to
(reduced) generalized locally Toeplitz sequences (see [31, 32]).

3. Uniform versus nonuniform triangulations and preconditioning. Let
us briefly recall some classical terminology concerning finite element triangulations.
The finesse parameter of a triangulation Tν is the largest among the diameters of the
triangles of this triangulation. A family of triangulations Tν for varying ν is called
quasi-uniform [2, 20] if the length of the shortest edge in Tν divided by the finesse
parameter of Tν is bounded below by some constant uniformly in ν. The family
of triangulations Tν is called shape-regular [9, Definition II.5.1] if the ratio of the
diameter divided by the radius of the largest inscribed disk is bounded uniformly for
each triangle T ∈ Tν and all ν (or, equivalently, if all angles are bounded away from
zero uniformly in ν).

In the previous sections we have considered a triangulation Tν of Ω being the
image under a bijective map φ of a uniform triangulation T̃ν of Ω̃ with stepsize
1/ν. Denote by An(K, Tν) the corresponding stiffness matrix (13). Since in gen-

eral the two triangulations Tν and T̃ν lead to stiffness matrices of the same size, we
want to discuss in this section in more detail some spectral properties of the matrix
An(I2, T̃ν)−1An(K, Tν) and other related matrices. This analysis is motivated by the
task of finding efficient preconditioning strategies for the method of conjugate gra-
dients applied to the stiffness matrix An(K, Tν). Our uniform triangulation (T̃ν)ν is
trivially both quasi-uniform and shape-regular, while (Tν)ν is not necessarily so. For
instance, for the graduated mesh of Example 1.3 we find a finesse parameter ≥ 1/ν,
but the triangle with vertex aj has edges of size d(1/(dν))βj , and hence (Tν)ν is not
quasi-uniform. In this section we will be particularly interested in the case where
(Tν)ν is only shape-regular.

The main results of this section are given in subsection 3.2: in Theorem 3.2 we
first relate two stiffness matrices with respect to the partial ordering of Hermitian
matrices (M1 ≤ M2 if M1,M2 are Hermitian and M2 −M1 is semipositive definite).
Subsequently, in Corollary 3.4 we deduce bounds for the smallest and the largest
eigenvalue of such preconditioned stiffness matrices, and in Theorem 3.5 we give results
on the asymptotic spectrum for such matrices. But first we provide in subsection 3.1
a basic proposition (based on the local analysis of finite element matrices), which is
the keystone for proving the results of subsection 3.2.
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3.1. Local domain analysis of the finite element matrices. In order to
better understand the local properties of a stiffness matrix, let us go back to the
classical assembling procedure of a P1 finite element matrix An mentioned already
in the proof of Theorem 1.1. Starting from the zero matrix, we have the following
updating formulas: any triangle T of the form (Pj,k, Pj+η,k, Pj,k+η), η ∈ {±1}, gives
the contribution

(26)

An

(
(j, k), (j + η, k), (j, k + η)

(j, k), (j + η, k), (j, k + η)

)

← An

(
(j, k), (j + η, k), (j, k + η)

(j, k), (j + η, k), (j, k + η)

)
+

1

2|det(C−1)|B
TC−1

∫
T
K(x) dx∫
T
dx

C−TB,

where the affine mapping x �→ Pj,k + Cx maps the points (0, 0), (1, 0), (0, 1) to
Pj,k, Pj+η,k, Pj,k+η, respectively, and

B =

[
−1 1 0
−1 0 1

]
.

Suppose that the three points (Pj,k, Pj+η,k, Pj,k+η) have positive orientation, and de-
fine by α, β, γ, respectively, the angles of the triangle T at these vertices. In addition,
define Π to be a rotation matrix mapping the half line (0, Pj+η,k − Pj,k) to the half
line ((0, 0), (1, 0)); then

ΠC =
||Pj+η,k − Pj,k+η||

sin(α)

[
sin(γ) sin(β) cos(α)

0 sin(β) sin(α)

]
,

and, in addition,

C−1√
|det(C−1)|

=
1√

sin(α) sin(β) sin(γ)

[
sin(α) sin(β) − cos(α) sin(β)

0 sin(γ)

]
· Π.

Observe also that C−1/
√
|det(C−1)| has the singular values

√
δT and 1/

√
δT and

thus a spectral condition number δT , which can be computed explicitly in terms of
the angles of T :

δT := cond

(
C−1√

|det(C−1)|

)
= yT +

√
y2
T − 1, yT =

sin2(β) + sin2(γ)

2 sin(α) sin(β) sin(γ)
.

(27)

Therefore

1

δT
I2 ≤ 1

|det(C−1)|C
−1C−T ≤ δT I2.(28)

If the three points (Pj,k, Pj+η,k, Pj,k+η) have negative orientation, then we switch
axes; that is, we exchange the role of β and γ, but the conclusions in (27) and (28)

are the same. For instance, for a triangle T ∈ T̃ν of a uniform triangulation we get
α = π/2 and β = γ = π/4, leading to δT = 1, but in general δT ≥ 1.
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The relation (28) enables us to compare the updating matrices in (26) for different
meshes and K = I2, and, by a similar argument, for different (pointwise symmetric
positive definite) coefficient functions K.

Proposition 3.1. With

κmin = essinfx∈Tλmin(K(x)) ≥ 0, κmax = esssupx∈Tλmax(K(x)),

and B, C as in (26) we have that

κmin
BTC−1 C−TB

2|det(C−1)| ≤ 1

2|det(C−1)|B
TC−1

∫
T
K(x) dx∫
T
dx

C−TB ≤ κmax
BTC−1 C−TB

2|det(C−1)| ,

and, with δT ≥ 1 as in (27),

1

δT

BTB

2
≤ BTC−1C−TB

2|det(C−1)| ≤ δT
BTB

2
.

There are many ways of writing the constant δT of (27). For instance, if β, γ ∈
(0, π/2), we find using the relation α + β + γ = π that

yT =
sin2(β) + sin2(γ)

sin2(β) sin(2γ) + sin2(γ) sin(2β)
≤ 1

min(sin(2β), sin(2γ))
,

which is quite precise if β or γ is small compared to the other two angles. We also have
that δT is uniformly bounded for T ∈ Tν for all ν if and only if all angles occurring in
Tν are bounded away from zero uniformly in ν, i.e., (Tν)ν is shape-regular. Moreover,
there holds

δT ≤ 2yT =
b2 + c2

2m(T )
≤ a + b + c

2m(T )
max{a, b, c},

the expression on the right-hand side being bounded above by the ratio of the diameter
of the triangle T to the radius of the largest disk contained in T .

For our triangulation Tν obtained as the image of the uniform triangulation, we
also know from the proof of Theorem 1.1 that

C√
|det(C)|

≈ η
∇φ(ζ)√

|det(∇φ(ζ))|
, ζ ∈ φ−1(T ),(29)

and hence

δ := sup
ν

max
T∈Tν

δT = sup
ν

max
T∈Tν

cond

(
C√

|det(C)|

)
≈ sup

ζ∈Ω̃\Γ
cond

(
∇φ(ζ)√

|det(∇φ(ζ))|

)
.

This latter quantity turns out to be very simple for the refined triangulations discussed
in Examples 1.3 and 1.4, namely δ ≈ β, with βπ ∈ (π, 2π) being the largest inner
angle of Ω. We should notice that these last arguments are not completely rigorous,
since in general relation (29) can be shown to be true only for triangles T with φ−1(T )
having a certain distance to Γ. However, there exist similar mesh refinements where
the resulting family (Tν)ν is shape-regular and where explicit lower bounds for the
angles are known.
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3.2. Extremal eigenvalues, condition numbers, and preconditioning.
The four statements in this section will have a short proof since they are related
to previously known results. For our first statement we have been strongly inspired
by similar results for so-called matrix-valued linear and positive operators (LPOs)
(see [27, 34]). Here we give a short direct proof.

Theorem 3.2. Assume that the matrix K is uniformly elliptic and bounded;
i.e., there exist positive constant κmin and κmax such that κminI2 ≤ K(x) ≤ κmaxI2
almost everywhere with respect to x (for instance, κmin = essinfxλmin(K(x)), κmax =
esssupxλmax(K(x))). Then

(An(K, Tν))ν and (An(I2, Tν))ν are uniformly equivalent

and more precisely, κminAn(I2, Tν) ≤ An(K, Tν) ≤ κmaxAn(I2, Tν),(30)

and the same result is true if one replaces Tν in (30) by T̃ν .
Assume that the family of triangulations (Tν)ν is shape-regular, and define

δ := sup
ν

max
T∈Tν

δT < ∞

with δT as in (27). Then

(An(I2, Tν))ν and (An(I2, T̃ν))ν are uniformly equivalent

and more precisely 1
δAn(I2, T̃ν) ≤ An(I2, Tν) ≤ δAn(I2, T̃ν).(31)

Proof. The main work for proving statements (30) and (31) has been done already
in subsection 3.1: according to (26), the claimed inequalities in (30) are obtained by
summing over all triangles T ∈ Tν the first inequality of Proposition 3.1. Similarly,
relating the triangulations Tν and T̃ν for K = I2 means that we have to study how
the stiffness matrix changes if C in (26) is replaced by I2: the answer is obtained by
summing the last inequality of Proposition 3.1 for all triangles (after replacing δT by
δ).

The preceding result enables us to give more precise bounds for the smallest and
largest eigenvalue of the different stiffness matrices occurring in Theorem 3.2.

Corollary 3.3. Assume that the matrix K is uniformly elliptic and bounded,
and that (Tν)ν is shape-regular. Then the largest eigenvalue of An(K, Tν) is uniformly
bounded in ν, and the smallest behaves like 1/ν2 for ν → ∞.

In particular, the spectral condition number of An(K, Tν) behaves like n, the num-
ber of vertices of Tν .

Proof. Since Ω̃ is bounded, it is contained in a square with sides of size dout and
contains a square of size din. Then An(I2, T̃ν) contains as submatrix the Toeplitz
matrix generated by 4 − 2 cos(s1) − 2 cos(s2) of order din(ν − 1)2, and, in addition,

An(I2, T̃ν) is a submatrix of a Toeplitz matrix generated by 4−2 cos(s1)−2 cos(s2) of
order d2

outν
2 (see [36]). Since the eigenvalues of Toeplitz matrices generated by linear

cosine polynomials are explicitly known, it follows that the smallest eigenvalue of
An(I2, T̃ν) is of order 1/ν2 ∼ n−1, and its maximal eigenvalue is uniformly bounded by
8, which is also its limit for ν → ∞. Using, for instance, the well-known representation
of extremal eigenvalues of Hermitian matrices in terms of Rayleigh quotients, it follows
from Theorem 3.2, by combining (30) and (31), that all three matrices An(K, Tν),
An(I2, Tν), and An(K, T̃ν) have a smallest eigenvalue of order 1/ν2 ∼ n−1 and a
maximal eigenvalue bounded uniformly in ν.



ASYMPTOTIC SPECTRUM OF FE MATRICES 765

Corollary 3.3 has been proved in [2, relation (5.102c), p. 235, and pp. 236–238],
[9, Lemma V.2.6], [20, p. 61 and Lemma 2.6, p. 233], and [37, Theorem 5.1], under the
additional assumption that (Tν)ν is also quasi-uniform. Notice that the proofs given
in the above references consist of comparing suitable Sobolev norms, and here the
quasi uniformity condition cannot be dropped. The idea contained in subsection 3.1
is to use the updating formulas, i.e., a kind of element-by-element local analysis which
is more effective than a global analysis (see, e.g., [1] and the work by Fried [15], where
a similar technique has been extensively used).

Let us finally turn to the problem of designing a preconditioner for the CG method
applied to the system An(K, Tν)xn = bn. We recall that the matrix An(I2, T̃ν) cor-

responding to the uniform triangulation T̃ν coincides with that obtained by applying
the classical finite difference 5 point stencil to the Poisson problem −Δu = f . Thus
solving the system An(I2, T̃ν)yn = cn can be performed in O(n) operations using,
e.g., the method of cyclic reductions [11, 12, 14], and thus such a matrix would be a
practical preconditioner. Define also the matrix

Dn = diag

(∥∥∥∥K̃ (
(j, k)

ν

)∥∥∥∥)
(j,k)

ν ∈Ω̃h

,

which again is a practical preconditioner. Then, under the assumptions of Proposi-

tion 3.1, the condition number of An(I2, T̃ν)−1An(K, Tν) and of An(I2, T̃ν)−1D
−1/2
n

· An(K, Tν)D−1/2
n can be bounded independently of the stepsize 1/ν in terms of the

smallest angle used in the triangulation of Ω, plus possibly the norm and the ellipicity
constant of K. This means that the associated preconditioned CG (PCG) will achieve
a fixed precision in O(n) operations also in the nonconstant coefficient case with a
nonuniform triangulation.

In the following two results we give a complete picture (localization and distri-
bution) of the spectral behavior of preconditioned matrix sequences arising from the
use of the above-mentioned preconditioners.

Corollary 3.4. Assume that the matrix K is uniformly elliptic and bounded,
i.e., there exist positive constant κmin and κmax such that κminI2 ≤ K(x) ≤ κmaxI2
almost everywhere with respect to x (for instance, κmin = essinfxλmin(K(x)), κmax =
esssupxλmax(K(x))). Then

the eigenvalues of An(I2, Tν)−1An(K, Tν) belong to [κmin, κmax],(32)

and the same result is true if one replaces Tν in (32) by T̃ν .
Assume also that the family of triangulations (Tν)ν is shape-regular such that

δ := supν maxT∈Tν
δT < ∞ with δT as in (27). Then

the eigenvalues of An(I2, T̃ν)−1An(I2, Tν) belong to [1/δ, δ];(33)

the eigenvalues of An(I2, T̃ν)−1An(K, Tν) belong to [κmin/δ, κmaxδ].(34)

Proof. Statements (32) and (33) follow from the corresponding statements (30)
and (31) in Theorem 3.2 and the fact that, for Hermitian positive definite X,Y , we
have for the spectrum Λ(Y −1X) the localization

Λ(Y −1X) ⊂
{
u∗Xu

u∗Y u
: u 
= 0

}
.
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The claim (34) follows from (30) and (31) by rewriting the Rayleigh quotient as

u∗An(K, Tν)u
u∗An(I2, T̃ν)u

=
u∗An(K, Tν)u
u∗An(I2, Tν)u

u∗An(I2, Tν)u
u∗An(I2, T̃ν)u

.

Theorem 3.5. Assume that the matrix K is uniformly elliptic in the sense of
Corollary 3.4. Consider the preconditioned sequences (Y −1

n Xn) with

[Yn, Xn] ∈ {[An(I2, T̃ν), An(K, T̃ν)], [An(I2, Tν), An(K, Tν)],
[An(I2, T̃ν), An(I2, Tν)], [An(I2, T̃ν), An(K, Tν)]}.

Then, calling ωX the symbol of (Xn) and calling ωY the symbol of (Yn), we have that
the asymptotic spectrum of (Y −1

n Xn) is given by ωX/ωY .
Proof. It is enough to observe that all the involved matrix sequences are such that

both Xn and Yn come from the same matrix-valued LPO for which the distribution
is known (see Theorem 1.1) and is sparsely vanishing (i.e., the symbol vanishes in
a set of zero Lebesgue measure). The conclusion follows from the general theory of
LPOs as in Theorem 2.9 of [28] (compare also Theorem 4.6 in [33] and Theorem 3.7 in
[26]).

With the notation of the above theorem, we remark that the same result could

be proved for the matrices [Yn, Xn] = [D
1/2
n An(I2, T̃ν)D1/2

n , An(K, Tν)]. Indeed D
1/2
n ,

An(I2, T̃ν), and An(K, Tν) are all (reduced) generalized locally Toeplitz sequences with
sparsely vanishing symbols (i.e., zero on at most a set of zero Lebesgue measure): for
Dn the statement is trivial since the matrix is diagonal, while for the remaining two
matrix sequences this has been proved in Corollary 1.2. Then our claims follow from
the fact that, if the symbols are all sparsely vanishing and sparsely unbounded (the
inverse of a sparsely vanishing), then the operation Xn � Yn also gives a sequence
in the generalized locally Toeplitz class, with asymptotic spectrum described by the
symbol ωX �ωY ; this has been shown in [31, Theorem 5.8] for � being multiplication,
in the same paper for � being addition or subtraction, and is known to be true also
for inversion, that is, for the sequence (Y −1

n Xn) (see [32, Theorems 2.2 and 3.2]).
In order to illustrate Theorem 3.5 and its link with Theorem 1.1, we mention

more explicitly the example that the sequence of matrices (An(I2, T̃ν)−1An(K, Tν))
for ν → ∞ has an asymptotic spectrum described by the measure σ, with∫

f dσ =
1

(2π)2
1

m(Ω̃)

∫
[−π,π]2

ds

∫
Ω̃

dx f (ω(x, s)) ,

K̃(x) = |det∇φ(x)|∇φ(x)−1K(φ(x))∇φ(x)−T as before,

ω(x, s) =
ωX(x, s)

ωY (x, s)
=

[
1 − eis1

1 − eis2

]∗
· K̃(x) ·

[
1 − eis1

1 − eis2

]
[

1 − eis1

1 − eis2

]∗
·
[

1 − eis1

1 − eis2

] ,

and with ωX(x, s), ωY (x, s) according to the notation of Theorem 3.5.
In particular (compare with (34)), the most important part of its eigenvalues lies

in the interval

[κmin, κmax] =
[
essinfx∈Ω̃λmin(K̃(x)), esssupx∈Ω̃λmax(K̃(x))

]
.
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4. Concluding remarks. We have shown the existence of an asymptotic spec-
trum for the sequence of stiffness matrices, which occur in the P1 finite element
approximation of the two-dimensional model problem (1) with an a priori mesh re-
finement and varying stepsizes. The underlying symbol ω of this asymptotic spectrum,
given in Theorem 1.1, depends not only on the domain and the coefficient functions
of the PDE, but also on the particular P1 approximation scheme (via the dependency
on the Fourier variable s) and the map φ which describes our mesh refinement. We
expect, by analogy with the finite difference case (see [31]), that Theorem 1.1 holds
also for other finite elements if one adapts the choice of the trigonometric polynomials
in s. It is probably also possible to extend our results to higher dimensions and to
other elliptic PDEs, and probably we need only quite weak regularity assumptions on
the involved domain and the involved coefficient functions, as in the finite difference
case (see [38, 31, 32]). On the other hand, the graded meshes used in modern solvers
(especially those generated by a posteriori mesh refinements) in general are not topo-
logically equivalent to the meshes considered in this paper. Notice that, for proving
asymptotic spectral results of global type, it is sufficient that the graded meshes are
equivalent to an approximation of our meshes (see [35]). These issues should be in-
vestigated in more detail in future works, in order to widen the practical impact of
our findings.

In the second part of the paper we have analyzed the spectral behavior of some
preconditioned finite element matrix sequences in terms of localization, extremal, and,
especially, distributional spectral results. The analysis could be used for deducing
more precise bounds on the (P)CG convergence, in view of the results in [4, 5, 6]:
the related specific study and the related numerical experiments will be part of a
subsequent work.

Beside the locally Toeplitz idea, we have used in section 3.1 another purely linear
algebra tool, namely the local domain analysis: it consists of decomposing compli-
cated matrix structures in linear combinations of nonnegative definite dyads or low-
rank matrices for which the (spectral) analysis is very simple, and then combining
these results to deduce properties of the original matrix. (For finite elements see [1]
and the beautiful and rich paper by Fried [15, e.g., (47)]; for finite differences com-
pare with [33, section 3.5], [7, Theorem 3.7]; and for general matrices see [26].) We
mention that this simple tool is especially useful for preconditioning analysis and for
the analysis of extremal eigenvalues asymptotics. As a byproduct we have deduced
in Corollary 3.4 that the finite element matrix sequence with uniform triangulation
and the nonuniform one (not necessarily verifying the quasi uniformity) are spectrally
equivalent. Thus a simpler (projected) two-level Toeplitz structure associated with
the uniform triangulation can be employed as preconditioner requiring a constant
number of iterations independently of the size of the problem.
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ULTRASPHERICAL STIELTJES POLYNOMIALS AND
GAUSS–KRONROD QUADRATURE BEHAVE NICELY FOR λ < 0∗

B. DE LA CALLE YSERN† AND F. PEHERSTORFER‡

Abstract. We show that the zeros of the Stieltjes polynomials associated with the ultraspherical
weight function with parameter λ < 0 are real and simple and, except for two of them, belong to
(−1, 1). We also prove that they strictly interlace with the zeros of the corresponding ultraspherical
polynomials. Consequently, a Gauss–Kronrod quadrature formula with two nodes outside the interval
[−1, 1] is obtained. We prove that the coefficients of such quadrature rules are positive. Finally, an
asymptotic representation of Stieltjes polynomials which converges uniformly on the whole interval
[−1, 1] is provided.
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1. Introduction. Let pλn(x) = κλ,nx
n + . . . , κλ,n > 0, be the orthonormal

polynomial of degree n with respect to the ultraspherical weight function wλ(x) =
(1 − x2)λ−1/2, λ > −1/2, i.e.,∫ 1

−1

pλn(x) pλm(x)wλ(x) dx = δn,m,(1.1)

where δn,m is the Kronecker symbol. Furthermore, let

qλn(z) :=

∫ 1

−1

pλn(x)

z − x
wλ(x) dx, z �∈ [−1, 1],

be the corresponding nth function of the second kind. Note that, by (1.1),

qλn(z) = O(1/zn+1), z → ∞.

In 1894, in one of his letters to Hermite, Stieltjes [11] considered the polynomials
Eλ

n+1(z) = zn+1 + . . . , now called Stieltjes polynomials, which arise in the series
expansion of 1/qλn(z) at z = ∞, that is,

1/qλn(z) = κλ,n E
λ
n+1(z) + O(1/z), z → ∞,(1.2)

and proved that these polynomials satisfy orthogonality conditions with respect to a
sign-changing function, to be exact,∫ 1

−1

xj Eλ
n+1(x) pλn(x)wλ(x) dx = 0, j = 0, . . . , n.(1.3)
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In fact, Stieltjes considered only the Legendre weight w1/2(x) ≡ 1 and conjectured

that all the zeros of E
1/2
n+1 belong to the interval (−1, 1) and strictly interlace with the

zeros of the Legendre polynomials p
1/2
n . Hermite [11] declared himself truly enchanted

with the new polynomials, but no further progress seems to have been made either
by him or Stieltjes.

Forty years later, Szegő [24] proved the conjecture of Stieltjes. Indeed, he proved
that for 0 < λ ≤ 2 the Stieltjes polynomial Eλ

n+1 has n + 1 simple zeros in (−1, 1)
and that the zeros of Eλ

n+1 strictly interlace with the zeros of pλn. The case λ > 2 has
been recently studied by Petras and the second author in a series of papers [21, 22].
For 2 < λ < 3 they show that on compact subsets [−1 + ε, 1 − ε], ε > 0 arbitrary but
fixed, and for n ≥ n0(ε), the strictly interlacing property of the zeros of Eλ

n+1 and pλn
still holds, whereas for λ > 3 they prove that the polynomials Eλ

n+1 have only o(n)
real zeros. The case −1/2 < λ < 0 has remained open up to now.

An asymptotic representation of the Stieltjes polynomials for λ ∈ (0, 2) has been
obtained by Ehrich [2, 3]. For λ > 2 asymptotic formulae are given in [21, 22].

The importance of the zeros of the Stieltjes polynomials in numerical integration
arose in the sixties when Kronrod [14] suggested the so-called extended Gaussian
quadrature formulae. In such quadrature rules, one looks for formulae of the form∫ 1

−1

f(x)wλ(x) dx =

n∑
i=1

Aλ
n,i f(xn,i) +

n+1∑
j=1

Bλ
n,j f(yn,j) + Rλ

2n+1(f),(1.4)

where nodes {xn,i}ni=1 are the zeros of pλn, i.e., the Gaussian nodes, and the rest of
nodes {yn,j}n+1

j=1 and all the quadrature weights {An,i}ni=1, {Bn,j}n+1
j=1 are chosen so

that

Rλ
2n+1(p) = 0 for all p ∈ P3n+1(1.5)

(as usual Pm denotes the set of polynomials of degree less than or equal to m), where
the degree of polynomial exactness is 3n+ 1 when n is an even number and 3n+ 2 if
n is odd. Now, it is not difficult to show that condition (1.5) is equivalent to the fact
that the nodal polynomial

n+1∏
j=1

(x− yn,j)

satisfies the orthogonality relations (1.3) in the same way as Eλ
n+1. Hence, the nodes

{yn,j}n+1
j=1 turn out to be the zeros of the Sieltjes polynomial Eλ

n+1.
This was the starting point for the renewed interest in Stieltjes polynomials, since

the Gauss–Kronrod quadrature has been frequently used in automatic integration pro-
cesses [7, 23]. For numerical stability reasons, positivity of the quadrature weights is
an important and often required property. It may be easily proved that the positivity
of the coefficients {Bλ

n,j}n+1
j=1 is equivalent to the strict interlacing property of the zeros

of Eλ
n+1 and pλn. Using this fact, and with the help of Szegő’s results [24], Monegato

[16] has proved the positivity of all of the quadrature weights appearing in (1.4) for
0 ≤ λ ≤ 1. Recall that for λ > 3 the Gauss–Kronrod quadrature is not possible for
sufficiently large n because only o(n) nodes are real.

Surprisingly, except for the numerical work [9] of Gautschi and Notaris from which
nice behavior of the zeros of Eλ

n+1 is conjectured, nothing was known until now about
the reality of the Kronrod nodes for −1/2 < λ < 0. In this paper we give a complete
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description of the behavior of the nodes and the sign of the quadrature weights of
the Gauss–Kronrod rule for each n ∈ N. To be more precise, we show that Eλ

n+1 has
exactly two real zeros outside [−1, 1] and that, except for that feature, it has all the
properties satisfied by the Stieltjes polynomial in the classical case λ ∈ (0, 1); that is,
the zeros of Eλ

n+1 strictly interlace with the zeros of pλn and the quadrature weights
are all positive. Furthermore, we provide an asymptotic representation of the Stieltjes
polynomials that converges uniformly on the whole interval [−1, 1].

Finally, we mention that, in recent years, other wide classes of weight func-
tions have been found for which Gauss–Kronrod quadrature with positive quadrature
weights is possible for n ≥ n0, namely, weight functions of the form

√
1 − x2 v(x),

where v ∈ C2[−1, 1] and v > 0 on [−1, 1] (see [19, 20]). For Jacobi weights with
parameters 0 ≤ α, β < 5/2 asymptotic representations on [−1 + ε, 1 − ε], ε > 0, for
the corresponding Stieltjes polynomials and quadrature weights have been given in
[22]. For a more detailed discussion of weight functions admitting the Gauss–Kronrod
quadrature rule as well as further references, see the surveys [17, 8, 18, 20, 5].

In the case of real measures dμ(x) = k(x) dx, where k ∈ L1[−1, 1], there exist
results [4] concerning product integration based on the Gauss–Kronrod nodes which
show that, from the practical point of view, Gauss–Kronrod nodes are as good as
the Clenshaw–Curtis ones for constructing interpolatory (degree of polynomial exact-
ness equal to 2n) quadrature rules. For applications of the Stieltjes polynomials in
interpolation theory, see, e.g., [6, 12].

2. Statement of the main results. Let Tn and Un be the Chebyshev polyno-
mials of degree n of the first and second kind, respectively.

Theorem 2.1. For λ ∈ (−1/2, 0) and n ∈ N, the zeros of Eλ
n+1(x) are real and

simple and, except for two of them, belong to the interval (−1, 1). Moreover, they
strictly interlace with the zeros of the polynomial (1 − x2)Un−2(x) and also with the
zeros of the orthonormal polynomial pλn(x).

From results contained in [1] it follows that the two zeros outside [−1, 1] approach
the ends of the interval as n tends to ∞. In this respect, it may be pertinent to recall
that for λ = 0 the smallest zero and the largest zero of the Stieltjes polynomials
coincide with the boundary points −1 and +1, respectively, and move inside the
interval (−1, 1) as λ gets larger with n fixed.

As a consequence of the last assertion in Theorem 2.1, we can prove the following
corollary.

Corollary 2.2. For λ ∈ (−1/2, 0) and n ∈ N, the quadrature weights of (1.4)
are all strictly positive.

Regarding asymptotics of Stieltjes polynomials, we have the following theorem.
Theorem 2.3. For λ ∈ (−1/2, 0) and θ ∈ [0, π], it holds that

2nEλ
n+1(cos θ) = (2 sin θ)1−λ cos{(n + 1)θ + (λ− 1)(θ − π/2)} + o(1),(2.1)

uniformly on [0, π].
For λ ∈ [0, 3) and θ ∈ [ε, π − ε], with ε > 0 arbitrary but fixed, relation (2.1) has

been proved in [2, 3, 22].
Remark 1. Taking a closer look at the right-hand side of (2.1), we obtain, for

λ ∈ (−1/2, 0) and x ∈ [−1, 1], the following asymptotic representation of Stieltjes
polynomials in terms of Chebyshev polynomials:

2nEλ
n+1(x) =

[(n+1)/2]†∑
k=0

Γ(k + λ− 1)

Γ(λ− 1) Γ(k + 1)
Tn+1−2k(x) + o(1),(2.2)
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uniformly on [−1, 1], where the symbol † indicates that the last term should be halved
if n is odd. We note that (2.2) holds true for λ ∈ [0, 2) and x ∈ [−1 + ε, 1 − ε], ε > 0,
taking into consideration what was mentioned immediately after Theorem 2.3. For
more details, see section 4.4.

Remark 2. It is worth pointing out that, as a byproduct of the proof of Theo-
rem 2.3 (cf. equalities (4.10) and (4.12) below), an asymptotic formula is obtained
deserving of attention on its own. Namely, for λ ∈ (−1/2, 0),

2nEλ
n+1(cos θ) = (2 sin θ)1−λ cos{(n + 1)θ + (λ− 1)(θ − π/2)} + O(1/n),(2.3)

uniformly on [ε, π− ε], with ε > 0 arbitrary but fixed. It would be interesting to know
whether the rate of convergence in (2.3) may be extended uniformly to the whole
interval [0, π]. Numerical experiments support the possibility of such a result being
true.

3. Preliminary results. Let λ �= 0. In what follows, Gλ
n will denote the ultra-

spherical polynomial of degree n associated with wλ (cf. [25, Chapter IV] for details
of definitions and properties below) normalized so that

Gλ
n(1) =

Γ(n + 2λ)

Γ(n + 1)Γ(2λ)
.

A straightforward calculation shows that the leading coefficient of Gλ
n, which will be

denoted by dλ,n, is given by

dλ,n =
2n Γ(n + λ)

Γ(n + 1) Γ(λ)
,(3.1)

whereas κλ,n, the leading coefficient of the orthonormal polynomial pλn, turns out to
be

κλ,n =
2n+λ

√
2π

Γ(n + λ)

√
n + λ

Γ(n + 1)Γ(n + 2λ)
.(3.2)

Denote by Qλ
n the ultraspherical function of the second kind normalized so that

Qλ
n(z) =

1

2

Γ(2λ)

Γ(λ + 1/2)

∫ 1

−1

Gλ
n(t)

z − t
(1 − t2)λ−1/2dt, z �∈ [−1, 1].

It is known (see [25, Theorem 4.62.1]) that if λ < 1/2, then

lim
x→1+

Qλ
n(x) (x2 − 1)1/2−λ = Kλ,n > 0, x ∈ R.(3.3)

The behavior of Qλ
n(x) at x = −1 is similar. As usual, Qλ

n is defined on [−1, 1] as the
Cauchy principal value, i.e.,

Qλ
n(x) =

(Qλ
n)+(x) + (Qλ

n)−(x)

2
= lim

ε→0+

Qλ
n(x + iε) + Qλ

n(x− iε)

2
,(3.4)

whenever the above limit exists. It is known that (3.4) defines an analytic function
on (−1, 1). Sometimes, it will be more convenient to consider, instead of Qλ

n, the
function

Q̃λ
n(x) = (1 − x2)1/2−λ Qλ

n(x), x ∈ (−1, 1).
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Additionally, for θ ∈ (0, π), it holds that

(Qλ
n)+(cos θ) − (Qλ

n)−(cos θ) = −πi
Γ(2λ)

Γ(λ + 1/2)
Gλ

n(cos θ) (sin θ)2λ−1,

so

(Qλ
n)−(cos θ) = Qλ

n(cos θ) +
iπ

2

Γ(2λ)

Γ(λ + 1/2)
Gλ

n(cos θ) (sin θ)2λ−1(3.5)

for θ ∈ (0, π).
Set

Cλ,n =
√
π

Γ(n + 2λ)

Γ(n + λ + 1)
.

Following the ideas of Szegő [24], from the representation of Qλ
n as a hypergeometric

function it follows that

Qλ
n((z + 1/z)/2) = Cλ,n z

n+1
∞∑
k=0

an,k z
2k, |z| < 1,(3.6)

where the sequence {an,k}∞k=0 is defined by the relations

an,0 = 1, an,k =

(
1 − λ

k

)(
1 − λ

n + k + λ

)
an,k−1, k ∈ N.(3.7)

It is clear that an,k also depends on λ; yet this notation will not be misleading. From
(3.5) and (3.6), we obtain

lim
r→1−

Cλ,n

∞∑
k=0

an,k (reiθ)n+1+2k = Qλ
n(cos θ) +

iπ

2

Γ(2λ)

Γ(λ + 1/2)
Gλ

n(cos θ) (sin θ)2λ−1,

(3.8)

where θ ∈ (0, π).
It is very easy to prove, using (1.2), that

Cλ,n z
n+1

Qλ
n((z + 1/z)/2)

= (2z)n+1 Eλ
n+1((z + 1/z)/2) + O(zn+2), z → 0.

Now, if real numbers bn,k, k ∈ N ∪ {0}, are defined by the recurrence formula

bn,0 = 1,

k∑
j=0

an,k−j bn,j = 0, k ∈ N,(3.9)

which is equivalent to( ∞∑
k=0

an,k z
2k

)( ∞∑
k=0

bn,k z
2k

)
= 1, |z| < 1,(3.10)

then we can write

∞∑
k=0

bn,k z
2k = (2z)n+1 Eλ

n+1((z + 1/z)/2) + O(zn+2), z → 0.
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Hence it may be proved (taking into account the symmetry of Eλ
n+1((z + 1/z)/2))

that the numbers bn,k are precisely the coefficients of the Chebyshev polynomial rep-
resentation of Eλ

n+1. Specifically, we have

2n Eλ
n+1(x) =

[(n+1)/2]†∑
k=0

bn,k Tn+1−2k(x),(3.11)

where, as we mentioned before, the symbol † indicates that the last term should be
halved if n is odd.

Finally, we will need some asymptotic formulae for the proof of Theorem 2.3.
Namely (cf. [25, Theorem 8.21.8]),

n1−λ π

2

Γ(2λ)

Γ(λ + 1/2)
Gλ

n(cos θ) =
√
π 2λ−1 (sin θ)−λ cos[nθ + λ(θ − π/2)] + O(1/n),

(3.12)

where the convergence is uniform on [ε, π − ε], with ε > 0 arbitrary but fixed.
Also (cf., for instance, [2]), it holds that

n1−λ Q̃λ
n(cos θ) =

√
π 2λ−1(sin θ)−λ cos[(n + 1)θ + (λ− 1) (θ − π/2)] + O(1/n),

(3.13)

again uniformly on [ε, π − ε], with ε as above.

4. Proofs. In the case that λ ∈ (0, 1), by using a theorem on reciprocal power
series by Kaluza [13], all the coefficients bn,k, k ≥ 1, are proved to be negative, which
turns out to be a key fact in proving the properties satisfied by Eλ

n+1 (cf. [24]). To
the best of our knowledge, there exist no general results concerning coefficients of
reciprocal power series which can be applied when λ < 0. The following lemma
supplies us with a result analogous to the Kaluza theorem for the specific coefficients
(3.7). Due to its rather technical character and the fact that the arguments employed
in its proof are not related to the rest, we prefer to delay its proof until the end of the
paper; see section 4.5. For the rest of the proofs we have partly followed some ideas
from [2, 3, 24].

Lemma 4.1. For all λ ∈ (−1/2, 0) and n ∈ N, the coefficients bn,k defined by
relations (3.9) and (3.7) satisfy

bn,1 < 0 and, for k ≥ 2, bn,k > 0.

For proving the theorems mentioned above, we will need further knowledge of
properties fulfilled by the coefficients {bn,k}k∈N, n ∈ N, which are stated in the fol-
lowing two lemmas.

Lemma 4.2. For all λ ∈ (−1/2, 0) and n ∈ N, it holds that

∞∑
k=0

bn,k = 0 and

∞∑
k=0

|bn,k| < K,

where K < +∞ is an absolute constant.
Proof. Use (3.6) to obtain

lim
r→1−

∞∑
k=0

an,k r
2k = lim

r→1−

Qλ
n((r + 1/r)/2)

Cλ,n rn+1
=

1

Cλ,n
lim

x→1+
Qλ

n(x) = +∞,(4.1)
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according to (3.3). As we saw in Lemma 4.1, the coefficients bn,k are all positive
whenever k ≥ 2. Therefore,

lim
r→1−

∞∑
k=0

bn,k r
2k =

∞∑
k=0

bn,k,

which, together with (3.10) and (4.1), proves the first part of our assertion. Regarding
the second one, we have

∞∑
k=0

|bn,k| = −bn,1 +

∞∑
k=0
k �=1

bn,k = −2 bn,1 = 2 an,1,

and the result follows from the fact that (see (3.7)) limn→∞ an,1 = 1 − λ.
Lemma 4.3. For all λ ∈ (−1/2, 0) and n ∈ N, it holds that

∞∑
k=m+1

bn,k = O(1/m), m → ∞,

uniformly on n ∈ N; i.e., the constants involved in the term O(1/m) are independent
of n ∈ N.

Proof. For convenience, we will prove the equivalent expression

∞∑
k=2m+1

bn,k = O(1/m), m → ∞.

Let us consider the product(
−

2m∑
k=0

bn,k

) (
2m∑
k=0

an,k

)
= (−bn,1) (an,0 + an,2m) +

2m−1∑
k=1

(−bn,1 an,k) + tm,

where we have included all of the negative terms of the product in tm. Each of the
terms (−bn,1 an,k), k = 1, . . . , 2m − 1, is to be canceled out by part of the negative
terms contained in tm, according to (3.9). Notice that we use each negative term at
most once and that we have enough negative terms in tm since k = 1, . . . , 2m − 1.
Then, on account of Lemma 4.2, we obtain

∞∑
k=2m+1

bn,k = −
2m∑
k=0

bn,k < an,1
an,0 + an,2m

2m∑
k=0

an,k

<
an,1(2an,2m)

2m∑
k=m+1

an,k

< K
an,2m
man,m

,(4.2)

since an,0 = 1 and the sequence {an,k}k∈N is increasing. Let us estimate an,2m and
an,m. For this, we will need the limit (cf., for instance, [10, formula 8.328.2])

lim
n→∞

Γ(n + a)

Γ(n + b)na−b
= 1, a, b ∈ R.(4.3)

From (3.7), it is clear that

an,k =
Γ(k − λ + 1)

Γ(k + 1)

Γ(n + λ + 1)

Γ(n + 1)Γ(1 − λ)

Γ(n + k + 1)

Γ(n + k + λ + 1)
.(4.4)
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When applied to the numbers (4.4), the limit (4.3) gives

(1/2) k−λ <
Γ(k − λ + 1)

Γ(k + 1)
< (3/2) k−λ,

(1/2) (n + k)−λ <
Γ(n + k + 1)

Γ(n + k + λ + 1)
< (3/2) (n + k)−λ

for all n ∈ N and k ≥ k0. Then

1

4
{k (n + k)}−λ Γ(n + λ + 1)

Γ(n + 1) Γ(1 − λ)
< an,k <

9

4
{k (n + k)}−λ Γ(n + λ + 1)

Γ(n + 1) Γ(1 − λ)

again for all n ∈ N and k ≥ k0. So, by virtue of (4.2), we have

∞∑
k=2m+1

bn,k <
2−λ 9K

m

(
n + 2m

n + m

)−λ

<
4−λ 9K

m

for m ≥ k0 and any n ∈ N, which concludes the proof.

4.1. Proof of Theorem 2.1. As the Stieltjes polynomial Eλ
n+1 is either an even

or an odd function depending on n, it is enough to prove that it has one zero greater
than 1 to see that it has two zeros outside [−1, 1]. So

2n Eλ
n+1(1) =

[(n+1)/2]†∑
k=0

bn,k Tn+1−2k(1) =

[(n+1)/2]†∑
k=0

bn,k <

∞∑
k=0

bn,k = 0,

due to Lemmas 4.1 and 4.2 and (3.11). It is obvious that the leading coefficient of
Eλ

n+1 is positive since it is monic. Consequently, Eλ
n+1 must have a zero in (1,+∞).

Now suppose that n ≥ 2. It is very well known that the Chebyshev polynomial
Tn−1 has n points in [−1, 1] at which it attains its maximum value with alternate
sign. Let x0 be one such point with Tn−1(x0) = 1. Then, using the same arguments
as in the previous reasoning, we have

2n Eλ
n+1(x0) = bn,1 +

[(n+1)/2]†∑
k=0
k �=1

bn,k Tn+1−2k(x0) <

[(n+1)/2]†∑
k=0

bn,k <

∞∑
k=0

bn,k = 0.

On the other hand, if Tn−1(y0) = −1, then

2n Eλ
n+1(y0) = −bn,1 +

[(n+1)/2]†∑
k=0
k �=1

bn,k Tn+1−2k(y0) > −
[(n+1)/2]†∑

k=0

bn,k > 0.

Therefore, Eλ
n+1 has n − 1 simple zeros inside (−1, 1) and two simple zeros outside

[−1, 1]. As T ′
n−1(x) = (n − 1)Un−2(x), the zeros of Eλ

n+1 strictly interlace with the
zeros of (1 − x2)Un−2(x).

Next, we will prove the interlacing property with respect to the zeros of the
ultraspherical polynomials. Notice that, due to Lemma 4.2, it holds that

lim
r→1−

∞∑
k=0

bn,k (reiθ)2k =

∞∑
k=0

bn,k e
2kiθ, θ ∈ [0, 2π].(4.5)
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Let θ ∈ (0, π) and consider

[(n+1)/2]†∑
k=0

bn,k e
2kiθ

∞∑
k=0

bn,k e
2kiθ

=

⎛⎜⎜⎜⎜⎜⎝1 +

∞∑
k=[n/2+1]‡

bn,k e
2kiθ

[(n+1)/2]†∑
k=0

bn,k e
2kiθ

⎞⎟⎟⎟⎟⎟⎠
−1

,

where the symbol ‡ means that the first term should be halved if n is odd. Then∣∣∣∣∣∣∣∣∣∣∣

∞∑
k=[n/2+1]‡

bn,k e
2kiθ

[(n+1)/2]†∑
k=0

bn,k e
2kiθ

∣∣∣∣∣∣∣∣∣∣∣
<

∞∑
k=[n/2+1]‡

bn,k

|bn,1| −

∣∣∣∣∣∣∣
[(n+1)/2]†∑

k=0
k �=1

bn,k

∣∣∣∣∣∣∣
=

∞∑
k=[n/2+1]‡

bn,k

−
[(n+1)/2]†∑

k=0

bn,k

= 1,

because of Lemma 4.2. An easy calculation shows that � (1/(1 + z)) > 1/2 for |z| < 1.
Therefore,

�

⎡⎣⎛⎝[(n+1)/2]†∑
k=0

bn,k e
2kiθ

⎞⎠( ∞∑
k=0

bn,k e
2kiθ

)−1
⎤⎦ >

1

2
.(4.6)

Taking (3.10), (4.5), and (3.8) into account, we obtain

Cλ,n

[(n+1)/2]†∑
k=0

bn,k e
2kiθ

∞∑
k=0

bn,k e
2kiθ

=

⎛⎝[(n+1)/2]†∑
k=0

bn,k e
2kiθ

⎞⎠( lim
r→1−

Cλ,n

∞∑
k=0

an,k (reiθ)2k

)

=

⎛⎝[(n+1)/2]†∑
k=0

bn,k e
−(n+1−2k)iθ

⎞⎠( lim
r→1−

Cλ,n

∞∑
k=0

an,k (reiθ)n+1+2k

)

=
(
2n Eλ

n+1(cos θ) − iẼn(θ)
) (

Qλ
n(cos θ) +

πi

2

Γ(2λ)

Γ(λ + 1/2)
Gλ

n(cos θ) (sin θ)2λ−1

)
,

where Ẽn(θ) is the imaginary part of

[(n+1)/2]†∑
k=0

bn,k e
(n+1−2k)iθ.

Thus, the real part of⎛⎝Cλ,n

[(n+1)/2]†∑
k=0

bn,k e
2kiθ

⎞⎠ ( ∞∑
k=0

bn,k e
2kiθ

)−1
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is

2n Eλ
n+1(cos θ)Qλ

n(cos θ) +
π

2
Ẽn(θ)

Γ(2λ)

Γ(λ + 1/2)
Gλ

n(cos θ) (sin θ)2λ−1,

which, together with (4.6), proves that

2n Eλ
n+1(cos θ)Qλ

n(cos θ) +
π

2
Ẽn(θ)

Γ(2λ)

Γ(λ + 1/2)
Gλ

n(cos θ) (sin θ)2λ−1 >
Cλ,n

2

for θ ∈ (0, π). In particular,

2n Eλ
n+1(x

λ
n,i)Q

λ
n(xλ

n,i) >
Cλ,n

2
> 0, i = 1, . . . , n,(4.7)

where the numbers xλ
n,i, i = 1, . . . , n, are the zeros of the ultraspherical polynomial

Gλ
n. It is well known that the zeros of Qλ

n and Gλ
n interlace since the functions

Q̃λ
n(x) = (1 − x2)1/2−λ Qλ

n(x) and Gλ
n(x) satisfy the same differential equation (see

[25, p. 78]). Thus, it follows from (4.7) that the zeros of Eλ
n+1 and Gλ

n behave similarly.

4.2. Proof of Corollary 2.2. As we mentioned above, the interlacing property
stated in Theorem 2.1 implies that the coefficients Bλ

n,j , j = 1, . . . , n + 1, are all

positive. Regarding the coefficients Aλ
n,i, we have the representation (see [15, Theorem

2])

Aλ
n,i = σλ

n,i +
dλ,n

κ2
λ,n (Gλ

n)′(xλ
n,i)E

λ
n+1(x

λ
n,i)

, i = 1, . . . , n,(4.8)

where σλ
n,i, i = 1, . . . , n, are the Christoffel numbers corresponding to the weight

function wλ (recall that dλ,n < 0 is the leading coefficient of Gλ
n). Obviously

σλ
n,i =

2 Γ(λ + 1/2)

−Γ(2λ)

∣∣∣∣∣ Qλ
n(xλ

n,i)

(Gλ
n)′(xλ

n,i)

∣∣∣∣∣ , i = 1, . . . , n.(4.9)

As the zeros of Eλ
n+1 and Gλ

n interlace, it is clear that

(Gλ
n)′(xλ

n,i)E
λ
n+1(x

λ
n,i) = |(Gλ

n)′(xλ
n,i)E

λ
n+1(x

λ
n,i)|, i = 1, . . . , n.

On account of this equality and (4.7), (4.8), and (4.9) as well as the explicit formulae
(3.1) and (3.2), we obtain

Aλ
n,i >

∣∣∣∣∣ Qλ
n(xλ

n,i)

(Gλ
n)′(xλ

n,i)

∣∣∣∣∣
(
−2 Γ(λ + 1/2)

Γ(2λ)
+

2n+1 dλ,n
Cλ,n κ2

λ,n

)

=

∣∣∣∣∣ Qλ
n(xλ

n,i)

(Gλ
n)′(xλ

n,i)

∣∣∣∣∣ 2

Γ(λ)

(
−Γ(λ) Γ(λ + 1/2)

Γ(2λ)
+

2
√
π

4λ

)
= 0,

where we have used (cf. [25, formula (1.7.6)]) the functional equation

Γ(z) Γ(z + 1/2) =
√
π 21−2z Γ(2z), z �= 0,−1/2,−1,−3/2,−2, . . . ,

in the last equality.
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4.3. Proof of Theorem 2.3. For θ ∈ [0, π], we have

2n Eλ
n+1(cos θ) = �

( ∞∑
k=0

bn,k e
(n+1−2k)iθ

)

− �

⎛⎝ ∞∑
k=[n/2+1]‡

bn,k e
(n+1−2k)iθ

⎞⎠
because of (3.11). If n ≥ 2, it is clear that∣∣∣∣∣∣�

⎛⎝ ∞∑
k=[n/2+1]‡

bn,k e
(n+1−2k)iθ

⎞⎠∣∣∣∣∣∣ ≤
∞∑

k=[n/2+1]

bn,k = O(1/n)

due to Lemma 4.3. Thus, we have proved

2n Eλ
n+1(cos θ) = �

( ∞∑
k=0

bn,k e
(n+1−2k)iθ

)
+ O(1/n),(4.10)

uniformly on [0, π].
Additionally, if θ ∈ (0, π), reasoning as in the proof of Theorem 2.1, we have

∞∑
k=0

bn,k e
(n+1−2k)iθ =

(
lim

r→1−

∞∑
k=0

an,k (reiθ)n+1+2k

)−1

=
Cλ,n

Qλ
n(cos θ) − πi

2

Γ(2λ)

Γ(λ + 1/2)
Gλ

n(cos θ) (sin θ)2λ−1

=
Cλ,n (sin θ)1−2λ

Q̃λ
n(cos θ) − πi

2

Γ(2λ)

Γ(λ + 1/2)
Gλ

n(cos θ)

= (sin θ)1−2λ

Cλ,n

(
Q̃λ

n(cos θ) +
πi

2

Γ(2λ)

Γ(λ + 1/2)
Gλ

n(cos θ)

)
[
Q̃λ

n(cos θ)
]2

+

[
π

2

Γ(2λ)

Γ(λ + 1/2)
Gλ

n(cos θ)

]2 .

Therefore, we obtain

�
( ∞∑

k=0

bn,k e
(n+1−2k)iθ

)
=

Cλ,n (sin θ)1−2λ Q̃λ
n(cos θ)[

Q̃λ
n(cos θ)

]2
+

[
π

2

Γ(2λ)

Γ(λ + 1/2)
Gλ

n(cos θ)

]2(4.11)

for θ ∈ (0, π). Notice that the denominator in (4.11) cannot vanish since the zeros of

Q̃λ
n and Gλ

n interlace, as previously mentioned.
Fix ε > 0. From (3.12) and (3.13), it readily follows that

1

n2−2λ

(sin θ)−2λ[
Q̃λ

n(cos θ)
]2

+

[
π

2

Γ(2λ)

Γ(λ + 1/2)
Gλ

n(cos θ)

]2 =
41−λ

π
+ O(1/n),
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uniformly on [ε, π − ε]. Additionally, limn→∞ n1−λ Cλ,n =
√
π is obtained with the

help of (4.3). So, using (3.13) again and (4.11), we have

�
( ∞∑

k=0

bn,k e
(n+1−2k)iθ

)
= (2 sin θ)1−λ cos{(n + 1)θ + (λ− 1)(θ − π/2)} + O(1/n),

(4.12)

uniformly on [ε, π − ε].
For all n ∈ N, let fn(θ), θ ∈ [0, π], denote the continuous function

�
( ∞∑

k=0

bn,k e
(n+1−2k)iθ

)
,

whereas gn(θ) stands for (2 sin θ)1−λ cos{(n + 1)θ + (λ − 1)(θ − π/2)}, θ ∈ [0, π].
We will reason by contradiction. Suppose that the sequence {fn − gn}n∈N does not
converge uniformly to 0 on [0, π]. So, there exist a sequence of points θn, n ∈ Λ ⊂ N,
and a number ε0 > 0 such that

|fn(θn) − gn(θn)| ≥ ε0(4.13)

for all n ∈ Λ. As the sequence {θn}n∈Λ is included in [0, π], we can assume that it is
a convergent sequence. Moreover, as a result of (4.12), the limit point must be one of
the two ends of the interval [0, π]. So, without loss of generality, we can also assume
that

lim
n∈Λ

θn = 0.(4.14)

We will prove that given any ε > 0 there exists δ > 0 (depending only on ε) such that

|fn(θ) − gn(θ)| < ε

for all θ ∈ [0, δ) and any n ∈ N. It is clear that this assertion contradicts (4.13) and
(4.14).

Choose δ1 > 0 such that for all θ ∈ [0, δ1) it holds that

|gn(θ)| ≤ |2 sin θ|1−λ < ε/4, n ∈ N.(4.15)

By the use of Lemma 4.3, fix m ∈ N such that

∞∑
k=m+1

bn,k <
ε

4
, n ∈ N.(4.16)

Hence

− ε

4
<

m∑
k=0

bn,k < 0, n ∈ N.(4.17)

Next, choose δ2 > 0 such that for all θ ∈ [0, δ2) we have

| sin(2kθ)| < ε/(8K), k = 1, . . . ,m,(4.18)
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and

cos(2kθ) > 1 − ε/(8K), k = 1, . . . ,m,(4.19)

where K is the constant given by Lemma 4.2. Take δ = min{δ1, δ2}. Let θ ∈ [0, δ).
Then

m∑
k=0

bn,k cos(2kθ) < bn,1

(
1 − ε

8K

)
+

m∑
k=0
k �=1

bn,k =

m∑
k=0

bn,k − bn,1 ε

8K
<

ε

16
,(4.20)

where we have used (4.19) and (4.17) as well as the fact that −bn,1 ≤ K/2 for all
n ∈ N. Analogously,

m∑
k=0

bn,k cos(2kθ) > bn,1 +

m∑
k=0
k �=1

bn,k

(
1 − ε

8K

)
=

m∑
k=0

bn,k −
m∑

k=0
k �=1

bn,k
ε

8K
> − ε

4
− ε

16
.

(4.21)

Finally, for θ ∈ [0, δ) and arbitrary n ∈ N, we obtain

|fn(θ) − gn(θ)| ≤ |fn(θ)| + |gn(θ)| <
∣∣∣∣∣
∞∑
k=0

bn,k e
(n+1−2k)iθ

∣∣∣∣∣+ ε

4

≤
∣∣∣∣∣

m∑
k=0

bn,k cos(2kθ)

∣∣∣∣∣+
∣∣∣∣∣

m∑
k=0

bn,k sin(2kθ)

∣∣∣∣∣+
∞∑

k=m+1

bn,k +
ε

4
< ε,

using (4.15) in the second step and (4.16), (4.18), (4.20), and (4.21) in the last one.
Once the contradiction has been established, we obtain fn(θ) = gn(θ) + o(1),

uniformly on [0, π], which, together with (4.10), proves the theorem.

4.4. Proof of formula (2.2). It is well known that

∞∑
k=0

Γ(k + λ− 1)

Γ(k + 1) Γ(λ− 1)
zk = (1 − z)1−λ,

uniformly on |z| ≤ 1 provided that λ ≤ 1. Thus, if we put z = e−2iθ, we have

[(n+1)/2]†∑
k=0

Γ(k + λ− 1)

Γ(k + 1) Γ(λ− 1)
eiθ(n+1−2k) =

eiθ(n+1)

(1 − e−2iθ)λ−1
+ o(1),

uniformly on [0, π]. Now, the proof follows from taking real parts in the above ex-
pression and applying Theorem 2.3.

For λ ∈ (1, 2) the proof is similar. In that case, by using Dirichlet’s criterion on
uniform convergence, we have

∞∑
k=0

Γ(k + λ− 1)

Γ(k + 1) Γ(λ− 1)
e−2ikθ = (1 − e−2iθ)1−λ,

uniformly on [ε, π − ε]. The rest is analogous.
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4.5. Proof of Lemma 4.1. Obviously, bn,0 = 1 > 0 and bn,1 = −an,1 < −1.
Besides,

bn,2 = a2
n,1 − an,2 = an,1(an,1/an,0 − an,2/an,1) > 0,

since the sequence {an,k/an,k−1}k∈N is decreasing. Now, the idea is to obtain a formula
similar to (3.9) without the term corresponding to j = 1 (which is negative) in order
to carry out a proof by induction on the index k ≥ 2. Thus, if we rewrite (3.9) using
(4.4), we have

k∑
j=0
j �=1

bn,j an,k−j + bn,1
Γ(k − λ)

Γ(k)

Γ(n + λ + 1)

Γ(n + 1)Γ(1 − λ)

Γ(n + k)

Γ(n + k + λ)
= 0.(4.22)

Analogously, by replacing k with k − 1, we obtain

k−1∑
j=0
j �=1

bn,j an,k−j−1 + bn,1
Γ(k − λ− 1)

Γ(k − 1)

Γ(n + λ + 1)

Γ(n + 1)Γ(1 − λ)

Γ(n + k − 1)

Γ(n + k + λ− 1)
= 0,

or, equivalently,

k−1∑
j=0
j �=1

bn,j an,k−j−1
(k − λ− 1)(n + k − 1)

(k − 1)(n + k + λ− 1)
+ bn,1

{
Γ(k − λ− 1)

Γ(k − 1)

× Γ(n + λ + 1)

Γ(n + 1)Γ(1 − λ)

Γ(n + k − 1)

Γ(n + k + λ− 1)

(k − λ− 1)(n + k − 1)

(k − 1)(n + k + λ− 1)

}
= 0.

(4.23)

Subtracting (4.23) from (4.22), it follows that

bn,k +
Γ(n + λ + 1)

Γ(n + 1)Γ(1 − λ)

k−1∑
j=0
j �=1

[
bn,j

Γ(k − j − λ)

Γ(k − j)

Γ(n + k − j)

Γ(n + k − j + λ)

×
{

(k − j − λ)(n + k − j)

(k − j)(n + k − j + λ)
− (k − λ− 1)(n + k − 1)

(k − 1)(n + k + λ− 1)

}]
= 0.

The above expression may be written as

Γ(−λ)(k − 1)(n + k + λ− 1)Γ(n + 1)

Γ(n + λ + 1)
bn,k

+

k−1∑
j=0

bn,j (j − 1)
Γ(k − j − λ)

Γ(k − j + 1)

Γ(n + k − j)

Γ(n + k − j + λ + 1)
Pn,λ(k, j) = 0,

where Pn,λ(k, j) = n(n + k + λ− 1) + (k − j)(n + 2k − 2). Therefore,

k∑
j=0

bn,j (j − 1)
Γ(k − j − λ)

Γ(k − j + 1)

Γ(n + k − j)

Γ(n + k − j + λ + 1)
Pn,λ(k, j) = 0.(4.24)
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As the term corresponding to j = 0 in (4.24) is now the only one which is negative,
we then repeat the above argument in order to delete it. Replacing k with k − 1 in
(4.24), we obtain

k−1∑
j=0

bn,j (j − 1)
Γ(k − j − λ− 1)

Γ(k − j)

Γ(n + k − j − 1)

Γ(n + k − j + λ)
Pn,λ(k − 1, j) = 0.

Then

k−1∑
j=0

{
bn,j (j − 1)

Γ(k − j − λ− 1)

Γ(k − j)

Γ(n + k − j − 1)

Γ(n + k − j + λ)

× (k − λ− 1)(n + k − 1)

k (n + k + λ)
Pn,λ(k − 1, j)

Pn,λ(k, 0)

Pn,λ(k − 1, 0)

}
= 0.

(4.25)

Subtracting (4.25) from (4.24) gives

Γ(−λ)(k − 1)(n + k + λ− 1)Γ(n + 1)

Γ(n + λ + 1)
bn,k =

k−1∑
j=2

[
bn,j (j − 1)

Γ(k − j − λ− 1)

Γ(k − j)

× Γ(n + k − j − 1)

Γ(n + k − j + λ)

{
(k − λ− 1)(n + k − 1)

k (n + k + λ)

Pn,λ(k − 1, j)Pn,λ(k, 0)

Pn,λ(k − 1, 0)

− (k − j − λ− 1)(n + k − j − 1)

(k − j)(n + k − j + λ)
Pn,λ(k, j)

}]
,

which may be written as

Γ(−λ) k (k − 1)(n + k + λ)(n + k + λ− 1)Γ(n + 1)Pn,λ(k − 1, 0)

Γ(n + λ + 1)
bn,k

=

k−1∑
j=2

bn,j (j − 1)
Γ(k − j − λ− 1)

Γ(k − j + 1)

Γ(n + k − j − 1)

Γ(n + k − j + λ + 1)
Hn,λ(k, j),

(4.26)

where

Hn,λ(k, j) = (k − j)(n + k − j + λ)(k − λ− 1)(n + k − 1)Pn,λ(k, 0)Pn,λ(k − 1, j)

− k (n + k + λ)(k − j − λ− 1)(n + k − j − 1)Pn,λ(k, j)Pn,λ(k − 1, 0).

Therefore, a proof by induction may be carried out by the use of (4.26), provided that
Hn,λ(k, j) > 0 for all λ ∈ (−1/2, 0), n ∈ N, and k ≥ 3. The expression Hn,λ(k, j) is
a polynomial of degree 8 in the variables k, j, n, and λ which, apparently, cannot be
factorized except for a factor j. It has 163 terms, about half of which are negative,
and, additionally, it takes values arbitrarily close to zero. Despite these features, it is
possible to show that Hn,λ(k, j) > 0 performing the following change of variables:

1 + 2λ = μ
n− 1 = N
j − 2 = i
k − j − 1 = m

⎫⎪⎪⎬⎪⎪⎭ ⇔

⎧⎪⎪⎨⎪⎪⎩
λ = (μ− 1)/2
n = N + 1
j = i + 2
k = m + i + 3
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(i+2)(144m2N4μ+512m2i μN3 +1296m2N3 +384 i3m2μN +32 iN5 +48mN5 +960m3N2 +
640m4i μN + 768m3i2μN + 56 i2N4 + 256m3N3μ + 1305N + 2880μ + 20032 imN μ +
15648m2i μN + 7984 i2mμN + 2000μ2miN + 5248m3i μN + 4384 i2m2 μN + 912μ2m2iN +
10208μN2im + 2256 imN3μ + 4944μm2N2i + 2736μmN2i2 + 864μ2mN2i + 480μ2mN i2 +
16μ3miN +1280 i3mμN +9792μm+2244m2N +2832mN +1752 iN +13456μm2 +6768μN +
4512μ i+2712N2+576μ2+1344μ2m+3396m2N2+768m3N+5076mN2+3148 iN2+872 i2N+
2624 i2μ+9600μm3 +1104μ2m2 +6050μN2 +1286μ2N +672μ2i+2816 imN +17632μmN +
13680μm i+4304 imN2+11940μmN2+2496μ2mN+1264μ2mi+17748m2N μ +1488m2iN+
15952m2i μ + 912 i2mN + 7024 i2mμ + 9252 iN μ + 1872m2N2i + 8484m2N2μ + 256m3N i +
240m2N i2 + 1152 i2mN2 + 96 i3mN + 6692 iN2μ + 4636 i2μN + 1320μ2iN + 1548μ2mN2 +
1692μ2m2N + 48μ3mN + 720μ2m2i + 368μ2mi2 + 384m2N3i + 1776m2N3μ + 256m3N2i +
240m2N2i2 +2592m3N2μ+1680mN3i+3956mN3μ+2344 iN3μ+2564 i2N2μ+1008 i3μN +
440 i2μ2N + 1568 i3μm + 684μ2m2N2 + 480μ2m3N + 12μ3m2N + 128μ2m3i + 112μ2m2i2 +
892μ2N2i + 28μ3iN + 1961N3 + 96m4N + 2820mN3 + 1756 iN3 + 1324 i2N2 + 192 i3N +
2820μN3 + 1110μ2N2 + 672μ i3 + 48μ3N + 256μ2i2 + 384μ2m3 + 144m2N4 + 192m3N3 +
96m4N2 + 624mN4 + 392 iN4 + 508 i2N3 + 240 i3N2 + 16 i4N + 64 i4μ + 48μ2m4 + 770μN4 +
510μ2N3 + 654N4 + 78μ3N2 + 32μ2i3 + 3760m4μ + 192 imN4 + 240 i2mN3 + 96 i3mN2 +
672μmN4 + 444μ2mN3 + 60μ3mN2 + 32μ2mi3 + 2064m4N μ + 2432m4i μ + 2688m3i2μ +
1152m2i3μ+128 i4mμ+8672m3N μ+8960m3i μ+6704 i2m2μ+768m3i μN2 +688m2i2μN2 +
192m2i μ2N2 + 304 i2mμN3 + 224 i3mμN2 + 112 i2mμ2N2 + 128μ2miN3 + 16μ3miN2 +
192μN4im+128μ2m3iN +112μ2m2i2N +32μ2mi3N +96m2N3μ2 +424 iN4μ+608 i2N3μ+
276 iN3μ2 + 384 i3μN2 + 220 i2μ2N2 + 36μ3iN2 + 48μ2mN4 + 12μ3mN3 + 96μ2m3N2 +
12μ3m2N2 +288m4N2μ+80μ i4N +48μ2i3N +4μ3i2N +64 i4mμN +768μm5 +48μ2m4N +
48mN5μ + 32 iN5μ + 56 i2N4μ + 32 iN4μ2 + 48 i3μN3 + 16 i4μN2 + 16 i3μ2N2 + 36 i2μ2N3 +
4 i2μ3N2 + 8μ3N3i + 108N5 + 8N6 + 48 i3N3 + 16 i4N2 + 120μN5 + 122μ2N4 + 36μ3N3 +
2μ4N2 + 8μN6 + 12μ2N5 + 6μ3N4 + μ4N + μ4N3 + 192m5μN + 256 i3μm3 + 64 i4μm2 +
256m5i μ + 384m4i2μ + 64m6μ)/16

Fig. 4.1. Hn,λ(k, j) = HN+1,(μ−1)/2(m + i + 3, i + 2).

Note that μ ∈ (0, 1), N ≥ 0, i ≥ 0, m ≥ 0. Thus

Hn,λ(k, j) = HN+1,(μ−1)/2(m + i + 3, i + 2)
= (m + i + 5/2 − μ/2)(N + m + i + 3)(m + 1)(N + m + 3/2 + μ/2)
×{(N + 1)(N + m + i + 5/2 + μ/2) + (m + i + 3)(N + 2m + 2i + 5)}
×{(N + 1)(N + m + i + 3/2 + μ/2) + m (N + 2m + 2i + 3)}
− (m + 1/2 − μ/2) (m + i + 3) (N + m + 1) (N + m + i + 7/2 + μ/2)
×{(N + 1)(N + m + i + 5/2 + μ/2) + (m + 1)(N + 2m + 2i + 5)}
×{(N + 1)(N + m + i + 3/2 + μ/2) + (m + i + 2) (N + 2m + 2i + 3)} .

The resulting polynomial is of a similar complexity as the previous one. Neverthe-
less, a cumbersome calculation shows that all its coefficients are positive, which proves
that Hn,λ(k, j) ≥ 0. In order to help those readers interested in checking this last step
of the proof, we include Figure 4.1 displaying the above-mentioned polynomial which
has 197 terms as well as the factor (i + 2)/16. The presence of the summand 2880μ
(second line in Fig. 4.1) guarantees that Hn,λ(k, j) > 0 for λ ∈ (−1/2, 0), n ∈ N, and
k ≥ 3.
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THREE-DIMENSIONAL EDGE SINGULARITIES∗
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Abstract. In the case that the domain has reentrant edges, the standard finite element method
loses its global accuracy because of singularities on the boundary. To overcome this difficulty, FOSLL*
is applied in this paper. FOSLL* is a methodology for solving PDEs using the dual operator. Here,
a modified FOSLL* method is developed that employs a partially weighted functional and allows the
use of a standard finite element scheme without losing global accuracy.
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1. Introduction. The Maxwell equations are a set of fundamental equations
governing all macroscopic electromagnetic phenomena. It is known that the numerical
resolution of the full system of the Maxwell equations can be very expensive. However,
it is possible to use a simplified model that approximates the Maxwell equations and
explains particular problems encountered in electromagnetism. In many cases, one can
use the so-called eddy current model, which is obtained by neglecting the displacement
current in the Maxwell equations. Here, we consider the following two basic laws of
electricity and magnetism, which form the eddy current model:

Faraday’s Law :
∂μH

∂t
+ ∇× E = 0,

Ampère’s Law : ∇× H − σE = 0,

where E is the electric field intensity, H is the magnetic field intensity, μ is the
permeability, and σ is the conductivity. We consider two types of boundary conditions

n × E = 0, n · H = 0, and n · E = 0, n × H = 0,

where n is the unit external normal vector. The electric and magnetic field intensities,
E and H, which follow Faraday’s and Ampère’s laws with homogeneous boundary
conditions, satisfy

E ∈ H0(∇×) ∩H(∇ · σ), H ∈ H(∇×) ∩H0(∇ · μ)

or

E ∈ H(∇×) ∩H0(∇ · σ), H ∈ H0(∇×) ∩H(∇ · μ).

For a precise definition of the above Sobolev spaces, see section 2. In addition, if
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• μ and σ are smooth,
• either the domain is a convex polyhedron or the boundary is C1,1, and
• different types of boundary conditions do not meet at an edge with the inter-

nal angle > π/2,
then E ∈ (H1)3 and H ∈ (H1)3. Standard numerical techniques can be used to
approximately solve the equations under the above smoothness assumptions. For
example, first-order system least squares (FOSLS) with H1-finite element spaces
and multigrid methods can be used to solve these equations efficiently (cf. [3], [4],
[14]). The FOSLS method is based on minimization of the squared residual norm,
||LV −F||20, of the system LU = F, where L represents a system of linear first-order
equations, U a vector of unknowns, and F a vector of known functions. The standard
least squares method approximates unknown U in the given H1-finite element space
when the bilinear form corresponding to ||LV−F||20 is equivalent to the product H1-
norm, and this H1-equivalence is provided under sufficient smoothness assumptions
on the domain, coefficients, and data of the original problem.

In the presence of discontinuous coefficients, nonsmooth, nonconvex domain, or
certain irregular boundary conditions, the solution may not be in H1. This pre-
cludes the use of H1-conforming finite element spaces in least squares and Galerkin
formulations of the Maxwell equations.

A partial list of the remedies for this loss of H1-regularity in FOSLS can be found
in [1], [5], [18], and [24]. In [5], the first-order system LL* (FOSLL*) method was
introduced to overcome the difficulty that arises from discontinuous coefficients. The
basic idea of the FOSLL* method can be explained by looking at a linear system of
equations, Ax = b. The least squares method minimizes ||Ax − b||20, which leads
to the normal equations AtAx = Atb. The dual of this method involves the system,
AAty = b, where x = Aty. FOSLL* solves AAty = b by minimizing the functional
〈Aty, Aty〉 − 2 〈y,b〉 which is equivalent to minimizing ||Aty − x||20. For a given
first-order linear system of PDEs, LU = F, the FOSLL* method solves the system,
LL∗U∗ = F, by minimizing the functional, ||L∗U∗ − U||20, with the dual variable,
U∗, and the L2-adjoint operator, L∗, of L. Minimizing ||L∗U∗ −U||20 over U∗ in the
domain of L∗ is accomplished by solving the weak problem of finding U∗ such that

〈 L∗U∗, L∗V 〉 = 〈 U, L∗V 〉 = 〈 LU,V 〉 = 〈 F,V 〉(1.1)

for every V in the domain of L∗. Then, the solution we seek is U = L∗U∗. The
equation in (1.1) shows that we can solve the dual problem with the given data
(right-hand side) of the original problem without knowing the exact solution, U.

In [18], a modified FOSLL* method was developed that allows an accurate ap-
proximation using H1-conforming finite elements for the equations having singular
boundary points in two dimension. The results in [24] established a modification of
the FOSLS method for the problem in a two-dimensional nonconvex domain having ir-
regular boundary conditions. A weighted norm was used in [24] in order to reduce the
difficulties from dealing with the absence of the smoothness of the problem. As a dif-
ferent type of remedy, one of the most common approaches is to use Raviart–Thomas
or Nédélec edge elements as a finite element space [20]. These Raviart–Thomas and
Nédélec edge element spaces are in H(∇·) and H(∇×), respectively, but not in (H1)3.
Another potential form to reduce the difficulties from low regularity of the solution
was introduced in [2]. The analysis in [2] is based on a weak variational formula-
tion; the authors employ an H−1-norm least-squares approach in discrete space to
avoid dealing with the inf-sup condition. In [10], weighted regularization of time
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harmonic Maxwell equations in a polyhedral domain using a Galerkin formulation
was investigated. Introducing special weights inside the divergence integral allows
the approximation of nonsmooth solutions by an H1-conforming finite element. Er-
ror estimates under the assumptions of special finite element spaces were established
in [10].

As mentioned above, modifications to FOSLL* were developed that effectively
handle discontinuous coefficients in two and three dimensions and irregular boundary
points in two dimensions. However, there has not been any previous attempt to use
FOSLL* to handle the difficulty from reentrant edges in three dimensions. First, we
use standard FOSLL* to abate the difficulties from discontinuous coefficients, and
then modify it to deal with the reentrant edges. We develop a modified FOSLL*
using partially weighted norms in the functional to be minimized, so that we can use
H1-conforming finite elements. We do not consider the case that different types of
boundary conditions meet at an edge with an internal angle greater than π/2 or the
case in which the domain has conical points and vertices, where several reentrant edges
meet. However, we believe that the approach developed here can be easily extended
to those cases.

The approximate solution that the FOSLL* approach produces is of the form
L∗Uh, where Uh is an H1-conforming finite element. This approximation contains
the curl-free Nédélec edge elements. Our approach involves a substantial decrease
in computational cost over the curl-curl formulation because it is easy to implement
and the resulting linear systems are easily solved by algebraic multigrid methods [23]
even with higher order elements. We obtain the same error estimates as the Nédélec
element approach in the L2-norm and we can easily extend our approach to obtain the
H(∇×)-norm, while the approach in [2] provides only an L2-error estimate. Moreover,
we obtain error estimates in H(∇ · μ)- and H(∇ · σ)-norms, too.

There are similarities between the FOSLL* approach developed here and the
Galerkin formulation with the weighted regularization presented in [10]. While FOSLL*
differs in many respects from a Galerkin formulation, under special circumstances we
show that they are equivalent (see section 5). In [10], σ was assumed to be constant
and E was approximated. It is easy to see that if μ were assumed constant, the same
approach could be used to approximate for H. FOSLL* allows both σ and μ to be
discontinuous in a natural way. We obtain the same error estimates as the approach
in [10] while employing any standard H1-conforming finite element spaces.

In this paper, we consider the Maxwell equations with discontinuous coefficients
and irregular boundary. The error estimates established here hold for standard H1-
conforming finite element spaces and provide convergence rates that depend on the
power of the weighting used. Numerical tests show surprising agreement with the
theory. The model problem is given in section 2. In section 3, we introduce the FOSLS
and FOSLL* methods briefly and explain the difficulties arising from singularities. In
section 4, we modify standard FOSLL* and show that H1-conforming elements can
be used. A scaling is introduced and the connection to the Galerkin formulation in
a special case is explored in section 5. In section 6, the discretization error estimates
are obtained. The numerical results are given in section 7.

2. Model problem. Let Q be a polygon in R
2 with a reentrant corner, that is,

a corner that has inner angle bigger than π. Let I ∈ R be a bounded interval, and
consider the prototype domain, Ω := Q× I ⊂ R

3, which is a polyhedral cylinder. In
this paper, we restrict ourselves to the case where the domain has one reentrant edge;
however, the general case follows easily. By translation and rotation, we may suppose
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that the reentrant edge on the boundary that induces the singularity is on the z-axis.
Throughout this paper, we use 〈·, ·〉 and || · || to denote the L2-inner product and

norm, respectively. We use || · ||k to denote the standard Sobolev Hk-norm and | · |k
to denote the seminorm in Hk(Ω). Let b ∈ L∞(Ω) be a scalar function, and define

H0(∇×) ∩H(∇· b) := {u ∈ L2(Ω)3 | ||∇× u||2+||∇· bu||2<∞, n × u = 0 on ∂Ω},

H(∇×) ∩H0(∇· b) := {u ∈ L2(Ω)3 | ||∇× u||2+||∇· bu||2<∞, n · u = 0 on ∂Ω}.

Define Hk
β (Ω) as the weighted Sobolev space of functions u such that

||u||2k,β =

k∑
|m|=0

∫
Ω

r2(β+|m|−k) |Dmu|2 dΩ < ∞,

where r := r(x) is the distance of x ∈ Ω from the reentrant edge. We define partially
weighted norms to use in our modification of the FOSLL* functional, for u,v ∈ L2(Ω)3

and p, q ∈ H0
β(Ω), as

||(ut, p)t||2β := ||u||2 + ||p||20,β ,(2.1)

||(ut, p,vt, q)t||2β := ||u||2 + ||p||20,β + ||v||2 + ||q||20,β .(2.2)

In the above, note that only the scalar terms, p and q, involve weighted norms.
Now, consider the following eddy current problem:

∂μH

∂t
+ ∇× E = 0 in Ω,(2.3)

∇× H − σE = 0 in Ω,

with E(x, t) the electric field intensity, H(x, t) the magnetic field intensity, μ(x) the
permeability, and σ(x) the conductivity. We assume that coefficients μ(x) and σ(x)
are piecewise smooth, positive real valued, and bounded; that is, they satisfy

μ0 ≤ μ(x) ≤ μ1, σ0 ≤ σ(x) ≤ σ1 for all x ∈ Ω,(2.4)

for positive constants μ0, μ1, σ0, and σ1. We consider two types of boundary condi-
tions,

type I : n × E = 0, n · H = 0,

type II : n · E = 0, n × H = 0.

Type I corresponds to perfectly conducting walls, while type II corresponds to per-
fectly insulating walls. Using the backward Euler approximation in time gives

μ

δt
H + ∇× E =

μ

δt
Hold,

where Hold is the solution at the previous time step. Equation (2.3) implies

∇ · σE = 0, ∇ · μH = ∇ · μHold.(2.5)
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Without loss of generality, we assume ∇ · μHold = 0. The resulting system then is

−σE + ∇× H = 0, ∇× E + μ̃H = μ̃Hold,

∇ · σE = 0, ∇ · μH = 0,(2.6)

where μ̃ = μ/δt. Since δt is a constant, ∇ · μ̃H = 0. Let δt−1 be absorbed into
μ and μ̃ be replaced with μ. It is known that there exists a solution, (E,H), of
the system (2.6) in (H(∇×) ∩H(∇ · σ)) × (H(∇×) ∩H(∇ · μ)) satisfying type I or
II boundary conditions (cf. [14]). From now on, we consider only the case that the
domain is surrounded by perfectly conducting walls, since the procedure is the same
for perfectly insulating walls. Moreover, the case of mixed boundary conditions can
be handled in a similar fashion.

In this paper, c is a generic term that is used to denote various constants. Its de-
pendence on other quantities is indicated when necessary. For convenience of notation,
superscript t for the vector transpose is omitted.

3. FOSLS and FOSLL*. In this section, we give a brief introduction to FOSLS
and FOSLL* to explain the basic ideas and to show how they suffer in the presence
of singularities. First, we introduce slack variables. Even though system (2.6) can
be solved by itself, we extend the system since the extended system provides H1-
equivalence to the bilinear form of ||L∗U∗−U|| in FOSLL* under sufficient smoothness
assumptions. We extend system (2.6) by adding slack variables, s and k, to yield

−σE + ∇× H − ∇k = 0 in Ω,
− a1s + ∇ · μH = 0 in Ω,

∇× E − ∇s + μH = μHold in Ω,
∇ · σE + a2k = 0 in Ω,

n × E = 0, n · H = 0, k = 0 on ∂Ω,

with nonnegative constants a1 and a2. The above system can be rewritten as

LU = L(E, s,H, k) = F in Ω,

where

LU =

⎡⎢⎢⎣
−σI 0 ∇× −∇

0 −a1 ∇ · μ 0
∇× −∇ μI 0
∇ · σ 0 0 a2

⎤⎥⎥⎦
⎡⎢⎢⎣

E
s
H
k

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
0

μHold

0

⎤⎥⎥⎦ = F.(3.1)

The domain of L is

D(L) = (H0(∇×) ∩H(∇ · σ)) ×H1(Ω)/R × (H(∇×) ∩H0(∇ · μ)) ×H1
0 (Ω),

which is a Hilbert space under the norm

||(E, s,H, k)||2L := ||E||2 + ||∇ × E||2 + ||∇ · σE||2 + ||s||21

+||H||2 + ||∇ × H||2 + ||∇ · μH||2 + ||k||21.(3.2)
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The range of L is L2(Ω)8. It is easily shown that s = 0 and k = 0 if (E, s,H, k) is
the solution of (3.1) in D(L) as long as the constants a1 and a2 are nonnegative. The
FOSLS method minimizes the least-squares functional

F(U;F) = || LU − F ||2

in the weak sense, that is, we look for the solution of the corresponding weak form as
follows: Find U ∈ D(L) satisfying

〈 LU,LV 〉 = 〈 F,LV 〉 for all V ∈ D(L).(3.3)

The FOSLL* approach solves the corresponding dual problem

L∗U∗ = L∗(U , p,V, q) = U in Ω,(3.4)

where the L2-adjoint operator L∗ of L is defined by

L∗U∗ =

⎡⎢⎢⎣
−σI 0 ∇× −σ∇

0 −a1 ∇· 0
∇× −μ∇ μI 0
∇· 0 0 a2

⎤⎥⎥⎦
⎡⎢⎢⎣

U
p
V
q

⎤⎥⎥⎦ =

⎡⎢⎢⎣
E
s
H
k

⎤⎥⎥⎦ = U,(3.5)

and L∗ : D(L∗) → L2(Ω)8 with

D(L∗) = (H0(∇×) ∩H(∇·)) ×H1(Ω)/R × (H(∇×) ∩H0(∇·)) ×H1
0 (Ω).

To solve the dual problem we minimize the dual functional

F∗(U∗;U) = || L∗U∗ − U ||2(3.6)

on D(L∗). The corresponding weak form is the following: Find U∗ ∈ D(L∗) satisfying

〈 L∗U∗,L∗V∗ 〉 = 〈 U,L∗V∗ 〉 = 〈 F,V∗ 〉 for all V∗ ∈ D(L∗),(3.7)

where U is the solution of (3.1) for given F. Equation (3.7) shows that we can solve
the dual problem with the given data, F, of the original problem without knowing
the solution, U. Then, we obtain the solution from (3.4), U = L∗U∗.

Lemma 3.1. There exists a unique solution, U ∈ D(L), satisfying (3.3).
Proof. Let (E, e,H, h) ∈ D(L). Using the same manner which was used to prove

Lemmas 3.4 and 3.6 in [12] for E, H and the Poincaré inequality for e, h, we have

||(E, e,H, h)||2L ≤ c
(
||∇ × E||2 + ||∇· σE||2 + |e|21 + ||∇ ×H||2 + ||∇· μH||2 + |h|21

)
.

Since n × E = 0 and h = 0 on the boundary, the conditions in (2.4) provide

μ−1
1 ||∇ × E||2 ≤

〈
μ−1∇× E,∇× E −∇e + μH

〉
− 〈∇× E,H〉 ,

σ1
−1||∇ ×H||2 ≤

〈
σ−1∇×H,−σE + ∇×H −∇h

〉
+ 〈∇ ×H,E〉 .

The above two inequalities, together with Hölder’s inequality and the ε-inequality,
give

||∇ × E||2 + ||∇ ×H||2 ≤ c
(
||∇ × E −∇e + μH||2 + || − σE + ∇×H −∇h||2

)
.

Consider the following several different cases for a1 and a2:
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(a) If a1 �= 0 and a2 �= 0, then, by Green’s formula,

||∇ · σE||2 = 〈∇ · σE,∇ · σE + a2h〉 + a2 〈σE,∇h〉 ,(3.8)

||∇ · μH||2 = 〈∇ · μH,∇ · μH − a1e〉 − a1 〈μH,∇e〉 ,(3.9)

||∇e||2 = 〈∇e,−∇× E + ∇e− μH〉 + 〈∇e, μH〉 ,(3.10)

||∇h||2 = 〈∇h, σE −∇×H + ∇h〉 − 〈∇h, σE〉 .(3.11)

Multiply (3.10) by a1 and (3.11) by a2 and add to (3.9) and (3.8), respectively.
Again use Hölder’s inequality and the ε-inequality to obtain

||∇ · σE||2 + ||∇ · μH||2 + ||∇e||2 + ||∇h||2 ≤ c ||L(E, e,H, h)||2.

(b) If a1 = a2 = 0, taking Hölder’s and Poincaré inequalities in (3.10) and (3.11)
implies ||∇e||2 + ||∇h||2 ≤ c ||L(E, e,H, h)||2.

(c) If only one of a1 and a2 is 0, for example a1 = 0 and a2 �= 0, then we use the
same calculation in case (a) for ∇e. Multiply (3.11) by a2 and add it to (3.8)
to get ||∇ · σE||2 + ||∇h||2 ≤ c (||∇ · σE + a2h||2 + || − σE +∇×H −∇h||2).

Thus, ||(E, e,H, h)||2L ≤ c ||L(E, e,H, h)||2, so that L is coercive. It is easy to prove
the continuity of L by using the triangle inequality. Therefore, by the Lax–Milgram
theorem, there exists the solution of (3.3).

Now, we consider the dual weak problem (3.7). In a similar manner, we can show
the existence and uniqueness of the solution for (3.7).

Lemma 3.2. There exists a unique solution, U∗ ∈ D(L∗), satisfying (3.7).
Corollary 3.3. The operator L : D(L) → L2(Ω)8, defined in (3.1), is bijective.
Proof. In Lemmas 3.1 and 3.2, it is proved that L and L∗, defined in (3.1) and

(3.5), respectively, are coercive. Therefore, L and L∗ are injective. The coercivity
and continuity of L provide that L is a closed operator. Then, by the closed range
theorem (cf. [25]), the injectivity of L∗ induces the surjectivity of L. Thus, L is
bijective.

Corollary 3.4. The operator L∗ : D(L∗) → L2(Ω)8, defined in (3.5), is bijec-
tive.

Proof. Since L is a closed operator, by Lemma 2.1 in [5] and Corollary 3.3, L∗ is
bijective.

Remark 3.5. Corollary 3.4 implies that, for given F ∈ L2(Ω)8, there exists a
unique solution U∗ ∈ D(L∗) satisfying the weak form (3.7).

We consider several cases that incur difficulties in approximately solving the
eddy current problem with H1-conforming finite elements. Suppose that there are
no boundary singularities but μ and σ are not smooth. Because the coefficients are
not smooth, D(L) is not imbedded into H1(Ω)8. In fact, H1(Ω)8 is a closed, proper
subspace of D(L). Therefore, H1-conforming finite element spaces cannot be used
to approximate the solution of system (3.1). The FOSLL* method may be used to
overcome this difficulty. The efficiency of FOSLL* in this context can be seen by
observing the dual operator L∗ in (3.5). All of the discontinuous coefficients inside
the derivatives in the L system are outside the differential operators in the L∗ sys-
tem. Accordingly, we have D(L∗) imbedded into H1(Ω)8. Now, we suppose that μ
and σ are not smooth and there is a boundary singularity. Although we can resolve
the difficulty with the discontinuous coefficients by applying the standard FOSLL*
method, the boundary singularity still leads to

H0(∇×) ∩H(∇·) �⊂ H1(Ω)3 and H(∇×) ∩H0(∇·) �⊂ H1(Ω)3.
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In [18], a modification of the FOSLL* method was developed that overcomes this
difficulty for the general scalar elliptic PDEs in the plane. In this paper, we introduce
a different type of modification of FOSLL* to mitigate the difficulties with boundary
singularities in three space dimensions.

4. The modified FOSLL* method. In this section, we present a modified
FOSLL* functional in which the second and fourth equations in (3.5) involve weighted
norms, that is, the functional is given by ‖L∗U∗ −U‖2

α. Note that we have used the
partially weighted norm that was introduced in (2.2). In subsection 4.2, we show
how this modified FOSLL* functional works in the presence of singularities. Before
getting into the details about the modified FOSLL* functional, we first show several
Poincaré-type inequalities which are useful in many places. The first lemma appears
in [15].

Lemma 4.1. Let Ω = Ω1 × (a, b) with Ω1 = {(r, θ)|0 < r < R < 1, 0 < θ < ω, 0 <
ω ≤ 2π}. If q ∈ H1

β+1(Ω) vanishes on ∂Ω, then, for any β,

||q||0,β ≤ c ||∇q||0,β+1.(4.1)

Using the above lemma, we show the following.
Lemma 4.2. Assume that Ω is bounded, Lipschitz continuous, and simply con-

nected. Let φ ∈ H0(∇×) ∩ H(∇·); then there exists a constant c such that, for any
0 ≤ α ≤ 1,

||φ|| ≤ c (||∇ × φ|| + ||rα∇ · φ||) .

Proof. Let φ ∈ H0(∇×) ∩H(∇·). By Lemma 3.4 in [12], φ can be written as

φ = ϕ + ∇ξ,(4.2)

where ϕ ∈ H0(∇×) ∩H(∇·), ∇ · ϕ = 0, and ξ ∈ H1
0 (Ω) satisfies Δξ = ∇ · φ. Using

the Cauchy–Schwarz inequality, Lemma 4.1, and the assumption on α yields

||∇ξ||2 = 〈∇ξ,∇ξ〉 = 〈−∇ · φ, ξ〉 ≤ ||rα∇ · φ|| ||r−αξ||

≤ c||rα∇ · φ|| ||r1−α∇ξ|| ≤ c||rα∇ · φ|| ||∇ξ||.(4.3)

Now, (4.2), (4.3), and Lemma 3.4 in [12] imply

||φ|| ≤ c(||ϕ|| + ||∇ξ||) ≤ c(||∇ × ϕ|| + ||rα∇ · φ||) = c(||∇ × φ|| + ||rα∇ · φ||).

Lemmas 4.3 and 4.4 basically claim the same inequality in Lemma 4.1 without
the zero boundary condition.

Lemma 4.3. Assume Ω is the same as in Lemma 4.1 and β > −1. For p ∈
H1

β+1(Ω), there exists a constant c such that

||p||0,β ≤ c (||p||0,β+1 + ||∇p||0,β+1).

Proof. Let R0 = R
4 , and let χ be a smooth function defined in Ω such that

χ(r) = 1 when r < R0 and χ(r) = 0 when r > 2R0 and |χ′| ≤ cR−1
0 for some constant

c. Since 1 = χ + 1 − χ,∫ R

0

r2β |p|2rdr =

∫ R

0

r2β |χp + (1 − χ)p|2 rdr ≤ 2

∫ R

0

r2β
(
|χp|2 + |(1 − χ)p|2

)
rdr.
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By the modified Hardy’s inequality in [16], for β > −1,∫ R

0

r2β |χp|2r dr ≤ c

∫ R

0

r2β+2

∣∣∣∣∂(χp)

∂r

∣∣∣∣2 r dr ≤ c

∫ 2R0

0

r2β+2

(
1

R2
0

|p|2 +

∣∣∣∣∂p∂r
∣∣∣∣2
)
r dr.

Since (1 − χ)p has nonzero values only on (R0, R),∫ R

0

r2β |(1 − χ)p|2r dr =

∫ R

R0

r2β |(1 − χ)p|2r dr =

∫ R

R0

r−2 r2β+2|(1 − χ)p|2r dr

≤ R0
−2

∫ R

R0

r2β+2|(1 − χ)p|2r dr ≤ R0
−2

∫ R

0

r2β+2|p|2r dr.

Hence ∫
Ω

r2β |p|2dΩ ≤ c R−2

∫
Ω

r2β+2|p|2dΩ + c

∫
Ω

r2β+2|∇p|2dΩ.

To handle ||p||0,β+1 in Lemma 4.3, we prove the following lemma.
Lemma 4.4. Let p ∈ H1(Ω) satisfying ||∇p||β+1−ε < ∞; then there exist con-

stants b and c such that, for any β > −1 and ε > 0,

||p− b||0,β ≤ c ||∇p||0,β+1−ε.

Proof. Here, we show an outline of the proof. The details can be found in [17].
Let p ∈ H1(Ω) satisfy the assumption and consider the following expression for P :

p(r, θ, z) − p(r0, θ0, z0)

= p(r, θ, z) − p(r, θ0, z) + p(r, θ0, z) − p(r0, θ0, z) + p(r0, θ0, z) − p(r0, θ0, z0)

=

∫ θ

θ0

∂p

∂θ̃
(r, θ̃, z) dθ̃ +

∫ r

r0

∂p

∂r̃
(r̃, θ0, z) dr̃ +

∫ z

z0

∂p

∂z̃
(r0, θ0, z̃) dz̃.

Multiply by r
β+ 1

2
0 and perform the integration

∫
Ω
r0dr0dθ0dz0 on both sides:

c1p(r, θ, z) =

∫
Ω

r
β+ 1

2
0 p(r0, θ0, z0)r0dr0dθ0dz0 +

∫
Ω

r
β+ 1

2
0

{∫ θ

θ0

∂p

∂θ̃
(r, θ̃, z) dθ̃

+

∫ r

r0

∂p

∂r̃
(r̃, θ0, z) dr̃ +

∫ z

z0

∂p

∂z̃
(r0, θ0, z̃) dz̃

}
r0dr0dθ0dz0,(4.4)

where c1 =
∫
Ω
r
β+ 1

2
0 r0dr0dθ0dz0. Let

b =
1

c1

∫
Ω

r
β+ 1

2
0 p(r0, θ0, z0) r0dr0dθ0dz0;

then |b| ≤ c||p|| < ∞. Subtracting b from both sides in (4.4), changing the order of

integration, inserting r̃
−1+ε

2 · r̃ 1−ε
2 = 1 in order to group r̃

1−ε
2 with the ∂p

∂r̃ term, using
the Cauchy–Schwarz inequality, and squaring both sides yield

|p(r, θ, z) − b|2 ≤ c

{∫ ω

0

∣∣∣∣∂p∂θ̃ (r, θ̃, z)

∣∣∣∣2 dθ̃ +

∫ ω

0

∫ R

0

r̃2β+3

∣∣∣∣∂p∂r̃ (r̃, θ0, z)

∣∣∣∣2 dr̃dθ0

+

∫ ω

0

{
Rε

ε

∫ R

r

r̃1−ε

∣∣∣∣∂p∂r̃ (r̃, θ0, z)

∣∣∣∣2 dr̃ +

∫ R

0

r2β+3
0

∫ b

a

∣∣∣∣∂p∂z̃ (r0, θ0, z̃)

∣∣∣∣2 dz̃dr0
}
dθ0

}
.
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To establish the weighted L2-norm of |p− b|, multiply by r2β and take an integration
over Ω. Then, we have∫

Ω

r2β |p(r, θ, z) − b|2dΩ ≤ c

∫
Ω

r2β+2

(∣∣∣∣1r ∂p∂θ
∣∣∣∣2 +

∣∣∣∣∂p∂r
∣∣∣∣2 +

∣∣∣∣∂p∂z
∣∣∣∣2
)

+ r2β+2−ε

∣∣∣∣∂p∂r
∣∣∣∣2 dΩ

≤ c

∫
Ω

r2β+2−ε|∇p |2dΩ,

where c = c(Ω, β, ε, (β + 1)−1, ε−1) → ∞ as ε → 0 and β → −1.
Lemma 4.5. Assume that Ω is bounded, Lipschitz continuous, and simply con-

nected. Let ψ ∈ H(∇×) ∩ H0(∇·); then there exists a constant c such that, for any
0 ≤ α < 1,

||ψ|| ≤ c (||∇ × ψ|| + ||rα∇ · ψ||).

Proof. The proof follows similarly to Lemma 4.2 using Lemmas 4.3 and 4.4.
If a vector function is in H1 and satisfies certain boundary conditions, then the

sum of norms of div and curl is equal to the semi-H1-norm.
Lemma 4.6. Let Ω be a bounded polyhedral domain in R

3. If v ∈ H1(Ω)3 and
satisfies n · v = 0 or n × v = 0 on the boundary ∂Ω, then

||∇ · v||2 + ||∇ × v||2 = ||∇v||2.

Proof. See [7] and [8].
The basic idea of the modification here is to use a weighted norm in certain

terms of the least squares functional in (3.6). Using a weighted norm allows the
existence of a sequence, {Un} ⊂ D(L∗) ∩ H1(Ω)8, converging to the nonsmooth
solution, U∗ ∈ D(L∗), in the functional norm. Consider the operator L∗ blockwise.
Let DA = H0(∇×) ∩H(∇·) and DB = H(∇×) ∩H0(∇·) and define

A =

[
∇× −μ∇
∇· 0

]
and B =

[
∇× −σ∇
∇· 0

]
.(4.5)

We first show that there exist sequences {Xn} and {Yn} in H1(Ω)4 such that

||AXn − F ||α −→ 0 and ||BYn −G||α −→ 0 as n −→ ∞,(4.6)

for given F,G ∈ L2(Ω)4 and the norm || · ||α defined in (2.1). We again emphasize that
this notation implies that only the scalar term, the term involving ∇·, is weighted.
Then, we discuss the density of H1-functions in DA and DB under weighted norms.

4.1. The density arguments in DA and DB. As a first step to show the
existence of H1-sequences satisfying (4.6), we apply the well-known L2-decomposition
and show several lemmas. The next lemma provides the decomposition of L2(Ω)3.

Lemma 4.7. Every function w ∈ L2(Ω)3 has the orthogonal decomposition

w = ∇× u + ∇ψ,

where ψ ∈ H1(Ω)/R is the only solution of 〈∇ψ,∇ξ〉 = 〈w,∇ξ〉, for any ξ ∈ H1(Ω),
and u ∈ H1(Ω)3 satisfies ∇ · u = 0.

Proof. See [12] for details.
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Lemma 4.8. For given F ∈ L2(Ω)4, there exists a unique solution, X ∈ DA ×
H1(Ω)/R , of AX = F .

Proof. The result follows from a proof similar to the proofs of section 3.
Analogously, we show the following lemma.
Lemma 4.9. For given G ∈ L2(Ω)4, there exists a unique solution, Y ∈ DB ×

H1
0 (Ω), of BY = G.

Now, we provide some decompositions in DA and DB .
Theorem 4.10. Given ũ ∈ DA, there exists u ∈ H1(Ω)3 ∩DA and φ ∈ H1

0 (Ω)
such that

ũ = u + ∇φ.

Proof. Use Lemma 4.7 to write ∇ × ũ = ∇ × u0 + ∇ψ with u0 ∈ H1(Ω)3 and
ψ ∈ H1(Ω)/R. Taking the divergence of the above equation leads to the conclusion
that ψ = 0. Thus, ∇ × (ũ − u0) = 0, which implies that ũ = u0 + ∇φ0, for some
φ0 ∈ H1(Ω)/R. Now, 0 = n × ũ = n × u0 + n ×∇φ0. Since u0 ∈ H1(Ω)3, we have

n × u0 ∈ H
1
2 (∂Ω)3. Thus, n × ∇φ0 = −n × u0 on ∂Ω, which implies trace(φ0) ∈

H
3
2 (∂Ω). Let φ2 ∈ H2(Ω) satisfy trace(φ0) = trace(φ2). Then, let

u = u0 + ∇φ2, φ = φ0 − φ2.

Since n ×∇φ = 0, the theorem is proved.
Theorem 4.11. Given ṽ ∈ DB, there exists v ∈ H1(Ω)3 ∩DB and ψ ∈ H1(Ω)

with n · ∇ψ = 0 on ∂Ω such that

ṽ = v + ∇ψ.

Proof. The proof is similar to the proof of Theorem 4.10. Here, we construct ψ
satisfying n · ∇ψ = 0 on the boundary.

In the domain with a reentrant edge, the solution of the Poisson equation

−Δφ = f

for f ∈ L2(Ω), with a Dirichlet or Neumann boundary condition is, in general, not
in H2(Ω). It is in H2

loc(Ω); that is, φ ∈ H2(S) for any open subset S of Ω such that
its closure S does not meet the reentrant edge (cf. [13]). The solution, φ, is also in
H1+γ(Ω) for some γ ∈ (0, 1). A more precise measure is given by the weighted Sobolev
space. This solution φ is in H2

β(Ω) with β related to the angle of the reentrant edge

(cf. [15], [21]). In the following theorems, we establish H1-sequences satisfying (4.6).
From this point forward, if not mentioned explicitly, Ω is the prototype domain

which was defined in section 2.
Theorem 4.12. For given F ∈ L2(Ω)4 and an operator A defined in (4.5), there

exists a sequence {Xn} ⊂ H1(Ω)4 ∩
(
DA ×H1(Ω)/R

)
such that

‖AXn − F‖α −→ 0 as n → ∞,

where α > 1 − λ, λ = π/ω, and ω is the angle of the reentrant edge.
Proof. Let F = (f1, f2) ∈ L2(Ω)4. From Lemma 4.8, we have ũ ∈ DA and

p̃ ∈ H1(Ω)/R satisfying ∇ × ũ − μ∇p̃ = f1 and ∇ · ũ = f2. By Theorem 4.10, ũ is
decomposed of ũ = u+∇φ, where u ∈ H1(Ω)3∩DA and φ ∈ H1

0 (Ω). Here, φ satisfies{
∇ · ∇φ = −∇ · u + f2 in Ω,

φ = 0 on ∂Ω.
(4.7)
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Given α > 1 − λ, choose β such that β < α and |β − 1| < λ. It is known that the
solution φ is in H1(Ω) ∩ H2

β(Ω). Define Ωn = ({(x, y)| 1/(2n) ≤ r ≤ 1/n} × R) ∩ Ω

with r =
√
x2 + y2 and δn(r) a smooth function satisfying

δn(r) =

{
0 if r < 1/(2n),
1 if r > 1/n,

(4.8)

where | δ′n | ≤ c1n and | δ′′n | ≤ c2n
2, for some positive constants c1 and c2. Define

φn = δnφ; then φn ∈ H2(Ω) (cf. [13]). Therefore, un := u + ∇φn is in H1(Ω)3 ∩DA

and satisfies

∇× un − μ∇p̃ = ∇× u − μ∇p̃ = ∇× ũ − μ∇p̃ = f1.

Using the triangle inequality several times and the properties of δn yields

‖∇ · un − f2‖2
0,α = ‖∇ · (u +∇φn) −∇ · (u +∇φ)‖2

0,α =

∫
Ω

r2α|Δ((δn(r) − 1)φ)|2 dΩ

=

∫ ∫ (∫ 1
2n

0

r2α|Δφ|2 rdr +

∫ 1
n

1
2n

r2α|Δ((δn(r) − 1)φ)|2 rdr

)
dθdz

≤ c

(
1

2n

)2(α−β)

||Δφ||20,β + c

∫
Ωn

r2α
(
|Δφ|2 + n4|φ|2 + n2

(
|∂xφ|2 + |∂yφ|2

))
dΩ

≤ c n−2(α−β)|φ|22,β + c n−2(α−β)||φ||22,β = c n−2(α−β)||φ||22,β .

The right-hand side goes to 0 as n goes to infinity. By letting Xn := (un, p̃), the proof
is completed.

We can show the next theorem in the same manner.
Theorem 4.13. For given G ∈ L2(Ω)4 and an operator B defined in (4.5), there

exists a sequence {Yn} ⊂ H1(Ω)4 ∩
(
DB ×H1

0 (Ω)
)

such that

‖BYn −G‖α −→ 0 as n → ∞,

where α > 1 − λ, λ = π/ω, and ω is the angle of the reentrant edge.
Now, we state some density results. Define

DAα := {u ∈ L2(Ω)3 | ||∇ × u|| + ||∇ · u||0,α < ∞, n × u = 0 on ∂Ω},(4.9)

DBα := {u ∈ L2(Ω)3 | ||∇ × u|| + ||∇ · u||0,α < ∞, n · u = 0 on ∂Ω},(4.10)

which are Hilbert spaces under the norm ||u||DAα
= ||u||DBα

:= (||u||2 + ||∇× u||2 +

||∇ · u||20,α)
1
2 . The density statement for DAα

can be found in [8], [10], and [11] for
α ∈ (1 − λ, 1). Here, we extend the density results to α > 1 − λ.

Theorem 4.14. DAα ∩ H1(Ω)3 is dense in DAα
when α > 1 − λ, and DBα

∩
H1(Ω)3 is dense in DBα

when α > 1 − λ.
Proof. We separate the proof into two cases. First, we consider 1 − λ < α < 1.

Let the operator A be defined as in (4.5) and let (u, p) ∈ DAα ×H1(Ω)/R; then,

‖A(u, p)‖2
α = ‖∇ × u − μ∇p‖2 + ||∇ · u||20,α ≥ μ0||(1/

√
μ)∇×u −√μ∇p||2+ ||∇·u||20,α

≥ c(||∇ × u||2 + ||∇p||2 + ||∇ · u||20,α) ≥ c(||u||2DAα
+ ||p||21).
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In the above, Lemma 4.2 and Theorem 4.12 imply the density in DAα
for 1−λ < α < 1.

Now, we consider the case α ≥ 1. Let u ∈ DAα ; then, similarly to Theorem 4.10,
we can show that u is decomposed in the form of u = u0 +∇φ, where u0 ∈ H1(Ω)3 ∩
DAα and φ ∈ H1

0 (Ω). Let Ωn and the smooth cut-off function δn(r) be defined as in
the proof of Theorem 4.12, and define Ωñ = ({(x, y)|r ≤ 1/n} × R) ∩Ω. Define un =
u0 +∇(δn(r)φ); then un is in H1(Ω)3 ∩DAα

. Since φ ∈ H1
0 (Ω) and ‖∇ ·∇φ‖0,α < ∞,

it is easy to see that

‖Δφ‖0,α,Ωñ → 0 and ‖φ‖1,Ωñ → 0(4.11)

as n → ∞, where the subscript Ωñ means the integration over Ωñ. Therefore, the
triangle inequality and the property of δn(r) yield

‖u − un‖2
DAα

= ‖u − un‖2 + ‖∇ × (u − un)‖2 + ‖∇ · (u − un)‖2
0,α

= ‖∇((1 − δn(r))φ)‖2 + ‖∇ · ∇((1 − δn(r))φ)‖2
0,α

≤ c
(
‖δ′nφ‖2

0,Ωn
+‖∇φ‖2

0,Ωñ
+‖Δφ‖2

0,α,Ωñ
+‖δ′′nφ‖2

0,α,Ωn
+‖r−1δ′nφ‖2

0,α,Ωn
+‖δ′n∇φ‖2

0,α,Ωn

)
.

We have the second and third terms in the last line of the above go to 0 by (4.11)
and we have ‖r−1δ′nφ‖0,α,Ωn

≤ c‖δ′′φ‖0,α,Ωn
by the property of δn. Since |δ′n(r)| ≤

cn, 1/(2n) ≤ r ≤ 1/n on Ωn, and α ≥ 1, the sixth term in the above is

‖δ′n∇φ‖2
0,α,Ωn

≤ c‖rαn∇φ‖2
0,Ωn

≤ c‖rα−1∇φ‖2
0,Ωn

= c‖∇φ‖2
0,Ωn

→ 0.

We now focus on the following two terms: By Lemma 4.3 and α ≥ 1, for ε > 0,

‖δ′nφ‖2
0,Ωn

+ ‖δ′′nφ‖2
0,α,Ωn

≤ c
(
‖nφ‖2

0,Ωn
+ ‖rαn2φ‖2

0,Ωn

)
≤ c

(
‖r−1φ‖2

0,Ωn
+ ‖rα−2φ‖2

0,Ωn

)
≤ c(1/2n)−2ε

(
‖r−1+εφ‖2

0,Ωn
+ ‖rα−2+εφ‖2

0,Ωn

)
≤ cn2ε

(
‖r−1+εφ‖2

0,Ωñ
+ ‖rα−2+εφ‖2

0,Ωñ

)
≤ cn2ε

(
‖rεφ‖2

0,Ωñ
+ ‖rε∇φ‖2

0,Ωñ
+ ‖rα−1+εφ‖2

0,Ωñ
+ ‖rα−1+ε∇φ‖2

0,Ωñ

)
≤ cn2ε

(
n−2ε(‖φ‖2

0,Ωñ
+ ‖∇φ‖2

0,Ωñ
) + n−2(α−1+ε)(‖φ‖2

0,Ωñ
+ ‖∇φ‖2

0,Ωñ
)
)
≤ c‖φ‖2

1,Ωñ
.

Hence, we proved that ‖u − un‖2
DAα

→ 0 as long as α > 1 − λ. The density DBα
∩

H1(Ω)3 in DBα follows the same process.

4.2. The existence of H1-sequences. So far, we have obtained H1-sequences
satisfying (4.6). For given (E, s,H, k), we consider the minimization of the functional
(3.6) in the partially weighted norm from (2.2),

F∗
α(U∗; (E, s,H, k)) = ||L∗U∗ − (E, s,H, k)||2α(4.12)

for all (U , p,V, q) ∈ D(L∗), where the weighted norms involve only the equations
corresponding to slack variables s and k. Since s and k are slack variables of the
original system, we may assume that s = 0 and k = 0. Then the corresponding weak
form is as follows: Find U∗ ∈ D(L∗) satisfying

〈L∗U∗,L∗V∗〉α = 〈(E, 0,H, 0),L∗V∗〉α = 〈L(E, 0,H, 0),V∗〉 = 〈F,V∗〉

for all V∗ ∈ D(L∗), where 〈·, ·〉α = 〈Jα·, Jα·〉 with Jα the diagonal matrix Jα =
diag[ 1, 1, 1, rα, 1, 1, 1, rα ]. As an important step in achieving the goal of this
paper, we show that there exists an H1-sequence, {Un}, satisfying the following.
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Theorem 4.15. Assume α > 1 − λ. For given U = (E, s,H, k) ∈ L2(Ω)8, there
exists a sequence Un ∈ D(L∗) ∩H1(Ω)8 such that

||L∗Un − U||α −→ 0(4.13)

as n −→ ∞.
Proof. By surjectivity of L∗, there exists U∗ = (U , p̃,V, q̃) ∈ D(L∗) such that

L∗U∗ = U. From Theorems 4.12 and 4.13, we have Un ∈ D(L∗)∩H1(Ω)8 satisfying

(4.14)

∇× Vn − σ∇q = E + σU = ∇× V − σ∇q̃ , ||∇ · Vn − a1p̃− s||0,α −→ 0,

∇× Un − μ∇p = H − μV = ∇× U − μ∇p̃ , ||∇ · Un + a2q̃ − k||0,α −→ 0,

as n goes to infinity, where Un = (Un, p,Vn, q) and a1, a2 are nonnegative constants.
First, consider the case 1 − λ < α < 1. By substituting L∗U∗ = U into (4.14) and
using Lemmas 4.2 and 4.5, we have the first inequality in the following equation:

||L∗Un − U||2α ≤ c
(
||∇ × (Un − U)||2 + ||∇ · (Un − U)||20,α

+ ||∇ × (Vn − V)||2 + ||∇ · (Vn − V)||20,α
)

≤ c (||∇ · (Un − U)||20,α + ||∇ · (Vn − V)||20,α),

where c = c(Ω, μ, σ, α). Boundary conditions and orthogonality properties provide
the second inequality in the above. By (4.14), the right-hand side converges to 0.

Now consider α ≥ 1. Since |r| < 1, it is easy to see that, when α1 ≥ α2,
|| · ||0,α1

≤ || · ||0,α2 . Therefore, for α ≥ 1,

||L∗Un − U||α ≤ ||L∗Un − U||1−ε

for ε > 0. Hence, the result holds.
Corollary 4.16. Let U∗ = (U , p̃,V, q̃) ∈ D(L∗) satisfying L∗U∗ = U and let

Un = (Un, p,Vn, q) ∈ D(L∗) ∩ H1(Ω)8 satisfying (4.14), where Un = u + ∇δnφ and
Vn = v + ∇δnψ with δn defined as in (4.8), u ∈ H1(Ω)3 ∩ DA, v ∈ H1(Ω)3 ∩ DB,
φ ∈ H1(Ω)/R, and ψ ∈ H1

0 (Ω) from Theorems 4.10 and 4.11. Then

U = u + ∇φ, V = v + ∇ψ, p̃ = p, and q̃ = q.

Proof. By taking divergence on the first and third equations in (4.14), we obtain
p̃ = p and q̃ = q. Then, we have

0 = ∇× (U − Un) = ∇× (U − (u + ∇δnφ)) = ∇× (U − (u + ∇φ)),

0 = ∇ · U + a2q − k = ∇ · U − (∇ · u + Δφ) = ∇ · (U − (u + ∇φ)),

which imply U = u + ∇φ. Similarly, V = v + ∇ψ.
The singularity on the boundary implies that the solution, U∗ ∈ D(L∗), of

L∗U∗ = U is not in H1. However, we have shown that there is an H1-sequence,
Un, satisfying (4.13). This allows us to use the standard H1-conforming finite ele-
ments, as we demonstrate in section 7. In the next theorem we establish the coercivity
and continuity of F∗ in the partially weighted norm.
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Theorem 4.17. If (U , p,V, q) ∈ D(L∗), then there exist c and C such that

c(||U|| + ||∇ × U|| + ||rα∇ · U|| + ||p||1 + ||V|| + ||∇ × V|| + ||rα∇ · V|| + ||q||1)

≤ ||L∗(U , p,V, q)||α

≤ C(||U|| + ||∇ × U|| + ||rα∇ · U|| + ||p||1 + ||V|| + ||∇ × V|| + ||rα∇ · V|| + ||q||1),

where 1 − λ < α < 1.
Proof. It is clear that ||rα∇·U||+ ||rα∇·V|| ≤ ||L∗(U , p,V, q)||α. By Lemmas 4.2

and 4.5, and the Poincaré inequality, it is enough to show that

||∇ × U|| + ||∇p|| + ||∇ × V|| + ||∇q|| ≤ c||L∗(U , p,V, q)||α.

Using orthogonality and Hölder’s inequality, we can easily show the lower inequal-
ity. The upper inequality follows by the triangle inequality. For more details, see
[17].

5. Scaling in FOSLL*. In this section, we briefly introduce scaling in FOSLS
and FOSLL*. From [18], it is known that using a scaling in FOSLS and FOSLL*
sometimes has computational advantages. Here, we are particularly interested in
scaling with

√
μ and

√
σ since it gives orthogonality between ∇× and ∇ in FOSLL*.

The eddy current equations (3.1) can be rewritten as

LsU =

⎡⎢⎢⎢⎣
−
√
σI 0 ∇× 1√

μ −∇ 1√
μ

0 − 1√
σ
a1 ∇ · √μ 0

∇× 1√
σ

−∇ 1√
σ

√
μI 0

∇ ·
√
σ 0 0 1√

μa2

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

√
σE√
σs√
μH√
μk

⎤⎥⎥⎦ = F.(5.1)

Then, the corresponding dual problem has the form

L∗
sU

∗ =

⎡⎢⎢⎢⎣
−
√
σI 0 1√

σ
∇× −

√
σ∇

0 − 1√
σ
a1

1√
σ
∇· 0

1√
μ∇× −√

μ∇ √
μI 0

1√
μ∇· 0 0 1√

μa2

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

U
p
V
q

⎤⎥⎥⎦ =

⎡⎢⎢⎣
√
σE√
σs√
μH√
μk

⎤⎥⎥⎦ .(5.2)

FOSLL* for the scaled system minimizes the dual functional F∗
s (U∗;U) = ||L∗

sU
∗−

U||2 in the weak sense as follows: Find U∗ ∈ D(L∗) that satisfies

〈L∗
sU

∗,L∗
sV

∗〉 = 〈U,L∗
sV

∗〉 = 〈LsU,V∗〉 = 〈F,V∗〉(5.3)

for all V∗ ∈ D(L∗). To gain insight into the effectiveness of the scaled approach in
FOSLL*, we observe the formal normal, LsL∗

s, of (5.3):⎡⎢⎢⎢⎣
σI+∇×1

μ∇×−∇ 1
μ∇· 0 0 σ∇−∇a2

μ

0
a2
1

σ −∇ · μ∇ ∇ · μ− a1

σ ∇· 0
0 ∇a1

σ − μ∇ ∇×1
σ∇×−∇ 1

σ∇ · +μI 0
a2

μ ∇ · −∇ · σ 0 0
a2
2

μ −∇ · σ∇

⎤⎥⎥⎥⎦ .

Compare the above to the formal normal, LL∗, of the original system (3.1). The
formal normal of the scaled system provides two small systems, each totally separated,
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corresponding to the variables (U , q) and (V, p), respectively:[
σI + ∇× 1

μ∇×−∇ 1
μ∇· σ∇−∇a2

μ
a2

μ ∇ · −∇ · σ a2
2

μ −∇ · σ∇

] [
U
q

]
=

[
0
0

]
(5.4)

and [
μI + ∇× 1

σ∇×−∇ 1
σ∇· ∇a1

σ − μ∇
∇ · μ− a1

σ ∇· a2
1

σ −∇ · μ∇

] [
V
p

]
=

[
μHold

0

]
.(5.5)

The weak form also separates and we solve two smaller systems. For the eddy current
problem, it is clear that (U , q) = (0, 0). For more general formulations, both systems
might have a nontrivial solution.

Remark 5.1. If σ, μ are constants and a1 = a2 = σ ·μ, then (5.5) is reduced to[
μI + 1

σ (∇×∇×−∇∇·) 0
0 σμ2 − μ∇ · ∇

] [
V
p

]
=

[
μHold

0

]
.

Clearly, p = 0 and V satisfies

μV +
1

σ
∇×∇× V − 1

σ
∇∇ · V = μHold.

The above equation is the same as a modified Galerkin formulation for the magnetic
field, H. In the context of constant σ and μ, using FOSLL* with the square root scal-
ing described in (5.1) and certain values for a1, a2 is equivalent to solving the original
problem (2.6) by eliminating the electric field, E, and using a modified Galerkin for-
mulation on H. However, it is the case of nonconstant σ and μ and the presence of
reentrant edges that we consider in this paper.

Remark 5.2. In the modified FOSLL*, the formal normal of (5.3) is⎡⎢⎢⎢⎢⎣
σI+∇×1

μ∇×−∇ r2α

μ ∇· 0 0 σ∇−∇ r2αa2

μ

0
r2αa2

1

σ −∇· μ∇ ∇ · μ− r2αa1

σ ∇· 0

0 ∇ r2αa1

σ − μ∇ μI + ∇×1
σ∇×−∇ r2α

σ ∇· 0
r2αa2

μ ∇ · −∇ · σ 0 0
r2αa2

2

μ −∇· σ∇

⎤⎥⎥⎥⎥⎦ .

Because of the weighting terms, there is no simple way to further decouple the equa-
tions through a choice of a1 and a2. The term in the (3,3) position in the above is
similar to the formal normal associated with the partially weighted modified Galerkin
described in [10].

6. Discrete approximation. Let Th be a partition of the domain Ω = ∪K∈Th
K,

and each finite element K ∈ Th be a closed subset of Ω with h := max{hK :=
diam(K) : K ∈ Th}. Assume that the partition Th is regular so that we can choose a
finite element basis that is conforming and satisfies the approximation property (see
[6]). We also assume that there exists a constant, ρ, satisfying h ≤ ρhK . Define by
Pk the space of all polynomials of degree ≤ k with respect to each variable. Let the
standard polynomial interpolation operator, Ih ∈ L((H1(Ω))8; (H1(Ω))8), be such
that Ihp = p for all p ∈ (P1)

8, and let the finite dimensional subspace, Wh ⊂ D(L∗)∩
H1(Ω)8, have Ih(D(L∗) ∩H1(Ω)8 ∩ C0(Ω)) ⊂ Wh.
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From section 3, we know that, for given U ∈ L2(Ω)8, there exists the solution
U∗ ∈ D(L∗) satisfying L∗U∗ = U, that is,

U∗ = arg min
X∈D(L∗)

||L∗X − U||α.(6.1)

Here, we minimize in (6.1) over a finite-dimensional subspace Wh which yields the
corresponding weak form as follows: Find Uh ∈ Wh satisfying〈

L∗Uh,L∗Xh
〉
α

=
〈
U,L∗Xh

〉
α

=
〈
(0, 0, μHold, 0),Xh

〉
(6.2)

for all Xh ∈ Wh. By computing L∗Uh, we obtain the approximations for E and H:

Eh = −σUh + ∇× Vh − σ∇q̃h, Hh = ∇× Uh − μ∇p̃h + μVh,(6.3)

where Uh =
(
Uh, p̃h,Vh, q̃h

)
.

The following theorem provides the L2-error estimates for the solution E and H
of (2.6) with the approximation L∗Uh. Here, we use Theorem 4.15 to accomplish the
L2-error estimates by adopting the standard finite element approximation property.
Vectors (E, s,H, k), (U , p,V, q), (Un, p,Vn, q), and (Uh

n , p
h,Vh

n , q
h) are abbreviated to

U, U∗,Un, and Uh
n, respectively.

Theorem 6.1. Assume U ∈ D(L) and α > 1−λ. Let U∗ = (U , p,V, q) ∈ D(L∗)
such that L∗U∗ = U. Then, Corollary 4.16 leads the decompositions U = u+∇φ and
V = v + ∇ψ. Assume u,v ∈ H1+η1(Ω)3 and p, q ∈ H1+η2(Ω) for some η1, η2 > 0. If
Uh ∈ Wh satisfies (6.2), then there exists a constant c such that

||U − L∗Uh||2α ≤ c h2τ
(
|u|21+η1

+ |v|21+η1
+ ||φ||23,1+β + ||ψ||23,1+β + |p|21+η2

+ |q|21+η2

)
for any τ < min

{
η1, η2,

α−1+λ
α+1

}
and some β ∈ (1 − λ, 1), β < α.

Proof. Let Un ∈ D(L∗) ∩H1(Ω)8 satisfying Theorem 4.15, and let

Uh
n = (Uh

n , p
h,Vh

n , q
h) = arg min

Xh
n∈Wh

||L∗Un − L∗X h
n ||α.(6.4)

By the triangle inequality,

||U − L∗Uh||2α ≤ 3
(
||L∗U∗ − L∗Un||2α+ ||L∗Un − L∗Uh

n||2α+ ||L∗Uh
n − L∗Uh||2α

)
.

From Theorems 4.12, 4.13, and 4.15, we have

||U − L∗Un||2α < c n−2(α−β)
(
||φ||22,β + ||ψ||22,β

)
.(6.5)

The linearity of L∗ and the optimality on the finite-dimensional space imply

||L∗Uh
n − L∗Uh||2α =

〈
L∗(Uh

n− Un+ Un− U∗+ U∗− Uh),L∗(Uh
n− Uh)

〉
α

≤ ||L∗Un − L∗U∗||α ||L∗Uh
n − L∗Uh||α.(6.6)

Thus, (6.5) and (6.6) yield

||U − L∗Uh||2α ≤ c n−2(α−β)
(
||φ||22,β + ||ψ||22,β

)
+ c ||L∗Un − L∗Uh

n||2α.(6.7)
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Since Uh
n satisfies (6.4), by Céa’s lemma, ||L∗Un−L∗Uh

n||2α ≤ c ||L∗Un−L∗IhUn||2α.
Using the triangle inequality, we have

||L∗Un − L∗IhUn||2α ≤ c
(
||Un − IhUn||2 + ||Vn − IhVn||2

+ ||∇ × (Un − IhUn)||2 + ||∇ · (Un − IhUn)||20,α + ||∇(p− Ihp)||2

+||∇ × (Vn − IhVn)||2 + ||∇ · (Vn − IhVn)||20,α + ||∇(q − Ihq)||2
)
.(6.8)

First, we consider Un-terms. By [12], we have

||Un − IhUn||2 + ||∇ × (Un − IhUn)||2 + ||∇ · (Un − IhUn)||20,α

≤ c||∇(Un − IhUn)||2 = c
∑

K∈Th

||∇(Un − IhUn)||2K ,

where || · ||K means an integration over K. Since φ satisfies{
∇ · ∇φ = −∇ · u − a2q̃ + k in Ω,

φ = 0 on ∂Ω,
(6.9)

and ∇ · u + a2q̃ − k ∈ H1
β(Ω) ⊂ H1

1+β(Ω), the solution, φ, of (6.9) is in H3
1+β(Ω) (see

[19]). From Theorems 4.12 and 4.15, Un is decomposed of u+∇δnφ, where δn is defined
as in (4.8). The fact that φ ∈ H3

1+β(Ω) and the definition of δn yield δnφ ∈ H3(Ω).
On each element K, we use the triangle inequality and standard interpolation error
estimates to obtain

||∇(Un − IhUn)||2K ≤ c
(
||∇(u − Ihu)||2K + ||∇(∇φn − Ih∇φn)||2K

)
≤ c h2η1 |u|21+η1,K + c h2|φn|23,K .

Since δn = 0 when r ≤ (1/2n) and δ′n = 0 when r �∈ (1/2n, 1/n),∑
K

|φn|23,K = |φn|23 ≤ c

∫
|δ′′′n φ|2 + |δ′′n∇φ|2 + |δ′n∇2φ|2 + |δn∇3φ|2dΩ

≤ c

∫∫∫ 1
n

1
2n

|n3φ|2 + |n2∇φ|2 + |n∇2φ|2rdrdθdz + c

∫∫∫ R(θ)

1
2n

|∇3φ|2rdrdθdz

≤ cn2(1+β)

(∫∫∫ 1
n

1
2n

2∑
k=0

|rβ−k∇2−kφ|2dΩ +

∫∫∫ R(θ)

1
2n

|r1+β∇3φ|2dΩ
)
≤ cn2(1+β)||φ||23,1+β .

Thus, we have ||∇(Un − IhUn)||2 ≤ c
(
h2η1 |u|21+η1

+ h2n2(1+β)||φ||23,1+β

)
. Choose n

such that 1
2n <

√
2h

1
α+1 < 11

20n to balance with (6.7). Then, the optimal choice of β

is 1 − λ + ε and this yields hn1+β = h
α−1+λ
α+1 −ε. Then,

||∇(Un − IhUn)||2 ≤ c
(
h2η1 |u|21+η1

+ h2α−1+λ
α+1 −ε||φ||23,1+β

)
.

The above calculation can be applied to Vn analogously. For p and q, the standard
error estimates yields ||∇(p− Ihp)||2 + ||∇(q− Ihq)||2 ≤ ch2η2(|p|21+η2

+ |q|21+η2
).

Corollary 6.2. If μ, σ are constants, then η1, η2 are any real values < λ.
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Proof. If μ and σ are constants, then ∇×∇× (u +∇φ) ∈ L2(Ω), where u and φ
are from the proof of Theorem 6.1. Also, ∇·(u+∇φ) = 0 and n×(u+∇φ) = 0 on ∂Ω.
Thus, by [9], we have u ∈ H1+η1(Ω)3 for any η1 < λ. The variable p is the solution of
the Poisson equation with a Dirichlet boundary condition. Thus, p ∈ H1+η2(Ω), where
η2 < λ. Similarly, we have v ∈ H1+η1(Ω)3 and q ∈ H1+η2(Ω) for any η1, η2 < λ.

Remark 6.3. In [10], error estimates in the DAα
-norm (see (4.9)) with higher reg-

ularity in E were developed. They used H1-conforming finite element spaces which
include ∇Φh, where Φh is an almost affine family of C1 elements and has good ap-
proximation properties in the H2

β-norm. In this paper, we use H1-conforming finite

elements to approximately solve the problem and develop L2-error estimates. Our
approximation to the electric field is of the form Eh = −σUh +∇×Vh−σ∇q̃h, where
Uh,Vh, and q̃h are chosen from H1-conforming finite element spaces, which means we
explicitly present the solution as a combination of such terms, and thus, do not need
to construct special finite element spaces.

In the following section, we present several numerical examples. The results show
clearly that the convergence rate is related to α values as well as to the regularity of
the dual solution in agreement with the above theorem.

7. Numerical results. In this section, we report on numerical results of apply-
ing the modified FOSLL* method to problem (3.1). We choose the prototype domain
described by

Ω = (−0.5, 0.5)3\{(x, y, z)|0 ≤ x ≤ 0.5,−0.5 ≤ y ≤ 0,−0.5 < z < 0.5}.

The domain has a reentrant edge along the z-axis with interior angle 3π
2 . Thus, we

expect the solution to have a singularity of the form r−
1
3 , where r is the distance

to the z-axis. The square root scaling described in section 5 was used for all three
tests. This requires solving for only four dependent variables, denoted by (V, p),
since the other four variables (U , q) are known to be zero. Trilinear finite elements
were used for all variables. In this context, we minimize ||L∗X h − (E, 0,H, 0)||α
over X h = (Uh, ph,Vh, qh) in the finite-dimensional subspace Wh, holding (Uh, qh) =
(0, 0), in order to get the approximation, Uh, for the dual solution, U∗, of (3.5).
Then, we compute L∗Uh as the approximation for (E, 0,H, 0) and observe the L2-
errors ||E − Eh|| and ||H − Hh||.

The software package FOSPACK [22] was used to construct the discrete sys-
tems and to solve them by a conjugate gradient iteration preconditioned by algebraic
multigrid (AMG) using W(1,1)-cycles. Problems with given exact solutions were con-
structed so that the error could be monitored. The constants a1 and a2 were fixed at
0. However, the results are similar to those achieved when they are fixed as positive
constants. A residual reduction 10−10 was used as the AMG W-cycle stopping crite-
rion. While this level of error is excessive in practice, we employ it here to remove
algebraic error from the calculation of the convergence of the discrete solution.

Example 7.1. We choose the exact solutions E and H to be

E =
1

σ
∇× H and H = ( ∂yg, − ∂xg, 0 ),

where

g = δ(r)r
2
3 sin

(
2

3
θ

)
sin(2πz) and δ(r) =

{
1, r ≤ 0.25,
0, r ≥ 0.375
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Table 7.1

The L2-norm of the errors and observed convergence rates, τ , for Example 7.1 (×10−1 means
that the values in the table divide by 10), ‖E‖ ∼ 10.290, ‖H‖ ∼ 0.55727.

||E − Eh||
α = 0 α = 2/3 α = 4/3 α = 2 α = 3

1/8 4.67 τ 4.65 τ 4.64 τ 4.64 τ 4.63 τ
1/16 3.91 0.26 3.84 0.28 3.80 0.29 3.79 0.29 3.79 0.29
1/32 2.16 0.85 1.97 0.96 1.91 0.99 1.89 1.00 1.88 1.01
1/64 1.45 0.57 1.08 0.86 1.00 0.94 0.97 0.96 0.96 0.97

||H − Hh|| (×10−1)
α = 0 α = 2/3 α = 4/3 α = 2 α = 3

1/8 2.32 τ 2.18 τ 2.11 τ 2.06 τ 2.02 τ
1/16 1.74 0.41 1.36 0.68 1.11 0.93 2.06 1.06 2.02 1.11
1/32 1.57 0.16 0.92 0.56 0.55 1.00 0.45 1.14 0.41 1.19
1/64 1.52 0.04 0.69 0.42 0.31 0.85 0.23 0.94 0.21 0.94

0 2/3 1 4/3 2 3 4 5 6
0  

0.5

2/3

1

α
 

 

||E−Eh||

||H−Hh||
(α−1/3)/(α+1)

τ

Fig. 7.1. Finite element convergence rate, τ , as a function of α for Example 7.1.

Table 7.2

AMG convergence factors for Example 7.1.

α = 0 α = 2/3 α = 4/3 α = 2 α = 3 α = 4 α = 5 α = 6
1/8 0.03 0.03 0.04 0.05 0.05 0.06 0.07 0.07
1/16 0.03 0.05 0.09 0.14 0.28 0.23 0.20 0.20
1/32 0.03 0.17 0.20 0.29 0.33 0.37 0.42 0.44
1/64 0.03 0.14 0.32 0.40 0.44 0.51 0.54 0.54

with r =
√
x2 + y2, θ = arctan( yx ), and δ(r) ∈ C3 cut-off function. Then, the solution

satisfies type II boundary conditions. We fix the μ = 1 and σ = 1.
Table 7.1 displays the L2-errors of E and H. The rate, τ , represents the value

of the observed convergent factor, hτ , when the mesh decreases from h to h/2. As
shown in Table 7.1, standard FOSLL* (α = 0) gives poor convergence. The declines
in convergence factors are dramatic in this case. This is to be expected because the
exact dual solutions U and V are not in H1, but rather in Hγ for any γ < 2

3 . The
results in Table 7.1 for α > 1−λ = 1

3 show that partial unweighting of the functional
produces improved convergence in all terms of the functional. By Theorem 6.1, the

L2-errors of E and H are expected to exhibit O(hτ ), for any τ < min{ 2
3 ,

α− 1
3

α+1 } (dashed

line in Figure 7.1) as long as α > 1
3 , that is, the bound τ , on the convergence rate

stays at 2
3 for α > 3. In fact, the results show better convergence than expected.

In Figure 7.1, we compare convergence rates for the L2-errors in E and H while the
mesh moves from 1/32 to 1/64 with more α values than are showed in Table 7.1. We
observe in Table 7.2 that increasing α results in an increasing convergence factor for
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Table 7.3

The L2-norm of the errors and observed convergence rates, τ , for Example 7.2, ‖E‖ ∼
1.9302, ‖H‖ ∼ 0.55727.

||E − Eh|| (×10−1)
α = 0 α = 2/3 α = 4/3 α = 2 α = 3

1/8 9.56 τ 9.27 τ 9.13 τ 9.04 τ 8.96 τ
1/16 8.57 0.16 7.75 0.26 7.34 0.31 7.20 0.33 7.14 0.33
1/32 6.77 0.34 5.06 0.62 4.49 0.71 4.26 0.76 4.04 0.82
1/64 6.20 0.13 3.77 0.43 3.07 0.55 2.70 0.66 2.38 0.76

||H − Hh|| (×10−1)
α = 0 α = 2/3 α = 4/3 α = 2 α = 3

1/8 2.34 τ 2.24 τ 2.18 τ 2.14 τ 2.09 τ
1/16 1.83 0.36 1.60 0.48 1.38 0.65 1.22 0.81 1.09 0.94
1/32 1.71 0.10 1.33 0.26 0.93 0.58 0.68 0.84 0.52 1.05
1/64 1.68 0.02 1.18 0.18 0.64 0.53 0.39 0.81 0.26 0.98

0 2/3 1 4/3 2 3 4 5 6
0  

0.5

2/3

1

α
 

 

||E−Eh||

||H−Hh||
(α−1/3)/(α+1)
τ

Fig. 7.2. Finite element convergence rate, τ , as a function of α for Example 7.2.

the AMG algorithm. This behavior is dependent on the particular AMG algorithm
that was used in the test. An improved AMG would change the picture.

Example 7.2. In this example, we take a smooth function for the coefficient σ.
Let E and H be the same as in Example 7.1 and let μ = 0.5 and σ = 100(x2+y2)+1.

Table 7.3 shows the L2-errors of E and H and the convergence rates. More
convergence rates corresponding to α values when the mesh moves from 1/32 to 1/64
appear in Figure 7.2. Note that the observed convergence rates are slightly worse
than the ones in Example 7.1. The AMG convergence factor behaves essentially the
same as in the first example.

In the next example, we examine the case having discontinuous coefficients as
well as a reentrant edge on the boundary.

Example 7.3. Let E and H be the same as in Example 7.1. Let μ = σ = 1 if
r =

√
x2 + y2 ≤ 0.25 and μ = 25, σ = 100 otherwise.

In this example, we need to be careful about the regularity of E and H. Since μ
and σ have jumps at r = 0.25, E is not in H(∇×) but in H(∇× σ), and H is not in
H(∇ · μ) but in H(∇·). E and H do not satisfy the eddy current equations, but are
useful as a test to observe how modified FOSLL* would work for a problem with both
discontinuous coefficients and a reentrant edge. Numerical results in Table 7.4 show
great convergence with modified FOSLL* approximation even though the problem
has both nongrid-aligned discontinuities in the coefficients and a boundary singularity.

Convergence rates of the L2-errors for E and H are greater than both of 2
3 and

α− 1
3

α+1
for α > 3. Figure 7.3 shows convergence rates for more values of α using grid size
h = 1/64.
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Table 7.4

The L2-norm of the errors and observed convergence rates, τ , for Example 7.3, ‖E‖ ∼
8.1056, ‖H‖ ∼ 0.55727.

||E − Eh||
α = 0 α = 2/3 α = 4/3 α = 2 α = 3

1/8 2.37 τ 2.35 τ 2.34 τ 2.34 τ 2.34 τ
1/16 2.16 0.14 2.10 0.16 2.08 0.17 2.07 0.18 2.07 0.18
1/32 1.19 0.86 1.06 0.99 1.02 1.02 1.02 1.03 1.01 1.03
1/64 0.82 0.54 0.59 0.83 0.55 0.89 0.54 0.91 0.53 0.92

||H − Hh|| (×10−2)
α = 0 α = 2/3 α = 4/3 α = 2 α = 3

1/8 20.7 τ 20.3 τ 20.1 τ 19.9 τ 19.8 τ
1/16 11.9 0.80 10.4 0.97 9.60 1.07 9.23 1.11 8.99 1.14
1/32 9.35 0.35 6.22 0.74 4.89 0.97 4.40 1.07 4.09 1.14
1/64 9.02 0.05 4.77 0.38 3.17 0.62 2.53 0.80 2.17 0.92

0 2/3 1 4/3 2 3 4 5 6
0  

0.5

2/3

1

α
 

 

||E−Eh||

||H−Hh||
(α−1/3)/(α+1)
τ

Fig. 7.3. Finite element convergence rate, τ , as a function of α for Example 7.3.

Table 7.5

AMG convergence factors for Example 7.3.

α = 0 α = 2/3 α = 4/3 α = 2 α = 3 α = 4 α = 5 α = 6
1/8 0.64 0.66 0.66 0.63 0.66 0.66 0.66 0.65
1/16 0.68 0.67 0.68 0.67 0.66 0.67 0.66 0.68
1/32 0.67 0.68 0.68 0.66 0.67 0.66 0.68 0.68
1/64 0.63 0.65 0.65 0.65 0.66 0.67 0.67 0.67

The AMG convergence factors are slightly worse, but still quite acceptable, for
discontinuous coefficients, as indicated in Table 7.5. Again, we believe that an im-
proved AMG algorithm may overcome this difficulty.

8. Conclusion. In this paper, we developed a FOSLL* method with a partially
weighted norm for the eddy current approximation to Maxwell’s equations on a three-
dimensional domain with a reentrant edge. We have shown the existence of an H1-
sequence converging to the solution of the eddy current problem in the partially
weighted functional norm. This allows accurate approximation using standard H1-
conforming finite element spaces. An L2-error estimate was established that depends
continuously on the weight parameter, α. Numerical tests support our theory. In
the future, we will apply our theory to other problems, like full Maxwell’s equations,
elasticity equations, and Navier–Stokes equations. Also, the reentrant corners (e.g.,
the Fichera cube) will be considered. We don’t anticipate the results, but we believe
that our theory can be easily extended to these problems.
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DETECTING INTERFACES IN A PARABOLIC-ELLIPTIC
PROBLEM FROM SURFACE MEASUREMENTS∗

FLORIAN FRÜHAUF† , BASTIAN GEBAUER‡ , AND OTMAR SCHERZER†

Abstract. Assuming that the heat capacity of a body is negligible outside certain inclusions the
heat equation degenerates to a parabolic-elliptic interface problem. In this work we aim to detect
these interfaces from thermal measurements on the surface of the body. We deduce an equivalent
variational formulation for the parabolic-elliptic problem and give a new proof of the unique solvabil-
ity based on Lions’s projection lemma. For the case that the heat conductivity is higher inside the
inclusions, we develop an adaptation of the factorization method to this time-dependent problem.
In particular this shows that the locations of the interfaces are uniquely determined by boundary
measurements. The method also yields to a numerical algorithm to recover the inclusions and thus
the interfaces. We demonstrate how measurement data can be simulated numerically by a coupling
of a finite element method with a boundary element method, and finally we present some numerical
results for the inverse problem.

Key words. parabolic-elliptic equation, inverse problems, factorization method
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1. Introduction. We consider the heat equation in a domain B ⊂ R
n

∂t(c(x)u(x, t)) −∇ · (κ(x)∇u(x, t)) = 0 in B×]0, T [,(1.1)

with (spatially dependent) heat capacity c and conductivity κ. The special case we
are studying here is that the heat capacity c(x) is bounded from below inside an
inclusion Ω ⊂ B, and negligibly small on the outside Q := B \ Ω (cf. Figure 1.1 for a
sketch of the geometry). Throughout this work Ω is allowed to be disconnected; thus
the case of multiple inclusions is covered as well.

If we assume for simplicity that c(x) = χΩ(x) is the characteristic function of Ω,
then the evolution equation (1.1) can be rewritten as a parabolic-elliptic equation,

∂tu(x, t) −∇ · (κ(x)∇u(x, t)) = 0 in Ω×]0, T [,(1.2)

∇ · (κ(x)∇u(x, t)) = 0 in Q×]0, T [,(1.3)

together with appropriate interface conditions on ∂Ω.
For the case B = R

2 and κ = 1 this problem also arises in the study of two-
dimensional eddy currents and was studied by MacCamy and Suri in [23] and by
Costabel, Ervin, and Stephan in [9]. In both papers boundary integral operators
are used to replace the Laplace equation in the exterior of Ω by a nonlocal bound-
ary condition for the parabolic equation inside Ω. This problem is then solved by
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B = Q ∪ Ω

Ω

∂B

∂Ω

Fig. 1.1. Sketch of geometry.

a Galerkin method. In [8] Costabel uses boundary integral operators to solve the
resulting interior problem also.

In this work we study the problem for general κ ∈ L∞
+ (B) in a bounded domain

B with given Neumann boundary values on ∂B. By considering (1.1) in the sense of
distributions we deduce (1.2), (1.3) together with natural interface conditions (that
would otherwise have to be postulated). Moreover, we prove that the weak formulation
in appropriate Sobolev spaces is equivalent to (1.1). We show existence of a unique
solution using Lions’s projection lemma; cf. section 2.

In section 3 we study the inverse problem of locating the interface ∂Ω, resp., the
inclusion Ω, from surface measurements on ∂B. If the conductivity is larger inside Ω
than in the exterior Q, we show that the points belonging to Ω can be characterized
using a variant of the so-called factorization method introduced by Kirsch in [16],
generalized by Brühl and Hanke in [6, 5], and since then adapted to various stationary
and time-harmonic problems; cf. [1, 2, 7, 15, 17, 18, 19] for more recent contributions.
To our knowledge this is the first successful extension of this method to a time-
dependent problem.

In section 4 we show how the direct problem can be solved numerically with a cou-
pling of finite element methods and boundary element methods similar to [23]. Using
simulated measurements we demonstrate the numerical realization of the factorization
method following the ideas of Brühl and Hanke in [6, 5].

2. The direct problem.

2.1. A parabolic-elliptic problem. Let T > 0 and Ω, B ⊂ R
n, n ≥ 2, be

bounded domains with smooth boundaries, Ω ⊂ B, and connected complement Q :=
B \ Ω.

In this section we study the parabolic-elliptic problem

∂t(χΩ(x)u(x, t)) −∇ · (κ(x)∇u(x, t)) = 0 in B×]0, T [,(2.1)

with κ ∈ L∞
+ (B), where we denote by L∞

+ the space of L∞-functions with positive
essential infima, and χΩ is the characteristic function of Ω.

A standard way to treat an equation like (2.1) is to multiply both sides with
a test function followed by a formal partial integration. Assuming additional (also
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Fig. 2.1. Relation between dual and adjoint operator.

formal) boundary and initial conditions, this leads to a variational formulation, which
is mathematically meaningful in some Sobolev spaces (and thus no longer formal).
Instead of (2.1) one would then study this variational formulation, the so-called weak
form of the equation.

In this work we proceed in a slightly different way. We start by noting that the left-
hand side of (2.1) does have a mathematical meaning for every u ∈ L2(0, T,H1(B))
if the derivatives are interpreted in the sense of (scalar-valued) distributions.

We denote by D(B×]0, T [) the space of infinitely often differentiable functions
with support in B×]0, T [ and by D′(B×]0, T [) its dual space, i.e., the space of distri-
butions on B×]0, T [. By the definition of distributional derivatives, (2.1) is equivalent
to

−
∫ T

0

∫
Ω

u(x, t)∂tϕ(x, t) dxdt−
∫ T

0

∫
B

κ(x)∇u(x, t) · ∇ϕ(x, t) dxdt = 0(2.2)

for all ϕ ∈ D(B×]0, T [).
We will show in this section that (2.1) (together with appropriate boundary and

initial conditions) has a unique solution in L2(0, T,H1(B)). In Theorem 2.6 we give
an equivalent variational formulation in Sobolev spaces, using the time-derivative in
the sense of vector-valued distributions (which we denote by u′). This variational
formulation is the same that one would have obtained as the weak generalization of
(2.1) using the above-mentioned formal arguments.

We denote by ν the exterior normal on ∂B, resp., the exterior normal on ∂Ω, and
by D(Q×]0, T [) the restrictions of functions from D(Rn×]0, T [) to Q×]0, T [. Analo-
gous notation is used for Ω and B, and D(B × [0, T [) is the space of restrictions of
functions from D(Rn×]−∞, T [) to B×]0, T [.

We use the anisotropic Sobolev spaces from [22]. For r, s ≥ 0 we write

Hr,s(X ) := L2(0, T,Hr(X )) ∩Hs(0, T, L2(X )) for X ∈ {B,Ω, Q, ∂B, ∂Ω},

and for s < 1
2 and X ∈ {∂B, ∂Ω}

H−r,−s(X ) := (Hr,s(X ))
′
.

The inner product on a real Hilbert space H is denoted by (·, ·) and the dual
pairing on H ′ × H by 〈·, ·〉. They are related by the isometry ιH : H → H ′ that
“identifies H with its dual”; i.e., 〈ιHu, ·〉 := (u, ·) for all u ∈ H. Throughout this
work we rigorously distinguish between the dual operator (denoted by A′) and the
adjoint operator (denoted by A∗) of an operator A ∈ L(H1, H2) between real Hilbert
spaces H1, H2. They satisfy the identity A∗ = ι−1

H1
A′ιH2 ; cf. Figure 2.1.

We summarize some known properties of the Dirichlet and Neumann traces for
solutions of the Laplace, resp., heat equation. On the boundary ∂Ω we use the
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superscript − when the trace is taken from inside the inclusion Ω and the superscript +

when it is taken from the outside.
Theorem 2.1. (a) The trace mapping

v �→ v|∂B , resp., v �→ v+|∂Ω, v ∈ D(Q×]0, T [),

can be extended to a continuous mapping from H1,0(Q) to H
1
2 ,0(∂B), resp., to H

1
2 ,0(∂Ω),

that has a continuous right inverse. The same holds for H1,0(Ω) → H
1
2 ,0(∂Ω),

v �→ v−|∂Ω.
(b) The Neumann traces κ∂νv|∂B and κ∂νv

+|∂Ω are defined for every v ∈ H1,0(Q)
that solves

∇ · (κ∇v) = 0 in Q×]0, T [(2.3)

by setting

〈κ∂νv|∂B , f〉 :=

∫ T

0

∫
Q

κ∇v · ∇vf dxdt,

〈κ∂νv+|∂Ω, φ〉 := −
∫ T

0

∫
Q

κ∇v · ∇vφ dxdt

for every function f on ∂B and every function φ on ∂Ω that have extensions vf , vφ ∈
D(Q×]0, T [) with vf |∂B = f , vf |∂Ω = 0, resp., vφ|∂B = 0, vφ|∂Ω = φ.

The Neumann traces can be extended to continuous mappings from the subspace of
solutions of (2.3) (equipped with the H1,0(Q)-norm) to H− 1

2 ,0(∂B), resp., H− 1
2 ,0(∂Ω).

(c) The Neumann trace κ∂νv
−|∂Ω is defined for every v ∈ H1,0(Ω) that solves

∂tv −∇ · (κ∇v) = 0 in Ω×]0, T [(2.4)

by setting

〈κ∂νv−|∂Ω, φ〉 :=

∫ T

0

∫
Ω

κ∇v · ∇vφ dxdt−
∫ T

0

∫
Ω

v ∂tvφ dxdt

for every function φ on ∂Ω that has an extension vφ ∈ D(Ω×]0, T [) with vφ|∂Ω = φ.
The Neumann trace can be extended to a continuous mapping from the subspace

of solutions of (2.4) (equipped with the H1,0(Ω)-norm) to H− 1
2 ,−

1
4 (∂Ω).

Proof. (a), (b) immediately follow from the classical trace theorems on H1. For
(c) we refer the reader to [8].

Denoting

[v]∂Ω := v+|∂Ω − v−|∂Ω and [κ∂νv]∂Ω := κ∂νv
+|∂Ω − κ∂νv

−|∂Ω

we can write (2.1) as a diffraction problem.
Lemma 2.2. u ∈ H1,0(B) solves (2.1) if and only if u ∈ H1,0(B \ ∂Ω) solves

∂tu−∇ · (κ∇u) = 0 in Ω×]0, T [,(2.5)

∇ · (κ∇u) = 0 in Q×]0, T [,(2.6)

[κ∂νu]∂Ω = 0,(2.7)

[u]∂Ω = 0.(2.8)



814 F. FRÜHAUF, B. GEBAUER, AND O. SCHERZER

In particular, (2.6) and (2.7) imply that κ∂νu
−|∂Ω can be extended by continuity

to H− 1
2 ,0(∂Ω).

Proof. Like in the stationary case we have u ∈ H1,0(B) if and only if u ∈
H1,0(B \ ∂Ω) and u satisfies (2.8). The rest immediately follows from the definition
of distributional derivatives and the Neumann traces.

The next lemma shows uniqueness for the diffraction problem with a Neumann
boundary condition and an initial condition on Ω. With respect to the Gelfand triple
H1(Ω) ↪→ L2(Ω) ↪→ H1(Ω)′ we denote by

W := W (0, T,H1(Ω), H1(Ω)′)

the space of functions u ∈ L2(0, T,H1(Ω)) with vector-valued distributional time
derivative u′ ∈ L2(0, T,H1(Ω)′). From [10, Chp. XVIII], it follows that

W ⊂ C0([0, T ], L2(Ω)).

Lemma 2.3. Let u ∈ H1,0(B \ ∂Ω) solve (2.5), (2.6), and

[κ∂νu]∂Ω = ψ ∈ H− 1
2 ,0(∂Ω),(2.9)

[u]∂Ω = f ∈ H
1
2 ,0(∂Ω),(2.10)

κ∂νu|∂B = g ∈ H− 1
2 ,0(∂B).(2.11)

Then u|Ω ∈ W and u is uniquely determined by ψ, f , g, and the initial condition

u(x, 0) = 0 on Ω.(2.12)

Proof. Again (2.9) implies that the Neumann trace κ∂νu
−|∂Ω can be extended by

continuity to H− 1
2 ,0(∂Ω).

Thus we can define w ∈ L2(0, T,H1(Ω)′) by setting for every t ∈]0, T [ and v ∈
H1(Ω)

〈w(t), v〉 :=
〈
κ∂νu

−(t)|∂Ω, v
−|∂Ω

〉
−
∫

Ω

κ∇u(t) · ∇v dx.

We have ∫
Ω

(
−
∫ T

0

u ∂tϕ dt

)
v dx

=

∫ T

0

〈κ∂νu−|∂Ω, v
−|∂Ω〉ϕ dt−

∫ T

0

∫
Ω

κ∇u · ∇v dxϕdt

=

〈∫ T

0

wϕ dt, v

〉

for all v(x)ϕ(t) ∈ D(Ω×]0, T [) and thus by continuous extension for all vϕ ∈ H1(Ω)⊗
D(]0, T [). Thus in the sense of vector-valued distributions

w = (u|Ω)′ with respect to H1(Ω) ↪→ L2(Ω) ↪→ H1(Ω)′,

and hence u|Ω ∈ W ⊂ C0([0, T ], L2(Ω)).
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To show uniqueness let f = 0, ψ = 0, g = 0, and (2.12) hold. Since Green’s
formula holds for functions in W we have

1

2

∫
Ω

|u(T )|2 dx =

∫ T

0

〈u′(t), u(t)〉dt

=

∫ T

0

〈κ∂νu−|∂Ω, u
−|∂Ω〉dt−

∫ T

0

∫
Ω

κ|∇u|2 dxdt

= −
∫ T

0

∫
B

κ|∇u|2 dxdt.

This implies that u(x, t) = c(t), where c ∈ C0([0, T ],R) solves c′ = 0 and c(0) = 0.
Thus u = 0.

To show existence of a solution we proceed analogously to [8, Lemma 2.3] by using
Lions’s projection lemma.

Lemma 2.4 (Lions’s projection lemma). Assume that H is a Hilbert space and
Φ is a subspace of H. Moreover let a : H × Φ → R be a bilinear form satisfying the
following properties:

(a) For every ϕ ∈ Φ, the linear form u �→ a(u, ϕ) is continuous on H.

(b) There exists α > 0 such that a(ϕ,ϕ) ≥ α ‖ϕ‖2
H for all ϕ ∈ Φ.

Then for each continuous linear form l ∈ H ′, there exists u0 ∈ H such that

a(u0, ϕ) = 〈l, ϕ〉 for all ϕ ∈ Φ and ‖u0‖H ≤ 1

α
‖l‖H′ .

Proof. The lemma is proven in [20]. We repeat the proof for the sake of com-
pleteness.

From assumption (a) and the Riesz representation theorem it follows that for
every ϕ ∈ Φ there exists Kϕ ∈ H with

(u,Kϕ) = a(u, ϕ) for all u ∈ H.

This defines a linear (possibly unbounded) operator K : Φ → V := K(Φ) ⊆ H.
From assumption (b) it follows that K is injective and thus possesses an inverse
R0 : V → Φ. Again using assumption (b) we have

‖R0v‖2 ≤ 1

α
a(R0v,R0v) =

1

α
(R0v, v) ≤

1

α
‖R0v‖ ‖v‖ ,

which yields ‖R0v‖ ≤ 1
α ‖v‖. Thus R0 can be extended by continuity to the closure

V of V . If we denote this extension by R0 then we have R0 : V → Φ.
Φ is a closed subspace of the Hilbert space H and thus also a Hilbert space. Using

the Riesz representation theorem on Φ we obtain a ξl ∈ Φ with

l(ϕ) = (ξl, ϕ) for all ϕ ∈ Φ.

Finally, let P : H → V be the orthogonal projection onto V ; then u0 := P ∗R0
∗
ξl

has the desired properties.
We prove existence of a solution of the parabolic-elliptic diffraction problem (2.5),

(2.6), (2.9)–(2.12) under the additional assumption that g and ψ have vanishing inte-
gral mean. For X ∈ {∂B, ∂Ω} we define

H
− 1

2� (X ) := {g ∈ H− 1
2 (X ) : 〈g, 1X 〉 = 0} and H

− 1
2 ,0� (X ) := L2(0, T,H

− 1
2� (X )).
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Again they are Hilbert spaces because they are closed subspaces of H− 1
2 (X ), resp.,

H− 1
2 ,0(X ).

Lemma 2.5. For every

g ∈ H
− 1

2 ,0� (∂B), f ∈ H
1
2 ,0(∂Ω), and ψ ∈ H

− 1
2 ,0� (∂Ω),

there exists u ∈ H1,0(B \ ∂Ω) that solves (2.5), (2.6), and (2.9)–(2.12).

u depends continuously on g, f , and ψ, and it fulfills∫
Ω

u(x, t) dx = 0 for t ∈ [0, T ] a.e.

Proof. Let γ−
∂Ω : H

1
2 (∂Ω) → H1(Q) be a lifting operator, i.e., a continuous right

inverse of the trace operator ·|∂Ω with (γ−
∂Ωh)|∂B = 0 for all h ∈ H

1
2 (∂Ω), and set

uf = γ−
∂Ωf ∈ H1,0(Q).

We define the spaces

H1
�(B) :=

{
v ∈ H1(B) :

∫
Ω

v dx = 0

}
, H := L2(0, T,H1

�(B)),

Φ :=

{
ϕ ∈ D([0, T [×B) :

∫
Ω

ϕdx = 0

}
,

and we set for all v ∈ H and ϕ ∈ Φ

a(v, ϕ) :=

∫ T

0

∫
B

κ∇v · ∇ϕ dxdt−
∫ T

0

∫
Ω

v ∂tϕdxdt,

〈l, v〉 := −
∫ T

0

∫
Q

κ∇uf · ∇v dxdt +

∫ T

0

〈g, v|∂B〉dt−
∫ T

0

〈ψ, v|∂Ω〉dt.

Since H is a closed subspace of H1,0(B), it is a Hilbert space. Φ ⊂ H and for every
ϕ ∈ Φ, the linear form v → a(v, ϕ) is continuous on H.

Poincaré’s inequality yields that
(∫

B
|∇v|2 dx

)1/2
is an equivalent norm on H1

�(B);
thus there exists α > 0 such that for all ϕ ∈ Φ

a(ϕ,ϕ) =

∫ T

0

∫
B

κ|∇ϕ(x, t)|2 dxdt +
1

2

∫
Ω

|ϕ(0, x)|2 dx

≥
∫ T

0

∫
B

κ|∇ϕ|2 dxdt ≥ α ‖ϕ‖2
H .

Moreover, the continuity of the trace and lifting operators yields the existence of a
constant C that does not depend on g, f , and ψ such that for all v ∈ H

〈l, v〉 ≤ C
(
‖g‖

H− 1
2
,0(∂B)

+ ‖f‖
H

1
2
,0(∂Ω)

+ ‖ψ‖
H− 1

2
,0(∂Ω)

)
‖v‖H1,0(B)

= C

(
‖g‖

H
− 1

2
,0

� (∂B)
+ ‖f‖

H
1
2
,0(∂Ω)

+ ‖ψ‖
H

− 1
2
,0

� (∂Ω)

)
‖v‖H ,

and thus l ∈ H ′ with ‖l‖H′ ≤ C
(
‖g‖

H
− 1

2
,0

� (∂B)
+ ‖f‖

H
1
2
,0(∂Ω)

+ ‖ψ‖
H

− 1
2
,0

� (∂Ω)

)
.
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Now Lemma 2.4 gives existence of ũ ∈ H that solves∫ T

0

∫
B

κ∇ũ · ∇ϕ dxdt−
∫ T

0

∫
Ω

ũ ∂tϕdxdt

= −
∫ T

0

∫
Q

κ∇uf · ∇ϕ dxdt +

∫ T

0

〈g, ϕ|∂B〉dt−
∫ T

0

〈ψ,ϕ|∂Ω〉dt

(2.13)

for all ϕ ∈ Φ and ũ depends continuously on l (and therefore on g, f , and ψ).
We define u ∈ H1,0(B \ ∂Ω) by setting u|Ω := ũ|Ω and u|Q := ũ|Q + uf . Then u

solves (2.10) and there exist constants C ′, C ′′ > 0 such that

‖u‖H1,0(B\∂Ω) ≤ C ′
(
‖ũ|Ω‖H1,0(Ω) + ‖ũ|Q‖H1,0(Q) + ‖uf‖H1,0(Q)

)
≤ C ′′

(
‖ũ‖H + ‖uf‖H1,0(Q)

)
,

and thus u depends continuously on g, f , and ψ.
Since

∫
Ω
ũ(x, t) dx = 0 for t ∈ [0, T ] a.e., the left side of (2.13) vanishes for all

ϕ(x, t) = c(t) ∈ D([0, T [×B). Due to our additional assumptions on g and ψ, the
right side of (2.13) also vanishes for those ϕ. Thus (2.13) holds for all ϕ ∈ Φ and
for all ϕ(x, t) = c(t), which shows that (2.13) holds for all ϕ ∈ D([0, T [×B), and we
immediately obtain that u solves (2.5), (2.6), (2.9), and (2.11).

From Lemma 2.3 it follows that ũ|Ω = u|Ω ∈ W and thus Green’s formula holds.
We obtain that for every ϕ ∈ D([0, T [×B) with support in [0, T [×Ω

−
∫

Ω

u(0)ϕ(0) dx

=

∫ T

0

∫
Ω

u ∂tϕ dxdt +

∫ T

0

〈u′, ϕ〉dt

=

∫ T

0

∫
Ω

ũ ∂tϕ dxdt +

∫ T

0

〈κ∂νu−|∂Ω, ϕ|∂Ω〉dt−
∫ T

0

∫
Ω

κ∇u · ∇ϕdxdt

=

∫ T

0

∫
B

κ∇ũ · ∇ϕ dxdt−
∫ T

0

∫
Ω

κ∇u · ∇ϕdxdt

= 0,

where we used that the right side of (2.13) vanishes for suppϕ ∈ [0, T [×Ω. As D(Ω)
is dense in L2(Ω) this yields that u|Ω(0) = 0.

We summarize the results of this section and give a useful variational formulation
in Sobolev spaces.

Theorem 2.6. Let g ∈ H
− 1

2 ,0� (∂B), f ∈ H
1
2 ,0(∂Ω), and ψ ∈ H

− 1
2 ,0� (∂Ω), and let

uf ∈ H1,0(B \ ∂Ω) be such that uf |∂B = 0, uf |∂Ω = f , and uf |Ω = 0.
For u ∈ H1,0(B \ ∂Ω) the following three problems are equivalent and possess the

same unique solution. The solution depends continuously on g, f , and ψ and it fulfills∫
Ω
u(x, t) dx = 0 for t ∈ [0, T ] a.e.
(a) u solves

∂tu−∇ · (κ∇u) = 0 in Ω×]0, T [,(2.14)

∇ · (κ∇u) = 0 in Q×]0, T [,(2.15)

[κ∂νu]∂Ω = ψ,(2.16)
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[u]∂Ω = f,(2.17)

κ∂νu|∂B = g,(2.18)

u(x, 0) = 0 in Ω.(2.19)

(b) u|Ω ∈ W , u(x, 0) = 0 in Ω, and ũ := u− uf solves∫ T

0

〈(ũ|Ω)′, v|Ω〉dt +

∫ T

0

∫
B

κ∇ũ · ∇v dxdt

=

∫ T

0

〈g, v|∂B〉dt−
∫ T

0

〈ψ, v|∂Ω〉dt−
∫ T

0

∫
Q

κ∇uf · ∇v dxdt

(2.20)

for all v ∈ H1,0(B).
(c) ũ := u− uf solves∫ T

0

∫
B

κ∇ũ · ∇v dxdt−
∫ T

0

〈(v|Ω)′, ũ|Ω〉dt

=

∫ T

0

〈g, v|∂B〉dt−
∫ T

0

〈ψ, v|∂Ω〉dt−
∫ T

0

∫
Q

κ∇uf∇v dxdt

for all v ∈ H1,0(B) with v|Ω ∈ W and v(x, T ) = 0 on Ω.
Proof. We showed the unique solvability of the equations in (a) and the properties

of the solution in Lemmas 2.3 and 2.5. Thus it remains only to prove the equivalence
of (a), (b), and (c).

(a) ⇒ (b). Note that ũ ∈ H1,0(B), κ∂νu
−|∂Ω ∈ H− 1

2 ,0(∂Ω), and, by Lemma 2.3,
ũ|Ω = u|Ω ∈ W .

It suffices to show (2.20) for v ∈ D(]0, T [×B). Equations (2.14) and (2.15) imply
that

0 =

∫ T

0

〈(ũ|Ω)′, v|Ω〉dt−
∫ T

0

〈∇ · (κ∇u|Ω) , v|Ω〉dt

=

∫ T

0

〈(ũ|Ω)′, v|Ω〉dt−
∫ T

0

〈κ ∂νu−|∂Ω, v|∂Ω〉dt +

∫ T

0

∫
Ω

κ∇u · ∇v dxdt

and

0 =

∫ T

0

〈∇ · (κ∇u|Q) , v|Q〉dt

= −
∫ T

0

〈κ ∂νu+|∂Ω, v|∂Ω〉dt +

∫ T

0

〈κ ∂νu|∂B , v|∂B〉dt

−
∫ T

0

∫
Q

κ∇u · ∇v dxdt.

Subtracting these two equations and using (2.16) and (2.18) give

0 =

∫ T

0

〈(ũ|Ω)′, v|Ω〉dt +

∫ T

0

〈ψ, v|∂Ω〉dt−
∫ T

0

〈g, v|∂B〉dt

+

∫ T

0

∫
Ω

κ∇u · ∇v dxdt +

∫ T

0

∫
Q

κ∇u · ∇v dxdt.
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Now (2.20) follows from∫ T

0

∫
Ω

κ∇u · ∇v dxdt +

∫ T

0

∫
Q

κ∇u · ∇v dxdt

=

∫ T

0

∫
B

κ∇ũ · ∇v dxdt +

∫ T

0

∫
Q

κ∇uf · ∇v dxdt.

(b) ⇒ (c). This part of the proof follows from Green’s formula on W .
(c) ⇒ (a). This part of the proof was shown in the proof of Lemma 2.5.

2.2. Boundary measurements and a reference problem. We assume that
the inclusion not only has a higher heat capacity but also has a higher conductivity
κ than the background. For simplicity we fix κ = 1 on Q and therefore require that
κ|Ω − 1 ∈ L∞

+ (Ω).
We introduce the measurement operator

Λ1 : g �→ u1|∂B , where u1 solves (2.1) with ∂νu1|∂B = g, u1|Ω = 0 at t = 0.

Using the results from section 2.1 we know that Λ1 is a continuous linear operator

from H
− 1

2 ,0� (∂B) to H
1
2 ,0(∂B).

To locate the inclusion Ω we compare Λ1 with boundary measurements of a do-
main without inclusions, i.e., with the measurement operator

Λ0 : g �→ u0|∂B , where Δu0 = 0 on B×]0, T [ and ∂νu0|∂B = g.

The Lax–Milgram theorem shows that u0 is uniquely determined up to addition of a
spatially constant function u(x, t) = c(t) ∈ L2(0, T,R) and that Λ0 is a continuous

linear operator from H
− 1

2 ,0� (∂B) to H
1
2 ,0� (∂B) := L2(0, T,H

1
2� (∂B)), where the quo-

tient space H
1
2� (∂B) := H

1
2 (∂B)/R can be identified with the dual space of H

− 1
2� (∂B)

and H
1
2 ,0� (∂B) with the dual space of H

− 1
2 ,0� (∂B).

Analogously we define quotient spaces on B, Q, and ∂Ω and note that in the

case that ∂Ω is disconnected the quotient space H
1
2� (∂Ω) is still obtained by factoring

out the one-dimensional space of functions that are constant on ∂Ω, and not the
multidimensional space of functions that are constant on each connected component.

Mathematically the elements of the quotient spaces Hr,0
� , r ≥ 0, are equivalence

classes; i.e., all functions that differ only by a spatially constant function are called
equivalent and combined into one class. For the sake of readability we write an
equivalence class as a function and keep in mind that it is a representant of its class.

We also note that the space H
− 1

2 ,0� , which we defined earlier, is not a quotient space.
Without changing notation we use the canonical epimorphism to restrict Λ1 to

the spaces of the reference problem. Thus we will investigate the inverse problem of
locating the inclusion Ω from knowledge of

Λ0, Λ1 : H
− 1

2 ,0� (∂B) → H
1
2 ,0� (∂B).

3. The inverse problem. We use the factorization method to reconstruct Ω
from the boundary measurements. To this end we show that the difference of the
measurement operators Λ0 − Λ1 can be factorized into the product

Λ0 − Λ1 = L(F0 − F1)L
′(3.1)
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Fig. 3.1. Factorization of Λ0 − Λ1.

(cf. Figure 3.1), where the operator L corresponds to virtual measurements on the
complement Q of the inclusion, and its range contains all information about Q and
thus about the location of Ω.

Unlike previously known applications of the factorization method, the explicit
time-dependence of the problem prevents us from calculating R(L) from the boundary
measurements, but using a new approach we can show that the knowledge of Λ0 −Λ1

still suffices to determine Ω.

3.1. Factorization of the boundary measurements. We define a virtual
measurement operator that corresponds to inducing a heat flux on the inclusion’s
boundary

L : H
− 1

2 ,0� (∂Ω) → H
1
2 ,0� (∂B), Lψ := v|∂B ,

where v ∈ H1,0
� (Q) solves

Δv = 0 in Q×]0, T [, ∂νv =

{
−ψ on ∂Ω,
0 on ∂B.

(3.2)

We also need the two auxiliary operators

F0 : H
1
2 ,0(∂Ω) → H− 1

2 ,0(∂Ω), F0φ := ∂νv
+
0 |∂Ω,

F1 : H
1
2 ,0(∂Ω) → H− 1

2 ,0(∂Ω), F1φ := ∂νv
+
1 |∂Ω,

where v0, v1 ∈ H1,0(B \ ∂Ω) solve

Δv0 = 0 in (Q ∪ Ω)×]0, T [, [∂νv0]∂Ω = 0,
∂νv0|∂B = 0, [v0]∂Ω = φ,

(3.3)

and

Δv1 = 0 in Q×]0, T [, [κ∂νv1]∂Ω = 0,
∂tv1 −∇ · (κ∇v1) = 0 in Ω×]0, T [, [v1]∂Ω = φ,

v1(x, 0) = 0 in Ω, ∂νv1|∂B = 0.
(3.4)

Note that F0 is well defined even though (3.3) determines v0 only up to addition
of a spatially constant function. Since the ranges of F0 and F1 are contained in

H
− 1

2 ,0� (∂Ω) and their kernels contain L2(0, T,R), we will consider them as operators
from

H
1
2 ,0� (∂Ω) into H

− 1
2 ,0� (∂Ω).

Theorem 3.1. The difference of the boundary measurements can be factorized
into

Λ0 − Λ1 = L(F0 − F1)L
′.

The operators L and L′ are injective.



INTERFACES IN A PARABOLIC-ELLIPTIC PROBLEM 821

Proof. For given g ∈ H
− 1

2 ,0� (∂B) let w ∈ H1,0
� (Q) solve

Δw = 0 in Q×]0, T [, with ∂νw =

{
0 on ∂Ω,
g on ∂B.

Let ψ ∈ H
− 1

2 ,0� (∂Ω) and v ∈ H1,0
� (Q) be the solution of (3.2) in the definition of

Lψ. Then

〈ψ,L′g〉 = 〈g, Lψ〉 = 〈∂νw|∂B , v|∂B〉 =

∫ T

0

∫
Q

∇w · ∇v dxdt

=
〈
−∂νv

+|∂Ω, w
+|∂Ω

〉
=

〈
ψ,w+|∂Ω

〉
,

and thus L′g = w+|∂Ω.
Now let v0, v1 ∈ H1,0(B \ ∂Ω) be the solutions of (3.3), resp., (3.4), from the

definition of F0w
+|∂Ω, resp., F1w

+|∂Ω. We define u0, u1 ∈ H1,0(B \ ∂Ω) by setting
ui|Ω := −vi|Ω and ui|Q := w − vi|Q, i = 0, 1. Then u0, u1 ∈ H1,0(B) and solve the
equations in the definitions of Λ0g and Λ1g. Thus

(Λ0 − Λ1)g = (u0 − u1)|∂B = −(v0 − v1)|∂B .

Since Δ(v1 − v0) = 0 in Q×]0, T [ and ∂ν(v1 − v0)|∂B = 0 we also have

L(∂ν(v
+
0 − v+

1 )|∂Ω) = −(v0 − v1)|∂B ,

and thus

(Λ0 − Λ1)g = L(∂ν(v
+
0 − v+

1 )|∂Ω) = L(F0 − F1)w
+|∂Ω = L(F0 − F1)L

′g.

To show injectivity of L′ let L′g = 0 with some g ∈ H
− 1

2 ,0� (∂B). Then we obtain
from the above characterization of L′ a solution w ∈ H1,0(Q) of

Δw = 0 in Q×]0, T [, w+|∂Ω = 0, and ∂νw =

{
0 on ∂Ω,
g on ∂B.

We set w to zero on Ω×]0, T [ and denote this continuation by w̃ ∈ H1,0(B \ ∂Ω).
Then we have

Δw̃ = 0 in (B \ ∂Ω)×]0, T [, [w̃]∂Ω = 0, [κ∂νw̃]∂Ω = 0,

and thus w̃ ∈ H1,0(B) and Δw̃ = 0 in B×]0, T [. Hence w̃(·, t) is analytic for t ∈]0, T [
a.e. Since w̃ disappears on Ω and B is connected, we obtain that w = w̃ = 0 in Q so
that g = 0. Thus L′ is injective.

The injectivity of L follows from the same arguments, when the function from
the definition of L is set to zero in (Rn \ B)×]0, T [. Since Q is connected, R

n \ Ω is
also connected.

The injectivity of L and L′ yields that they have dense ranges. The operator
F0 −F1 satisfies a coerciveness condition; to show this we introduce the operators λ1

and λ that correspond to measurements on the inclusion, resp., on its complement.

λ1 : H
− 1

2 ,0� (∂Ω) → H
1
2 ,0(∂Ω), λ1ψ := u−

1 |∂Ω,

λ : H
− 1

2 ,0� (∂Ω) → H
1
2 ,0� (∂Ω), λψ := u+|∂Ω,
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where u1 ∈ W solves

∂tu1 −∇ · (κ∇u1) = 0 in Ω×]0, T [, κ∂νu
−
1 |∂Ω = ψ, u1(x, 0) = 0 on Ω,(3.5)

and u ∈ H1,0
� (Q) solves

Δu = 0 in Q×]0, T [, ∂νu =

{
−ψ on ∂Ω,
0 on ∂B.

The unique solvability of (3.5) is shown in [8, Cor. 3.17] for general ψ ∈ H− 1
2 ,−

1
4 (∂Ω).

In our case it can also be proven analogously to Lemmas 2.3 and 2.5.
Again we use the canonical epimorphism to restrict λ1 to the same spaces as λ;

i.e., from now on we consider it as an operator

λ1 : H
− 1

2 ,0� (∂Ω) → H
1
2 ,0� (∂Ω).

Lemma 3.2. (a) For every ψ ∈ H
− 1

2 ,0� (∂Ω) we have the identity

〈ψ, λ1ψ〉 =

∫ T

0

〈(u1|Ω)′, u1|Ω〉dt +

∫ T

0

∫
Ω

κ|∇u1|2 dxdt,

where u1 ∈ W is the solution of (3.5) in the definition of λ1.

(b) λ1 is coercive with respect to H− 1
2 ,−

1
4 (∂Ω); i.e., there exists c > 0 such that

〈ψ, λ1ψ〉 ≥ c ‖ψ‖2

H− 1
2
,− 1

4 (∂Ω)
for all ψ ∈ H

− 1
2 ,0� (∂Ω).(3.6)

Proof. By setting it to zero on Q, every solution u1 ∈ W of (3.5) can be extended
to a solution of (2.14), (2.15), and (2.19) in Theorem 2.6(a), with

[κ∂νu1]∂Ω = −ψ, [u1]∂Ω = −λ1ψ, and κ∂νu1|∂B = 0.

It follows that ∫
Ω

u1(x, t) dx = 0 for t ∈ [0, T ] a.e.,(3.7)

and with uf ∈ H1,0(B \ ∂Ω) such that uf |∂B = 0, uf |∂Ω = −λ1ψ, and uf |Ω = 0 we
obtain from the variational formulation for ũ := u1 − uf in Theorem 2.6(b)∫ T

0

〈(ũ|Ω)′, ũ|Ω〉dt+

∫ T

0

∫
B

κ|∇ũ|2 dxdt =

∫ T

0

〈ψ, ũ|∂Ω〉dt−
∫ T

0

∫
Q

κ∇uf · ∇ũ dxdt.

Using ũ|∂Ω = λ1ψ, uf |Ω = 0, and u1|Q = 0 we conclude that

〈ψ, λ1ψ〉 =

∫ T

0

〈(u1|Ω)′, u1|Ω〉dt +

∫ T

0

∫
Ω

κ|∇u1|2 dxdt,

and thus (a) holds.
Because of (3.7) Poincaré’s inequality yields the existence of a c′ > 0 such that

〈ψ, λ1ψ〉 ≥ c′ ‖u1‖2
H1,0(Ω) ,
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and so assertion (b) follows from the continuity of the Neumann trace in Theo-
rem 2.1(c).

Lemma 3.3. There exists c′ > 0 such that

〈(F0 − F1)φ, φ〉 ≥ c′ ‖F1φ‖2

H− 1
2
,− 1

4 (∂Ω)
,

and F1 is bijective with F−1
1 = −λ− λ1.

Proof. For given φ ∈ H
1
2 ,0(∂Ω) let v0, v1 ∈ H1,0(B \ ∂Ω) be the solutions of (3.3)

and (3.4) in the definition of F0 and F1, and let vφ ∈ H1,0(B \ ∂Ω) be such that
v+
φ |∂Ω = φ, vφ|∂B = 0, and vφ|Ω = 0.

Then ṽi := vi − vφ, i = 0, 1, solve∫ T

0

∫
B

∇ṽ0 · ∇w dxdt = −
∫ T

0

∫
Q

∇vφ · ∇w dxdt,∫ T

0

〈(ṽ1|Ω)′, w|Ω〉dt +

∫ T

0

∫
B

κ∇ṽ1 · ∇w dxdt = −
∫ T

0

∫
Q

∇vφ · ∇w dxdt

for all w ∈ H1,0(B) (cf. Theorem 2.6 for the second equation). From the Lax–Milgram
theorem it follows that for t ∈]0, T [ a.e. ṽ0(·, t) minimizes the functional

w �→ 1

2

∫
B

|∇w(x)|2 dx +

∫
Q

∇vφ(x, t) · ∇w(x) dx

in H1(B) so that∫ T

0

∫
B

|∇ṽ0|2 dxdt

= −2

(
−1

2

∫ T

0

∫
B

|∇ṽ0|2 dxdt +

∫ T

0

∫
Q

∇vφ · ∇ṽ0 dxdt

)

≥ −2

(
1

2

∫ T

0

∫
B

|∇ṽ1|2 dxdt +

∫ T

0

∫
Q

∇vφ · ∇ṽ1 dxdt

)

= −
∫ T

0

∫
B

|∇ṽ1|2 dxdt + 2

∫ T

0

∫
B

κ|∇ṽ1|2 dxdt + 2

∫ T

0

〈(ṽ1|Ω)′, ṽ1|Ω〉 dt

and thus

〈(F0 − F1)φ, φ〉

=
〈
∂νv

+
0 , φ

〉
−
〈
∂νv

+
1 , φ

〉
=

∫ T

0

∫
Q

∇v1 · ∇vφ dxdt−
∫ T

0

∫
Q

∇v0 · ∇vφ dxdt

=

∫ T

0

∫
Q

∇vφ · ∇ṽ1 dxdt−
∫ T

0

∫
Q

∇vφ · ∇ṽ0 dxdt

=

∫ T

0

∫
B

|∇ṽ0|2 dxdt−
∫ T

0

∫
B

κ|∇ṽ1|2 dxdt−
∫ T

0

〈(ṽ1|Ω)′, ṽ1|Ω〉 dt

≥
∫ T

0

∫
Ω

(κ− 1)|∇ṽ1|2 dxdt +

∫ T

0

〈(ṽ1|Ω)′, ṽ1|Ω〉 dt.
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Using κ|Ω−1 ∈ L∞
+ (Ω),

∫ T

0
〈(ṽ1|Ω)′, ṽ1|Ω〉 dt ≥ 0, ṽ1|Ω = v1|Ω, and Lemma 3.2(a)

we conclude that there exists cκ > 0 such that

〈(F0 − F1)φ, φ〉 ≥ cκ

(∫ T

0

∫
Ω

κ|∇ṽ1|2 +

∫ T

0

〈(ṽ1|Ω)′, ṽ1|Ω〉 dt

)
= cκ

〈(
κ∂ν ṽ

−
1 |∂Ω

)
, λ1

(
κ∂ν ṽ

−
1 |∂Ω

)〉
= cκ

〈(
∂νv

+
1 |∂Ω

)
, λ1

(
∂νv

+
1 |∂Ω

)〉
= cκ 〈F1φ, λ1F1φ〉 ,

and so the first assertion follows from Lemma 3.2(b). To show surjectivity of F1 let

ψ ∈ H
− 1

2 ,0� (∂Ω) and denote by u ∈ H1,0(Q), u1 ∈ W the functions from the definition
of λψ and λ1ψ.

Define v1 ∈ H1,0(B \ ∂Ω) by setting v1 := −u on Q and v1 := u1 on Ω. Then v1

solves the equations in the definition of F1 with [v1]∂Ω = (−λ−λ1)ψ (up to a spatially
constant function) and thus F1(−λ− λ1)ψ = ∂νu

+
1 |∂Ω = ψ.

It remains to show injectivity of F1. To this end let F1φ = 0 and v1 ∈ H1,0(B\∂Ω)
be the function from the definition of F1. Then v1 solves the Laplace equation on
Q and the heat equation on Ω each with zero Neumann boundary values. Thus it
vanishes on Ω and is spatially constant on Q, which implies that φ ∈ L2(0, T,R).

3.2. Range characterization. Lemma 3.3 implies that the symmetric part of
F0−F1 is positive and thus also the symmetric part of Λ0−Λ1 is positive. Identifying
Hilbert spaces with their duals, these operators have positive square roots, and their
ranges can be related. The key to provide this relation is the following lemma that
has been used by Brühl to extend the factorization method to the case of nonconstant
conductivities in EIT [4, Satz 4.9]. We state it in the form in which it is called the
“14th important property of Banach spaces” in [3] and give an elementary proof for
the sake of completeness.

Lemma 3.4. Let X,Y be two Banach spaces, and let A ∈ L(X;Y ) and x′ ∈ X ′.
Then

x′ ∈ R(A′) if and only if ∃C > 0 : |〈x′, x〉| ≤ C ‖Ax‖ for all x ∈ X.

Proof. If x′ ∈ R(A′) then there exists y′ ∈ Y ′ such that x′ = A′y′. Thus

|〈x′, x〉| = |〈y′, Ax〉| ≤ ‖y′‖ ‖Ax‖ for all x ∈ X,

and the assertion holds with C = ‖y′‖.
Now let x′ ∈ X ′ such that there exists C > 0 with |〈x′, x〉| ≤ C ‖Ax‖ for all

x ∈ X. Define

f(z) := 〈x′, x〉 for every z = Ax ∈ R(A).

Then f is a well-defined, continuous, linear functional, with ‖f(z)‖ ≤ C ‖z‖. Using
the Hahn–Banach theorem there exists y′ ∈ Y ′ with y′|R(A) = f . For all x ∈ X we
have

〈A′y′, x〉 = 〈y′, Ax〉 = f(A(x)) = 〈x′, x〉

and thus x′ = A′y′ ∈ R(A′).
We will make use of the following simple corollary.
Corollary 3.5. Let Hi, i = 1, 2, be Hilbert spaces with norms ‖·‖i, X be a third

Hilbert space, and Ai ∈ L(X,Hi).
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If ‖A1x‖1 ≤ ‖A2x‖2 for all x ∈ X, then R(A∗
1) ⊆ R(A∗

2).
Proof. Since A′

iιH1 = ιXA∗
i , i = 1, 2, y ∈ R(A∗

1) implies ιXy ∈ R(A′
1). Using

Lemma 3.4 there exists C > 0 such that

|〈ιXy, x〉| ≤ C ‖A1x‖1 ≤ C ‖A2x‖2 for all x ∈ X,

and thus ιXy ∈ R(A′
2), which implies y ∈ R(A∗

2).
Note that in particular A∗

1A1 = A∗
2A2 implies R(A∗

1) = R(A∗
2) (cf. [11]). Following

the argument in [12] we can use Corollary 3.5 to characterize the range of the virtual
measurement operator L by reformulating the symmetric part of (3.1) using adjoint
operators.

We set

Λ := Λ0 − 1
2 (Λ1 + Λ′

1), Λ̃ = Λι
H

1/2,0
� (∂B)

,

F := F0 − 1
2 (F1 + F ′

1), F̃ = ι−1

H
1/2,0
� (∂Ω)

F.

Lemma 3.6. Λ̃ and F̃ are self-adjoint and positive operators and their square
roots satisfy

R(Λ̃1/2) = R(Lι
H

1/2,0
� (∂Ω)

F̃ 1/2).

Proof. By construction Λ̃ and F̃ are self-adjoint and positive. From Theorem 3.1
it follows that

Λ̃1/2Λ̃1/2 = Λ̃ = Lι
H

1/2,0
� (∂Ω)

F̃L′ι
H

1/2,0
� (∂B)

=
(
Lι

H
1/2,0
� (∂Ω)

)
F̃
(
Lι

H
1/2,0
� (∂Ω)

)∗

=
(
Lι

H
1/2,0
� (∂Ω)

)
F̃ 1/2F̃ 1/2

(
Lι

H
1/2,0
� (∂Ω)

)∗
.

The assertion now follows from Corollary 3.5.

If F were coercive with respect to the space H
− 1

2 ,0� (∂Ω), we would obtain sur-
jectivity of F̃ 1/2 and thus the range characterization R(Λ̃1/2) = R(L) that was used
in previous applications of the factorization method. In our situation we have only
the weaker coercivity condition from Lemma 3.3. The next theorem shows that this
weaker condition is still enough to guarantee that R(F̃ 1/2) contains all functions of a
certain time regularity, which turns out to be sufficient for the method to work.

Theorem 3.7.

R(Λ̃1/2) ⊆ R(L) = L
(
H

− 1
2 ,0� (∂Ω)

)
,(3.8)

R(Λ̃1/2) ⊇ L
(
H

1
4 (0, T,H

− 1
2� (∂Ω))

)
.(3.9)

Proof. Equation (3.8) immediately follows from Lemma 3.6.

Denote by j:H
− 1

2 ,0� (∂Ω) ↪→ H− 1
2 ,−

1
4 (∂Ω) the imbedding operator. Using Lemma 3.3

we have for all φ ∈ H
1
2 ,0� (∂Ω)∥∥∥F̃ 1/2φ

∥∥∥2

H
1
2
,0

� (∂Ω)
= (F̃ φ, φ)

H
1
2
,0

� (∂Ω)
≥ c′ ‖jF1φ‖2

H− 1
2
,− 1

4 (∂Ω)
.
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Since F ∗
1 j

∗ = ι−1

H
1/2,0
� (∂Ω)

F ′
1j

′ιH−1/2,−1/4(∂Ω) we obtain from Corollary 3.5

R
(
F̃ 1/2

)
⊇ R(F ∗

1 j
∗) = R

(
ι−1

H
1/2,0
� (∂Ω)

F ′
1j

′
)

and from Lemma 3.6

R(Λ̃1/2) = R(Lι
H

1/2,0
� (∂Ω)

F̃ 1/2) ⊇ R(LF ′
1j

′).

Using Lemma 3.4 it is easily seen that

R(j′) = H
1
2 ,

1
4� (∂Ω) := (H

1
2 ,

1
4 (∂Ω) + L2(0, T,R))/L2(0, T,R) ⊂ H

1
2 ,0� (∂Ω).

(Note that by this definition H
1
2 ,

1
4� (∂Ω) is isomorphic to H

1
2 ,

1
4 (∂Ω)/H

1
4 (0, T,R).)

Using Lemma 3.3 we have (F ′
1)

−1 = −λ′ − λ′
1. Since λ = λ′ and R(λ′

1) ⊆
H

1
2 ,

1
4� (∂Ω) (cf. [8]) it remains only to show that

λ
(
H

1
4 (0, T,H

− 1
2� (∂Ω))

)
⊆ H

1
2 ,

1
4� (∂Ω).(3.10)

To this end denote by λ : H
− 1

2� (∂Ω) → H
1
2� (∂Ω), ψ �→ u+|∂Ω, where u ∈ H1

� (Q)
solves

Δu = 0 in Q, ∂νu =

{
−ψ on ∂Ω,
0 on ∂B.

Then for every ψ ∈ H1(0, T,H
− 1

2� (∂Ω)) and ϕ ∈ D(]0, T [)∫ T

0

(−1)(λψ)ϕ′ dt = λ

(∫ T

0

(−1)ψϕ′(t) dt

)
= λ

(∫ T

0

ψ′ϕ(t) dt

)

=

∫ T

0

(λψ′)ϕ dt ∈ H
1
2� (∂Ω).

Thus λψ ∈ H1(0, T,H
1
2� (∂Ω)) with (λψ)′ = λ(ψ′), which shows that λ is a contin-

uous operator not only from L2(0, T,H
− 1

2� (∂Ω)) to L2(0, T,H
1
2� (∂Ω)) but also from

H1(0, T,H
− 1

2� (∂Ω)) to H1(0, T,H
1
2� (∂Ω)).

By interpolation (cf. [21]) λ is a continuous operator from

H
1
4 (0, T,H

− 1
2� (∂Ω)) → H

1
4 (0, T,H

1
2� (∂Ω)) ⊂ H

1
2 ,

1
4� (∂Ω).

Thus (3.10) holds and the assertion follows.

3.3. Characterization of the inclusion. The composition of time integration

and the (compact) imbedding H
1
2� (∂B) ↪→ L2

�(∂B) := L2(∂B)/R defines the operator

I : H
1
2 ,0� (∂B) → L2

�(∂B), u �→
∫ T

0

u(·, t) dt.

Identifying L2
�(∂B) with its dual we have

IΛ̃I∗ = IΛI ′,(3.11)
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where I ′ : L2
�(∂B) → H

− 1
2 ,0� (∂B) is given by

I ′v = w, with w(·, t) = v(·) for t ∈ [0, T ] a.e.

The operator IΛI ′ corresponds to measurements of applying temporal constant
(and spatially square integrable) heat fluxes to a body and measuring time integrals
of the resulting temperature on the boundary.

We use the same dipole functions as Brühl and Hanke used in [13] for the imple-
mentation of the factorization method in EIT. For a direction d ∈ R

n, |d| = 1, and a
point z ∈ B let

Dz,d(x) :=
(z − x) · d
|z − x|n .

Then Dz,d(x) is analytic and ΔDz,d(x) = 0 in R
n \ {z}. Moreover, using a ball Bε(z)

centered at z with such small radius ε > 0 such that Bε(z) ⊂ B,∫
∂B

∂νDz,d(x) dx =

∫
∂Bε(z)

∂νDz,d(x) dx = 0,

so in particular ∂νDz,d ∈ H
− 1

2� (∂B) and there exists vz,d ∈ H1(B) that solves

Δvz,d = 0 in B and ∂νvz,d = −∂νDz,d on ∂B.

Now Hz,d := Dz,d + vz,d is harmonic (and thus analytic) in B \ {z} with ∂νHz,d|∂B =
0 but Hz,d /∈ L2(B \ {z}). The inclusion can now be characterized by the traces

hz,d := Hz,d|∂B ∈ H
1
2� (∂B) (again we use the same notation for the equivalence class

of functions that are identical up to addition of constant functions as we used for the
original function).

Theorem 3.8. For every d ∈ R
n, |d| = 1, and z ∈ B

z ∈ Ω if and only if hz,d ∈ R
(
(IΛI ′)1/2

)
.

Proof. From Corollary 3.5 and (3.11) it follows that R
(
(IΛI ′)1/2

)
= R(IΛ̃1/2)

and consequently from Theorem 3.7 we obtain

R
(
(IΛI ′)1/2

)
⊆ IL

(
H

− 1
2 ,0� (∂Ω)

)
,

R
(
(IΛI ′)1/2

)
⊇ IL

(
H

1
4 (0, T,H

−1/2
� (∂Ω))

)
.

First let z ∈ Ω; then we define w ∈ H1,0
� (Q) by w(x, t) := Hz,d(x)/T for t ∈ [0, T ] a.e.

Then −∂νw
+|∂Ω ∈ H

1
4 (0, T,H

−1/2
� (∂Ω)) and w solves (3.2) in the definition of L, so

hz,d = Iw|∂B = IL(−∂νw
+|∂Ω)

∈ IL
(
H

1
4 (0, T,H

−1/2
� (∂Ω))

)
⊆ R

(
(IΛI ′)1/2

)
.

To show the converse let hz,d ∈ R
(
(IΛI ′)1/2

)
⊆ IL(H

− 1
2 ,0� (∂Ω)). Then hz,d coincides

with the integral of the trace of a solution of the Laplace equation on Q with vanishing
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Neumann boundary values. Taking the integral of that solution we have that hz,d =
w|∂B , with some

w ∈ H1
� (Q) that solves Δw = 0 on Q, ∂νw = 0 on ∂B.

As Hz,d and w are both harmonic on Q\{z} with the same Cauchy data on ∂B, they
coincide near ∂B and thus by analytic continuation on Q \ {z}. If z /∈ Ω this leads to
the contradiction that w ∈ L2

�(Q \ {z}) but Hz,d /∈ L2
�(Q \ {z}).

By construction IΛI ′ is a compact and self-adjoint operator and from the fac-
torization and the positiveness of F it follows that it is positive. Since IΛI ′g = 0
implies that 〈FL′I ′g, L′I ′g〉 = 0 and thus L′I ′g = 0, we also obtain injectivity of IΛI ′

from the injectivity of L′ and I ′. Hence there exists an orthonormal basis (vk)k∈N

of eigenfunctions with associated positive eigenvalues (λk)k∈N . Following [13] we use
this spectral decomposition to reformulate Theorem 3.8 with the Picard criterion.

Corollary 3.9. For every d ∈ R
n, |d| = 1, and z ∈ B

z ∈ Ω if and only if
∑
k∈N

1

λk

(∫
∂B

hz,dvk dx

)2

< ∞.

We remark that the results of this subsection remain valid with identical proofs
when I is replaced by

IS : H
1
2 ,0� (∂B) → L2

�(S), u �→
∫ T

0

u|S(·, t) dt,

where S is a relatively open subset of the boundary ∂B. Thus Ω is uniquely determined
by ISΛI ′S , i.e., by measurements of applying (temporal constant) heat fluxes on a part
of the boundary and measuring (time integrals of) the resulting temperature on the
same part; cf., e.g., [14, 24, 25] for corresponding results in impedance tomography
and the effect of partial boundary data on numerical reconstructions.

4. Numerics.

4.1. The direct problem. In this section we show how the direct problem can
be solved numerically with a coupling of a finite element method and a boundary
element method similar to [9]. We start by reformulating the direct problem.

4.1.1. Reformulation of the direct problem. Recall that λ was defined by

λ : H
− 1

2 ,0� (∂Ω) → H
1
2 ,0� (∂Ω), λψ := η+|∂Ω ,

where η ∈ H1,0
� (Q) solves

Δη = 0 in Q, ∂νη =

{
−ψ on ∂Ω ,
0 on ∂B .

We use the same notation for the time-independent Neumann–Dirichlet operator

λ : H
− 1

2� (∂Ω) → H
1
2� (∂Ω).

Note that λ is linear, continuous, and coercive, i.e., 〈ψ, λψ〉 ≥ c‖ψ‖2

H
− 1

2
� (∂Ω)

.



INTERFACES IN A PARABOLIC-ELLIPTIC PROBLEM 829

For the rest of this section we assume that g ∈ H
− 1

2 ,0� (∂B) and ξ = ξ(g) ∈ H1,0
� (Q)

solves

Δξ = 0 in Q, ∂νξ =

{
0 on ∂Ω ,
g on ∂B .

Theorem 4.1. If u ∈ H1,0(B) solves (2.5)–(2.8), (2.11), and (2.12), then v :=
u|Ω and φ := −κ∂νu

−|∂Ω satisfy

∂tv −∇ · (κ∇v) = 0 in Ω×]0, T [,(4.1)

v−|∂Ω − λφ = ξ+|∂Ω in H
1
2 ,0� (∂Ω),(4.2)

v(x, 0) = 0 in Ω .(4.3)

On the other hand, if (v, φ) ∈ H1,0(Ω) ×H
− 1

2 ,0� (∂Ω) solves (4.1)–(4.3) and

κ∂νv
−|∂Ω = −φ,(4.4)

then there exists u ∈ H1,0(B) that solves (2.5)–(2.8), (2.11), (2.12), and v = u|Ω.
Moreover u|Q ∈ H1,0(Q) is the representant of ξ + η ∈ H1,0

� (Q) with
∫
∂Ω

u+|∂Ω ds =∫
∂Ω

u−|∂Ω ds, where η is as in the definition of λφ.
Proof. The proof immediately follows from the definitions of ξ and λ.
Theorem 4.2. The following problems are equivalent:

(a) (u, φ) ∈ H1,0(Ω) ×H
− 1

2 ,0� (∂Ω) solves (4.1)–(4.4).

(b) (u, φ) ∈ W ×H
− 1

2 ,0� (∂Ω), u(x, 0) = 0 in Ω, and (u, φ) solves∫ T

0

〈u′, v〉dt +

∫ T

0

∫
Ω

κ∇u · ∇v dxdt +

∫ T

0

〈φ, v−|∂Ω〉dt

−
∫ T

0

〈ψ̃, λφ〉dt +

∫ T

0

〈ψ̃, u−|∂Ω〉dt =

∫ T

0

〈ψ̃, ξ+|∂Ω〉dt(4.5)

for all v ∈ H1,0(Ω) and for all ψ̃ ∈ H
− 1

2 ,0� (∂Ω).

(c) (u, φ) ∈ W ×H
− 1

2 ,0� (∂Ω), u(x, 0) = 0 in Ω, and (u, φ) solves

〈u′(t), v〉 +

∫
Ω

κ∇u(t) · ∇v dx + 〈φ(t), v−|∂Ω〉 − 〈ψ̃, λφ(t)〉 + 〈ψ̃, u(t)−|∂Ω〉

= 〈ψ̃, ξ(t)+|∂Ω〉(4.6)

for t ∈ [0, T ] a.e. and for all v ∈ H1(Ω) and for all ψ̃ ∈ H
− 1

2� (∂Ω).
Proof. (a)⇔(b) can be shown analogously to the proof of Theorem 2.6.
To show (b)⇔(c), note that (4.6) is fulfilled for t ∈ [0, T ] a.e. if and only if

it is fulfilled in the sense of L2([0, T ]). The equivalence then follows from the fact

that L2([0, T ]) ⊗ H1(Ω), resp., L2([0, T ]) ⊗ H
− 1

2� (∂Ω), are dense in H1,0(Ω), resp.,

H
− 1

2 ,0� (∂Ω).

4.1.2. Implementation and convergence analysis of the reformulated
problem. Let {Hh, h > 0} and {Bh, h > 0} be families of finite dimensional sub-

spaces of H1(Ω) and H
− 1

2� (∂Ω), respectively. Accordingly the family of L2-projections
Ph : H1(Ω) → Hh is defined by

∫
Ω
Phvwh dx =

∫
Ω
vwh dx for all wh ∈ Hh. We assume
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that Ph satisfies the following estimate: There exists a constant γ > 0, independent
of h, such that

sup
v∈H1(Ω)

‖Phv‖H1(Ω)

‖v‖H1(Ω)
≤ γ for all h > 0 .(4.7)

For example, let T be a regular triangulation of Ω with generic mesh spacing h and
Hh be a space of piecewise linear polynomials on T . Then following [23] the operator
Ph fulfills (4.7).

We consider the following Galerkin scheme.
Find uh : [0, T ] → Hh, φh : [0, T ] → Bh such that

〈u′
h, vh〉 +

∫
Ω

κ∇uh · ∇vh dx + 〈φh, v
−
h |∂Ω〉

− 〈ψh, λφh〉 + 〈ψh, u
−
h |∂Ω〉 = 〈ψh, ξ

+|∂Ω〉
(4.8)

for all (vh, ψh) ∈ Hh ×Bh, t ∈ [0, T ] a.e., and uh(0) = 0.
Lemma 4.3. For every h > 0 the Galerkin scheme (4.8) has a unique solution in

HT
h ×BT

h , where

HT
h :=

{
u ∈ L2(0, T,Hh) : u′ ∈ L2(0, T,Hh), u(x, 0) = 0

}
⊂ W,

BT
h := L2(0, T,Bh) ⊂ H

− 1
2 ,0� (∂Ω).

Proof. Let (wk)
nh

k=1 be a basis of Hh which is orthonormal with respect to the
L2(Ω) scalar product and (ψj)

mh
j=1 be a basis of Bh. Moreover, if we write uh(x, t) =∑nh

k=1 αk(t)wk(x) and φh(x, t) =
∑mh

j=1 βj(t)ψj(x), then (4.8) is equivalent to

∂tα(t) + Kα(t) + Bβ(t) = 0 , α(0) = 0 ,(4.9)

and

Dβ(t) −BTα(t) = d(t),(4.10)

where α = (α1, . . . , αnh
)T and β = (β1, . . . , βmh

)T . Since λ is linear and coercive we
can solve (4.10) for β in terms of α and substitute into (4.9) to obtain a system of
ODEs for α. According to standard existence theory for ODEs, there exists a unique
absolutely continuous solution α.

Lemma 4.4. Assume that (wh, ζh) ∈ HT
h × BT

h , ζ ∈ H
− 1

2 ,0� (∂Ω), w ∈ W with
w(x, 0) = 0 in Ω. Moreover assume that the following equation is fulfilled:

〈w′
h, vh〉 +

∫
Ω

κ∇wh · ∇vh dx + 〈ζh, v−h |∂Ω〉 − 〈ψh, λζh〉 + 〈ψh, w
−
h |∂Ω〉

= 〈w′, vh〉 +

∫
Ω

κ∇w · ∇vh dx + 〈ζ, v−h |∂Ω〉 − 〈ψh, λζ〉 + 〈ψh, w
−|∂Ω〉(4.11)

for t ∈ [0, T ] a.e. and for all (vh, ψh) ∈ Hh×Bh. Then there exists c > 0 independent
of h such that

‖wh‖W + ‖ζh‖
H

− 1
2
,0

� (∂Ω)
≤ c

(
‖w‖W + ‖ζ‖

H
− 1

2
,0

� (∂Ω)

)
.
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Proof. 1. We use (vh, ψh) = (wh,−ζh) in (4.11) and obtain for t ∈ [0, T ] a.e.

〈w′
h, wh〉 +

∫
Ω

κ|∇wh|2 dx + 〈ζh, λζh〉

= 〈w′, wh〉 +

∫
Ω

κ∇w · ∇wh dx + 〈ζ, w−
h |∂Ω〉 + 〈ζh, λζ〉 − 〈ζh, w−|∂Ω〉

≤ c1

(
‖w′‖H1(Ω)′ + ‖w‖H1(Ω) + ‖ζ‖

H
− 1

2
� (∂Ω)

)
‖wh‖H1(Ω)

+c2

(
‖ζ‖

H
− 1

2
� (∂Ω)

+ ‖w‖H1(Ω)

)
‖ζh‖

H
− 1

2
� (∂Ω)

,

where ci, i = 1, . . . , 8, are not depending on h. Note that ‖ζ‖
H− 1

2 (∂Ω)
= ‖ζ‖

H
− 1

2
� (∂Ω)

and ‖ζh‖
H− 1

2 (∂Ω)
= ‖ζh‖

H
− 1

2
� (∂Ω)

. Now we integrate the left- and the right-hand sides

of this inequality from 0 to t and get for t ∈ [0, T ] a.e.

1

2
‖wh(t)‖2

L2(Ω) +

∫ t

0

∫
Ω

κ|∇wh|2 dxdt +

∫ t

0

〈ζh, λζh〉dt

≤ c3

(
‖w‖W + ‖ζ‖

H
− 1

2
,0

� (∂Ω)

)(
‖wh‖H1,0(Ω) + ‖ζh‖

H
− 1

2
,0

� (∂Ω)

)
.(4.12)

Again integrating both sides of this inequality from 0 to T yields

‖wh‖2
L2(0,T,L2(Ω))

≤ c4

(
‖w‖W + ‖ζ‖

H
− 1

2
,0

� (∂Ω)

)(
‖wh‖H1,0(Ω) + ‖ζh‖

H
− 1

2
,0

� (∂Ω)

)
.(4.13)

2. Since λ is coercive, using (4.12) and (4.13) we get

‖wh‖2
H1,0(Ω) + ‖ζh‖2

H
− 1

2
,0

� (∂Ω)

≤ c5

(
‖w‖W + ‖ζ‖

H
− 1

2
,0

� (∂Ω)

)(
‖wh‖H1,0(Ω) + ‖ζh‖

H
− 1

2
,0

� (∂Ω)

)
.

Therefore, we have

‖wh‖H1,0(Ω) + ‖ζh‖
H

− 1
2
,0

� (∂Ω)
≤ c6

(
‖w‖W + ‖ζ‖

H
− 1

2
,0

� (∂Ω)

)
.(4.14)

3. Since w′
h ∈ Hh for t ∈ [0, T ] a.e., using the L2-projection Ph we have for

t ∈ [0, T ] a.e.

‖w′
h‖H1(Ω)′ = sup

w∈H1(Ω)

〈w′
h, w〉

‖w‖H1(Ω)
= sup

w∈H1(Ω)

〈w′
h, Phw〉

‖w‖H1(Ω)
.(4.15)

Now we use (vh, ψh) = (Phw, 0) in (4.11) and obtain for t ∈ [0, T ] a.e.

〈w′
h, Phw〉 = −

∫
Ω

κ∇wh · ∇Phw dx− 〈ζh, Phw
−|∂Ω〉 + 〈w′, Phw〉

+

∫
Ω

κ∇w · ∇Phw dx + 〈ζ, Phw
−|∂Ω〉

≤ c7‖Phw‖H1(Ω)

(
‖wh‖H1(Ω) + ‖ζh‖

H
− 1

2
� (∂Ω)

+‖w‖W + ‖ζ‖
H

− 1
2

� (∂Ω)

)
.
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Squaring and then integrating (4.15) from 0 to T and combining it with the inequality
above, (4.7), and (4.14), we obtain

‖w′
h‖L2(0,T,H1(Ω)′) ≤ c8

(
‖w‖W + ‖ζ‖

H
− 1

2
,0

� (∂Ω)

)
.

In particular, Lemma 4.4 holds for (uh, φh) and (u, φ).
We proof a variant of Céa’s lemma for this time-dependent problem.
Theorem 4.5. Assume that (u, φ) and (uh, φh) are solutions of (4.5) with

u(x, 0) = 0 and of the Galerkin scheme, respectively. Then there exists c > 0 such
that

‖u− uh‖W + ‖φ− φh‖
H

− 1
2
,0

� (∂Ω)

≤ c inf

{
‖u− zh‖W + ‖φ− χh‖

H
− 1

2
,0

� (∂Ω)
: zh ∈ HT

h , χh ∈ BT
h

}
.

Proof. (u, φ) and (uh, φh) obviously satisfy (4.11).

Let (zh, χh) ∈ HT
h × BT

h . We set (e1, e2) := (uh, φh) − (zh, χh) and (ε1, ε2) :=
(u, φ) − (zh, χh). Then (4.11) yields

〈e′1, vh〉 +

∫
Ω

κ∇e1 · ∇vh dx + 〈e2, v
−
h |∂Ω〉 − 〈ψh, λe2〉 + 〈ψh, e

−
1 |∂Ω〉

= 〈ε′1, vh〉 +

∫
Ω

κ∇ε1 · ∇vh dx + 〈ε2, v−h |∂Ω〉 − 〈ψh, λε2〉 + 〈ψh, ε
−
1 |∂Ω〉

for all (vh, ψh) ∈ Hh ×Bh and for t ∈ [0, T ] a.e. Lemma 4.4 shows that

‖e1‖W + ‖e2‖
H

− 1
2
,0

� (∂Ω)
≤ c1

(
‖ε1‖W + ‖ε2‖

H
− 1

2
,0

� (∂Ω)

)
.

Hence

‖(uh, φh) − (u, φ)‖
W×H

− 1
2
,0

� (∂Ω)

≤ c2 inf

{
‖(u, φ) − (zh, χh)‖

W×H
− 1

2
,0

� (∂Ω)
: zh ∈ HT

h , χh ∈ BT
h

}
,

which is the desired estimate.
For our numerical examples we choose the same subspaces as in [9] and [23]; i.e.,

Hh consists of continuous functions, which are piecewise linear on a finite element
grid, and Bh consists of piecewise constant functions. Equations (4.9) and (4.10) are
solved numerically by a Crank–Nicolson method; i.e., we solve in each time-step the
linear system of equations[

I + Δt
2 K Δt

2 B

− 1
2B

T 1
2D

][
α(t + Δt)

β(t + Δt)

]
=

[
I − Δt

2 K −Δt
2 B

1
2B

T − 1
2D

][
α(t)

β(t)

]
+

[
0

d(t)

]
,

with α(0) = 0 and β(0) = D−1d(0).
For the calculation of ξ and λ we use a boundary element method.
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Fig. 4.1. Left: The exact eigenvalues λ̃k from A. Right: Exact (·) and perturbed (◦) averaged
eigenvalues.

4.2. Implementation of the inverse problem. In this subsection we demon-
strate how the factorization method can be used to solve the inverse problem, i.e., to
locate the inclusion Ω from the knowledge of IΛI ′. We assume that we are given a
finite dimensional approximation of IΛI ′ and thus a matrix A ∈ R

m×m. Let (vk)k∈N,
resp., (ṽk)

m
k=1, be the eigenfunctions of IΛI ′, resp., A, with associated eigenvalues

(λk)k∈N, resp., (λ̃k)k∈N. Since IΛI ′ is self-adjoint and positive, the matrix A is sym-
metric and positive, too.

According to Corollary 3.9 a point z ∈ B belongs to the inclusion Ω if and only
if the infinite series

∑
k∈N

(hz,d, vk)
2
L2(∂B)

λk

converges. For the numerical realization we have to decide about the convergence of
this series from the knowledge of the finite sum

m∑
k=1

(hz,d, ṽk)
2
L2(∂B)

λ̃k

.

For that we carry forward the ideas from [4]. Numerical examples show that the
numerator and the denominator of the above series decay more or less exponentially
and that every two eigenvalues have approximately the same value; cf. the left picture
of Figure 4.1. Motivated by the examples and the method from [4], we compare the

slopes of the least squares fitting straight lines of h1(k) = log
(√

λ̃2k−1λ̃2k

)
and of

h2(k) = log

(
1

2

(
(hz,d, ṽ2k−1)

2
L2(∂B) + (hz,d, ṽ2k)

2
L2(∂B)

))
, k = 1, . . . , r .

We mark a sampling point z as inside the inclusion if h1 decays slower than h2.
On the right side of Figure 4.2 the algorithm is demonstrated for two test points. If
we apply this method to a large number of points, the black area on the left side of
Figure 4.2 illustrates the reconstruction of the inclusion (dashed curve).

The number of the eigenvalues and Fourier coefficients which are used in the
reconstruction procedure depends on the quality of the data. If A is known up to
a perturbation of δ > 0 (with respect to the spectral norm), then we trust in those
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Fig. 4.2. Least squares fitting straight lines of h2(k) for a point inside (�) and outside (�)
the inclusion compared with the least squares fitting straight line of h1(k) (·).
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Fig. 4.3. Reconstruction of four inclusions (dashed curves).

eigenvalues which are larger than δ. On the left side of Figure 4.1, δ corresponds to
the computational accuracy. The right side of Figure 4.1 shows the effect of a relative
noise of 0.1% on the eigenvalues, and thus δ = 0.1% · λ̃1. The first three averaged
pairs of the perturbed eigenvalues have nearly the exact values and they show the
same exponential decay rates.

4.3. Numerical examples. To test this reconstruction algorithm we simulate
the direct problem to produce the data. For this purpose we calculate the Dirichlet
boundary data fk = IΛI ′gk, where (gk)

m
k=1 are orthogonal input patterns. In the

first examples this data was used for inversion. In the final example this data was
perturbed with noise.

We restrict our attention to the case where κ(x) = 2 for x ∈ Ω and B is the unit
disc in R

2. For this case the function hz,d is known explicitly:

hz,d(x) =
1

π

(z − x) · d
|z − x|2 .

First we aim to reconstruct a single circle in the interior of B. The result is shown in
the left picture of Figure 4.2. The location of Ω is detected but the size is underesti-
mated.

In the second example four inclusions of different size should be located. In
Figure 4.3 we demonstrate the possibility of the method to reconstruct nonconnected
inclusions. The position and the different size of each are detected.

Our next example is to detect a nonconvex moon-like inclusion; cf. Figure 4.4.
The top left picture shows the reconstruction with exact data. The shape of the moon
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Fig. 4.4. Reconstruction of a nonconvex inclusion (dashed curve). Top left: With exact data,
and with perturbed data. Top right: 0.05% noise. Bottom left: 0.1% noise. Bottom right: 1% noise.
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Fig. 4.5. Reconstruction of an inclusion (dashed curve) by using partial boundary measurements
(bold boundary).

is recovered but the size is underestimated. Next we show the influence of noise on the
reconstructions. By adding 0.05%, 0.1%, resp., 1%, noise the position of the inclusion
is found, but the quality decreases with increasing noise level; cf. the top right and
bottom pictures in Figure 4.4.

The last example shows the reconstruction of a single circle by partial boundary
measurements (cf. our remark at the end of section 3). The location of the inclusion
is detected and the shape next to the measuring boundary is recovered; see Figure
4.5.
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Verlag, Berlin, 1961.

[21] J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications
I, Springer-Verlag, Berlin, 1972.

[22] J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications
II, Springer-Verlag, Berlin, 1972.

[23] R. C. MacCamy and M. Suri, A time-dependent interface problem for two-dimensional eddy
currents, Quart. Appl. Math., 44 (1987), pp. 675–690.

[24] B. Schappel Electrical impedance tomography in the half space: Locating obstacles by elec-
trostatic measurements on the boundary, in Proceedings of the 3rd World Congress on
Industrial Process Tomography, Banff, VCIPT, 2003, pp. 788–793.

[25] B. Schappel Die Faktorisierungsmethode für die elektrische Impedanztomographie im Hal-
braum, Dissertation, Joh. Gutenberg-Universität Mainz, Mainz, Germany, 2005. Available
online at http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hebis:77-7427.



SIAM J. NUMER. ANAL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 45, No. 2, pp. 837–869

STABILITY AND CONVERGENCE OF THE
CRANK–NICOLSON/ADAMS–BASHFORTH SCHEME FOR THE

TIME-DEPENDENT NAVIER–STOKES EQUATIONS∗
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Abstract. In this paper, we study the stability and convergence of the Crank–Nicolson/Adams–
Bashforth scheme for the two-dimensional nonstationary Navier–Stokes equations. A finite element
method is applied for the spatial approximation of the velocity and pressure. The time discretization
is based on the Crank–Nicolson scheme for the linear term and the explicit Adams–Bashforth scheme
for the nonlinear term. Moreover, we present optimal error estimates and prove that the scheme is
almost unconditionally stable and convergent, i.e., stable and convergent when the time step is less
than or equal to a constant.

Key words. Navier–Stokes equations, mixed finite element, Adams–Bashforth scheme, Crank–
Nicolson scheme
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1. Introduction. Let Ω be a bounded domain in R2 assumed to have a Lipschitz
continuous boundary ∂Ω and to satisfy a further condition stated in (A1) below. We
consider the time-dependent Navier–Stokes problem{

ut − νΔu + (u · ∇)u + ∇p = f, div u = 0, (x, t) ∈ Ω × (0, T ],

u(x, 0) = u0(x), x ∈ Ω; u(x, t)|∂Ω = 0, t ∈ [0, T ],
(1.1)

where u = u(x, t) = (u1(x, t), u2(x, t)) represents the velocity vector, p = p(x, t) repre-
sents the pressure, f = f(x, t) represents the prescribed body force, u0(x) represents
the initial velocity, ν > 0 represents the viscosity, and T > 0 represents a finite time.

There are numerous works devoted to the development of efficient schemes for
the Navier–Stokes equations [3, 4, 8, 9, 12, 13, 16, 20, 5, 23, 25, 24, 28, 30]: fully
implicit, semi-implicit (semiexplicit), and explicit. Among them, high-order schemes
are of more interest since first-order schemes are not sufficiently accurate for large
time approximations. A key issue is the stability condition of schemes. Usually
fully implicit schemes are (almost) unconditionally stable. However, at each time
step, one has to solve a system of nonlinear equations. An explicit scheme is much
easier in computation. But it suffers a severely restricted time step size from stability
requirement. A popular approach is based on an implicit scheme for the linear term
and a semi-implicit scheme or an explicit scheme for the nonlinear term. A semi-
implicit scheme for the nonlinear term results in a linear system with a variable
coefficient matrix of time, and an explicit treatment for the nonlinear term gives a
constant matrix. Stability and convergence conditions of schemes have been studied
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by many authors. The main results are summarized below, where we set Ω ⊂ Rd with
d = 2, 3; 0 < h < 1 denotes the mesh size in the spatial direction; and 0 < τ = T

N < 1
denotes the step size in the time direction.

• For the fully implicit Crank–Nicolson scheme (implicit for both linear and
nonlinear terms), Heywood and Rannacher [16] proved that it is almost un-
conditionally stable and convergent, i.e., stable and convergent when

τ ≤ C0(1.2)

for some positive constant C0 depending on the data (ν,Ω, T, u0, f) in the
case of d = 2, 3.

• For a two-step scheme with a semi-implicit treatment for the nonlinear term,
He and Li [12] gave the following convergence condition:

τh−1/2 ≤ C0.(1.3)

• For the Crank–Nicolson extrapolation scheme in which the discretization for
the nonlinear term is semi-implicit, He [13] has proved that (1.2) is the sta-
bility and convergence condition of the scheme in the case of d = 2.

• For the Crank–Nicolson/Adams–Bashforth scheme in which the nonlinear
term is treated explicitly, Marion and Temam provided in [25] the stability
condition

τh−d ≤ C0, d = 2, 3,(1.4)

and recently, Tone [30] proved the convergence under the condition

τh−2−d/2 ≤ C0, d = 2, 3.(1.5)

• A modified Crank–Nicolson/Adams–Bashforth scheme was proposed by John-
ston and Liu [19] in which the nonlinear term and pressure term are discretized
explicitly. They claimed from their numerical simulations that the scheme is
stable under the standard stability condition

‖u‖L∞τh−1 ≤ 1, d = 2, 3 .(1.6)

No theoretical analysis has been given.
• For a three-step backward extrapolating scheme (explicit for the nonlinear

term), Baker, Dougalis, and Karakashian [4] gave the convergence condition

τh−4/7 ≤ C0(1.7)

in the case of d = 2, 3.
Clearly, the time step condition

τh−α ≤ C0(1.8)

for some α > 0 was imposed in these previous works when a semi-implicit or an explicit
scheme is applied for the nonlinear term, except for the Crank–Nicolson extrapolation
scheme in [12] in which a semi-implicit scheme is used for the nonlinear term.

This paper focuses on the second-order Crank–Nicolson/Adams–Bashforth scheme
with a finite element approximation in spatial direction for solving the time-dependent
Navier–Stokes equations in the case of d = 2, which were studied by Marion and
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Temam [25], Tone [30], Kim and Moin [20], and Issacson and Keller [18]. The
scheme consists of using a finite element pair (Xh,Mh) for the spatial discretiza-
tion of the Navier–Stokes equations, the Crank–Nicolson scheme for the linear term,
and the Adams–Bashforth scheme for the nonlinear term. Under the assumption of
u0 ∈ H2(Ω)2 ∩H1

0 (Ω)2 with divu0 = 0 and f, ft, ftt ∈ L∞(0, T ;L2(Ω)2), we prove
that the scheme is almost unconditionally stable, i.e.,

‖dtum
h ‖2

L2 + ν‖Ahu
m
h ‖2

L2 ≤ κ2, 1 ≤ m ≤ N,(1.9)

when the condition (1.2) is satisfied. Moreover, we also provide the optimal error
estimates

‖u(tm) − um
h ‖L2 ≤ κ(σ−1(tm)τ2 + h2), 1 ≤ m ≤ N,(1.10)

‖u(tm) − um
h ‖H1 ≤ κ(σ−1/2(tm)τ + h), 1 ≤ m ≤ N,(1.11)

‖p(tm) − pmh ‖L2 ≤ κ(σ−1(tm)τ + σ−1/2(tm)h), 1 ≤ m ≤ N,(1.12)

where the finite element space pair (Xh,Mh) satisfies the approximation assumption
(A3); σ(t) = min{1, t}; κ0, κ1, κ2, and κ are some positive constants depending on
the data (ν,Ω, T, u0, f); and Ah is a discrete Stokes operator. The error bound (1.12)
of the pressure is better than the error bound

‖pmh − p(tm)‖L2 ≤ κ(σ−3/2(tm)τ + σ−1/2(tm)h), 1 ≤ m ≤ N,(1.13)

obtained by Heywood and Rannacher [16].
This paper is organized as follows. In section 2 an abstract functional setting of

the Navier–Stokes problem is given together with some basic assumptions (A1) and
(A2). In section 3 we set out our assumption (A3) concerning the finite element spaces
Xh and Mh, finite element Galerkin approximation in space, and some properties on
the trilinear form b(·, ·, ·). Section 3 contains the optimal error estimate and a priori
estimate results of the finite element solution (uh(t), ph(t)). In section 4 we describe
the Crank–Nicolson/Adams–Bashforth scheme and prove a stability result of this
scheme. In section 5 we describe a second-order dual scheme and prove its stability
result. In section 6 we provide optimal error estimates for the numerical solution
(un

h, p
n
h) with 1 ≤ n ≤ N .

2. Functional setting of the Navier–Stokes equations. For the mathemat-
ical setting of problem (1.1), we introduce the following Hilbert spaces:

X = H1
0 (Ω)2, Y = L2(Ω)2, M = L2

0(Ω) =

{
q ∈ L2(Ω);

∫
Ω

qdx = 0

}
.

The space L2(Ω)d, d = 1, 2, 4, is equipped with the usual L2-scalar product (·, ·) and
L2-norm ‖ · ‖L2 or ‖ · ‖0. The spaces H1

0 (Ω) and X are equipped with their usual
scalar product and equivalent norm

((u, v)) = (∇u,∇v), ‖u‖H1
0

= ‖∇u‖L2 .

Next, let the closed subset V of X be given by

V = {v ∈ X; div v = 0},

and denote by H the closed subset of Y , i.e.,

H = {v ∈ Y ; div v = 0, v · n|∂Ω = 0}.
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We refer readers to [1, 9, 15, 29] for details on these spaces. We denote the Stokes
operator by A = −PΔ, where P is the L2-orthogonal projection of Y onto H. As
mentioned above, we need a further assumption on Ω provided in [16].

(A1). Assume that Ω is smooth so that the unique solution (v, q) ∈ (X,M) of
the steady Stokes problem

−νΔv + ∇q = g, divv = 0 in Ω, v|∂Ω = 0,

for any prescribed g ∈ Y exists and satisfies

‖v‖H2 + ‖q‖H1 ≤ c‖g‖L2 ,

where c > 0 is a generic constant depending on Ω and ν which may stand for different
values at its different occurrences.

We remark that the validity of assumption (A1) is known (see [9, 15, 21, 29]) if
∂Ω is of C2 or if Ω is a two-dimensional convex polygon. From the assumption (A1),
it is well known [1, 15, 22] that

‖v‖H2 ≤ c‖Av‖L2 , v ∈ D(A) = H2(Ω)2 ∩ V,(2.1)

‖v‖L2 ≤ γ0‖v‖H1
0
, v ∈ X, ‖v‖H1

0
≤ γ0‖Av‖L2 , v ∈ D(A),(2.2)

where γ0 is a positive constant depending only on Ω. We usually make the following
assumption about the prescribed data for problem (1.1).

(A2). The initial velocity u0(x) and the force f(x, t) satisfy that u0 ∈ D(A), f ∈
L∞(0, T ;H1(Ω)2), ft, and ftt ∈ L∞(0, T ;Y ) with

‖Au0‖L2 + sup
0≤t≤T

{‖f(t)‖H1 + ‖ft(t)‖L2 + ‖ftt(t)‖L2} ≤ C

for some positive constant C. We also introduce the following bilinear operator:

B(u, v) = (u · ∇)v +
1

2
(divu)v, u, v ∈ X.

Moreover, we define the continuous bilinear forms a(·, ·) and d(·, ·) on X × X and
X ×M , respectively, by

a(u, v) = ν((u, v)), u, v ∈ X,

and

d(v, q) = (q,divv), v ∈ X, q ∈ M,

and a trilinear form on X ×X ×X by

b(u, v, w) = 〈B(u, v), w〉X′,X = ((u · ∇)v, w) +
1

2
((divu)v, w)

=
1

2
((u · ∇)v, w) − 1

2
((u · ∇)w, v), u, v, w ∈ X.

With the above notations, the variational formulation of problem (2.1) reads as
follows: find (u, p) ∈ (X,M) for all t ∈ (0, T ] such that, for all (v, q) ∈ (X,M),

(ut, v) + a(u, v) − d(v, p) + d(u, q) + b(u, u, v) = (f, v),(2.3)

u(0) = u0.(2.4)
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3. Finite element Galerkin approximation. Let h > 0 be a real positive
parameter. The finite element subspace (Xh,Mh) of (X,M) is characterized by
Jh = Jh(Ω), a partitioning of Ω̄ into triangles K or quadrilaterals K, assumed to
be uniformly regular as h → 0. For further details, readers can refer to Ciarlet [6] and
Girault and Raviart [9].

We define the subspace Vh of Xh given by

Vh =
{
vh ∈ Xh ; d(vh, qh) = 0 ∀qh ∈ Mh

}
.(3.1)

Let Ph : Y→Vh denote the L2-orthogonal projection defined by

(Phv, vh) = (v, vh), v ∈ Y, vh ∈ Vh.

We assume that the couple (Xh,Mh) satisfies the following approximation properties.
(A3) For each v ∈ H2(Ω)2 ∩X and q ∈ H1(Ω) ∩M , there exist approximations

πhv ∈ Xh and ρhq ∈ Mh such that

‖v − πhv‖H1
0
≤ ch‖v‖H2 , ‖q − ρhq‖L2 ≤ ch‖q‖H1(3.2)

together with the inverse inequality

‖vh‖H1
0
≤ αh−1‖vh‖L2 , vh ∈ Xh,(3.3)

and we have the so-called inf-sup inequality: for each qh ∈ Mh, there exists vh ∈
Xh, vh �= 0, such that

d(vh, qh) ≥ β‖qh‖L2‖vh‖H1
0
,(3.4)

where α and β are positive constants depending on Ω.
The following properties are classical (see [2, 9, 15, 17]):

‖Phv‖H1
0
≤ γ‖v‖H1

0
, v ∈ X,(3.5)

‖v − Phv‖L2 + h‖v − Phv‖H1
0
≤ γh2‖Av‖L2 , v ∈ D(A),(3.6)

‖v − Phv‖L2 ≤ γh‖v − Phv‖H1
0
, v ∈ X(3.7)

for some positive constant γ.
The standard finite element Galerkin approximation of (2.3)–(2.4) based on

(Xh,Mh) reads as follows: find (uh, ph) ∈ (Xh,Mh) such that, for all 0 < t ≤ T
and (vh, qh) ∈ (Xh,Mh),

(uht, vh) + a(uh, vh) − d(vh, ph) + d(uh, qh) + b(uh, uh, vh) = (f, vh),(3.8)

uh(0) = u0h = Phu0.(3.9)

With the above statements, a discrete analogue Ah = −PhΔh of the Stokes
operator A is defined through the condition that (−Δhuh, vh) = ((uh, vh)) for all
uh, vh ∈ Xh. The restriction of Ah to Vh is invertible, with the inverse A−1

h . Since
A−1

h is self-adjoint and positive definite, we may define “discrete” Sobolev norms on
Vh, of any order r ∈ R, by setting

‖vh‖r = ‖Ar/2
h vh‖L2 , vh ∈ Vh.



842 YINNIAN HE AND WEIWEI SUN

These norms will be assumed to have various properties similar to their continuous
counterparts, an assumption that implicitly imposes conditions on the structure of
the spaces Xh and Mh. In particular, there holds

‖vh‖0 = ‖vh‖L2 , ‖vh‖1 = ‖∇vh‖0, ‖vh‖2 = ‖Ahvh‖0, vh ∈ Vh.

By the way, we derive from (2.2) that

‖vh‖0 ≤ γ0‖∇vh‖0, ‖∇vh‖0 ≤ γ0‖Ahvh‖0, vh ∈ Vh,(3.10)

where γ0 > 0 is a constant depending only on Ω.
Remark 3.1. The space Vh is introduced only for theoretical analysis. The prac-

tical computation should be based on the finite element space pair (Xh,Mh). For the
details of the construction of (Xh,Mh), we refer readers to Heywood and Rannacher
[15, 16] and to Hill and Süli [17]. Recently, Nochetto and Pyo [26] proposed a pro-
jection method for time-dependent Navier–Stokes equations, in which Vh is a discrete
divergence free space which is discontinuous on the boundary of each element and
u �= 0 on ∂Ω.

Under the conditions above, and with some further assumptions about the struc-
ture of the spaces Xh and Mh, it has been shown in Heywood and Rannacher [15]
that

‖u(t) − uh(t)‖0 + h‖∇(u(t) − uh(t))‖0 + σ1/2(t)h‖p(t) − ph(t)‖0 ≤ κh2(3.11)

for all t ∈ (0, T ].
This section considers preliminary estimates which are useful in the error esti-

mates of finite element solution. Some estimates of the trilinear form b are given in
the following lemma and in the proof can be found in [13, 14].

Lemma 3.1. The trilinear form b satisfies the following estimates:

b(uh, vh, wh) = −b(uh, wh, vh),(3.12)

|b(uh, vh, wh)| + |b(vh, uh, wh)| + |b(wh, uh, vh)|
≤ c0

2
‖uh‖1/2

0 ‖uh‖1/2
1 ‖vh‖1‖wh‖1/2

0 ‖wh‖1/2
1

+
c0
2
‖uh‖1‖vh‖1/2

0 ‖vh‖1/2
1 ‖wh‖1/2

0 ‖wh‖1/2
1(3.13)

for all uh, vh, and wh ∈ Xh;

|b(uh, vh, wh)| + |b(vh, uh, wh)| + |b(wh, uh, vh)|

≤ 1

2
c0‖Ahvh‖1/2

0 ‖vh‖1/2
1 ‖uh‖1/2

0 ‖uh‖1/2
1 ‖wh‖0

+
1

2
c0‖Ahvh‖1/2

0 ‖vh‖1/2
0 ‖uh‖1‖wh‖0(3.14)

for all uh, vh ∈ Vh, and wh ∈ Xh; and

|b(uh, vh, wh)| + |b(uh, vh, wh)| + |b(wh, uh, vh)|

≤ 1

3
c0(‖uh‖1/2

0 ‖Ahuh‖1/2
0 ‖Ahvh‖0 + ‖vh‖1/2

0 ‖Ahvh‖1/2
0 ‖Ahuh‖0)‖wh‖−1

+
1

3
c0‖uh‖1/2

1 ‖Ahuh‖1/2
0 ‖Ahvh‖1/2

0 ‖vh‖1/2
1 ‖wh‖−1(3.15)

for all uh, vh, and wh ∈ Vh, where c0 > 0 is a constant depending only on Ω.
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Proof. (3.12)–(3.14) can be found in [13, 14, 15, 17].
Before we proceed further with (3.15), we need some continuous and discrete

Gadliardo-Nirenberg estimates (see Temam [29] and Hill and Süli [17]):

‖∇v‖L4 ≤ c‖∇v‖1/2
0 ‖Av‖1/2

0 ∀v ∈ D(A),(3.16)

‖vh‖L4 ≤ c‖vh‖1/2
0 ‖vh‖1/2

1 , ‖vh‖L∞ ≤ c‖vh‖1/2
0 ‖Ahvh‖1/2

0 ,

‖∇vh‖L4 ≤ c‖∇vh‖1/2
0 ‖Ahvh‖1/2

0 ∀vh ∈ Vh.(3.17)

Moreover, let the map A−1PAh : Vh→D(A). Then Heywood and Rannacher [15]
showed

‖A−1PAhvh − vh‖0 + h‖∇(A−1PAhvh − vh)‖0 ≤ ch2‖Ahvh‖0.(3.18)

Let φh = A−1
h wh for each wh ∈ Vh; then (3.3) gives

‖wh‖2
0 = (wh, Ahφh) = (∇wh,∇φh) ≤ ‖wh‖1‖wh‖−1 ≤ ch−1‖wh‖0‖wh‖−1.(3.19)

Furthermore, we write the bilinear form b into the following:

b(uh, vh, wh) ≤ ((uh · ∇)(vh − PAhvh), wh) +
1

2
(div(uh −A−1PAhuh)vh, wh)

+ ‖∇Ph[(uh · ∇)A−1PAhvh]‖0‖wh‖−1.(3.20)

Using (3.3), (3.5), and (3.16)–(3.19), we have

|((uh · ∇)(vh − PAhvh), wh)| ≤ ch‖uh‖L∞‖Ahvh‖0‖wh‖0

≤ c‖uh‖L∞‖Ahvh‖0‖wh‖−1,

|(div(uh −A−1PAhuh)vh, wh)| ≤ ch‖Ahuh‖0‖vh‖L∞‖wh‖0

≤ c‖Ahuh‖0‖vh‖L∞‖wh‖−1,

‖∇Ph[(uh · ∇)A−1PAhvh]‖0 ≤ c‖∇[(uh · ∇)A−1PAhvh]‖0

≤ c‖∇uh‖L4‖∇A−1PAhvh‖L4

+ c‖uh‖L∞‖∇∇A−1PAhvh‖0

≤ c‖uh‖1/2
1 ‖Ahuh‖1/2

0 ‖vh‖1/2
1 ‖Ahvh‖1/2

0

+ c‖uh‖L∞‖Ahvh‖0.

Combining these inequalities with (3.20), we have deduced

|b(uh, vh, wh)| ≤ c(‖uh‖L∞‖Ahvh‖0 + c‖Ahuh‖0‖vh‖L∞)‖wh‖−1

+ c‖uh‖1/2
1 ‖Ahuh‖1/2

0 ‖vh‖1/2
1 ‖Ahvh‖1/2

0 ‖wh‖−1.(3.21)

Also, we can obtain the above estimate for the trilinear terms b(vh, uh, wh) and
b(wh, uh, vh). Hence, we deduce (3.15) by using the above estimates and (3.17).

Remark 3.2. (3.13) and (3.14) are valid in two-dimensional space. One has to
seek a different approach for problems in three-dimensional space, e.g., refer to E and
Liu [7] and Nochetto and Pyo [26].

In order to obtain our error analysis for time discretization, we recall the following
smooth properties of (uh, ph) given in [16].
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Theorem 3.2. Assume that assumptions (A1)–(A3) are valid. Then the finite
element solution (uh, ph) satisfies the following estimates:

‖uh(t)‖2
2 + ‖ph(t)‖2

0 ≤ κ, σr(t)‖uht(t)‖2
r ≤ κ, r = 0, 1, 2,(3.22)

σr+2‖uhtt(t)‖2
r ≤ κ, r = −1, 0, 1,(3.23) ∫ t

0

σr(s)‖uht(s)‖2
r+1ds ≤ κ, r = 0, 1,(3.24)

∫ t

0

σr+1(s)‖uhtt(s)‖2
rds ≤ κ, r = −1, 0, 1,(3.25)

∫ t

0

σr+2(s)‖uhttt(s)‖2
r−1ds ≤ κ, r = −1, 0, 1(3.26)

for all t ∈ (0, T ].
Theorem 3.3. Under the assumptions of Theorem 3.2, there holds∫ t

0

σ3(s)‖Ahuhtt(s)‖2
0ds ≤ κ, σ2(t)‖pht(t)‖2

0 ≤ κ(3.27)

for all t ∈ (0, T ].
Proof. From (3.8), we have

(uhttt, vh) + a(uhtt, vh) + b(uhtt, uh, vh) + b(uh, uhtt, vh) + 2b(uht, uht, vh)

= (ftt, vh), vh ∈ Vh.(3.28)

Taking vh = 2Ahuhtt ∈ Vh in (3.28), we obtain

2(uhttt, Ahuhtt) + 2ν‖Ahuhtt‖2
0 + 2b(uhtt, uh, Ahuhtt) + 2b(uh, uhtt, Ahuhtt)

+ 2b(uht, uht, Ahuhtt) = 2(ftt, Ahuhtt).(3.29)

It follows from (3.10), (3.14), and the Young inequality that

2|b(uhtt, uh, Ahuhtt)| + 2|b(uh, uhtt, Ahuhtt)| ≤ 2c0γ0‖Ahuh‖0‖uhtt‖1‖Ahuhtt‖0

≤ ν

4
‖Ahuhtt‖2

0 + 4ν−1c20γ
2
0‖Ahuh‖2

0‖uhtt‖2
1,

4|b(uht, uht, Ahuhtt)| ≤ 2c0‖Ahuht‖1/2
0 ‖uht‖1/2

0 ‖uht‖1‖Ahuhtt‖0

≤ ν

4
‖Ahuhtt‖2

0 + 4ν−1c20‖Ahuht‖0‖uht‖0‖uht‖2
1,

2(uhttt, Ahuhtt) ≤
ν

4
‖Ahuhtt‖2

0 + 4ν−1‖uhttt‖2
0,

2|(ftt, Ahuhtt)| ≤
ν

4
‖Ahuhtt‖2

0 + 4ν−1‖ftt‖2
0.

Combining these inequalities with (3.29) yields

ν‖Ahuhtt‖2
0 ≤ 4ν−1c20γ

2
0‖Ahuh‖2

0‖uhtt‖2
0

+ 4ν−1c20‖Ahuht‖0‖uht‖0‖uht‖2
1 + 4ν−1‖uhttt‖2

0 + 4ν−1‖ftt‖2
0.(3.30)
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Multiplying (3.30) by σ3(t) and integrating from 0 to t, we have

ν

∫ t

0

σ3(s)‖Ahuhtt‖2
0ds ≤ 4ν−1c20γ

2
0

∫ t

0

σ3(s)‖Ahuh‖2
0‖uhtt‖2

1ds

+ 4ν−1c20

∫ t

0

σ3(s)‖Ahuht‖0‖uht‖0‖uht‖2
1ds

+ ν−1

∫ t

0

σ3(s)(‖uhttt‖2
0 + ‖ftt‖2

0)ds,

which together with (3.22) and (3.24)–(3.26) leads to∫ t

0

σ3(s)‖Ahuhtt‖2
0ds ≤ κ, 0 < t ≤ T.(3.31)

Moreover, by using (3.4), (3.10), Lemma 3.1, and (3.8), we have

σ2(t)‖pht(t)‖2
0 ≤ cσ2(t)‖uhtt(t)‖2

0 + cσ2(t)‖Ahuht(t)‖2
0

+ c‖Ahuh(t)‖2
0‖uht(t)‖2

0,

which with Theorem 3.2 results in

σ2(t)‖pht(t)‖2
0 ≤ κ, 0 < t ≤ T.

Combining this inequality with (3.31) implies (3.27).
We will frequently use a discrete version of the Gronwall lemmas used in [11]

and [27].
Lemma 3.4. Let C, τ , an, bn, cn, and dn for integers n ≥ 0 be nonnegative

numbers such that

am + τ

m∑
n=1

bn ≤ τ

m−1∑
n=0

andn + τ

m−1∑
n=0

cn + C, m ≥ 1.(3.32)

Then

am + τ

m∑
n=1

bn ≤ exp

(
τ

m−1∑
n=0

dn

)(
τ

m−1∑
n=0

cn + C

)
, m ≥ 1.(3.33)

4. Second-order fully discrete finite element method. In this section we
consider the time discretization of the finite element Galerkin approximation (3.8)–
(3.9). Let tn = nτ(n = 0, 1, . . . , N), τ = T

N be the time step size, and N be an integer.
Due to the nature of the Adams–Bashforth scheme of three levels in time, we define
u0
h = u0h = Phu0 and (u1

h, p
1
h) ∈ (Xh,Mh) by the Euler-backward scheme:

(dtu
1
h, vh) + a(u1

h, vh) − d(vh, p
1
h) + d(u1

h, qh) + b(u0
h, u

0
h, vh) = (f(t1), vh)(4.1)

for all (vh, qh) ∈ (Xh,Mh), while dtu
0
h = lim

t→0
uht(t) is defined so that

(dtu
0
h, vh) + a(u0

h, vh) + b(u0
h, u

0
h, vh) = (f(t0), vh)(4.2)

for all vh ∈ Vh.
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Now, we define recursively the finite element solutions (un
h, p

n
h) ∈ (Xh,Mh), n =

2, . . . , N , by setting

(dtu
n
h, vh) + a(ūn

h, vh) − d(vh, p
n
h) + d(ūn

h, qh)

+
3

2
b(un−1

h , un−1
h , vh) − 1

2
b(un−2

h , un−2
h , vh) = (f̄(tn), vh)(4.3)

or

(dtu
n
h, vh) + a(ūn

h, vh) − d(vh, p
n
h) + d(ūn

h, qh) + b(ūn−1
h , ūn−1

h , vh)

+ b(dtu
n−1
h , ūn−1

h , vh)τ + b(ūn−1
h , dtu

n−1
h , vh)τ +

1

4
b(dtu

n−1
h , dtu

n−1
h , vh)τ2

= (f̄(tn), vh)(4.4)

for all (vh, qh) ∈ (Xh,Mh).
Here and after, we often use the following notations:

ūn
h =

1

2
(un

h + un−1
h ), ūh(tn) =

1

2
(uh(tn) + uh(tn−1)), dtu

n
h =

1

τ
(un

h − un−1
h ).

We see from (3.3), (3.6), and the definition of Ah that

(Ahu
0
h, vh) = ((u0

h − u0, vh)) + ((u0, vh)) ≤ (αh−1‖∇(Phu0 − u0)‖0 + ‖Au0‖0)‖vh‖0

≤ (1 + αγ)‖Au0‖0‖vh‖0, vh ∈ Vh,

which with (3.5) yields

‖u0
h‖0 ≤ ‖u0‖0, ‖u0

h‖1 ≤ γ‖∇u0‖0, ‖Ahu
0
h‖0 ≤ (1 + αγ)‖Au0‖0.(4.5)

We deduce from (4.2) and Lemma 3.1 that

‖dtu0
h‖0 ≤ ν‖Ahu

0
h‖0 + c0γ0‖Ahu

0
h‖0‖u0

h‖1 + ‖f(t0)‖0

and by (4.5) that

‖dtu0
h‖0 ≤ (1 + αγ)(ν + c0γ0γ‖∇u0‖0)‖Au0‖0 + ‖f(t0)‖0.(4.6)

Lemma 4.1. Suppose that the assumptions (A1)–(A3) are valid. Then (u1
h, p

1
h)

satisfies the following stabilities:

‖u1
h‖2

0 + ν‖ū1
h‖2

1τ ≤ κ′
0,(4.7)

‖u1
h‖2

1 + ν‖Ahū
1
h‖2

0τ ≤ κ′
1,(4.8)

‖dtu1
h‖2

0 + ν‖Ahu
1
h‖2

0 + ‖p1
h‖2

0 + ν‖dtu1
h‖2

1τ ≤ κ′
2(4.9)

for some positive constants κ′
0, κ′

1, and κ′
2 depending on the data (ν,Ω, T, u0, f).

Proof. Taking vh = 2Ar
hu

1
hτ ∈ Vh and qh = 0 in (4.1) for r = 0, 1, we obtain

‖u1
h‖2

r − ‖u0
h‖2

r + ‖dtu1
h‖2

rτ
2 + 2ν‖u1

h‖2
r+1τ + 2b(u0

h, u
0
h, A

r
hu

1
h)τ

= 2(f(t1), A
r
hu

1
h)τ.(4.10)

In view of Lemma 3.1 and (3.10), there hold

2|b(u0
h, u

0
h, A

r
hu

1
h)|τ ≤ c0γ0‖u0

h‖1‖u0
h‖r+1‖u1

h‖r+1τ

≤ ν

2
‖u1

h‖2
r+1τ + ν−1c20γ

2
0‖u0

h‖2
1‖u0

h‖2
r+1τ,

2|(f(t1), A
r
hu

1
h)|τ ≤ ν

2
‖u1

h‖2
r+1 + 2ν−1γ

2(1−r)
0 ‖f(t1)‖2

0τ.



CRANK–NICOLSON/ADAMS–BASHFORTH SCHEME 847

Combining these inequalities with (4.10) yields

‖u1
h‖2

r + ‖dtu1
h‖2

rτ
2 + ν‖u1

h‖2
r+1τ

≤ ‖u0
h‖2

r + 2ν−1γ
2(1−r)
0 ‖f(t1)‖2

0τ + ν−1c20γ
2
0‖u0

h‖2
1‖u0

h‖2
r+1τ,(4.11)

which with (4.5)–(4.6) and the triangle inequality implies (4.7)–(4.8).
Again, we deduce from (4.1)–(4.2) that

(dttu
1
h, vh) + a(dtu

1
h, vh) − d(vh, dtp

1
h) + d(dtu

1
h, qh) =

1

τ

∫ t1

t0

(ft(t), vh)dt.(4.12)

By taking vh = 2dtu
1
hτ and qh = 2dtp

1
hτ in (4.12), we have

‖dtu1
h‖2

0 + ‖dttu1
h‖2

0τ
2 + 2ν‖dtu1

h‖2
1τ ≤ ‖dtu0

h‖2
0 + 2γ0

∫ t1

t0

‖ft(t)‖0dt‖dtu1
h‖1

≤ ‖dtu0
h‖2

0 + ν‖dtu1
h‖2

1τ + ν−1γ2
0

∫ t1

t0

‖ft(t)‖2
0dt.(4.13)

Moreover, it follows from (4.1) and Lemma 3.1 that

ν‖Ahu
1
h‖0 ≤ ‖dtu1

h‖0 + c0γ0‖u0
h‖1‖Ahu

0
h‖0 + ‖f(t1)‖0

and

ν‖Ahu
1
h‖2

0 ≤ 3ν−1(‖dtu1
h‖2

0 + ‖f(t1)‖2
0 + c20γ

2
0‖u0

h‖2
1‖Ahu

0
h‖2

0).(4.14)

Finally, using (4.1), (3.4), (3.10), and Lemma 3.1, we arrive at

‖p1
h‖0 ≤ β−1 sup

vh∈Xh

d(vh, p
1
h)

‖vh‖1

≤ β−1(‖dtu1
h‖0 + ν‖Ahu

1
h‖0 + c0γ0‖u0

h‖2
1 + ‖f(t1)‖0)

or equivalently

‖p1
h‖2

0 ≤ 4β−2(‖dtu1
h‖2

0 + ν2‖Ahu
1
h‖2

0 + ‖f(t1)‖2
0 + c20γ

2
0‖u0

h‖2
1).(4.15)

Combining (4.14)–(4.15) with (4.13) and using (4.5)–(4.6) yields (4.9).
The following theorem provides the stability of the scheme in (4.1) and (4.3).
Theorem 4.2. Suppose that the assumptions (A1)–(A3) are valid and 0 < τ < 1

satisfies the following stability condition:

160c20γ
2
0ν

−2κ2 max{1, ν, κ1/2
1 }τ ≤ 1.(4.16)

Then there hold

‖um
h ‖2

0 + ντ

m∑
n=1

‖ūn
h‖2

1 ≤ κ0,(4.17)

‖um
h ‖2

1 + ντ

m∑
n=1

‖Ahū
n
h‖2

0 ≤ κ1,(4.18)

‖dtum
h ‖2

0 + ν‖Ahu
m
h ‖2

0 + ‖pmh ‖2
0 + ν‖dtum

h ‖2
1τ ≤ κ2(4.19)
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for all 1 ≤ m ≤ N , where κ0 ≥ κ′
0, κ1 ≥ κ′

1, and κ2 ≥ κ′
2 are some positive constants

depending on the data (ν,Ω, T, u0, f).
Proof. We prove (4.17)–(4.19) by the induction method. From Lemma 4.1, (4.17)–

(4.19) are true for m = 1. We assume that (4.17)–(4.19) are true for m = 1, . . . , J − 1
with 2 ≤ J ≤ N . We need to prove that (4.17)–(4.19) are true for m = J .

First, taking vh = 2un
hτ ∈ Vh and qh = 0 in (4.3) and using (3.12) and the

formulas

un
h = ūn

h +
1

2
dtu

n
hτ, un

h = 2ūn − un−1
h , un

h = ūn−1
h + dtu

n
hτ +

1

2
dtu

n−1
h τ,

2(dtu
n
h, u

n
h)τ = ‖un

h‖2
0 − ‖un−1

h ‖2
0 + ‖dtun

h‖2
0τ

2,

2a(ūn
h, u

n
h)τ =

ν

2
(‖un

h‖2
1 − ‖un−1

h ‖2
1 + 4‖ūn

h‖2
1)τ,

we obtain

‖un
h‖2

0 − ‖un−1
h ‖2

0 + ‖dtun
h‖2

0τ
2 +

ν

2
(‖un

h‖2
1 − ‖un−1

h ‖2
1 + 4‖ūn

h‖2
1)τ

+ 2b

(
ūn−1
h , ūn−1

h , dtu
n
h +

1

2
dtu

n−1
h

)
τ2 + 2b

(
dtu

n−1
h , ūn−1

h , ūn
h +

1

2
dtu

n
hτ

)
τ2

+ 2b

(
ūn−1
h , dtu

n−1
h , ūn

h +
1

2
dtu

n
hτ

)
τ2 + b

(
dtu

n−1
h , dtu

n−1
h , ūn

h − 1

2
un−1
h

)
τ3

= (f̄(tn), 2ūn
h + dtu

n
hτ)τ.(4.20)

In view of Lemma 3.1 and (3.10), there hold

2

∣∣∣∣b(̄un−1
h , ūn−1

h , dtu
n
h +

1

2
dtu

n−1
h

)∣∣∣∣ τ2 ≤ 2c0γ0‖Ahū
n−1
h ‖0‖ūn−1

h ‖1

∥∥∥∥dtun
h +

1

2
dtu

n−1
h

∥∥∥∥
0

τ2

≤ 1

4
‖dtun

h‖2
0τ

2 +
1

8
‖dtun−1

h ‖2
0τ

2

+ 6c20γ
2
0‖Ahū

n−1
h ‖2

0‖ūn−1
h ‖2

1τ
2,

2|b(dtun−1
h , ūn−1

h , ūn
h)|τ2 + 2|b(ūn−1

h , dtu
n−1
h , ūn

h)|τ2

≤ ν

4
‖ūn

h‖2
1τ + 4ν−1c20γ

2
0‖dtun−1

h ‖2
0‖Ahū

n−1
h ‖2

0τ
3,

|b(dtun−1
h , ūn−1

h , dtu
n
h)|τ3 + |b(ūn−1

h , dtu
n−1
h , dtu

n
h)|τ3

≤ 1

4
‖dtun

h‖2
0τ

2 + c20γ
2
0‖dtun−1‖2

1‖Ahū
n−1
h ‖2

0τ
4,

|b(dtun−1
h , dtu

n−1
h , ūn

h)|τ3 ≤ ν

4
‖ūn

h‖2
1τ

+ ν−1c20γ
2
0‖dtun−1

h ‖2
0‖Ah(un−1

h − un−2
h )‖2

0τ
3,

1

2
|b(dtun−1

h , dtu
n−1
h , un−1

h )|τ3 ≤ 1

8
‖dtun−1

h ‖2
0τ

2 +
1

2
c20γ

2
0‖dtun−1

h ‖2
1‖Ahu

n−1
h ‖2

0τ
4,

|(f̄(tn), 2ūn
h + dtu

n
hτ)|τ ≤ ν

4
‖ūn

h‖2
1τ +

1

8
‖dtun

h‖2
0τ

2

+ (4ν−1γ2
0 + 2τ)‖f̄(tn)‖2

0τ.
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Combining these inequalities with (4.20) yields(
‖un

h‖2
0 +

ν

2
‖un

h‖2
1τ

)
−
(
‖un−1

h ‖2
0 +

ν

2
‖un−1

h ‖2
1τ

)
+ ν‖ūn

h‖2
1τ

+
ν

4
‖ūn

h‖2
1τ − 6c20γ

2
0‖Ahū

n−1
h ‖2

0‖ūn−1
h ‖2

1τ
2 +

3

8
‖dtun

h‖2
0τ

2 − 2

8
‖dtun−1

h ‖2
0τ

2

− 10ν−1c20γ
2
0(‖Ahu

n−1
h ‖2

0 + ‖Ahu
n−2
h ‖2

0)‖dtun−1
h ‖2

0τ
3

≤ 3ν−1c20γ
2
0(‖Ahu

n−1
h ‖2

0 + ‖Ahu
n−2
h ‖2

0)ν‖dtun−1
h ‖2

1τ
4

+ (4ν−1γ2
0 + 2τ)‖f̄(tn)‖2

0τ.(4.21)

Using (4.16) and the induction assumption with m = 1, . . . , J − 1, we have

6c20γ
2
0‖Ahū

n−1
h ‖2

0τ ≤ 6c20γ
2
0κ2τ ≤ ν

4
,

10ν−1c20γ
2
0(‖Ahu

n−1
h ‖2

0 + ‖Ahu
n−2
h ‖2

0)τ ≤ 20ν−2c20γ
2
0κ2τ ≤ 1

8
,

3ν−1c20γ
2
0(‖Ahu

n−1
h ‖2

0 + ‖Ahu
n−2
h ‖2

0)ν‖dtun−1
h ‖2

1τ
4 ≤ 6ν−2c20γ

2
0κ

2
2τ

3

for all n = 2, . . . , J . Summing (4.21) from 2 to J and using the above estimates, we
have

‖uJ
h‖2

0 + ντ

J∑
n=1

‖ūn
h‖2

1 ≤ ‖u1
h‖2

0 +
ν

2
‖u1

h‖2
1τ +

3

8
‖dtu1

h‖2
0τ

2 +
ν

4
‖ū1

h‖2
1τ

+ 6ν−2c20γ
2
0Tκ

2
2τ

2 + (4ν−1γ2
0 + 2τ)T sup

0≤t≤T
‖f(t)‖2

0(4.22)

for all 1 ≤ J ≤ N . Using Lemma 4.1 and (4.16) in (4.22) yields (4.17) with m = J .
Next, by taking vh = 2Ahū

n
hτ ∈ Vh and qh = 0 in (4.4), we obtain

‖un
h‖2

1 − ‖un−1
h ‖2

1 + 2ν‖Ahū
n
h‖2

0τ + 2b(ūn−1
h , ūn−1

h , Ahū
n
h)τ

+ 2b(ūn−1
h , dtu

n−1
h , Ahū

n
h)τ2 + 2b(dtu

n−1
h , ūn−1

h , Ahū
n
h)τ2

+
1

2
b(dtu

n−1
h , dtu

n−1
h , Ahū

n
h)τ3 = 2(f̄(tn), Ahū

n
h)τ.(4.23)

In view of Lemma 3.1 and (3.10), there hold

2|b(ūn−1
h , ūn−1

h , Ahū
n
h)|τ ≤ c0‖Ahū

n−1
h ‖1/2

0 ‖ūn−1
h ‖1/2

0 ‖ūn−1
h ‖1‖Ahū

n
h‖0τ

≤ ν

8
‖Ahū

n
h‖2

0τ + 2ν−1c20‖Ahū
n−1
h ‖0‖ūn−1

h ‖0‖ūn−1
h ‖2

1τ

≤ ν

8
(‖Ahū

n
h‖2

0 + 2‖Ahū
n−1
h ‖2

0)τ

+ 2ν−3c40‖ūn−1
h ‖4

1‖ūn−1
h ‖2

0τ,

2|b(ūn−1
h , dtu

n−1
h , Ahū

n
h)|τ2 + 2|b(dtun−1

h , ūn−1
h , Ahū

n
h)|τ2

≤ 2c0γ
1/2
0 ‖Ahū

n−1
h ‖1/2

0 ‖ūn−1
h ‖1/2

1 ‖dtun−1
h ‖1‖Ahū

n
h‖0τ

2

≤ ν

8
‖Ahū

n
h‖2

0τ

+ 8ν−1c20γ0‖Ahū
n−1
h ‖0‖ūn−1

h ‖1‖dtun−1
h ‖2

1τ
3,
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1

2
|b(dtun−1

h , dtu
n−1
h , Ahū

n
h)|τ3 ≤ 1

2
c0‖Ahdtu

n−1
h ‖1/2

0 ‖dtun−1
h ‖1/2

0 ‖dtun−1
h ‖1‖Ahū

n
h‖0τ

3

≤ ν

8
‖Ahū

n
h‖2

0τ

+ ν−1c20‖Ah(un−1
h − un−2

h )‖0‖dtun−1
h ‖0‖dtun−1

h ‖2
1τ

4,

2|(f̄(tn), Ahū
n
h)|τ ≤ ν

8
‖Ahū

n
h‖2

0τ + 8ν−1‖f̄(tn)‖2
0τ.

Combining these inequalities with (4.23) gives

(‖un
h‖2

1 − ‖un−1
h ‖2

1 +
ν

2
(3‖Ahū

n
h‖2

0 − ‖Ahū
n−1
h ‖2

0)τ

≤ 2ν−3c40‖ūn−1
h ‖4

1‖ūn−1
h ‖2

0τ + 8ν−1‖f̄(tn)‖2
0τ

+ 8ν−1c20γ0‖Ahū
n−1
h ‖0‖ūn−1

h ‖1‖dtun−1
h ‖2

1τ
3

+ ν−1c20(‖Ahu
n−1
h ‖0 + ‖Ahu

n−2
h ‖0)‖dtun−1

h ‖0‖dtun−1
h ‖2

1τ
4.(4.24)

Summing (4.24) from 2 to J and using (4.16) and the induction assumption with
m = 0, 1, . . . , J − 1, we obtain

‖uJ
h‖2

1 + ντ

J∑
n=1

‖Ahū
n
h‖2

0 ≤ τ

J−1∑
n=1

dn‖un
h‖2

1 +
3

2
ν‖Ahū

1
h‖2

0τ

+ ‖u1
h‖2

1 + 8ν−1T sup
0≤t≤T

‖f(t)‖2
0

+ ν−1γ−1
0 κ

1/2
0 + ν3/2c−2

0 Tγ−4
0(4.25)

for all 1 ≤ J ≤ N , where

dn = 2ν−3c40(‖ūn
h‖2

1‖ūn
h‖2

0 + ‖ūn+1
h ‖2

1‖ūn+1
h ‖2

0), ū0
h = u0

h.

We set

an = ‖un
h‖2

1, bn = ν‖Ahū
n
h‖2

0,

C = ‖u1
h‖2

1 +
3

2
ν‖Ahū

1
h‖2

0τ + 8ν−1T sup
0≤t≤T

‖f(t)‖2
0

+ ν−1γ−1
0 κ

1/2
0 + ν3/2c−2

0 Tγ−4
0 .

Applying Lemma 3.4 to (4.25) and using (4.16)–(4.17) and Lemma 4.1, we obtain
(4.18) with m = J .

Now, we prove that (4.19) holds for m = J . For n = 2, we deduce from (4.1) and
(4.3) that

(dttu
2
h, vh) +

1

2
a(dtu

2
h, vh) − d(vh, dtp

2
h) + (dtu

2
h, qh)

+
3

2
b(dtu

1
h, ū

1
h, vh) +

3

2
b(ū1

h, dtu
1
h, vh)

=
1

2τ

∫ t2

t1

(ft(t), vh)dt .(4.26)

By taking vh = 2dtu
2
hτ and qh = 2dtp

2
hτ in (4.26) and using (3.10) and Lemma 3.1,

we have

‖dtu2
h‖2

0 − ‖dtu1
h‖2

0 + ‖dttu2
h‖2

0τ
2 +

ν

2
‖dtu2

h‖2
1τ

≤ ν−1γ2
0

∫ t2

t1

‖ft(t)‖2
0dt +

9

4
ν−1c20γ

2
0‖Ahū

1
h‖2

0‖dtu1
h‖2

0τ.(4.27)
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Moreover, it follows from (4.3) that for 3 ≤ n ≤ J there holds

(dttu
n
h, vh) + a(dtū

n
h, vh) − d(vh, dtp

n
h) + (dtū

n
h, qh)

+
3

2
b(dtu

n−1
h , ūn−1

h , vh) +
3

2
b(ūn−1

h , dtu
n−1
h , vh)

− 1

2
b(dtu

n−2
h , ūn−2

h , vh) − 1

2
b(ūn−2

h , dtu
n−2
h , vh)

=
1

2τ

∫ tn

tn−2

(ft(t), vh)dt.(4.28)

Taking vh = 2dtu
n
hτ in (4.28), using (3.12), and noting dtu

n
h = dtū

n
h + 1

2dttu
n
hτ yields

‖dtun
h‖2

0 − ‖dtun−1
h ‖2

0 + ‖dttun
h‖2

0τ
2 +

ν

2
(‖dtun

h‖2
1 − ‖dtun−1

h ‖2
1 + 4‖dtūn

h‖2
1)τ

+ 3b(ūn−1
h , dtu

n−1
h , dttu

n
h)τ2 + 3b

(
dtu

n−1
h , ūn−1

h , dtū
n
h +

1

2
dttu

n
hτ

)
τ

− b

(
dtu

n−2
h , ūn−2

h , dtū
n
h +

1

2
dttu

n
hτ

)
τ − b

(
ūn−2
h , dtu

n−2
h , dtū

n
h +

1

2
dttu

n
hτ

)
τ

=

(∫ tn

tn−2

ft(t), dtū
n
h +

1

2
dttu

n
hτ

)
dt.(4.29)

In view of Lemma 3.1 and (3.10), there hold

3|b(dtun−1
h , ūn−1

h , dtū
n
h)|τ ≤ ν

4
‖dtūn

h‖2
1τ + 9ν−1c20γ

2
0‖Ahū

n−1
h ‖2

0‖dtun−1
h ‖2

0τ,

3|b(ūn−1
h , dtu

n−1
h , dttu

n
h)|τ2 + 3|b(dtun−1

h , ūn−1
h , dttu

n
h)|τ2

≤ 1

4
‖dttun

h‖2
0τ

2 + 9c20γ
2
0‖Ahū

n−1
h ‖2

0‖dtun−1
h ‖2

1τ
2,

|b(dtun−2
h , ūn−2

h , dtū
n
h)|τ + |b(ūn−2

h , dtu
n−2
h , dtū

n
h)|τ

≤ ν

4
‖dtun

h‖2
1τ + ν−1c20γ

2
0‖Ahū

n−2
h ‖2

0‖dtun−2
h ‖2

0τ,

|b(dtun−2
h , ūn−2

h , dttu
n
h)|τ2 + |b(ūn−2

h , dtu
n−2
h , dttu

n
h)|τ2

≤ 1

4
‖dttun

h‖2
0τ

2 + c20γ
2
0‖Ahū

n−2
h ‖2

0‖dtun−2
h ‖2

1τ
2,∣∣∣∣∣

∫ tn

tn−2

(ft(t), dtū
n
h +

1

2
dttu

n
hτ)dt

∣∣∣∣∣ ≤ ν

4
‖dtūn

h‖2
1τ +

1

4
‖dttun

h‖2
0τ

2

+ 2(ν−1γ2
0 + τ)

∫ tn

tn−2

‖ft(t)‖2
0dt.

Combining these inequalities with (4.29) and using Lemma 4.1 yields(
‖dtun

h‖2
0 +

ν

2
‖dtun

h‖2
1τ
)
−
(
‖dtun−1

h ‖2
0 +

ν

2
‖dtun−1

h ‖2
1τ
)

≤ 9ν−1c20γ
2
0‖Ahū

n−1
h ‖2

0‖dtun−1
h ‖2

0τ + ν−1c20γ
2
0‖Ahū

n−2
h ‖2

0‖dtun−2
h ‖2

0τ

+ 9c20γ
2
0‖Ahū

n−1
h ‖2

0‖dtun−1
h ‖2

1τ
2 + c20γ

2
0‖Ahū

n−2
h ‖2

0‖dtun−2
h ‖2

1τ
2

+ 2(ν−1γ2
0 + τ)

∫ tn

tn−2

‖ft(t)‖2
0dt.(4.30)
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Summing this inequality from 3 to J , adding (4.27) in, and using the induction as-
sumption with m = 1, . . . , J − 1 and (4.17)–(4.18), we arrive at

‖dtuJ
h‖2

0 +
ν

2
‖dtuJ

h‖2
1τ ≤ τ

J−1∑
n=0

dn

(
‖dtun

h‖2
0 +

ν

2
‖dtun

h‖2
1τ
)

+ ‖dtu1
h‖2

0 +
ν

2
‖dtu1

h‖2
1τ + 2(ν−1γ2

0 + τ)

∫ T

0

‖ft(t)‖2
0dt(4.31)

for 1 ≤ J ≤ N , where

dn = 13ν−1c20γ
2
0‖Ahū

n
h‖2

0, 1 ≤ n ≤ J − 1, d0 = 0.

We set

an = ‖dtun
h‖2

0 +
ν

2
‖dtun

h‖2
1τ, bn = 0, cn = 0,

C = ‖dtu1
h‖2

0 +
ν

2
‖dtu1

h‖2
1τ + 2(ν−1γ2

0 + τ)

∫ T

0

‖ft(t)‖2
0dt.

Applying Lemma 3.4 to (4.31) and using (4.16)–(4.18) and Lemma 4.1, we obtain

‖dtuJ
h‖2

0 +
ν

2
‖dtuJ

h‖2
1τ ≤ exp(13ν−2c20γ

2
0κ1)C.(4.32)

Next, by taking vh = 2Ahdtu
n
hτ ∈ Vh and qh = 0 in (4.4), we obtain

2‖dtun
h‖2

1τ + ν‖Ahu
n
h‖2

0 − ν‖Ahu
n−1
h ‖2

0 + 2b(ūn−1
h , ūn−1

h , Ahdtu
n
h)τ

+ 2b(ūn−1
h , dtu

n−1
h , Ahdtu

n
h)τ2 + 2b(dtu

n−1
h , ūn−1

h , Ahdtu
n
h)τ2

+
1

2
b(dtu

n−1
h , dtu

n−1
h , Ahdtu

n
h)τ3 = 2(f̄(tn), Ahdtu

n
h)τ.(4.33)

In view of Lemma 3.1 and (3.10), there hold

2|b(ūn−1
h , ūn−1

h , Ahdtu
n
h)|τ ≤ c0γ0‖Ahū

n−1
h ‖2

0‖dtun
h‖1τ

≤ 1

8
‖dtun

h‖2
1τ + c‖Ahū

n−1
h ‖4

0τ

2|b(ūn−1
h , dtu

n−1
h , Ahdtu

n
h)|τ2 + 2|b(dtun−1

h , ūn−1
h , Ahdtu

n
h)|τ2

≤ 2c0γ0‖Ahū
n−1
h ‖0‖Ahdtu

n−1
h ‖0‖dtun

h‖1τ
2

≤ 1

8
‖dtun

h‖2
1τ + c‖Ahū

n−1
h ‖2

0‖Ahu
n−1
h −Ahu

n−2
h ‖2

0τ,

1

2
|b(dtun−1

h , dtu
n−1
h , Ahdtu

n
h)|τ3 ≤ c‖dtun−1

h ‖1/2
0 ‖Ahdtu

n−1
h ‖3/2

0 ‖dtun
h‖1τ

3

+ c‖dtun−1
h ‖1‖Ahdtu

n−1
h ‖0‖dtun

h‖1τ
3

≤ 1

8
‖dtun

h‖2
1τ

+ c(‖dtun−1
h ‖2

1τ
2 + ‖dtun−1

h ‖0‖Ahdtu
n−1
h ‖0τ

2)

× ‖Ah(un−1
h − un−2

h )‖2
0τ,

2|(f̄(tn), Ahdtu
n
h)|τ ≤ 1

8
‖dtun

h‖2
1τ + c‖∇f̄(tn)‖2

0τ.
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Combining these inequalities with (4.33) gives

ν‖Ahu
n
h‖2

0 − ν‖Ahu
n−1
h ‖2

0 + ‖dtun
h‖2

1τ

≤ c(‖Ahū
n−1
h ‖2

0 + c‖dtun−1
h ‖2

1τ
2 + ‖dtun−1

h ‖0‖Ahdtu
n−1
h ‖0τ

2)

× (‖Ahu
n−1
h ‖2

0 + ‖Ahu
n−2
h ‖2

0)τ + c‖∇f̄(tn)‖2
0τ.(4.34)

Summing (4.34) from 2 to J and using (4.16)–(4.32) and the induction assumption
with m = 0, 1, . . . , J − 1, we obtain

ν‖Ahu
J
h‖2

1 + τ

J∑
n=1

‖dtun
h‖2

1 ≤ ντ

J−1∑
n=1

dn‖Ahu
n
h‖2

1

+ ‖Ahu
1
h‖2

0 + c sup
0≤t≤T

‖∇f(t)‖2
0(4.35)

for all 1 ≤ J ≤ N , where

dn = c(‖Ahū
n+1
h ‖2

0 + c‖dtun+1
h ‖2

1τ
2 + ‖dtun+1

h ‖0‖Ahdtu
n+1
h ‖0τ

2)

+c(‖Ahū
n
h‖2

0 + c‖dtun
h‖2

1τ
2 + ‖dtun

h‖0‖Ahdtu
n
h‖0τ

2).

Using (4.16)–(4.18), (4.32), and the induction assumption with m = 0, 1, . . . , J − 1,
we obtain

τ

J−1∑
dn ≤ κ, κ is independent of κ2.(4.36)

We set

an = ν‖Ahu
n
h‖2

0, bn = ‖dtun
h‖2

1,

C = ν‖Ahu
1
h‖2

1 + cν−1T sup
0≤t≤T

‖∇f(t)‖2
0.

Applying the discrete Gronwall lemma to (4.35) and using (4.36), we obtain

ν‖Ahu
J
h‖2

1 + τ

J∑
n=1

‖dtun
h‖2

1 ≤ κ, κ is independent of κ2.(4.37)

Finally, using (4.3), (3.4), (3.10), and Lemma 3.1, we arrive at

‖pJh‖0 = β−1 sup
vh∈Xh

d(vh, p
J
h)

‖vh‖1

≤ β−1

(
γ0‖dtuJ

h‖0 + ν‖ūJ
h‖1 + γ0‖f̄(tn)‖0 +

3

2
c0γ0‖uJ−1

h ‖2
1 +

1

2
c0γ0‖uJ−2

h ‖2
1

)
,

which yields

‖pJh‖2
0 ≤ 5β−2

(
γ2
0‖dtuJ

h‖2
0 + ν2γ2

0‖Ahū
J
h‖2

0 + γ2
0 sup

0≤t≤T
‖f(t)‖2

0

)
+ 5β−2

(
9

4
c20γ

2
0‖uJ−1

h ‖4
1 +

1

4
c20γ

2
0‖uJ−2

h ‖4
1

)
.(4.38)
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Combining (4.37) and (4.38) with (4.32), we get (4.19) with m = J . So, we have
completed the proof of Theorem 4.2.

Lemma 4.3. Suppose that the assumptions (A1)–(A2) are valid and the couple
(Xh,Mh) satisfies the approximate properties (3.2)–(3.4). Then there hold

‖e1‖2
α + ‖dte1‖2

ατ
2 + ν‖e1‖2

α+1τ ≤ κτ2−α, α = −2, − 1, 0, 1,(4.39)

‖η1‖2
0 ≤ κ,(4.40)

where

e0 = 0, en = uh(tn) − un
h, ηn =

1

τ

∫ tn

tn−1

ph(t)dt− pnh, n = 1, . . . , N.

Proof. By integrating (3.8) from t0 to t1,

(dtuh(t1), vh) +
1

τ

∫ t1

t0

a(uh(t), vh)dt− 1

τ

∫ t1

t0

d(vh, ph(t))dt

+
1

τ

∫ t1

t0

b(uh(t), uh(t), vh)dt =
1

τ

∫ t1

t0

(f(t), vh)dt.(4.41)

Subtracting (4.1) from (4.41) and using the integral formula by parts, we obtain

(dte
1, vh) + a(e1, vh) − d(vh, η

1) = (E1, vh),(4.42)

where

(E1, vh) = −1

τ

∫ t1

t0

(t− t0)(ft(t), vh)dt +
1

τ

∫ t1

t0

(t− t0)a(uht(t), vh)dt

+
1

τ

∫ t1

t0

(t− t1)bt(uh(t), uh(t), vh)dt(4.43)

and

bt(uh(t), uh(t), vh) = b(uht(t), uh(t), vh) + b(uh(t), uht(t), vh).

Hereafter, we need the L2-orthogonal projection Rh : Y→Xh defined by

(Rhv, vh) = (v, vh) ∀v ∈ Y, vh ∈ Xh.

We see from (3.10), (4.43), Lemma 3.1, and Theorem 3.2 that

‖A
α−1

2

h PhE1‖0 = sup
vh∈Vh

(E1, vh)

‖A
1−α

2

h vh‖0

≤
(
γ1−α
0 τ sup

0≤t≤t1

‖ft(t)‖0 + ντ
1−α

2 sup
0≤t≤t1

σ
α+1

2 (t)‖uht(t)‖α+1

)
+ c0γ

1−α
0 τ1−α(α+1)

2 sup
0≤t≤t1

σ
α(α+1)

2 (t)‖Ahuh(t)‖0‖uht(t)‖0 ≤ κτ
1−α

2(4.44)

for α = −1, 0, 1 and

‖RhE1‖0 = sup
vh∈Xh

(E1, vh)

‖vh‖0
≤ τ sup

0≤t≤t1

‖ft(t)‖0 + ν sup
0≤t≤t1

σ(t)‖Ahuht(t)‖0

+ c0γ0‖Ahuh(t0)‖0‖uh(t0)‖1 + c0γ0 sup
0≤t≤t1

‖Ahuh(t)‖0‖uh(t)‖1 ≤ κ.(4.45)
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Taking vh = 2Aα
he

1τ ∈ Vh in (4.42), we have

‖e1‖2
α + ‖dte1‖2

ατ
2 + ν‖e1‖2

α+1τ ≤ ν−1‖A
α−1

2

h PhE1‖2
0τ ≤ κτ2−α.(4.46)

Then, we take vh = 2A−2
h e1τ ∈ Vh in (4.42) and use (4.44) with α = −1 to obtain

1

2
‖e1‖2

−2 + ‖dte1‖2
−2τ

2 + ν‖e1‖2
−1τ ≤ 2‖A−1

h PhE1‖2
0τ

2 ≤ κτ4.(4.47)

Finally, using (4.42), (3.4), (3.10), and Lemma 3.1, we arrive at

‖η1‖0 ≤ β−1 sup
vh∈Xh

d(vh, η
1)

‖vh‖1

≤ β−1(γ0‖dte1‖0 + ν‖e1‖1 + γ0‖RhE1‖0),

which gives

‖η1‖2
0 ≤ 3β−2(‖dte1‖2

0 + ν2‖e1‖2
1 + ‖PhE1‖2

−1) ≤ κ.(4.48)

Combining (4.48) with (4.46)–(4.47) has completed the proof of Lemma 4.3.

5. Second-order dual scheme: Stability analysis. In order to derive the
L2-bound on the error uh(tn)−un

h, we employ a parabolic argument that has already
been used in [16] for the Crank–Nicolson scheme of the time-dependent Navier–Stokes
equation. Let tm ∈ (0, t] be given. We consider the linearized “backward” counterpart
of the discrete Navier–Stokes equations (4.3): for ξn ∈ Vh, 2 ≤ n ≤ m, find Φn−1

h ∈ Vh

such that

(vh, dtΦ
n
h) − a(vh, Φ̄

n
h) − b

(
3

2
un−1
h − 1

2
un−2
h , vh,Φ

n
h

)
− b

(
vh,

3

2
un−1
h − 1

2
un−2
h ,Φn

h

)
= (vh, ξ̄

n), vh ∈ Vh,(5.1)

with an initial value Φm
h ∈ Vh.

Here, we need to introduce the following discrete dual Gronwall lemma provided
in [10].

Lemma 5.1. Let C and an, bn, dn, hn for integers n0 ≤ n ≤ m be nonnegative
numbers such that

ak + τ

m∑
n=k

bn ≤ τ

m∑
n=k

dnan + C, n0 ≤ k ≤ m(5.2)

and dnτ < 1 for all n0 ≤ n ≤ m; then

ak + τ

m∑
n=k

bn ≤ C exp

(
τ

m∑
n=k

(1 − dnτ)−1dn

)
, n0 ≤ k ≤ m.(5.3)

The following lemma provides the stability of the scheme (5.1).
Lemma 5.2. Under the assumptions of Theorem 4.2, the following a priori esti-

mates hold:

‖Φk
h‖2

0 + τ

m∑
n=k+1

(ν‖Φ̄n
h‖2

1 + ‖dtΦn
h‖2

−1) ≤ κ

(
‖Φm

h ‖2
0 + τ

m∑
n=2

‖ξ̄n‖2
−1

)
,(5.4)

‖Φk
h‖2

1 + ντ

m∑
n=k+1

‖AhΦ̄n
h‖2

0 ≤ κ

(
‖Φm

h ‖2
1 + τ

m∑
n=2

‖ξ̄n‖2
0

)
(5.5)

for all 1 ≤ k ≤ m.
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Proof. The proof follows the line of argument used in the proofs of Theorem 4.2.
First, taking vh = −2Φ̄n

hτ in (5.1) and using (3.12), we get

‖Φn−1
h ‖2

0 − ‖Φn
h‖2

0 + 2ν‖Φ̄n
h‖2

1τ + b(Φ̄n
h, 3u

n−1
h − un−2

h , Φ̄n
h)τ

≤ ν

4
‖Φ̄n

h‖2
1τ + 4ν−1‖ξ̄n‖2

−1τ.(5.6)

It follows from Lemma 3.1 and (3.10) that

|b(Φ̄n
h, 3u

n−1
h − un−2

h , Φ̄n
h)|τ ≤ c0γ0‖Ah(3un−1

h − un−2
h )‖0‖Φ̄n

h‖1‖Φ̄n
h‖0

≤ 3

4
ν‖Φ̄n

h‖2
1τ +

2

3
ν−1c20γ

2
0‖Ah(3un−1

h − un−2
h )‖2

0(‖Φn
h‖2

0 + ‖Φn−1
h ‖2

0)τ.

Combining (5.6) with the above estimate gives

‖Φn−1
h ‖2

0 − ‖Φn
h‖2

0 + ν‖Φ̄n
h‖2

1τ

≤ 2

3
ν−1c20γ

2
0‖Ah(3un−1

h − un−2
h )‖2

0(‖Φn
h‖2

0 + ‖Φn−1
h ‖2

0)τ + 4ν−1‖ξn‖2
−1τ

for all 2 ≤ n ≤ m. Summing the above inequality from k + 1 to m, we obtain

‖Φk
h‖2

0 + ντ

m∑
n=k+1

‖Φ̄n
h‖2

1

≤ τ

m∑
n=k

dn‖Φn
h‖2

0 + ‖Φm
h ‖2

0 + 4ν−1τ

m∑
n=2

‖ξ̄n‖2
−1, 1 ≤ k ≤ m.(5.7)

Let

an = ‖Φn
h‖2

0, bn = ν‖Φ̄n
h‖2

1, C = ‖Φm
h ‖2

0 + 4ν−1τ

m∑
n=2

‖ξ̄n‖2
−1,

dn =
2

3
ν−1c20γ

2
0(‖Ah(3un−1

h − un−2
h )‖2

0 + ‖Ah(3un
h − un−1

h )‖2
0).

Hence, by using Theorem 4.2 and (4.16), we find

dnτ ≤ 27ν−2c20γ
2
0κ2τ ≤ 7

11
, (1 − dnτ)−1 ≤ 11

4
, 1 ≤ n ≤ m.(5.8)

Then, applying Lemma 5.1 to (5.7) and using Theorem 4.2 to obtain

‖Φk
h‖2

0 + ντ

m∑
n=k+1

‖Φ̄n
h‖2

1 ≤ C exp

(
11

4
τ

m∑
n=k

dn

)
≤ κ

(
‖Φm

h ‖2
0 + τ

m∑
n=2

‖ξ̄n‖2
−1

)
(5.9)

for all 1 ≤ k ≤ m.
Moreover, we obtain from (3.10), (5.1), and Lemma 3.1 that

‖dtΦn
h‖−1 ≤ ν‖Φ̄n

h‖1 +
1

2
c0γ0‖Ah(3un−1

h − un−2
h )‖0‖Φ̄n

h‖1 + ‖ξ̄n‖−1, 2 ≤ n ≤ m,

and by Theorem 4.2 that

τ

m∑
n=k+1

‖dtΦn
h‖2

−1 ≤ 3τ

m∑
n=k+1

(ν2‖Φ̄n
h‖2

1 + c20γ
2
0‖Ah(3un−1

h − un−2
h )‖2

0‖Φ̄n
h‖2

1 + ‖ξ̄n‖2
−1)

≤ κτ

m∑
n=k+1

(‖Φ̄n
h‖2

1 + ‖ξ̄n‖2
−1), 1 ≤ k ≤ m.(5.10)

Combining this inequality with (5.9) yields (5.4).
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Furthermore, by taking vh = −2AhΦ̄n
hτ in (5.1), we obtain

‖Φn−1
h ‖2

1 − ‖Φn
h‖2

1 + 2ν‖AhΦ̄n
h‖2

0τ

+ b(AhΦ̄n
h, 3u

n−1
h − un−2

h , Φ̄n
h)τ + b(3un−1

h − un−2
h , AhΦ̄n

h, Φ̄
n
h)τ

≤ ν

4
‖AhΦn−1

h ‖2
0τ +

4

ν
‖ξ̄n‖2

0τ.(5.11)

From Lemma 3.1 and (3.10), we have

|b(AhΦ̄n
h, 3u

n−1
h − un−2

h , Φ̄n
h)|τ + |b(3un−1

h − un−2
h , AhΦ̄n

h, Φ̄
n
h)|τ

≤ c0γ0‖Φ̄n
h‖1‖Ah(3un−1

h − un−2
h )‖0‖AhΦ̄n

h‖0τ

≤ ν

4
‖AhΦ̄n

h‖2
0τ + ν−1c20γ

2
0‖Ah(3un−1

h − un−2
h )‖2

0‖Φ̄n
h‖2

1τ.

Combining (5.11) with the above estimate gives

‖Φn−1
h ‖2

1 − ‖Φn
h‖2

1 + ν‖AhΦ̄n
h‖2

0τ

≤ ν−1c20γ
2
0‖Ah(3un−1

h − un−2
h )‖2

0‖Φ̄n
h‖2

1τ + 4ν−1‖ξn‖2
0τ(5.12)

for all 2 ≤ n ≤ m. Summing (5.12) from k + 1 to m and using (3.10), (5.5), and
Theorem 4.2, we obtain (5.5).

Lemma 5.3. Under the assumptions of Theorem 4.2, the following a priori esti-
mate holds:

ν‖AhΦ1
h‖2

0 + τ

m∑
n=2

‖dtΦn
h‖2

1 ≤ κ

(
ν‖AhΦm

h ‖2
0 + τ

m∑
n=2

‖ξ̄n‖2
1

)
.(5.13)

Proof. To prove (5.13), we take vh = 2AhdtΦ
n
hτ in (5.1) and obtain

ν(‖AhΦn−1
h ‖2

2 − ‖AhΦn
h‖2

0) + 2‖dtΦn
h‖2

1τ

− b(AhdtΦ
n
h, 3u

n−1
h − un−2

h , Φ̄n
h)τ − b(3un−1

h − un−2
h , AhdtΦ

n
h, Φ̄

n
h)τ

≤ 1

4
‖dtΦn

h‖2
1τ + 4‖ξ̄n‖2

1τ.(5.14)

It follows from Lemma 3.1 and (3.10) that

|b(3un−1
h − un−2

h , AhdtΦ
n
h, Φ̄

n
h)|τ + |b(dtΦn

h, 3u
n−1
h − un−2

h , AhΦ̄n
h)|τ

≤ c0γ0‖Ah(3un−1
h − un−2

h )‖0‖AhΦ̄n
h‖1‖dtΦn

h‖1

≤ 1

4
‖dtΦn

h‖2
1τ + c20γ

2
0‖Ah(3un−1

h − un−2
h )‖2

0‖AhΦ̄n
h‖2

0

and by (5.14) that

ν(‖AhΦn−1
h ‖2

2 − ‖AhΦn
h‖2

0) + ‖dtΦn
h‖2

1τ

≤ c0γ0‖Ah(3un−1
h − un−2

h )‖2
0‖AhΦ̄n

h‖2
0τ + 4‖ξ̄n‖2

1τ(5.15)

for all 2 ≤ n ≤ m. Summing (5.15) from 2 to m and using Theorem 4.2, Lemma 5.2,
and (3.10), we obtain (5.13).
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6. Error analysis. In this section, we establish the H1- and L2-bound of the
error en = uh(tn) − un

h and the L2-bound of the error ηn = 1
τ

∫ tn
tn−1

ph(t)dt − pnh for

all 1 ≤ n ≤ N . To do this, we integrate (3.8) from tn−1 to tn. By noting that
uh(t) ∈ Vh, t ∈ [0, T ], we obtain

(dtuh(tn), vh) +
1

τ

∫ tn

tn−1

a(uh(t), vh)dt− 1

τ

∫ tn

tn−1

d(vh, ph(t))dt + d(ūh(tn), qh)

+
1

τ

∫ tn

tn−1

b(uh(t), uh(t), vh)dt =
1

τ

∫ tn

tn−1

(f(t), vh)dt.(6.1)

Subtracting (4.3) from (6.1) and using the integral formula

φ̄(tn) − 1

τ

∫ tn

tn−1

φ(t)dt =
1

2τ

∫ tn

tn−1

(t− tn−1)(tn − t)φtt(t)dt(6.2)

for all φ ∈ L2(tn−1, tn;H2(tn−1, tn)), we obtain

(dte
n, vh) + a(ēn, vh) − d(vh, η

n) + d(ēn, qh) +
3

2
b(en−1, uh(tn−1), vh)

+
3

2
b(un−1

h , en−1, vh) − 1

2
b(en−2, uh(tn−2), vh) − 1

2
b(un−2

h , en−2, vh)

= (En, vh),(6.3)

with

(En, vh) =
1

2τ

∫ tn

tn−1

(t− tn−1)(tn − t)(ftt(t), vh)dt

+
1

τ

∫ tn

tn−1

(t− tn−1)(tn − t)a(uhtt(t), vh)dt

+
1

2τ

∫ tn

tn−1

(t− tn−1)(tn − t)btt(uh(t), uh(t), vh)dt

+
1

2

∫ tn

tn−1

(t− tn)btt(uh(t), uh(t), vh)dt

− 1

2

∫ tn−1

tn−2

(t− tn−2)btt(uh(t), uh(t), vh)dt,(6.4)

where

btt(uh(t), uh(t), vh) = b(uhtt(t), uh(t), vh) + b(uh(t), uhtt(t), vh) + 2b(uht, uht, vh).

In order to derive a bound on the error en, we need to provide the following
estimates on En.

Lemma 6.1. Under the assumptions of Theorem 4.2, the error En satisfies the
following bounds:

τ

m∑
n=2

σi(tn)‖A−1
h PhEn‖2

0 ≤ κ τ3+i, i = 0, 1,(6.5)

τ

m∑
n=2

σi(tn)‖A−1/2
h PhEh‖2

0 ≤ κτ2+i, i = 0, 1, 2,(6.6)
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τ

m∑
n=2

σi(tn)‖PhEn‖2
0 ≤ κτ1+i, i = 0, 1, 2, 3,(6.7)

σ2(tn)‖RhEn‖2
0 ≤ κτ2,(6.8)

for all 2 ≤ m ≤ N .
Proof. In view of (3.10) and Lemma 3.1, we deduce from (6.4) that

‖A(α−1)/2
h PhEn‖0 = sup

vh∈Vh

|(En, vh)|
‖A(1−α)/2

h vh‖0

≤ 1

2
γ1−α
0 τ3/2

(∫ tn

tn−1

‖ftt(t)‖2
0dt

)1/2

+
ν

2
τ−1/2

(∫ tn

tn−1

(tn − t)2(t− tn−1)
2‖uhtt(t)‖2

α+1dt

)1/2

+ c0γ0τ
1/2

(∫ tn

tn−1

(tn − t)2(‖Ahuh(t)‖2
0‖uhtt(t)‖2

α + ‖uht‖2
1‖uht‖2

α+1)dt

)1/2

+ c0γ0τ
1/2

(∫ tn−1

tn−2

(t− tn−2)
2(‖Ahuh(t)‖2

0‖uhtt(t)‖2
α + ‖uht‖2

1‖uht‖2
α+1)dt

)1/2

,

(6.9)

for α = −1, 0, 1. In view of Theorems 3.2 and 3.3, (6.9), and the inequalities

t− tn−1 ≤ σ(t), t ∈ [tn−1, tn], t− tn−2 ≤ σ(t), t ∈ [tn−2, tn−1],(6.10)

σ(tn) ≤ σ(tn−1) + τ ≤ 2σ(t), t ∈ [tn−1, tn],(6.11)

σ(tn)(t− tn−2) ≤ (σ(tn−2) + 2τ)(t− tn−2) ≤ 3σ(t)τ, t ∈ [tn−2, tn−1],(6.12)

we have the estimates

σi(tn)‖A−1
h PhEn‖2

0τ ≤ 2τ3+i

∫ tn

tn−1

(γ4
0‖ftt‖2

0 + ν2σ(t)‖uhtt‖2
0)dt

+ 4c20γ
2
0τ

3+i

∫ tn

tn−2

(‖Ahuh(t)‖2
0‖uhtt(t)‖2

−1 + ‖uht‖2
1‖uht‖2

0)dt(6.13)

for i = 0, 1,

σi(tn)‖A−1/2
h PhEn‖2

0τ ≤ 4τ2+i

∫ tn

tn−1

(γ2
0‖ftt‖2

0 + ν2σ2(t)‖uhtt‖2
1)dt

+ 8c20γ
2
0τ

2+i

∫ tn

tn−2

(σ(t)‖uhtt(t)‖2
0‖Ahuh(t)‖2

0 + σ(t)‖uht‖4
1)dt(6.14)

for i = 0, 1, 2, and

σi(tn)‖PhEn‖2
0τ ≤ 4τ1+i

∫ tn

tn−1

(‖ftt‖2
0 + ν2σ3(t)‖Ahuhtt‖2

0)dt

+ 16c20γ
2
0τ

1+i

∫ tn

tn−2

(σ2(t)‖uhtt(t)‖2
1‖Ahuh(t)‖2

0 + σ2(t)‖Ahuht‖2
0‖uht(t)‖2

1)dt(6.15)
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for i = 0, 1, 2, 3. Summing (6.13)–(6.15) from 2 to m, respectively, and using Theorem
3.2, we deduce (6.5)–(6.7). Similarly, we deduce from (6.4) and Lemma 3.1 that

‖RhEn‖0 = sup
vh∈Xh

|(En, vh)|
‖vh‖0

≤ 1

2
τ3/2

(∫ tn

tn−1

‖ftt(t)‖2
0dt

)1/2

+
ν

2

(∫ tn

tn−1

(tn − t)(t− tn−1)
2‖Δhuhtt(t)‖2

0dt

)1/2

+ 2c0γ0τ
1/2

(∫ tn

tn−1

(t− tn−1)
2(‖uhtt(t)‖2

1‖Ahuh(t)‖2
0 + ‖Ahuht‖2

0‖uht‖2
1)dt

)1/2

+ c0γ0τ
1/2

(∫ tn−1

tn−2

(t− tn−2)
2(‖uhtt(t)‖2

1‖Ahuh(t)‖2
0 + ‖Ahuht‖2

0‖uht‖2
1)dt

)1/2

.

(6.16)

Because of the equivalent relation

‖Ahvh‖0 ≤ ‖Δhvh‖0 ≤ c3‖Ahvh‖0, vh ∈ Vh,(6.17)

for some constant c3 > 0, we deduce from (6.16) and (6.10)–(6.12) that

σ2(tn)‖RhEn‖2
0 ≤ τ3

∫ tn

tn−1

‖ftt(t)‖2
0dt + ν2τ2

∫ tn

tn−1

σ3(t)‖Ahuhtt(t)‖2
0dt

+ 42c20γ
2
0τ

3

∫ tn

tn−1

σ2(t)(‖uhtt(t)‖2
1‖Ahuh(t)‖2

0 + ‖Ahuht‖2
0‖uht‖2

1)dt

+ 4c20γ
2
0τ

3

∫ tn−1

tn−2

σ2(t)(‖uhtt(t)‖2
1‖Ahuh(t)‖2

0 + ‖Ahuht‖2
0‖uht‖2

1)dt.(6.18)

Combining (6.18) with Theorem 3.2 yields (6.8).
Lemma 6.2. Under the assumptions of Theorem 4.2, we have

‖em‖2
α + ν‖em‖2

α+1τ + τ

m∑
n=1

(
1

2
‖dten‖2

ατ + ν‖ēn‖2
α+1

)
≤ κτ2−α, α = −1, 0, 1,

(6.19)

for all 1 ≤ m ≤ N .
Proof. Taking vh = 2Aα

he
nτ ∈ Vh and qh = 0 in (6.3) and noting en = ēn + 1

2dte
n,

we obtain

‖en‖2
α − ‖en−1‖2

α + ‖dten‖2
ατ

2 +
ν

2
(‖en‖2

α+1 − ‖en−1‖2
α+1 + 4‖ēn‖2

α+1)τ

+ 3b

(
en−1, uh(tn−1), A

α
h ē

n +
1

2
Aα

hdte
nτ

)
+ 3b

(
un−1
h , en−1, Aα

h ē
n +

1

2
Aα

hdte
nτ

)
τ

− b

(
en−2, uh(tn−2), A

α
h ē

n +
1

2
Aα

hdte
nτ

)
τ − b

(
un−2
h , en−2, Aα

h ē
n +

1

2
Aα

hdte
nτ

)
τ

= 2

(
En, A

α
h ē

n +
1

2
Aα

hdte
nτ

)
τ,

(6.20)
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and by Lemma 3.1 and (3.10),

3

2
|b(en−1, uh(tn−1), A

α
hdte

n)|τ2 +
3

2
|b(un−1

h , en−1, Aα
hdte

n)|τ2

≤ 3

2
c0γ0‖en−1‖α+1(‖Ahuh(tn−1)‖0 + ‖Ahu

n−1
h ‖0)‖dten‖ατ2

≤ 1

4
‖dten‖2

ατ
2 +

9

2
c20γ

2
0(‖Ahuh(tn−1)‖2

0 + ‖Ahu
n−1
h ‖2

0)‖en−1‖2
α+1τ

2,

1

2
|b(en−2, uh(tn−2), A

α
hdte

n)|τ2 +
1

2
|b(un−2

h , en−2, Aα
hdte

n)|τ2

≤ 1

8
‖dten‖2

ατ
2 + c20γ

2
0(‖Ahuh(tn−2)‖2

0 + ‖Ahu
n−2
h ‖2

0)‖en−2‖2
α+1τ

2,

3|b(en−1, uh(tn−1), A
α
h ē

n)|τ + 3|b(un−1
h , en−1, Aα

h ē
n)|τ

≤ 3c0γ0‖en−1‖α(‖Ahuh(tn−1)‖0 + ‖Ahu
n−1
h ‖0)‖ēn‖α+1τ

≤ ν

4
‖ēn‖2

α+1τ + 18ν−1c20γ
2
0(‖Ahuh(tn−1)‖2

0 + ‖Ahu
n−1
h ‖2

0)‖en−1‖2
ατ,

|b(en−2, uh(tn−2), A
αēn)|τ + |b(un−2

h , en−2, Aαēn)|τ

≤ ν

4
‖ēn‖2

α+1τ + 18ν−1c20γ
2
0(‖Ahuh(tn−2)‖2

0 + ‖Ahu
n−2
h ‖2

0)‖en−2‖2
α

2

(
En, A

αēn +
1

2
Aαdte

nτ

)
τ ≤ ν

8
‖ēn‖2

α+1τ +
1

8
‖dten‖2

ατ
2

+ 8ν−1‖A
α−1

2

h PhEn‖2
0τ + 8‖Aα

2 PhEn‖2
0τ

2.

Hence, by combining the above inequalities with (6.20), we obtain(
‖en‖2

α +
ν

2
‖en‖2

α+1τ
)
−
(
‖en−1‖2

α +
ν

2
‖en−1‖2

α+1τ
)

+
1

2
‖dten‖2

ατ
2 + ν‖ēn‖2

α+1τ

≤ 18ν−1c20γ
2
0(‖Ahuh(tn−1)‖2

0 + ‖Ahu
n−1
h ‖2

0)
(
‖en−1‖2

α +
ν

2
‖en−1‖2

α+1τ
)
τ

+ 2ν−1c20γ
2
0(‖Ahuh(tn−2)‖2

0 + ‖Ahu
n−2
h ‖2

0)
(
‖en−2‖2

α +
ν

2
‖en−2‖2

α+1τ
)
τ

+ 8ν−1‖A
a−1
2

h PhEn‖2
0τ + 8‖Aα

2 PhEn‖2
0τ

2(6.21)

for all 2 ≤ n ≤ N . Moreover, summing (6.21) from 2 to m and using Lemmas 4.3 and
6.1, we have

‖em‖2
α +

ν

2
‖em‖2

α+1τ + τ

m∑
n=2

(
1

2
‖dten‖2

ατ + ν‖ēn‖2
α+1

)

≤ τ
m−1∑
n=1

dn

(
‖en‖2

α +
ν

2
‖en‖2

α+1τ
)

+ ‖e1‖2
α +

ν

2
‖e1‖2

α+1τ

+ 8ν−1τ

m∑
n=2

(‖A
α−1

2

h PhEn‖2
0 + ν‖Aα

2 PhEn‖2
0τ)

≤ τ

m∑
n=1

dn

(
‖en‖2

α +
ν

2
‖en‖2

α+1τ
)

+ κτ2−α,(6.22)

where

dn = 44ν−1c20γ
2
0(‖Ahuh(tn)‖2

0 + ‖Ahu
n
h‖2

0).



862 YINNIAN HE AND WEIWEI SUN

We set

an = ‖en‖2
α +

ν

2
‖en‖2

α+1τ, bn =
1

2
‖dten‖2

0τ + ν‖ēn‖2
1, C = κτ2−α

in (6.22), apply Lemma 3.4 to (6.22), and use Theorems 3.2 and 4.2 to deduce

‖em‖2
α +

ν

2
‖em‖2

α+1τ + τ

m∑
n=2

(
1

2
‖dten‖2

ατ + ν‖ēn‖2
α+1

)
≤ κτ2−α(6.23)

for all 2 ≤ m ≤ N . Combining (6.23) with Lemma 4.3 gives (6.19).
With the aid of Lemma 6.2, we obtain the following preliminary lower-order

smoothing error estimate.
Lemma 6.3. Under the assumptions of Theorem 4.2, we have

σ(tm)‖em‖2
0 + νσ(tm)‖em‖2

1τ + τ

m∑
n=1

σ(tn)

(
1

2
‖dten‖2

0τ + ν‖ēn‖2
1

)
≤ κτ3(6.24)

for all 1 ≤ m ≤ N .
Proof. Multiplying (6.21) with α = 0 by σ(tn) and using (6.11) gives

σ(tn)
(
‖en‖2

0 +
ν

2
‖en‖2

1τ
)

−σ(tn−1)
(
‖en−1‖2

0 +
ν

2
‖en−1‖2

1τ
)

+
1

2
σ(tn)‖dten‖2

0τ
2 + νσ(tn)‖ēn‖2

1τ

≤
(
‖en−1‖2

0 +
ν

2
‖en−1‖2

1τ
)
τ

+ 18ν−1c20γ
2
0σ(tn)(‖Ahuh(tn−1)‖2

0 + ‖Ahu
n−1
h ‖2

0)
(
‖en−1‖2

0 +
ν

2
‖en−1‖2

1τ
)
τ

+ 2ν−1c20γ
2
0σ(tn)(‖Ahuh(tn−2)‖2

0 + ‖Ahu
n−2
h ‖2

0)
(
‖en−2‖2

0 +
ν

2
‖en−2‖2

1τ
)
τ

+ 8ν−1σ(tn)‖A
−1
2

h PhEn‖2
0τ + 8σ(tn)‖PhEn‖2

0τ
2(6.25)

for all 2 ≤ n ≤ N . Summing (6.25) from 2 to m and using (6.11), Lemmas 4.3, 6.1,
and 6.2 and Theorems 3.2 and 4.2, we obtain

σ(tm)
(
‖em‖2

0 +
ν

2
‖em‖2

1τ
)

+ τ

m∑
n=2

σ(tn)

(
1

2
‖dten‖2

0τ + ν‖ēn‖2
1

)

≤ τ

m∑
n=2

(
‖en−1‖2

0 +
ν

2
‖en−1‖2

1τ
)

+ σ(t1)
(
‖e1‖2

0 +
ν

2
‖e1‖2

1τ
)

+ τ

m−1∑
n=1

dnσ(tn)
(
‖en‖2

0 +
ν

2
‖en‖2

1τ
)

+ 8τ

m∑
n=2

σ(tn)(ν−1‖A−1/2
h PhEn‖2

0 + ‖PhEn‖2
0τ)

+ 18ν−1c20γ
2
0τ

2
m∑

n=2

(‖Ahuh(tn−1)‖2
0 + ‖Ahu

n−1
h ‖2

0)
(
‖en−1‖2

0 +
ν

2
‖en−1‖2

1τ
)
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+ 4ν−1c20γ
2
0τ

2
m∑

n=2

(‖Ahuh(tn−2)‖2
0 + ‖Ahu

n−2
h ‖2

0)
(
‖en−2‖2

0 +
ν

2
‖en−2‖2

1τ
)

≤ τ

m∑
n=2

(
‖en−1‖2

0 +
ν

2
‖en−1‖2

1τ
)

+ κτ3

+ τ

m−1∑
n=1

dnσ(tn)
(
‖en‖2

0 +
ν

2
‖en‖2

1τ
)
.(6.26)

Because en−1 = ēn − 1
2dte

n, we deduce from Lemma 6.2 that

τ
m∑

n=2

‖en−1‖2
0 ≤ 2τ

m∑
n=2

‖ēn‖2
0 + τ

m∑
n=2

‖dten‖2
0τ

2 ≤ κτ3(6.27)

and

τ
m∑

n=2

‖en−1‖2
1 ≤ 2τ

m∑
n=2

‖ēn‖2
1 + τ

m∑
n=2

‖dten‖2
1τ

2 ≤ κτ2.(6.28)

Combining (6.27)–(6.28) with (6.26) gives

σ(tm)
(
‖em‖2

0 +
ν

2
‖em‖2

1τ
)

+ τ

m∑
n=2

σ(tn)

(
1

2
‖dten‖2

0τ + ν‖ēn‖2
1

)

≤ κτ3 + τ

m−1∑
n=1

dnσ(tn)
(
‖en‖2

0 +
ν

2
‖en‖2

1τ
)
.(6.29)

Applying Lemma 3.4 to (6.29) yields (6.24).
Lemma 6.4. Under the assumptions of Theorem 4.2, we have

τ

m∑
n=1

‖ēn‖2
−1 ≤ κτ4(6.30)

for all 1 ≤ m ≤ N .
Proof. Let {Φn

h} be the solution of (5.1), corresponding to the initial value Φm
h = 0

and the right-hand side {ξn} = {A−1
h en}. Then, by construction, there holds

‖ēn‖2
−1τ = (ēn, dtΦ

n
h)τ − a(ēn, Φ̄n

h)τ − b

(
3

2
un−1
h − 1

2
un−2
h , ēn, Φ̄n

h

)
τ

− b

(
ēn,

3

2
un−1
h − 1

2
un−2
h , Φ̄n

h

)
τ

= dt(e
n,Φn

h)τ − (dte
n, Φ̄n

h)τ − a(ēn, Φ̄n
h)τ − b

(
3

2
un−1
h − 1

2
un−2
h , ēn, Φ̄n

h

)
τ

− b

(
ēn,

3

2
un−1
h − 1

2
un−2
h , Φ̄n

h

)
τ

= (en,Φn) − (en−1,Φn−1
h ) − (En, Φ̄

n
h)τ +

3

2
b(en−1, en−1, Φ̄n)τ

− 1

2
b(en−2, en−2, Φ̄n)τ − 3

2
b

(
1

2
dte

nτ, un−1
h , Φ̄n

h

)
τ − 3

2
b

(
un−1
h ,

1

2
dte

nτ, Φ̄n
h

)
τ

+
1

2
b

(
1

2
dte

nτ + dte
n−1τ, un−2

h , Φ̄n
h

)
τ +

1

2
b

(
un−2
h ,

1

2
dte

nτ + dte
n−1τ, Φ̄n

h

)
τ.(6.31)
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Taking vh = uhtt in (5.1) and using (3.10) and Lemma 3.1, we see that

|a(uhtt, Φ̄
n
h)| ≤ |(uhtt, dtΦ

n
h − ξ̄n)| +

∣∣∣∣b(3

2
un−1
h − 1

2
un−2
h , uhtt, Φ̄

n
h

)∣∣∣∣
+

∣∣∣∣b(uhtt,
3

2
un−1
h − 1

2
un−2
h , Φ̄n

h

)∣∣∣∣
≤ ‖uhtt‖−1

(
‖dtΦn

h − ξ̄n‖1 + c0γ0

∥∥∥∥Ah

(
3

2
un−1
h − 1

2
un−2
h

)∥∥∥∥
0

‖Φ̄n
h‖2

)
.(6.32)

Using (6.4), (6.32), (3.10), and Lemma 3.1, we deduce that

|(En, Φ̄
n
h)|τ ≤ τ2γ2

0

∫ tn

tn−1

‖ftt‖0dt‖AhΦ̄n
h‖0

+ c0γ0τ
2

∫ tn

tn−2

(‖uhtt‖−1‖Ahuh‖0 + 2‖uht‖1‖uht‖0)dt‖AhΦ̄n
h‖0

+ τ2

∫ tn

tn−1

‖uhtt‖−1dt

(
‖dtΦn

h − ξ̄n‖1 + c0γ0

∥∥∥∥Ah

(
3

2
un−1
h − 1

2
un−2
h

)∥∥∥∥
0

‖AhΦ̄n
h‖0

)
.

(6.33)

Summing (6.33) for 2 ≤ n ≤ m and using Theorem 3.2, we have

τ

m∑
n=2

|(En, Φ̄
n
h)| ≤ τ2κ

(∫ tm

t0

(‖ftt‖2
0 + ‖uhtt‖2

−1 + ‖uht‖2
1)dt

)1/2

×
(
τ

m∑
n=2

(‖AhΦ̄n
h‖2 + ‖dtΦn

h − ξ̄n‖2
1)

)1/2

.(6.34)

Moreover, by using (3.10) and Lemma 3.1, we have

3

2
|b(en−1, en−1, Φ̄n)|τ +

1

2
|b(en−2, en−2, Φ̄n

h)|τ

≤ 3

2
c0γ0(‖en−1‖1‖en−1‖0

+ ‖en−2‖1‖en−2‖0)‖AhΦ̄n
h‖0τ,

3

2

∣∣∣∣b(1

2
dte

nτ, un−1
h , Φ̄n

h

)∣∣∣∣ τ +
3

2

∣∣∣∣b(un−1
h ,

1

2
dte

nτ, Φ̄n
h

)∣∣∣∣ τ
≤ c0γ0‖Ahu

n−1
h ‖0‖dten‖−1‖AhΦ̄n

h‖0τ
2,

1

2

∣∣∣∣b(1

2
dte

nτ + dte
n−1τ, un−2

h , Φ̄n
h

)∣∣∣∣ τ +
1

2

∣∣∣∣b(un−2
h ,

1

2
dte

nτ + dte
n−1τ, Φ̄n

h

)∣∣∣∣ τ
≤ c0γ0‖Ahu

n−2
h ‖0(‖dten‖−1

+ ‖dten−1‖−1)‖AhΦ̄n
h‖0τ

2.
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Summing (6.31) from 2 to m and using the above estimates, (6.34), and Theorem
4.2, we arrive at

τ

m∑
n=2

‖ēn‖2
−1 ≤ −(e1,Φ1

h) + τ

m∑
n=2

|(En, Φ̄
n
h)|

+
3

2
c0γ0τ

m∑
n=2

(‖en−1‖1‖en−1‖0 + ‖en−2‖1‖en−2‖0)‖AhΦ̄n
h‖0

+ c0γ0τ

m∑
n=2

(‖Ahu
n−1
h ‖0 + ‖Ahu

n−2
h ‖0)‖dten‖−1‖AhΦ̄n

h‖0τ
2

+ c0γ0τ

m∑
n=2

‖Ahu
n−2
h ‖0‖dten−1‖−1‖AhΦ̄n

h‖0τ
2

≤ ‖e1‖−2‖AhΦ1
h‖0 + κτ2

(
τ

m∑
n=2

(‖AhΦ̄n
h‖2 + ‖dtΦn

h − ξ̄n‖2
1)

)1/2

+ κ

(
τ

m∑
n=2

‖en−1‖2
1‖en−1‖2

0 + ‖en−2‖2
1‖en−2‖2

0

)1/2 (
τ

m∑
n=2

‖AhΦ̄n
h‖2

0

)1/2

+ κ

(
τ

m∑
n=1

‖dten‖2
−1τ

2

)1/2 (
τ

m∑
n=2

‖AhΦ̄n
h‖2

0

)1/2

.(6.35)

Using Lemmas 5.2 and 5.3 in (6.35) yields

τ

m∑
n=2

‖ēn‖2
−1

≤
(
‖e1‖2

−2 + κτ4 + κτ

m∑
n=2

(‖en−1‖2
1‖en−1‖2

0 + ‖en−2‖2
1‖en−2‖2

0) + κτ

m∑
n=1

‖dten‖2
−1τ

2

)1/2

×
(
‖AhΦ1

h‖2
0 + τ

m∑
n=2

(‖AhΦ̄n
h‖2

0 + ‖dtΦn
h − ξ̄n‖2

1)

)1/2

≤ κ

(
‖e1‖2

−2 + τ4 + τ

m∑
n=2

(‖en−1‖2
1‖en−1‖2

0 + ‖en−2‖2
1‖en−2‖2

0) + τ

m∑
n=1

‖dten‖2
−1τ

2

)1/2

×
(
τ

m∑
n=2

‖ξ̄n‖2
1

)1/2

,

which leads to

τ

m∑
n=2

‖ēn‖2
−1 ≤ κ(‖e1‖2

−2 + τ4)

+ κτ

m∑
n=2

(‖en−1‖2
1‖en−1‖2

0 + ‖en−2‖2
1‖en−2‖2

0) + κτ

m∑
n=1

‖dten‖2
−1τ

2(6.36)

for all 2 ≤ m ≤ N . Using (6.28) and Lemmas 4.3, 6.2, and 6.3 in (6.36), we obtain
(6.30).
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Next we prove (6.19) for the case α = −2.
Lemma 6.5. Under the assumptions of Theorem 4.2, we have

σ2(tm)‖em‖2
0 ≤ κτ4(6.37)

for all 1 ≤ m ≤ N .
Proof. Let {Φn

h} be the solution of (5.1), corresponding to the initial value Φm
h =

em and the right-hand side {ξn} = {0}. Then, by construction, there holds

dt(e
n,Φn

h) = (dte
n, Φ̄n) + (ēn, dtΦ

n
h)

= (En, Φ̄
n
h) − 3

2
b(en−1, en−1, Φ̄n

h) +
1

2
b(en−2, en−2, Φ̄n

h)

+
3

2
b

(
un−1
h ,

1

2
dte

nτ, Φ̄n
h

)
− 1

2
b

(
un−2
h , dte

nτ +
1

2
dte

n−1τ, Φ̄n
h

)
τ

+
3

2
b

(
1

2
dte

nτ, un−1
h , Φ̄n

h

)
− 1

2
b

(
dte

nτ +
1

2
dte

n−1τ, un−2
h , Φ̄n

h

)
.(6.38)

Using (3.10) and Lemma 3.1, we see that

|(En, Φ̄
n
h)| ≤ ‖A−1/2

h PhEn‖0‖Φ̄n
h‖1,

3

2
|b(en−1, en−1, Φ̄n

h)| + 1

2
|b(en−2, en−2, Φ̄n

h)|

≤ c0(‖en−1‖1‖en−1‖0 + ‖en−2‖1‖en−2‖0)‖Φ̄n‖1 + c0(‖en−1‖2
1 + ‖en−2‖2

1)‖Φ̄n‖0,

3

2

∣∣∣∣b(un−1
h ,

1

2
dte

nτ, Φ̄n
h

)∣∣∣∣ +
3

2

∣∣∣∣b(1

2
dte

nτ, un−1
h , Φ̄n

h

)∣∣∣∣
≤ c0γ0‖Ahu

n−1
h ‖0‖dten‖0‖Φ̄n

h‖1τ,

1

2

∣∣∣∣b(un−2
h , dte

nτ +
1

2
dte

n−1τ, Φ̄n
h

)∣∣∣∣ τ +
1

2

∣∣∣∣b(dtenτ +
1

2
dte

n−1τ, un−2
h , Φ̄n

h

)∣∣∣∣
≤ c0γ0‖Ahu

n−2
h ‖0‖dten +

1

2
dte

n−1‖0‖Φ̄n
h‖1τ.

Multiplying (6.38) by tnτ , summing for 2 ≤ n ≤ m, and using the above inequalities,
we deduce that

tm(em,Φm
h ) = τ(e1,Φ1

h) + τ

m∑
n=2

(en−1,Φn−1
h )

+

(
τ

m∑
n=2

t2n‖A
−1/2
h PhEn‖2

0

)1/2 (
τ

m∑
n=2

‖Φ̄n
h‖2

1

)1/2

+ 2c0

(
τ

m∑
n=2

t2n(‖en−1‖2
1‖en−1‖2

0 + ‖en−2‖2
1‖en−2‖2

0)

)1/2(
τ

m∑
n=2

‖Φ̄n
h‖2

1

)1/2

+ 2c0τ

m∑
n=2

t2n(‖en−1‖2
1 + ‖en−2‖2

1) sup
1≤n≤m

‖Φn
h‖0

+ 2c0

(
τ

m∑
n=2

t2n‖Ahu
n−1
h ‖2

0‖dten‖2
0τ

2

)1/2 (
τ

m∑
n=2

‖Φ̄n
h‖2

1

)1/2

+ 2c0

(
τ

m∑
n=2

t2n‖Ahu
n−2
h ‖2

0

∥∥∥∥dten +
1

2
dte

n−1

∥∥∥∥2

0

τ2

)1/2 (
τ

m∑
n=2

‖Φ̄n
h‖2

1

)1/2

.(6.39)
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Using Theorem 4.2, Lemmas 6.1, 6.2, and 6.3, (5.4) and (6.28) in (6.39) and noting

tn ≤ σ(tn)T, t2n ≤ 4t2n−1 ≤ 4σ2(tn−1)T
2,

we arrive at

tm(em,Φm
h ) = τ(e1,Φ1

h) + τ

m∑
n=2

(en−1,Φn−1
h ) + κτ2‖Φm

h ‖2
0.(6.40)

Because

(en−1,Φn−1
h ) + (en,Φn

h) = 2(ēn, Φ̄n
h) +

1

4
(dte

n, dtΦ
n
h)τ2,

there holds

τ
m∑

n=2

(en−1,Φn−1
h ) =

τ

2

m∑
n=2

[(en−1,Φn−1
h ) + (en,Φn

h)] +
τ

2
[(e1,Φ1

h) − (em,Φm
h )]

= τ

m∑
n=2

[
(ēn, Φ̄n

h) +
1

4
(dte

n, dtΦ
n
h)

]
+

τ

2
[(e1,Φ1

h) − (em,Φm
h )].(6.41)

Furthermore, by using Lemmas 5.2, 6.2, and 6.4, we have

τ

m∑
n=2

[
(ēn, Φ̄n

h) +
1

4
(dte

n, dtΦ
n
h)

]
≤

(
τ

m∑
n=2

‖ēn‖2
−1

)1/2 (
τ

m∑
n=2

‖Φ̄n
h‖2

1

)1/2

+ τ2

(
τ

m∑
n=2

‖dten‖2
1

)1/2 (
τ

m∑
n=2

‖dtΦn
h‖2

−1

)1/2

≤ κτ2‖Φm
h ‖0.(6.42)

Combining (6.41)–(6.42) with (6.40) and using Lemmas 4.3 and 5.2 yields

τ

2
(em,Φm

h ) + tm(em,Φm
h ) ≤ 3

2
τ‖e1‖0‖Φ1

h‖0 + κτ2‖Φm
h ‖0 ≤ κτ2‖Φm

h ‖0.(6.43)

The assertion follows Φm
h = em and σ(tm) ≤ tm.

It remains to prove the error estimate for the approximate pressure pmh .
By (3.4), (3.10), (6.3), and Lemma 3.1,

‖ηm‖0 ≤ β−1

(
γ0‖dtem‖0 + ν‖ēm‖1 +

3

2
c0γ0‖em−1‖0(‖Ahuh(tm−1)‖0 + ‖Ahu

m−1
h ‖0)

)
+

1

2
β−1c0γ0‖em−2‖0(‖Ahuh(tm−2)‖0 + ‖Ahu

m−2
h ‖0) + β−1γ0‖RhEm‖0,

which with Theorems 3.2 and 4.2 yields

σ(tm)‖ηm‖0 ≤ κσ(tm)(‖dtem‖0 + ‖ēm‖1 + ‖em−1‖0 + ‖em−2
h ‖0 + ‖RhEm‖0).(6.44)

Using (6.11) and Lemmas 6.1, 6.3, and 6.5 in (6.44) yields

σ(tm)‖ηm‖0 ≤ κτ, 2 ≤ m ≤ N.(6.45)



868 YINNIAN HE AND WEIWEI SUN

Finally, by using Theorem 3.3 and the integral by part, we have

σ(tm)‖ph(tm) − pmh ‖0 ≤ σ(tm)‖ηm‖0 + 2σ(tm−1)

∥∥∥∥∥ph(tm) − 1

τ

∫ tm

tm−1

ph(t)dt

∥∥∥∥∥
0

≤ σ(tm)‖ηm‖0 + 2

∫ tm

tm−1

σ(t)‖pht(t)‖0dt

≤ σ(tm)‖ηm‖0 + κτ, 1 ≤ m ≤ N.

Combining this inequality with (6.45) and using Lemma 4.3 yields

σ(tm)‖ph(tm) − pmh ‖0 ≤ κτ, 1 ≤ m ≤ N.(6.46)

Theorem 6.6. Under the assumptions of Theorem 4.2, the following error esti-
mates hold:

σ(tm)‖uh(tm) − um
h ‖0 + σ1/2(tm)τ‖uh(tm) − um

h ‖1 ≤ κτ2, tm ∈ (0, T ],(6.47)

σ(tm)‖ph(tm) − pmh ‖0 ≤ κτ, tm ∈ (0, T ].(6.48)

This proof is completed by combining (6.45) with Lemmas 6.3 and 6.5.
Remark 6.1. Combining Theorem 6.6 with (3.11) yields (1.10)–(1.12).
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Abstract. We investigate the strong approximation of stochastic parabolic partial differential
equations with additive noise. We introduce postprocessing in the context of a standard Galerkin
approximation, although other spatial discretizations are possible. In time, we follow [G. J. Lord and
J. Rougemont, IMA J. Numer. Anal., 24 (2004), pp. 587–604] and use an exponential integrator. We
prove strong error estimates and discuss the best number of postprocessing terms to take. Numeri-
cally, we evaluate the efficiency of the methods and observe rates of convergence. Some experiments
with the implicit Euler–Maruyama method are described.
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1. Introduction. We consider the numerical approximation of the stochastic
evolution equation

(1.1) du =
[
Δu + F (u)

]
dt + dW (t) given u(0) = u0,

with periodic boundary conditions on [0, 2π), where W (t) is a Q Wiener process [3]
on L2(0, 2π) and F is nonlinear (precise assumptions are given in section 3.1).

Suppose that φn are eigenvectors of the Laplacian Δ with periodic boundary
conditions so that Δφn = −n2φn, n ∈ Z. We assume that Q has eigenfunctions φn

with corresponding eigenvalues λn ≥ 0, in which case

(1.2) W (t) =
∑
n∈Z

λ1/2
n φnβn(t),

for independent Brownian motions βn. We do not consider the existence of solutions
to (1.1) here; instead we call on [3]. We will investigate the effect on numerics of the
spatial regularity of the noise determined from the decay of λn.

There is a growing literature on numerical methods for stochastic PDEs, and
the majority of these analyze convergence in the strong or root mean squared sense.
Finite difference approximations have been examined by a number of authors (see,
for example, [26, 11, 12, 4]) and finite element methods have also been considered,
e.g., [29]. Galerkin approximations and strong Taylor schemes were considered in [10]
with a scalar Wiener process. Strong convergence of the implicit Euler–Maruyama
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method was investigated in [19]. A more general analysis is found in [14], which con-
siders different types of spatial discretizations (Galerkin as well as collocation, finite
differences, finite elements, and wavelet-based schemes) for similar forms of noise con-
sidered here. Mueller-Gronbach and Ritter [25] analyze convergence and complexity
through the number of random samples of the Wiener process. Spatially smooth noise
is considered in [21] and [27], and these papers also consider Fourier-based spatial dis-
cretizations. In [27], a Taylor-based discretization is taken, and efficient methods for
approximating the Wiener process are considered. In [21] strong convergence of an
exponential integrator (see also [24]) is examined, and we consider this scheme further
in this paper; see section 3.

The purpose of this paper is to study Galerkin postprocessing methods for (1.1),
prove their convergence in the strong sense, and evaluate their efficiency. We have
restricted attention to reaction diffusion equations with homogeneous diffusion and
additive noise, and plan to return to the general case in further work.

Section 2 is an introduction to postprocessing methods for deterministic PDEs.
Section 3 describes our Galerkin postprocessing scheme, and section 3.1 a theorem
on the convergence of the method. Section 4 investigates the numerical behavior of
the method for the stochastic Allen–Cahn equation. We evaluate the efficiency of the
methods, compare the rates of convergence to those predicted by the theorem, and il-
lustrate numerically that postprocessing is efficient for other time stepping algorithms
by experimenting with implicit Euler–Maruyama methods. We summarize our results
and conclude in section 5. The proof of the theorem is given in section 6, with the
proof of two lemmas left to the appendix.

2. A review of deterministic postprocessing. Postprocessing methods origi-
nate from analytical results on inertial manifolds for PDEs; see, for example, [6], where
it can be shown that the dynamics of infinite dimensional PDEs converge to a finite
dimensional system in large time. Typically, a graph Φ is obtained that “enslaves”
the high Fourier modes (fine scale dynamics) to a finite number of low Fourier modes
(large scale dynamics). For example, if P denotes the projection onto the first N
Fourier modes and u = p + q = Pu + (I − P )u, we can write the deterministic PDE

ut = Δu + F (u) as pt = Δp + PF (p + q), qt = Δq + (I − P )F (p + q).

The dynamics on the inertial manifold can be rewritten as

pt = Δp + PF (p + q), q(t) = Φ(p).

Numerically, the nonlinear Galerkin methods, also called approximate inertial man-
ifolds (AIM) methods, make an approximation to the graph. In these methods, the
evolution on a coarse mesh (i.e., low Fourier modes) uses information from the fine
scale (i.e., high modes) at each time step, where a simpler form of equation is solved.

To deal with deterministic PDEs with nonsmooth initial data, long transients,
or highly oscillatory time dependent forcing, Yinnian and Mattheij [15] introduced a
dynamic form of postprocessing, where the following system is approximated:

pt = Δp + PF (p), qt = Δq + (1 − P )F (p).

It extends the approach of [7], where a fine mesh solution is found at the end of the
computations. For the dynamic postprocessing approach, both the coarse and fine
mesh approximations are evolved in time and, unlike a traditional AIM approach,
there is no communication from fine to coarse mesh until the end of the computation.
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Indeed, this communication was one of the main reasons that the AIM approach was
computationally less efficient than a standard Galerkin method; see [7, 8].

He and Mattheij [15] discretized the PDEs in space by a Galerkin method and in
time by an implicit Euler method, examined stability and convergence of the scheme,
and propose this as a computationally more efficient method. In [22] the postprocess-
ing method is examined from a truncation analysis point of view. From a perturbation
expansion for the high modes and by keeping terms to different orders, they obtain
systems that correspond to the postprocessed Galerkin method and this yields con-
vergence theory. Furthermore, from numerics based on Burgers’ equation with highly
oscillatory forcing, they show that postprocessing methods are more efficient and have
an improved rate of convergence. These results suggest that postprocessing may be
advantageous for a stochastically forced PDE.

Although inertial manifolds have been shown to exist for stochastic PDEs [2], we
do not attempt to approximate this directly here. Instead we base our method on the
postprocessing approaches of [15] and [22].

3. Numerical scheme. We will consider a Fourier-based Galerkin discretiza-
tion, although other spatial discretizations are possible. The time discretization may
be thought of as a stochastic version of an exponential integrator proposed by [20]; for
a review of these methods in the deterministic case, see [23], and for an application
using a finite difference spatial discretization, see [17]. In the stochastic context such
schemes are considered in [21, 24] and related schemes by [28, 18] which are of the
exponential time differencing type.

We describe our numerical scheme for (1.1). Represent u(t) as a Fourier series
u(t) =

∑
n un(t)φn and obtain the infinite system of coupled equations

(3.1) un(t) = e−tn2

un(0) +

∫ t

0

e−(t−s)n2

Fn

(
u(s)

)
ds +

∫ t

0

e−(t−s)n2

λ1/2
n dβn(s),

where Fn is the nth component of F , so that F (u) =
∑

n Fn(u)φn. Let Δt > 0 denote
the time step and N the size of the Galerkin truncation. Consider the discretization
of (1.1) at times tk = kΔt given by

(3.2) uN
n

(
tk+1

)
= e−Δtn2

(
uN
n (tk) + ΔtFn

(
uN (tk)

)
+ λ1/2

n ΔBk,n

)
,

where |n| ≤ N , the noise terms ΔBk,n = βn(tk+1)− βn(tk), and initial data uN
n (0) =

un(0). The relationship between (3.2) and (3.1) is quite obvious when we iterate (3.2):
for t = kΔt,

uN
n (t) =e−tn2

uN
n (0) +

�t/Δt�−1∑
k=0

e−(t−tk)n2
(
ΔtFn(uN (tk)) + λ1/2

n ΔBk,n

)
(3.3)

(no terms in the sum for 0 ≤ t < Δt). This approximation has been studied in detail
in [21] for Gevrey (exponentially smooth) noise.

We study a generalization of this method, which incorporates postprocessing
terms and flexibility in the approximation of W (t). The generalized method has
the following form: for |n| ≤ N ,

(3.4) uN
n (tk+1) = e−n2Δt

(
uN
n (tk) + ΔtFn(uN (tk)) + 1{|n|≤Nw}λ

1/2
n ΔBk,n

)
,
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with initial data uN
n (0) = un(0) = u0,n, where 1X equals 1 if X holds, 0 otherwise.

The constant Nw describes the number of modes used to approximate W (t); this is
the first generalization and we will show the advantages in taking Nw < N in certain
applications. As in [21], the analysis depends on an interpolant of uN

n (tk) in time: let

uN
n (t) = e−n2tuN

n (0) +

�t/Δt�−1∑
k=0

e−(t−tk)n2
(
ΔtFn(uN (tk)) + λ1/2

n 1{|n|≤Nw}ΔBk,n

)
,

(3.5)

and note that the two definitions of uN
n (tk) agree.

Now we introduce postprocessing. Given knowledge of uN , the following are
efficiently computed:

(3.6) qNn (tk+1) = e−n2Δt
(
qNn (tk) + Δt1{|n|≤Np}Fn(uN (tk)) + λ1/2

n 1{|n|≤Nw}ΔBk,n

)
,

with initial data qNn (0) = un(0) for N < |n| ≤ Np, where Np describes the number of
nonlinear terms. Again in the analysis in section 6, we use an interpolant

qNn (t) = e−n2tqNn (0)

+

�t/Δt�−1∑
k=0

e−(t−tk)n2
(
Δt1{|n|≤Np}Fn(uN (tk)) + λ1/2

n 1{|n|≤Nw}ΔBk,n

)
.

(3.7)

We seek to estimate the error in approximating u(t) by uN (t) + qN (t), where uN =∑
|n|≤N φnu

N
n and qN =

∑
N<|n|≤max{Np,Nw} φnq

N
n , and, in particular, to understand

the best choice of Nw and Np.

3.1. Statement of main theorem. Let ‖ · ‖ denote the standard L2(0, 2π)
norm. Denote the Hm(0, 2π) Sobolev norm for u =

∑
n unφn by

‖u‖m = ‖(I − Δ)m/2u‖ =

(∑
n∈Z

(1 + n2)mu2
n

)1/2

.

We make the following assumption of f and Q.
Assumption 3.1. For u1, u2, u ∈ L2(0, 2π), for some constant K0 and some

m, r ≥ 0,

‖F (u1) − F (u2)‖r ≤ K0‖u1 − u2‖r,(3.8)

‖F (u)‖r ≤ K0(1 + ‖u‖r)(3.9)

and

‖F (u1) − F (u2)‖m ≤ K0‖u1 − u2‖m,(3.10)

‖F (u)‖m ≤ K0(1 + ‖u‖m).(3.11)

There exists a constant K1 such that for u ∈ L2(0, 2π) and δ, δ1, δ2 ∈ Hm(0, 2π),

‖dF (u)δ‖m ≤ K1‖δ‖m,(3.12)

‖d2F (u)(δ1, δ2)‖m ≤ K1‖δ1‖m‖δ2‖m.(3.13)
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The covariance Q of W (t) satisfies Tr(I − Δ)γQ < ∞; i.e.,

(3.14)
∑
n∈Z

(1 + n2)γλn < ∞.

We have introduced three regularity parameters: γ describes regularity of the
noise, r gives the regularity of the solution u(t), m indicates the norm for our error
analysis.

Theorem 3.2. Let u0 ∈ H2(0, 2π), m < min{r, 2}, 0 ≤ r ≤ γ + 1, and γ > −1.
For some ν > 0, consider Δt → 0 and N → ∞ with ΔtN2 ≤ ν. For each T > 0,
there exists K > 0 such that(

E

[
sup

0<tk≤T
‖u(tk) − uN (tk) − qN (tk)‖2

m

])1/2

≤ K
(
Δt + N−2 + 1N≤Nw

N−1−γ + N−2−r+m
p + ΔtN1−γ+m

w + N−1−γ+m
w

)
,

where uN =
∑

|n|≤N φnu
N
n and qN =

∑
N<|n|≤max{Np,Nw} φnq

N
n with components

defined by (3.5)–(3.7).
Proof. This is given in section 6.
Note that we take limits in Δt,N with ΔtN2 ≤ ν but employ no restriction on

ν. If an explicit Euler time integrator was used, we would require ν ≤ 1
2 [11], and the

absence of this restriction is a clear advantage to the exponential time integrator.
The theorem is stated under the global Lipschitz assumption on the nonlinearity.

This is the simplest setting in which to work and allows us to focus attention on
postprocessing. The global Lipschitz assumption excludes many important cases,
including the Allen–Cahn equation we discuss in section 4. The first approach to
this problem is to change the nonlinearity without affecting the underlying model:
for example, in the Allen–Cahn equation, the variable u describes the phase of some
material and is only physically meaningful inside a bounded set. If we smooth out the
nonlinear term at infinity, the essential features of the model remain. In section 4, we
discover that our results are demonstrated without such a modification. The second
approach is to develop the mathematics to include ever wider classes of nonlinearities.
Approaches of this type include [16] for finite dimensional SDEs, which uses moment
conditions to control the behavior of u at infinity and gain rates of convergence,
and [11], which shows convergence in probability, without rates, for very general
classes of f . The inclusion of these approaches in the present paper would obscure
the main idea, which is postprocessing.

To understand postprocessing, we state two corollaries (using that ΔtN2 = ν).
The first describes convergence for the method (3.2) for nonsmooth problems (ex-
tending work done in [21]). The second gives the values Nw, Np that yield the best
convergence rates.

Corollary 3.3 (no postprocessing). Under the assumptions of Theorem 3.2
with N = Nw = Np,(

E

[
sup

0<tk≤T
‖u(tk) − uN (tk) − qN (tk)‖2

m

])1/2

≤ K
(
N−2 + N−2−r+m + N−1−γ+m

)
.

For example, with γ = −1/2 (space-time white noise), the L2(0, 2π) error (case
m = 0) converges like N−1/2. This is consistent with related results in the literature
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(e.g., [13, 19]). For Gevrey noise and a smooth nonlinearity, the parameters r and γ
may be chosen arbitrarily large, and we recover the result of [21]: for any z > 0, there
exists a constant K such that

(3.15) E

[
sup

0<tk≤T
‖u(tk) − uN (tk)‖1

]
≤ K(N−z + Δt).

This is faster convergence than any polynomial, although not the exponential rate
found [5] for the deterministic case.

Now we turn to postprocessing.
Corollary 3.4 (postprocessing). Let the assumptions of Theorem 3.2 hold.
1. If γ ≥ 1 and m < γ − 1, then(

E

[
sup

0<tk≤T
‖u(tk) − uN (tk) − qN (tk)‖2

m

])1/2

≤ KN−2

with Np = N and Nw = �N2/(1+γ−m)	.
2. If γ ≥ 1 and m ≥ γ − 1, then(

E

[
sup

0<tk≤T
‖u(tk) − uN (tk) − qN (tk)‖2

m

])1/2

≤ KN−1−γ+m

with Np = N and Nw = N .
3. If −1 < γ < 1, then(

E

[
sup

0<tk≤T
‖u(tk) − uN (tk) − qN (tk)‖2

m

])1/2

≤ KN−1−γ

with Np = N and Nw = �N (1+γ)/(1+γ−m)	.
These choices of Np and Nw provide the best convergence rate (up to scalar multipli-
cation).

Proof. We wish to choose Np and Nw in terms of N to achieve the best convergence
rate with N by balancing terms in the estimate provided in Theorem 3.2. We ignore
multiplying constants which do not affect the rate.

1. We can achieve an N−2 convergence rate by balancing N−2−r+m
p , ΔtN1−γ−m

w ,
and N−1−γ+m

w with N−2. The condition N−2−r+m
p = N−2 yields Np =

N2/(2+r−m) and as N2/(2+r−m) ≤ N for m ≤ r, we choose Np = N . Under
assumption m < γ − 1, ΔtN1−γ−m

w < N−2, and so the value Nw is found by
solving N−2 = N−1−γ+m

w .
2. In the case m > γ − 1, the accuracy is limited by the term ΔtN1−γ+m

w .
The condition ΔtN1−γ+m

w = N−1−γ+m
w implies Nw = N . The condition

N−2−r+m
p = N−1−γ+m

w implies Np = N (2+r−m)/(1+γ−m). Because we have

N (2+r−m)/(1+γ−m) > N for r > γ − 1, the choice Np = N terms is optimal.
3. We achieve an N−1−γ rate by choosing ΔtN1−γ−m

w and N−1−γ+m
w less than

N−1−γ . This is achieved by taking

Nw ≥ max{N (1−γ)/(1−γ+m), N (1+γ)/(1+γ−m)}.

As m ≥ 0, we take Nw = N (1+γ)/(1+γ−m). Balancing the terms N−2−r+m
p

and N−1−γ provides Np = N (1+γ)/(2+r−m). As m < r and γ < 1, we have
N (1+γ)/(2+r−m) < N and choose Np = N .
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There are a number of issues to consider: the rate of convergence, the constant
for this rate, and the efficiency of the scheme. We can improve the rate of convergence
by choice of Nw and there are two cases to consider. For smooth noise γ ≥ 1 + m,
the optimal value is Nw < N , which saves computing random numbers for many of
the components uN

n . This has been used with good effect in [27] for a Gevrey smooth
noise. Note that Nw → 1 as γ → ∞. In practice, it is important for Nw → ∞ as we
ask for more accuracy and to take to enough modes to resolve the noise.

For nonsmooth noise (γ < 1), the optimal Nw > N , which implies that the
postprocessing corrections qNn are Gaussian processes

(3.16) qNn (tk+1) = e−n2Δt
(
qNn (tk) + λ1/2

n 1{|n|≤Nw}ΔBk,n

)
.

Thus, computing the postprocessing update is straightforward and cheap. To compare
solutions for a single realization of W (t), qNn must be found by time stepping. For weak
approximation, it will be more efficient to compute and sample from the Gaussian
distribution at the final time.

Our analysis predicts no improvement in the rate of convergence from postpro-
cessing the nonlinear term. This contrasts with results on postprocessing in the
deterministic case, where there is a gain in the rate of convergence [7, 8] (though this
gain is often outweighed by extra computational cost).

4. Numerics. Consider the one-dimensional Allen–Cahn equation with noise:

(4.1) du =
[
αuxx + u− u3

]
dt + dW (t), u(0) = u0,

with periodic boundary conditions on [0, 2π). For numerical calculations, we take the
diffusion coefficient α = 1/36. We always take noise white in time and vary the spatial
regularity γ; see (3.14).

To test the numerics, “true” solutions were computed by a standard Galerkin
approximation with N = 211 modes and a time step Δt = 5×10−6. To avoid aliasing
errors, the nonlinear term was computed with 2N terms (more than the optimal
number of terms suggested by the 2/3 rule [1]). For a discussion of the role of aliasing
in postprocessing (in the deterministic case), see [9].

Sample “true” solutions are plotted in Figure 4.1; this shows (left) the effect of
different spatial regularity in real space and (right) the corresponding log-log plot
in Fourier space. In real space, the solutions are smoother as the regularity of the
noise increases. This is confirmed by the decay of the Fourier modes, and we see
numerically that r = γ + 1, consistent with the results of Lemma A.1. Essentially, we
gain a derivative on the regularity of the solution over the noise.

Let N̂ denote a parameter for postprocessing (either 2N , 4N , 8N , or N2 in
experiments). The “true” solutions were used to compute errors for the following
approximations:
Galerkin: A standard Galerkin approximation, from solving (3.4) with Nw = N .
PP Full: A full postprocessed solution, from solving (3.4) and (3.6) with Nw = Np =

N̂ .
PP Noise: A postprocessed solution on noise only, from solving (3.4) and (3.16)

with Np = N , Nw = N̂ .
We examine the rate of convergence and efficiency by a mean cpu time. From a

practical point of view, plots of cpu time versus error can be interpreted in two ways:
either fix a desired accuracy and see how long it would take to achieve, or fix a time
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Fig. 4.1. Plot (left) of “true” solutions at time t = 1 for γ = −0.5, 0, 0.5, 1.0 for one realization
of the noise. Plot (right) is the corresponding log-log plot of the Fourier coefficients at time t = 1,
which shows that for γ > 0 the solutions are in a Sobolev space Hr with r = 0.5, 1, 1.5, 2.

and see how accurate a solution can be computed in that time. The expectation is
computed from 10 samples, and we examine the root mean square of the error at time
t = 1 in an appropriate norm. Normally we take the L2 norm (m = 0) or H1 norm
(m = 1).

On the plots below we draw a line with slope equal to the predicted rate of
convergence for Galerkin. We also report in the legend the observed slope from the
data for the rate of convergence.
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Fig. 4.2. Space-time white noise (a) with N̂ = 2N and (b) with N̂ = 8N . Plots show the L2

error (top) rate of convergence and (below) plot of efficiency (cpu time).

We examine the rates of convergence and computational efficiency for W (t) de-
fined by (1.2) with λn = (1 + n2)−γ |n|−1, n 
= 0, and λ0 = 0. We consider γ = −1/2
(space-time white noise), γ = 0 (L2 noise), and γ = 1/2, 1, 2 (Hγ noise). Our pre-
dictions for the numerics are based on Theorem 3.2 where, motivated by Lemma A.1,
we assume that r = γ + 1.
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4.1. Space-time white noise: γ = −1
2
. We observe in Figure 4.2 (top) the

theoretically predicted rates of convergence for Galerkin: the L2 error decays like
N−1/2. There is no convergence for H1 error.

Postprocessing is not expected to improve the rate of convergence in the L2 norm,
as Nw = N in Corollary 3.4. With N̂ = 2N , this is supported by computations;
see Figure 4.2 (a) (top) where the postprocessing has no beneficial effect and the
observed rate is the same as for Galerkin. However, there is an improvement in the
error constant, and for N > 32 modes postprocessing is more efficient; see Figure
4.2 (a) (bottom). Taking this further and using more modes for the postprocessing,
Figure 4.2 (b) shows PP Full and PP Noise with N̂ = 8N . The numerics suggest a
rate of convergence faster than the theoretical one. This is encouraging, although the
resolution is coarse and the theoretical rate may reappear for larger N .

We clearly see the computational advantage of PP Noise compared to PP Full
and Galerkin in Figure 4.2 (a) and (b) bottom. Postprocessing on the noise terms
only is far more efficient.
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Fig. 4.3. For L2 noise, we plot (a) the L2 error with N̂ = 2N and (b) the L2 error with

N̂ = 8N . Top shows error against N , and bottom error against average cpu time.

4.2. L2 noise. This is similar to white noise: for Galerkin, the L2 error decays
like N−1, which is observed in Figure 4.3 (a) and (b), and the H1 error does not
converge. In theory, postprocessing offers no improvement. In practice, there is an
improvement in the error constant and an improvement in efficiency for N̂ = 2N and
further improvement for N̂ = 8N . See Figure 4.3 (a) and (b).

4.3. H1/2 noise. Corollary 3.3 predicts convergence of the L2 error like N−3/2

and the H1 error like N−1/2 for Galerkin, and these rates are observed in Figure 4.4
(a) and (b). With postprocessing, the optimal rate for the L2 error is not changed,
and the H1 error is like N−3/2 if Nw = N3. It is impractical to calculate with N3

postprocessing terms for large N , and instead we look at N̂ = 2N, 4N, 8N . Figure
4.4 shows the effect of increasing N̂ for L2 error (left) and H1 error (right) with N̂
increasing top to bottom. For L2 and H1 errors, increasing N̂ improves the error and
seems to improve the rate of convergence—although this is not expected from the
analysis for L2 and we are a long way from taking the predicted N3 modes for H1.
We clearly see that PP Noise is the most efficient method.
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Fig. 4.4. For H1/2 noise, we examine the number of postprocessing terms N̂ . In (a) and (b)

we take N̂ = 2N , (c) and (d) N̂ = 4N , (e) and (f) N̂ = 8N with L2 error (left) and H1 error
(right). For each case, we show plots of error against N (above) and error against cpu time (below).
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Fig. 4.5. For H1 noise with N̂ = 8N , we plot (a) L2 error and (b) H1 error. The top shows
error against N , and the bottom shows error against cputime.
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Fig. 4.6. For H2 noise, we see (a) faster than the predicted rate of convergence for the L2

error with the optimal value N̂ = N2/3 and (b) the N−2 convergence rate is achieved for the H1

error, with N̂ = N2/3 rather than the theoretical rate of Nw = N .

4.4. H1 noise. Corollary 3.3 predicts that the Galerkin L2 error decays like
N−2 and H1 error decays like N−1, as observed in Figure 4.5. This is the limiting
case in Corollary 3.4, where we find N−2 convergence by taking Nw = N for L2 error
and Nw = N2 for H1 error; the solution is smooth in space, and accuracy is now
limited by time stepping. It is impractical to calculate with N2 postprocessing terms
for large N , and instead we look at N̂ = 8N ; Figure 4.5 shows (a) the L2 error and (b)
the H1 error. The postprocessing methods give smaller errors and are more efficient,
in particular PP Noise.

4.5. H2 noise. The optimal number of modes is Nw = N2/3 for the L2 error,
giving N−2 convergence. We see in Figure 4.6 (a) that the L2 error is converging faster
than the theoretical rate, close to N−3. Here we see a limitation of the analysis: the
theoretical convergence rate is limited to an N−2 rate because of time stepping and
regularity of the initial data. In this case, the error is dominated by the spatial
approximation of smooth problems, which may decrease like N−3, similar to rates
described in (3.15).

The H1 error in (b) shows N−2 convergence—although only N̂ = N2/3 modes
are used rather than the theoretical optimum value N . In this case, the accuracy
is determined by approximation of the deterministic terms, and we are unable to
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Fig. 4.7. Postprocessing for the implicit Euler–Maruyama method. In (a) white noise and L2

error, (b) L2 noise and L2 error, (c) H1 noise and L2 error, (d) again H1 noise but with H1 error.

increase the number of modes to see the theoretical optimal number for Nw bite.

4.6. Postprocessing implicit Euler–Maruyama. Postprocessing is effective
for other time stepping algorithms. In Figure 4.7, we plot results of experiments with
the implicit Euler–Maruyama scheme. We take N̂ = 8N and plot (a) the L2 error
for white noise, (b) the L2 error with L2 noise, (c) L2 error with H1 noise, and (d)
H1 error with H1 noise. Again PP Noise is the most efficient of the methods, and
there appears to be an improvement in the rate of convergence in addition to the
constant. These trends are identical to those found in Theorem 3.2 and shown in
Figures 4.2–4.6.

5. Conclusions. Theorem 3.2 shows that postprocessing can improve the rate
of convergence over a standard Galerkin method for stochastic PDEs. For nonsmooth
forcing, the best number of modes is greater than the standard Galerkin method. For
smooth noise, as observed in [27], the optimal number of modes is smaller. With the
smooth nonlinearity in (4.1), it is flexibility in the number of modes that approximate
W (t) that is key. This was confirmed in numerics. We found that postprocessing
on the noise improves on the convergence and efficiency of the standard Galerkin



882 GABRIEL J. LORD AND TONY SHARDLOW

approximation and that the contribution from the (smooth) nonlinearity in the post-
processing is negligible. This improvement in efficiency over the standard Galerkin
method holds true for all spatial regularities of the noise that we tested.

It is often computationally prohibitive to use the number of modes suggested by
the theorem. From a practical point of view, improvements were noted with Nw = 2N
even when the theoretical optimum number of nodes is Nw = N2. For nonsmooth
noise, we found numerically that taking Nw = 8N gave a good compromise between
the extra effort involved and accuracy. Indeed it seems we get a rate of convergence
not predicted by the theory.

For smooth noise, our numerics suggest a convergence rate faster than that pre-
dicted by the theorem. From [21], it is known that for exponentially smooth noise a
faster than polynomial convergence is available for smooth problems. Such techniques
have not been used in the present paper, and the results we give are optimal for the
H2 initial data and time stepping method studied.

Finally, although our analysis is for the scheme (3.2), this approach works equally
well for other time stepping methods, such as the implicit Euler–Maruyama time
stepping scheme. Our presentation is for a Galerkin-based approximation; however,
postprocessing can easily be extended to other spatial discretizations using, for ex-
ample, two grids.

6. Proof of main theorem. We prove Theorem 3.2 by estimating

E

[
sup

0≤tj≤t′
‖u(tj) − uN (tj) − qN (tj)‖2

m

]
for 0 ≤ t′ ≤ T and applying Gronwall’s lemma. To estimate terms, we use a generic
constant K which varies between instances but is independent of Δt and N (it may
depend on (1.1) and the length of time integration T and constant ν). Consider the
difference of the variation of constants formulae (3.1), (3.5), and (3.7). Split into
Fourier modes with |n| ≤ Np and |n| > Np and by nonlinear and noise terms.

Nonlinear terms: Modes |n| ≤ Np.

E sup
0≤tj≤t′

∑
|n|≤Np

(1 + n2)m

∣∣∣∣∣
j−1∑
k=0

×
∫ tk+1

tk

e−(tj−tk)n2

(e(s−tk)n2

Fn(u(s)) − Fn(uN (tk))) ds

∣∣∣∣∣
2

=
∑

|n|≤Np

E

[
sup

0≤tj≤t′

j−1∑
k=0

∫ tk+1

tk

e−(tj−tk)n2

(1 + n2)m/2

((
Fn(u(s)) − Fn(u(tk))

)
+
(
Fn(u(tk)) − Fn(uN (tk) + qN (tk))

)
+
(
Fn(uN (tk) + qN (tk)) − Fn(uN (tk))

)
+
(
(e(s−tk)n2 − 1)Fn(u(s))

))
ds

]2

≤ K(NL1 + · · · + NL4),

where the four terms NLi are analyzed below.

The first term. Fix tj and consider k ≤ j − 1. Define

Lk,n =

∫ tk+1

tk

e−(tj−tk)n2

(1 + n2)m/2
(
Fn(u(s)) − Fn(u(tk))

)
ds,
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and let

(6.1) NL′
1 =

∑
|n|≤Np

E

[
j−1∑
k=0

Lk,n

]2

.

Write Uk = u(tk) and u(s) = u(tk) + δs for tk ≤ s < tk+1; then

Fn(u(s)) − Fn(u(tk)) = dFn(Uk)δs +

∫ 1

0

∫ η

0

d2Fn(Uk + ξδs)(δs, δs) dξ dη.

In the following argument we neglect the remainder term, which can be dealt with
easily under (3.13). Denote by Ft the filtration for the Wiener process W (t). For
k > i, under (3.12), the cross terms in (6.1)

∑
|n|≤Np

ELk,nLi,n =
∑

|n|≤Np

(1 + n2)mE

[ ∫ tk+1

tk

e−(tj−tk)n2

E

[
dFn(Uk)δs|Ftk

]
ds

×
∫ ti+1

ti

e−(tj−ti)n
2

dFn(Ui)δs ds

]
+ higher order terms (h.o.t.)

≤ KΔt4,

because dFn(Ui)δs is Ftk measurable and ‖E
[
dF (Uk)δs|Ftk

]
‖m ≤ KΔt. As

[∫ tk+1

tk

φ(s) ds

]2

≤ (tk+1 − tk)

∫ tk+1

tk

φ(s)2 ds, for φ ∈ L2(0, T ),

∑
|n|≤Np

EL2
k,n ≤Δt

∑
|n|≤Np

∫ tk+1

tk

E
[
e−(tj−tk)n2

(1 + n2)m/2dFn(Uk)δs
]2

ds + h.o.t.

Here ∑
|n|≤Np

∫ tk+1

tk

E
[
e−(tj−tk)n2

(1 + n2)m/2dFn(Uk)δs
]2

ds

≤
∫ tk+1

tk

E
[
‖dFn(Uk)‖2

m · ‖δs‖2
m

]
ds.

Because E‖uN (t)−uN (s)‖2
m ≤ K|t− s|‖u0‖2

m and (3.12) holds, we conclude that

∑
|n|≤Np

∫ tk+1

tk

E
[
e−(tj−tk)n2

(1 + n2)m/2dFn(Uk)δs
]2

ds ≤KΔt2.

Thus, we may estimate

NL′
1 ≤ sup

0≤tj≤t′

∑
|n|≤Np

⎧⎨⎩
j−1∑
k=0

E
[
Lk,n

]2
+

j−1∑
k,i=0, k 	=i

ELk,nLi,n

⎫⎬⎭ ≤ KΔt2.
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Apply the Doob martingale inequality to get

E

[
sup

0≤tj≤t′
NL′

1

]
≤ 4KΔt2.

The second term.

NL2 =
∑

|n|≤Np

(1 + n2)mE

[
sup

0≤tj≤t′

j−1∑
k=0

∫ tk+1

tk

e−(tj−tk)n2

×
(
|Fn(u(tk)) − Fn(uN (tk) + qN (tk))|

)
ds

]2

≤
∫ t′

0

∑
|n|≤Np

E

[
sup

0≤tk≤t
(1 + n2)m|Fn(u(tk)) − Fn(uN (tk) + qN (tk))|2

]
dt.

Using (3.10),

NL2 ≤ K

∫ t′

0

E

[
sup

0≤tk≤t
‖u(tk) − uN (tk) − qN (tk)‖2

m

]
dt.

The third nonlinear term.

NL3=
∑

|n|≤Np

(1 + n2)mE

[
sup

0≤tj≤t′

j−1∑
k=0

∫ tk+1

tk

e−(tj−tk)n2

×
(
|Fn(uN (tk) + qN (tk)) − Fn(uN (tk))|

)
ds

]2

≤
∑

|n|≤Np

(1 + n2)mE

[
sup

0≤tj≤t′
|Fn(uN (tj) + qN (tj)) − Fn(uN (tj))|

×
j−1∑
k=0

∫ tk+1

tk

e−(tj−tk)n2

ds

]2

≤
∑

0<|n|≤Np

(1 + n2)mE

[
sup

0≤tk≤t′
|Fn(uN (tk) + qN (tk)) − Fn(uN (tk))|

1

n2

]2

+ E

[
sup

0≤tk≤t′
|F0(u

N (tk) + qN (tk)) − F0(u
N (tk))|

]
.

Choose m ≤ 2, then using (3.8),

NL3 ≤
∑

|n|≤Np

E

[
sup

0≤tk≤t′
(1 + n2)m|Fn(uN (tk) + qN (tk)) − Fn(uN (tk))|2

]

≤ K

∫ t′

0

E

[
sup

0<tk≤t
‖qN (tk)‖2

]
dt.

Finally, from Lemma A.2,

NL3 ≤ K(N2(−2) + 1N≤NwN
2(−1−γ) + N2(−2−r)).
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The fourth nonlinear term.

NL4 =
∑

|n|≤Np

(1 + n2)mE

[
sup

0≤tj≤t′

j−1∑
k=0

∫ tk+1

tk

e−(tj−tk)n2
(
|(e(s−tk)n2 − 1)Fn(u(s))|

)
ds

]2

≤
∑

|n|≤Np

(1 + n2)mE

[
sup

0≤tj≤t′
|Fn(u(tj))|2

�t/Δt�−1∑
k=0

e−(tj−tk)n2

KΔt2n2

]2

.

Note that for 0 ≤ Δtn2 ≤ ν∫ tk+1

tk

|e(s−tk)n2 − 1| ds ≤
(eΔtn2 − 1

n2
− Δt

)
≤ n−2(KΔt2n4en

2Δt) ≤ KΔt2n2eν

and
∞∑
k=1

e−kn2Δt ≤ 1

1 − e−n2Δt
≤ K

n2Δt
.

Thus, using (3.11),

NL4 ≤ K
∑

|n|≤Np

(1 + n2)mE

[
sup

0≤s≤t′
|Fn(u(s))|2Δt

]2

≤ KΔt2

(
1 + E

[
sup

0≤s≤t′
‖u(s)‖m

]2
)
.

By (3.10) and Lemma A.1,

NL4 ≤ K Δt2.

Nonlinear terms: Modes |n| > Np. Consider now the tail of the expansion
of u(t); i.e., the modes not included in either uN or qN . If r > m,

TAIL = E

[
sup

0≤tj≤t′

∑
|n|>Np

(1 + n2)m
∣∣∣ ∫ tj

0

e−(tj−s)n2

Fn(u(s)) ds
∣∣∣2]

≤ K

(∫ t′

0

(1 + N2
p )−(r−m)/2e−(tj−s)N2

p ds

)2

E

[
sup

0≤s≤t′
‖F (u(s))‖2

r

]
.

By (3.9) and Lemma A.1,

TAIL ≤ KN2(m−2−r)
p .

Noise with modes |n| ≤ Nw.

NOISE1 = E

[
sup

0<tj≤t′

∑
|n|≤Nw

(1 + n2)m

×
∣∣∣∣ j−1∑
k=0

(∫ tk+1

tk

e−(tj−s)n2

λ1/2
n dβn(s) − e−(t−tk)n2

λ1/2
n ΔBk,n

) ∣∣∣∣2
]

≤
∑

|n|≤Nw

(1 + n2)m|λn|E
[

sup
0<tj≤t′

∫ tj

0

(e−(tj−s)n2 − e−(tj−�s/Δt�Δt)n2

)dβn(s)

]2

.
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By Doob’s martingale inequality

NOISE1 ≤ 4
∑

|n|≤Nw

(1 + n2)m|λn|
∫ t′

0

(e−(tj−s)n2 − e−(tj−�s/Δt�Δt)n2

)2 ds

= 4
∑

|n|≤Nw

(1 + n2)m|λn|
∫ t′

0

e−2(tj−s)n2

(1 − e−(s−�s/Δt�Δt)n2

)2 ds.

Note that 1 − e−tn2 ≤ tn2 for 0 ≤ t ≤ Δt and∫ t′

0

e−2(tj−s)n2

(1 − e−(s−�s/Δt�Δt)n2

)2 ds ≤ (Δtn2)2
∫ t′

0

e−2(tj−s)n2

ds ≤ KΔt2n2.

Hence

NOISE1 ≤ 4
∑

|n|≤Nw

(1 + n2)m|λn|Δt2n2

≤KΔt2(1 + N2
w)(1+m−γ)

∑
|n|≤Nw

(1 + n2)γ |λn|

≤ KΔt2(1 + N2
w)(1+m−γ),

under (3.14).

Noise with modes |n| > Nw.

NOISE2 = E

[
sup

0≤tj≤t′

∑
|n|>Nw

(1 + n2)m
∣∣∣∣ ∫ tj

0

e−(tj−s)n2

λ1/2
n dβn(s)

∣∣∣∣2
]

≤ 4(1 + N2
w)m−γ 1 − e−t′N2

w

N2
w

∑
|n|≥Nw

λn(1 + n2)γ ≤ KN2(m−1−γ)
w ,

using (3.14).

Conclusion. We have achieved the following inequality:

E

[
sup

0≤tj≤t′
‖u(tj) − uN (tj) − qN (tj)‖2

m

]
,

≤K

(
Δt2 + (N2(−2) + 1N≤Nw

N2(−1−γ) + N2(−2−r)) + N2(−2−r+m)
p + Δt2N2(−γ+1+m)

w

+N2(−1−γ+m)
w +

∫ T

0

E

[
sup

0<tk≤t
‖u(tk) − uN (tk) − qN (tk)‖2

]
dt

)
.

Note N2(−2−r) ≤ N2(−2), and then Gronwall’s lemma provides

E

[
sup

0≤t≤t′
‖u(t) − uN (t) − qN (t)‖2

m

]
≤ K

(
Δt2 + N2(−2) + 1N≤Nw

N2(−1−γ)

+ N2(−2−r+m)
p + Δt2N2(−γ+1+m)

w + N2(−γ−1+m)
w

)
.

This completes the proof of Theorem 3.2.
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Appendix (lemmas). We collect two elementary lemmas used in the proof of
the main theorem.

Lemma A.1. For r ≤ γ + 1,

E sup
0≤t≤T

‖u(t)‖2
r ≤ K(1 + ‖u0‖2

r).

Proof. Examine the nonlinear term in (3.1) under (3.9):

E

[
sup

0≤t≤t′

∑
n

∣∣∣∣(1 + n2)r/2
∫ t

0

e−(t−s)n2

Fn

(
u(s)

)
ds

∣∣∣∣2
]

≤ K

∫ t′

0

(
1 + E

[
sup

0≤s≤t
‖u(s)‖2

r

])
dt

and the noise term (modes with n 
= 0)

E

[
sup

0≤t≤t′

∑
n 	=0

(1 + n2)r/2
∣∣∣∣ ∫ t

0

e−(t−s)n2

λ1/2
n dβ(s)

∣∣∣∣2
]

≤ 4E

[∑
n 	=0

(1 + n2)(r−γ)

∣∣∣∣ ∫ t′

0

e−2(t−s)n2

(1 + n2)γλnds

∣∣∣∣
]

≤
∑
n 	=0

(1 + n2)(r−γ)

n2
(1 + n2)γλn

using (3.14). This is finite if r − γ ≤ 1, so that the Gronwall lemma completes the
proof.

Lemma A.2. Under the assumptions of Lemma A.1,

E sup
0≤t≤T

‖qN (t)‖2 ≤ K(N2(−2) + 1N≤NwN
2(−1−γ) + N2(−2−r)).

Proof. We seek upper estimates on

E

[
sup

0≤t≤T
‖qN (t)‖2

]
.

To do this, estimate the influence of the initial data

∑
N<|n|≤maxNp,Nw

E

[
sup

0≤tk≤T
|e−tkn

2

un(0)|2
]

=
∑

N<|n|≤maxNp,Nw

u2
0,n

≤ KN−4
∑

N<|n|≤maxNp,Nw

(1 + n2)2u2
0,n.

If u0 ∈ H2(0, 2π), this term is bounded by KN2(−2).
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Now the nonlinear terms

E

[
sup

0≤tj≤T

∑
N<|n|≤Np

∣∣∣∣ j−1∑
k=0

∫ tk+1

tk

e−(tj−tk)n2

Fn(uN (tk)) ds

∣∣∣∣2
]

≤ E

[
sup

0≤tj≤T

∑
N<|n|≤Np

(1 + n2)r|Fn(uN (tk))|2
∣∣∣∣ j−1∑
k=0

∫ tk+1

tk

(1 + n2)−r/2e−(tj−tk)n2

ds

∣∣∣∣2
]

≤ E

[
sup

0≤t≤T
‖uN (t)‖2

r

]
.

∣∣∣∣∣
�t/Δt�−1∑

k=0

∫ tk+1

tk

(1 + n2)−r/2e−(tj−tk)n2

ds

∣∣∣∣∣
2

≤ E

[
sup

0≤t≤T
‖uN (t)‖2

r

]
(1 + N2)−r

N4
.

This term is bounded by KN2(−r−2) by applying Lemma A.1. The noise term is

E

[
sup

0≤tj≤T

∑
N<|n|≤Nw

∣∣∣∣ j−1∑
k=0

(∫ tk+1

tk

e−(t−tk)n2

λ1/2
n ΔBk,n

)∣∣∣∣2
]

= 4
∑

N<|n|≤Nw

(1 + n2)γλn

∫ T

0

(1 + n2)−γe−2(tj−tk)n2

ds

≤ 4 1N≤Nw
N2(−1−γ)

∑
N<|n|≤Nw

(1 + n2)γλn.

This completes the proof.
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Abstract. PageRank is one of the principle criteria according to which Google ranks Web
pages. PageRank can be interpreted as a frequency of visiting a Web page by a random surfer,
and thus it reflects the popularity of a Web page. Google computes the PageRank using the power
iteration method, which requires about one week of intensive computations. In the present work we
propose and analyze Monte Carlo-type methods for the PageRank computation. There are several
advantages of the probabilistic Monte Carlo methods over the deterministic power iteration method:
Monte Carlo methods already provide good estimation of the PageRank for relatively important
pages after one iteration; Monte Carlo methods have natural parallel implementation; and finally,
Monte Carlo methods allow one to perform continuous update of the PageRank as the structure of
the Web changes.
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1. Introduction. Surfers on the Internet frequently use search engines to find
pages satisfying their query. However, there are typically hundreds or thousands of
relevant pages available on the Web. Thus, listing them in a proper order is a crucial
and nontrivial task. The original idea of Google presented in [5] is to list pages
according to their PageRank, which reflects the popularity of a page. The PageRank
is defined in the following way. Denote by n the total number of pages on the Web,
and define the n × n hyperlink matrix P as follows. Suppose that page i has k > 0
outgoing links. Then pij = 1/k if j is one of the outgoing links, and pij = 0 otherwise.
If a page does not have outgoing links, the probability is spread among all pages of
the Web, namely, pij = 1/n. In order to make the hyperlink graph connected, it is
assumed that a random surfer goes with some probability to an arbitrary Web page
with uniform distribution. Thus, the PageRank is defined as a stationary distribution
of a Markov chain whose state space is the set of all Web pages, and the transition
matrix is

(1.1) P̃ = cP + (1 − c)(1/n)E,

where E is a matrix whose all entries are equal to one and c ∈ (0, 1) is the probability
of not jumping to a random page (it is chosen by Google to be 0.85). The Google
matrix P̃ is stochastic, aperiodic, and irreducible, so there exists a unique row vector
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π such that

(1.2) πP̃ = π, π1 = 1,

where 1 is a column vector of ones. The row vector π satisfying (1.2) is called a
PageRank vector, or simply PageRank. If a surfer follows a hyperlink with probability
c and jumps to a random page with probability 1− c, then πi can be interpreted as a
stationary probability that the surfer is at page i. The PageRank also allows several
different interpretations through expectations. For instance, in [2], the PageRank is
seen as the average number of surfers navigating a given page at a given time instant,
provided that at each time instant t ≥ 0 a surfer can cease from navigating with
probability (1 − c) and on average (1 − c) surfers start navigating from each page.
This interpretation is helpful for deeper understanding of the PageRank, but it is
hard to use in practice because it involves the time component. The interpretation
via absorbing Markov chains that we explore in the present paper is easier and leads
naturally to simple simulation algorithms for the computation of PageRank. The end-
point of a random walk that starts from a random page and can be terminated at each
step with probability 1 − c appears to be a sample from the distribution π [4, 8, 10].
Thus, after repeating the process many times, the estimate of πj for j = 1, . . . , n is
determined as the number of times when a run terminated at j, divided by the total
number of runs.

In order to keep up with constant modifications of the Web structure, Google
updates its PageRank at least once per month. According to publicly available in-
formation Google still uses a simple power iteration (PI) method to compute the
PageRank. Starting from the initial approximation as the uniform distribution vector
π(0) = (1/n)1T , the kth approximation vector is calculated by

(1.3) π(k) = π(k−1)P̃ , k ≥ 1.

The method stops when the required precision ε is achieved. The number of flops
needed for the method to converge is of the order log ε

log c nnz(P ), where nnz(P ) is

the number of nonzero elements of the matrix P [15]. We note that the relative
error decreases uniformly for all pages. Several proposals [9, 12, 13, 16] (see also
an extensive survey paper [15]) have recently been put forward to accelerate the PI
algorithm.

In contrast, here we study Monte Carlo (MC)-type methods for the PageRank
computation. To the best far knowledge, in only two works [3, 8] are the MC methods
applied to the PageRank computation. The principle advantages of the probabilistic
MC-type methods over the deterministic methods are that the PageRank of important
pages is determined with high accuracy already after the first iteration; MC methods
have natural parallel implementation; and MC methods allow continuous update of
the PageRank as the structure of the Web changes.

The structure and the contributions of the paper are as follows. In section 2,
we describe different MC algorithms. In particular, we propose an algorithm that
takes into account the information not only about the last visited page (as in [3, 8]),
but also about all pages visited during the simulation run. In section 3, we analyze
and compare the convergence of MC algorithms in terms of confidence intervals. We
show that the PageRank of relatively important pages can be determined with high
accuracy even after the first iteration. In section 4, we show that experiments with
real data from the Web confirm our theoretical analysis. Finally, we summarize the
results of the present work in section 5.
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2. Monte Carlo algorithms. MC algorithms are motivated by the following
convenient formula, which follows directly from the definition of the PageRank:

(2.1) π =
1 − c

n
1T [I − cP ]−1 =

1 − c

n
1T

∞∑
k=0

ckP k.

This formula suggests a simple way of sampling from the PageRank distribution [4,
8, 10]. Consider a random walk {Xt}t≥0 that starts from a randomly chosen page.
Assume that at each step the random walk terminates with probability (1 − c) and
makes a transition according to the matrix P with probability c. It follows from (2.1)
that the end-point of such a random walk has a distribution π. Hence, one can suggest
the following algorithm employed in [3].

Algorithm 1. MC end-point with random start. Simulate N runs of the
random walk {Xt}t≥0 initiated at a randomly chosen page. Evaluate πj as a fraction
of N random walks which end at page j = 1, . . . , n.

Let π̂j,N be the estimator of πj obtained by Algorithm 1. It is straightforward that
E(π̂j,N ) = πj and V ar(π̂j,N ) = N−1πj(1−πj). A rough estimate V ar(π̂j,N ) < 1/(4N)
given in [3] results in a conclusion that the number of samples (random walks) needed
to achieve a good relative accuracy with high probability, is of the order O(n2). In
the ensuing sections 3 and 4 we will show that this complexity evaluation is quite
pessimistic. The number of required samples turns out to be linear in n. Moreover, a
reasonable evaluation of the PageRank for popular pages can be obtained even with
N = n; that is, one needs only as little as one run per page!

In order to improve the estimator π̂, one can think of various methods of variance
reduction. For instance, denoting Z = [I − cP ]−1 and writing πj in (2.1) as πj =
1−c
n

∑n
i=1 zij for j = 1, . . . , n, we can view πj as a given number (1/n) multiplied by a

sum of conditional probabilities pij = (1− c)zij that the random walk ends at j given
that it started at i. Since n is known, an unnecessary randomness in experiments
can be avoided by taking N = mn and initiating the random walk exactly m times
from each page in a cyclic fashion, rather than jumping N times to a random page.
This results in the following algorithm, whose version was used in [8] for computing
personalized PageRank.

Algorithm 2. MC end-point with cyclic start. Simulate N = mn runs
of the random walk {Xt}t≥0 initiated at each page exactly m times. Evaluate πj as a
fraction of N random walks which end at page j = 1, . . . , n.

Let p̂ij be a fraction of m random walks initiated at i that ended at j. Then

the estimator for πj suggested by Algorithm 2 can be expressed as ˆ̂πj = 1
n

∑
i=1 p̂ij .

For this estimator, we have E(ˆ̂πj) = πj and V ar(ˆ̂πj) = (N)−1[πj − n−1
∑n

i=1 p
2
ij ] <

V ar(π̂j). Besides the variance reduction, the estimator ˆ̂πi has important advantages
in implementation, because picking a page at random from a huge database is not a
trivial problem [11]. This difficulty is completely avoided if the pages are visited in
a cyclic fashion.1 As the only advantage of the MC with random start, note that it
does not require the number of samples N to be a multiple of n.

Another and probably more promising way of reducing the variance is to look at
formula (2.1) from yet another angle. Note that for all i, j = 1, . . . , n, the element zij

1When referring to MC algorithms with cyclic start, we shall use the words “cycle” and “iteration”
interchangeably.
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of the matrix

(2.2) Z = [I − cP ]−1 =

∞∑
k=0

ckP k

can be regarded as the average number of times that the random walk {Xt}t≥0 visits
a page j, given that this random walk started at page i. Thus, we can propose an
estimator based on a complete path of the random walk {Xt}t≥0 instead of taking
into account only its end-point. The complete path version of the MC method can be
described as follows.

Algorithm 3. MC complete path. Simulate the random walk {Xt}t≥0 exactly
m times from each page. For any page i, evaluate πj as the total number of visits to
page j multiplied by (1 − c)/(n ·m).

Algorithm 3 can be further improved by getting rid of artifacts in the matrix P
related to pages without outgoing links (so-called dangling nodes). When a random
walk reaches a dangling node, it jumps with uniform probability to an arbitrary
page. Clearly, it is more efficient just to terminate the random walk once it reaches
a dangling node. Thus, we aim to rewrite (2.1) in terms of the original hyperlink
matrix Q with elements defined as Qij = 1/k if page i has k > 0 outgoing links and
a link points to page j, and 0 otherwise. The artificial links from dangling pages are
not taken into account in hyperlink matrix Q. Denote by I0 a set of dangling pages
and by I1 = {1, . . . , n}\I0 a set of pages which have at least one outgoing link. For
all j = 1, . . . , n, it follows from (1.1) and (1.2) that

πj = c

n∑
i=1

Pijπi +
(1 − c)

n

n∑
i=1

πi = c

n∑
i=1

Qijπi + γ,(2.3)

where γ is the same for each j:

(2.4) γ =
c

n

∑
i∈I0

πi +
(1 − c)

n
<

1

n
.

Now, we rewrite (2.3) in the matrix form π = πcQ + γ1T , which leads to the new
expression for π:

(2.5) π = γ1T [I − cQ]−1.

Note that the above equation is in accordance with the original definition of PageRank
presented by Brin et al. [5]. The definition via the matrix P appeared later in order
to develop the Markov chain formulation of the PageRank problem. The one-to-one
correspondence between (2.1) and (2.5) was noticed and proved in [2], but we find the
proof presented above more insightful in our context.

Consider now a random walk {Yt}t≥0 which follows hyperlinks exactly as {Xt}t≥0

except that the transitions are governed by the matrix Q instead of the matrix P .
Thus, the random walk {Yt}t≥0 can be terminated at each step either with probability
(1 − c) or when it reaches a dangling node. For all i, j = 1, . . . , n, the element wij

of the matrix W = [I − cQ]−1 is the average number of visits of {Yt}t≥0 to page j,
given that the random walk started at page i. Denote w·j =

∑n
i=1 wij . Since the

coordinates of π in (2.5) sum up to one, we have

(2.6) γ =

⎡⎣ n∑
i,j=1

wij

⎤⎦−1

=

⎡⎣ n∑
j=1

w·j

⎤⎦−1
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and

(2.7) πj = w·j

⎡⎣ n∑
j=1

w·j

⎤⎦−1

.

This calls for another version of the complete path method.
Algorithm 4. MC complete path stopping at dangling nodes. Simulate

the random walk {Yt}t≥0 starting exactly m times from each page. For any page j,
evaluate πj as the total number of visits to page j divided by the total number of visited
pages.

Let Wij be a random variable distributed as a number of visits to page j = 1, . . . , n
by the random walk {Yt}t≥0 given that the random walk initiated at state i = 1, . . . , n.
Formally, P(Wij = x) = P

([∑∞
t=0 1{Yt=j}

]
= x|Y0 = i

)
for x = 0, 1, . . . , where 1{·} is

the indicator function. Let W
(l)
ij , l ≥ 1, be independent random variables distributed

as Wij . Then the estimator produced by Algorithm 4 can be written as

(2.8) π̄j =

[
m∑
l=1

n∑
i=1

W
(l)
ij

] ⎡⎣ m∑
l=1

n∑
i,j=1

W
(l)
ij

⎤⎦−1

.

In the next section we present the analysis of this estimator.
We note that the complete path versions of the MC methods also admit a random

start. The corresponding algorithm is as follows.
Algorithm 5. MC complete path with random start. Simulate N sam-

ples of the random walk {Yt}t≥0 started at a random page. For any page j, evaluate
πj as the total number of visits to page i divided by the total number of visited pages.

One can show, however, that Algorithm 4 provides an estimator with a smaller
variance than Algorithm 5. Indeed, let WUj be the number of visits to page j from a
randomly chosen page U ∈ {1, . . . , n}. Then, we have

V ar(WUj) =
1

n

n∑
i=1

V ar(Wij) +
1

n

n∑
i=1

E
2(Wij)−

[
1

n

n∑
i=1

E(Wij)

]2

>
1

n

n∑
i=1

V ar(Wij).

Now note that in n simulation runs, Algorithm 4 generates one sample of the sum∑n
i=1 Wij , whereas Algorithm 5 generates n samples of WUj . Hence, Algorithm 4

provides random variables with smaller variance in both numerator and denominator
of (2.8).

3. Convergence analysis. From the preliminary analysis of the previous sec-
tion, we can already conclude that MC algorithms with cyclic start are preferable
to the analogous MC algorithms with random start. In the present section we thor-
oughly analyze and compare MC complete path stopping at dangling nodes with MC
end-point. We show that under natural conditions MC complete path stopping at
dangling nodes outperforms MC end-point.

We start by studying the properties of Wij ’s. Denote by qij the probability that
starting from page i, the random walk {Yt}t≥0 reaches page j:

qij = P

⎛⎝⋃
t≥1

{Yt = j}|Y0 = i

⎞⎠ , i, j = 1, . . . , n.
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Note that in this definition, qjj < 1 is the probability of returning to state j if
the process started at j. It follows from the strong Markov property that Wjj has a
geometric distribution with parameter 1−qjj ≥ 1−c: P(Wjj = x) = qx−1

jj (1−qjj), x =

1, 2, . . . , which implies E(Wjj) = 1/(1 − qjj), V ar(Wjj) = qjj/(1 − qjj)
2. Further,

applying again the strong Markov property, one can show that for all i, j = 1, . . . , n,
Wij has a shifted geometric distribution:

P(Wij = x) =

{
1 − qij , x = 0,
qijP(Wjj = x), x = 1, 2, . . . .

Consequently,

(3.1) E(Wij) = wij = qijE(Wjj) =
qij

1 − qjj

and

V ar(Wij) =
1 + qjj
1 − qjj

wij − w2
ij .(3.2)

Now, define W·j =
∑n

i=1 Wij for j = 1, . . . , n, and W =
∑n

j=1 W·j . Assuming that
all Wij ’s are independent, we immediately obtain

E(W·j) =

n∑
i=1

wij = w·j ,

V ar(W·j) =
1 + qjj
1 − qjj

w·j −
n∑

i=1

w2
ij <

1 + qjj
1 − qjj

w·j ,

E(W ) =

n∑
j=1

w·j = γ−1.

For i, j = 1, . . . , n, let the empirical mean W̄ij = 1
m

∑m
l=1 W

(l)
ij be the estimator of

wij , and view W̄·j =
∑n

i=1 W̄ij , j = 1, . . . , n, and W̄ =
∑n

j=1 W̄·j as estimators of w·j
and γ−1, respectively. The estimator (2.8) can be then written as

(3.3) π̄j = W̄·jW̄
−1.

Since the second multiplier in (3.3) is the same for all j = 1, . . . , n, the estimator π̄j is
completely determined by W̄·j . The following theorem states that the relative errors
of π̄ and W̄·j are similar.

Theorem 3.1. Given the event that the estimator W̄·j satisfies

(3.4) |W̄·j − w·j | ≤ εw·j ,

the event

|π̄j − πj | ≤ εn,βπj
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occurs with probability at least 1 − β for any β > 0 and εn,β satisfying

|ε− εn,β | <
C(β)(1 + ε)√

nm
.

The factor C(β) can be approximated as

C(β) ≈ x1−β/2

√
n− n0

n
(1 + c3)

c

1 − c
,

where x1−β/2 is a (1−β/2)-quantile of the standard normal distribution and n0 is the
number of dangling nodes.

Proof. See the appendix.
Theorem 3.1 has two important consequences. First, it states that the estimator

π̄j converges to πj in probability when m goes to infinity. Thus, the estimator π̄j is
consistent. Second, Theorem 3.1 states that the error in the estimate of πj originates
mainly from estimating w·j . The additional relative error caused by estimating γ

as
[∑

W̄·j
]−1

is of the order 1/
√
mn with arbitrarily high probability, and thus this

error can essentially be neglected.
It follows from the above analysis that the quality of the estimator π̄j as well as

the complexity of the algorithm can be evaluated by the estimator W̄·j . We proceed
by analyzing the confidence intervals. Consider the confidence interval for W̄·j defined
as

(3.5) P(|W̄·j − w·j | < εw·j) ≥ 1 − α.

From (3.1) and (3.2), we have E(W̄·j) = w·j and V ar(W̄·j) ≤ 1
m

1+qjj
1−qjj

w·j . Since W̄·j

is the sum of a large number of terms, the random variable [W̄·j − w·j ]/
√
V ar(W̄·j)

has approximately a standard normal distribution. Thus, from (3.5) we deduce that

εw·j/
√
V ar(W̄·j) ≥ x1−α/2, which results in

m ≥ 1 + qjj
1 − qjj

x2
1−α/2

ε2w·j
.

Now applying w·j = γ−1πj , we get

(3.6) m ≈ 1 + qjj
1 − qjj

γx2
1−α/2

ε2πj
.

Note that πj ≥ γ for all j = 1, . . . , n. Thus, with a high probability, a couple of
hundred iterations allow us to evaluate the PageRank of all pages with relative error
at most 0.1. In practice, however, it is essential to evaluate well the PageRank of
important pages in a short time. We argue that a typical user of a search engine does
not check more than a dozen of the first answers to his/her query. Therefore, let us
evaluate the relative error ε for a given value of πj . Using (2.4), from (3.6) we derive

(3.7) ε ≈ x1−α/2

√
1 + qjj
1 − qjj

√
1 − c + c

∑
i∈I0

πi

√
πj
√
mn

.

Strikingly, it follows from (3.7) that the MC method gives good results for important
pages in one iteration only, that is, when m = 1. From the examples of PageRank
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values presented in [5], it follows that the PageRank of popular pages is at least 104

times greater than the PageRank of an average page. Since the PageRank value is
bounded from below by (1−c)/n, the formula (3.7) implies that if the important pages
have PageRank 104 times larger than the PageRank of the pages with the minimal
PageRank value, the MC method achieves an error of about 1% for the important
pages already after the first iteration. In contrast, the power iteration method takes
into account only the weighted sum of the number of incoming links after the first
iteration.

Let us now compare the precision of the end-point version and the complete
path version of the MC method. According to Algorithm 1, the end-point version
estimates πj simply as a fraction of N = mn random walks that end at page j.
Using standard techniques for such an estimate, we construct a confidence interval
P(|π̂j,N − πj,N | < επj,N ) = 1 − α. Using again the standard normal distribution, we
get

(3.8) ε = x1−α/2

√
1 − πj

√
πj
√
mn

.

Forgetting for a moment about slight corrections caused by the trade-off between
random and cyclic start, we see that the choice between the end-point version and
the complete-path version essentially depends on two factors: the total PageRank
of dangling nodes and the probability of a cycle when a random walk started from j
returns back to j. If the Web graph has many short cycles, then the extra information
from registering visits to every page is obtained at cost of a high extra variability,
which leads to a worse precision. If the total rank of dangling nodes is high, the
random walk will often reach dangling nodes and stop. This can have a negative
impact on the complete path algorithm. The above mentioned two phenomena, if
present, can make the difference between the end-point and the complete-path versions
negligible. The experiments of the next section on the real data, however, indicate
that the real Web structure is such that the complete path version is more efficient
than the end-point version.

We remark that if the results of the first iteration are not satisfactory, it is hard
to improve them by increasing m. After m iterations, the relative error of the MC
method will reduce on average only by the factor 1/

√
m, whereas the error of the

power iteration method decreases exponentially with m. However, because of sim-
plicity in implementation (in particular, simplicity in parallel implementation), the
MC algorithms can still be advantageous even if a high precision is required.

Let us also evaluate a magnitude of πj ’s for which a desired relative error ε is
achieved. Rewriting (3.7), we get

(3.9) πj ≈ x2
1−α/2

1 + qjj
1 − qjj

(1 − c + c
∑

i∈I0
πi)

ε2mn
.

Finally, we would like to discuss the implementation issues of the MC algorithms
and to compare MC and PI methods. Each available processor can run an independent
MC simulation. At the end of computations one central normalization procedure
is needed. In contrast, any parallel implementation of the PI method requires the
exchange of information at every iteration. Thus, if the Web graph does not fit into
the main memory, there is a trade-off between the frequent request of MC to the
database and the exchange of information in the parallel implementation of the PI
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method. The problem of frequent requests of MC to the database can be partially
mitigated by using hashing mechanisms. It is hard to say in advance which method
(MC or PI) will work faster in the case of parallel implementation. However, it is
possible to compare the performance of PI and MC methods in the case when the
Web graph fits into the main memory. In such a case, one iteration of MC will be
faster than one iteration of PI, if the expected length of the MC run is smaller than
the ratio between the number of links and number of pages. If there were no dangling
nodes, the expected length of the MC run would be 1/(1 − c) ≈ 6.7. When dangling
nodes are present, this value is smaller. According to [6, 14], the ratio between the
number of links and number of pages of the Web is between 7.2 and 7.5. If one
computes the PageRank for a Web graph with the latter property and the Web graph
fits into the main memory, the MC method should outperform the PI method.

Moreover, the MC algorithms allow one to perform a continuous update of the
PageRank vector. Since the PageRank vector changes significantly during one month,
Google prefers to recompute the PageRank vector starting from the uniform distri-
bution rather than to use the PageRank vector of the previous month as the initial
approximation [15]. Then, it takes about a week to compute a new PageRank vec-
tor. It is possible to update the PageRank vector using linear algebra methods [16].
However, one needs first to separate new nodes and links from the old ones. This is
not necessary if one uses MC algorithms. Specifically, we suggest running MC algo-
rithms continuously while the database is updated with new data, and hence having
an up-to-date estimation of the PageRank for relatively important pages with high
accuracy. Then, once in a while one can run the power iteration method to have a
good PageRank estimation for all pages. In particular, the continuous update should
eliminate the negative reaction of users to the so-called “Google dance” [17].

4. Experiments. For our numerical experiments we have used the Web site
of INRIA Sophia Antipolis (http://www-sop.inria.fr). It is a typical Web site with
about 50000 Web pages and 200000 hyperlinks. Since the Web has a fractal structure
[7], we expect that our dataset is sufficiently representative. Accordingly, datasets of
similar sizes have been extensively used in experimental studies of novel algorithms for
PageRank computation [1, 15, 16]. To collect the Web graph data, we construct our
own Web crawler which works with the Oracle database. The crawler consists of two
parts: the first part is realized based on Java and is responsible for downloading pages
from the Internet, parsing the pages, and inserting their hyperlinks into the database;
the second part is realized with the help of stored procedures written in PL/SQL
language and is responsible for the data management. The program allows one to run
several crawlers in parallel to efficiently use the network and computer resources. Since
multi user access is already realized in the Oracle database management system, it is
relatively easy to organize the information collection by several crawlers and parallel
implementation of MC algorithms. We have also implemented the power iteration
method and the following three MC algorithms in PL/SQL language:

• MC complete path stopping in dangling nodes,
MC comp path dangl nodes, for short;

• MC end-point with cyclic start,
MC end-point cycl start, for short;

• MC complete path with random start,
MC comp path rand start, for short.

First, we performed a sufficient number of power iterations to obtain the value of
PageRank with 20 digits accuracy. We sorted the PageRank vector in the decreasing
order and plotted it in the log-log scale (see Figure 4.1). It is interesting to observe
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Fig. 4.1. Sorted PageRank in log-log scale.
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Fig. 4.2. Sorted PageRank in linear scale.
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Fig. 4.4. PI versus MC: π10.

that the PageRank vector very closely follows a power law. One can also see in
Figure 4.2 how well the power law approximates the PageRank vector in linear scale
starting from approximately the 100th largest element. Then, we have chosen four
elements from the sorted PageRank vector:

π1 = 0.004093834,

π10 = 0.001035867,

π100 = 0.000546446,

π1000 = 0.000097785.(4.1)

We have performed ten iterations of the PI method and ten iterations of the
three implemented MC algorithms. In Figures 4.3–4.6, we compare the results of ten
iterations of PI method and MC complete path stopping in dangling nodes method
for the four chosen pages (4.1). Indeed, as predicted by formula (3.7), already the
first iteration of the MC complete path stopping in dangling nodes algorithm gives a
small error for important Web pages. In fact, from Figures 4.3–4.6 one can see that
MC complete path stopping in dangling nodes algorithm outperforms the PI method
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even for the first 1000 most important pages. In Figures 4.3–4.6, we also plotted 95%
confidence intervals for the MC method. As expected, there is some randomness in
the convergence pattern of the MC method, and some points might fall outside of
confidence intervals. However, as one can see from Figures 4.3–4.4, the PI method
does not converge in a monotone fashion for the first few iterations either.

At first sight, it looks surprising that one iteration gives a relative error of only
7% with 95% confidence for pages with high PageRank. On the other hand, such a
result is to be expected. Roughly speaking, we use 5 · 104 independent samples in
order to estimate the probability π = 0.004. A binomial random variable B with
parameters n = 5 · 104, p = 0.004 has mean 200 and standard deviation 14.1, and
thus, with a high probability, a relative error of a standard estimator π̃ = B/n will
be less than 11%. The additional gain that we get in (3.7) is due to regular visits to
every page and the usage of the complete path information.

Next, in Figures 4.7–4.10 we compare three versions of the MC method: MC
complete path stopping in dangling nodes, MC end-point with cyclic start, and MC
complete path with random start. We plotted actual relative error and the estimated
95% confidence intervals. It turns out that on our dataset MC complete path stopping
in dangling nodes performs the best, followed by MC complete path with random start.
MC end-point with cyclic start has the worst performance. The better performance
of MC with cyclic start in respect to MC with random start was expected from the
preliminary analysis of section 2. MC is not trapped in cycles in our instance of the
Web graph and the total PageRank of dangling nodes is relatively small∑

i∈I0

πi = 0.23;

hence, we have

εcomp.path ≈
√

1 − c + c
∑
i∈I0

πi εend−point ≈ 0.59εend−point.

To check whether the presence of cycles hinders the convergence of the MC methods,
we took into account the intra-page hyperlinks. On the modified graph the MC
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Fig. 4.9. Comparison of MC algorithms: π100.
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methods have shown a very slow convergence. It is thus fortunate for MC methods
that the original definition of the PageRank excludes the intra-page hyperlinks.

We may conclude that on the web data, MC algorithms with cyclic start outper-
form MC algorithms with random start. Besides, our theoretical and experimental
results have demonstrated that the MC algorithms determine the PageRank of rela-
tively important pages already after the first iteration. Here is a sharp contrast with
the PI method, which approximates the PageRank vector with the uniform relative
error and takes into account only the weighted sum of the number of incoming links
after the first iteration. The other advantages of MC algorithms are natural parallel
implementation and the possibility of continuous PageRank update while the crawler
brings new data from the Web.

5. Conclusions. We have considered several MC algorithms for PageRank com-
putation. In particular, we have proposed a new MC algorithm that takes into account
not only the information about the last visited page, but about all visited pages during
the simulation run. We have shown that MC algorithms with cyclic start outperform
MC algorithms with random start. Our theoretical and experimental results have
demonstrated that the MC algorithms determine the PageRank of relatively impor-



902 AVRACHENKOV, LITVAK, NEMIROVSKY, AND OSIPOVA

tant pages already after the first iteration. Here is a sharp contrast with the PI method
that approximates the PageRank vector with the uniform relative error and takes into
account only the weighted sum of the number of incoming links after the first iter-
ation. The other advantages of MC algorithms are natural parallel implementation
and the possibility of continuous PageRank update while the crawler brings new data
from the Web. As a future research direction, it is necessary to address the question
of how fast the continuous update version of the MC method can adapt to the per-
petual changes in Web structure. One more promising future research direction is the
development of MC methods for the other link-based ranking criteria such as HITS
and SALSA.

Appendix: The proof of Theorem 3.1. To prove Theorem 3.1 we need the
following lemma.

Lemma A.1. Let Wi· =
∑n

j=1 Wij be the length of the random walk {Yt}t≥0

initiated at page i = 1, . . . , n. Then for all dangling nodes i ∈ I0, Wi· ≡ 1 holds, and
for nondangling nodes i ∈ I1,

E(Wi·) ≤
1

1 − c
, V ar(Wi·) ≤

c(1 + c3)

(1 − c)2
.(A.1)

Proof. The statement for dangling nodes is obvious. For nondangling nodes, (A.1)
essentially follows from the distributional identity

(A.2) Wi·
d
= min{X,Ni}, i = 1, . . . , n,

where Ni is a number of transitions needed to reach a dangling node from page i, and
X has a geometric distribution with parameter 1 − c. The mean and variance of X
are given by

E(X) =
1

1 − c
, V ar(X) =

c

(1 − c)2
.

The upper bound for the expectation of Wi· now follows directly from (A.2). For the
variance, we write

V ar(Wi·) = E[V ar(Wi·|Ni)] + V ar[E(Wi·|Ni)].

Conditioning on events [Ni = k] and computing V ar(Wi|k) for k = 1, 2, . . . , one can
show that

E[V ar(Wi·|Ni)] < V ar(X).

Furthermore, we derive

E(Wi·|Ni) =

Ni∑
k=1

P(X ≥ k) =

Ni∑
k=1

ck =
c(1 − cNi)

1 − c
,

and thus the variance of E(Wi·|Ni) satisfies

V ar(E(Wi·|Ni)) =
c2V ar(cNi)

(1 − c)2
≤ c4

(1 − c)2
,

because for nondangling nodes, the random variable cNi takes values only in the
interval [0, c]. This completes the proof of the lemma.
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We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1. Using (2.6) and (2.7), we derive

π̄j − πj = W̄·jW̄
−1 − πj

= γ(W̄·j − w·j)(γW̄ )−1 +
(
(γW̄ )−1 − 1

)
πj .

Given the event (3.4), the last equation together with (2.6) and (2.7) yields

|π̄j − πj | ≤ επj +
∣∣(γW̄ )−1 − 1

∣∣ (1 + ε)πj .(A.3)

Let us now investigate the magnitude of the term (γW̄ )−1. First, note that the
random variables

W̄i· =

n∑
j=1

W̄ij , i ∈ I1,

are independent because they are determined by simulation runs initiated at different
pages. Further, for a nondangling node i, using Lemma A.1, we find

E(W̄i·) =

n∑
j=1

wij ,

V ar(W̄i·) =
1

m
V ar(Wi·) ≤

1

m

c(1 + c3)

(1 − c)2
.

Thus, W̄ equals the number of dangling nodes n0 plus the sum of n−n0 independent
random variables W̄i·, i ∈ I1. Since the number n− n0 is obviously very large, W̄ is
approximately normally distributed with mean γ−1 and variance

V ar(W̄ ) =
∑
i∈I1

V ar(W̄i·) ≤ (n− n0)
c(1 + c3)

m(1 − c)2
.

Hence, γW̄ is approximately normally distributed with mean 1 and variance

(A.4) V ar(γW̄ ) ≤ γ2(n− n0)
c(1 + c3)

m(1 − c)2
<

n− n0

n2

c(1 + c3)

m(1 − c)2
,

which is a value of the order (nm)−1. Now, let us consider a (1−β)-confidence interval
defined as

(A.5) P
(∣∣(γW̄ )−1 − 1

∣∣ < ε
)
> 1 − β

for some small positive β and ε. If ε is small enough so that 1/(1 − ε) ≈ 1 + ε and
1/(1 + ε) ≈ 1− ε, then the above probability approximately equals P

(∣∣γW̄ − 1
∣∣ < ε

)
,

and because of (A.4), the inequality (A.5) holds for all ε satisfying

(A.6) ε ≥ x1−β/2
c

1 − c

√
n− n0

n
(1 + c3)

1√
nm

.

The right-hand side of (A.6) constitutes the additional relative error in estimating πj .
For any β > 0, this additional error can be exceeded with probability at most β. This
completes the proof of the theorem.
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Abstract. An explicit fully discrete finite element method, which satisfies the nonconvex side
constraint at every node, is developed for approximating the p-harmonic flow for p ∈ (1,∞). Conver-
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1. Introduction and summary. Minimizing the energy

(1.1) Ep(u) :=
1

p

∫
Ω

| ∇u |p dx, 1 ≤ p < ∞,

for maps u : Ω → Sm−1 (m ≥ 2), where Ω ⊂ R
n (n ≥ 1) is bounded and Sm−1 ⊂ R

m

is the unit sphere, gives rise to p-harmonic maps. Such maps have natural applications
such as micromagnetics [12, 28], liquid crystal theory [1, 24, 29, 7] (p = 2), or color
image denoising [33, 34, 36, 11, 22] (p = 1). At present, there are not many schemes
available to reliably approximate such maps. The main numerical difficulties are the
nonconvexity of the constraint, |u | = 1 a.e. in Ω, and the limited regularity and
nonuniqueness of minimizers.

The first numerical schemes to approximate (1.1) in the case p = 2 were proposed
in [17, 18, 23, 29]. The idea is in each search direction, first to reduce the energy
functional ignoring the sphere constraint; then renormalize this solution Vj to obtain

Uj = Vj

|Vj | . However, the question is then whether the energy is still decreased

during the renormalization step. This problem has been elegantly solved in [1], where
an interesting convergent algorithm is proposed. Given an admissible Uj , the strategy
there is to decrease the energy E2(U

j −Vj) for Vj belonging to the tangential plane
{w ∈ H1(Ω,Rm) : 〈w,Uj〉Rm = 0 a.e. in Ω}; then perform the renormalization

Uj+1 = Uj−Vj

|Uj−Vj | ∈ H1(Ω, Sm−1). By construction, it follows that E2(U
j − Vj) =

minw E2(U
j − w) ≤ E2(U

j), since w = 0 is admissible. Moreover, |Uj − Vj | ≥ 1
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a.e. in Ω, which is sufficient to guarantee decrease of the energy in the renormalization
step. Recently, convergence of a finite element realization of this algorithm has been
verified for restricted (acute) mesh partitions [6]. A generalization of this (Alouges’)
strategy to the degenerate regime p �= 2 is easily possible, but convergence behavior
seems unclear to the authors for the singular cases p < 2.

Another discretization approach is based on the convergent penalization strategy;
see [30]. Here the nonconvex constraint is approximated by adding the penalty term
ε−1

∫
Ω
(|u|2 − 1)2 dx to Ep(u), leading to the unconstrained Ginzburg–Landau energy

Ep,ε(u) for an ε > 0. However, a numerical approximation of Ep,ε(u) requires that
the penalization parameter ε and the mesh parameter h be tuned. In [36] a different
approach is proposed. This is based on the unconstrained minimization of

(1.2) Fp(v) :=

∫
Ω

∣∣∣∣∇(
v

|v |

)∣∣∣∣p dx, 1 ≤ p < ∞,

for maps v : Ω → R
m\{0}. A parametrization of the sphere then yields an efficient un-

constrained numerical scheme, which is consistent with the nonconvex side-constraint
and leads to energy decay. However, this approach restricts possible minimizers of
(1.1) and leaves convergence properties of (1.2) unclear.

An alternative strategy to study minimizers of (1.1) is to consider the long-time
behavior of the p-harmonic flow into spheres:

ut − Δpu = | ∇u |pu on ΩT ,
∂u

∂n
= 0 on ∂ΩT ,(1.3)

|u(·, ·) | = 1 a.e. in ΩT , u(0, ·) = u0 on Ω,(1.4)

for any T > 0. Here ΩT := (0, T )×Ω, ∂ΩT := (0, T )×∂Ω with ∂Ω being the boundary
of Ω with normal n. The system (1.3)–(1.4) characterizes the L2-gradient flow of (1.1)
with Δpu ≡ ∇·(|∇u|p−2∇u). Solutions to this problem have been studied intensively
over the last fifteen years, starting with the case p = 2 [14], and followed by p > 2
(existence [15, 27], nonuniqueness [25]), and 1 < p < 2 (existence and nonuniqueness
[19, 31]). Weak solutions to (1.3)–(1.4) satisfy (1.3) in a distributional sense and
the initial condition in (1.4) in the sense of traces for u0 ∈ W 1,p(Ω, Sm−1). Weak
solutions that also satisfy the energy inequality

(1.5)

∫ t

0

‖ut(s) ‖2
L2 ds + Ep

(
u(t)

)
≤ Ep(u0) for a.e. t ∈ (0, T )

are sometimes referred to as Struwe weak solutions (cf. [32]). This energy decay
motivates the conjecture that there exists a subsequence {tk′} ⊂ {tk}, for tk → ∞,
such that u∗ = limk′→∞ u(tk′ , ·) is a p-harmonic map, which is known for the case
p = 2, and for any p > 1 in the case of small initial data [20]. We remark that there
exist weak solutions to (1.3)–(1.4), which do not satisfy (1.5); cf. [8, 9, 35] for the case
p = 2.

In order to verify existence of a weak solution to (1.3)–(1.4), the problem is
modified to first finding a solution uε : ΩT → R

m to the following unconstrained
penalized formulation [14, 16]: for ε > 0 and T > 0,

uε
t − Δpu

ε +
1

2ε

(
|uε |2 − 1

)
uε = 0 on ΩT ,

∂uε

∂n
= 0 on ∂ΩT ,(1.6)

uε(0, ·) = u0 on Ω.(1.7)
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Tracing the limit as ε → 0 for solutions to (1.6)–(1.7) then leads to weak solutions
of (1.3)–(1.4) satisfying (1.5) for the cases 1 < p < ∞. When p = 1, local strong
solutions are proved by Giga, Kashima, and Yamazaki in [22]. Apart from its use as
an analytical tool, problem (1.6)–(1.7) is often the starting point to construct con-
vergent discretizations for which the computed (discrete) solutions Uε

k,h converge to
solutions of (1.3)–(1.4) as the time step k, the mesh parameter h, and the penalization
parameter ε tend to zero. Popularization of this approach is partially due to the fact
that the direct construction of a convergent discretization of (1.3)–(1.4) is a nontrivial
task.

The goal of this paper is to propose a convergent fully discrete finite element
approximation of (1.3)–(1.4). Its construction is inspired by the recent work [2] for the
Landau–Lifshitz equations. Our numerical scheme is based on the following equivalent
reformulation of (1.3)–(1.4): find u satisfying the constraint and the initial condition
such that

(1.8)

∫ T

0

(ut(t),w) dt +

∫ T

0

(| ∇u(t) |p−2∇u(t),∇w) dt = 0 ∀T > 0,

for all w ∈ L2
(
(0, T );W 1,p(Ω,Rm)

)
∩ L∞(ΩT ,R

m), such that 〈w,u〉Rm = 0 a.e. in
ΩT , where (ηηη1, ηηη2) :=

∫
Ω
〈ηηη1, ηηη2〉R�1×�2 dx for ηηηi(t, ·) ∈ R

�1×�2 and 〈·, ·〉R�1×�2 is the

standard inner product on R
�1×�2 .

To introduce our finite element scheme and state the main convergence result, we
need to make the following assumptions on the finite element partitioning:

(A1) Assuming that Ω is either polygonal (n = 2) or polyhedral (n = 3), let Th be
a quasi-uniform partitioning of Ω into disjoint open simplices K with hK := diam(K)
and h := maxK∈Th

hK , so that Ω = ∪K∈Th
K.

We require the quasi-uniformity constraint on the partitioning, as many of the
proofs in this paper use the inverse inequalities on functions in VVVh. The convergence
proof of our finite element approximation for p > n or p = 2 is fairly straightforward.
In order to prove convergence if p ≤ n and p �= 2, our proof requires the denseness
of C∞(Ω, Sm−1) in W 1,p(Ω, Sm−1), which imposes the restrictions of either p = n or
p < m − 1; see [10]. Moreover, in this case we have to place a further restriction on
the partitioning for a monotonicity argument to hold.

(A2) In addition to the assumption (A1) above, we assume that all simplices
K ∈ Th are right-angled. (For n = 3 this means that all tetrahedrons have one vertex
with exactly one right angle, one vertex with exactly two right angles, and all other
angles are strictly acute; see section 4 for more details. We note that a cube is easily
partitioned into such tetrahedrons. Sufficient for our analysis is to assume that each
element has n mutually perpendicular edges; the case that a tetrahedron has a vertex
with three right angles is unrealistic in practice and therefore, for ease of exposition,
excluded.)

Let P1 be the space of linear polynomials. We then introduce the following sets
of functions:

VVVh :=
{
W ∈ C(Ω,Rm); W

∣∣
K
∈ PPP1(K,Rm) ∀ K ∈ Th

}
,

MMMh :=
{
W ∈ VVVh; |W(qi) | = 1 ∀ nodes qi of Th

}
,

FFFh(χχχ) :=
{
W ∈ VVVh;

〈
W(qi),χχχ(qi)

〉
Rm = 0 ∀ nodes qi of Th

}
, where χχχ ∈MMMh.

Let Ih : C(Ω,R) → Vh be the linear interpolation operator, where Vh ≡ VVVh with
m = 1, such that (Ih v)(qi) = v(qi) for all nodes qi of Th. We then set (·, ·)h :



908 J. W. BARRETT, S. BARTELS, X. FENG, AND A. PROHL

C(Ω,Rm) × C(Ω,Rm) → R to be

(1.9) (χχχ,ZZZ)h :=

∫
Ω

Ih
(
〈χχχ,ZZZ〉Rm

)
dx ≡

∑
K∈Th

|K|
n + 1

∑
qi∈K

〈χχχ(qi),ZZZ(qi)〉Rm ,

where |K| is the area/volume of K.
Let k be the time step such that Jk = T and dtv

j = k−1 (vj−vj−1). Then a fully

discrete implicit approximation of (1.8) reads: For j = 0 → J − 1, given Ûj ∈ MMMh,

find Ûj+1 ∈MMMh such that

(1.10) (dtÛ
j+1,W) + (| ∇Ûj+1 |p−2∇Ûj+1,∇W) = 0 ∀W ∈ FFFh(Ûj),

where Û0 is an approximation of u0 ∈ W 1,p(Ω, Sm−1). This problem is clearly too
difficult to solve because of the imposed nonconvex constraint on MMMh. However, since
〈ut,u〉Rm = 0, we may assume that dtÛ

j+1 is almost an element of FFFh(Ûj). This
motivates our explicit scheme, which adapts the algorithm in [2] for the Landau–
Lifshitz equations to the p-harmonic flow with p ∈ (1,∞).

SCHEME.
Step 1: Start with an initial vector field U0 ∈MMMh.
Step 2: For j = 0 → J − 1, given Uj ∈MMMh, find Vj ∈ FFFh(Uj) which solves

(Vj ,W)h = −(| ∇Uj |p−2∇Uj ,∇W) ∀W ∈ FFFh(Uj).

Step 3: Define Uj+1 ∈MMMh via

Uj+1(qi) =
Uj(qi) + kVj(qi)

|Uj(qi) + kVj(qi) |
∀ nodes qi of Th.

We note that Step 2 is explicit, due to the use of numerical integration on the
left-hand side, but remark that our analysis also holds if exact integration is used.
For the fully discrete finite element solution {Uj}j≥1 we define its constant and linear
interpolations in time as follows:

U(t, ·) := Uj−1(·) ∀ t ∈ [tj−1, tj), 1 ≤ j ≤ J,

U(t, ·) :=
t− tj−1

k
Uj(·) +

tj − t

k
Uj−1(·) ∀ t ∈ [tj−1, tj ], 1 ≤ j ≤ J.(1.11)

In this paper we will prove the following theorem.
Theorem 1.1. If p = 2 or p ∈ (n,∞), let the assumption (A1) hold. If p = n

or p ∈ (1,m − 1), let the assumption (A2) hold. In addition, we assume that u0 ∈
W 1,p(Ω, Sm−1) and U0 ∈ MMMh satisfies U0 → u0 strongly in W 1,p(Ω,Rm) as h → 0,
and

k ≤
{
o
(
min{h

p
p−1 , hp+n

2 }
)

for 1 < p < 2,

o
(
min{hp, h1+n (1− 1

p )}
)

for 2 ≤ p < ∞.
(1.12)

Then there exists a subsequence of {U}h such that as h → 0

U ⇀ u weakly* in L∞(
0, T ;W 1,p(Ω,Rm)

)
, Ut ⇀ ut weakly in L2(ΩT ,R

m),

where u ∈ H1
(
(0, T );L2(Ω,Rm)

)
∩ L∞(

(0, T );W 1,p(Ω,Rm)
)

is a weak solution to
(1.3)–(1.4).
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To summarize: we prove convergence of our finite element approximation when

n = 2, if either (i) m = 2 and p ∈ [2,∞) or (ii) m ≥ 3 and p ∈ (1,∞);

n = 3, if either (i) m = 2 and p ∈ {2} ∪ [3,∞) or (ii) m = 3(1.13)

and p ∈ (1, 2] ∪ [3,∞) or (iii) m ≥ 4 and p ∈ (1,∞).

We also remark that the above theorem does not hold for p = 1, in which case
the weak solutions are only BV -functions, instead of Sobolev functions. Moreover,
computational experiments suggest that the constraint on the time step k is sharp as
p → 1.

The remainder of this paper is organized as follows. In section 2, we give a precise
weak formulation of problem (1.3)–(1.4). In section 3, we establish the stability of
the numerical solution and the mesh conditions on k described in Theorem 1.1. In
section 4, we prove the convergence result of Theorem 1.1. Finally, in section 5,
we present some numerical experiments, which show discrete finite-time blow-up and
other qualitative behaviors of solutions of the p-harmonic flow for various values of p.

2. Preliminaries. With Ω ⊂ R
n bounded, we define the nonlinear Sobolev

space

W 1,p(Ω, Sm−1) =
{
v ∈ W 1,p(Ω,Rm)

∣∣ v ∈ Sm−1 a.e. in Ω
}
, 1 < p < ∞.

Critical points u ∈ W 1,p(Ω, Sm−1) of Ep(u) for p ∈ (1,∞) can be characterized as
solutions to the Euler–Lagrange equation

(2.1) −Δpu = | ∇u |pu on Ω,
∂u

∂n
= 0 on ∂Ω.

If a map u ∈ W 1,p(Ω, Sm−1) satisfies (2.1) in the sense of distributions, u is called a
weakly p-harmonic map. The p-harmonic flow (1.3)–(1.4) was first studied in [15, 26].
We now make precise what we mean by a weak solution to (1.3)–(1.4).

Definition 2.1. Let u0 ∈ W 1,p(Ω,Rm), p > 1; then u is a weak solution to
(1.3)–(1.4) if u is a function defined a.e. on Ω × R

+ such that
1. u ∈ L∞(

(0, T );W 1,p(Ω,Rm)
)
∩H1

(
(0, T );L2(Ω,Rm)

)
for all T > 0,

2. u is weakly continuous for t > 0 with values in W 1,p(Ω,Rm), i.e., for any
test function g ∈ C∞(Ω,Rm),

f1(t) =

∫
Ω

〈u,g〉Rm dx, f2(t) =

∫
Ω

〈∇u,∇g〉Rm×n dx

are continuous for t > 0, with possible modification on a set of measure zero
on (0,∞),

3. |u | = 1 a.e. on Ω × R
+,

4. (1.3) holds in the sense of distributions,
5. the initial condition holds in the sense of traces.

Verification of the existence of a weak solution to (1.3)–(1.4) uses monotonicity
arguments for a penalization approach to approximate the p-harmonic flow on the
space W 1,p(Ω,Rm). A parabolic version of Murat’s lemma then gives enough com-
pactness to identify limits of terms of a wedged version of the penalized problem as
a wedged version of (1.3), which holds in distributional sense. This weak solution is
known to satisfy the energy law (1.5), and we refer to [32, 24] for further details in this
direction. Also, weak solutions to (1.3)–(1.4) are not unique; see, e.g., [31] and [25].
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Of course, the subsequent proof of Theorem 1.1 can be considered as an alternative
way to construct weak solutions to (1.3)–(1.4).

Remark 2.1. In [31] (see also [27], for p > 2), Misawa demonstrates existence
of weak solutions to (1.3)–(1.4) by the Rothe method: set u0 = u0; then for j ≥ 1
minimizers uj = argminW 1,p(Ω,Sm−1)Ep(v), of Ep(v) := Ep(v)+ 1

2k

∫
Ω
|v−uj−1 |2 dx,

exist, and solve

(2.2) dtu
j − Δpu

j =

(
| ∇uj |p +

k

2
| dtuj |2

)
uj on Ω,

∂u

∂n

j

= 0 on ∂Ω.

In addition, they satisfy a semidiscrete version of energy inequality (1.5) on the
equidistant time mesh {tj}j≥0. Then a compactness argument as in [15] together
with a parabolic version of Murat’s lemma (cf. [27]) proves subsequence convergence
to a weak solution of (1.3)–(1.4) as k → 0. Unfortunately, the scheme (2.2) is not
practically useful, due to the nonconvex constraint.

We end this section by introducing some notation and stating a few useful results.
Let 1 < p < ∞. For all P,Q ∈ R

m×n, m, n ≥ 1, and δ ≥ 0 there exist positive
constants Ci(p,m, n) such that

(i)
∣∣|P |p−2P − |Q |p−2Q

∣∣ ≤ C1

(
|P | + |Q |

)p−2+δ|P − Q |1−δ,(2.3)

(ii)
〈
|P |p−2P − |Q |p−2Q,P − Q

〉
Rm×n ≥ C2

(
|P | + |Q |

)p−2−δ|P − Q |2+δ.

For example, these results were proved in [5] for the case R
n×n, and that proof easily

transfers to the present case. We recall the following results concerning (·, ·)h:

‖χχχ‖2
L2 ≤ |χχχ|2h := (χχχ,χχχ)h ≤ (n + 2)‖χχχ‖2

L2 ∀χχχ ∈ VVVh ;(2.4)

|(χχχ,ZZZ) − (χχχ,ZZZ)h| ≤ Ch‖χχχ‖L2‖∇ZZZ‖L2 ≤ C‖χχχ‖L2‖ZZZ‖L2 ∀χχχ, ZZZ ∈ VVVh.(2.5)

For later purposes, we also introduce the linear interpolation operator Ih : C(Ω,Rm)
→ VVVh such that (Ihv)(qi) = v(qi) for all nodes qi of Th. Finally, throughout the
paper we adopt the standard notation for Sobolev spaces and their associated norms.
For notational convenience, we drop the domain from the norm subscript if the domain
is Ω, that is, ‖ · ‖L2 ≡ ‖ · ‖L2(Ω).

3. Stability. As a first step toward showing the convergence of our numerical
scheme to a weak solution of problem (1.3)–(1.4), we shall establish a discrete version
of the energy inequality (1.5).

Lemma 3.1. Let the assumption (A1) hold. Let u0 ∈ W 1,p(Ω, Sm−1) and U0 ∈
MMMh satisfy U0 → u0 strongly in W 1,p(Ω,Rm) as h → 0, and let k satisfy (1.12).
Then the iterates {Vj−1,Uj}Jj=1 computed from our scheme satisfy for j = 1 → J

(1 − c0)k

j∑
�=1

‖ dtU� ‖2
L2 +

1

p
‖∇Uj ‖pLp ≤ (1 − c1)k

j−1∑
�=0

‖V� ‖2
L2 +

1

p
‖∇Uj ‖pLp

≤ 1

p
‖∇U0 ‖pLp + c2,(3.1)

where ci are o(1).
Proof. First, we choose W = Vj in Step 2 of the scheme. As Uj ∈ MMMh, on

noting (2.4) and on applying an inverse inequality, we conclude that

‖Vj ‖2
L2 ≤ |Vj |2h = −

(
| ∇Uj |p−2∇Uj ,∇Vj

)
≤

∫
Ω

| ∇Uj |p−1| ∇Vj | dx

≤ ‖∇Uj ‖p−1
L2(p−1)‖∇Vj ‖L2 ≤ Ch−p ‖Uj ‖p−1

L2(p−1)‖Vj ‖L2 ≤ Ch−2p.(3.2)
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We note that if ‖∇Uj‖Lp ≤ C, then we have, via (2.4) and inverse inequalities, the
improved bound

‖Vj ‖2
L2 ≤ |Vj |2h = −

(
| ∇Uj |p−2∇Uj ,∇Vj

)
≤ ‖∇Uj ‖p−1

Lp ‖∇Vj ‖Lp

≤ Ch−1‖Vj ‖Lp ≤
{
Ch−2 for 1 ≤ p ≤ 2,

Ch−2−n(1− 2
p ) for 2 ≤ p < ∞.

(3.3)

The following argument is adapted from [2]. On defining Rj := Uj+1−Uj−kVj ∈
VVVh, then Step 3 of the scheme yields for all nodes qi of Th that

|Rj(qi) | =

∣∣∣∣∣ Uj(qi) + kVj(qi)

|Uj(qi) + kVj(qi) |
− Uj(qi) − kVj(qi)

∣∣∣∣∣ =
∣∣∣1 −

∣∣Uj(qi) + kVj(qi)
∣∣∣∣∣,

and since 1 ≤ |Uj(qi) + kVj(qi) | =
√

1 + k2|Vj(qi) |2 ≤ 1 + k2

2 |Vj(qi) |2, we
conclude that

(3.4) |Rj(qi) | ≤
k2

2
|Vj(qi) |2.

Therefore, on recalling (2.4), we have that

(3.5)

∫
Ω

|Rj |dx ≤
∫

Ω

Ih[ |Rj | ] dx ≤ k2

2

∫
Ω

Ih[ |Vj |2 ] dx ≤ k2(n + 2)

2

∫
Ω

|Vj |2 dx.

Similarly, it follows from (2.4) and an inverse inequality that

(3.6) ‖Rj‖2
L2 ≤ |Rj |2h ≤ k4

4
‖Vj‖2

L∞ |Vj |2h ≤ Ck4h−n‖Vj‖4
L2 ;

and hence we have that

(3.7) ‖dtUj+1‖2
L2 ≤ [‖Vj‖L2 + k−1‖Rj‖L2 ]2 ≤ [1 + Ckh−n

2 ‖Vj‖L2 ]2‖Vj‖2
L2 .

Now, choosing W = Vj = dtU
j+1 − k−1Rj in Step 2 of our scheme, noting the

convexity of |∇ · |p, that Uj , Uj+1 ∈ MMMh and applying (2.3)(i) with δ = 2 − p if
p ∈ (1, 2] and δ = 0 if p ∈ [2,∞), together with inverse estimates and (3.5), we arrive
at

‖Vj ‖2
L2 +

1

p
dt‖∇Uj+1 ‖pLp ≤ |Vj |2h + (|∇Uj+1|p−2∇Uj+1,∇(dtU

j+1))(3.8)

= k−1
(
| ∇Uj |p−2∇Uj ,∇Rj

)
+
(
| ∇Uj+1 |p−2∇Uj+1

− |∇Uj |p−2∇Uj ,∇(dtU
j+1)

)
≤ k−1‖∇Uj ‖p−1

L∞ ‖∇Rj ‖L1 + Ck1−δ[ ‖∇Uj+1‖L∞

+ ‖∇Uj‖L∞ ]p−2+δ‖∇(dtU
j+1)‖2−δ

L2

≤ Ck−1h−p‖Rj ‖L1 + Ck1−δh−p‖dtUj+1‖2−δ
L2

≤ Ckh−p‖Vj ‖2
L2 + Ck1−δh−p‖dtUj+1‖2−δ

L2 .

We first consider the simpler case, p ∈ [2,∞). It follows from our assumptions
on U0 that there exists a constant C1 > 0 such that ‖∇U0 ‖Lp ≤ C1 for all h > 0.

Assuming that ‖∇Uj ‖Lp ≤ C1 and k = O(h1+n(1− 1
p )), it then follows from (3.3) that
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there exists a constant C2 > 0 such that kh−n
2 ‖Vj‖L2 ≤ C2. Therefore, combining

(3.7) and (3.8) yields in the case p ∈ [2,∞) that there exists a constant C3 > 0 such
that

(3.9)

(
1 − C3

k

hp

)
k‖Vj ‖2

L2 +
1

p
‖∇Uj+1 ‖pLp ≤ 1

p
‖∇Uj ‖pLp .

If the time step k satisfies C3k ≤ hp, it follows from the above inequality that
‖∇Uj+1 ‖Lp ≤ C1. Hence, by induction, (3.9) holds for j = 0 → J − 1 under the
above two restrictions on k. On recalling our assumptions on k, (1.12), the desired
stability result (3.1) for p ∈ [2,∞), with no c2 term on the right-hand side, follows
from summing (3.9) and noting from (3.7) that ‖dtUj+1‖2

L2 ≤ (1 + o(1))‖Vj‖2
L2 .

We now consider the case p ∈ (1, 2). First, there exists a constant C4(p) > 0 such
that

(3.10) ‖dtUj+1‖pL2 ≤ ‖dtUj+1‖2
L2 + C4.

Assuming k = O(hp+n
2 ), it then follows from (3.2) that there exists a constant C5 > 0

such that kh−n
2 ‖Vj‖L2 ≤ C5. Therefore combining (3.7), (3.8), and (3.10) yields in

the case p ∈ (1, 2) that there exists a constant C6 > 0 such that

(3.11)

(
1 − C6

kp−1

hp

)
k‖Vj ‖2

L2 +
1

p
‖∇Uj+1 ‖pLp ≤ 1

p
‖∇Uj ‖pLp + C5

kp

hp
.

On recalling our assumptions on k, (1.12), the desired stability result (3.1) for p ∈
(1, 2) then follows from summing (3.11) and noting (3.7).

4. Convergence. The following lemma, where we adopt the notation (1.11),
will be needed for showing the convergence of our scheme.

Lemma 4.1. Let the assumptions of Lemma 3.1 hold. Then for all W ∈
L2

(
(0, T );FFFh(U)

)
it follows that∣∣∣∣ ∫ T

0

[(Ut,W) +(| ∇U |p−2∇U,∇W)
]
dt

∣∣∣∣(4.1)

≤ C
[
kh−(n

2 +1+σ)‖W‖L2(ΩT ) + h‖∇W‖L2(ΩT )

]
,

where σ = 0 if p ∈ (1, 2) and σ = n( 1
2 − 1

p ) if p ∈ [2,∞).

Proof. Write V = Ut − k−1R in Step 2 of our scheme to obtain for any W ∈
L2

(
(0, T );FFFh(U)

)
that∫ T

0

[(Ut,W) +(| ∇U |p−2∇U,∇W)
]
dt(4.2)

= k−1

∫ T

0

(R,W) dt +

∫ T

0

[(Ut,W) − (Ut,W)h] dt.

From (3.6), (3.3), and (3.1) we have that∫ T

0

‖R ‖2
L2 dt ≤ Ck4h−n

∫ T

0

‖V ‖4
L2 dt(4.3)

≤ Ck4h−(n+2+2σ)

∫ T

0

‖V ‖2
L2 dt ≤ Ck4h−(n+2+2σ).
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Hence the desired result (4.1) follows from (4.2), (4.3), (2.5), and (3.1).
It follows from (3.1), our assumptions on U0, and as U ∈MMMh that there exists a

function u ∈ H1((0, T ); L2(Ω,Rm)) ∩ L∞((0, T );W 1,p(Ω,Rm)) and a subsequence of
{U}h such that as h → 0

U, U ⇀ u weakly* in L∞(
0, T ;W 1,p(Ω,Rm)

)
,(4.4)

U, U → u strongly in Lq
(
ΩT ,R

m
)
, Ut ⇀ ut weakly in L2(ΩT ,R

m),

where q < ∞ if p ≤ n and q = ∞ if p > n. Furthermore, we have that (1.5) holds.
As U ∈MMMh, it follows that Ih[|U|] ≡ 1, and hence for every K ∈ Th that∥∥|U |2 − 1

∥∥
Lp(K)

≤ Ch2‖D2(|U |2)‖Lp(K)(4.5)

≤ Ch2
∥∥∇U

∥∥2

L2p(K)
≤ Ch‖∇U

∥∥
Lp(K)

.

Therefore, we deduce that

(4.6) |u | = 1 a.e. in ΩT .

Next, in order to identify the limit of the p-Laplacian term in (4.1), we need to
establish that

| ∇U |p−2∇U ⇀ | ∇u |p−2∇u weakly in L
p

p−1 (ΩT ,R
m×n) as h → 0.(4.7)

The standard employment of Minty’s lemma for monotone operators (see [37], “the
decisive monotonicity trick”) is not so straightforward, as (4.1) is only valid for W ∈
L2((0, T );FFFh(U)) and not for all W ∈ L2((0, T );VVVh). Obviously, if p = 2, then (4.7)
follows immediately from (4.4). The lemma below establishes a stronger version of
(4.7) in the easier case when p ∈ (n,∞).

Lemma 4.2. In addition to the assumptions of Lemma 3.1 holding, let p ∈ (n,∞).
Then we have for the subsequence {U}h of (4.4) that

| ∇U |p−2∇U → |∇u |p−2∇u strongly in L
p

p−1 (ΩT ,R
m×n) as h → 0.(4.8)

Proof. As p ∈ (n,∞), it follows that Ihu is well-defined and

(4.9) Ihu → u strongly in L∞(
(0, T );W 1,p(Ω,Rm)

)
and hence in L∞(

ΩT ,R
m
)
.

We deduce from (2.3)(ii) with δ = p− 2 that∫
ΩT

|∇(u − U)|p dxdt ≤
∫

ΩT

|∇u|p−2〈∇u,∇(u − U)〉Rm×n dxdt

−
∫

ΩT

|∇U|p−2〈∇U,∇(u − Ihu)〉Rm×n dxdt

−
∫

ΩT

|∇U|p−2〈∇U,∇(Ihu − U)〉Rm×n dxdt

=: T1 + T2 + T3.

It follows from (4.4), (3.1), and (4.9) that T1, T2 → 0 as h → 0. As IhU ≡ U and
U, Ihu ∈MMMh (recall (4.6)), we have that Ihu − U ≡ W + Z, where

W = Ih[u − 〈u,U〉RmU] ∈ FFFh(U),(4.10)

Z = Ih[(〈u,U〉Rm − 1)U] = −1

2
Ih[|u − U|2U].
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It follows from (4.10), (4.1), (1.12), an inverse inequality, and (3.1) that

|T3| ≤ C
[
1 + ‖Ut‖L2(ΩT )

]
‖Ih[u − 〈u,U〉RmU]‖L2(ΩT )(4.11)

+ C‖U‖p−1
L∞(0,T ;W 1,p(Ω)) ‖Ih[(〈u,U〉Rm − 1)U]‖L1(0,T ;W 1,p(Ω))

≤ C
[
‖u − 〈u,U〉RmU‖L∞(ΩT ) + ‖Ih[|u − U|2 U]‖L1(0,T ;W 1,p(Ω))

]
≤ C

[
‖u − U‖L∞(ΩT ) + ‖|u − U|2 U‖L1(0,T ;W 1,p(Ω))

]
≤ C‖u − U‖L∞(ΩT ).

On noting (4.4), as p > n, we have that T3 → 0 as h → 0; and hence we have that
the subsequence of {U}h in (4.4) is such that

U → u strongly in Lp
(
0, T ;W 1,p(Ω,Rm)

)
as h → 0.(4.12)

The above and (2.3)(i) with δ = 0 immediately yields the desired result (4.8).
Unfortunately, if p ∈ (1, n] and p �= 2, the proof of the desired result (4.7) is far

more complicated. One difficulty occurs as Ih is not well-defined on u. If one replaces
Ih by a generalized interpolation operator, Ig

h, then Ig
hU �≡ U, Ig

hu �∈ MMMh, and,
moreover, a generalization of (4.10) with the second crucial identity for Z, exploited
in (4.11) above, does not hold. To overcome this difficulty, we employ a density
argument by smoothing u and continue to work with Ih. However, to obtain a
generalization of the second identity for Z in (4.10) we require this smoothed u(·, t)
to belong to Sm−1 and not just R

m. This requires the denseness of C∞(Ω, Sm−1) in
W 1,p(Ω, Sm−1), which imposes the restrictions of either p = n or p < m− 1; see [10].
Another difficulty occurs if p ∈ (1, n] and p �= 2 as U → u in Lq(ΩT ,R

m) only for
q < ∞ and not for q = ∞; recall (4.4). To overcome this we require a discrete version
of Theorem 2.1 in [15], which exploits a monotonicity argument to deduce that the
term II ′ in the proof there is nonpositive. To obtain a discrete analogue of this, we
require the right angle constraint, (A2), on our partitioning, which we now discuss in
more detail.

Let {ei}ni=1 be the standard orthonormal vectors in R
n, such that the jth compo-

nent of ei is δij , i, j = 1 → n. Given nonzero constants ρi, i = 1 → n, let K̂({ρi}ni=1)
be a reference simplex in R

n with vertices {q̂i}ni=0, where q̂0 is the origin and q̂i =
q̂i−1 + ρiei, i = 1 → n. Then under assumption (A2), given a K ∈ Th with vertices
{qji}ni=0 such that qi0 is not a right-angled vertex, there exists a rotation/reflection
matrix BK ∈ R

n×n such that the mapping FK : x̂ ∈ R
n → qj0 + BK x̂ ∈ R

n maps

the vertex q̂i to qji , i = 0 → n, and hence K̂({ρi}ni=1) to K. Then for all K ∈ Th,

φ ∈ C(K,R), and φφφ ∈ C(K,Rm), we set for all x̂ ∈ K̂({ρi}ni=1)

φ̂(x̂) ≡ φ(FK x̂), (Î φ̂)(x̂) ≡ (Ihφ)(FK x̂);(4.13)

φ̂φφ(x̂) ≡ φφφ(FK x̂), (Îφ̂φφ)(x̂) ≡ (Ihφφφ)(FK x̂).

We have for any Z ∈ VVVh and K ∈ Th that

(4.14) ∇Z ≡ (∇̂Ẑ)B−1
K on K;

here x ≡ (x1, . . . , xn)T , ∇ ≡ ( ∂
∂x1

, . . . , ∂
∂xn

), x̂ ≡ (x̂1, . . . , x̂n)T , and ∇̂ ≡ ( ∂
∂x̂1

, . . . , ∂
∂x̂n

).

It is easily deduced (see, e.g., [4] for details) that for any z1, z2 ∈ C(Ω,R)

(4.15) ∇(Ih[z1z2]) = ∇(Ihz2)D(Ihz1) + ∇(Ihz1)D(Ihz2),
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where for any Z ∈ V h,

(4.16) D(Z) |K := BK D̂(Ẑ)B−1
K ∀ K ∈ Th,

and D̂(Ẑ) is the n× n diagonal matrix with diagonal entries

(4.17) [D̂(Ẑ)]ii :=
1

2

[
Ẑ(q̂i) + Ẑ(q̂i−1)

]
, i = 1 → n.

Lemma 4.3. In addition to the assumptions of Lemma 3.1 holding, let either
p = n or p < m − 1, and let the assumption (A2) hold. Then we have for the
subsequence {U}h of (4.4) and for any s ∈ [1, p) that

∇U → ∇u strongly in Ls(ΩT ,R
m×n) as h → 0.(4.18)

Hence the desired result (4.7) holds.
Proof. As either p = n or p < m − 1, it follows that C∞(Ω, Sm−1) is a dense

subset of W 1,p(Ω, Sm−1); see [10]. Hence for any fixed α ∈ (0, 1) there exists uα ∈
L∞(0, T ;C∞(Ω, Sm−1)) such that

(4.19) ‖u − uα‖L∞(0,T ;W 1,p(Ω)) ≤ α2.

Therefore Ihuα is well-defined and

(4.20) Ihuα → uα strongly in L∞(
0, T ;W 1,p(Ω,Rm

)
.

In addition, we introduce ηηηα : R
m → R

m and ηα : R → R such that

ηηηα(y) := ηα(|y|)y :=

{
y if |y| ≤ α,

α
|y|y if |y| ≥ α.

(4.21)

On adopting the notation in (4.13) and (4.14), we have for all Z ∈ VVVh and K ∈ Th
that

∂

∂x̂k
Î[ηηηα(Ẑ)] ≡ A(k)

α (Ẑ)
∂Ẑ

∂x̂k
on K̂, k = 1 → n,(4.22)

where A
(k)
α (Ẑ) ∈ R

m×m is such that for i, j = 1 → m

[A(k)
α (Ẑ)]ij =

1

2
[ηα(|Ẑ(q̂k)|) + ηα(|Ẑ(q̂k−1)|)]δij

+
1

2

[ηα(|Ẑ(q̂k)|) − ηα(|Ẑ(q̂k−1)|)]
|Ẑ(q̂k)| − |Ẑ(q̂k−1)|

([Ẑ(q̂k)]i + [Ẑ(q̂k−1)]i)([Ẑ(q̂k)]j + [Ẑ(q̂k−1)]j)

|Ẑ(q̂k)| + |Ẑ(q̂k−1)|
.

For any y ∈ R
m, we deduce from the monotonicity of ηα that

yTA(k)
α (Ẑ)y ≥ 1

2
[ηα(|Ẑ(q̂k)|) + ηα(|Ẑ(q̂k−1)|)]|y|2

+
1

2

[ηα(|Ẑ(q̂k)|) − ηα(|Ẑ(q̂k−1)|)]
|Ẑ(q̂k)| − |Ẑ(q̂k−1)|

|Ẑ(q̂k) + Ẑ(q̂k−1)|2

|Ẑ(q̂k)| + |Ẑ(q̂k−1)|
|y|2

≥ 1

2

(
[ηα(|Ẑ(q̂k)|) + ηα(|Ẑ(q̂k−1)|)] +

[ηα(|Ẑ(q̂k)|) − ηα(|Ẑ(q̂k−1)|)]
|Ẑ(q̂k)| − |Ẑ(q̂k−1)|

(4.23)

× (|Ẑ(q̂k)| + |Ẑ(q̂k−1)|)
)
|y|2

≥ [ηα(|Ẑ(q̂k)|)|Ẑ(q̂k)| − ηα(|Ẑ(q̂k−1)|)|Ẑ(q̂k−1)|]
|Ẑ(q̂k)| − |Ẑ(q̂k−1)|

|y|2 ≥ 0.
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Therefore A
(k)
α (Ẑ) is symmetric positive semidefinite for any Z ∈ VVVh. Similar to

(4.23), we have for all Z ∈ VVVh and on any K ∈ T h that

yTA(k)
α (Ẑ)y ≤ ηα(|Ẑ(qk−1)|)|Ẑ(qk)| − ηα(|Ẑ(qk)|)|Ẑ(qk−1)|

|Ẑ(qk)| − |Ẑ(qk−1)|
|y|2

≤ [ηα(|Ẑ(qk)|) + ηα(|Ẑ(qk−1)|)]|y|2 ≤ 2|y|2 ∀y ∈ R
m.(4.24)

It follows from (4.14), B−1
K ≡ BT

K , (4.22), (4.23), and (4.24) that for all Z, Y ∈ VVVh,
and on any K ∈ Th

〈∇Z,∇(Ih[ηα(Y − Z)])〉Rm×n = 〈(∇̂Ẑ)B−1
K , (∇̂(Î[ηα(Ŷ − Ẑ)]))B−1

K 〉Rm×n

= 〈∇̂Ẑ, ∇̂(Î[ηα(Ŷ − Ẑ)])〉Rm×n

=

n∑
k=1

〈
∂Ẑ

∂x̂k
, A(k)

α (Ŷ − Ẑ)
∂(Ŷ − Ẑ)

∂x̂k

〉
Rm

(4.25)

≤ C|∇̂Ẑ||∇̂Ŷ| ≤ C|∇Z||∇Y|.

Hence we deduce from (4.25) that for all Z,Y ∈ VVVh, and K ∈ Th∫
K

|∇Z|p−2〈∇Z,∇(Ih[ηηηα(Y − Z)])〉Rm×n dx ≤ C‖∇Z‖p−1
Lp(K)‖∇Y‖Lp(K).(4.26)

It is this bound, which we use in bounding T3 below (containing the analogue of the
term II ′ in the proof of Theorem 2.1 in [15]), that exploits the right-angle constraint,
(A2), on the partitioning.

As |uα| = |U| = 1 in ΩT , we have from (4.21) that

(4.27) 〈ηηηα(uα − U),U〉Rm = −1

2
〈ηηηα(uα − U),uα − U〉Rm .

It follows from (4.27) and (4.21) that

(4.28) ‖Ih[〈ηηηα(uα − U),U〉Rm ]‖L∞(ΩT ) ≤
1

2
α‖uα − U‖L∞(ΩT ) ≤ α.

It follows from (4.14), (4.13), (4.27), and (4.21) that for all K ∈ Th

‖∇(Ih[〈ηηηα(uα − U),U〉Rm ])‖Lp(K) ≤ C‖∇̂(Î[〈ηηηα(ûα − Û), Û〉Rm ])‖
Lp(K̂)

≤ Cα‖∇̂|Î(ûα) − Û|‖
Lp(K̂)

≤ Cα‖∇̂[Î(ûα) − Û]‖
Lp(K̂)

(4.29)

≤ Cα‖∇[Ih(uα) − U]‖Lp(K).

For a.e. t ∈ (0, T ) let

Jh,α(t) := {nodes qi of Th : |(Ihuα)(t,qi) − U(t,qi)| ≥ α},
Th,α(t) := {K ∈ Th : K has a vertex qi ∈ J h,α(t)},(4.30)

Rh,α(t) :=
⋃

K∈Th,α(t)

K.
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It follows from (2.4), (1.9), and (4.30) that

α2

n + 1

∫ T

0

|Rh,α(t)|dt ≤
∫ T

0

|Ihuα − U|2h dt ≤ (n + 2)‖Ihuα − U‖2
L2(ΩT )

≤ 2(n + 2)
[
‖uα − Ihuα‖2

L2(ΩT ) + ‖uα − U‖2
L2(ΩT )

]
.(4.31)

Hence we deduce from (4.31), (4.20), (4.4), and (4.19) that

lim
h→0

∫ T

0

|Rh,α(t)|dt ≤ Cα2.(4.32)

In addition, it follows from (4.20) and (4.19) that

lim
h→0

∫ T

0

∫
Rh,α(t)

|∇(Ihuα)|p dxdt ≤ lim
h→0

∫ T

0

∫
Rh,α(t)

|∇u|p dxdt + Cα2.(4.33)

For any s ∈ [1, p), we have that∫ T

0

(∫
Rh,α(t)

|∇(Ihuα − U)|sdx
)

dt(4.34)

≤
(∫ T

0

|Rh,α(t)|dt
) p−s

p
(∫ T

0

(∫
Rh,α(t)

|∇(Ihuα − U)|pdx
)

dt

) s
p

.

Let p� := max{2, p}. Then on applying a Hölder inequality, noting (4.19), (4.20),
(4.4), and (2.3)(ii) with δ = p� − 2, we have that(∫ T

0

∫
Ω\Rh,α(t)

|∇(Ihuα − U)|pdxdt

) p�

p

≤ C

∫ T

0

(∫
Ω\Rh,α(t)

[ |∇(Ihuα)| + |∇U| ]p dx

)− (p�−p)
p

×
(∫

Ω\Rh,α(t)

|∇(Ihuα − U)|pdx
) p�

p

dt(4.35)

≤ C

∫ T

0

∫
Ω\Rh,α(t)

[ |∇(Ihuα)| + |∇U| ]p−p�

|∇(Ihuα − U)|p�

dxdt

≤ C

∫ T

0

∫
Ω\Rh,α(t)

|∇(Ihuα)|p−2〈∇(Ihuα),∇(Ihuα − U)〉Rm×n dxdt

− C

∫ T

0

∫
Ω\Rh,α(t)

|∇U|p−2〈∇U,∇(Ihuα − U)〉Rm×n dxdt =: T1 + T2.

It follows from (3.1), (4.20), and (4.19) that

|T1| ≤
∣∣∣∣∫

ΩT

|∇(Ihuα)|p−2〈∇(Ihuα),∇(Ihuα − U)〉Rm×n dxdt

∣∣∣∣(4.36)

+ C

(∫ T

0

∫
Rh,α(t)

|∇(Ihuα)|p dxdt

) p−1
p

.
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Hence we deduce from (4.36), (4.20), (4.4), and (4.19) that

lim
h→0

|T1| ≤ C α2 + C lim
h→0

(∫ T

0

∫
Rh,α(t)

|∇(Ihuα)|p dxdt

) p−1
p

.(4.37)

Next we note from (4.30) and (4.21) that

T2 = −
∫ T

0

∫
Ω\Rh,α(t)

|∇U|p−2〈∇U,∇(Ih[ηηηα(uα − U)])〉Rm×n dxdt

=

∫ T

0

∫
Rh,α(t)

|∇U|p−2〈∇U,∇(Ih[ηηηα(uα − U)])〉Rm×n dxdt(4.38)

−
∫

ΩT

|∇U|p−2〈∇U,∇(Ih[ηηηα(uα − U)])〉Rm×n dxdt =: T3 − T4.

It follows from (4.26) and (3.1) that

T3 ≤ C‖∇U‖p−1
Lp(ΩT )

(∫ T

0

∫
Rh,α(t)

|∇(Ihuα)|p dxdt

) 1
p

(4.39)

≤ C

(∫ T

0

∫
Rh,α(t)

|∇(Ihuα)|p dxdt

) 1
p

.

Noting that Ih[ηηηα(uα − U) − 〈ηηηα(uα − U),U〉RmU] ∈ FFFh(U), we have that

T4 =

∫
ΩT

|∇U|p−2〈∇U,∇(Ih[ηηηα(uα − U) − 〈ηηηα(uα − U),U〉RmU])〉Rm×n dxdt

−
∫

ΩT

|∇U|p−2〈∇U,∇(Ih[〈ηηηα(uα − U),U〉RmU])〉Rm×n dxdt =: T5 + T6.

(4.40)

It then follows from (4.1), (1.12), an inverse inequality, (3.1), (2.4), (4.21), and (4.19)
that

|T5| ≤ C
[
1 + ‖Ut‖L2(ΩT )

] [∫ T

0

‖Ih[ηηηα(uα − U) − 〈ηηηα(uα − U),U〉RmU]‖2
L2 dt

] 1
2

≤ C‖Ih[uα − U]‖L2(ΩT ) ≤ C [ ‖u − U‖L2(ΩT ) + ‖uα − Ihuα‖L2(ΩT ) + α2 ].

(4.41)

We note from (3.1), (4.15), (4.16), (4.17), (4.28), and (4.29) that

|T6| ≤ ‖∇U‖p−1
Lp(ΩT ) ‖∇(Ih[〈ηηηα(uα − U),U〉RmU])‖Lp(ΩT )(4.42)

≤ C ‖∇(Ih[〈ηηηα(uα − U),U〉RmU])‖Lp(ΩT )

≤ ‖U‖L∞(ΩT )‖∇(Ih[〈ηηηα(uα − U),U〉Rm ])‖Lp(ΩT )

+ ‖Ih[〈ηηηα(uα − U),U〉Rm ]‖L∞(ΩT )‖∇U‖Lp(ΩT )

≤ Cα
[
‖∇uα‖Lp(ΩT ) + ‖∇U‖Lp(ΩT )

]
.
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On combining (4.34)–(4.42), (3.1), (4.19), (4.20), (4.32), (4.33), and (4.4) we have
that given any ε > 0, there exist an α(ε) and an h0(α) such that for the subsequence
{U}h of (4.4)

‖∇(uα − U)‖Ls(ΩT ) ≤ ε ∀h ≤ h0.(4.43)

The desired result (4.18) then follows immediately from (4.43), (4.19), and (4.20).
Finally, the desired result (4.7) follows immediately from (4.18) and (3.1); cf. [31,
Lemma 6].

We now are ready to give a proof for Theorem 1.1.
Proof of Theorem 1.1. Given any φφφ ∈ C∞(ΩT ,R

m), let w = u ∧ φφφ and W =
Ih(U∧φφφ). Here ∧ is the wedge (exterior) product, which is the extension of the cross
(vector) product on vectors in R

3 to R
n. Interpolation theory yields that

‖ Ih(U ∧φφφ) − U ∧φφφ ‖2
L2 ≤ Ch4

∑
K∈Th

‖D2
(
U ∧φφφ

)
‖2
L2(K)

≤ Ch4
[
‖ |U ||D2φφφ | ‖2

L2 + ‖ |∇U || ∇φφφ | ‖2
L2

]
(4.44)

≤ Ch4‖φφφ ‖2
H2 + Ch4−γ‖∇φφφ‖2

L∞ ‖∇U ‖2
Lp ,

where γ = n(2 − p)/p if p ∈ (1, 2] and γ = 0 if p ∈ (2,∞). Therefore (4.44) and (4.4)
yield that W → w strongly in L2(ΩT ,R

m), which in turn implies that

(4.45)

∫
ΩT

〈Ut,W〉Rm dxdt →
∫

ΩT

〈ut,w〉Rm dxdt as h → 0.

We now consider the p-Laplacian term. Similarly to (4.44), we have that

‖∇(Ih(U ∧φφφ) − U ∧φφφ) ‖2
Lp ≤ Ch2

[
‖φφφ ‖2

W 2,p + ‖∇φφφ‖2
L∞ ‖∇U ‖2

Lp

]
.(4.46)

On noting the vector identity 〈∇z,∇(z ∧ φφφ)〉Rm×n = 〈∇z, z ∧ ∇φφφ〉Rm×n , (4.4), and
(4.7), it follows that as h → 0

∫
ΩT

| ∇U |p−2〈∇U,∇(U ∧φφφ)〉Rm×n dxdt =

∫
ΩT

| ∇U |p−2〈∇U,U ∧∇φφφ〉Rm×n dxdt

(4.47)

→
∫

ΩT

| ∇u |p−2〈∇u,u ∧∇φφφ〉Rm×n dxdt =

∫
ΩT

| ∇u |p−2〈∇u,∇(u ∧φφφ)〉Rm×n dxdt.

Noting (4.46), (4.47), and (4.7), we have that∫
ΩT

| ∇U |p−2〈∇U,∇W〉Rm×n dxdt −→
∫

ΩT

| ∇u |p−2〈∇u,∇w〉Rm×n dxdt(4.48)

as h → 0. Finally if p ∈ (1, 2], we deduce from an inverse inequality that

h2‖∇Ih(U ∧φφφ)‖2
L2 ≤ h2‖∇Ih(U ∧φφφ)‖2−p

L∞ ‖∇Ih(U ∧φφφ)‖pLp

≤ Chp‖Ih(U ∧φφφ)‖2−p
L∞ ‖∇Ih(U ∧φφφ)‖pLp(4.49)

≤ Chp‖∇Ih(U ∧φφφ)‖pLp .

It follows from (4.45), (4.48), (4.1), (4.44), (4.4), our constraints on the time step k,
(1.12), (4.49), (4.46), and (3.1) that we now can pass to the limit h → 0 in (4.1) to
obtain that for all φφφ ∈ C∞(ΩT ,R

m)∫ T

0

[
(ut,u ∧φφφ) + (|∇u|p−2∇u,∇(u ∧φφφ))

]
dt = 0.(4.50)
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However, as (4.6) holds, the above equation implies that u : ΩT → Sm−1 satisfies
(1.3)–(1.4) in the weak sense; see Lemma 1.8 in [32] or the proof of Theorem 2.2 in
[15]. Hence, we have proved Theorem 1.1.

5. Numerical experiments: Finite-time blow-up and geometric changes.
The global existence and the nonuniqueness of weak solutions to (1.3)–(1.4) for p > 1,
and the local existence of smooth solutions motivate finite-time blow-up studies. We
say that the numerical solution U, for fixed mesh parameters, blows up at t� if

‖∇U(t�, ·)‖L∞ = max
V∈MMMh

‖∇V‖L∞ .

We remark that this discrete blow-up behavior may disappear as the mesh is refined,
and may be different if we changed from Neumann to Dirichlet-type boundary con-
ditions. We employ our convergent numerical scheme to compute such phenomena.
Throughout these numerical experiments, we set Ω := (−1, 1)2 ⊂ R

2, i.e., n = 2,
and m = 3; recall (1.13). We choose a uniform right-angled triangulation of Ω with
h =

√
2/23 and set U0 ≡ Ihu0. Unless otherwise stated, we choose k = hs+1/2/10

for s = max{p/(p − 1), p}. In all of the experiments reported below we observed
that Ep(U

j+1) ≤ Ep(U
j) for all j ≥ 0 for this choice of k; recall the stability re-

quirements of Theorem 1.1 and that for p ∈ (1, 2) we computed with p = 3/2 and
5/4 ⇒ p/(p − 1) ≥ p + 1 ≡ p + n

2 . Finally, as m = 3, below we plot at each node qi

of Th a vector based on the first two components of Uj(xi).
Example 5.1. Let b > 0, and define u0 : Ω → S2 by

u0(x) :=

(
x

|x| sinφ(|x|), cosφ(|x|)
)
, where φ(r) :=

{
br2 for r ≤ 1,
b for r ≥ 1.

According to the results in [13, 32] we expect finite-time blow-up for p = 2 if b > π.
We choose
(ai) p = 2 and b = π/2 and (aii) p = 2 and b = 3π/2,
(bi) p = 3/2 and b = π/2 and (bii) p = 3/2 and b = 3π/2,
(ci) p = 5/2 and b = π/2 and (cii) p = 5/2 and b = 3π/2.

Figure 5.1 displays the numerical solution in Example 5.1(ai) at various times.
As expected, we do not observe finite-time blow-up; at t = 0.9090 all vectors point in
the same direction. We observe a similar behavior in (bi) and (ci).

In Figure 5.2 we plot the numerical solution in Example 5.1(aii) at various times.
Blow-up occurs at t ≈ 0.4 when the vector at the origin changes its direction from
(0, 0, 1) to −(0, 0, 1). A zoom at the values of the nodes in a neighborhood of the
origin at some times is displayed in Figure 5.5 and magnifies the change of direction
at the origin.

The blow-up happens differently for (bii). Some snapshots of its dynamics are
displayed in Figure 5.3. In the time interval 0.5 ≤ t ≤ 0.8 all vectors apart from the
one at x = 0 approximately point out of the plane. Then, at time t ≈ 0.93 the vector
at the origin changes direction so that a uniform state is achieved.

The behavior in (cii) is different from that in (aii) and (bii). No blow-up occurs;
cf. Figure 5.6. The vector field U obtained in (cii) is shown for various times in
Figure 5.4.

The lower right plot in Figure 5.6 displays the energy E2

(
U(t, ·)

)
in Example 5.1

(ai) obtained with k = 1
2h

2 using the numerical integration rule (1.9) as stated in Step
2 of our scheme, and for comparison exact integration. The results clearly indicate
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Fig. 5.1. U(t, ·) in Example 5.1(ai) for t = 0, 0.0102, 0.1625, 0.3301, 0.5078, 0.9090.
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Fig. 5.2. U(t, ·) in Example 5.1(aii) for t = 0, 0.0102, 0.1016, 0.1828, 0.2539, 0.4467.

that k = 1
2h

2 is not small enough for p = 2 and n = 2 in this experiment with exact
integration, and reveal a stabilizing effect of numerical integration.

Analytical studies [3] of the scalar-valued total variation (TV) flow (p = 1) −ut ∈
∂J(u), u(0) = u0 ∈ L2(Ω), for J(u) = |Du |(Ω) show interesting characterizations
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Fig. 5.3. U(t, ·) in Example 5.1(bii) for t = 0, 0.1051, 0.4054, 0.5105, 0.9259, 0.9910.
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Fig. 5.4. U(t, ·) in Example 5.1(cii) for t = 0, 0.1001, 0.3053, 0.5105, 0.7157, 0.9209.

of the strong solution in the sense of semigroup theory: (i) finite extinction time
(n = 2), (ii) u(t, ·) ∈ L∞(Ω), t > 0, if u0 ∈ Ln(Ω), and no L1 − L2-regularizing effect
for L1(Ω)-initial data, in general, (iii) C1,α-regularity of level sets ∂∗[u(t) > λ

]
for

u0 ∈ Ln(Ω) of decreasing size, i.e., d
dtHn−1

(
∂∗[u(t) > λ

])
≤ 0, and (iv) invariance



CONVERGENT DISCRETIZATION OF THE p-HARMONIC FLOW 923

−0.2
−0.15

−0.1
−0.05

0
0.05

0.1
0.15

0.2 −0.2

−0.1

0

0.1

0.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

−0.2
−0.15

−0.1
−0.05

0
0.05

0.1
0.15

0.2 −0.2

−0.1

0

0.1

0.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

−0.2
−0.15

−0.1
−0.05

0
0.05

0.1
0.15

0.2 −0.2

−0.1

0

0.1

0.2

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Fig. 5.5. Nodal values U(t,qi) for nodes qi close to the origin in Example 5.1(aii) for t =
0.0195, 0.2539, 0.3516.
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Fig. 5.6. Energy decay and W 1,∞ seminorm in Example 5.1(a), (b), and (c) and instability in
Example 5.1(ai) for k = 1

2
h2.

of supports, provided, e.g., that the curvature of the smooth boundary of the simply
connected convex staring support is not too large; cf. [21] for a convergence analysis
of a regularized, fully discrete scheme and corresponding computational studies. We
next discuss the latter issue in the present vectorial case.

Example 5.2. We define u0 : Ω → S2 by

u0(x) :=

{
(1, 0, 0) for |x| < 0.5,
(0, 1, 0) for |x| ≥ 0.5,



924 J. W. BARRETT, S. BARTELS, X. FENG, AND A. PROHL

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 5.7. U(t, ·) in Example 5.2(i) for t = 0, 0.02, 0.04, 0.06, 0.08, 0.10.
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Fig. 5.8. U(t, ·) in Example 5.2(ii) for t = 0, 0.02, 0.04, 0.06, 0.08, 0.10.

and set (i) p = 2, (ii) p = 3/2, and (iii) p = 5/4.

Figures 5.7, 5.8, and 5.9 display snapshots of the numerical solutions in Exam-
ple 5.2(i), (ii), and (iii), respectively. For p = 2 in (i) we observe that the solution
is rather smooth for positive times and that at t ≈ 0.1 an almost uniform (constant)
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Fig. 5.9. U(t, ·) in Example 5.2(iii) for t = 0, 0.02, 0.04, 0.06, 0.08, 0.10.
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Fig. 5.10. Angles and energy decay in Example 5.2.

state is obtained. As opposed to the results in (i) for p = 2, the discontinuity along
the circle |x| = 0.5 is preserved for p = 3/2 in (ii) until t ≈ 0.04. For p = 5/4 the
discontinuity is preserved for a significantly longer time; cf. Figure 5.9. In the left
plot of Figure 5.10 we display the angle between the vectors U(t,x) and (1, 0, 0) for
t ∈ (0, 1) and x ∈ {A,B}, where A = (0, 0) and B = (3/4, 3/4), and for p = 2,
p = 3/2, and p = 5/4. We observe that the angle at the origin changes almost
linearly in case p = 3/2. In the right plot of Figure 5.10 we display the energies
E2(U(t, ·)), E3/2(U(t, ·)), and E5/4(U(t, ·)) as a function of t for the solutions in Ex-
ample 5.2(i), (ii), and (iii), respectively. Of course, even though u0 is discontinuous,
U0 ≡ Ihu0 ∈ W 1,p(Ω,R3) with a mesh dependent norm, and so we still expect energy
decay. We observe that this energy decay is slower for smaller exponents p.
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Abstract. The present work is devoted to the a posteriori error estimation for mixed approxi-
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1. Introduction. Most of the existing elliptic problems of continuum mechanics
are originally derived in the mixed form; i.e., they contain two physical variables that
are often equally important in the applications. For example, the stationary heat
conduction (resp., diffusion) equation

−Δu + f = 0

comes from the energy (resp., mass) balance equation

(1) −div p + f = 0

and the empirical Fourier (resp., Fick) law for the heat (resp., mass) flux

(2) p = ∇u.

Here we have set, for simplicity, the conduction (diffusion) coefficient equal to 1 and
changed the sign in the flux relation (2). Both the temperature (molecular concentra-
tion) u and the flux p may be needed for understanding the real physical process, and
this requirement becomes of utmost importance in the problems of the flows in porous
media and in the elasticity problems, where the complete solution of the problem is
the pair of the pressure and velocity for flows, or respectively the displacement and
stress in elasticity.

These considerations served as a motivation for the extensive research in the
field of so-called mixed methods, that is, the methods allowing one to obtain the
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approximations to both physical variables of the problem. As general references on the
subject, the books [9], [30], and [17] can be recommended. Although the computing
methods are very important, reliable modeling also requires an explicit error control
for the obtained approximations. This issue, namely, the a posteriori error estimation
for the mixed formulations of elliptic problems, constitutes the primary goal of the
present work.

There have been quite a few papers on the a posteriori error estimation for the
mixed finite element methods (FEM). The residual-based estimates were developed
in [2], [6], [12], [1], [16] for the diffusion-type equation and extended in [14] and [20]
to equations of linear elasticity. The superconvergence-based (averaging-type) error
estimators were proposed in [7] and [13] to control the L2-error of the flux variable.
Further, the estimators based on the solution of local problems were presented in [2],
[16], and [20], and the hierarchical estimator can be found in [32]. Finally, a compar-
ison of these four types of error estimators for mixed finite element discretizations by
Raviart–Thomas elements (cf. [24]) was presented in [32]. We also refer to a recent
paper [21], where further references on the subject can be found.

In this paper, we derive a posteriori error estimates of another type, the so-called
functional-type estimates (see also [25], [26], [27], [28]). For the example of problem
(1)–(2) equipped with the zero Dirichlet boundary condition for u and under the
assumption that f ∈ L2(Ω) (where Ω is the physical domain), the main estimates
look as follows:

‖(u− v,p − y)‖1×div ≤ ‖∇v − y‖ + (1 + 2C2
Ω)1/2‖div y − f‖,

‖(u− v,p − y)‖1×div ≥ 1√
3

(‖∇v − y‖ + ‖div y − f‖) .

Here ‖ · ‖ is the norm in L2(Ω), the full norm ‖(·, ·)‖1×div is defined as

‖(u− v,p − y)‖1×div := (‖∇(u− v)‖2 + ‖p − y‖2 + ‖div(p − y)‖2)1/2,

and the pair (v,y) from the product space H1
0 (Ω) × H(Ω; div) is any approximate

solution to the mixed problem. The constant CΩ is the global constant from the
Friedrichs inequality and depends only on the domain geometry.

We see that, while these estimates provide guaranteed upper and lower bounds for
the error of the mixed solution in the full norm, the estimates are also very flexible in
the sense that they can be applied to a variety of different approximations, not being
restricted to a particular discretization method. This fact makes the functional-type
estimates especially attractive for the control of the modelling errors, like those arising
in dimension reduction methods of continuum mechanics (see [29]). The sharpness of
the estimates and the ability to indicate the local error distribution required for the
mesh adaptation will also be shown. Last but not least, we remark that, once the
approximate solution has been found in the product space, the estimates cost very
little: their computation amounts to the calculation of the corresponding norms.

It is worth noting that, if the given data f ∈ L2(Ω), the exact mixed solu-
tion (u,p) belongs to the product space H1(Ω) × H(Ω; div); thus, in this case, i.e.,
if the right-hand side f belongs to L2(Ω), the latter product space seems to be a
natural space for the approximation of the mixed solution. While the standard pri-
mal and dual mixed FEM approximate the mixed pair in H1(Ω) × L2(Ω; Rn), resp.,
L2(Ω) × H(Ω; div) (hence, not using the full regularity of the exact solution), there
are alternative methods that allow us to construct the approximate solution directly
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in H1(Ω) ×H(Ω; div). Some of these methods seem to be very promising and com-
petitive, also in the case when one wants to find an approximation of the flux (stress)
variable only. Although the comparative analysis of these methods is a subject of
the next paper, we briefly review here four of them, since it is important for the
application of our error estimates.

The rest of the paper is organized as follows. In section 2, we introduce the no-
tation for the mixed formulation of a general linear self-adjoint elliptic problem. In
section 3, the two-sided sharp a posteriori error estimate is derived for an arbitrary
approximate solution from the natural class of admissible functions. Next, the indi-
vidual a posteriori estimates for each of the two variables are derived and shown to be
sharp as well. Section 4 is devoted to the applications of the developed theory. First,
we consider the diffusion problem and obtain the explicit error bounds for its approx-
imate mixed solution; then, we discuss possible methods of constructing the solution
in the natural product space. Finally, the a posteriori error estimates are derived for
both displacement and stress approximations in the problem of linear elasticity.

2. Preliminaries. Let V be a reflexive Banach space with the norm ‖ · ‖V , Y a
Hilbert space equipped with the inner product (·, ·)Y and the norm ‖ · ‖Y , and V0 a
linear subspace of V . By B we denote a linear bounded operator acting from V into
Y , and by B∗ : Y → V ∗

0 the dual operator to B
∣∣
V0

(the restriction of B to V0) in the
sense that, for any y ∈ Y ,

(y,Bw)Y = 〈B∗y, w〉 ∀w ∈ V0.

Here 〈w∗, w〉 denotes the value of the functional w∗ ∈ V ∗
0 on the element w ∈ V0.

Next, let us introduce a self-adjoint operator A ∈ L(Y, Y ) such that

(3) λA‖y‖2
Y ≤ (Ay, y)Y ≤ ΛA‖y‖2

Y ∀y ∈ Y,

where λA and ΛA are positive constants independent of y. Such an operator defines
the equivalent norm on Y :

||| y ||| := (Ay, y)
1/2
Y .

The inverse operator A−1 satisfies an inequality of type (3) with constants Λ−1
A and

λ−1
A and defines another equivalent norm on Y :

||| y |||∗ := (A−1y, y)
1/2
Y .

Assume also that the operator B satisfies the coercivity inequality on V0,

(4) ‖w‖V ≤ CB‖Bw‖Y ∀w ∈ V0,

where CB is some positive constant independent of w. Using (3) and (4), one can
define an equivalent norm ||| B · ||| on V0 as well as the following norm on the dual
space V ∗

0 :

[[w∗ ]] := sup
w∈V0\{0}

〈w∗, w〉
||| Bw ||| .

Now let u0 be some given function from V and

V0 + u0 := {v ∈ V | v = w + u0, w ∈ V0}.
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Let, in addition, l be some given functional from V ∗
0 . Then, the problem

(P): Find u ∈ V0 + u0 such that

(ABu,Bw)Y + 〈l, w〉 = 0 ∀w ∈ V0

has the unique solution (this follows from (3) and (4)).
The problem can be rewritten in the operator form as follows:

B∗ABu + l = 0 in V ∗
0 .

The mixed formulation of the problem can be immediately obtained by the introduc-
tion of the new unknown function

p = ABu,
which leads to the problem

(M): Find (u, p) ∈ (V0 + u0) × Y such that

p = ABu in Y,

B∗p + l = 0 in V ∗
0 .

It is clear that problem (M) has the well-known saddle-point structure; its unique
solvability is a direct consequence of conditions (3) and (4) (see, e.g., [9]).

In what follows, we will adopt the terminology used in the duality theory of convex
analysis (see, e.g., [15]) and call the solution of problem (P) the primal variable (pri-
mal solution) and the new unknown p the dual variable (dual solution). Accordingly,
the letters u, v, w will be reserved for the functions related to the primal variable,
i.e., belonging to the space V , and the letters p, q, y for those related to the dual
variable, i.e., in the space Y .

In view of the second equation of problem (M), the dual variable p belongs to
the set

Ql := {q ∈ Y | B∗q = −l in V ∗
0 }.

Thus, for the full control of the dual variable one needs an extended norm on Y , which
we define as

(5) ‖y‖B∗ :=
(
||| y |||2∗ + [[B∗y ]]2

)1/2 ∀y ∈ Y.

Although this is an equivalent norm on Y (since [[B∗y ]] = supw∈V0

〈B∗y,w〉
||| Bw ||| =

supw∈V0

(y,Bw)Y
||| Bw ||| ≤

√
ΛA

λA
||| y |||∗), we need it to explicitly control the error in the “equi-

librium equation,” i.e., in the second equation of (M).
Finally, we define the full norm on the product space V0 × Y :

(6) ‖(w, y)‖V0×Y :=
(
||| Bw |||2 + ‖y‖2

B∗
)1/2 ∀(w, y) ∈ V0 × Y.

3. General estimates.

3.1. Estimate in the full norm. Let (v, q) ∈ (V0 + u0) × Ql be an arbitrary
approximation to the exact solution (u, p) of problem (M). Then, with the help of
the relation p = ABu and the fact that A is a self-adjoint linear operator, it is easy
to show (see also [26]) that

||| B(u− v) |||2 + ||| p− q |||2∗ = (AB(u− v),B(u− v))Y + (A−1(p− q), p− q)Y

= (ABv − q,Bv −A−1q)Y + 2(p− q,B(u− v))Y .
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Since both p and q belong to the set Ql, B∗(p − q) = −l + l = 0 in V ∗
0 and

(p− q,B(u− v))Y = 〈B∗(p− q), u− v〉 = 0; this implies

(7) ||| B(u− v) |||2 + ||| p− q |||2∗ = (ABv − q,Bv −A−1q)Y = ||| ABv − q |||2∗.

This equality can be referred to as the generalized Prager–Synge hypercircle identity
(see [23]).

Relation (7) may already be viewed as an a posteriori error estimate, since the
right-hand side does not depend on the exact solution (u, p). However, the estimate
holds only for q ∈ Ql, which seriously restricts the field of its practical application.
In fact, the constraint of the set Ql is virtually impossible to satisfy exactly (this
would be nearly equivalent to finding the exact dual solution p), and that is why it is
desirable to obtain an estimate allowing the approximate dual solution to be in some
large unconstrained space.

If we waive the constraint B∗q = −l in V ∗
0 for the approximate dual variable, the

latter remains to be considered in the whole space Y . Let y ∈ Y be an arbitrary
approximation to p, and v ∈ V0 + u0 as before. Then, using (7), one can derive

||| B(u− v) |||2 + ||| p− y |||2∗
= ||| B(u− v) |||2 + ||| p− q |||2∗ + 2(A−1(p− q), q − y)Y + ||| q − y |||2∗
= ||| ABv − q |||2∗ + 2(A−1(p− q), q − y)Y + ||| q − y |||2∗ ∀q ∈ Ql.(8)

Now we would like to estimate the right-hand side of (8) from above, so as to eliminate
q ∈ Ql. It is clear that, in order to obtain an explicitly computable and efficient upper
bound, one has to carefully choose some special q in Ql.

First, define the auxiliary function wy ∈ V0 such that

B∗ABwy = l + B∗y in V ∗
0 .

Due to assumptions (3) and (4), this problem has a unique solution.
Now set q := y − ABwy. It is evident that such a function q belongs to Y and

B∗q = B∗y − B∗ABwy = B∗y − l − B∗y = −l in V ∗
0 , that is, q ∈ Ql. It may be

noticed that, with this specific choice of q, the sum q + ABwy obviously becomes a
nonorthogonal variant of the Helmholtz decomposition for the function y ∈ Y .

Now we can plug the constructed q into the right-hand side of (8). For the first
term we have

(9) ||| ABv − q |||∗ ≤ |||ABv − y |||∗ + ||| ABwy |||∗.

Here ||| ABwy |||∗ =
(
A−1ABwy,ABwy

)1/2
Y

= ||| Bwy |||. The latter norm can be esti-
mated by

||| Bwy |||2 = 〈B∗ABwy, wy〉 ≤ [[B∗ABwy ]] ||| Bwy |||,

which implies ||| Bwy ||| ≤ [[B∗ABwy ]]. We notice now that, by the definition of wy,
B∗ABwy = l + B∗y in V ∗

0 , which ultimately leads to the estimate

(10) ||| ABwy |||∗ ≤ [[ l + B∗y ]].

Inserting this into (9), one obtains

(11) ||| ABv − q |||∗ ≤ |||ABv − y |||∗ + [[ l + B∗y ]].
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The second term on the right-hand side of (8) can be rewritten as

2(A−1(p− q), q − y)Y = 2(A−1(p− q),−ABwy)Y = −2(p− q,Bwy)Y(12)

= −2〈B∗(p− q), wy〉 = 0,

since B∗(p− q) = −l + l = 0 in V ∗
0 .

The third term on the right-hand side of (8) equals ||| ABwy |||2∗, which has been
estimated from above by [[ l + B∗y ]]2 (see (10)). Hence, combining this result with
(11) and (12), we obtain from (8)

(13) ||| B(u− v) |||2 + ||| p− y |||2∗ ≤ (||| ABv − y |||∗ + [[ l + B∗y ]])
2

+ [[ l + B∗y ]]2,

where v is an arbitrary function from V0 + u0 and y is any function from Y .
From (13) one immediately derives the estimate

(14)
(
||| B(u− v) |||2 + ||| p− y |||2∗

)1/2 ≤ |||ABv − y |||∗ +
√

2 [[ l + B∗y ]]

and the following theorem.
Theorem 3.1. Let (u, p) ∈ (V0 + u0) × Y be the solution of problem (M), and

let v ∈ V0 + u0 and y ∈ Y be arbitrary approximations to u and p.
Then, the following estimates hold true:

‖(u− v, p− y)‖V0×Y ≤ |||ABv − y |||∗ +
√

3 [[ l + B∗y ]],(15)

‖(u− v, p− y)‖V0×Y ≥ 1√
3

(||| ABv − y |||∗ + [[ l + B∗y ]]) .(16)

Proof. The upper bound (15) immediately follows from estimate (13) and the
definition of the full norm ‖(·, ·)‖V0×Y , since [[B∗(p− y) ]] = [[ l + B∗y ]].

To obtain the lower bound (16) we use first the triangle inequality to derive

||| ABv − y |||∗ + [[ l + B∗y ]] ≤ |||ABv −ABu |||∗ + ||| p− y |||∗ + [[ l + B∗y ]]

= ||| B(u− v) ||| + ||| p− y |||∗ + [[B∗(p− y) ]],

and then the inequality a+b+c ≤
√

3
√
a2 + b2 + c2 ∀a, b, c ≥ 0 to obtain the estimate

||| ABv − y |||∗ + [[ l + B∗y ]] ≤
√

3 ‖(u− v, p− y)‖V0×Y .

This implies the lower bound (16).
Let

(17) M⊕ := ||| ABv − y |||∗ +
√

3 [[ l + B∗y ]]

denote the upper bound (15) for the error in the full norm.
Remarks. 1. If y → p in Y and v → u in V , the estimates (15) and (16) tend to

zero, precisely as the exact error in the full norm ‖(u− v, p− y)‖V0×Y does.
2. The error majorant M⊕ is sharp. Indeed, if one takes y = p (i.e., l + B∗y ≡ 0

in V ∗
0 ), estimate (15) becomes

||| B(u− v) ||| ≤ ||| ABv − p |||∗ = ||| B(u− v) |||,

which shows that the constant “1” in front of the first term of M⊕ cannot be improved
in general. On the other hand, if, in the case u0 = 0, we set v = 0 and y = 0, then
estimate (15) takes the form(

2 ||| Bu |||2 + [[ l ]]2
)1/2 ≤

√
3[[ l ]],
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which is a sharp estimate since ||| Bu ||| ≤ [[ l ]] (set w = u in problem (P)), and this
estimate, evidently, cannot be improved. Thus, the factor “

√
3” multiplying the

second term in M⊕ cannot be taken smaller in a general case.
The sharpness of the lower bound (16) in a general case is obvious from the

estimate’s derivation.
3. The efficiency of the estimator M⊕ can be easily evaluated using the lower

bound (16). Namely, for the effectivity index of M⊕ we have

(18) ieff :=
M⊕

‖(u− v, p− y)‖V0×Y
≤

√
3
||| ABv − y |||∗ +

√
3 [[ l + B∗y ]]

||| ABv − y |||∗ + [[ l + B∗y ]]
≤ 3.

Estimate (18) provides a rough upper bound for the effectivity index that in most of
the cases will be strictly less than 3. Indeed, if the second term [[ l+B∗y ]] is essentially
smaller than the first one, then ieff is close to

√
3. On the other hand, since (15) is a

guaranteed upper bound of the error, we always have ieff ≥ 1.
The two-sided estimate (15)–(16) is important, because it provides a control over

the error in the full norm, i.e., with respect to both primal and dual variables. How-
ever, the individual errors in primal and dual variables may also be of interest; in the
next two sections we derive sharp upper bounds for the corresponding norms of these
errors. It is worth noticing that the individual estimates which immediately follow
from (15) are not sharp and hence may lead to a certain overestimation.

3.2. Estimate for error in the primal variable.
Theorem 3.2. Let u ∈ V0 + u0 be the solution of problem (P), and v ∈ V0 + u0

an arbitrary approximate solution to (P). Then

(19) ||| B(u− v) ||| ≤ ||| ABv − y |||∗ + [[ l + B∗y ]] ∀y ∈ Y.

Proof. It immediately follows from (7) that ||| B(u− v) |||2 = infq∈Ql
||| ABv − q |||2∗;

i.e.,

(20) ||| B(u− v) ||| ≤ ||| ABv − q |||∗ ∀q ∈ Ql.

The right-hand side of (20) has been already estimated for the proof of Theorem 3.1,
where the function q ∈ Ql was constructed such that q = y−ABwy with y being any
function from Y and wy being the solution to the problem B∗ABwy = l+B∗y in V ∗

0 .
Then, estimate (19) follows directly from (11).

Remarks. 1. Estimate (19) is sharp. Indeed, if we set y = p = ABu, the estimate
will be

||| B(u− v) ||| ≤ ||| ABv −ABu |||∗ = ||| B(u− v) |||.

On the other hand, in the case u0 = 0, setting v = 0 and y = 0, we obtain from (19)

||| Bu ||| ≤ [[ l ]],

which is the sharp energy estimate for the solution u of problem (P). Thus, the
weights equal to 1 on the right-hand side of estimate (19) are optimal, in a general
case.

2. Estimate (19) is asymptotically exact in the sense that, if y → p in Y , then
the upper bound (19) tends to the norm ||| ABv −ABu |||∗ = ||| B(u− v) ||| of the error
in primal variable.
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3. The estimate remains efficient if y is close to p in Y , since

||| ABv − y |||∗ + [[ l + B∗y ]] ≤ |||ABv −ABu |||∗ + ||| p− y |||∗ + [[B∗(p− y) ]]

≤ ||| B(u− v) ||| +
√

2‖p− y‖B∗ .

Here the last, presumably small, term measures the level of the overestimation due
to estimate (19).

4. If one considers only y ∈ Ql in (19), one arrives at estimate (20), which is
the “constitutive relation-based” estimate (see [19]). On the other hand, if one takes
y = ABv in (19), one obtains the estimate ||| B(u − v) ||| ≤ [[ l + B∗ABv ]], which is
the “residual-based” estimate for problem (P) (see [4]). Thus, estimate (19) includes
these two estimates as particular cases, combining their advantages and providing a
greater flexibility. More on the links between the error majorant and other estimates
can be found in [25].

3.3. Estimate for error in the dual variable.
Theorem 3.3. Let (u, p) ∈ (V0 + u0) × Y be the solution to problem (M), and

let y ∈ Y be any approximation of p. Then

||| p− y |||∗ ≤ |||ABv − y |||∗ + [[ l + B∗y ]] ∀v ∈ V0 + u0,(21)

‖p− y‖B∗ ≤ |||ABv − y |||∗ +
√

2[[ l + B∗y ]] ∀v ∈ V0 + u0.(22)

Proof. We have for any v ∈ V0 + u0

||| B(u− v) |||2 + ||| p− y |||2∗ = (AB(u− v),B(u− v))Y + (A−1(p− y), p− y)Y(23)

= (ABv − y,Bv −A−1y)Y + 2(p− y,B(u− v))Y ,

where the self-adjointness of A and A−1 as well as the relation p = ABu have been
used. For the second term on the right-hand side of (23) we have

(p− y,B(u− v))Y = 〈B∗(p− y), u− v〉 = 〈−l − B∗y, u− v〉 ∀v ∈ V0 + u0,

which implies the estimate

| (p− y,B(u− v))Y | ≤ [[ l + B∗y ]] ||| B(u− v) ||| ≤ 1

2

(
[[ l + B∗y ]]2 + ||| B(u− v) |||2

)
.

Using this estimate and noticing that the first term on the right-hand side of (23)
equals ||| ABv − y |||2∗, we derive from (23)

||| B(u− v) |||2 + ||| p− y |||2∗ ≤ |||ABv − y |||2∗ + [[ l + B∗y ]]2 + ||| B(u− v) |||2,

that is,

||| p− y |||2∗ ≤ |||ABv − y |||2∗ + [[ l + B∗y ]]2 ∀v ∈ V0 + u0.

This immediately yields estimate (21). Then, (22) is obvious.
Remark. Estimate (21) is sharp (hence, estimate (22) is sharp too). Indeed, if

our approximation y belongs to Ql and we set v = u, we obtain from (21)

||| p− y |||∗ ≤ |||ABu− y |||∗ = ||| p− y |||∗.

On the other hand, if, in the case u0 = 0, we set v = 0 and y = 0, we have from (21)

||| p |||∗ ≤ [[ l ]], i.e., ||| Bu ||| ≤ [[ l ]],

which is the sharp energy estimate for the solution of problem (P). Thus, the weights
of both terms on the right-hand side of (21) are, in general, optimal.
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3.4. Important special case. The estimates obtained above provide reliable
measures of the errors in a very general situation when the exact solution to prob-
lem (P) is sought in an arbitrary reflexive Banach space V and the given functional
l belongs to V ∗

0 . As a result, the norm in V ∗
0 enters the estimates, making them less

convenient for computational purposes. However, in most practically interesting cases
one can significantly simplify the estimates. Indeed, usually one has

(24) the continuous embedding V ⊂ U

for some Hilbert space U with the inner product (·, ·)U and the norm ‖ · ‖U . This
means that ‖·‖U ≤ C‖·‖V with some constant C; however, in what follows we mostly
deal with cases like U = L2(Ω), V = H1(Ω) and hence make a stronger assumption,

(25) ‖ · ‖U ≤ ‖ · ‖V .

One may notice that U ⊂ V ∗
0 . (It immediately follows from (24).) We also assume

the given data

(26) l ∈ U.

First, one can notice that, if assumption (26) holds true, the exact dual solution
p satisfies the equation B∗p + l = 0 in U and hence belongs to the space

YB∗ := {y ∈ Y | B∗y ∈ U},

which is the Banach space with respect to the norm

(27) | y |B∗ :=
(
||| y |||2∗ + ‖B∗y‖2

U

)1/2 ∀y ∈ YB∗ .

As compared to the definition of the norm ‖ · ‖B∗ (see (5)), the newly defined norm
is stronger, which reflects the fact that YB∗ is a subspace of Y .

It is natural now to consider the approximation y of the exact dual solution in
YB∗ rather than in Y ; this is still much less restrictive than an approximation in the
set Ql, whose definition contains the complicated constraint B∗y = −l.

Then, we can estimate the term [[ l + B∗y ]] as follows:

(28) [[ l + B∗y ]] = sup
w∈V0\{0}

〈l + B∗y, w〉
||| Bw ||| = sup

w∈V0\{0}

(l + B∗y, w)U
||| Bw |||

≤ sup
w∈V0\{0}

‖l + B∗y‖U ‖w‖U
||| Bw ||| ≤ sup

w∈V0\{0}

‖l + B∗y‖U ‖w‖V
||| Bw |||

≤ CB

λ
1/2
A

‖l + B∗y‖U ∀y ∈ YB∗ ,

where inequalities (3), (4), and (25) have been used. It is important to notice that
one often has the inequality

(29) ‖w‖U ≤ C̃B ‖Bw‖Y ∀w ∈ V0

in addition to (4); in such a case, the constant CB in (28) is to be replaced by C̃B
from (29).
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With the definition of the YB∗ -norm (see (27)), the full norm (6) should be un-
derstood on the product space V0 × YB∗ in the following sense:

(30) ‖(v, y)‖V0×YB∗ :=
(
||| Bv |||2 + ||| y |||2∗ + ‖B∗y‖2

U

)1/2 ∀(v, y) ∈ V0 × YB∗ .

Theorem 3.4. Let V be continuously embedded into some Hilbert space U and
l ∈ U . Suppose in addition that ‖ · ‖U ≤ ‖ · ‖V . Let (u, p) ∈ (V0 + u0) × YB∗ be the
solution to problem (M), and let (v, y) ∈ (V0 +u0)×YB∗ be any approximate solution
to (M).

Then, the following a posteriori error estimates hold true:

‖(u− v, p− y)‖V0×YB∗ ≤ |||ABv − y |||∗ +

(
1 + 2

C2
B

λA

)1/2

‖l + B∗y‖U ,(31)

‖(u− v, p− y)‖V0×YB∗ ≥ 1√
3

(||| ABv − y |||∗ + ‖l + B∗y‖U ) ,(32)

||| B(u− v) ||| ≤ ||| ABv − y |||∗ +
CB

λ
1/2
A

‖l + B∗y‖U ,(33)

||| p− y |||∗ ≤ |||ABv − y |||∗ +
CB

λ
1/2
A

‖l + B∗y‖U ,(34)

‖p− y‖B∗ ≤ |||ABv − y |||∗ +

(
1 +

C2
B

λA

)1/2

‖l + B∗y‖U .(35)

Proof. The upper bound (31) immediately follows from estimates (13) and (28);
the lower bound (32) is a simple consequence of the triangle inequality, like the lower
bound (16) in Theorem 3.1.

Estimate (33) can easily be derived from (19) and (28), while estimates (34)
and (35) follow from (21) and (28).

Remarks. 1. Estimates (31)–(35) are sharp, which follows from the sharpness of
the estimates of Theorems 3.1–3.3 and of inequality (28).

2. Estimates (31) and (32) imply that the effectivity index of the error majorant

(31) is always between 1 and
√

3
(
1+2

C2
B

λA

)1/2
. It is worth noting that the constant λA

can be made equal to 1 if one performs the corresponding rescaling of the operator A
and of the functional l (i.e., multiplication of the linear problem (P) by 1/λA). The
constant CB depends only on the operator B and can easily be evaluated a priori. (We
discuss this issue in the next section.) We will also show that, after an appropriate
scaling of the geometric coordinates, one can make the constant CB ≤ 1, which means
that the effectivity index of the upper bound (31) for the new “rescaled” problem will
always be between 1 and 3.

3. It is worthwhile to notice a remarkable symmetry of estimates (33) and (34)
for the primal and dual variables.

4. Applications.

4.1. Diffusion problem.

4.1.1. Error estimates. Let V = H1(Ω), where Ω is a bounded domain in R
n

with Lipschitz boundary ∂Ω, V0 = H1
0 (Ω), Y = L2(Ω; Rn). Consider the case

B = ∇ :=

(
∂

∂x1
, . . . ,

∂

∂xn

)
.
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Then, B∗y = −div y ∈ H−1(Ω) = V ∗
0 for any y ∈ Y , and

〈B∗y, w〉 =

∫
Ω

y · ∇w dx ∀w ∈ V0,

where the dot denotes the scalar product of vectors in R
n. The operator A is defined

by a symmetric uniformly positive definite matrix A = {aij(x)}i,j=1,n with coefficients
from L∞(Ω). Then, the norms ||| · ||| and ||| · |||∗ are defined as

|||y |||2 =

∫
Ω

Ay · y dx, |||y |||2∗ =

∫
Ω

A−1y · y dx.

Inequality (3) is obviously satisfied, and (4) follows from the Friedrichs inequality.

Assume now that u0 is some given function from H1(Ω) and that l is some
given functional from H−1(Ω). Then, problem (P) defines the weak solution of the
boundary-value problem

−div(A∇u) + l = 0 in Ω,(36)

u = u0 on ∂Ω.(37)

We can also write all the estimates of Theorems 3.1–3.3, where [[ · ]] is equivalent to
the H−1(Ω)-norm.

We see, however, that V is continuously embedded into the Hilbert space U =
L2(Ω) and that inequality (25) is valid; hence, if we suppose that the data l ∈ L2(Ω),
we can use the results of Theorem 3.4.

First, we note that the space YB∗ is, in fact, the space H(Ω; div) := {y ∈
L2(Ω; Rn) | div y ∈ L2(Ω)} with the norm

‖y‖div :=
(
|||y |||2∗ + ‖div y‖2

)1/2
,

where ‖ · ‖ denotes the norm in L2(Ω).

The full norm then takes the form

‖(v,y)‖1×div :=
(
||| ∇v |||2 + |||y |||2∗ + ‖div y‖2

)1/2 ∀(v,y) ∈ H1
0 (Ω) ×H(Ω; div).

It is important to notice that, in the considered case, we have an inequality of type (29)
that is exactly the Friedrichs inequality

‖w‖ ≤ CΩ ‖∇w‖ ∀w ∈ H1
0 (Ω).

Thus, the constant CB in (28) and in Theorem 3.4 is, in fact, the constant CΩ from
the Friedrichs inequality.

Hence, if (u,p) ∈ (H1
0 (Ω) + u0) × H(Ω; div) is the exact solution to the mixed

problem

p = A∇u in Ω,(38)

−div p + l = 0 in Ω,(39)

and (v,y) ∈ (H1
0 (Ω) + u0) × H(Ω; div) is any approximate solution to the problem,
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then the following a posteriori error estimates follow directly from Theorem 3.4:

‖(u− v,p − y)‖1×div ≤ |||A∇v − y |||∗ +

(
1 + 2

C2
Ω

λA

)1/2

‖div y − l‖,(40)

‖(u− v,p − y)‖1×div ≥ 1√
3

(|||A∇v − y |||∗ + ‖div y − l‖) ,(41)

||| ∇(u− v) ||| ≤ |||A∇v − y |||∗ +
CΩ

λ
1/2
A

‖div y − l‖,(42)

|||p − y |||∗ ≤ |||A∇v − y |||∗ +
CΩ

λ
1/2
A

‖div y − l‖,(43)

‖p − y‖div ≤ |||A∇v − y |||∗ +

(
1 +

C2
Ω

λA

)1/2

‖div y − l‖.(44)

Estimates (40)–(44) provide sharp error bounds that are explicitly computable, if one
has the approximate solution to (38)–(39) in the product space H1(Ω) ×H(Ω; div).
It is, of course, clear that, having found the approximate mixed solution (v,y) by
primal or dual mixed FEM, one can use some local averaging (projection) to recover
the needed H1(Ω) (respectively, H(Ω; div)) regularity for the approximate primal
(respectively, dual) variable. There exist, however, several methods allowing one to
approximate the mixed solution (u,p) in the space H1(Ω)×H(Ω; div) directly. Below,
we briefly review four of them.

4.1.2. Approximation of the mixed solution in H1(Ω) × H(Ω; div).
(a) Least-squares mixed method. This method was analyzed in [22] and, under the

name first-order-system least-squares (FOSLS), in [10], [11] (see also the references
therein). In this method, the saddle-point (min-max) problem (38)–(39) is reformu-
lated as a quadratic minimization (min-min) problem

(45) inf
v∈H1

0 (Ω)+u0

inf
y∈H(Ω;div)

(
|||A∇v − y |||2∗ + ‖div y − l‖2

)
,

which leads to the solution of the “stabilized” saddle-point problem, given next.
Find (u,p) ∈ (H1

0 (Ω) + u0) ×H(Ω; div) such that∫
Ω

A−1p · q dx +

∫
Ω

(div p)(div q) dx−
∫

Ω

∇u · q dx

=

∫
Ω

l (div q) dx ∀q ∈ H(Ω; div),(46) ∫
Ω

(div p) v dx +

∫
Ω

A∇u · ∇v dx = 0 ∀v ∈ H1
0 (Ω).(47)

We have to note that, in the original version of the method, the squared L2-norm was
used in the first term of the functional (45) instead of the squared ||| · |||∗-norm, which
somehow changes the system of the functional’s optimality conditions (46)–(47).

System (46)–(47), unlike (38)–(39), leads to a symmetric positive definite discrete
problem, and the discrete inf-sup condition is always satisfied owing to the least-
squares stabilization. The latter fact allows one to choose the approximation spaces
for u and p independently of each other.

However, in (46)–(47) the primal and the dual variables are strongly coupled. The
following method yields only a weak coupling of the variables.
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(b) Method of minimizing the squared majorant. From estimate (42) for the error
in the primal variable one can easily derive the estimate for the squared energy norm
of the error:

(48) ||| ∇(u− v) |||2 ≤ (1 + β) |||A∇v − y |||2∗ +

(
1 +

1

β

)
C2

Ω

λA
‖div y − l‖2,

where β > 0 is an arbitrary number and y is any function from H(Ω; div). Denote the
right-hand side of (48) by M2(v;y, β) (“the squared error majorant”). It is evident
that M2(v;y, β) is, in fact, the least-squares functional (45) with differently weighted
terms. However, instead of minimizing the functional with respect to both v and y
simultaneously as in the least-squares mixed method, the following simple algorithm
was proposed in [27]:

1. Find the approximate solution v ∈ V0 + u0 to the problem (36)–(37).
2. Set β = 1, and find y by minimizing M2(v;y, β) with respect to y.

The algorithm was initially motivated by the goal of finding a best possible upper
bound for the energy error in the primal variable; however, it also provides a com-
putationally efficient way of computing approximate primal and dual solutions in
H1(Ω) × H(Ω; div) in a weakly coupled manner. Indeed, the problems for v and y
now have to be solved successively.

While the problem of finding an approximate solution to (36)–(37) in step 1 is
quite standard, the computation of y in step 2 also does not present serious difficulty.
Since M2(v;y, β) is a quadratic functional with respect to the dual variable y for any
fixed v and β, the minimization of the functional on any finite-dimensional subspace
Yh of H(Ω; div) leads to the solution of a linear system with symmetric positive definite
matrix.

This algorithm was independently proposed in [8] as an alternative to the least-
squares mixed method and considered as a single Picard–Uzawa-type iteration for the
solution of the coupled system (46)–(47). (In [8], the least-squares functional (45) was
used, not M2(v;y, β).) It has been shown in [8] that, with v found by a conforming
FEM for the problem (36)–(37), the minimizer yh of the functional on the subspace
Yh has the optimal order of the H(Ω; div)-error with respect to the mesh size (i.e.,
the order of the interpolation error for Yh), provided that the H1(Ω)-error of the
approximation v is not of lower order. The advantage over the dual mixed FEM as
well as the least-squares mixed method is obvious: the computation of the primal
variable is completely independent of the calculation of the dual one (this reduces
the total computational cost), and the discrete problem for each of the variables is
moderately sized, symmetric, and positive definite (i.e., one does not have to deal
with an indefinite saddle-point problem as in the case of the dual mixed FEM).

As follows from the numerical studies of [27], using the parameter β, one can gain
a further improvement in the approximation of the dual solution. Namely, for the
unique minimizer yβ ∈ H(Ω; div) of M2(v;y, β) for any fixed v ∈ V0 + u0 and β > 0,
it was proved in [27] that yβ converges to the exact dual solution p in H(Ω; div) as
β → 0, and, moreover,

|||p − y |||∗ ≤ C β1/2,

‖div(p − y)‖ ≤ C β,

with some constant C independent of y and β. Thus, the one-stroke minimization of
the functional M2(v;y, β) with respect to y and with some moderately small β may
yield even better accuracy of the dual-solution approximation than the minimization
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with β = 1. Numerical experiments (see [27]) show that, for example, if one uses
linear finite elements for both primal and dual variables, the value β = 1/10 is a good
choice. Taking β moderately small allows one to circumvent the difficulties with the
condition number of the resulting discrete system and with the locking phenomenon,
typical for penalty methods.

A possible way of finding the concrete value of β is to minimize the functional
M2(v;y, β) with respect to β having fixed v and y. This immediately implies the
explicit formula

(49) β =
CΩ‖div y − l‖

λ
1/2
A |||A∇v − y |||∗

,

and the modified algorithm for the approximation of the primal and dual solutions
reads as follows:

1. Find the approximate solution v ∈ V0 + u0 to the problem (36)–(37).
2. Set β(1) = 1 and find y(1) by minimizing M2(v;y, β(1)) with respect to y.
3. Compute β(2) using y(1) in formula (49); find y(2) by minimizing M2(v;

y, β(2)) with respect to y.
A further iteration of the process of minimizing the squared majorant with respect to
y and β does not bring any essential benefits, as shown in the detailed study of [27].

To summarize, the minimization of the squared majorant either at a one-stroke
(only steps 1 and 2 in the algorithm above) or by two iterations provides a competitive
approach to the approximation of the dual solution. The whole method of finding the
primal variable in H1(Ω) and the dual variable in H(Ω; div) amounts to the successive
solution of two elliptic problems. It is worth noting that the approximation spaces
for v and y can be chosen independently of each other, as in the least-squares mixed
method.

(c) Dual penalty method. This method can be viewed as a limiting case of the
previous method, i.e., the case when the parameter β in the squared majorant is
considered as a very small penalty parameter. The classical dual penalty method
has, however, a slightly different formulation. Namely, after finding v ∈ V0 + u0 as
an approximate solution to (36)–(37), one has to minimize the quadratic “penalized
functional”

I(y) := |||y |||2∗ +
1

ε
‖div y − l‖2

over H(Ω; div) for some small ε > 0. The main difference with the method of min-
imizing the squared majorant is that the approximation of y is now fully decoupled
from the approximation of v. As immediate drawbacks, one has the deterioration of
the condition number of the resulting discrete problem and a possible locking phe-
nomenon.

(d) Method of local projections. In this method, the dual variable is found by some
local projections of the approximate flux A∇v into the space H(Ω; div). The approx-
imate flux is derived from the approximate primal solution v ∈ V0 + u0 previously
found by solving (36)–(37). Thus, we have here again a weakly coupled approach. The
method is usually referred to as the “gradient recovery” or “gradient averaging,” and
its diverse variants have been considered by many researchers (see, e.g., [18], [34], [35],
[33] and the references therein). In particular, the so-called “equilibrium-enhanced”
gradient recovery methods (see [5], [31]) seem to be especially advantageous for com-
puting an accurate approximation to the dual variable in the H(Ω; div)-norm.
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Remarks. 1. It is clear that each of the four methods addressed above has both
advantages and drawbacks. A thorough comparison of the methods still remains to
be done.

2. If the approximation to (u,p) has been found in (H1
0 (Ω) + u0) × H(Ω; div)

by one of the above considered methods, it can be inserted into estimates (40)–(44)
to yield the explicit a posteriori control of the errors in both variables. Since the
norms in the estimates can be computed by summation of the local contributions
from subdomains of Ω (given some finite subdivision of Ω), they may be used also for
an adaptive improvement of the approximation. In particular, it is obvious that, if
y is close to p in H(Ω; div), the term |||A∇v − y |||∗ computed over any subdomain
ω ⊂ Ω is close to ||| ∇(u−v) ||| considered on ω. More on the use of the error majorants
for the indication of the local error distribution can be found in [27], [28].

3. The constant CΩ stemming from Friedrichs’ inequality is equal to 1/
√
λΩ,

where λΩ is the minimal eigenvalue of the Laplace operator equipped with the homo-
geneous Dirichlet boundary condition on ∂Ω. It is, however, clear that CΩ can always
be estimated from above by CD, where D ⊃ Ω is some domain of a simple shape (e.g.,
a rectangle in two dimensions). Then, CD can be computed analytically.

4. Since the evaluation of CΩ is fairly easy, the total computational cost of
estimates (40)–(44) is very small (only the computation of norms), provided that the
pair (v,y) is found in (H1

0 (Ω) + u0) ×H(Ω; div), for instance, by one of the methods
discussed above.

5. Using translation and rescaling of the geometric coordinates (which amounts
to a linear coordinate transformation), one can make it so that the rescaled physical

domain Ω̃ would be completely inside of a unit cube (square in two dimensions). After
having rewritten the original elliptic problem in the new coordinates and subsequently
rescaling the equation so that λA = 1 (see Remark 2 at the end of section 3.4), we
can write down all the estimates (40)–(44) for the approximation error of the solution

to the rescaled problem on the new domain Ω̃. The most important fact here is that
all the estimates for the new problem will contain only numerical constants (like

√
3,√

2), since λA = 1 and the Friedrichs constant CΩ̃ may be estimated from above by 1
(see Remark 3 above). As an immediate consequence, one infers that the effectivity
index of the upper bound (40) for the error in the full norm will be between 1 and 3.

4.2. Linear elasticity. Although the application of the theory to the problem of
linear elasticity is similar to the case of the diffusion problem, it is, however, interesting
to consider the elasticity problem in detail.

Let V = H1(Ω; Rn), where Ω is a bounded domain in R
n with Lipschitz boundary

∂Ω, V0 = {v ∈ V | v = 0 on ∂Ω}, and Y = L2(Ω; Mn×n
s ), where M

n×n
s is the space

of symmetric n× n-matrices. Now define the operator B as follows:

Bv := e(v) =
1

2

(
∇v + (∇v)T

)
.

Here ∇v = {vi,j} is a tensor (the gradient of the vector v), and the symbol T means
the transposition. Then, B∗y = −div y ∈ H−1(Ω; Rn) = V ∗

0 for any y ∈ Y, and

〈B∗y,w〉 =

∫
Ω

y : e(w) dx ∀w ∈ V0,

where the colon denotes the inner product in M
n×n
s (a : b =

∑
aijbij ∀a, b ∈ M

n×n
s ).
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The operator A is defined by the so-called tensor of elastic moduli L = {Lijkl},
which satisfies the double inequality

(50) λL | e |2 ≤ Le : e ≤ ΛL | e |2 ∀e ∈ M
n×n
s

and the symmetry and boundedness conditions

(51) Lijkl = Ljikl = Lklij , Lijkl ∈ L∞(Ω).

Then, the norms ||| · ||| and ||| · |||∗ are defined as

|||y |||2 =

∫
Ω

Ly : y dx, |||y |||2∗ =

∫
Ω

L
−1y : y dx ∀y ∈ Y.

Inequality (3) is obviously satisfied, and (4) follows from the Korn inequality.
Assume now that u0 is some given function from H1(Ω; Rn) and that f is some

given functional from H−1(Ω; Rn). Then, problem (P) can be formulated as follows.
Find u ∈ V0 + u0 such that

(52)

∫
Ω

Le(u) : e(w) dx + 〈f ,w〉 = 0 ∀w ∈ V0,

where 〈f ,w〉 =
∫
Ω

f · w dx. The corresponding mixed formulation of (52) defines the
weak solution of the boundary-value problem of linear elasticity:

p = Le(u) in Ω,(53)

div p = f in Ω,(54)

u = u0 on ∂Ω.(55)

We see that V is continuously embedded into the Hilbert space U = L2(Ω; Rn)
and that inequality (25) holds true; hence, if we suppose the given body force f ∈
L2(Ω; Rn), we can use the results of Theorem 3.4.

First, we note that the space YB∗ is, in fact, the space H(Ω; div) := {y ∈ Y |
div y ∈ L2(Ω; Rn)} with the norm

‖y‖div :=
(
|||y |||2∗ + ‖div y‖2

)1/2

,

where ‖ · ‖ denotes the norm in L2(Ω; Rn).
The full norm then takes the form

‖(v,y)‖1×div :=
(
||| e(v) |||2 + |||y |||2∗ + ‖div y‖2

)1/2

∀(v,y) ∈ V0 × H(Ω; div).

It is important to notice that, in the considered case, we have the inequality of
type (29) that is a vector variant of the Friedrichs inequality, namely,

(56) ‖w‖ ≤ CΩ ‖e(w)‖ ∀w ∈ V0.

Thus, the constant CB in (28) and in Theorem 3.4 is, in fact, the constant CΩ

from (56).
Remark. The constant CΩ from (56) equals 1/

√
λΩ, where λΩ is the mini-

mal eigenvalue of the vector-valued elliptic operator L : V0 → H−1(Ω; Rn), Lw =
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− 1
2 (div(∇w)+∇(div w)) for any w ∈ V0, equipped with the zero Dirichlet boundary

condition on ∂Ω. The minimal eigenvalue λΩ can be estimated from below by one
half of the sum of the minimal eigenvalues of the operators L1 : V0 → H−1(Ω; Rn),
L1w = −div(∇w) = −Δw, and L2 : V0 → H−1(Ω; Rn), L2w = −∇(div w). It is
clear that the smallest eigenvalue of the second operator is zero, while the minimal
eigenvalue of the first one equals the minimal eigenvalue of the scalar Laplace operator
in Ω; the latter depends only on the geometry of the domain Ω and can be estimated
from below by embedding Ω into a larger domain of a simpler shape, as discussed in
Remark 3 at the end of section 4.1. This ultimately leads to an easily computable
upper bound for the constant CΩ from (56).

Hence, if (u,p) ∈ (V0+u0)×H(Ω; div) is the exact solution to the mixed problem

(53)–(55) and (v,y) ∈ (V0 +u0)×H(Ω; div) is any approximate solution to the prob-

lem, then the following a posteriori error estimates follow directly from Theorem 3.4:

‖(u − v,p − y)‖1×div ≤ |||Le(v) − y |||∗ +

(
1 + 2

C2
Ω

λL

)1/2

‖div y − f‖,(57)

‖(u − v,p − y)‖1×div ≥ 1√
3

(
|||Le(v) − y |||∗ + ‖div y − f‖

)
,(58)

||| e(u − v) ||| ≤ |||Le(v) − y |||∗ +
CΩ

λ
1/2
L

‖div y − f‖,(59)

|||p − y |||∗ ≤ |||Le(v) − y |||∗ +
CΩ

λ
1/2
L

‖div y − f‖,(60)

‖p − y‖div ≤ |||Le(v) − y |||∗ +

(
1 +

C2
Ω

λL

)1/2

‖div y − f‖.(61)

Estimates (57)–(61) provide sharp error bounds that are explicitly computable, if one
has the approximate solution to problem (53)–(55) in the product space (V0 + u0) ×
H(Ω; div). The construction of the approximation in this space can be done along the
lines presented in the previous section for the case of a scalar elliptic problem.
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Abstract. Recently, Courbet and Croisille [RAIRO Modél. Math. Anal. Numér., 32 (1998), pp.
631–649] introduced the finite volume box-scheme for the two-dimensional (2D) Poisson problem in
the case of triangular meshes. Generalizations to higher degree box-schemes have been published by
Croisille and Greff [Numer. Methods Partial Differential Equations, 18 (2002), pp. 355–373]. These
box-schemes are based on the principle of the finite volume method in that they take the average
of the equations on each cell of the grid. This gives rise to a natural choice of unknowns located
at the interface of the mesh. These box-schemes are conservative and use only one mesh. They
can be interpreted as a discrete mixed Petrov–Galerkin formulation of the Poisson problem. In this
paper we focus our interest on box-schemes for the Poisson problem in two dimensions on rectangular
grids. We discuss the basic finite volume box-scheme and analyze and interpret it as three different
box-schemes. The method is demonstrated by numerical examples.
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nonconforming spaces
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1. Introduction. The aim of this paper is to introduce several box-schemes for
elliptic problems on rectangular grids based on the model of [6, 7, 8, 13]. The principle
of the box-scheme we intend to discuss here in the case of rectangular grids goes back
to H. B. Keller [17], where a box-scheme for the one-dimensional (1D) heat equation
is introduced. In the case of an elliptic system, the principle of the box-schemes
consists of discretizing the mixed form of the equation, by taking the average of the
conservation and the constitutive laws on the same grid, without any integration by
part. In a sense, it is the most natural way to discretize a system in mixed form,
very close to the physical setting of the equation. The finite element counterpart of
that point of view is a Petrov–Galerkin formulation with two trial spaces and two test
spaces. A comprehensive understanding of this kind of scheme has been introduced
in [6, 7, 8] in the case of a triangular mesh. We also refer the reader to [21] for
finite volume methods and their relations with Petrov–Galerkin formulation. It is
the main purpose of this paper to understand the nature of the coupling between all
the spaces involved, with a particular emphasis on the identification of the spurious
modes typical of rectangular grids. It is hoped that this can be useful also for more
standard schemes.

Here, we consider a rectangular domain Ω ⊂ R
2 covered by a regular grid Th

of rectangles with edges parallel to those of the domain. For the simplicity of the
presentation and since we focus on the design principles of different box-schemes, we
restrict ourselves to the Poisson problem −Δu = f for f ∈ L2(Ω) with homogeneous
boundary conditions. The mixed form we consider is as follows: Find (u, p) ∈ H1

0 (Ω)×
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Hdiv(Ω) such that

(1)

{
(div p + f, v)0,Ω = 0 for all v ∈ L2(Ω),

(p−∇u, q)0,Ω = 0 for all q ∈ (L2(Ω))2,

where Hdiv(Ω) = {p ∈ (L2(Ω))2 ; div p ∈ L2(Ω)}. As in [6, 8], the discretization of (1)
is performed by a mixed Petrov–Galerkin scheme called a box-scheme. It involves
four discrete spaces: M1,h, X1,h as trial spaces and M2,h, X2,h as test spaces. The
box-scheme reads as follows: Find (uh, ph) ∈ M1,h ×X1,h such that

(2)

⎧⎪⎪⎨⎪⎪⎩
∑

K∈Th

(div ph + f, vh)0,K = 0 for all vh ∈ M2,h,∑
K∈Th

(ph −∇uh, qh)0,K = 0 for all qh ∈ X2,h.

The uniqueness of the solution of (2) implies in particular the identity of the dimen-
sions

(3) dimM1,h + dimX1,h = dimM2,h + dimX2,h.

The starting point of this article is the paper [5] by Courbet, where an original al-
gebraic box-scheme on quadrangles is introduced for the time dependent diffusive
problem. We give a finite element interpretation of that scheme with three different
box-schemes; this allows us to state its stability and accuracy properties. As is the
case on a triangular mesh, a natural choice for the approximation of the flux ph is the
lowest order Raviart–Thomas space. For the unknown uh three possible choices are
the standard Q1-Lagrange space, its nonconforming analogue, Q1

nc, or the so-called
P 1-nonconforming quadrilateral finite element, introduced by Park and Sheen [19].
Due to the properties of the different trial spaces, we can make the link between these
three box-schemes explicit. An important characteristic of these box-schemes is their
equivalence with a decoupled formulation in the unknowns uh and ph. This allows the
computation of the discrete flux ph in an inexpensive way, since it is given as a func-
tion of ∇uh and the right-hand side f . This local reconstruction of the flux ph in each
cell is of particular interest for porous media problems, e.g., contaminant transport,
where the velocity is computed by the Darcy law and introduced in a convection-
diffusion equation for the computation of the concentration. This decoupled feature
of the box-scheme extends the observation by Marini [18], that the flux in the mixed
finite element method can be recovered in an inexpensive way. Concerning the a pos-
teriori error estimates of the box-scheme, we refer the reader to the recent works by
El Alaoui and Ern [10, 11]. Finally, let us mention that an increasing interest in box-
schemes has recently appeared [3, 4]. Note that a different possibility for extending
the box-scheme of [6] on rectangles, using the Rannacher–Turek nonconforming finite
element space, has been studied in [3, 14, 15].

Let us give now some standard notation. We introduce the mesh dependent norms
defined, respectively, on the mesh dependent spaces H1

0 (Ω)+M1,h and Hdiv(Ω)+X1,h:

|u|1,h =

(∑
K

|∇u|20,K

)1/2

,

‖u‖1,h = (|u|20,Ω + |u|21,h)1/2 for all u ∈ H1
0 (Ω) + M1,h,
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Fig. 1. Vertical and horizontal edges.

|p|div,h =

(∑
K

|div p|20,K

)1/2

,

‖p‖div,h = (|p|20,Ω + |p|2div,h)1/2 for all p ∈ Hdiv(Ω) + X1,h.

The geometrical notation is as follows. The rectangles are denoted by K with center
GK(xK , yK), area |K|, and diameter hK . We denote by h the maximum of the
diameters of the elements of the mesh. The sizes of the sides of the rectangle K are
|ex,K | and |ey,K |. We will write ∂K for the set of edges of K. Let ν be the unit
outward normal vector along the boundary ∂Ω and νK the one along the boundary
∂K of the rectangle K. The unitary normal vector to an edge e on the boundary ∂Ω
is simply νe = ν. To each interior edge e = ∂K ∩∂K ′, we also associate a unit normal
vector νe, which is arbitrarily defined as νe = νK and νe = −νK′ in accordance with
Figure 1. For an interior edge e = ∂K ∩ ∂K ′, [u]e = u|K′,e − u|K,e denotes the jump
of u along e with respect to the normal along the edge e. The midpoint of an edge e
is xe. The sets Ai and Ab denote the internal and boundary edges, respectively. We
define A = Ai ∪ Ab to be the set of all edges with global numbering. The number of
rectangles is NE. The number of edges (respectively, internal, boundary edges) is NA
(respectively, NAi, NAb). The number of vertices (respectively, internal, boundary
vertices) is NV (respectively, NVi, NVb). The Euler relations are

(4) 4NE = NAi + NA and NE −NA + NV = 1.

The gradient of f is ∇ f = (∂xf, ∂yf)T and the two-dimensional (2D) rotational is
curl f = (∂yf,−∂xf)T . Let P 0 be the space of piecewise constant functions, P 1 be
the space of piecewise affine functions, and Q1 be the space of bilinear functions. We
define Π0 to be the L2-projection operator on the piecewise constant functions. Let
us recall the definition of RT 0, the lowest order space of Raviart and Thomas [20],
useful to discretize the flux p = ∇u:

RT 0 = {qh ∈ Hdiv(Ω) ; qh ∈ RT 0(K) for all K ∈ Th},

where the local space RT 0(K) is

RT 0(K) = P 0(K)2 + P 0(K)

(
x
0

)
+ P 0(K)

(
0
y

)
.

The space RT 0 is of dimension NA, the degrees of freedom being given by the linear
forms

La(qh) =
1

|a|

∫
a

qh · νa dσ for all a ∈ A.
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Note that the normal component ph · νa of p along each interior edge is constant.
The outline of the paper is as follows. In section 2, we recall briefly the design

principles of Courbet’s scheme. To interpret it as a finite element method, we intro-
duce in section 3 a finite element box-scheme based on the space used by Courbet to
approximate the unknown u and the standard Q1-Lagrange finite element space. The
approximation of the flux p = ∇u is done using the Raviart–Thomas space. How-
ever, this box-scheme seems to be unstable. In section 4 we build a new box-scheme
generalizing the previous one and based on the inclusion of the space Q1-Lagrange
into the nonconforming Q1 space, Q1

nc. Both unknowns u and p are discretized in
nonconforming spaces with respect to H1

0 (Ω) and H1
div(Ω). We perform the numerical

analysis of the scheme and its equivalence to a decoupled problem in uh and ph: a
nonconforming scheme in uh and a local reconstruction formula of ph. Consequently,
we can make explicit the link to the box-scheme of section 3. It turns out that the
solution uh of the box-scheme is only affine (and not bilinear) per rectangle. Section 5
is devoted to the development and the analysis of a reduced box-scheme. We conclude
this work with numerical results in section 6. Note that this paper has been presented
partly in [13, 14].

2. Courbet’s box-scheme.

2.1. Introduction. In [5], Courbet introduced a box-scheme for the time de-
pendent mixed formulation of the compressible Navier–Stokes equations. The scheme
intended to extend to a rectangular grid the well-known box-scheme of H. B. Keller
for the heat equation [17]. In the case of the Poisson problem, the box-scheme of
Courbet is a derivation of the mixed form of the problem taken as mean value on each
rectangle K:

(5)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫
K

div p dx +

∫
K

f dx = 0,∫
K

p dx−
∫
K

∇u dx = 0,

u = 0 on ∂ Ω.

We refer to the Courbet box-scheme later as (BS1): Find u = (ua)a∈A and p =
(pa)a∈A such that for all rectangles K of the grid,

(6) (BS1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
a∈∂K

|a| pa,K +

∫
K

f dx = 0,

(pa1,K
− pa3,K

)

2
−

(|a1,K |ua1,K
− |a3,K |ua3,K

)

|K| = 0,

(pa2,K
− pa4,K

)

2
−

(|a2,K |ua2,K
− |a4,K |ua4,K

)

|K| = 0,

ua = 0 for all a ∈ Ab,

where the subscripts a1,K , a2,K , a3,K , and a4,K are related to the edges a1,K , a2,K ,
a3,K , and a4,K of each rectangle K (see Figure 2). The unknowns ua and pa denote,
respectively, the average of u and the normal component of the flux p = ∇u along
an edge a and are located at the interface of the mesh. This gives 4NE unknowns
and 3NE equations. In contrast to the analogous scheme on triangles introduced
in [6], here is a lack of NE equations. Courbet suggests adding the constraint on each
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(ua4,K
, pa4,K

) (ua2,K
, pa2,K

)

(ua3,K
, pa3,K

)

(ua1,K
, pa1,K

)

a4,K

a3,K

a2,K

a1,K

Fig. 2. Rectangle K, with edges ai,K and unknowns (uai,K , pai,K ) for i = 1, . . . , 4.

rectangle K as a discrete equation:

(7) ua1,K
+ ua3,K

= ua2,K
+ ua4,K

.

In particular, the mean value of the solution u in each box coincides with its horizontal
and vertical averages. Let us denote by C0 the space introduced by Courbet to
discretize the unknown u. It is generated by vectors of size NA, vanishing at the
boundary, and satisfying the additional condition (7) on each rectangle of the grid.
The space C0 is defined by

C0 =
{
(ua)a∈A ∈ R

NA such that ua = 0 for all a ∈ Ab and

ua1,K
+ ua3,K

= ua2,K
+ ua4,K

on each rectangle K
}

=
{
(ua)a∈Ai

∈ R
NAi , ua1,K

+ ua3,K
= ua2,K

+ ua4,K
on each rectangle K

}
.

However, the dimension of the space C0 is dimC0 = NVi = NAi−NE+1 > NAi−NE.
Indeed, the boundary degrees of freedom of the space C0 are not independent. In fact,
if ua = 0 for NAb−1 boundary edges, then ua = 0 holds on the last one. This implies
that the box-scheme (BS1) does not define a well-posed problem in the sense that
the number of unknowns is larger than the number of equations. Actually, due to
the dimension of the space C0, the number of unknowns is: Number of unknowns
(ua, pa) = NVi +NA = 3NE + 1, whereas there are only 3NE equations. Despite this
dimension inconsistency, very good numerical results are reported in [5] for the time
dependent heat equation.

The observation that dimC0 = NVi suggests that the space C0 is identical to the
Q1-Lagrange space with homogeneous boundary conditions.

Lemma 2.1. The mapping L defines a bijection between Q1
c,0 and the Courbet

space

L : Q1
c,0 −→ C0,

u 	−→
(
u(xa)

)
a∈A,

where xa denotes the midedge of a and Q1
c is the standard Q1-Lagrange finite element

space

Q1
c = {u ∈ C0(Ω) ; u ∈ Q1(K) for all K ∈ Th}, Q1(K) = Span{1, x, y, xy},
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and Q1
c,0 is its restriction to functions vanishing on ∂Ω.

The proof of the lemma follows from the linearity, injectivity (see Proposition 2.1
hereafter) of the mapping L, and the equality of the dimensions of the spaces C0 and
Q1

c,0. Before going further with the stabilization of the box-scheme (BS1), we recall
some useful properties of the nonconforming Q1 finite element space and its relation
to Q1

c .

2.2. Some properties of the Q1 nonconforming space. The nonconforming
Q1 finite element space denoted by Q1

nc is defined by

Q1
nc =

{
uh ∈ L2(Ω) ; uh ∈ Q1(K) for all K ∈ Th;∫

a

uh|K1
dσ =

∫
a

uh|K2
dσ for all a = ∂K1 ∩ ∂K2 ∈ Ai

}
.

The space Q1
nc,0 is the zero boundary space:

Q1
nc,0 =

{
uh ∈ Q1

nc ;

∫
a

uh dσ = 0 for all a ∈ Ab

}
.

Since the edges of the grid are parallel to the axis of the domain, the mean value of a
function in Q1 along an edge is the value at the midpoint of the edge. We recall that
for all vh ∈ Q1

nc, the set of values

pa(vh) = vh(xa) for all a ∈ A with the associated midpoint xa

does not form a unisolvent set of degrees of freedom [1, 2, 12]. Indeed, let η be the
function defined on Q1(K) by

η : Q1(K) −→ R
4,

p 	−→
(
p(xa)

)
a∈∂K

.

It is well known that the kernel of η is of dimension 1, generated by the nonconforming
bubble bK ,

Ker η = Span{bK}, bK(x, y) =
4

|K| (x− xK)(y − yK),

where (xK , yK) is the center of the rectangle K. It is easy to check that for any
K ∈ Th and any v ∈ Q1(K), the function bK has the following properties:

(8)

∫
∂K

bK dσ = 0,

∫
K

curl bK · ∇v dx = 0,∫
∂K

(curl bK · νK) v dσ = 0.

Let Ψ be the vector space generated by the local bubbles:

Ψ = {ψ ; ψ|K = αKbK , αK ∈ R for all K ∈ Th}.

Then, dim Ψ = NE and Ψ ⊆ Q1
nc,0.

Definition 2.1. We define B ∈ Q1
c by B =

∑
K∈Th

sgn(K)bK , where sgn(K)
takes alternately the values −1, +1 as displayed in Figure 3.
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Fig. 3. Sign of K.

The function B is the so-called hourglass mode introduced by Hansbo in [16],
which gives rise to some instability. By using this definition and the properties of the
previous spaces, we prove the following proposition.

Proposition 2.1. The spaces Q1
c, Q

1
nc, and Ψ satisfy

(i) Q1
c ∩ Ψ = Span{B}, (ii) Q1

nc = Q1
c + Ψ, (iii) Q1

nc,0 = Q1
c,0 ⊕ Ψ.

In particular, dimQ1
nc = NA and dimQ1

nc,0 = NAi + 1.
Proof. (i) Let ψ =

∑
K∈Th

αKbK ∈ Q1
c ∩ Ψ. For an internal edge a = ∂K1 ∩ ∂K2

the bubble satisfies bK1 |a = −bK2 |a. Then, the continuity of ψ along each internal
edge implies αK = sgn(K)α for all K ∈ Th, α ∈ R. So, Span{B} ⊂ Q1

c ∩ Ψ. The
reverse inclusion is clear.

(ii) Let us define the space M = Q1
c + Ψ. Then, M ⊆ Q1

nc. To prove M = Q1
nc,

we will prove that dimM = dimQ1
nc. Let i be the linear map

i : Q1
nc −→ R

NA,

u 	−→
(
u(xa)

)
a∈A,

where xa is the midpoint of the edge a ∈ A. Using the definitions of Ψ and bK , we
prove that

Ker i =
{
u ∈ Q1

nc ; u(xa) = 0 for all a ∈ A
}
⊆ Ψ,

and according to the notation of Figure 2, where xai,K
is the midpoint of the edge

ai,K ∈ ∂K, i = 1, . . . , 4,

Im i =
{(

u(xa)
)
a∈A ∈ R

NA ; u(xa1,K
)+u(xa3,K

) = u(xa2,K
)+u(xa4,K

) for all K ∈ Th
}
.

This in turn gives that dimQ1
nc = dim(Ker i) + dim(Im i) ≤ NA. Moreover, dimM =

dimQ1
c +dim Ψ−dim(Q1

c∩Ψ) = NV +NE−1. The Euler relation gives dimM = NA.
M ⊆ Q1

nc, so dimM ≤ dimQ1
nc. We deduce that dimQ1

nc = NA, which concludes the
proof of (ii).

The statement (iii) is directly implied by (i) and (ii).
Using the property of B and the continuity of the normal component of the element

in RT 0, we deduce the following lemma.
Lemma 2.2. Let Φ be the vector space generated by the curl of the nonconforming

bubble

Φ = curl Ψ =

{
φ =

∑
K∈Th

βK curl bK , βK ∈ R

}
.
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Then, Φ ∩RT 0 = Span{curl(B)}.
Note that the box-scheme (BS1) is a derivation of the mixed formulation of the

Laplace equation on each rectangle K given by the system (5). Since
∫
K

curl bK dx = 0
and div(curl bK) = 0 we get from the mixed formulation (5) that for any βK , we can
superpose to ph any function

∑
K βK curl bK , which is a parasitic mode. Therefore a

stabilization of the scheme has to eliminate that mode.

3. A first stabilization of Courbet’s box-scheme. We will now give a first
stabilization of the box-scheme (BS1) using the finite element interpretation of the
space C0 coupled with the Raviart–Thomas space RT 0 in order to discretize the
unknowns (u, p). We also need to add one additional test function in order to have
the right number of equations. The element B is the simplest choice according to
results of the previous section.

Proposition 3.1. Let us call (BS2) the box-scheme: Find the solution (uh, ph) ∈
Q1

c,0 ×RT 0 of

(9) (BS2)

{
(div ph + f, vh)0,Ω = 0 for all vh ∈ P 0,

(ph −∇uh, qh)0,Ω = 0 for all qh ∈ X2,h = (P 0)2 + Span{curl(B)}.

(i) The box-scheme (BS2) has 3NE + 1 unknowns.
(ii) The box-scheme (BS2) has a unique solution given by
(a) uh ∈ Q1

c,0 is the solution of

(10)
∑

K∈Th

(Π0∇uh,Π
0∇vh)0,K = (Π0f, vh)0,Ω for all vh ∈ Q1

c,0.

(b) ph is given by

(11) ph|K = (Π0∇uh)K −
Π0f|K

2

(
x− xK

y − yK

)
+ γK

(
x− xK

−(y − yK)

)
,

where γK is the solution of a certain sparse linear system.
Proof. (i) Using the Euler relation, we get the following identity between the

number of unknowns and the number of equations:

dimQ1
c,0 + dimRT 0 = NVi + NA = 3NE + 1 = dimP 0 + dim (X2,h).

(ii) Let (uh, ph) ∈ Q1
c,0 × RT 0 be a solution of (BS2). We prove that (uh, ph)

satisfies the system ((a), (b)).
(a) Suppose we are given vh ∈ Q1

c,0; then qh = Π0(∇vh) ∈ X2,h. Introducing
this value of qh in the second equation of (9) and afterward using the decomposition
∇vh|K = Π0∇vh|K + δK∇bK for any δK ∈ R and Green’s formula, we get∑

K

(∇uh,Π
0∇vh)0,K =

∑
K

(ph,Π
0∇vh)0,K

=
∑
K

(ph,∇vh − δK∇bK)0,K

= −
∑
K

∫
K

div ph vh dx +
∑
K

∫
∂K

vh ph · νK dσ

+
∑
K

∫
K

δK div ph bK dx−
∑
K

∫
∂K

ph · νK δK bK dσ.

(12)
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Since the mean value of the bubble function bK vanishes and ph ∈ RT 0, we have that∫
K
δK div ph bK dx = 0 and

∫
∂K

ph · νK δK bK dσ = 0. On the other hand, the first
equation of (9) gives div ph|K = −Π0f|K for all K ∈ Th. Therefore, the equality (12)
becomes ∑

K

(∇uh,Π
0∇vh)0,K =

∑
K

∫
K

Π0fvh dx−
∑
a∈Ai

∫
a

ph · νa [vh]a dσ

+
∑
a∈Ab

∫
a

ph · νa vh dσ.
(13)

Since vh ∈ Q1
c,0, [vh]a = 0 for all a ∈ Ai and vh|a = 0 for all a ∈ Ab, the relation (13)

becomes ∑
K

(∇uh,Π
0∇vh)0,K =

∑
K

(Π0f, vh)0,K ,

which concludes (a).
(b) Any function ph in RT 0(K) can be decomposed as

ph|K = (Π0ph)|K +
div ph|K

2

(
x− xK

y − yK

)
+ γK

(
x− xK

−(y − yK)

)
, γK ∈ R.

Using, respectively, the first and second equations of (9), we get div ph|K = −Π0f|K
and (Π0ph)|K = (Π0∇uh)|K . Then

(14) ph|K = (Π0∇uh)|K −
Π0f|K

2

(
x− xK

y − yK

)
+ γK

(
x− xK

−(y − yK)

)
.

The computation of the coefficient γK is done using (a), the second equation of (9)
with qh =

∑
K sgn(K) curl bK , and the continuity of the normal component of ph.

More details can be found at the end of this paper in the appendix.
This implies that any solution of the box-scheme (BS2) is a solution of the system

((a), (b)), which is unique. Indeed, f = 0 in (a) implies Π0∇uh = 0. Lemma A.3 (see
the appendix) and the zero values of uh on ∂Ω permit us to conclude that uh = 0.
Replacing f = 0 and uh = 0 in (11) implies ph|K = γK . Proposition A.1 gives(
γK

)
K

as the solution of a linear system with a vanishing right-hand side. This
means that γK = 0 for all K, and therefore ph = 0. This concludes that f = 0 implies
uh = 0, ph = 0. The existence of solutions of (BS2) is deduced from the uniqueness
of the solution, the linearity of the problem, and the equality between the number of
unknowns and equations.

Remarks. (i) As proved by Hansbo [16], the one-point integration of the gradient
of uh (Proposition 3.1(ii)) is not sufficient to obtain the stability of the scheme.

(ii) The parasitic perturbation
∑

K βK curl bK ∈ Φ seems to be controlled glob-
ally by the box-scheme but not locally. As a consequence, we do not get a local
reconstruction of the flux ph in each rectangle K.

4. A second stabilization of Courbet’s box-scheme. Due to its possible
instability, the box-scheme (BS2) is not totally satisfying. So, we want to build a
box-scheme using larger spaces for both unknowns u and p. The basic idea is to
use the nonconforming space Q1

nc,0 containing the Q1-Lagrange space Q1
c,0 (used in

(BS2)) for the approximation of u. For the flux, we consider the space RT 0 of Raviart
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and Thomas, supplemented with the space Φ of the rotational of the bubble. Note
that those spaces are both nonconforming, respectively, in H1

0 (Ω) and Hdiv(Ω). Also
this choice of spaces gives the advantage of getting the number of unknowns to be
proportional to the number of rectangles; i.e., the trial spaces in (2) can be piecewise
polynomial spaces.

4.1. Definition of the box-scheme.
Proposition 4.1. Let (BSnc) be the following box-scheme: Find (uh, ph) ∈

Q1
nc,0 × (RT 0 + Φ), being the solution of

(15)

(BSnc)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

K∈Th

(div ph + f, vh)0,K = 0 for all vh ∈ M2,h = P 0,

∑
K∈Th

(ph −∇uh, qh)0,K = 0 for all qh ∈ X2,h = (P 0)2 + P 0

(
y
x

)
+ P 0

(
x
−y

)
.

(i) The box-scheme (BSnc) has 5NE degrees of freedom.
(ii) The box-scheme (BSnc) has a unique solution (uh, ph) ∈ Q1

nc,0 × (RT 0 + Φ)
given by the following:

(a) uh is the solution of the following variational problem: Find uh ∈ Q1
nc,0 such

that ∑
K∈Th

(∇uh,∇vh)0,K = (Π0f, vh)0,Ω for all vh ∈ Q1
nc,0.

(b) ph is locally given by

ph|K = (∇uh)|K −
Π0f|K

|ex,K |2 + |ey,K |2

(
|ey,K |2(x− xK)
|ex,K |2(y − yK)

)
.

Note that this box-scheme is nonconforming for both unknowns uh and ph. The
test spaces M2,h and X2,h (in the system (2)) are piecewise polynomial functions.
We remark that X2,h is also X2,h = (P 0)2 + P 0(∇bK) + P 0(curl bK); in particular,
∇(M1,h) ⊆ X2,h.

Proof. (i) By the Euler relations, we prove that dimQ1
nc,0 + dim (RT 0 + Φ) =

(NAi + 1) + (NA + NE − 1) = 5NE = dimX2,h + dimP 0.
(ii) Let us prove that any (uh, ph) ∈ Q1

nc,0 × (RT 0 + Φ) satisfying the equations
(BSnc) fulfills the system ((a), (b)).

(a) Let vh ∈ Q1
nc,0. Let qh = ∇vh ∈ X2,h in the second equation of (15). By

integration by parts,∑
K

(∇uh,∇ vh)0,K = −
∑
K

∫
K

div ph vh dx +
∑
K

∫
∂K

(ph · νK) vh dσ.

Moreover, since div ph|K ∈ P 0(K), the first equation of (15) gives div ph|K = −Π0f|K .
Hence, ph ∈ RT 0 + Φ can be written as ph = p̄h +

∑
K βK curl bK , with p̄h ∈ RT 0.

This implies that∑
K

(∇uh,∇ vh)0,K =
∑
K

(Π0f, vh)0,K +
∑
K

∫
∂K

(p̄h + βK curl bK) · νK vh dσ

= (Π0f, vh)0,Ω +
∑
K

∫
∂K

p̄h · νK vh dσ

+
∑
K

∫
∂K

βK curl bK · νK vh dσ.
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Using the properties (8) of the bubble bK and the continuity of the normal component
of elements ph ∈ RT 0 ⊂ Hdiv(Ω), we obtain∑

K

(∇uh,∇ vh)0,K = (Π0f, vh)0,Ω +
∑
a∈Ab

∫
a

p̄h · νa vh dσ −
∑
a∈Ai

∫
a

p̄h · νa [vh]a dσ.

Since vh ∈ Q1
nc,0 and ph · νa ∈ P 0(a),∫

a

p̄h · νa vh dσ = 0 for all a ∈ Ab and

∫
a

p̄h · νa [vh]a dσ = 0 for all a ∈ Ai,

which concludes (a). In particular, for vh = bK ∈ Q1
nc,0,

(∇uh,∇ bK)0,K = (Π0f, bK)0,K .

The mean value of bK equals zero on each rectangle; hence (Π0f, bK)0,K = 0. Also,
∇uh is locally written as (∇uh)|K = (Π0∇uh)|K + dK ∇bK , where dK is given by
uh. We deduce that

0 = (∇uh,∇ bK)0,K =
(
(Π0∇uh)|K + dK ∇bK ,∇ bK

)
0,K

=
(
(Π0∇uh)|K ,∇ bK

)
0,K︸ ︷︷ ︸

=0

+ dK |∇bK |20,K .

This means that dK = 0 or, equivalently, that the bubble component of the solution
uh vanishes. In particular, (∇uh)|K = (Π0∇uh)|K .

(b) Since ph ∈ RT 0 + Φ, we have ph = p̄h +
∑

K βK curl bK with p̄h ∈ Hdiv(Ω).
Again for each rectangle K, div ph|K = −Π0f|K and div(curl bK) = 0, so that

div ph = div p̄h = −Π0f.

The second equation of (15) implies that (Π0ph)|K = (Π0∇uh)|K = (∇uh)|K . On the
other hand,

ph|K = (Π0ph)|K +
div ph|K

2

(
x− xK

y − yK

)
+ β̃K

(
x− xK

−(y − yK)

)
, β̃K ∈ R.

This is equivalent to

ph|K = (∇uh)|K −
Π0f|K

2

(
x− xK

y − yK

)
︸ ︷︷ ︸

ph,1

+ β̃K

(
x− xK

−(y − yK)

)
︸ ︷︷ ︸

ph,2

.

For evaluating the coefficient β̃K , we use the second equation of (15) with qh = curl bK :

(16)

∫
K

(ph,1 + ph,2 −∇uh) · curl bK dx = 0.

We know by (8) that
∫
K
∇uh ·curl bK dx = 0. Inserting the value of ph,1, (16) becomes∫

K

ph,2 · curl bK dx =
2Π0f|K
|K|

∫
K

(
(x− xK)2 − (y − yK)2

)
dx.
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Using the identities

(17)
∫
K

(x− xK)2 = |K|
12 |ex,K |2,

∫
K

(y − yK)2 = |K|
12 |ey,K |2

and the definition of ph,2 gives

β̃K =
Π0f|K

2

|ex,K |2 − |ey,K |2
|ex,K |2 + |ey,K |2 .

We have proved that a solution (uh, ph) of the box-scheme (BSnc) is also a solution
of the problem ((a), (b)), which is unique. This proves the uniqueness of the solution
of the box-scheme (BSnc). The linearity and the equality between the number of un-
knowns and the number of equations permit us to conclude existence and uniqueness
of the solution of the box-scheme (BSnc) and its equivalence with the formulation
((a), (b)). This concludes (ii).

The previous result states that the box-scheme (BSnc) is well-posed and equiv-
alent to a single scheme in uh alone and an explicit reconstruction formula for ph.
More precisely, uh is the solution of the nonconforming variational formulation for
the problem −Δu = Π0f . It also generalizes the previous box-scheme (BS2) and ad-
dresses the above instability problem. This box-scheme seems to be a generalization
on rectangles of the box-scheme ((uh, ph) ∈ P 1

nc,0 ×RT 0) of Courbet and Croisille [6].
Contrary to the triangles case, here the unknowns are not located at the interface of
the mesh. Nevertheless, in the particular case of a uniform grid consisting of squares,
β̃K = 0 on each K, ph can be written in the square K as

ph|K = (∇uh)|K −
Π0f|K

2

(
x− xK

y − yK

)
,

which is the formulation of ph in the box-scheme of Courbet and Croisille on triangles.

4.2. Numerical analysis. In this section, we provide the stability and the op-
timal a priori error estimates for the box-scheme (BSnc). In the rest of the paper, C
stands for a constant independent of the mesh.

Lemma 4.1 (discrete Poincaré lemma). There exists a constant C > 0 dependent
only on Ω such that for all u ∈ Q1

nc,0 + H1
0 (Ω),

|u|0,Ω ≤ C|u|1,h.

Proof (see [13]). Let u ∈ Q1
nc,0 + H1

0 (Ω). Then

(18) |u|0,Ω = sup
g∈L2(Ω)

|(u, g)0,Ω|
|g|0,Ω

.

For g ∈ L2(Ω), there exists p ∈ H1(Ω)2 such that div p = g and ‖p‖1,Ω ≤ C|g|0,Ω [2].
By replacing g by this value in (18) and using Green’s formula, we get

(19) (u, g)0,Ω = (u, div p)0,Ω = −
∑
K

∫
K

∇u · p dx︸ ︷︷ ︸
(A)

+
∑
K

∫
∂K

p · νK u dσ︸ ︷︷ ︸
(B)

.

First, we obtain |(A)| = |
∑

K

∫
K
∇u ·p dx| ≤ |u|1,h |p|1,Ω. Let us estimate |(B)|. Since

p ∈ (H1(Ω))2 ∩Hdiv(Ω),

(20) (B) =
∑
K

∫
∂K

p · νK u dσ =
∑
a∈Ab

∫
a

p · νa u dσ −
∑
a∈Ai

∫
a

p · νa [u]a dσ.
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Let p · νa = 1
|a|

∫
a
p · νa dσ be the mean value of p · νa along the edge a. Since

u ∈ H1
0 (Ω) + Q1

nc,0, by the property of Q1
nc,0 to satisfy the patch-test, we have∫

a

p · νa u dσ = 0 for all a ∈ Ab and

∫
a

p · νa [u]a dσ = 0 for all a ∈ Ai.

Therefore, equality (20) becomes∑
K

∫
∂K

p · νK u dσ =
∑
a∈Ab

∫
a

(p · νa − p · νa)u dσ −
∑
a∈Ai

∫
a

(p · νa − p · νa) [u]a dσ

=
∑
K

∑
e∈∂K

∫
e

(p · νe − p · νe)u dσ.

The lemma of Crouzeix and Raviart [9] gives∣∣∣∣∫
e

(p · νe − p · νe)u dσ
∣∣∣∣ ≤ C hK |u|1,K |p|1,K .

Then,

|(B)| =

∣∣∣∣∣∑
K

∫
∂K

p · νK u dσ

∣∣∣∣∣ ≤ 4Ch|u|1,h |p|1,Ω.

Finally,

|(u, g)0,Ω| ≤ (4Ch + 1)|u|1,h |p|1,Ω ≤ (4Ch + 1)|u|1,h ‖p‖1,Ω︸ ︷︷ ︸
≤C(Ω)|g|0,Ω

.

Proposition 4.2 (stability). The solution (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ) of the

problem (BSnc) satisfies the stability estimate

‖uh‖1,h + ‖ph‖div,h ≤ C|f |0,Ω.

Proof. Using the formulation of Proposition 4.1 with vh = uh and applying the
Cauchy–Schwarz inequality and the Poincaré inequality give

‖uh‖1,h ≤ C(Ω) |f |0,Ω.

On the other hand, the local formula (b) from Proposition 4.1 for ph and the identity
div ph = −Π0f imply ‖ph‖div,h ≤ C|f |0,Ω. This concludes the proof.

Proposition 4.3 (a priori error estimates). Let (u, p) ∈ H1
0 (Ω) × Hdiv(Ω) be

the solution of the continuous problem (1) and (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ) be the

solution of the box-scheme (BSnc). If f ∈ H1(Ω), we have

(21)
(i) |u− uh|1,h ≤ Ch|f |0,Ω, (ii) |u− uh|0,Ω ≤ Ch2(|f |0,Ω + |f |1,Ω),

(iii) |p− ph|0,Ω ≤ Ch|f |0,Ω, (iv) |p− ph|div,h ≤ Ch|f |1,Ω.

Proof. (i) Let us introduce the bilinear form ah defined for all u, v ∈ H1
0 (Ω)+Q1

nc,0

by

ah(u, v) =
∑

K∈Th

(∇u,∇v)0,K .
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Then we obtain the classical inequality

|u− uh|1,h ≤ 2 inf
wh∈Q1

nc,0

|u− wh|1,h + sup
wh∈Q1

nc,0

|ah(uh − u,wh)|
|wh|1,h

.

The estimation of the consistency error is deduced from the variational formulation
from Proposition 4.1:

(22) sup
wh∈Q1

nc,0

|ah(uh − u,wh)|
|wh|1,h

≤ C h |f |0,Ω.

By using the Q1-Lagrange interpolation, we get

inf
wh∈Q1

nc,0

|u− wh|1,h ≤ Ch|u|2,Ω.

This concludes (i).
(ii) Part (ii) is proved by using the Aubin–Nitsche argument and the result (i).
(iii) Part (iii) is a deduction of the local formula ph given by Proposition 4.1(ii).
(iv) Part (iv) results from div p = −f and div ph = −Π0f .

4.3. Link to the box-scheme (BS2). We already mentioned that the one-
point integration of the gradient of uh is not sufficient to obtain the stability of
the scheme (see section 2.1). Nevertheless, the addition of the local bubble in both
trial and test spaces permits us to overcome the previous difficulty, as we have just
observed. In this sense, the nonconforming bubble is a stabilization parameter. More-
over, from the decomposition of the space Q1

nc,0 given in Proposition 2.1, we deduce
the following result.

Lemma 4.2 (link to the box-scheme (BS2)). The solution (uh, ph) ∈ Q1
nc,0 ×

(RT 0 + Φ) of the box-scheme (BSnc) is given as a function of the solution (ūh, p̄h) ∈
Q1

c,0 ×RT 0 of the box-scheme (BS2) by

uh = ūh +
∑

K∈Th

αK bK and ph = p̄h +
∑

K∈Th

βK curl bK ,

where

αK =
3|K|

4

1

|ex,K |2 + |ey,K |2 (p̄h −∇ūh,∇bK)0,K ,

βK = −3|K|
4

1

|ex,K |2 + |ey,K |2 (p̄h −∇ūh, curl bK)0,K .

Proof. Let (ūh, p̄h) ∈ Q1
c,0 × RT 0 be the solution of the box-scheme (BS2). We

are looking for (αK , βK)K∈Th
such that

uh = ūh +
∑
K

αK bK , ph = p̄h +
∑
K

βK curl bK

define the solution (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ) of the box-scheme (BSnc). Due

to div ph = div p̄h, the first equation of (BSnc) is valid for ph. Let us suppose that
(uh, ph) satisfies the second equation of (BSnc). By the definition of (uh, ph) and
since (ūh, p̄h) satisfies the second equation of (BS2),

(23)
∑

K∈Th

(ph −∇uh, qh)0,K = 0 for all qh ∈ P 0(∇bK) + P 0(curl bK).
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By taking qh = ∇bK in (23), we get

0 = (ph −∇uh, qh)0,K

= (p̄h −∇ūh,∇bK)0,K + (βK curl bK ,∇bK)0,K − (αK ∇bK ,∇bK)0,K .

Since (curl bK ,∇bK)0,K = 0, we deduce the formula of αK on each rectangle K.
Then for each K, αK is uniquely determined by the unique solution (ūh, p̄h) of the
box-scheme (BS2). In the same way, by taking qh = curl bK in (23), we get

0 = (ph −∇uh, curl bK)0,K = (p̄h −∇ūh, curl bK)0,K + (βK curl bK , curl bK)0,K

and deduce the formula for βK . Then with this definition of the coefficients αK , βK ,
we prove that (uh, ph) ∈ Q1

nc,0 × (RT 0 + Φ) is the unique solution of the box-scheme
(BSnc).

5. A simplified stabilized box-scheme. In this section, we investigate a new
way to stabilize the box-scheme (BS1). In fact it seems that the solution of the previ-
ous box-scheme is locally in P 1(K)×(RT 0(K)+Φ) (see the proof of Proposition 4.1).
We are looking for a space locally in P 1(K) instead of Q1(K) with the same continu-

ity properties as Q1
nc,0. The space M̃1,h recently introduced by Park and Sheen [19]

fulfills those conditions:

M̃1,h =

{
v ∈ L2(Ω); v|K ∈ P 1(K) for all K ∈ Th;∫
a

v|K1
dx =

∫
a

v|K2
dx for all a = ∂K1 ∩ ∂K2 ∈ Ai

}
.

Its dimension is dim M̃1,h = 3NE−NAi = NV −1, since there are three unknowns for
each rectangle subject to NAi independent continuity relations. The corresponding
space with homogeneous boundary is

M̃1,h,0 =

{
v ∈ M̃1,h;

∫
a

v dx = 0 for all a ∈ Ab

}
.

Its dimension is also dim M̃1,h,0 = NA−NE − (NAb − 1) = NVi. Note that this space
satisfies the additional condition (7) of Courbet. However, in contrast to the space

Q1
c , it does not contain the nonconforming bubble. The space M̃1,h,0 is by definition

included in Q1
nc,0. Similarly to Lemma 2.1, we deduce from the linearity and the

injectivity of L and the equality dim M̃1,h,0 = dimC0 the following lemma.

Lemma 5.1. The mapping L defines a bijection between M̃1,h,0 and the Courbet
space C0:

L : M̃1,h,0 −→ C0,

u 	−→
(
u(xa)

)
a∈A.

Definition 5.1. Let (BS3) be the box-scheme: Find (uh, ph) ∈ M̃1,h,0×(RT 0+Φ)
such that

(24) (BS3)

⎧⎪⎪⎨⎪⎪⎩
∑

K∈Th

(div ph + f, vh)0,K = 0 for all vh ∈ P 0,∑
K∈Th

(ph −∇uh, qh)0,K = 0 for all qh ∈ X2,h = (P 0)2 + Φ.
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The box-scheme has 4NE unknowns.
Indeed dim M̃1,h,0 + dim(RT 0 + Φ) = NVi + NA + NE − 1 = 4NE = dimP 0 +

dimX2,h.

Lemma 5.2 (link to the box-scheme (BSnc)). The solution (ũh, p̃h) ∈ M̃1,h,0 ×
(RT 0+Φ) of the box-scheme (BS3) is unique and is given as a function of the solution
(uh, ph) ∈ Q1

nc,0 × (RT 0 + Φ) of the box-scheme (BSnc) by

ũh = uh and p̃h = ph.

Proof. Any solution (ũh, p̃h) ∈ M̃1,h,0 × (RT 0 + Φ) of the box-scheme (BS3) is
included in Q1

nc,0 × (RT 0 +Φ) and satisfies (15). By uniqueness of the solution of the
box-scheme (BSnc) and the linearity of the scheme (BS3), we deduce the result.

Note that we rediscover that uh ∈ Q1
nc,0 in the scheme (BSnc) is locally in P 1(K)

(see the proof of Proposition 4.1). In particular, this means that the bilinear term
“x y” is not needed. In fact the solution of the box-scheme (BSnc) is already the
solution of the box-scheme (BS3).

Corollary 5.1. The box-scheme (BS3) has a unique solution (uh, ph) ∈ M̃1,h,0×
(RT 0 + Φ) such that

(a) uh ∈ M̃1,h,0 is the solution of∑
K∈Th

(∇uh,∇vh)0,K = (Π0f, vh)0,Ω for all vh ∈ M̃1,h,0;

(b) ph is locally given by

ph|K = (∇uh)|K −
Π0f|K

|ex,K |2 + |ey,K |2

(
|ey,K |2(x− xK)
|ex,K |2(y − yK)

)
.

Proof. This result is deduced from Lemma 5.2 and Proposition 4.1, since M̃1,h,0 ⊂
Q1

nc,0.
Corollary 5.2 (a priori error estimates). Let (u, p) ∈ H1

0 (Ω) × Hdiv(Ω) be

the solution of the continuous problem (1) and (uh, ph) ∈ M̃1,h,0 × (RT 0 + Φ) be the
solution of the box-scheme (BS3). If f ∈ H1(Ω), we have

(i) |u− uh|1,h ≤ Ch|f |0,Ω, (ii) |u− uh|0,Ω ≤ Ch2(|f |0,Ω + |f |1,Ω),

(iii) |p− ph|0,Ω ≤ Ch|f |0,Ω, (iv) |p− ph|div,h ≤ Ch|f |1,Ω.

6. Numerical results. In this section we present several numerical results
which demonstrate the theoretical convergence rates obtained for the box-scheme
of section 4. We compute the error estimates for the unknown u and the flux p of the
box-scheme (BSnc) on two different domains Ω meshed by rectangles. The solution
of the box-scheme (BSnc) is computed according to the decoupled formulation given
in Proposition 4.1. The unknown u is the solution of the variational formulation,
whereas p is deduced from the local reconstruction on each rectangle. From the com-
puted error, we deduce the numerical convergence rate for each solution of each test.
The results for each test case are reported in Tables 1–4.

Test cases 1 and 2 of section 6.1 are given on the unit square domain Ω = [0, 1]2

meshed by squares, whereas section 6.2 is devoted to the computation of the error
estimates of the box-scheme (BSnc) on Ω = [0, 1]2 meshed by rectangles. Finally,
in section 6.3, we present one test case on the L-shaped domain Ω = [0, 2] × [0, 1] ∪
[1, 2]× [1, 2], meshed by squares. All the computed convergence rates are in agreement
with the theoretical ones given in Proposition 4.3.
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Table 1

Box-scheme (BSnc): (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ) for Test 1.

Nb rect. |u− uh|0,Ω |u− uh|1,h |p− ph|0,Ω Space step h

100 2.261 × 10−3 7.567 × 10−2 7.976 × 10−2 0.1414

225 1.008 × 10−3 5.053 × 10−2 5.326 × 10−2 0.09428

400 5.677 × 10−4 3.792 × 10−2 3.997 × 10−2 0.07071

900 2.525 × 10−4 2.529 × 10−2 2.665 × 10−2 0.04714

Conv. rate 1.996 0.9977 0.9979

Table 2

Box-scheme (BSnc): (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ) for Test 2.

Nb rect. |u− uh|0,Ω |u− uh|1,h |p− ph|0,Ω Space step h

100 3.927 × 10−2 0.9945 1.035 0.1414

225 1.990 × 10−2 0.6885 0.7112 0.09428

400 1.174 × 10−2 0.5148 0.5333 0.07071

900 5.401 × 10−3 0.3422 0.3553 0.04714

Conv. rate 1.808 0.9737 0.9751

6.1. Square domain meshed by squares. The domain Ω is meshed by four
different regular grids made of 100, 225, 400, and 900 squares.

1. Test case 1: In this first example, the source term f and the Dirichlet data
g are chosen such that u(x, y) = x (1− x) sin(π y) is the exact solution of the
Poisson problem

(25)

{
−Δu = f on Ω,
u = g on ∂Ω.

The results for the box-scheme (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ) defined by

(BSnc) are given in Table 1. The error for the unknown u is of order 1
in the seminorm | · |1,h and of order 2 for the L2-norm. For p we get also
order 1 in the L2-norm. The numerical results are of order of those computed
theoretically in Proposition 4.3.

2. Test case 2: Our second example is a test case proposed by Arnold, Boffi,
and Falk [1]. The source term and the boundary conditions are chosen such
that u(x, y) = exp

(
−100 ((x − 1/4)2 + (y − 1/3)2)

)
is the exact solution of

problem (25). It concerns a Gaussian pulse centered at the point (x0, y0) =
( 1
4 ,

1
3 ). The error estimates for both unknowns u and p = ∇u are given in

Table 2 for the box-scheme (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ). The convergence

rates are a little lower than expected (1.8 instead of 2 for u in the L2-norm
and 0.97 instead of 1 for p in the L2-norm) but still close to the a priori error
estimates of Proposition 4.3. This is due to the high gradient of the exact
solution at the point (x0, y0).

6.2. Test case 3: Square domain meshed by rectangles. In this example,
we consider the domain Ω = [0, 1]2 meshed by rectangles and the solution u(x, y) =
x (1 − x) y (1 − y) exp(5x) of the problem (25), where the right-hand side and the
Dirichlet conditions are computed using the exact solution u. The grid is made of
nx × ny rectangles, where nx and ny are the numbers of subdivisions of the segment
[0, 1] in each direction (Ox) and (Oy). We compute the solution (uh, ph) for (nx, ny)
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Table 3

Box-scheme (BSnc): (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ) for Test 3.

Nb rect. |u− uh|0,Ω |u− uh|1,h |p− ph|0,Ω Space step h

20 × 5 3.386 × 10−2 1.979 1.586 0.2061

40 × 10 8.488 × 10−3 1.001 0.7991 0.1031

80 × 20 2.124 × 10−3 0.5020 0.4003 0.05154

100 × 25 1.359 × 10−3 0.4017 0.3203 0.04123

Conv. rate 1.998 0.9911 0.9942

Table 4

Box-scheme (BSnc): (uh, ph) ∈ Q1
nc,0 × (RT 0 + Φ) for Test 4.

Nb rect. |u− uh|0,Ω |u− uh|1,h |p− ph|0,Ω Space step h

75 3.368 × 10−2 0.5089 0.5215 0.2828

300 8.613 × 10−3 0.2543 0.2616 0.1414

675 3.813 × 10−3 0.1688 0.1739 0.09428

Conv. rate 1.981 1.004 0.9993

taking the values (20, 5), (40, 10), (80, 20), and (100, 25), i.e., 100, 400, 1600, and
2500 rectangles. The exact solution presents a boundary layer at x = 1. Nevertheless,
the computed solution uh and the discrete flux ph of (BSnc) seem to take it into
account. The convergence rates between the exact and the discrete solutions for both
unknowns u and p = ∇u are assembled in Table 3. The numerical results really satisfy
the theoretical estimates of Proposition 4.3.

6.3. Test case 4: Test case on an L-shaped domain. In this case we
consider a different domain ΩL, given by the square [0, 2] × [0, 2] without the part
[0, 1] × [1, 2]. We obtain an L-shaped domain. We compute the solution (uh, ph) of
the box-scheme (BSnc) associated with the Poisson problem (25). The data f and
g are chosen such that u(x, y) = x (2 − x) y2 (2 − y) sin(x + 2y) is the exact solution
of (25). The convergence rate and error for both unknowns u and p = ∇u are given
in Table 4. The computed results conform to the theoretical ones.

7. Conclusion. We have presented three different box-schemes which are in
fact strongly connected to each other through the initial box-scheme introduced by
Courbet. The box-scheme (BS3) presents the advantage of giving a completely local
formulation of the flux, which is not the case of the box-scheme (BS2). The box-
scheme (BSnc) gives the same solution as the box-scheme (BS3) but seems to be the
most stable of all the schemes of the paper. The choice of the trial and test spaces
erases the effect of the hourglass mode of the initial box-scheme. In particular, the
box-scheme (BSnc) is probably the one to implement for generalized quadrangles in
two and three dimensions. The box-schemes can be generalized to the Poisson problem
with a diffusion tensor K. In this case, we would consider for the flux p = K · ∇u.
Particularly, the box-scheme method is adapted to the direct computation of the speed
of the flow in the Darcy law.

Appendix. In this section, we are going to complete the proof of Proposition 3.1.
Actually, we determine the coefficient γK of formula (11). For this purpose, we con-
sider the Hdiv-property of elements of RT 0 to have their normal component continuous
along the internal edges of the mesh. Indeed, for any internal edge a = ∂K ∩ ∂K ′,
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K1 K2

K3K4

CS

Fig. 4. Path C.

ph ∈ RT 0 satisfies

ph|K · νa + ph|K′ · ν′a = 0 along the edge a.

At first, we consider a grid made of four elements K1, K2, K3, and K4 and a path C
crossing each element Ki for i = 1, . . . , 4 once and only once as pictured in Figure 4.

Let a1, a2, a3, and a4 be the four internal edges a1 = ∂K1∩∂K2, a2 = ∂K2∩∂K3,
a3 = ∂K3 ∩ ∂K4, and a4 = ∂K1 ∩ ∂K4. Let S be the common vertex of K1, K2, K3,
and K4.

Lemma A.1. Let uh be the solution of (10) and ph be given on each rectangle
K by the relation (14), where γK has to be defined. The continuity of ph · νa along
the edges a = a1, a2, a3 crossing the path C implies the continuity of ph · νa4 along the
edge a4.

Proof. Considering the edges a1, a2, a3 and the continuity of ph · νa along these
edges, we get the following system:

(26)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|K2|γK2 = −|K1|γK1 + F (uh, f, a,K1,K2),

−|K3|γK3
= −|K1|γK1

+ F (uh, f, a1,K1,K2) −G(uh, f, a2,K2,K3),

|K4|γK4 = −|K1|γK1 + F (uh, f, a3,K4,K3)

+ F (uh, f, a1,K1,K2) −G(uh, f, a2,K2,K3),

where F is defined for the rectangles K1 and K2 by

F (uh, f, a1,K1,K2) = −2|a1|
(
Π0(∇uh)|K1

− Π0(∇uh)|K2

)
·
(

1
0

)
+

|K1|
2

Π0f|K1
+

|K2|
2

Π0f|K2
.

The same formula holds for the rectangles K4 and K3. The function G is defined by

G(uh, f, a2,K2,K3) = 2|a2|
(
(Π0∇uh)|K2

− (Π0∇uh)|K3

)
·
(

0
1

)
− |K2|

2
Π0f|K2

− |K3|
2

Π0f|K3
.
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The system (26) leads to the following relation between the rectangles K1 and K4:

|K4|γK4 = −|K1|γK1 − 2
[
|a3|

(
Π0(∇uh)|K4

− Π0(∇uh)|K3

)
(27)

+ |a1|
(
Π0(∇uh)|K1

− Π0(∇uh)|K2

)]
·
(

1
0

)
− 2|a2|

(
(Π0∇uh)|K2

− (Π0∇uh)|K3

)
·
(

0
1

)
+

∑
K

|K|
2

Π0f|K − |K4|
2

Π0f|K4
− |K1|

2
Π0f|K1

.

Using the variational form (10) whose solution is uh and taking vh to be the basis
function from Q1

c,0 associated to the vertex S (Figure 4), we get

[
|a1|

(
Π0(∇uh)K1

− Π0(∇uh)K2

)
+ |a3|

(
Π0(∇uh)K4

− Π0(∇uh)K3

)]
·
(

1
0

)(28)

+
[
|a2|

(
Π0(∇uh)K2

− Π0(∇uh)K3

)
+ |a4|

(
Π0(∇uh)K1

− Π0(∇uh)K4

)]
·
(

0
1

)
=

4∑
i=1

|Ki|
2

(Π0f)Ki
.

After substituting equality (28) into (27), we get

|K4|γK4 = −|K1|γK1 + 2|a4|
(
Π0(∇uh)K1 − Π0(∇uh)K4

)
·
(

0
1

)
− |K4|

2
Π0f|K4

− |K1|
2

Π0f|K1
,

which is exactly the continuity of ph · νa4
along the edge a4. This concludes the proof

of the lemma.
The result for four rectangles is extended recursively to a rectangle domain Ω

with a grid of rectangles (see Figure 5) as follows.
Lemma A.2. Let uh be the solution of (10) and ph be given on each rectangle

K by the relation (14), where γK has to be defined. Let C be a path covering all the
rectangles of the domain Ω. The continuity of ph · νa along each edge a crossing the
path C (Figure 5) is equivalent to the continuity of ph · νa along each internal edge of
the domain Ω.

On the other hand, we consider the choice qh =
∑

K sgn(K) curl bK in (9). Since
the scalar product between ∇uh and curl bK (from (8)) is null on each rectangle K,
we get

0 =
∑
K

(ph, qh)0,K =
∑
K

∫
K

ph · sgn(K) curl bK dx.

Using the formula (14) for ph,

∑
K

∫
K

[
(Π0∇uh)|K −

Π0f|K
2

(
x− xK

y − yK

)
+ γK

(
x− xK

−(y − yK)

)]
· sgn(K) curl bK dx = 0,
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K1 K2 K4K3

Ki

K5

KNE−2KNE KNE−1

Fig. 5. Path C for the whole grid Th of the domain Ω.

and
∫
K

Π0(∇uh) · curl bK dx = 0 (property of the bubble), and the identities (17), we
deduce

(29)
∑
K

γK sgn(K)(|ex,K |2 + |ey,K |2) =
∑
K

sgn(K)
Π0f|K

2
(|ex,K |2 − |ey,K |2).

Finally, we can deduce a linear system with NE equations and NE unknowns (γ1, γ2,
. . . , γNE). It is given by the (NE − 1) continuity conditions of ph · νa along each
internal edge a, crossing the path C and (29).

Proposition A.1. Let uh be the solution of (10) and ph be given on each
rectangle K by the relation (14), where γK has to be defined on each rectangle. The
vector γ = (γ1, γ2, . . . , γNE) is a solution of the system Aγ = b, where N denotes NE
and

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|K1| |K2| 0 · · · 0
0 |K2| 0 · · · 0

.

.

. 0
. . .

. . . 0

0 · · ·
. . .

. . . 0
0 · · · 0 |KN−1| |KN |

|ex,K1
|2 + |ey,K1

|2 −(|ex,K2
|2 + |ey,K2

|2) · · · · · · sgn(KN )(|ex,KN
|2 + |ey,KN

|2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

b =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H(uh, f, |a1|, K1, K2)
H(uh, f, |a2|K2, K3)

.

.

.

.

.

.
H(uh, f, |aN−1|, KN−2, KN−1)∑

K sgn(K)
Π0f|K

2 (|ex,K |2 − |ey,K |2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

H is either F or G according to the cases, and ai is the common edge to the rectangles
Ki and Ki+1 (see Figure 5).

Proof. We prove this result in the case of a uniform grid, i.e., where the rectangles
have the same size, ex := ex,K , and ey := ey,K for all rectangles K. Then, the
determinant of the matrix A is

detA = |K2| · · · |KNE−1|
(
|ex|2 + |ey|2

)(
sgn(KNE)|K1| + (−1)NE+1 sgn(K1)|KNE |

)
.
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Also the sign of the last rectangle seen by the path C is sgn(KNE) = (−1)NE+1 and
sgn(K1) = 1. Therefore, |detA| = |K2| · · · |KNE−1|

(
|ex|2 + |ey|2

)(
|K1| + |KNE |

)
is

different from zero.

Then, γK is given in each rectangle by the resolution of the system Aγ = b
and ph can be written in each rectangle as a function of γK (which depends on the
neighboring rectangles):

ph|K = Π0(∇uh) −
Π0f|K

2

(
x− xK

y − yK

)
+ γK

(
x− xK

−(y − yK)

)
.

Resulting from this work on the path we can deduce the following characterization
of the space Q1

c .

Lemma A.3 (characterization of Q1
c). Let uh be such that uh|K ∈ Q1(K) for all

rectangles K of the grid Th. Then uh ∈ Q1
c if and only if uh is continuous at the

midpoint of the internal edges and ∇uh · τ is continuous along the path C, where the
path is crossing once and only once all the rectangles of the grid. This means

Q1
c =

{
uh/uh|K ∈ Q1(K) for all K ∈ Th,

∫
a

[uh] dσ = 0 for all a ∈ Ai,

∇uh · τa is continuous along the path C
}
.

Its dimension is dimQ1
c = 4NE −NAi − (NE − 1) = NP .

Proof. Let Q be defined by

Q =

{
uh ∈ Q1(K) for all K ∈ Th,

∫
a

[uh] dσ = 0 for all a ∈ Ai,

∇uh · τa is continuous along the path C
}
.

The inclusion Q1
c ⊆ Q is clear. Let us prove that Q ⊆ Q1

c . Again, we can restrict
the proof to the case of four rectangles (see Figure 4). Let us suppose that uh is
continuous at the midpoint of the four edges a1, a2, a3, and a4 and that ∇uh · τai is
continuous along the edges ai for i = 1, 2, 3. We deduce algebraically that ∇uh · τa4 is
continuous along the edge a4. On the other hand, the continuity of uh at the midpoint
of the internal edges and the continuity of ∇uh · τa at the internal edges imply the
continuity of uh at the interfaces of the mesh, which means the continuity of uh on
the whole domain. Then we get Q ⊆ Q1

c , which concludes the lemma.
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S. GONZÁLEZ-PINTO† AND D. HERNÁNDEZ-ABREU†

Abstract. The strict-contractivity and the convergence of General Linear Methods on the
classes of strictly dissipative and dissipative differential systems regarding some inner product are
analyzed. New convergence and contractivity results of the methods on semi-infinite intervals are
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1. Introduction. Let us consider initial value problems

(1.1) y′ = f(t, y), y(0) = y0, f : [0,∞) × C
m → C

m,

where the function f is supposed to be continuously differentiable on an appropriate
domain and it is also assumed to satisfy the one-sided Lipschitz condition

(1.2) Re〈f(t, y) − f(t, z), y − z〉X ≤ ν ‖y − z‖2
X ∀t ≥ 0 ∀y, z,

regarding some inner product in C
m, where ν is some constant. It would suffice that

(1.2) were satisfied in some cylinder around the exact solution y(t) which will be
assumed to exist for t ≥ 0. The inner product is defined by

(1.3) 〈u, v〉X :=

m∑
i,j=1

xijvjui; u = (uj)
m
j=1, v = (vj)

m
j=1,

where the matrix X = (xij)
m
i,j=1 ∈ R

m,m is symmetric and positive definite, and
z̄ denotes the conjugate of a complex number z. The notation ‖·‖X will be used
throughout this paper for the norm associated to that inner product. It is well known
that under the previous assumptions, the difference between two solutions with initial
values y0 and z0, respectively, satisfies [8, Ch. I]

‖y(t; 0, y0) − y(t; 0, z0)‖X ≤ exp (νt) ‖y0 − z0‖X ∀t ≥ 0.

Thus, when the constant ν is negative (strictly dissipative case), besides strict-con-
tractivity for neighboring solutions, we have asymptotic stability (in the Lyapunov
sense) for any solution defined on the interval [0,+∞). It would be desirable that in
such a situation, the numerical methods applied to (1.1) also preserve the asymptotic
stability in the Lyapunov sense for their numerical solutions.
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The goal of this paper is to study the strict-contractivity and the convergence
(and B-convergence) of General Linear Methods on semi-infinite intervals for strictly
dissipative differential systems, i.e., ν < 0 in (1.2). Some of the B-convergence results
presented here are similar to those by Huang, Chang, and Xiao [12] for the case of
finite intervals and dissipative problems (ν = 0 in (1.2)). However, our results also
apply to semi-infinite intervals, whereas those results given in [12] do not. The strict-
contractivity analysis extends the ideas given by Hairer and Zennaro [11] for implicit
Runge–Kutta methods, and the superexponential character of the linear stability
function associated to a General Linear Method is exploited in the same way as in [11].
The convergence results, which make use of the previous contractivity analysis and
are partly inspired by the work of Hundsdorfer [14], are postponed to the last part
of the paper. Applications of our results to some classes of General Linear Methods
appearing in the literature are also given.

The paper is organized as follows. In section 2, some preliminaries about General
Linear Methods and the norms to be used are given, and some tools to prove the
main results are provided. In section 3, the strict-contractivity analysis is carried
out. Section 4 is devoted to the existence and uniqueness of the stage solutions. The
convergence studies are developed in section 5, and some applications of the main
results are postponed to section 6.

2. Preliminary results. A k-step s-stage General Linear Method (see, e.g., [3],
[10, p. 356]) applied to (1.1) is given by

(2.1)
Y (n+1) = h(A⊗ Im)F (tn, h, V

(n)) + (B ⊗ Im)Y (n), n ≥ 0,

V (n) = h(Ã⊗ Im)F (tn, h, V
(n)) + (B̃ ⊗ Im)Y (n),

where h > 0 denotes the step-size, V (n) := (v
(n)
1

T
, v

(n)
2

T
, . . . , v

(n)
s

T
)T ∈ C

ms stands

for the stages of the method, Y (n+1) := (y
(n+1)
1

T
, y

(n+1)
2

T
, . . . , y

(n+1)
k

T
)T ∈ C

mk is

the advancing solution, F (tn, h, V
(n)) := (f(tn + c1h, v

(n)
1 )T , f(tn + c2h, v

(n)
2 )T , . . . ,

f(tn + csh, v
(n)
s )T )T , and Y (n) denotes a piece of information about the true solution

known from the previous step. The method possesses as free parameters the matrices
Ã ∈ R

s,s, B̃ ∈ R
s,k, A ∈ R

k,s, and B ∈ R
k,k and the vector c := (c1, . . . , cs)

T ∈ R
s,

and they can be chosen in order to gain both stability and global stage order. Above
⊗ stands for the usual Kronecker product of matrices, A ⊗ B = (aijB), and Im for
the identity matrix of dimension m.

The difference ΔY (n+1) := Ŷ (n+1) − Y (n+1) between two numerical solutions
provided by the method (2.1) when applied to (1.1) in a fixed step-size setting fulfills
the recurrent relation

(2.2) ΔY (n+1) = M(Z(n))ΔY (n), n ≥ 0, Z(n) = hJ (n),

with

(2.3) J (n) := BlockDiag(J
(n)
1 , . . . , J (n)

s ) ∈ C
ms,ms,

and where J
(n)
i ∈ C

m,m, 1 ≤ i ≤ s, are matrices given by

(2.4) J
(n)
i :=

∫ 1

0

∂f

∂y
(tn + cih, v

(n)
i + θ(v̂

(n)
i − v

(n)
i ))dθ.
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Besides, M(Z) ∈ C
mk,mk is the supermatrix given by

(2.5) M(Z) = B ⊗ Im + (A⊗ Im)Z(Ism − (Ã⊗ Im)Z)−1(B̃ ⊗ Im).

The linear stability analysis of General Linear Methods is carried out by considering
the basic linear complex test problem y′ = λy, with λ ∈ C. In such a case, the
advancing solution satisfies Y (n+1) = R(z)Y (n), z = λh, n ≥ 0, where R(z) is the
so-called stability matrix

(2.6) R(z) := B + zA(I − zÃ)−1B̃.

Then, (2.1) is said to be A-stable if the eigenvalues of R(z) satisfy the root condition,
i.e., they have either modulus smaller than one or modulus one and they are simple,
provided that z ∈ C

− := {z ∈ C, Re z ≤ 0}.
On the other hand, the nonlinear stability properties of the methods are studied

on dissipative nonlinear systems (ν = 0 in (1.2)). Thus, a General Linear Method
is said to be G-stable if there exists a symmetric and positive definite matrix G =
(gij)

k
i,j=1 ∈ R

k,k such that for two arbitrary advancing solutions we have that∥∥∥Ŷ (n+1) − Y (n+1)
∥∥∥
G⊗X

≤
∥∥∥Ŷ (n) − Y (n)

∥∥∥
G⊗X

,

where ‖Y (n)‖G⊗X :=
∑k

i,j=1 gij〈Y
(n)
i , Y

(n)
j 〉X . Burrage and Butcher proved in [3]

that algebraic stability is enough for G-stability. We recall that a General Linear
Method is said to be algebraically stable if there exist a nonnegative definite matrix
D = Diag(d1, . . . , ds) and a positive definite matrix G ∈ R

k,k such that

(2.7) N =

(
G−BTGB B̃TD −BTGA

DB̃ −ATGB DÃ + ÃTD −ATGA

)
∈ R

k+s,k+s

is nonnegative definite. Moreover, both concepts G-stability and algebraic stability
turn out to be equivalent for most of the General Linear Methods of interest. Thus,
for a nonconfluent General Linear Method (ci �= cj ∀i �= j) which is preconsistent,
i.e., there exists a vector ξ0 ∈ R

k such that

(2.8) Bξ0 = ξ0, B̃ξ0 = e := (1, . . . , 1)T ∈ R
s,

G-stability turns out to be equivalent to algebraic stability [4, 5] (see also [10, Ch.
V.9]).

Next, we give some basic general results which exploit the superexponential char-
acter of certain complex valued matrix mappings. This will be used to prove new
contractivity results in the forthcoming section. Concerning the matrix norms to be
used, we recall that for a given vector norm ‖·‖ in C

m, the operator norm will be
‖J‖ := max‖v‖=1 ‖Jv‖, J ∈ C

m,m, and its associated logarithmic norm is defined by
(see, e.g., [8, p. 27]) μ[J ] := limε→0+(‖Im + εJ‖− 1)/ε. It must be noted that for the

matrices J
(n)
i given in (2.4), μX [J

(n)
i ] ≤ ν, 1 ≤ i ≤ s, holds by virtue of (1.2). We

will often consider norms associated to the inner product in (1.3). For this case, by
splitting X = Y TY , where Y ∈ R

m,m is a nonsingular matrix (the decomposition is
not unique), we have that

(2.9) ‖J‖X :=
∥∥Y JY −1

∥∥
2
, μX [J ] = μ2[Y JY −1] ∀J ∈ C

m,m.
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We will also make use of an operator norm in the superspace C
mk for some k ∈ N.

Thus, for a given symmetric positive definite matrix G = (gij)
k
i,j=1 ∈ R

k,k, the inner

product in (1.3) can be extended to C
mk in the usual way:

〈u, v〉G⊗X :=

k∑
i,j=1

gij〈ui, vj〉X ,(2.10)

u = (uj)
k
j=1, v = (vj)

k
j=1, uj , vj ∈ C

m, 1 ≤ j ≤ k.

By splitting the matrix G = LTL, with L ∈ R
k,k nonsingular (the decomposition is

not unique), it is not difficult to show that

(2.11) 〈u, v〉G⊗X = 〈(L⊗ Y )u, (L⊗ Y )v〉2.

Then, the operator norm associated to the inner product (2.10) satisfies for any K ∈
C

mk,mk that

(2.12) ‖K‖G⊗X := max
‖v‖G⊗X=1

‖Kv‖G⊗X = max
‖u‖G⊗X=1

‖v‖G⊗X=1

|u∗(G⊗X)Kv|.

It must be taken into account that for every lp-norm with p ≥ 1 and q−1 + p−1 = 1,
it holds that

(2.13) ‖v‖p = max
‖u‖q=1

|u∗v| ∀v ∈ C
n, ‖J‖p = max

‖u‖q=1

‖v‖p=1

|u∗Jv| ∀J ∈ C
n,n, n ∈ N.

This latter property (2.13) follows from the duality between the spaces lp and lq, with
p ≥ 1 and q−1 + p−1 = 1; see, e.g., [15, sect. 19]. Thus, by taking p = 2 in (2.13), the
second equality in (2.12) is deduced from (2.11). Here, u∗ stands for the transpose
conjugate of the vector u. With these preliminaries and denoting by μX [·] and μp[·]
the logarithmic norms associated to the norms ‖·‖X and ‖·‖p, respectively, we have
the following theorem.

Theorem 1. Let M(Z1, . . . , Zs) := (mij(Z1, . . . , Zs))
k
i,j=1 ∈ C

mk,mk be a matrix
mapping acting on the matrix-set {(Z1, . . . , Zs), Zj ∈ C

m,m, j = 1, . . . , s}. Assume
that mij(Z1 + zIm, . . . , Zs + zIm), 1 ≤ i, j ≤ k, is an (m,m)-matrix having analytic
components on Re z ≤ 0 whenever the matrices Zj satisfy either

(a) μX [Zj ] ≤ 0 (j = 1, . . . , s) or
(b) μp[Zj ] ≤ 0 (j = 1, . . . , s) (for some lp-norm, p ≥ 1).

Then, respectively, for each case we have that (a) the real function

(2.14) ϕG,M (x) := sup
μX [Zj ]≤x

1≤j≤s

‖M(Z1, . . . , Zs)‖G⊗X

is nondecreasing for x ≤ 0 and fulfills the superexponential property

(2.15) ϕ(x)ϕ(y) ≤ ϕ(0)ϕ(x + y) ∀ x, y ≤ 0,

provided that G ∈ R
k,k is symmetric and positive definite; and (b) the real function

ϕp,M (x) := sup
μp[Zj ]≤x

1≤j≤s

‖M(Z1, . . . , Zs)‖p

is nondecreasing for x ≤ 0 and satisfies (2.15).
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Proof. The proof closely follows the ideas of the proof in [11, Theorem 4.3].
However, we point out some minor modifications related to the matrix case.

(a) Take x < 0 and y < 0 and assume ϕG,M (0) < ∞. Let us consider vectors
ui, vi ∈ C

mk, with ‖ui‖G⊗X = ‖vi‖G⊗X = 1 (i = 1, 2), and matrices A1, . . . , As,
B1, . . . , Bs ∈ C

m,m satisfying μX [Ai] ≤ x + y, μX [Bi] ≤ 0, 1 ≤ i ≤ s. Let us define,
for z ∈ C,

S(z) = (u∗
1(G⊗X)M(A1 − zIm, . . . , As − zIm)v1)

· (u∗
2(G⊗X)M(B1 + zIm, . . . , Bs + zIm)v2).

Thus, taking into account that in general the logarithmic norms satisfy [8, p. 31]
μ[J + zIm] = μ[J ] + Re z for any J ∈ C

m,m, we deduce that S(z) is an analytic
function on the strip S(0, x + y) := {z ∈ C : x + y ≤ Re z ≤ 0}. Then from the
maximum modulus principle and from (2.12), it follows that

(2.16) |S(z)| ≤ sup
Re z=0,

Re z=x+y

|S(z)| ≤ ϕG,M (0)ϕG,M (x + y) ∀z ∈ S(0, x + y).

Now, by taking z = y and considering the maximum over ‖u2‖G⊗X = ‖v2‖G⊗X = 1
and the supremum over μX [Bj ] ≤ 0 (j = 1, . . . , s), it follows from (2.16) that

|u∗
1(G⊗X)M(A1 − yIm, . . . , As − yIm)v1| ϕG,M (y) ≤ ϕG,M (0)ϕG,M (x + y).

The proof is concluded by taking the maximum over ‖u1‖G⊗X = ‖v1‖G⊗X = 1 and
the supremum over μX [Ai] ≤ x + y (i = 1, . . . , s).

(b) This part of the proof is along the lines of that of part (a) but this time defines

S(z) =

(
u∗

1M(A1 − zIm, . . . , As − zIm)v1

)(
u∗

2M(B1 + zIm, . . . , Bs + zIm)v2

)
and takes ‖ui‖q = ‖vi‖p = 1 (i = 1, 2), with q−1 + p−1 = 1.

Corollary 1. Let M(z1, . . . , zs) := (mij(z1, . . . , zs))
k
i,j=1 ∈ C

k,k, where mij(·)
are analytic functions on each complex variable zj for Re zj ≤ 0 (j = 1, . . . , s). Then
the increasing functions

ϕG,M (x) = sup
Re zj≤x

1≤j≤s

‖M(z1, . . . , zs)‖G and ϕp,M (x) = sup
Re zj≤x

1≤j≤s

‖M(z1, . . . , zs)‖p

fulfill (2.15) for any symmetric positive definite matrix G ∈ R
k,k and any lp-norm

(p ≥ 1).
Remark 1. The statements in Corollary 1 remain true when x and y have the

same sign and satisfy x + y ≤ x0 for some x0 ≥ 0, and the functions mij(z1, . . . , zs),
1 ≤ i, j ≤ s, are analytic on Re zj ≤ x0 (j = 1, . . . , s). The statements in Theorem 1
also hold under similar assumptions.

Although the results presented in this section are related to both Euclidean and
lp-norms, the main applications for General Linear Methods arise when considering
Euclidean norms.

3. Strict-contractivity analysis for General Linear Methods. We start
with a simple lemma that will be used to prove the main results of strict-contractivity
in this section.
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Lemma 1. Let ϕ : (−∞, 0] → [0,+∞) be a function such that

(i) lim
x→−∞

ϕ(x) = ζ < 1, (ii) ϕ(x)ϕ(y) ≤ ϕ(0)ϕ(x + y) ∀x, y ∈ (−∞, 0].

Then, there exists a constant σ > 0 such that ϕ(x) ≤ max{ 1+ζ
2 ,Keσx} ∀x ≤ 0, where

K = max{1, ϕ(0)}.
Proof. By virtue of (i), there exists x0 < 0 such that ϕ(x) ≤ δ := 1+ζ

2 ∀x ≤ x0. Let

us take σ := ln δ
2x0

> 0. Thus, if x ∈ [2x0, x0], it follows that ϕ(x) ≤ δ = eσ(2x0) ≤ eσx.

By virtue of (ii), this implies ϕ(xl ) ≤ Keσ( x
l ), K = max{1, ϕ(0)} ∀x ∈ [2x0, x0] and l ∈

N. On the other hand, for each x ∈ (x0, 0) there exists n ∈ N such that x ∈ [x0

n , x0

n+1 ).

Therefore, y := (n + 1)x ∈ [2x0, x0), and ϕ(x) = ϕ( y
n+1 ) ≤ Keσ( y

n+1 ) = Keσx. This
concludes the proof.

The following theorem gives an estimate about the behavior at infinity of the
function ϕG,M (x) in (2.14).

Theorem 2. Let M(Z), with Z = BlockDiag(Z1, . . . , Zs), be given by (2.5).
Assume that Ã is nonsingular. Then, for any symmetric positive definite matrix
G = LTL ∈ R

k,k, we have for ϕG,M , given by (2.14), that

ϕG,M (x) ≤
∥∥∥B −AÃ−1B̃

∥∥∥
G

+
∥∥∥LAÃ−1

∥∥∥
2

∥∥∥B̃L−1
∥∥∥

2

∥∥∥Ã−1
∥∥∥

2

|x| −
∥∥∥Ã−1

∥∥∥
2

∀x < −
∥∥∥Ã−1

∥∥∥
2
.

It must be observed that the upper bound in the theorem does not depend on the
factorization of G.

Proof. Since Ã is a nonsingular matrix, from (2.5) we can write

M(Z) = (B −AÃ−1B̃) ⊗ Im + (AÃ−1 ⊗ Im)(Ims − (Ã⊗ Im)Z)−1(B̃ ⊗ Im).

By taking into account that X = Y TY , Y ∈ R
m,m, from (2.9) and (2.11) it follows

that

‖M(Z)‖G⊗X ≤
∥∥∥B −AÃ−1B̃

∥∥∥
G

(3.1)

+
∥∥∥LAÃ−1

∥∥∥
2

∥∥∥B̃L−1
∥∥∥

2

∥∥∥(Ims − (Ã⊗ Im)Z)−1
∥∥∥
Is⊗X

.

Take u ∈ C
ms, ‖u‖2 = 1, and define v = (Is ⊗ Y )(Ims − (Ã ⊗ Im)Z)−1(Is ⊗ Y −1)u.

We are addressed to provide an upper bound for ‖v‖2. From the definition of v

(3.2) (Ã−1 ⊗ Im)u = (Ã−1 ⊗ Im)v − (Is ⊗ Y )Z(Is ⊗ Y −1)v,

and from here

(3.3) Re〈v, (Ã−1 ⊗ Im)u〉2 = Re〈v, (Ã−1 ⊗ Im)v〉2 − Re〈v, (Is ⊗ Y )Z(Is ⊗ Y −1)v〉2.

Then, by denoting v = (vT1 , . . . , v
T
s )T , with vi ∈ C

m, 1 ≤ i ≤ s, we deduce that

Re〈v, (Is ⊗ Y )Z(Is ⊗ Y −1)v〉2 =

s∑
i=1

Re〈vi, Y ZiY
−1vi〉2 ≤

s∑
i=1

μX [Zi] ‖vi‖2
2 ≤ x ‖v‖2

2 ,
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with x = max1≤i≤s μX [Zi]. Moreover, from elementary properties of the inner prod-

ucts we deduce that Re〈v, (Ã−1⊗Im)v〉2 ≥ −‖Ã−1‖2 ‖v‖2
2, and Re〈v, (Ã−1⊗Im)u〉2 ≤

‖Ã−1‖2 ‖v‖2. From (3.3) we then conclude that(
−x−

∥∥∥Ã−1
∥∥∥

2

)
‖v‖2

2 ≤
∥∥∥Ã−1

∥∥∥
2
‖v‖2 .

The proof is completed taking (3.1) into account.
Next, we deduce, as a consequence of those previous results, the following con-

tractivity result for General Linear Methods. Observe that R(∞) = B − AÃ−1B̃
holds for the stability function R(z) in (2.6) associated to a General Linear Method
with nonsingular Ã.

Theorem 3. Consider a G-stable General Linear Method (2.1) with a nonsin-
gular matrix Ã. Assume that its linear stability matrix (2.6) satisfies ‖R(∞)‖G < 1.
Then, the method is strictly contractive on the class of strictly dissipative differential
systems (ν < 0 in (1.2)); i.e., there exist two positive constants σ and γ < 1 (σ and
γ depending only on the coefficients of the method) such that∥∥∥ΔY (n+1)

∥∥∥
G⊗X

≤ max{γ, ehσν}
∥∥∥ΔY (n)

∥∥∥
G⊗X

∀h > 0, n ≥ 0.

Proof. By virtue of Theorem 1 and the G-stability of the method, we have that
the function ϕG,M (x) in (2.14) fulfills (2.15) with ϕG,M (0) ≤ 1. On the other hand,
since ‖R(∞)‖G < 1 we deduce from Theorem 2 and Lemma 1 that there exist two
positive constants σ and γ < 1 such that ϕG,M (hν) ≤ max{γ, ehσν}. This concludes
the proof by taking (2.2) into account.

Remark 2. In general, a G-stable General Linear Method (2.1) does not neces-
sarily satisfy ϕG,M (0) ≤ 1. However, that statement is true when the linear system
associated to the stages of the method

V = (B̃ ⊗ Im)Y + (Ã⊗ Im)ZV,
Z = BlockDiag(Z1, . . . , Zs) ∈ C

ms,ms

admits a solution V ∈ C
ms for every Y ∈ C

mk,mk, provided that μX [Zj ] ≤ 0, j =
1, . . . , s (see the proof of [10, Theorem 12.23, p. 193]). Some results on the existence
of solution for G-stable General Linear Methods are presented in section 4.

The main drawback when applying the previous theorem to Runge–Kutta multi-
step methods comes from the fact that many of these methods fulfill ‖R(∞)‖G = 1,
where G denotes the G-stability matrix. For instance, this is the case of the two-step
backward differentiation formula (BDF) method and of the multistep Runge–Kutta
Gauss methods introduced by Burrage [1, 2], as it will be shown later in section 6.
Thus, to reach strict-contractivity for some G-stable methods it seems necessary to
compose the method on several consecutive steps, namely, l. For multistep Runge–
Kutta methods l will sometimes coincide with the number of steps (k) on which the
multistep method is based; see (2.1). This motivates the study of the l-step composed
method related to a given General Linear Method.

A straightforward calculation shows that the numerical solution provided by (2.1)
after l consecutive steps, with fixed step-size h > 0, satisfies

Y (n+l) = h

l−1∑
i=0

(Bl−1−iA⊗ Im)F (tn+i, h, V
(n+i)) + (Bl ⊗ Im)Y (n), l ≥ 1,



976 S. GONZÁLEZ-PINTO AND D. HERNÁNDEZ-ABREU

where the stages V (n+j) are computed from

V (n+j) = h

j−1∑
i=0

(B̃Bj−1−iA⊗ Im)F (tn+i, h, V
(n+i))

+ h(Ã⊗ Im)F (tn+j , h, V
(n+j)) + (B̃Bj ⊗ Im)Y (n), 0 ≤ j ≤ l − 1.

Thus, the l-step composed method can be seen as a new k-step ls-stage General Linear
Method having the form

(3.4)
Y (n+l) = h(α⊗ Im)F (tn, h, V

(n+l−1)
) + (β ⊗ Im)Y (n),

V
(n+l−1)

= h(α̃⊗ Im)F (tn, h, V
(n+l−1)

) + (β̃ ⊗ Im)Y (n),

where

V
(n+l−1)

:= (V (n)T , V (n+1)T , . . . , V (n+l−1)T )T ∈ C
mls,

F (tn, h, V
(n+l−1)

) := (F (tn+j , h, V
(n+j))

T
)T0≤j≤l−1 ∈ C

mls

and

c̃ =

⎛⎜⎜⎜⎝
c

c + e
...

c + (l − 1)e

⎞⎟⎟⎟⎠ ∈ R
ls, α = [Bl−1A, Bl−2A, . . . BA, A] ∈ R

k,ls, β = Bl ∈ R
k,k,

α̃ =

⎛⎜⎜⎜⎜⎜⎝
Ã O O . . . O O

B̃A Ã O . . . O O

B̃BA B̃A Ã . . . O O
...

...
...

. . .
...

...

B̃Bl−2A, B̃Bl−3A, . . . . . . , B̃A, Ã

⎞⎟⎟⎟⎟⎟⎠ ∈ R
ls,ls, β̃ =

⎛⎜⎜⎜⎝
B̃

B̃B
...

B̃Bl−1

⎞⎟⎟⎟⎠ ∈ R
ls,k.

To study the A-stability of the method (3.4), one has to consider the matrix Rl(z) =
β + zα(I − zα̃)−1β̃. Since, for linear problems y′ = λy, z = λh, the l-step composed
method gives Y (n+l) = Rl(z)Y

(n) and also Y (n+l) = R(z)lY (n), where R(z) is the
stability matrix (2.6) of the original method (2.1), then it follows that Rl(z) = R(z)l

∀z ∈ C. It also becomes evident that if Ã is nonsingular, then so is α̃. To study the
strict-contractivity of the l-step composed method on nonlinear problems in general,
proceeding the same way as in (2.2), one has that ΔY (n+l) = Ml(hJ)ΔY (n), n ≥ 0,
where J = BlockDiag(J (n+1), . . . , J (n+l)) ∈ C

mls,mls, with the matrices J (n+j), 1 ≤
j ≤ l, given as in (2.3), and the supermatrix Ml(·) given by

Ml(Z) := β ⊗ Im + (α⊗ Im)Z(Imls − (α̃⊗ Im)Z)−1(β̃ ⊗ Im) ∈ C
mk,mk.

Of course, if the original method (2.1) is G-stable, then so is the l-step composed
method (3.4). Thus, we can apply Theorem 3 to the resulting l-step composed method
to get the following theorem.

Theorem 4. Assume that the coefficient matrix Ã of a G-stable General Linear
Method (2.1) is nonsingular and that ρ(R(∞)) < 1. Then, there exist a first positive
integer l and two positive constants σ and γ < 1, depending only on the coefficients
of the method, such that∥∥∥ΔY (n+l)

∥∥∥
G⊗X

≤ max{γ, ehσν}
∥∥∥ΔY (n)

∥∥∥
G⊗X

∀h > 0, n ≥ 0,
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holds on the class of strictly dissipative differential systems (ν < 0 in (1.2)). Hence,
the l-step composed method (3.4) is strictly contractive.

Proof. The proof is an immediate consequence of Theorem 3, just by taking into

account that ρ(R(∞)) = liml→∞ ‖R(∞)l‖1/l
G < 1.

Remark 3. It is still possible to deduce contractivity results when the matrix
Ã of the original General Linear Method is singular and the method is algebraically
stable, preconsistent (see (2.8)), and irreducible (there are nonredundant stages; see,
e.g., [12, p. 24] for a precise definition of irreducibility). On the other hand, it must
be recalled that the matrix D = Diag(d1, . . . , ds), appearing in the algebraic stability
matrix N (2.7), has positive diagonal entries (D > 0) due to the algebraic stability;
see [14, Lemma 4.1] or [12, Lemma 3.2].

Theorem 5. For a preconsistent, algebraically stable General Linear Method
with D > 0 (see (2.7)), the difference ΔY (n) = Ŷ (n) − Y (n) between two numerical
solutions for dissipative differential systems (ν ≤ 0 in (1.2)) satisfies∥∥∥ΔY (n+1)

∥∥∥
G⊗X

≤ η(hν)
∥∥∥ΔY (n)

∥∥∥
G⊗X

, n ≥ 0,

where

η(x) :=

√
1 − 2xγ(1 − ζ2) − 2xγζ

1 − 2xγ
,(3.5)

ζ = ‖R(∞)‖G , R(∞) := lim
ε→0

(B −A(Ã + εI)−1B̃),

and

(3.6) γ =

(
lim
ε→0

∥∥∥LA(Ã + εI)−1D−1/2
∥∥∥

2

)−2

, with G = LTL.

Remark 4. This result can be seen as a generalization of [11, Theorem 3.1] to
General Linear Methods. For the sake of brevity, we do not reproduce its proof, which
closely follows the ideas in the proof of the above-mentioned theorem.

The existence of limε→0 A(Ã+ εI)−1 can be ensured by virtue of [13, Lemma 3.8,
p. 388].

According to [11, p. 214], the function η(x) in (3.5) turns out to be superexpo-
nential (η(0) = 1 and η(x)η(y) ≤ η(x + y), x ≤ 0, y ≤ 0). Moreover, it can be easily
shown that ζ < η(x) < 1 ∀x < 0 whenever ζ < 1; whereas η(x) = 1 ∀x ≤ 0 in case
ζ = 1.

Analogous qualitative results of strict-contractivity for General Linear Methods
on the class of strictly dissipative problems are deduced from Theorems 3 and 5.
However, in order to simplify the presentation, our convergence results appearing in
section 5 will be obtained from Theorems 2, 3, and 4.

4. Existence and uniqueness of solution for the stage equations. The
existence of solution for the stage equations of General Linear Methods is derived
along the same lines as in the case of implicit Runge–Kutta methods; see, e.g., [6],
[8, Ch. 5], and [10, Ch. IV.14]. Below, we collect a few results whose proofs can be
carried out by closely following the ideas in the above-mentioned works.

Definition 1. For any matrix C ∈ R
s,s and for any positive definite diagonal

matrix D̃ ∈ R
s,s

αD̃(C) := inf
u 
=0

〈Cu, u〉D̃
〈u, u〉D̃

=
1

2
λmin(D̃1/2CD̃−1/2 + D̃−1/2CT D̃1/2),
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and α0(C) := supD̃>0 αD̃(C), where 〈u, v〉D̃ := vT D̃u.
By following, for instance, the proofs of Theorems 14.2 and 14.3 in [10, Ch. IV.14]

we have the following theorem.
Theorem 6. For the class of problems (1.1)–(1.2), a General Linear Method

having a nonsingular matrix Ã has a unique solution for its stage equations whenever
νh < α0(Ã

−1) is fulfilled.
The condition νh < α0(Ã

−1) is essentially optimal as has been remarked by
Kraaijevanger and Schneid [16, Theorem 2.12] for the more particular case of implicit
Runge–Kutta methods. For the case of dissipative differential systems we also have
the following theorem.

Theorem 7. An irreducible, preconsistent, and algebraically stable General Lin-
ear Method having a nonsingular matrix Ã has a unique solution for its stage equations
on the class of strictly dissipative problems (ν < 0 in (1.2)).

Proof. Due to the algebraic stability, the matrix N in (2.7) is nonnegative definite
(N ≥ 0). Moreover, the diagonal matrix D appearing in N is positive definite [14,
Lemma 4.1]. Then, the matrix DÃ+ ÃTD ≥ 0, and this implies DÃ−1 + Ã−TD ≥ 0.
Consequently αD(Ã−1) ≥ 0. The proof is completed from Theorem 6.

In case the matrix Ã is singular, a more careful and particular study must be
carried out. Thus, in situations where some stages are explicit, the above results can
still be applied after deleting the corresponding rows (and columns) of the matrix Ã.
This is, e.g., the case of the Runge–Kutta Lobatto IIIA methods.

5. Convergence results. We start by recalling that the discretization local
errors associated to a General Linear Method (2.1) are given by the pair of vectors
(ξ(tn), η(tn)) by means of [14, p. 366]

(5.1)
ξ(tn) := Y (tn + h) − (B ⊗ Im)Y (tn) − h(A⊗ Im)V ′(tn),

η(tn) := V (tn) − (B̃ ⊗ Im)Y (tn) − h(Ã⊗ Im)V ′(tn),

where V (tn) = (y(tn + cjh))sj=1, V ′(tn) = (y′(tn + cjh))sj=1 ∈ C
ms, and Y (tn) =

(Yj(tn))kj=1 ∈ C
mk. Here, Y (tn) denotes the exact advancing solution to be approx-

imated for the method, and y(t) stands for the exact solution of the initial value
problem (1.1). It is straightforward to see that if the method has stage order q, then

(5.2)
ξ(tn) = hq+1(d

(q+1)
1 ⊗ Im)y(q+1)(tn) + O(hq+2),

η(tn) = hq+1(d
(q+1)
2 ⊗ Im)y(q+1)(tn) + O(hq+2),

where the vectors d
(q+1)
1 ∈ R

k and d
(q+1)
2 ∈ R

s depend only on the coefficients of the
method; see, e.g., [14, p. 366]. From a straightforward calculation we deduce the next
two upper bounds for the discretization local errors (5.1)

‖ξ(tn)‖Ik⊗X ≤ hqC1

∫ tn+1

tn

∥∥y(q+1)(t)
∥∥
X
dt,

‖η(tn)‖Is⊗X ≤ hqC2

∫ tn+1

tn

∥∥y(q+1)(t)
∥∥
X
dt,

(5.3)

∥∥∥ξ(tn) − hq+1(d
(q+1)
1 ⊗ Im)y(q+1)(tn)

∥∥∥
Ik⊗X

≤ hq+1C ′
1

∫ tn+1

tn

∥∥y(q+2)(t)
∥∥
X
dt,∥∥∥η(tn) − hq+1(d

(q+1)
2 ⊗ Im)y(q+1)(tn)

∥∥∥
Is⊗X

≤ hq+1C ′
2

∫ tn+1

tn

∥∥y(q+2)(t)
∥∥
X
dt,

(5.4)

where the constants Cj , C
′
j , j = 1, 2, depend only on the coefficients of the method.
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The study of the global errors εn := Y (tn) − Y (n) (n = 1, 2, . . . ), can be carried out,
for instance, as it is done in [14, sect. 2]. Thus, it is immediate to show that they
satisfy the recurrence

(5.5)

εn+1 = M(Z(n))εn + τn, n = 0, 1, . . . ,
τn := ξ(tn) + ω(Z(n))η(tn),

ω(Z) := (A⊗ Im)Z(Ims − (Ã⊗ Im)Z)−1,

where M(Z) is the stability function given in (2.5), with Z(n) = hJ (n) and J (n)

given by (2.3) and (2.4). Thus, we are involved with getting upper bounds for
‖
∏q

j=0 M(Z(n−j))‖G⊗X (for arbitrary q ≤ n) and for max‖u‖Is⊗X=1 ‖ω(Z(n))u‖G⊗X .
In order to bound the latter norm we have the following theorem.

Theorem 8. Assume that Ã is nonsingular and that there exists a positive defi-
nite diagonal matrix D̃ = Diag(d̃1, . . . , d̃s) such that α̃ := 1

2λmin(D̃Ã−1+Ã−T D̃) ≥ 0.
Then, for any symmetric positive definite matrix G and for any Z = BlockDiag(Z1, . . . ,
Zs), with Zj ∈ C

m, 1 ≤ j ≤ s, it holds that

sup
‖u‖Is⊗X=1

μX [Zj ]≤x, 1≤j≤s

‖ω(Z)u‖G⊗X ≤ κ

⎛⎝1 +

∥∥∥D̃Ã−1
∥∥∥

2

α̃− xδ

⎞⎠ ∀x < 0,

where

(5.6) κ =

√
λmax((AÃ−1)TGAÃ−1) and δ = min

1≤j≤s
d̃j .

Moreover, if α̃ > 0 the statement also holds for x = 0.
Proof. Let us consider G = LTL and X = Y TY and take an arbitrary u ∈ C

ms

satisfying ‖u‖Is⊗X = ‖(Is ⊗ Y )u‖2 = 1. By defining y = ω(Z)u, it follows that

‖y‖G⊗X =
∥∥∥((AÃ−1) ⊗ Im)((Ims − (Ã⊗ Im)Z)−1u− u)

∥∥∥
G⊗X

≤
∥∥∥LAÃ−1

∥∥∥
2

(∥∥∥(Ims − (Ã⊗ Im)Z)−1
∥∥∥
Is⊗X

+ 1

)
.

In order to bound ‖(Ims − (Ã⊗ Im)Z)−1‖Is⊗X , take an arbitrary w ∈ C
ms, with

‖w‖2 = 1, and set v = (Is ⊗ Y )(Ims − (Ã ⊗ Im)Z)−1(Is ⊗ Y −1)w. Now, proceeding

as in the proof of Theorem 2 and premultiplying by v∗(D̃ ⊗ Im) in both sides of the
formula (3.2), we get that

(5.7) v∗(D̃Ã−1 ⊗ Im)w = v∗(D̃Ã−1 ⊗ Im)v − v∗(Is ⊗ Y )(D̃ ⊗ Im)Z(Is ⊗ Y −1)v.

By taking real part in the above equation and making use of the inequalities

Re(v∗(Is ⊗ Y )(D̃ ⊗ Im)Z(Is ⊗ Y −1)v) ≤ δx ‖v‖2
2 ∀x < 0,

and

Re(v∗((D̃Ã−1) ⊗ Im)v) = 2−1v∗((D̃Ã−1 + Ã−T D̃) ⊗ Im)v ≥ α̃ ‖v‖2
2 ,

it follows from (5.7) that

(α̃− δx) ‖v‖2
2 ≤ Re(v∗(D̃Ã−1 ⊗ Im)w) ≤

∥∥∥D̃Ã−1
∥∥∥

2
‖v‖2 .
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Then, it yields that ‖(Ims − (Ã⊗ Im)Z)−1‖Is⊗X ≤ ‖D̃Ã−1‖2

α̃−δx . This completes the
proof.

Next, we give the main convergence results.
Theorem 9. Consider an irreducible and algebraically stable (for the matrices

G and D) General Linear Method (2.1), with stage order q and a nonsingular matrix
Ã. Assume that ρ(R(∞)) < 1. Then, by taking any positive definite diagonal matrix
D̃ such that α̃ = αD̃(Ã−1) ≥ 0, we have that the global errors εn = Y (tn) − Y (n) on
strictly dissipative problems (ν < 0) satisfy for n ≥ 1 and h > 0 that

‖εn‖G⊗X ≤ �[l−1n] ‖ε0‖G⊗X + hq+1C3l
1 − �1+l−1h−1tn−1

1 − �
Mq+1(tn),

where [x] denotes the integer part of the real number x and

(5.8) C3 = C1

√
ρ(G) + κC2

⎛⎝1 +

∥∥∥D̃Ã−1
∥∥∥

2

α̃ + |ν|δh

⎞⎠ .

Here, l is the first positive integer verifying
∥∥Rl(∞)

∥∥
G
< 1, � = max{γ, ehσν}, ( 0 <

γ < 1 and σ > 0 are those two constants given in Theorem 4), C1 and C2 are those
two constants given in (5.3), κ and δ are both given in (5.6), and

(5.9) Mj(tn) := max
t∈[0,tn]

∥∥∥y(j)(t)
∥∥∥
X
.

All the constants (with the exception of �) depend only on the coefficients of the

method. Recall that the matrix D̃ also depends exclusively on the matrix Ã.
Proof. Let us take � = max{γ, ehσν} < 1, where 0 < γ < 1 and σ > 0 are the

constants given in Theorem 4. Then, by virtue of Theorem 4 it follows that (below
‖·‖ ≡ ‖·‖G⊗X)

(5.10)

∥∥∥∥∥
j∏

k=1

M(Z(n−k))

∥∥∥∥∥ ≤ �[j/l] ∀ j ≤ n.

From (5.5) we get for the global errors that

(5.11) ‖εn‖ ≤ ‖τn−1‖ +

n−1∑
j=1

∥∥∥∥∥
j∏

k=1

M(Z(n−k))

∥∥∥∥∥ ‖τn−j−1‖ +

∥∥∥∥∥
n∏

k=1

M(Z(n−k))

∥∥∥∥∥ ‖ε0‖.
In order to bound ‖τj‖, from (5.3) and from Theorem 8 we deduce that

(5.12) ‖τj‖ ≤ C3h
q+1Mq+1(tj+1), h > 0, j ≥ 0,

where C3 is defined by (5.8). By inserting (5.10) and (5.12) into (5.11), it follows that

‖εn‖ ≤ hq+1C3Mq+1(tn)

n−1∑
j=0

�[j/l] + �[n/l] ‖ε0‖, h > 0, n ≥ 1.

By setting n− 1 = pl + q, with p and q integers, 0 ≤ q < l, we have that

n−1∑
j=0

�[j/l] = l

p−1∑
k=0

�k + (q + 1)�p ≤ l

p∑
k=0

�k = l
1 − �p+1

1 − �
= l

1 − �1+[l−1(n−1)]

1 − �
.
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This concludes the proof since �1+[l−1(n−1)] ≥ �1+l−1(n−1).
As a consequence of the previous theorem, we deduce the orders of convergence on

semi-infinite intervals (and B-convergence on finite intervals) of algebraically stable
General Linear Methods. It will be seen that the convergence results extend the
pioneer results of B-convergence given by Frank, Schneid, and Ueberhuber [9] (see
also [10, Theorem 15.3]) to the case of General Linear Methods. Our results for finite
intervals are similar to those presented in [12]. However, the results on semi-infinite
intervals, as far as we are aware, are completely new.

Theorem 10. Under the assumptions made in Theorem 9 for a General Linear
Method, we have for dissipative problems (ν ≤ 0) that its global errors εn := Y (tn) −
Y (n) satisfy for h > 0, n ≥ 1

1. if α̃ > 0 and ν < 0, then ‖εn‖G⊗X ≤ hq K
|ν|Mq+1(tn) + �[l−1n] ‖ε0‖G⊗X ,

2. if α̃ > 0 and ν ≤ 0, then ‖εn‖G⊗X ≤ hqKtnMq+1(tn)+�[l−1n] ‖ε0‖G⊗X , and

3. if α̃ = 0 and ν < 0, then ‖εn‖G⊗X ≤ hq−1 K
|ν| min{ 1

|ν| , tn}Mq+1(tn) +

�[l−1n] ‖ε0‖G⊗X ,
where Mq+1(tn) is given in (5.9), � and l are supplied by Theorem 9, and the constant
K depends only on the coefficients of the method.

Proof. The proof follows in a straightforward way from Theorem 9. It must be
taken into account that if ν < 0 then

χ(ν, h) := l
1 − eσνh(1+n−1

l )

1 − eσνh
≤ l

1 − eσνh
=

l

σ|ν|h + O(1), h → 0.

Moreover, for ν < 0, χ(ν, h) ≤ limν→0− χ(ν, h) = h−1tn + l − 1, since the function
(1 − ex)−1(1 − eax) is increasing on x whenever the constant a > 1.

It is still possible to gain one more order of convergence for a General Linear
Method when

(5.13) d
(q+1)
1 = (Ik −B)x, d

(q+1)
2 = −B̃x

hold for some vector x ∈ R
k. Here, d

(q+1)
1 and d

(q+1)
2 are given by (5.2).

Theorem 11. If a General Linear Method satisfies (5.13) and the assumptions
in Theorem 9, then, for dissipative problems (ν ≤ 0), its global errors fulfill the
statements in Theorem 10 with q replaced by q + 1.

Proof. The proof is along the lines of that of Theorem 9, but with the following
minor modifications, which are inspired by the proof of Theorem 4.2 in [14]. We define
the modified global errors

ε̄n := εn − (x⊗ Im)hq+1y(q+1)(tn),

which, by virtue of (5.4) and (5.13), fulfill the recurrent relation

ε̄n = M(Z(n))ε̄n−1 + τ̄n−1, n ≥ 1, with ‖τ̄n−1‖G⊗X ≤ hq+2C ′
3Mq+2(tn).

Here C ′
3 has the same expression as C3 in (5.8) but just replacing the constants Ci

by C ′
i (i = 1, 2), with C ′

i given in (5.4).
From the previous theorem it seems that one more order than the stage order

can be achieved, but as it has been remarked by Hundsdorfer [14, p. 378], very few
interesting methods satisfy (5.13), and this assumption seems necessary also to gain
one order with regard to the stage order [14, Theorem 4.2]. We discuss this possibility
more in the next section.
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6. Some applications of the main results. Below, we consider a few methods
in the Runge–Kutta multistep family which take the form of a General Linear Method
(2.1) with

A =

(
γ1 . . . γs
O . . . O

)
, B =

(
α1 . . . αk−1 αk

Ik−1 O

)
,

where γ1, . . . , γs, α1, . . . , αk ∈ R, Ik−1 denotes the identity matrix of dimension k− 1
and O ∈ R

k−1 stands for the null vector. Moreover, due to preconsistency, they
always satisfy α1 + · · · + αk = 1.

In the case of k = 1, we get the classical Runge–Kutta methods. Thus, for the s-
stage Runge–Kutta Radau IA, Radau IIA, and Lobatto IIIC methods (see, e.g., [10,
Ch. IV.5]), we have that (γk)k=1,s is the weight vector and B = (1). Then, since
R(∞) = 0, G = (1), and D = Diag(γk)k=1,s > 0, by virtue of Theorem 4 these
methods turn out to be strictly contractive for the strictly dissipative class (ν < 0).
Moreover, from Theorem 10 (see also [10, p. 220]) we deduce that for semi-infinite
intervals, the Radau IIA methods have order of convergence q = s, whereas Radau IA
methods reach order of convergence q = s−1. In the same way, the two-stage Lobatto
IIIC methods reach order q = 1. However, for Lobatto IIIC methods with s ≥ 3, only
order of convergence q = s− 2 can be derived from Theorem 10.

It should be mentioned that one more order than the stage order cannot be
guaranteed since these families do not fulfill the condition (5.13).

Next, we consider the classical two-step backward differentiation formula BDF2,
given by 3

2yn+1 − 2yn + 1
2yn−1 = hf(tn+1, yn+1), n ≥ 1. This method is a two-step

one-stage G-stable General Linear Method for the symmetric positive definite matrix

G :=
(

5
4

− 1
2

− 1
2

1
4

)
(see, e.g., [7], [10, Example 6.5, pp. 308–309]). Its stability matrix

satisfies ‖R(∞)‖G = 1 and
∥∥R(∞)2

∥∥
G

= 0. Then, according to Theorem 4, the
composed method defined by two consecutive steps of the BDF2 formula defines a
strictly contractive method on the class of strictly dissipative differential systems.
By taking D = Ã = (2/3), it is readily seen that αD(Ã−1) = 3/2. Then, from
Theorem 10, this method achieves order of convergence two on semi-infinite intervals.
It can be easily checked that this method does not fulfill the condition (5.13), and
hence Theorem 11 cannot be applied. It is well known that this method has exactly
order of convergence 2 on the class ν < 0.

On the other hand, Burrage [1, 2] introduced the following set of simplifying
conditions in order to construct high order algebraically stable multistep Runge–
Kutta methods:

B(p) : b̄p := q

s∑
j=1

γjc
q−1
j +

k∑
j=1

αj(1 − j)q − 1 = 0, 1 ≤ q ≤ p,

C(p) : c̄p := q

s∑
j=1

ãijc
q−1
j +

k∑
j=1

b̃ij(1 − j)q − cqi = 0, 1 ≤ q ≤ p, ∀i,

D(p) : d̄p := q

s∑
i=1

γic
q−1
i b̃ij − αj(1 − (1 − j)q) = 0, 1 ≤ q ≤ p, ∀j,

E(p) : ēp := q

s∑
i=1

γic
q−1
i ãij − γj(1 − cqj) = 0, 1 ≤ q ≤ p, ∀j.

Thus, the family of k-step s-stage Runge–Kutta Gauss methods with stage order
q = s and order of consistency 2s has been derived by Burrage [1, 2] by imposing
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B(s), C(s), D(s), and E(s). This family of methods, with parameters αj ≥ 0 (j =
1, . . . , k − 1), αk > 0, and α1 + . . . αk = 1 provides G-stable methods, where G =
Diag(1, α2 + . . . αk, . . . , αk−1 + αk, αk); see Theorem 9.15 in [10, p. 367]. The nodes
c1, . . . , cs depend on k − 1 parameters αj (j = 2, . . . , k), they are placed on the real
interval (1− k, 1), and they are uniquely determined in terms of the k− 1 parameters
by the condition B(2s) (see, e.g., [10, Lemma 9.11]); that is,

(6.1)

k∑
j=1

αj

∫ 1

1−j

π(x)xq−1dx = 0, 1 ≤ q ≤ s,

where π(x) = (x− c1) · · · · · (x− cs) stands for the nodal polynomial. In particular, for
the uniparametric family of two-step two-stage Runge–Kutta Gauss methods, which
will be here denoted by Gauss(α), with free parameter α ≡ α2 ∈ (0, 1] (α1 = 1 − α),
the nodes c1 and c2 can be computed in terms of α from (6.1). The weights γ1, γ2

and the coefficient matrices B̃ and Ã are uniquely determined in terms of α by the
conditions B(2), D(2), and C(2), respectively. For every α ∈ (0, 1], such methods are
G-stable and algebraically stable with matrix G = Diag(1, α) and diagonal matrix
D = Diag(γ1, γ2). For α → 0+ we get the classical one-step Gauss method with
step-size h > 0 to advance from tn to tn+1; whereas for α → 1− the classical one-
step Gauss method with step-size 2h to advance from tn−1 to tn+1 is deduced. In
Table 1 the main features of this family of methods are displayed. In particular, from

Table 1

Some features of the 2-step 2-stage algebraically stable Runge–Kutta multistep methods, denoted
by Gauss(α), RadauIIA(α), RadauIA(α), and LobattoIIIC(α), 0 < α ≤ 1.

Gauss(α)

‖R(∞)‖G < 1 Never∥∥R(∞)2
∥∥
G

< 1 0 < α < 1

αD(Ã−1) > 0 0 < α < 1

ρ(R(∞)) = 1, αD(Ã−1) = 0 α = 1

Simplifying conditions B(2), C(2), D(2), E(2)

Convergence on [0,∞) q = 2 (only for 0 < α < 1)

RadauIIA(α)

‖R(∞)‖G < 1 0 < α < 1∥∥R(∞)2
∥∥
G

< 1 0 < α ≤ 1

αD(Ã−1) > 0 0 < α ≤ 1

Simplifying conditions B(2), C(2), D(2), E(1), c2 = 1

Convergence on [0,∞) q = 2 (0 < α ≤ 1)

RadauIA(α)

‖R(∞)‖G < 1 0 < α < 1∥∥R(∞)2
∥∥
G

< 1 0 < α ≤ 1

αD(Ã−1) > 0 0 < α ≤ 1

Simplifying conditions B(2), C(1), D(2), E(2), c1 = −1

Convergence on [0,∞) q = 1 (0 < α ≤ 1)

LobattoIIIC(α)

‖R(∞)‖G < 1 0 < α < 1∥∥R(∞)2
∥∥
G

< 1 0 < α ≤ 1

αD(Ã−1) > 0 0 < α ≤ 1

Simplifying conditions B(2), C(1), D(2), E(1), c1,2 = −1, 1, ã22 = 1

Convergence on [0,∞) q = 1 (0 < α ≤ 1)
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Theorems 4 and 10 it can be deduced that they are strictly contractive and convergent
of order two on semi-infinite intervals whenever 0 < α < 1.

Under the same simplifying conditions above, Li [17] derived six classes of high
order algebraically stable and B-convergent Runge–Kutta multistep methods. In par-
ticular, those methods belonging to the classes 2–4 (see [17, p. 1491]) can be respec-
tively regarded as generalizations of the one-step Runge–Kutta RadauIIA, RadauIA,
and LobattoIIIC methods. Here, we have studied in detail the cases in [17, p. 1491]
for which k = s = 2. In Table 1, we have considered particular uniparametric families
belonging to the classes 2, 3, and 4 in [17], denoted, respectively, by RadauIIA(α),
RadauIA(α), and LobattoIIIC(α), where 0 < α2 = α ≤ 1, α1 = 1 − α, with α as
a free parameter. The main features concerning the derivation of the methods, the
strict-contractivity and its convergence order on semi-infinite intervals, are displayed
in Table 1. All these methods are algebraically stable whenever 0 < α ≤ 1, with
matrices G = (1, α) and D = (γ1, γ2). The weights {γj , j = 1, 2} are readily obtained
from the simplifying conditions in Table 1. The order of convergence is deduced from
Theorem 10. It should be mentioned that one more order than the stage order cannot
be guaranteed since the condition (5.13) is never satisfied.

7. Concluding remarks. New results related to the strict-contractivity and the
convergence of General Linear Methods on the class of strictly dissipative problems
have been derived. A previous result of strict-contractivity on Runge–Kutta methods
by Hairer and Zennaro [11] has been generalized to the class of General Linear Meth-
ods. On the other hand, the convergence results on Runge–Kutta methods by Frank,
Schneid, and Ueberhuber [9] and on General Linear Methods by Huang, Chang, and
Xiao [12] are extended to semi-infinite intervals. The new convergence results meet
applications on interesting methods appearing in the literature.
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OPTIMAL SUPERCONVERGENCE RESULTS FOR DELAY
INTEGRO-DIFFERENTIAL EQUATIONS OF PANTOGRAPH TYPE∗

HERMANN BRUNNER† AND QIYA HU‡

Abstract. We analyze the optimal (global and local) orders of superconvergence of collocation
solutions uh on uniform meshes Ih for delay Volterra integro-differential equations with proportional
delay functions given by θ(t) = qt (0 < q < 1, t ∈ [0, T ]). In particular, we show that if uh is a
continuous piecewise polynomial of degree m ≥ 2, and if collocation is at the Gauss (–Legendre)
points, then the (optimal) order of local superconvergence on Ih is p∗ = m+2. It turns out that the
same order p∗ holds for nonlinear (strictly increasing) delay functions vanishing at t = 0. However,
on judiciously chosen geometric meshes, collocation at the Gauss points yields the order 2m − εN ,
where εN → 0 as the number N of mesh points tends to infinity. Optimal local superconvergence
results for the pantograph delay differential equation are obtained as special cases of our general
analysis.

Key words. Volterra integro-differential equation, vanishing delays, proportional delays, pan-
tograph equation, collocation solutions, optimal order of superconvergence
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1. Introduction. It is well known that collocation in the space of continu-
ous piecewise polynomials of degree m ≥ 1 for first-order delay differential and
integro-differential equations with nonvanishing delays leads to (optimal) O(h2m)-
superconvergence at the mesh points of a suitably chosen (constrained) mesh Ih if the
collocation points are the Gauss (–Legendre) points (see, e.g., Bellen [3], Bellen and
Zennaro [7], Brunner [8, 11], and Chapter 4 of the monograph [12]). For the prototype
of a functional differential equation with vanishing delay, the pantograph equation,

(1.1) y′(t) = a(t)y(t) + b(t)y(qt), t ∈ I := [0, T ] (0 < q < 1)

(first analyzed by Fox et al. [18] and Kato and McLeod [29]; see also the survey paper
[23] by Iserles); this high order of local superconvergence can be attained on special
geometric meshes (Bellen [4]). The same is true for its generalization, the pantograph
Volterra integro-differential equation

y′(t) = a(t)y(t) + b(t)y(qt) + g(t) +

∫ t

0

K0(t, s)y(s)ds(1.2)

+

∫ qt

0

K1(t, s)y(s)ds, t ∈ I

∗Received by the editors May 19, 2006; accepted for publication (in revised form) December 1,
2006; published electronically May 4, 2007.

http://www.siam.org/journals/sinum/45-3/66035.html
†Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s,

NL, A1C 5S7 Canada (hermann@math.mun.ca). This author’s research was supported by the Natural
Sciences and Engineering Research Council of Canada (Discovery grant 9406).

‡LSEC and Institute of Computational Mathematics and Scientific/Engineering Computing,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China
(hqy@lsec. cc.ac.cn). This author’s research was supported by the Natural Science Foundation of
China G10371129, the Key Project of the Natural Science Foundation of China G10531080, and the
National Basic Research Program of China 2005CB321702.

986



PANTOGRAPH FUNCTIONAL EQUATIONS 987

(Bellen et al. [5]).
On uniform meshes the problem regarding optimal (local) superconvergence of

collocation solutions for pantograph-type functional differential equations, and in par-
ticular for the pantograph equation itself, has remained open (compare the survey
paper [10]). An indication that the “classical” superconvergence results might not
remain valid for pantograph-type differential (and integral) equations was given in
Brunner [9], Takama, Muroya, and Ishiwata [33], Ishiwata [28], and Muroya, Ishi-
wata, and Brunner [32]: it was shown in these papers that the collocation solution
corresponding to the m Gauss points does not exhibit the (local) order 2m + 1 at
t = t1 = h, in contrast to ordinary differential equations or delay differential equa-
tions with constant delay.

It is the aim of the present paper to show, employing techniques rather different
from those in [13], that for m > 2 the attainable order of superconvergence at the
points of a uniform mesh Ih = {tn = nh : 0 ≤ n ≤ N (tN = T )} (with N ≥ 2) cannot
exceed p∗ := m + 2, and that this optimal value p∗ can be attained for any q ∈ (0, 1)
and all m ≥ 2. This is in sharp contrast to the optimal local superconvergence result
in (iterated) collocation solutions for pantograph-type Volterra integral equations:
Brunner and Hu [13] have shown that the optimal local order p∗ = m + 2 can be
attained only when q = 1/2 and m is even.

2. Volterra integro-differential equations of pantograph type.

2.1. Regularity and representation of solutions. Consider the general lin-
ear pantograph Volterra integro-differential equation

(2.1) y′(t) = a(t)y(t) + b(t)y(θ(t)) + g(t) + (Vy)(t) + (Vθy)(t), t ∈ I := [0, T ],

with initial condition y(0) = y0 and delay function θ(t) := t− τ(t) satisfying θ(0) = 0
and θ(t) < t when t ∈ (0, T ] (see also (D1)–(D3) below). The Volterra integral
operators V and Vθ are defined by

(Vy)(t) :=

∫ t

0

K0(t, s)y(s)ds, K0 ∈ C(D),(2.2)

(Vθy)(t) :=

∫ θ(t)

0

K1(t, s)y(s)ds, K1 ∈ C(Dθ),(2.3)

where D := {(t, s) : 0 ≤ s ≤ t ≤ T}. We set

D
(k)
θ := {(t, s) : 0 ≤ s ≤ θk(t), t ∈ I} (k ≥ 1) and Dθ := D

(1)
θ .

θ(t) = qt (0 < q < 1), and we will usually write D
(k)
θ = D

(k)
q .

The delay function θ(t) = t− τ(t) is subject to the following conditions:
(D1) θ ∈ Cd(I), with d ≥ 1, and θ(0) = 0;
(D2) θ(t) ≤ q1t (t ∈ I), with q1 < 1; and
(D3) mint∈I θ

′(t) =: q0 > 0, with q0 ≤ q1.
Equation (2.1) includes two important special cases: the pantograph equation with

variable coefficients, (1.1) (which corresponds to θ(t) = qt = t − (1 − q)t), and the
delay Volterra integro-differential equation with “pure delay,”

(2.4) y′(t) = b(t)y(θ(t)) + g(t) + (Vθy)(t), t ∈ I,

which exhibits all the essential (quantitative) properties of (2.1) on which the subse-
quent analysis will focus.
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It is readily verified that the initial-value problem for (2.1) is equivalent to the
delay integral equation

(2.5) y(t) = g0(t) +

∫ t

0

H0(t, s)y(s)ds +

∫ θ(t)

0

H1(t, s)y(s)ds, t ∈ I,

where we have set

g0(t) := y0 +

∫ t

0

g(s)ds,(2.6)

H0(t, s) := a(s) +

∫ t

s

K0(v, s)dv,(2.7)

H1(t, s) := b(θ−1(s))θ′(θ−1(s)) +

∫ t

θ−1(s)

K1(v, s)dv.(2.8)

In complete analogy with the pantograph equation (1.1), smooth data in (2.1) lead
to smooth solutions on I. This is made precise in the following theorem.

Theorem 2.1. Assume that, for some d ≥ 0, the given functions in (2.1) satisfy
(i) a, b, g ∈ Cd(I);
(ii) K0 ∈ Cd(D), K1 ∈ Cd(Dθ); and
(iii) (D1)–(D3), with θ ∈ Cd+1(I).

Then for each y0 ∈ R the initial-value problem for (2.1) has a unique solution y ∈
Cd+1(I).

The proof of this existence and regularity result (which generalizes Theorems 5.16
and 5.18 in Brunner [12]) follows readily from the Picard iteration process applied to
the delay integral equation (2.5). For the delay Volterra integro-differential equation
(2.4)—on which our subsequent analysis will focus—we obtain the following theorem
on the representation of solutions. This result is an obvious generalization of the one
for θ(t) = qt (0 < q < 1) derived by Chambers [17]; in fact, this result is already
implicitly contained in the 1914 paper [1] by Andreoli.

Theorem 2.2. Under the assumptions of Theorem 2.1, the unique solution of
the initial-value problem for the delay Volterra integro-differential equation (2.4) can
be represented in the form

(2.9) y(t) = g0(t) +

∞∑
k=1

∫ θk(t)

0

Hk(t, s)g0(s)ds, t ∈ I,

where θk := θ ◦ · · · ◦ θ︸ ︷︷ ︸
k

. The iterated kernels Hk(t, s) of the kernel H1(t, s) defined in

(2.8) are determined recursively by

Hk+1(t, s) :=

∫ θ(t)

θ−k(s)

H1(t, v)Hk(v, s)dv(2.10)

=

∫ θk(t)

θ−1(s)

Hk(t, v)H1(v, s)dv, (t, s) ∈ D
(k+1)
θ (k ≥ 1).(2.11)

An alternative form of the solution representation (2.9) is

(2.12) y(t) =

(
1 +

∞∑
k=1

H̃k(t, 0)

)
y0 +

∫ t

0

g(s)ds +

∞∑
k=1

∫ θk(t)

0

H̃k(t, s)g(s)ds,
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with

(2.13) H̃k(t, s) :=

∫ θk(t)

s

Hk(t, v)dv, (t, s) ∈ D
(k)
θ .

Proof. The only new ingredient in Theorem 2.2 is the alternative expression (2.11)
for the iterated kernel Hk+1(t, s). It is readily verified by induction, using an obvious
change in the order of integration (which is based on assumption (D3) for θ). We will
illustrate this by considering k = 2. By (2.10),

H3(t, s) =

∫ θ(t)

θ−2(s)

H1(t, v)H2(v, s)dv,

and hence,

H3(t, s) =

∫ θ(t)

θ−2(s)

H1(t, v)

(∫ θ(v)

θ−1(s)

H1(v, z)H1(z, s)dz

)
dv

=

∫ θ2(t)

θ−1(s)

(∫ θ(t)

θ−1(z)

H1(t, v)H1(v, z)dv

)
H1(z, s)dz

=

∫ θ2(t)

θ−1(s)

H2(t, z)H1(z, s)dz, (t, s) ∈ D
(3)
θ .

The completion of the induction argument is now clear. The representation (2.12)
follows from (2.9) and the definition (2.6) of g0(t).

Corollary 2.3. Let θ(t) = qt, 0 < q < 1, and define

β := q−1 max{|b(t)| : t ∈ I}, K̄1 := max{|K1(t, s)| : (t, s) ∈ Dq}.

Then the iterated kernels {Hk(t, s)} corresponding to the kernel K1(t, s) in (2.4), (2.8)
are bounded by

|Hk(t, s)| ≤
(β + K̄1T )k

(k − 1)!
q(k−1)(k−2)/2[qt− q−(k−1)s]k−1,(2.14)

(t, s) ∈ D(k)
q (k ≥ 1).

Moreover, the kernels {H̃k(t, s)} defined in (2.13) satisfy

(2.15) |H̃k(t, s)| ≤
(β + K̄1T )k

k!
qk(k−1)/2[qt− q−(k−1)s]k, (t, s) ∈ D(k)

q (k ≥ 1).

The estimates (2.14) follow directly from the expression (2.11) for the iterated
kernels, using an inductive argument and integration by parts. Hence, the estimates
for the integrated kernels H̃k(t, s) are an obvious consequence of (2.13).

Corollary 2.4. If K1(t, s) ≡ 0, then the iterated kernels associated with the
delay integral equation (2.5) corresponding to the pantograph equation (1.1) satisfy

(2.16) |Hk(t, s)| ≤
βkq(k−1)(k−2)/2

(k − 1)!
[qt− q−(k−1)s]k−1, (t, s) ∈ D(k)

q (k ≥ 1).

For the sake of completeness we conclude this section by observing that the results
of Theorem 2.2 on the representation of the solution to (2.4) are easily extended to
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the general pantograph equation (2.1), by applying Picard iteration to its equivalent
delay integral equation (2.5). The precise result is given in the following theorem.

Theorem 2.5. If the given functions in the general pantograph Volterra integro-
differential equation (2.1) are continuous on their respective domains, and if the delay
function θ is subject to (D1)–(D3), then its unique solution y ∈ C1(I) has the repre-
sentation

y(t) = g0(t) +

∫ t

0

∞∑
k=1

H0,k(t, s)g0(s)ds

+

∞∑
k=1

∫ θk(t)

0

H1,k(t, s)g0(s)ds + M(t), t ∈ I,(2.17)

where

(2.18) M(t) :=

∞∑
k=1

∫ θk(t)

0

H
(0,1)
k (t, s)g0(s)ds,

and θ0(t) := t. The kernels H0,k(t, s) and H1,k(t, s) are the iterated kernels associated
with the kernels H0(t, s) and H1(t, s) defined in (2.7) and (2.8), and g0 is given by
(2.6). The infinite series in (2.17) and (2.18) converge absolutely and uniformly on

I, and we have H
(0,1)
k (t, s) ≡ 0 (k ≥ 1) when H0(t, s) ≡ 0 or H1(t, s) ≡ 0.

Proof. As indicated before, the representation (2.17) follows readily from Picard
iteration applied to the integral equation (2.5); here, the following lemma (an obvious
extension of Dirichlet’s formula regarding the change in the order of integration in
integrals with variable limits of integration) plays a key role.

Lemma 2.6. Let k and � be given nonnegative integers, and assume that the
delay function θ is subject to the hypotheses (D1)–(D3). Then for any function φ ∈
C(D

(k+�)
θ ),

∫ θk(t)

0

(∫ θ�(s)

0

φ(s, v)dv

)
ds =

∫ θk+�(t)

0

(∫ θk(t)

θ−�(v)

φ(s, v)ds

)
dv, (t, s) ∈ D

(k+�)
θ .

(2.19)

We leave the details of the proof of Theorem 2.5 to the reader but illustrate the ba-
sic result underlying its induction argument, thus revealing the structure of the kernels

H
(0,1)
k (t, s) in (2.18). Setting y0(t) := g0(t) and H0,1(t, s) := H0(t, s), H1,1(t, s) :=

H1(t, s), the first two iterates obtained by Picard iteration for (2.5) are, respectively,

y1(t) = g0(t) +

∫ t

0

H0,1(t, s)g0(s)ds +

∫ θ(t)

0

H1,1(t, s)g0(s)ds,

and hence, by Lemma 2.6,

y2(t) = g0(t) +

∫ t

0

H0,1(t, s)y1(s)ds +

∫ θ(t)

0

H1,1(t, s)y1(s)ds

= g0(t) +

∫ t

0

H0,1(t, s)

(
g0(s) +

∫ s

0

H0,1(s, v)g0(v)dv

+

∫ θ(s)

0

H1,1(s, v)g0(v)dv

)
ds
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+

∫ θ(t)

0

H1,1(t, s)

(
g0(s) +

∫ s

0

H0,1(s, v)g0(v)dv +

∫ θ(s)

0

H1,1(s, v)g0(v)dv

)
ds

= g0(t) +

∫ t

0

H0,1(t, s)g0(s)ds +

∫ t

0

H0,2(t, s)g0(s)ds

+

∫ θ(t)

0

H1,1(t, s)g0(s)ds +

∫ θ2(t)

0

H1,2(t, s)g0(s)ds +

∫ θ(t)

0

H
(0,1)
2 (t, s)g0(s)ds.

Here, H0,2(t, s) and H1,2(t, s) are the first nontrivial iterated kernels for the given
kernels H0(t, s) and H1(t, s):

H0,2(t, s) :=

∫ t

s

H0,1(t, v)H0,k−1(v, s)dv,

H1,2(t, s) :=

∫ θ(t)

θ−(k−1)(s)

H1,1(t, v)H1,k−1(v, s)dv

(cf. (2.10)), and the “mixed” kernel H
(0,1)
2 (t, s) has the form

H
(0,1)
2 (t, s) :=

∫ t

θ−1(s)

H0,1(t, v)H1,1(v, s)dv +

∫ θ(t)

v

H1,1(t, v)H0,1(v, s)dv.

2.2. Collocation methods in piecewise polynomial spaces. As we have
seen in section 2.1 (Theorem 2.1), the analytical solution to the pantograph integro-
differential equation (2.1) with smooth data is smooth on the entire interval I := [0, T ],
in contrast to solutions to such functional equations with nonvanishing delays. Thus,
the mesh underlying the piecewise polynomial space in which the approximation uh

to the exact solution will be sought will be chosen as

(2.20) Ih := {tn : 0 = t0 < t1 < · · · < tN = T} (with tn = t(N)
n ),

and we set hn := tn+1 − tn, h := max{hn : 0 ≤ n ≤ N − 1}. For given Ih and m ≥ 1,
the collocation solution uh to (2.1) will be an element of the space

(2.21) S(0)
m (Ih) := {v ∈ C0(I) : v|[tn,tn+1] ∈ πm (0 ≤ n ≤ N − 1)}

of continuous (real) piecewise polynomials of degree not exceeding m; uh is determined
by the collocation equation

u′
h(t) = a(t)uh(t) + b(t)uh(θ(t)) + g(t) + (Vuh)(t) + (Vθuh)(t),(2.22)

t ∈ Xh, uh(0) = y0.

Here,

(2.23) Xh := {tn + cihn : 0 < c1 < · · · < cm ≤ 1 (0 ≤ n ≤ N − 1)}

is the set of collocation points corresponding to given collocation parameters {ci}. For

continuous data there exists h̄ > 0 so that (2.19) has a unique solution uh ∈ S
(0)
m (Ih)

for all meshes Ih with h ∈ (0, h̄) (see, e.g., [12, section 5.5.1]).
It is also known [12, section 5.5.2] that, for arbitrarily chosen collocation param-

eters {ci}, the collocation error tends to zero uniformly, as h → 0. More precisely, we
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have the following global convergence result (which we state for further reference); its
proof can be found in [12, Ch. 5].

Theorem 2.7. Assume that a, b, g, K0, K1 are in Cm on their respective
domains, and let θ be subject to the conditions (D1)–(D3), with d ≥ m+1 (cf. section

2.1). Then for h ∈ (0, h̄) the collocation solution uh ∈ S
(0)
m (Ih) for (2.1) satisfies

(2.24) ‖y(ν) − u
(ν)
h ‖∞ ≤ Cνh

m (ν = 0, 1),

where the constants Cν depend on {ci} and on q but not on h.

The collocation solution uh ∈ S
(0)
m (Ih) for (2.1) induces the defect (or residual)

δh defined by

δh(t) := −u′
h(t) + a(t)uh(t) + b(t)uh(θ(t)) + g(t) + (Vuh)(t) + (Vθuh)(t),(2.25)

t ∈ I,

with δh(t) = 0 for all t ∈ Xh. It inherits (piecewise, on the subintervals [tn, tn+1]) the
regularity of the given functions in (2.1). Since δh(t) can also be written as

(2.26) δh(t) = e′h(t) − a(t)eh(t) − b(t)eh(θ(t)) − (Veh)(t) − (Vθeh)(t), t ∈ I,

where eh := y−uh, the following result is an immediate consequence of Theorem 2.7.
Corollary 2.8. Under the assumptions of Theorem 2.7 we have

‖δh‖∞ ≤ D0h
m

for all h ∈ (0, h̄), where the constant D0 does not depend on h.

3. Optimal global superconvergence on I.
Theorem 3.1. Assume the following:
(i) The given functions in the pantograph Volterra integro-differential equation

(2.1) satisfy, for κ specified in (3.1), a, b, g ∈ Cm+κ(I), K0 ∈ Cm+κ(D),
K1 ∈ Cm+κ(Dθ), and θ(t) = qt (0 < q < 1).

(ii) uh ∈ S
(0)
m (Ih) is the collocation solution, with respect to the uniform mesh Ih

and collocation parameters {ci}, to (2.1).
(iii) The collocation parameters are such that, for some κ with 1 ≤ κ ≤ m,

(3.1) Jν :=

∫ 1

0

sν
m∏
i=1

(s− ci)ds = 0, ν = 0, . . . , κ− 1;

that is, the interpolatory m-point quadrature based on the abscissas given by
the collocation parameters {ci} has degree of precision m + κ− 1.

Then uh is globally superconvergent:

‖y − uh‖∞ ≤ Chm+1,

where in general the order m+1 cannot be replaced by m+2. The constant C depends
on q and on {ci} but not on h.

Proof. For ease of exposition we will give the proof for (2.4); it is readily adapted
(using the representation (2.17) in Theorem 2.5) to the general pantograph integro-
differential equation (2.1). It follows from (2.4) and (2.25) (with a = 0, V = 0) that
the collocation error eh := y − uh solves the initial-value problem

(3.2) e′h(t) = b(t)eh(qt) + δh(t) + (Vθeh)(t), t ∈ I, eh(0) = 0.
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Hence, by (2.12) of Theorem 2.2 (where the roles of y and g are now assumed by eh
and δh, respectively),

(3.3) eh(t) =

∫ t

0

δh(s)ds +

∞∑
k=1

∫ qkt

0

H̃k(t, s)δh(s)ds, t ∈ I.

Let now t = tn + vh (v ∈ [0, 1]), and define

qk,n(v) := 	qk(n + v)
, γk,n = γk,n(v) := qkn− qk,n,(3.4)

k∗n(q) := max{k : qk,n(v) ≥ 1}.

Thus, (3.3) can be written in the form

(3.5) eh(t) = h

n−1∑
�=0

∫ 1

0

δh(t� + sh)ds + h

∫ v

0

δh(tn + sh)ds + SI
n(v) + SII

n (v),

where we have set
(3.6)

SI
n(v) :=

k∗
n(q)∑
k=1

∫ tqk,n

0

H̃k(t, s)δh(s)ds = h

k∗
n(q)∑
k=1

⎛⎝qk,n−1∑
�=0

∫ 1

0

H̃k(t, t� + sh)δh(t� + sh)ds

⎞⎠
and

(3.7) SII
n (v) := h

∞∑
k=1

∫ γn,k

0

H̃k(t, tqk,n
+ sh)δh(tqk,n

+ sh)ds.

In order to derive the (optimal) order estimate for SI
n(v), we first observe that, using

m-point interpolatory quadrature formulas, with abscissas based on the m colloca-

tion parameters {ci} and with En,�(v) and Ẽ
(k)
n,�(v) denoting, respectively, the resulting

quadrature errors for the integrals with integrands δh(t� + sh) and those with inte-
grands H̃k(t, t� + sh)δh(t� + sh), and observing that on each subinterval [tn, tn+1] the
defect δh is in Cm+κ, we may write

(3.8) |SI
n(v)| ≤ h

k∗
n(q)∑
k=1

⎛⎝qk,n−1∑
�=0

|Ẽ(k)
n,�(v)|

⎞⎠ .

By assumption (3.1) on the collocation parameters {ci}, these quadrature formulas
have degree of precision m+ κ− 1, and hence, by the regularity of the integrands on
the subintervals [tn, tn+1],

|En,�(v)| ≤ Qmhm+κ, |Ẽ(k)
n,�(v)| ≤ Q̃mhm+κ.

We therefore obtain

(3.9) |SI
n(v)| ≤ h · Q̃mhm+κ

k∗
n(q)∑
k=1

qk,n(v) ≤ Nh · Q̃mhm+κ q

1 − q
= TQ̃mhm+κ q

1 − q

(0 ≤ n ≤ N − 1), since, by (3.4), qk,n ≤ qkn ≤ qkN .
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Consider now SII
n (v): it follows from (3.7), Corollary 2.8, and (2.15) that

|SII
n (v)| ≤ h‖δh‖∞

∞∑
k=1

(β + K̄1T )k

k!
qk(k−1)/2

∫ γk,n

0

[qt− q−(k−1)s]kds

≤ h‖δh‖∞
∞∑
k=1

(β + K̄1T )kT k+1

(k + 1)!
qk(k+3)/2 =: D0B̃(q)hm+1, v ∈ [0, 1](3.10)

(0 ≤ n ≤ N − 1). Thus, (3.5) together with (3.9) and (3.10) lead to the (optimal)
global superconvergence estimate

|eh(t)| ≤ Chm+1, with C := (TQm + D0) + (TQ̃mq/(1 − q) + D0B̃(q)),

which holds uniformly for t ∈ I, and for any κ between 1 and m in (3.1).
Owing to the smoothness of the exact solution of the pantograph integro-differential

equation (2.1), the optimal global convergence estimate in Theorem 3.1 is not surpris-
ing: it agrees with the one for classical and constant-delay Volterra integral equations.
However, the picture changes completely for the optimal order of the collocation so-
lution for (2.1) at the mesh points of a uniform mesh, as shown in the following
section.

4. Optimal local superconvergence on uniform meshes. It was shown
in Brunner and Hu [13] that for Volterra integral equations of pantograph type, the
optimal order of local superconvergence at the points of a uniform mesh cannot exceed
p∗ = m+ 2, and that the optimal value is attained only when q = 1/2 and m is even.
For Volterra integro-differential equations of pantograph type, we obtain the same
value of p∗ but it is now attained for all q ∈ (0, 1) and all m ≥ 2. This result, stated
in the following theorem, provides the (affirmative) answer to a conjecture in [11,
section 4] and [12, section 5.5.2]. We will comment on the reason for this difference
in the optimal local superconvergence orders following the proof of Theorem 4.1.

Theorem 4.1. Assume the following:
(i) The given functions in (2.1) satisfy a, b, g ∈ Cm+κ(I), K0 ∈ Cm+κ(D), and

K1 ∈ Cm+κ(Dθ) for some κ with 1 ≤ κ ≤ m.
(ii) θ(t) = qt (0 < q < 1).

(iii) uh ∈ S
(0)
m (Ih) is the collocation solution to (2.1) on a uniform mesh Ih and

corresponding to collocation parameters {ci} satisfying the orthogonality con-
ditions (3.1) with 1 ≤ κ ≤ m.

Then for any q ∈ (0, 1) and any m ≥ 2,

(4.1) max{|y(t) − uh(t)| : t ∈ Ih} ≤ C∗hm+2,

and the exponent m + 2 cannot, in general, be replaced by m + 3.
Proof. The starting point is again the error equation (3.2): for the representation

of its solution we now use (2.9), where the roles of g in (2.6) and those of y are assumed
by δh and eh, respectively. For a given mesh point t = tn (n = 1, . . . , N) we set, in
analogy to (3.4),

(4.2) qk,n := 	qkn
, γk,n := qkn− qk,n, k∗n(q) := max{k : qk,n ≥ 1}.

Thus, the counterpart of (3.5) is given by

(4.3) eh(tn) =

∫ tn

0

δh(s)ds + SI
n + SII

n ,
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where

SI
n :=

k∗
n(q)∑
k=1

∫ tqk,n

0

Hk(tn, s)

(∫ s

0

δh(v)dv

)
ds(4.4)

= h

k∗
n(q)∑
k=1

qk,n−1∑
�=0

Hk(tn, t� + sh)

(
h

�−1∑
ν=0

∫ 1

0

δh(tν + vh)dv

+ h

∫ s

0

δh(t� + vh)dv

)
ds

and

SII
n := h

∞∑
k=1

∫ γk,n

0

Hk(tn, tqk,n
+ sh)

(∫ tqk,n
+sh

0

δh(v)dv

)
ds(4.5)

= h

∞∑
k=1

∫ γk,n

0

Hk(tn, tqk,n
+ sh)

⎛⎝h

qk,n−1∑
�=0

∫ 1

0

δh(t� + vh)dv

+ h

∫ s

0

δh(tqk,n
+ vh)dv

⎞⎠ ds.

The techniques for estimating |SI
n| and |SII

n | closely parallel the ones used in section
3 (cf. (3.8) and (3.9)). Observe first that in the upper bound for |SI

n| we have

h

�−1∑
ν=0

∣∣∣∣∫ 1

0

δh(tν + vh)dv

∣∣∣∣+h

∣∣∣∣∫ s

0

δh(t� + vh)dv

∣∣∣∣ ≤ TQmhm+κ +h ·D0h
m =: D̃0h

m+1.

Hence, by (2.14) of Corollary 2.3 and by observing the factor h in front of the first
summation sign in the second line of (4.4) we are led to

|SI
n| ≤ h · D̃0h

m+1 ·
k∗
n(q)∑
k=1

qk,n−1∑
�=0

∫ 1

0

|Hk(tn, t� + sh)|ds

≤ D̃0h
m+2

k∗
n(q)∑
k=1

(β + K̄1T )kT k−1

(k − 1)!
q(k−1)(3k−4)/2 =: C0h

m+2.(4.6)

Similarly, (4.5) together with (2.14) and Corollary 2.8 allow us to obtain the estimate

(4.7) |SII
n | ≤ C1h

m+2 (1 ≤ n ≤ N).

Hence, (4.3) and the two estimates (4.6) and (4.7) yield the desired optimal super-
convergence result on Ih,

|eh(tn)| ≤ (C0 + C1)h
m+2 =: C∗hm+2, n = 1, . . . , N ;

as the above analysis shows, the power hm+2 cannot be replaced by hm+3, except in
trivial cases.

The above result answers the question regarding the optimal order of local super-
convergence for the pantograph delay differential equation (1.1).
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Corollary 4.2. The collocation solution uh ∈ S
(0)
m (Ih) (m ≥ 2) for the panto-

graph delay differential equation (1.1), with uniform mesh Ih and collocation points
based on the Gauss points {ci}, has the optimal local superconvergence order p∗ = m+2
on Ih:

max{|y(t) − uh(t)| : t ∈ Ih} ≤ Chm+2.

Remark. As we have indicated before, the above optimal local superconvergence
result differs sharply from the one corresponding to the collocation solution uh ∈
S

(−1)
m−1(Ih) (the space of piecewise polynomials of degree m − 1 ≥ 0 that are allowed

to possess finite jumps at the mesh points) and its iterate u
it|
h for the pantograph

integral equation

(4.8) u(t) = g(t) +

∫ qt

0

K1(t, s)u(s)ds, t ∈ [0, T ].

Here, the iterated collocation error eith (= eh − δh) at t = tn has the representation

eith (tn) =

∞∑
k=1

∫ qktn

0

Hk(tn, s)δh(s)ds, n = 1, . . . , N,

which, recalling (4.2), can be written in a form analogous to (4.3), namely, eith (tn) =

ŜI
n + ŜII

n . However, the terms ŜI
n and ŜII

n corresponding to SI
n and SII

n (cf. (4.4)
and (4.5)) no longer contain integrals of the defect function δh. In particular, we now
have

ŜII
n = h

∞∑
k=1

∫ γk,n

0

Hk(tn, tqk,n
+ sh)δh(s)ds,

where, as before, ‖δh‖∞ = O(hm). This implies that if collocation is at the Gauss
points, then ŜII

n = O(hm+2) (n = 1, . . . , N) can now be attained only for special
values of q and m, namely, when q = 1/2 and m is even. Details can be found in
Brunner and Hu [13, p. 1940].

5. Equations with nonlinear vanishing delays vanishing at t = 0. We
now turn to the superconvergence analysis of collocation solutions for pantograph-
type Volterra integro-differential equations (2.1) where delay function given by θ(t) =
t − τ(t) is nonlinear and satisfies the hypotheses (D1)–(D3). Since (D2) implies the
inequalities

(5.1) θk(t) ≤ qk1 t (k ≥ 1) and θ−1(s) ≥ q−1
1 s

(cf. (2.11)), they suggest that our global and local superconvergence results of Theo-
rems 3.1 and 4.1 will remain valid for such nonlinear vanishing delays. The basis for
the proofs is given by the following generalization of Corollary 2.3.

Lemma 5.1. Let θ be subject to the hypotheses (D1)–(D3) of section 2, and define

β := max{|b(θ−1(t))|θ′(θ−1(t)) : t ∈ I}, K̄1 := max{|K1(t, s)| : (t, s) ∈ Dθ}.
The iterated kernels associated with the delay integral equation (2.5) corresponding to
the pantograph integro-differential equation (2.4) satisfy

|Hk(t, s)| ≤
(β + K̄1T )k

(k − 1)!
q
(k−1)(k−2)/2
1 [q1t− q

−(k−1)
1 s]k−1,(5.2)

(t, s) ∈ D
(k)
θ (k ≥ 1).
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Moreover, the kernels {H̃k(t, s)} defined in (2.13) satisfy

(5.3) |H̃k(t, s)| ≤
(β + K̄1T )k

k!
q
k(k−1)/2
1 [q1t− q

−(k−1)
1 s]k, (t, s) ∈ D

(k)
θ (k ≥ 1).

The proof is an immediate consequence of (5.1) (which is based on the condition
(D2) for the delay function θ)) and the result of Corollary 2.3, where the role of q is
now assumed by q1.

Theorem 5.2. Assume the following:
(i) The given functions a, b, g, K0, and K1 in the general Volterra pantograph

integro-differential equation (2.1) possess continuous derivatives of order m+
κ for some κ with 1 ≤ κ ≤ m on their respective domains.

(ii) The delay function θ is subject to the hypotheses (D1)–(D3) of section 2, with
d ≥ m + κ + 1.

(iii) uh ∈ S
(0)
m (Ih) is the collocation solution, with respect to a uniform mesh Ih

with sufficiently small mesh diameter h > 0, to the initial-value problem for
(2.1).

(iv) The collocation parameters {ci} in (2.21) satisfy (3.1) for some κ with 1 ≤
κ ≤ m.

Then the following hold:
(a) uh is globally superconvergent on I, with optimal order described by

(5.4) ‖y − uh‖∞ ≤ Chm+1.

(b) For any q1 ∈ (0, 1) (cf. hypothesis (D3)) and any m ≥ 2, uh is locally super-
convergent at the mesh points

(5.5) max{|y(t) − uh(t)| : t ∈ Ih} ≤ C∗hm+2,

where in general the order p∗ := m + 2 cannot be replaced by m + 3.
Proof. We will prove the local superconvergence estimate (5.5); the global esti-

mate (5.4) can be established along very similar lines, as is already suggested by the
proof of Theorem 3.1.

By (2.1) and (2.20) the collocation error satisfies the initial-value problem

e′h(t) = a(t)eh(t) + b(t)eh(θ(t)) + δh(t) + (Veh)(t) + (Vθeh)(t), t ∈ I,

eh(0) = 0,

where δh(t) = 0 on the set Xh of collocation points. Hence, it follows from the solution
representation (2.9) in Theorem 2.5 (with eh and δh replacing y and g, respectively)
that, at t = tn (n = 1, . . . , N),

eh(tn) =

∫ tn

0

δh(s)ds +

∞∑
k=0

∫ θk(tn)

0

Hk(tn, s)

(∫ s

0

δh(v)dv

)
ds

=

∫ tn

0

δh(s)ds +

∫ tn

0

H0(t, s)(tn, s)

(∫ s

0

δh(v)dv

)
ds(5.6)

+
∞∑
k=1

∫ θk(tn)

0

Hk(tn, s)

(∫ s

0

δh(v)dv

)
ds.(5.7)

For given n and k ≥ 1 let, in analogy to (4.2), the (unique) qk,n ∈ N be such that

(5.8) θk(tn) ∈ [tqk,n
, tqk,n+1),
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and define

(5.9) γk,n := (θk(tn) − tqk,n
)/h, k∗n := max{k : qk,n ≥ 1}.

We thus may write, in analogy to (4.3)–(4.5),

eh(tn) = h

n−1∑
�=0

∫ 1

0

δh(t� + sh)ds + h

n−1∑
�=0

∫ 1

0

H0(tn, t� + sh)

(∫ t�+sh

0

δh(v)dv

)
ds

+ SI
n + SII

n (n = 1, . . . , N),(5.10)

where

(5.11) SI
n :=

k∗
n∑

k=1

∫ tqk,n

0

Hk(tn, s)

(∫ s

0

δh(v)dv

)
ds

and

(5.12) SII
n := h

∞∑
k=1

∫ γk,n

0

Hk(tn, tqk,n
+ sh)

(∫ tqk,n
+sh

0

δh(v)dv

)
ds.

(Recall that by Lemma 5.1 the above infinite series converge uniformly for all n =
1, . . . , N .)

A glimpse at (4.4) and (4.5) now reveals that the estimates (4.6) and (4.7) carry
over to SI

n and SII
n defined in (5.11) and (5.12), except that now, by (5.2) in Lemma

5.1, q has to be replaced by q1 ∈ (0, 1), corresponding to the hypothesis (D2) for
the nonlinear delay function θ. Thus, employing the arguments used in the proof of
Theorem 4.1 allows us to derive the optimal estimate (5.5) of Theorem 5.2.

Corollary 5.3. Assume that the delay function θ satisfies the conditions (D1)–
(D3) of section 2, with d ≥ 2m + 1, and let Ih be a uniform mesh with sufficiently

small h > 0. If a, b, g ∈ C2m(I), then the collocation solution uh ∈ S
(0)
m (Ih) (m ≥ 2)

for the generalized pantograph delay differential equation

(5.13) y′(t) = a(t)y(t) + b(t)y(θ(t)) + g(t), t ∈ I, y(0) = y0,

with collocation points (2.21) based on the Gauss points {ci}, has the optimal local
superconvergence order p∗ = m + 2 for all q ∈ (0, 1):

max{|y(t) − uh(t)| : t ∈ Ih} ≤ C∗hm+2.

Here, the constant C∗ depends on the {ci} and on q1 but not on h.
Remarks. 1. Recall that the hypothesis (D2) (section 2) requires that θ(t) ≤

q1t, t ∈ I, for some q1 ∈ (0, 1). Do the optimal superconvergence estimates (5.4) and
(5.5) remain true if the nonlinear delay function θ satisfies only (D1) and (D3) and is
such that θ′(0) = 1? Examples of such delay functions are θ(t) = q1 log(1 + t), 0 <
q1 ≤ 1, for which we have θ′(t) = q1

1
1+t , t ∈ [0, T ], and thus θ′(0) = 1 when q1 = 1;

and θ(t) = t−tr, r ∈ N (r ≥ 2). In this case, θ′(0) = 1, θ(ν)(0) = 0 (ν = 2, . . . , r−1)
(see also [5, section 4]).

The analysis of optimal superconvergence of collocation solutions for (2.1) with
delay functions of the above type is yet to be carried out. It appears that the approach
in Brunner and Maset [15] will yield the tools to extend the analysis in the present
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paper to functional differential and integro-differential equations (2.1) containing these
more general θ.

2. A related question concerns delay functions θ that satisfy (D1) and (D3) on
[0, T ] but have the properties that (i) θ(0) = 0 and θ(t) < t for t ∈ (0, t∗), (ii)
θ(t∗) = t∗ (i.e., τ(t∗) = 0), and (iii) e.g., (D1)–(D3) hold on [t∗, T ]. The optimal
convergence analysis of (2.1) with such “doubly vanishing” delay functions is studied
in [15].

6. Optimal local superconvergence on geometric meshes. We shall now
show that, in analogy to pantograph-type Volterra integral equations (Brunner and
Hu [13]), O(h2m)-superconvergence at the mesh points can (almost) be restored if we
replace the uniform mesh Ih by a judiciously chosen geometric mesh (see also [21]

and [14]). To be precise, we shall seek the collocation solution uh to (2.1) in S
(0)
m (Ih),

where the underlying mesh Ih is defined by the mesh points

(6.1) t0 = 0, tn = t(N)
n = dN−nT (n = 1, . . . , N)

for some d = d(q;N) ∈ (0, 1).
Theorem 6.1. Let the assumptions of Theorem 3.1 hold with κ = m (implying,

by (3.1), that the {ci} are the m Gauss points). If the mesh Ih corresponds to the
points defined by (6.1), with

(6.2) d = q1/r, r :=

⎢⎢⎢⎣ ln(q)

ln[1 − 2m ln(N)
(m+2)N ]

⎥⎥⎥⎦ ,

then the estimate

(6.3) max{|y(t) − uh(t)| : t ∈ Ih} ≤ CN−(2m−εN ) as N → ∞

for the collocation solution uh ∈ S
(0)
m (Ih) (m ≥ 2) to (2.1) holds for any q ∈ (0, 1).

Here, C = C(q), and εN is defined by

(6.4) εN := logN

(
(2m · lnN)2m

(2m + 1)(m + 2)2m

)
and has the property εN → 0+ as N → ∞.

Proof. For ease of exposition we describe the proof of (2.4); the analysis is readily
extended to the general pantograph integro-differential equation (2.1) by employing
the error representation based on the result (2.17) in Theorem 2.5. By (2.9) of The-
orem 2.2 we obtain the error representation

eh(tn) =

∫ tn

0

δh(s)ds +

∞∑
k=1

∫ θk(tn)

0

Hk(tn, s)

(∫ s

0

δh(τ)dτ

)
ds, n = 1, . . . , N

(recall also (3.3)). Using integration by parts, this expression can be rewritten as

(6.5) eh(tn) =

∫ tn

0

δh(s)ds +

∞∑
k=1

∫ θk(tn)

0

H̃k(tn, τ)δh(τ)dτ, n = 1, . . . , N,

with

H̃k(tn, τ) :=

∫ θk(tn)

τ

Hk(tn, s)ds.
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Resorting to the quadrature argument used in the proof of Theorem 4.1, we find that

(6.6)

∣∣∣∣∫ tn

0

δh(s)ds

∣∣∣∣ ≤ CN−2m (n = 1, . . . , N).

Thus, the proof reduces to estimating the infinite series in (6.5). It is easy to see that

θk(tn) = qktn = dkr · tn = dN−n+krT,

with r as defined in (6.2). This, together with the definition (6.1) of tn, leads to the
following results:

(i) For kr − n ≥ −1, we have θk(tn) ≤ t1 ≤ CN− 2m
m+2 (as N → +∞).

(ii) For kr − n ≤ −1, there holds θk(tn) = tn−kr ∈ Ih.
Note that (i) follows from Lemma 3.1(i) of [14].

We now assume, without loss of generality, that n ≥ r+1. Otherwise, the case (i)
always occurs for each k, and the corresponding analysis is obvious. We decompose
the infinite series in (6.5) into two parts:

∞∑
k=1

∫ θk(tn)

0

H̃k(tn, τ)δh(τ)dτ =

∞∑
k=[n−1

r ]+1

∫ θk(tn)

0

H̃k(tn, τ)δh(τ)dτ

+

[n−1
r ]∑

k=1

∫ tn−kr

0

H̃k(tn, τ)δh(τ)dτ =: I1 + I2.(6.7)

Since

|H̃k(tn, τ)| ≤ Cθk(tn), τ ∈ [0, θk(tn)],

a standard argument leads to∣∣∣∣∣
∫ θk(tn)

0

H̃k(tn, τ)δh(τ)dτ

∣∣∣∣∣ ≤ C(θk(tn))m+2 ≤ C(dN−n+kr)m+2.

Furthermore, it is easy to verify that

(6.8) |I1| ≤ Cd(m+2)(N−1) ≤ Ctm+2
1 ≤ CN−2m.

Since the term I2 in (6.7) can be written in the form

I2 =

[n−1
r ]∑

k=1

n−kr∑
i=1

∫ ti

ti−1

H̃k(tn, τ)δh(τ)dτ,

we obtain, observing Corollary 2.3,∣∣∣∣∣
∫ ti

ti−1

H̃k(tn, τ)δh(τ)dτ

∣∣∣∣∣ ≤ C(ti − ti−1)
2m+1.

It then follows from part (ii) of Lemma 3.1 in [14] that

|I2| ≤ C(1 − d)2m+1

[n−1
r ]∑

k=1

n−kr∑
i=1

d(N−i)(2m+1)
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≤ C(1 − d)2m
[n−1

r ]∑
k=1

d(2m+1)(N−n+kr)

≤ C
q2m+1(1 − d)2m

1 − q2m+1
≤ CN−(2m−εN ),

with εN given by (6.4). We now substitute (6.8) and the above inequality into (6.7);
this yields ∣∣∣∣∣

∞∑
k=1

∫ θk(tn)

0

H̃k(tn, τ)δh(τ)dτ

∣∣∣∣∣ ≤ CN−(2m−εN ).

The result (6.3) in Theorem 6.1 now follows from (6.5), (6.6), and the above
estimate.

Corollary 6.2. Let a, b, g ∈ C2m(I). If the solution y of the pantograph
delay differential equation (5.13) is approximated by the collocation solution uh ∈
S

(0)
m (Ih) (m ≥ 2), with geometric mesh Ih given by (6.1), (6.2), and with collocation

points corresponding to the Gauss points {ci}, then

max{|y(t) − uh(t)| : t ∈ Ih} ≤ CN−(2m−εN ) as N → ∞,

with εN defined in (6.4).
Remark. It was shown in Bellen [4] (see also [7] and [5]) that the optimal local

superconvergence order p∗ = 2m can be restored if a different type of (quasi-) geo-
metric mesh is employed (see also [31] and [6], where such meshes were introduced
for the stability analysis of one-point collocation methods for the pantograph equa-
tion). This approach relies, however, on the assumption that a sufficiently accurate
initial approximation is known on a “small” initial interval [0, t0]; the quasi-geometric
mesh is then generated on [t0, T ]. This contrasts the quasi-optimal local superconver-
gence results of Theorem 6.1 and Corollary 6.2 which do not require such an initial
approximation.

7. Concluding remarks. We conclude our presentation by pointing to a num-
ber of open problems in the numerical analysis of pantograph-type functional differ-
ential equations.

(i) Higher-order pantograph-type integro-differential equations. Special cases of
the initial-value problem

(7.1) y′′(t) = a(t)y(t) + b(t)y(θ) + (Vy)(t) + (Vθy)(t), t ∈ I := [0, T ],

with θ(t) = qt (0 < q < 1), were studied, both theoretically and numerically,
by Bélair [2] and by Zhang and Brunner [34]. If (7.1) is rewritten as a system
of first-order integro-differential equations and solved by collocation in the

piecewise polynomial space S
(0)
m (Ih), then the superconvergence analysis of

the previous sections can be readily extended to this system. However, if the
initial-value problem (7.1) is solved directly, by using the collocation space

S
(1)
m+1(Ih), then the analysis of the optimal order of superconvergence on

uniform meshes remains to be carried out.
(ii) Pantograph equations of neutral type. The convergence analysis in S

(0)
m (Ih)

for the neutral-type analogue of (2.4),

u′(t) = b(t)u(θ(t)) + c(t)u′(θ(t)) + g(t)(7.2)

+

∫ θ(t)

0

(K1(t, s)u(s) + K2(t, s)u
′(s)) ds, t ∈ [0, T ],
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with θ(t) = qt (0 < q < 1), is much more complex than the one for (2.4) and
is the subject of ongoing work. The key difficulty lies in the fact that (7.2)
is in essence equivalent to a nonstandard pantograph-type Volterra integral
equation of the form

u(t) = g0(t) + b̂(t)u(qt) +

∫ qt

0

K̂(t, s)u(s)ds, t ∈ I.

We note that even for the initial-value problem for the neutral pantograph
equation

u′(t) = a(t)u(t) + b(t)u(qt) + c(t)u′(qt) + g(t), t ∈ [0, T ],

the existence of a unique (exact or collocation) solution is a nontrivial problem
(it depends on the “size” of c(t)); compare, e.g., [27, 26, 16].

(iii) Pantograph equations with multiple delays. The paper [35] by Zhao, Xu, and
Qiao contains an analysis of the optimal order of piecewise polynomial collo-
cation solutions at t = t1 = h for the double pantograph equation (that is, for
(1.1) with two proportional delays). Their result generalizes the analogous
ones in [9, 33, 28, 32] for (1.1) with constant a and b. It is not yet known if
the optimal superconvergence results of Corollaries 4.2 and 5.3 remain valid
for delay differential equations with several proportional delays.

(iv) Asymptotic stability of collocation solutions. The problem of the asymp-
totic behavior (asymptotic stability; contractivity) of collocation solutions
on uniform meshes to pantograph-type (integro-) differential equations re-
mains essentially open. While there is such a result for the special case

uh ∈ S
(0)
1 (Ih) (m = 1) and q = 1/2 (see Buhmann, Iserles, and Nørsett [16];

compare also Iserles [23, 24], Iserles and Liu [25]), there has been extensive
work on asymptotic stability for (1.1) when Ih is a geometric mesh. We refer
the reader to the papers by Liu [30, 31], Bellen, Guglielmi, and Torelli [6],
Guglielmi and Zennaro [20], Huang and Vandewalle [22], and Guglielmi [19]
and to the monograph [7] by Bellen and Zennaro.
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[2] J. Bélair, Sur une équation différentielle fonctionnelle analytique, Canad. Math. Bull., 24

(1981), pp. 43–46.
[3] A. Bellen, One-step collocation for delay differential equations, J. Comput. Appl. Math.,

10 (1984), pp. 275–283.
[4] A. Bellen, Preservation of superconvergence in the numerical integration of delay differ-

ential equations with proportional delay, IMA J. Numer. Anal., 22 (2002), pp. 529–536.
[5] A. Bellen, H. Brunner, S. Maset, and L. Torelli, Superconvergence in collocation meth-

ods on quasi-graded meshes for functional differential equations with vanishing delays,
BIT, 46 (2006), pp. 229–247.



PANTOGRAPH FUNCTIONAL EQUATIONS 1003

[6] A. Bellen, N. Guglielmi, and L. Torelli, Asymptotic stability properties of θ-methods
for the pantograph equation, Appl. Numer. Math., 24 (1997), pp. 275–293.

[7] A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations, Oxford
University Press, Oxford, UK, 2003.

[8] H. Brunner, The numerical solution of neutral Volterra integro-differential equations with
delay arguments, Ann. Numer. Math., 1 (1994), pp. 309–322.

[9] H. Brunner, On the discretization of differential and Volterra integral equations with vari-
able delay, BIT, 37 (1997), pp. 1–12.

[10] H. Brunner, The discretization of Volterra functional integral equations with proportional
delays, in Difference and Differential Equations (Changsha, 2002), S. Elaydi, G. Ladas,
J. Wu, and X. Zou, eds., Fields Inst. Commun. 42, AMS, Providence, RI, 2004, pp. 3–27.

[11] H. Brunner, The numerical analysis of functional integral and integro-differential equations
of Volterra type, Acta Numer., 13 (2004), pp. 55–145.

[12] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations,
Cambridge University Press, Cambridge, UK, 2004.

[13] H. Brunner and Q.-Y. Hu, Optimal superconvergence orders of iterated collocation solu-
tions for Volterra integral equations with vanishing delays, SIAM J. Numer. Anal., 43
(2005), pp. 1934–1949.

[14] H. Brunner, Q.-Y. Hu, and Q. Lin, Geometric meshes in collocation methods for Volterra
integral equations with proportional delays, IMA J. Numer. Anal., 21 (2001), pp. 783–
798.

[15] H. Brunner and S. Maset, Time Transformations for Delay Differential Equations,
preprint, Department of Mathematics and Computer Science, University of Trieste, Tri-
este, Italy, 2006.

[16] M. Buhmann, A. Iserles, and S. P. Nørsett, Runge–Kutta methods for neutral differential
equations, in Contributions in Numerical Mathematics (Singapore, 1993), R. P. Agarwal,
ed., World Scientific, River Edge, NJ, 1993, pp. 85–98.

[17] Ll. G. Chambers, Some properties of the functional equation φ(x) = f(x) +∫ λx
0 g(x, y, φ(y))dy, Internat. J. Math. Math. Sci., 14 (1990), pp. 27–44.

[18] L. Fox, D. F. Mayers, J. R. Ockendon, and A. B. Tayler, On a functional differential
equation, J. Inst. Math. Appl., 8 (1971), pp. 271–307.

[19] N. Guglielmi, Short proofs and a counterexample for analytical and numerical stability of
delay equations with infinite memory, IMA J. Numer. Anal., 26 (2006), pp. 60–77.

[20] N. Guglielmi and M. Zennaro, Stability of one-leg Θ-methods for the variable coefficient
pantograph equation on the quasi-geometric mesh, IMA J. Numer. Anal., 23 (2003), pp.
421–438.

[21] Q.-Y. Hu, Geometric meshes and their application to Volterra integro-differential equations
with singularities, IMA J. Numer. Anal., 18 (1998), pp. 151–164.

[22] C. Huang and S. Vandewalle, Discretized stability and error growth of the nonautonomous
pantograph equation, SIAM J. Numer. Anal., 42 (2005), pp. 2020–2042.

[23] A. Iserles, On the generalized pantograph functional differential equation, European J.
Appl. Math., 4 (1993), pp. 1–38.

[24] A. Iserles, Numerical analysis of delay differential equations with variable delays, Ann.
Numer. Math., 1 (1994), pp. 133–152.

[25] A. Iserles and Y. Liu, On pantograph integro-differential equations, J. Integral Equations
Appl., 6 (1994), pp. 213–237.

[26] A. Iserles and Y. Liu, On neutral functional-differential equations with proportional delays,
J. Math. Anal. Appl., 207 (1997), pp. 73–95.
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A STOCHASTIC COLLOCATION METHOD FOR ELLIPTIC
PARTIAL DIFFERENTIAL EQUATIONS WITH RANDOM INPUT

DATA∗
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Abstract. In this paper we propose and analyze a stochastic collocation method to solve
elliptic partial differential equations with random coefficients and forcing terms (input data of the
model). The input data are assumed to depend on a finite number of random variables. The method
consists in a Galerkin approximation in space and a collocation in the zeros of suitable tensor product
orthogonal polynomials (Gauss points) in the probability space and naturally leads to the solution of
uncoupled deterministic problems as in the Monte Carlo approach. It can be seen as a generalization
of the stochastic Galerkin method proposed in [I. Babuška, R. Tempone, and G. E. Zouraris, SIAM
J. Numer. Anal., 42 (2004), pp. 800–825] and allows one to treat easily a wider range of situations,
such as input data that depend nonlinearly on the random variables, diffusivity coefficients with
unbounded second moments, and random variables that are correlated or even unbounded. We
provide a rigorous convergence analysis and demonstrate exponential convergence of the “probability
error” with respect to the number of Gauss points in each direction in the probability space, under
some regularity assumptions on the random input data. Numerical examples show the effectiveness
of the method.

Key words. collocation method, stochastic partial differential equations, finite elements, un-
certainty quantification, exponential convergence
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Introduction. Thanks to the fast growing power of computers, numerical simu-
lations are increasingly used to produce predictions of the behavior of complex physical
or engineering systems. Some sources of errors arising in computer simulations now
can be controlled and reduced by using sophisticated techniques such as a posteriori
error estimation [1, 3, 37], mesh adaptivity, and the more recent modeling error anal-
ysis [31, 32, 10]. All this has increased the accuracy of numerical predictions as well
as our confidence in them.

Yet, many engineering applications are affected by a relatively large amount of
uncertainty in the input data such as model coefficients, forcing terms, boundary
conditions, and geometry. In this case, to obtain a reliable numerical prediction, one
has to include uncertainty quantification due to the uncertainty in the input data.
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Uncertainty can be described in several ways, depending on the amount of infor-
mation available; among others we mention the worst case scenario analysis and fuzzy
set theory, evidence theory, probabilistic setting, etc. (see [6, 24] and the references
therein). In this paper we focus on elliptic partial differential equations with a prob-
abilistic description of the uncertainty in the input data. The model problem has the
form

(0.1) L(a)u = f in D,

where L is an elliptic operator in a domain D ⊂ R
d, which depends on some coefficients

a(x, ω), with x ∈ D, ω ∈ Ω, and Ω indicating the set of possible outcomes. Similarly,
the forcing term f = f(x, ω) can be assumed to be random as well.

We will focus on the case where the probability space has a low dimensionality,
which means that the stochastic problem depends only on a relatively small number
of random variables.

This can be the case if, for instance, the mathematical model depends on few
parameters, which can be taken as random variables with a given joint probability
distribution. For example, we might think of the deformation of an elastic homo-
geneous material in which Young’s modulus and Poisson’s ratio (parameters that
characterize the material properties) are random variables, either independent or not.

In other situations, the input data may vary randomly from one point of the
physical domain D to another, and their uncertainty should rather be described in
terms of random fields with a given covariance structure (i.e., each point of the domain
is a random variable, and the correlation between two distinct points in the domain
is known and nonzero, in general; this case is sometimes referred to as colored noise).

Examples of this situation are the deformation of inhomogeneous materials such
as wood, foams, or biomaterials such as arteries and bones; groundwater flow problems
where the permeability in each layer of sediments (rocks, sand, etc.) should not be
assumed constant; and the action of wind (direction and point intensity) on structures.

A possible way to describe such random fields consists in using a Karhunen–Loève
[27, 28] or a polynomial chaos (PC) expansion [38, 42]. The former represents the
random field as a linear combination of an infinite number of uncorrelated random
variables, while the latter uses polynomial expansions in terms of independent ran-
dom variables. Both expansions exist provided that the random field a : Ω → V , as
a mapping from the probability space into a functional space V , has bounded sec-
ond moments. Other nonlinear expansions can be considered as well (see, e.g., [22]
for a technique to express a stationary random field with given covariance structure
and marginal distribution as a function of (infinite) independent random variables;
nonlinear transformations also have been used in [30, 39]). The use of nonpolynomial
expansions may be advantageous in some situations: for instance, in groundwater flow
problems, the permeability coefficient within each layer of sediments can feature huge
variability, which is often expressed in a logarithm scale. In this case, one might want
to use a Karhunen–Loève (or PC) expansion for the logarithm of the permeability,
instead of the permeability field itself. This leads to an exponential dependence of
the permeability on the random variables, and the resulting random field might even
have unbounded second moments. An advantage of such a nonlinear expansion is that
it guarantees a positive permeability almost surely (a condition which is difficult to
enforce with a standard truncated Karhunen–Loève or PC expansion).

Although such random fields are properly described only by means of an infinite
number of random variables, whenever the input data vary slowly in space, with a
correlation length comparable to the size of the domain, only a few terms in the above
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mentioned expansions are typically enough to describe the random field with sufficient
accuracy. Therefore, for this type of application it is reasonable to limit the analysis
to just a few random variables in the expansion (see, e.g., [2]).

This argument is also strengthened by the fact that the amount of measured data
one has at hand to identify the input data as random fields is in general very limited
and barely sufficient to identify the first few random variables in the expansion.

Conversely, situations in which the random fields are highly oscillatory with a
short correlation length, as in the case of materials with a random microstructure,
do not fall into this category and will not be considered in the present work. The
interested reader should refer, instead, to the wide literature in homogenization and
multiscale analysis (see, e.g., [16] and references therein).

To solve numerically the stochastic PDE (0.1), a relatively new numerical tech-
nique, which has gained much attention in the last few years, is the so-called spec-
tral Galerkin approximation (see, e.g., [21]). It employs standard approximations
in space (finite elements, finite volumes, spectral or h-p finite elements, etc.) and
polynomial approximation in the probability domain, either by full polynomial spaces
[41, 30, 20, 34], tensor product polynomial spaces [4, 18], or piecewise polynomial
spaces [4, 26].

The use of tensor product spaces is particularly attractive in the case of a small
number of random variables, since it allows naturally the use of anisotropic spaces
where the polynomial degree is chosen differently with respect to each random vari-
able. Moreover, whenever the random fields are expanded in a truncated Karhunen–
Loève expansion and the underlying random variables are assumed independent, a
particular choice of the basis for the tensor product space (as proposed in [4, 5]), leads
to the solution of uncoupled deterministic problems as in a Monte Carlo simulation.
In this case, exponential convergence of the “probability error” has been proved in [4].

On the other hand, tensor product spaces suffer from the so-called curse of di-
mensionality since the dimension of the approximating space grows exponentially fast
in the number of random variables. If the number of random variables is moderate
or large, one should rather consider full polynomial spaces or sparse tensor product
spaces [7, 18, 40]. We will not address this issue in this paper.

The extension of the spectral Galerkin method to cases in which the input data
depend nonlinearly on the random variables and possibly have unbounded second
moments is not straightforward and, in any case, would lead to fully coupled systems
of equations, which call for highly efficient parallel solvers.

In this work we propose a collocation method which consists in collocating prob-
lem (0.1) in the zeros of tensor product orthogonal polynomials with respect to the
joint probability density ρ of the random variables, should they be independent, or
any other auxiliary density ρ̂ corresponding to independent random variables, as long
as the ratio ρ/ρ̂ is bounded. Stochastic collocation has already been applied in a
variety of problems and is the subject of ongoing research; see among others [35, 29]
and the recent work [40], which the authors became aware of upon completion of this
work.

As will be pointed out in the paper, this method offers several advantages:
• It naturally leads to uncoupled deterministic problems also in the case of

input data which depend nonlinearly on the random variables.
• It treats efficiently the case of nonindependent random variables with the

introduction of the auxiliary density ρ̂.
• It can easily deal with unbounded random variables, such as Gaussian or

exponential ones.
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• It deals without difficulty with a diffusivity coefficient a with unbounded
second moment.

The main result of the paper is given in Theorem 4.1 in section 4, where we prove
that the collocation method preserves the same accuracy as the spectral Galerkin
approach and achieves exponential convergence in all the above mentioned cases,
provided that the input data are infinitely differentiable with respect to the random
variables, under very mild assumptions on the growth of such derivatives, as is the
case for standard expansions of random fields.

The collocation method can also be seen as a pseudospectral method (see, e.g.,
[33] and [19] for unbounded domains), i.e., a spectral Galerkin approximation with
the use of suitable Gaussian quadrature formulas. We will also show that in some
particular cases, where such Gaussian quadratures are exact, it actually coincides with
the spectral Galerkin method based on tensor product spaces.

The outline of the paper is as follows: in section 1 we introduce the mathematical
problem and the main notation used throughout. In section 2 we describe the collo-
cation method. In section 3 we provide some regularity results on the solution of the
stochastic PDE. In particular, we show that the solution is analytic with respect to the
random variables, provided that the input data, as functions of the random variables,
have infinite derivatives which do not grow too fast. In section 4 we give a complete
convergence result for the collocation method and prove exponential convergence. Fi-
nally, in section 5 we present some numerical results showing the effectiveness of the
proposed method.

1. Problem setting. Let D be a convex bounded polygonal domain in R
d and

let (Ω,F , P ) be a complete probability space. Here Ω is the set of outcomes, F ⊂ 2Ω

is the σ-algebra of events, and P : F → [0, 1] is a probability measure. Consider
the stochastic linear elliptic boundary value problem: find a random function, u :
Ω × D → R, such that P -almost everywhere (a.e.) in Ω, or in other words, almost
surely (a.s.) the following equation holds:

(1.1)
−∇ · (a(ω, ·)∇u(ω, ·)) = f(ω, ·) on D,

u(ω, ·) = 0 on ∂D.

We will make the following assumptions:
(A1) a(ω, ·) is uniformly bounded from below; i.e.,

there exist amin > 0 such that P
(
ω ∈ Ω : a(ω, x) > amin ∀x ∈ D

)
= 1.

(A2) f(ω, ·) is square integrable with respect to P ; i.e.,
∫
D
E[f2] dx < ∞.

Moreover, we introduce the following Hilbert spaces:
• VP = L2

P (Ω) ⊗H1
0 (D), equipped with the norm ‖v‖2

P =
∫
D
E
[
|∇v|2

]
dx.

• VP,a ≡ {v ∈ VP :
∫
D
E
[
a|∇v|2

]
dx < ∞}, equipped with the norm ‖v‖P,a =√∫

D
E
[
a|∇v|2

]
dx.

Observe that under the above assumptions, the space VP,a is continuously em-
bedded in VP and

‖v‖P ≤ 1
√
amin

‖v‖P,a.

Problem (1.1) can be written in a weak form as

(1.2) find u ∈ VP,a such that

∫
D

E[a∇u · ∇v] dx =

∫
D

E[fv] dx ∀ v ∈ VP,a.
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A straightforward application of the Lax–Milgram theorem allows one to state
the well posedness of problem (1.2) in the following lemma.

Lemma 1.1. Under assumptions (A1) and (A2), problem (1.2) admits a unique
solution u ∈ VP,a, which satisfies the estimate

(1.3) ‖u‖P ≤ CP

amin

(∫
D

E[f2] dx

) 1
2

.

In the previous lemma we have used the Poincaré inequality

‖w‖L2(D) ≤ CP ‖∇w‖L2(D) ∀w ∈ H1
0 (D).

Weaker assumptions on the random coefficients. It is possible to relax
the assumptions (A1) and (A2) substantially and still guarantee the existence and
uniqueness of the solution u to problem (1.2). In particular, if the lower bound for the
coefficient a is no longer a constant but a random variable, i.e., a(x, ω) ≥ amin(ω) > 0
a.s. a.e. on D, we have the following estimate for the moments of the solution.

Lemma 1.2 (moments estimates). Let p, q ≥ 0 with 1/p + 1/q = 1. Take a

positive integer k. Then if f ∈ Lkp
P (Ω;L2(D)) and 1/amin ∈ Lkq

P (Ω), we have that
u ∈ Lk

P (Ω;H1
0 (D)).

Proof. Since

‖u(·, ω)‖H1
0 (D) ≤ CP

‖f(·, ω)‖L2(D)

amin(ω)
a.s.,

the result is a direct application of Hölder’s inequality:∫
Ω

‖u(·, ω)‖kH1
0 (D)dP (ω) ≤ Ck

P

∫
Ω

(‖f(·, ω)‖L2(D)

amin(ω)

)k

dP (ω)

≤ Ck
P

(∫
Ω

‖f(·, ω)‖kpL2(D)dP (ω)

)1/p
(∫

Ω

(
1

amin(ω)

)qk

dP (ω)

)1/q

.

Example 1 (lognormal diffusion coefficient). As an application of the previous
lemma, we can conclude the well posedness of (1.2) with a lognormal diffusion coeffi-
cient. For instance, let

a(x, ω) = exp

(
N∑

n=1

bn(x)Yn(ω)

)
, Yn ∼ N(0, 1) independent and identically

distributed.

Use the lower bound

amin(ω) = exp

(
−

N∑
n=1

‖bn‖L∞(D)|Yn(ω)|
)

and then for k, q < ∞
(1.4)

‖1/amin‖kq
Lkq

P (Ω)
=

∫
Ω

(
1

amin(ω)

)qk

dP (ω)

=

∫
RN

exp

(
kq

N∑
n=1

‖bn‖L∞(D)|zn|
)

exp

(
−1

2

N∑
n=1

z2
n

)
dz1 · · · dzN < ∞.

Now let ε > 0. Then by Lemma 1.2 the assumption f ∈ L
k(1+ε)
P (Ω;L2(D)) together

with (1.4) implies u ∈ Lk
P (Ω;H1

0 (D)).
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1.1. Finite dimensional noise assumption. In many problems the source of
randomness can be approximated using just a small number of uncorrelated, some-
times independent, random variables; take, for example, the case of a truncated
Karhunen–Loève expansion [4]. This motivates us to make the following assumption.

Assumption 1 (finite dimensional noise). The coefficients used in the computa-
tions have the form

a(ω, x) = a(Y1(ω), . . . , YN (ω), x) and f(ω, x) = f(Y1(ω), . . . , YN (ω), x) on Ω ×D,

where N ∈ N+ and {Yn}Nn=1 are real valued random variables with mean value zero
and unit variance.

We will denote with Γn ≡ Yn(Ω) the image of Yn, Γ =
∏N

n=1 Γn and we will
assume that the random variables [Y1, Y2, . . . , YN ] have a joint probability density
function ρ : Γ → R+, with ρ ∈ L∞(Γ).

Example 2. The following standard transformation guarantees that the diffusivity
coefficient is bounded away from zero a.s.:

(1.5) log(a− amin)(ω, x) = b0(x) +
∑

1≤n≤N

√
λnbn(x)Yn(ω);

i.e., one performs a Karhunen–Loève expansion for log(a − amin), assuming that
a > amin a.s. On the other hand, the right-hand side of (1.1) can be represented as
a truncated Karhunen–Loève expansion:

f(ω, x) = c0(x) +
∑

1≤n≤N

√
μncn(x)Yn(ω).

Remark 1. It is usual to have f and a independent, because the loads and the
material properties are seldom related. In such a situation we have a(Y (ω), x) =
a(Ya(ω), x) and f(Y (ω), x) = f(Yf (ω), x), with Y = [Ya, Yf ] and the vectors Ya, Yf

independent.
After making Assumption 1, the solution u of the stochastic elliptic boundary

value problem (1.2) can be described by just a finite number of random variables, i.e.,
u(ω, x) = u(Y1(ω), . . . , YN (ω), x). Thus, the goal is to approximate the function u =
u(y, x), where y ∈ Γ and x ∈ D. Observe that the stochastic variational formulation
(1.2) has a “deterministic” equivalent which is the following: find u ∈ Vρ,a such that

(1.6)

∫
Γ

ρ (a∇u,∇v)L2(D) dy =

∫
Γ

ρ (f, v)L2(D) dy ∀ v ∈ Vρ,a,

noting that here and later in this work the gradient notation, ∇, always means differ-
entiation with respect to x ∈ D only, unless otherwise stated. The space Vρ,a is the
analogue of VP,a with (Ω,F , P ) replaced by (Γ,BN , ρ dy).

Since the solution to (1.6) is unique and is also a solution to (1.2), it follows that
the solution has necessarily the form u(ω, x) = u(Y1(ω), . . . , YN (ω), x). The stochastic
boundary value problem (1.1) now becomes a deterministic Dirichlet boundary value
problem for an elliptic PDE with an N -dimensional parameter. For convenience, we
consider the solution u as a function u : Γ → H1

0 (D) and we use the notation u(y)
whenever we want to highlight the dependence on the parameter y. We use similar
notation for the coefficient a and the forcing term f . Then it can be shown that
problem (1.1) is equivalent to

(1.7)

∫
D

a(y)∇u(y) · ∇φdx =

∫
D

f(y)φdx ∀φ ∈ H1
0 (D), ρ-a.e. in Γ.
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For our convenience, we will suppose that the coefficient a and the forcing term f
admit a smooth extension on the ρ dy-zero measure sets. Then (1.7) can be extended
a.e. in Γ with respect to the Lebesgue measure (instead of the measure ρ dy).

Remark 2. Strictly speaking, (1.7) will hold only for those values of y ∈ Γ for
which the coefficient a(y) is finite. In this paper we will assume that a(y) may go to
infinity only at the boundary of the parameter domain Γ.

Making Assumption 1 is a crucial step, turning the original stochastic elliptic
equation into a deterministic parametric elliptic equation and allowing the use of finite
element and finite difference techniques to approximate the solution of the resulting
deterministic problem (cf. [25, 13]).

Observe that the knowledge of u = u(y, x) fully determines the law of the random
field u(ω, x). Yet, the computation of some quantities of interest such as failure
probabilities might pose extra challenges from the numerical point of view. On the
other hand, computation of moments of the solution or functionals of the solution is
direct (see sections 2 and 4.1).

2. Collocation method. We seek a numerical approximation to the exact so-
lution of (1.6) in a finite dimensional subspace Vp,h based on a tensor product,
Vp,h = Pp(Γ) ⊗Hh(D), where the following hold.

• Hh(D) ⊂ H1
0 (D) is a standard finite element space of dimension Nh, which

contains continuous piecewise polynomials defined on regular triangulations
Th that have a maximum mesh spacing parameter h > 0.

• Pp(Γ) ⊂ L2
ρ(Γ) is the span of tensor product polynomials with degree at most

p = (p1, . . . , pN ); i.e., Pp(Γ) =
⊗N

n=1 Ppn
(Γn), with

Ppn(Γn) = span(ymn , m = 0, . . . , pn), n = 1, . . . , N.

Hence the dimension of Pp is Np =
∏N

n=1(pn + 1).
We first introduce the semidiscrete approximation uh : Γ → Hh(D), obtained by

projecting (1.7) onto the subspace Hh(D), for each y ∈ Γ, i.e.,

(2.1)

∫
D

a(y)∇uh(y) · ∇φh dx =

∫
D

f(y)φh dx ∀φh ∈ Hh(D), for a.e. y ∈ Γ.

The next step consists in collocating (2.1) on the zeros of orthogonal polynomials
and building the discrete solution uh,p ∈ Pp(Γ) ⊗ Hh(D) by interpolating in y the
collocated solutions.

To this end, we first introduce an auxiliary probability density function ρ̂ : Γ →
R

+ that can be seen as the joint probability of N independent random variables; i.e.,
it factorizes as

(2.2) ρ̂(y) =

N∏
n=1

ρ̂n(yn) ∀y ∈ Γ, and is such that

∥∥∥∥ρρ̂
∥∥∥∥
L∞(Γ)

< ∞.

For each dimension n = 1, . . . , N , let yn,kn , 1 ≤ kn ≤ pn + 1, be the pn + 1 roots of
the orthogonal polynomial qpn+1 with respect to the weight ρ̂n, which then satisfies∫
Γn

qpn+1(y)v(y)ρ̂n(y)dy = 0 for all v ∈ Ppn(Γn).
Standard choices for ρ̂, such as constant, Gaussian, etc., lead to well-known roots

of the polynomial qpn+1, which are tabulated to full accuracy and do not need to be
computed.

To any vector of indexes [k1, . . . , kN ] we associate the global index

k = k1 + p1(k2 − 1) + p1p2(k3 − 1) + · · ·
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and we denote by yk the point yk = [y1,k1
, y2,k2

, . . . , yN,kN
] ∈ Γ. We also introduce,

for each n = 1, 2, . . . , N , the Lagrange basis {ln,j}pn+1
j=1 of the space Ppn ,

ln,j ∈ Ppn(Γn), ln,j(yn,k) = δjk, j, k = 1, . . . , pn + 1,

where δjk is the Kronecker symbol, and we set lk(y) =
∏N

n=1 ln,kn
(yn). Hence, the

final approximation is given by

uh,p(y, x) =

Np∑
k=1

uh(yk, x)lk(y),

where uh(yk, x) is the solution of problem (2.1) for y = yk.
Equivalently, if we introduce the Lagrange interpolant operator Ip : C0(Γ;H1

0 (D)) →
Pp(Γ) ⊗H1

0 (D), such that

Ipv(y) =

N∑
n=1

v(yk)lk(y) ∀v ∈ C0(Γ;H1
0 (D)),

then we have simply uh,p = Ipuh.
Finally, for any continuous function g : Γ → R we introduce the Gauss quadrature

formula Ep
ρ̂ [g] approximating the integral

∫
Γ
g(y)ρ̂(y) dy as

(2.3) Ep
ρ̂ [g] =

Np∑
k=1

ωkg(yk), ωk =

N∏
n=1

ωkn , ωkn =

∫
Γn

l2kn
(y)ρ̂n(y) dy.

This can be used to approximate the mean value or the variance of u as

ūh ∈ Hh(D), ūh(x) = Ep
ρ̂

[
ρ

ρ̂
uh(x)

]
,

varh(uh) ∈ L1(D), varh(uh)(x) = Ep
ρ̂

[
ρ

ρ̂
(uh(x) − ūh(x))

2

]
as long as ρ/ρ̂ is a smooth function. Otherwise, ūh and varh(uh) should be computed
with a suitable quadrature formula which takes into account eventual discontinuities
or singularities of ρ/ρ̂.

2.1. Collocation versus spectral Galerkin approximation. An alternative
approach to the collocation method introduced thus far consists in approximating
problem (1.6) with a spectral Galerkin method: find uG

h,p ∈ Pp(Γ)⊗Hh(D) such that

(2.4)

∫
Γ

ρ (a∇uG
h,p,∇v)L2(D) dy =

∫
Γ

ρ (f, v)L2(D) dy ∀ v ∈ Pp(Γ) ⊗Hh(D).

This approach has been considered by several authors [4, 13, 18, 41, 21, 30]. Observe
that, in general, problem (2.4) leads to a fully coupled system of linear equations,
whose dimension is Nh ×Np and that demands highly efficient strategies and parallel
computations for its numerical solution [15]. Conversely, the collocation method re-
quires only the solutions of Np uncoupled linear systems of dimension Nh and is fully
parallelizable.

In [4, 5] a particular choice of basis functions (named double orthogonal polynomi-
als) for the space Pp(Γ) is proposed. This choice allows us to decouple the system in
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the special case where the diffusivity coefficient and the forcing term are multilinear
combinations of the random variables Yn(ω) (as is the case if one performs a trun-
cated linear Karhunen–Loève expansion) and the random variables are independent,

i.e., ρ(y) =
∏N

n=1 ρn(yn). The proposed basis is then obtained by solving the following
eigenvalue problems, for each n = 1, . . . , N :∫

Γn

zψkn(z)v(z)ρn(z) dz = ckn

∫
Γn

ψkn(z)v(z)ρn(z) dz, k = 1, . . . , pn + 1.

The eigenvectors ψkn are normalized so as to satisfy the property∫
Γn

ψkn(z)ψjn(z)ρn(z) dz = δkj ,

∫
Γn

zψkn(z)ψjn(z)ρn(z) dz = cknδkj .

See [4, 5] for further details on the double orthogonal basis.
We aim at analyzing, now, the analogies between the collocation and the spectral

Galerkin methods. The collocation method can be seen as a pseudospectral Galerkin
method (see, e.g., [33]), where the integrals over Γ in (2.4) are replaced by the quadra-
ture formula (2.3): find uh,p ∈ Pp(Γ) ⊗Hh(D) such that

(2.5) Ep
ρ̂

[
ρ

ρ̂
(a∇uh,p,∇v)L2(D)

]
= Ep

ρ̂

[
ρ

ρ̂
(f, v)L2(D)

]
∀ v ∈ Pp(Γ) ⊗Hh(D).

Indeed, by choosing in (2.5) the test functions of the form v(y, x) = lk(y)φ(x), where
φ(x) ∈ Hh(D) and lk(y) is the Lagrange basis function associated to the knot yk,
k = 1, . . . , Np, one is led to solve a sequence of uncoupled problems of the form
(2.1) collocated in the points yk, which, ultimately, gives the same solution as the
collocation method.

In the particular case where the diffusivity coefficient and the forcing term are
multilinear combinations of the random variables Yn(ω) and the random variables are
independent, it turns out that the quadrature formula is exact if one chooses ρ̂ = ρ.
In this case, the solution obtained by the collocation method actually coincides with
the spectral Galerkin one. This can be seen easily by observing that, with the above
assumptions, the integrand in (2.4), i.e., (a∇uh,p · ∇v), is a polynomial at most of
degree 2pn + 1 in the variable yn and the Gauss quadrature formula is exact for
polynomials up to degree 2pn + 1 integrated against the weight ρ.

The collocation method is a natural generalization of the spectral Galerkin ap-
proach and has the following advantages:

• It decouples the system of linear equations in Y also in the case where the
diffusivity coefficient a and the forcing term f are nonlinear functions of the
random variables Yn.

• It treats efficiently the case of nonindependent random variables with the
introduction of the auxiliary measure ρ̂.

• It can easily deal with unbounded random variables (see Theorem 4.1 in
section 4).

As will be shown in section 4, the collocation method preserves the same accuracy
as the spectral Galerkin approach and achieves exponential convergence if the coef-
ficient a and forcing term f are infinitely differentiable with respect to the random
variables Yn, under very mild requirements on the growth of their derivatives in Y .

As a final remark, we show that the double orthogonal polynomials proposed in
[4] coincide with the Lagrange basis lk(y) and the eigenvalues ckn are nothing but the
Gauss knots of integration.
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Lemma 2.1. Let Γ ⊂ R, ρ : Γ → R be a positive weight, and {ψk}p+1
k=1 be the set

of double orthogonal polynomials of degree p satisfying∫
Γ

ψk(y)ψj(y)ρ(y) dy = δkj ,

∫
Γ

yψk(y)ψj(y)ρ(y) dy = ckδkj .

Then the eigenvalues ck are the nodes of the Gaussian quadrature formula associ-
ated to the weight ρ, and the eigenfunctions ψk are, up to multiplicative factors, the
corresponding Lagrange polynomials built on the nodes ck.

Proof. We have, for k = 1, . . . , p + 1,∫
Γ

(y − ck)ψk(y)v(y)ρ(y)dy = 0 ∀v ∈ Pp(Γ).

Take v =
∏p+1

j=1

j �=k
(y − cj) ∈ Pp(Γ) in the above and let w =

∏p+1
j=1(y − cj). Then

∫
Γ

w(y)ψk(y)ρ(y)dy = 0 ∀k = 1, . . . , p + 1.

Since {ψk}p+1
k=1 defines a basis of the space Pp(Γ), the previous relation implies that

w is ρ-orthogonal to Pp(Γ). Besides, the functions (y − ck)ψk are also orthogonal to
the same subspace: this yields, due to the one-dimensional nature of the orthogonal
complement of Pp(Γ) over Pp+1(Γ),

(y − ck)ψk = αkw = αk

p+1∏
j=1

(y − cj), k = 1, . . . , p + 1,

which gives

ψk = αk

p+1∏
j=1

j �=k

(y − cj), k = 1, . . . , p + 1;

i.e., the double orthogonal polynomials ψk are collinear to Lagrange interpolants at the
nodes cj . Moreover, the eigenvalues cj are the roots of the polynomial w ∈ Pp+1(Γ),
which is ρ-orthogonal to Pp(Γ), and therefore they coincide with the nodes of the
Gaussian quadrature formula associated with the weight ρ.

3. Regularity results. Before going through the convergence analysis of the
method, we need to state some regularity assumptions on the data of the problem
and consequent regularity results for the exact solution u and the semidiscrete solution
uh.

In what follows we will need some restrictive assumptions on f and ρ. In par-
ticular, we will assume f to be a continuous function in y, whose growth at infinity,
whenever the domain Γ is unbounded, is at most exponential. At the same time we
will assume that ρ behaves as a Gaussian weight at infinity, as does the auxiliary
density ρ̂, in light of assumption (2.2).

Other types of growth of f at infinity and corresponding decay of the probability
density ρ, for instance, of exponential type, could be considered as well. Yet we will
limit the analysis to the aforementioned case.
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To make these assumptions precise, we introduce a weight σ(y) =
∏N

n=1 σn(yn) ≤
1, where

(3.1) σn(yn) =

{
1 if Γn is bounded,

e−αn|yn| for some αn > 0 if Γn is unbounded,

and the functional space

C0
σ(Γ;V ) ≡

{
v : Γ → V, v continuous in y, max

y∈Γ
‖σ(y)v(y)‖

V
< +∞

}
,

where V is a Banach space of functions defined in D.
Assumption 2 (growth at infinity). In what follows we will assume that
(a) f ∈ C0

σ(Γ;L2(D)), and
(b) the joint probability density ρ satisfies

(3.2) ρ(y) ≤ Cρ e
−
∑N

n=1(δnyn)2 ∀y ∈ Γ,

for some constant Cρ > 0 and δn strictly positive if Γn is unbounded and zero
otherwise.

The parameter δn in (3.2) gives a scale for the decay of ρ at infinity and provides
an estimate of the dispersion of the random variable Yn. On the other hand, the
parameter αn in (3.1) controls the growth of the forcing term f at infinity.

Remark 3 (growth of f). The convergence result given in Theorem 4.1 in section 4
extends to a wider class of functions f . For instance, we could take f ∈ C0

σ(Γ;L2(D))

with σ = e−
∑N

n=1(δnyn)2/8. Yet the class given in (3.1) is already large enough for
most practical applications (see Example 2).

We can now choose any suitable auxiliary density ρ̂(y) =
∏N

n=1 ρ̂n(yn) that sat-
isfies, for each n = 1, . . . , N ,

(3.3) Cn
mine

−(δnyn)2 ≤ ρ̂n(yn) < Cn
maxe

−(δnyn)2 ∀yn ∈ Γn

for some positive constants Cn
min and Cn

max that do not depend on yn.
Observe that this choice satisfies the requirement given in (2.2), i.e., ‖ρ/ρ̂‖L∞(Γ) ≤

Cρ/Cmin with Cmin =
∏N

n=1 C
n
min.

Under the above assumptions, the following inclusions hold true:

C0
σ(Γ;V ) ⊂ L2

ρ̂(Γ;V ) ⊂ L2
ρ(Γ;V )

with continuous embedding. Indeed, on one hand we have

‖v‖L2
ρ(Γ;V ) ≤

∥∥∥∥ρρ̂
∥∥∥∥ 1

2

L∞(Γ)

‖v‖L2
ρ̂(Γ;V ) ≤

√
Cρ

Cmin
‖v‖L2

ρ̂(Γ;V ).

On the other hand,

‖v‖2
L2

ρ̂(Γ;V ) =

∫
Γ

ρ̂(y)‖v(y)‖2
V dy ≤ ‖v‖2

C0
σ(Γ;V )

∫
Γ

ρ̂(y)

σ2(y)
dy ≤

N∏
n=1

Mn‖v‖2
C0

σ(Γ;V )

with Mn =
∫
Γn

ρ̂n/σ
2
n. Now, for Γn bounded, Mn ≤ Cn

max|Γn|, whereas if Γn is
unbounded,

Mn =

∫
Γn

(
e−

(δny)2

2 +2αn|y|
)
e

(δny)2

2 ρ̂n(y) dy ≤ Cn
max

√
2π

δn
e2(αn/δn)2 .



1016 IVO BABUŠKA, FABIO NOBILE, AND RAÚL TEMPONE

The first result we need is the following lemma.
Lemma 3.1. If f ∈ C0

σ(Γ;L2(D)) and a ∈ C0
loc(Γ;L∞(D)), uniformly bounded

away from zero, then the solution to problem (1.7) satisfies u ∈ C0
σ(Γ;H1

0 (D)).
The proof of this lemma is immediate. The next result concerns the analyticity

of the solution u whenever the diffusivity coefficient a and the forcing term f are
infinitely differentiable with respect to y, under mild assumptions on the growth of
their derivatives in y. We will perform a one-dimensional analysis in each direction
yn, n = 1, . . . , N . For this, we introduce the following notation:

Γ∗
n =

N∏
j=1

j �=n

Γj ,

with y∗n denoting an arbitrary element of Γ∗
n. Similarly, we set

ρ̂∗n =

N∏
j=1

j �=n

ρ̂j

and

σ∗
n =

N∏
j=1

j �=n

σj .

Lemma 3.2. Under the assumption that, for every y = (yn, y
∗
n) ∈ Γ, there exists

γn < +∞ such that

(3.4)

∥∥∥∥∥∂k
yn
a(y)

a(y)

∥∥∥∥∥
L∞(D)

≤ γk
nk! and

‖∂k
yn
f(y)‖L2(D)

1 + ‖f(y)‖L2(D)
≤ γk

nk!,

the solution u(yn, y
∗
n, x) as a function of yn, u : Γn → C0

σ∗
n
(Γ∗

n;H1
0 (D)) admits an

analytic extension u(z, y∗n, x), z ∈ C, in the region of the complex plane

(3.5) Σ(Γn; τn) ≡ {z ∈ C, dist(z,Γn) ≤ τn}

with 0 < τn < 1/(2γn). Moreover, for all z ∈ Σ(Γn; τn),

(3.6) ‖σn(Re z)u(z)‖C0
σ∗
n

(Γ∗
n;H1

0 (D)) ≤
CP e

αnτn

amin(1 − 2τnγn)
(2‖f‖C0

σ(Γ;H1
0 (D)) + 1)

with the constant Cp as in (1.3).
Proof. In every point y ∈ Γ, the kth derivative of u with respect to yn satisfies

the problem

B(y; ∂k
yn
u, v) = −

k∑
l=1

(
k
l

)
∂l
yn
B(y; ∂k−l

yn
u, v) + (∂k

yn
f, v) ∀v ∈ H1

0 (D),

where B is the parametric bilinear form B(y;u, v) =
∫
D
a(y)∇u · ∇v dx. Hence

‖
√
a(y)∇∂k

yn
u‖L2(D) ≤

k∑
l=1

(
k
l

)∥∥∥∥∥∂l
yn
a(y)

a(y)

∥∥∥∥∥
L∞(D)

‖
√
a(y)∇∂k−l

yn
u‖L2(D)

+
Cp√
amin

‖∂k
yn
f‖L2(D).
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Setting Rk = ‖
√

a(y)∇∂k
yn
u‖L2(D)/k! and using the bounds on the derivatives of a

and f , we obtain the recursive inequality

Rk ≤
k∑

l=1

γl
nRk−l +

Cp√
amin

γk
n(1 + ‖f‖L2(D)).

The generic term Rk admits the bound

Rk ≤ (2γn)kR0 +
Cp√
amin

(1 + ‖f‖L2(D))γ
k
n

k−1∑
l=0

2l.

Observing that R0 = ‖
√
a(y)∇u(y)‖L2(D) ≤ Cp√

amin
‖f(y)‖L2(D) and

‖∇∂k
yn
u‖L2(D)

k!
≤ Rk√

amin
,

we get the final estimate on the growth of the derivatives of u,

‖∇∂k
yn
u(y)‖L2(D)

k!
≤ Cp

amin
(2‖f(y)‖L2(D) + 1)(2γn)k.

We now define for every yn ∈ Γn the power series u : C → C0
σ∗
n
(Γ∗

n, H
1
0 (D)) as

u(z, y∗n, x) =

∞∑
k=0

(z − yn)k

k!
∂k
yn
u(yn, y

∗
n, x).

Hence,

σn(yn)‖u(z)‖C0
σ∗
n

(Γ∗
n,H

1
0 (D)) ≤

∞∑
k=0

|z − yn|k
k!

σn(yn)‖∂k
yn
u(yn)‖C0

σ∗
n

(Γ∗
n;H1

0 (D))

≤ CP

amin
max
yn∈Γn

{
σn(yn)

(
2‖f(yn)‖C0

σ∗
n

(Γ∗
n;L2(D)) + 1

)} ∞∑
k=0

(|z − yn|2γn)
k

≤ CP

amin
(2‖f‖C0

σ(Γ;L2(D)) + 1)

∞∑
k=0

(|z − yn|2γn)
k
,

where we have exploited the fact that σn(yn) ≤ 1 for all yn ∈ Γn; the series converges
for all z ∈ C such that |z − yn| ≤ τn < 1/(2γn). Moreover, in the ball |z − yn| ≤ τn,
we have, by virtue of (3.1), σn(Re z) ≤ eαnτnσn(yn), and then

σn(Re z)‖u(z)‖C0
σ∗
n

(Γ∗
n,H

1
0 (D)) ≤

CP e
αnτn

amin(1 − 2τnγn)
(2‖f‖C0

σ(Γ;L2(D)) + 1).

The power series converges for every yn ∈ Γn; hence, by a continuation argument, the
function u can be extended analytically on the whole region Σ(Γn; τn) and estimate
(3.6) follows.

Example 3. Let us consider the case where the diffusivity coefficient a is expanded
in a linear truncated Karhunen–Loève expansion

a(ω, x) = b0(x) +

N∑
n=1

√
λnbn(x)Yn(ω),
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provided that such expansion guarantees a(ω, x) ≥ amin for almost every ω ∈ Ω and
x ∈ D [18]. In this case we have∥∥∥∥∥∂k

yn
a

a

∥∥∥∥∥
L∞(Γ×D)

≤
{√

λn‖bn‖L∞(D)/amin for k = 1,

0 for k > 1

and we can safely take γn =
√
λn‖bn‖L∞(D)/amin in (3.4).

If we consider, instead, a truncated exponential expansion

a(ω, x) = amin + eb0(x)+
∑N

n=1

√
λnbn(x)Yn(ω),

we have ∥∥∥∥∥∂k
yn
a

a

∥∥∥∥∥
L∞(Γ×D)

≤
(√

λn‖bn‖L∞(D)

)k
and we can take γn =

√
λn‖bn‖L∞(D). Hence, both choices fulfill the assumption in

Lemma 3.2.
Example 4. Similarly to the previous case, let us consider a forcing term f of the

form

f(ω, x) = c0(x) +

N∑
n=1

cn(x)Yn(ω),

where the random variables Yn are Gaussian (either independent or not) and the
functions cn(x) are square integrable for any n = 1, . . . , N . Then, the function f
belongs to the space C0

σ(Γ;L2(D)), with weight σ defined in (3.1), for any choice of
the exponent coefficients αn > 0.

Moreover,

‖∂k
yn
f(y)‖L2(D)

1 + ‖f(y)‖L2(D)
≤
{
‖cn‖L2(D) for k = 1,

0 for k > 1,

and we can safely take γn = ‖cn‖L2(D) in (3.4). Hence, such a forcing term satisfies
the assumptions of Lemma 3.2. In this case, though, the solution u is linear with
respect to the random variables Yn (hence, clearly analytic), and our theory is not
needed.

Observe that the regularity results are valid also for the semidiscrete solution uh.

4. Convergence analysis. Our aim is to give a priori estimates for the total
error ε = u− uh,p in the natural norm L2

ρ(Γ) ⊗H1
0 (D). The next theorem states the

convergence result we are seeking, and the rest of the section will be devoted to its
proof. In particular, we will prove that the error decays (sub)exponentially fast with
respect to p under the regularity assumptions made in section 3. The convergence
with respect to h will be dictated by standard approximability properties of the finite
element space Hh(D) and the regularity in space of the solution u (see, e.g., [12, 11]).

Theorem 4.1. Under the assumptions of Lemmas 3.1 and 3.2, there exist positive
constants rn, n = 1, . . . , N , and C, independent of h and p, such that

(4.1)

‖u− uh,p‖L2
ρ⊗H1

0
≤ 1
√
amin

inf
v∈L2

ρ⊗Hh

(∫
Γ×D

ρa|∇(u− v)|2
) 1

2

+ C

N∑
n=1

βn(pn) exp{−rn p
θn
n },
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where

• if Γn is bounded,

{
θn = βn = 1,

rn = log
[

2τn
|Γn|

(
1 +
√

1 + |Γn|2
4τ2

n

)]
,

• if Γn is unbounded,

{
θn = 1/2, βn = O(

√
pn),

rn = τnδn,

τn is smaller than the distance between Γn and the nearest singularity in the complex
plane, as defined in Lemma 3.2, and δn is defined as in (3.2).

The first term on the right-hand side of (4.1) concerns the space approximability
of u in the subspace Hh(D) and is controlled by the mesh size h. The actual rate of
convergence will depend on the regularity in space of a(y) and f(y) for each y ∈ Γ
as well as on the smoothness on the domain D. Observe that an h or h− p adaptive
strategy to reduce the error in space is not precluded by this approach.

The exponential rate of convergence in the Y direction depends on the constants
rn, which in turn are related to the distances from the sets Γn to their nearest singu-
larities in the complex plane. In Examples 3 and 4 we have estimated these constants
in the case where the random fields a and f are represented by either a linear or
exponential truncated Karhunen–Loève expansion. Hence, a full characterization of
the convergence rate is available in these cases.

Observe that in Theorem 4.1 it is not necessary to assume the finiteness of the
second moment of the coefficient a.

Before proving the theorem, we recall some known results of approximation theory
for a function f defined on a one-dimensional domain (bounded or unbounded) with
values in a Banach space V , f : Γ ⊂ R → V . As in section 2, let ρ : Γ → R

+ be a
positive weight which satisfies, for all y ∈ Γ, ρ(y) ≤ CMe−(δy)2 for some CM > 0 and
δ strictly positive if Γ is unbounded and zero otherwise; let yk ∈ Γ, k = 1, . . . , p+1 be
the set of zeros of the polynomial of degree p orthogonal to the space Pp−1 with respect

to the weight ρ; and let σ be an extra positive weight such that σ(y) ≥ Cme−(δy)2/4 for
some Cm > 0. With this choice, the embedding C0

σ(Γ;V ) ⊂ L2
ρ(Γ;V ) is continuous.

Observe that the condition on σ is satisfied both by a Gaussian weight σ = e−(μy)2

with μ ≤ δ/2 and by an exponential weight σ = e−α|y| for any α ≥ 0. Finally,

we denote by Ip the Lagrange interpolant operator, Ipv(y) =
∑p+1

k=1 v(yk)lk(y) for
every continuous function v, and by ωk =

∫
Γ
l2k(y)ρ(y) dy the weights of the Gaussian

quadrature formula built upon Ip.
The following two lemmas are a slight generalization of a classical result by Erdös

and Turán [17].

Lemma 4.2. The operator Ip : C0
σ(Γ;V ) → L2

ρ(Γ;V ) is continuous.

Proof. We have, indeed, that for any v ∈ C0
σ(Γ;V )

‖Ipv‖2
L2

ρ(Γ;V ) =

∫
Γ

∥∥∥∥∥
p+1∑
k=1

v(yk)lk(y)

∥∥∥∥∥
2

V

ρ(y) dy ≤
∫

Γ

(
p+1∑
k=1

‖v(yk)‖V
lk(y)

)2

ρ(y) dy.



1020 IVO BABUŠKA, FABIO NOBILE, AND RAÚL TEMPONE

Thanks to the orthogonality property
∫
Γ
lj(y)lk(y)ρ(y) dy = δjk, we have

‖Ipv‖2
L2

ρ(Γ;V ) ≤
∫

Γ

p+1∑
k=1

‖v(yk)‖2
V
l2k(y)ρ(y) dy

≤ max
k=1,...,p+1

‖v(yk)‖2
V
σ2(yk)

p+1∑
k=1

∫
Γ

l2k(y)ρ(y)

σ2(yk)
dy

≤ ‖v‖2
C0

σ(Γ;V )

p+1∑
k=1

ωk

σ2(yk)
.

In the case of Γ bounded, we have σ ≥ Cm and
∑p+1

k=1 ωk = 1 for any p, and the result

follows immediately. For Γ unbounded, since ρ(y) ≤ CMe−(δy)2 , all the even moments
c2m =

∫
Γ
y2mρ(y) dy are bounded, up to a constant, by the moments of the Gaussian

density e−(δy)2 . Therefore, using a result from Uspensky in 1928 [36], it follows that

p+1∑
k=1

ωk

σ2(yk)

p→∞−→
∫

Γ

ρ(y)

σ2(y)
dy ≤ CM

C2
m

√
2π

δ
,

and we conclude that

‖Ipv‖L2
ρ(Γ;V ) ≤ C1‖v‖C0

σ(Γ;V ).

Lemma 4.3. For every function v ∈ C0
σ(Γ;V ) the interpolation error satisfies

‖v − Ipv‖L2
ρ(Γ;V ) ≤ C2 inf

w∈Pp(Γ)⊗V
‖v − w‖C0

σ(Γ;V )

with a constant C2 independent of p.
Proof. Let us observe that for all w ∈ Pp(Γ) ⊗ V , it holds that Ipw = w. Then,

‖v − Ipv‖L2
ρ(Γ;V ) ≤ ‖v − w‖L2

ρ(Γ;V ) + ‖Ip(w − v)‖L2
ρ(Γ;V )

≤ C2‖v − w‖C0
σ(Γ;V ).

Since w is arbitrary in the right-hand side, the result follows.
Lemma 4.3 relates the approximation error (v−Ipv) in the L2

ρ-norm with the best

approximation error in the weighted C0
σ-norm for any weight σ(y) ≥ Cme−(δy)2/4. We

now analyze the best approximation error for a function v : Γ → V which admits an
analytic extension in the complex plane, in the region Σ(Γ; τ) = {z ∈ C, dist(z,Γ) <
τ} for some τ > 0. We will still denote the extension by v; in this case, τ represents
the distance between Γ ⊂ R and the nearest singularity of v(z) in the complex plane.

We study separately the two cases of Γ bounded and unbounded. We start with
the bounded case, in which the extra weight σ is set equal to 1. The following result
is an immediate extension of the result given in [14, Chapter 7, section 8]

Lemma 4.4. Given a function v ∈ C0(Γ;V ) which admits an analytic extension
in the region of the complex plane Σ(Γ; τ) = {z ∈ C, dist(z,Γ) ≤ τ} for some τ > 0,
it holds that

min
w∈Pp⊗V

‖v − w‖C0(Γ;V ) ≤
2

�− 1
e−p log(�) max

z∈Σ(Γ;τ)
‖v(z)‖

V
,
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where

1 < � =
2τ

|Γ| +

√
1 +

4τ2

|Γ|2 .

Proof. We sketch the proof for completeness. We first make a change of variables,

y(t) = y0 + |Γ|
2 t, where y0 is the midpoint of Γ. Hence, y([−1, 1]) = Γ. We set

ṽ(t) = v(y(t)). Clearly, ṽ can be extended analytically in the region of the complex
plane Σ([−1, 1]; 2τ/|Γ|) ≡ {z ∈ C,dist(z, [−1, 1]) ≤ 2τ/|Γ|}.

We then introduce the Chebyshev polynomials Ck(t) on [−1, 1] and the expansion
of ṽ : [−1, 1] → V as

(4.2) ṽ(t) =
a0

2
+

∞∑
k=1

akCk(t),

where the Fourier coefficients ak ∈ V , k = 0, 1, . . . , are defined as

ak =
1

π

∫ π

−π

ṽ(cos(t)) cos(kt) dt.

It is well known (see, e.g., [14, 9]) that the series (4.2) converges in any elliptic disc
D� ⊂ C, with � > 1, delimited by the ellipse

E� =

{
z = t + is ∈ C, t =

� + �−1

2
cosφ, s =

�− �−1

2
sin(φ), φ ∈ [0, 2π)

}
in which the function ṽ is analytic. Moreover (see [14] for details), we have

‖ak‖V
≤ 2�−k max

z∈D�

‖ṽ(z)‖
V
.

If we denote by Πpv ∈ Pp(Γ) ⊗ V the truncated Chebyshev expansion up to the
polynomial degree p and observe that |Ck(t)| ≤ 1 for all t ∈ [−1, 1], we have

min
w∈Pp⊗V

‖v − w‖C0(Γ;V ) ≤ ‖ṽ − Πpṽ‖C0([−1,1];V )

≤
∞∑

k=p+1

‖ak‖V
≤ 2

�− 1
�−p max

z∈D�

‖ṽ(z)‖
V
.

Finally, we have to link � to the size of the analyticity region of ṽ. It is easy to verify
that the ellipse given by

� =
2τ

|Γ|

(
1 +

√
1 +

|Γ|2
4τ2

)

is the largest ellipse that can be drawn inside Σ([−1, 1]; 2τ/|Γ|), and this proves the
stated result.

For the case of unbounded Γ we first recall a result given in [23] and then we state
in Lemma 4.6 a result tuned to our situation.

We denote by Hn(y) ∈ Pn(R) the normalized Hermite polynomials

Hn(y) =
√
π

1
2 2nn! (−1)ney

2 ∂n

∂yn

(
e−y2
)
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and by hn(y) = e−y2/2Hn(y) the Hermite functions. We recall that the Hermite
polynomials form a complete orthonormal basis of the L2(R) space with respect to

the weight e−y2

, i.e., ∫
R

Hk(y)Hl(y)e
−y2

dy = δkl.

Lemma 4.5 (Hille [23]). Let f(z) be an analytic function in the strip of the
complex plane Σ(R; τ) ≡ {z = (y+ iw) ∈ C,−τ ≤ w ≤ τ}. A necessary and sufficient
condition in order that the Fourier–Hermite series

(4.3)
∞∑
k=0

fkhk(z), fk =

∫
R

f(y)hk(y) dy,

shall exist and converge to the sum f(z) in Σ(R; τ) is that for every β, 0 ≤ β < τ ,
there exists a finite positive C(β) such that

(4.4) |f(y + iw)| ≤ C(β)e−|y|
√

β2−w2
, −∞ < y < ∞, −β ≤ w ≤ β.

Moreover, the following bound for the Fourier coefficients holds:

(4.5) |fn| ≤ Ce−τ
√

2n+1.

In particular, the previous result tells us that, in order to have exponential decay
of the Fourier coefficients fn, we not only need f(z) to be analytic in Σ(R; τ) but also
must require that it decays on the real line, for y → ∞, at least as e−τ |y|.

We now introduce two weights: the exponential σ = e−α|y|, for some α > 0,
and the Gaussian G = e−(δy)2/4. We recall that Lemma 4.3 holds for both. We will
assume that the function v is in the space C0

σ(Γ;V ), but we will measure the best
approximation error in the weaker norm C0

G(Γ;V ), with Gaussian weight, so that we
can use the result from Hille given in Lemma 4.5. The following lemma holds.

Lemma 4.6. Let v be a function in C0
σ(R;V ). We suppose that v admits an

analytic extension in the strip of the complex plane Σ(R; τ) = {z ∈ C, dist(z,R) ≤ τ}
for some τ > 0, and that

∀z = (y + iw) ∈ Σ(R; τ), σ(y)‖v(z)‖
V
≤ Cv(τ).

Then, for any δ > 0, there exist a constant C, independent of p, and a function
Θ(p) = O(

√
p) such that

min
w∈Pp⊗V

max
y∈R

∣∣∣∣‖v(y) − w(y)‖
V
e−

(δy)2

4

∣∣∣∣ ≤ CΘ(p)e−τδ
√
p.

Proof. We introduce the change of variable t = δ y/
√

2 and we denote ṽ(t) =

v(y(t)). Observe that ṽ ∈ C0
σ̃(R;V ) with weight σ̃ = e−

√
2α

δ |t|. We consider the
expansion of ṽ in Hermite polynomials

(4.6) ṽ(t) =

∞∑
k=0

vkHk(t), where vk ∈ V , vk =

∫
R

ṽ(t)Hk(t)e
−t2 dt.

We now set f(z) = ṽ(z)e−
z2

2 . Observe that the Hermite expansion of f as defined in
(4.3) has the same Fourier coefficients as the expansion of ṽ defined in (4.6). Indeed

fk =

∫
R

f(t)hk(t) dt =

∫
R

ṽ(t)Hk(t)e
−t2 dt = vk.
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Clearly, f(z) is analytic in the strip Σ(R; τδ√
2
), being the product of analytic functions.

Moreover,

‖f(y + iw)‖
V

= |e−
(y+iw)2

2 |‖ṽ(z)‖
V
≤ e−

y2−w2

2 e
√

2α
δ |y|Cv(τ).

Setting

C(β) = max
−∞<y<∞
−β≤w≤β

exp

{
−y2 − w2

2
+
√

2
α

δ
|y| + |y|

√
β2 − w2

}
,

which is bounded for all − τδ√
2
≤ β ≤ τδ√

2
, the function f(z) satisfies the hypotheses of

Lemma 4.5. Hence the Hermite series converges in Σ(R; τδ√
2
) and the Fourier coeffi-

cients vk behave as in (4.5). We chose w ∈ Pp⊗V as the truncated Hermite expansion
of v, up to degree p: w̃(t) = Πpṽ(t) =

∑p
k=0 vkHk(t). We have

Ep(v) = min
w∈Pp⊗V

max
y∈R

∣∣∣∣‖v(y) − w(y)‖
V
e−

(δy)2

4

∣∣∣∣
≤ max

t∈R

∣∣∣‖ṽ(t) − Πpṽ(t)‖V
e−

t2

2

∣∣∣ ≤ max
t∈R

‖
∞∑

k=p+1

vkhk(t)‖V
.

It is well known (see, e.g., [8]) that the Hermite functions hk(t) satisfy |hk(t)| < 1 for
all t ∈ R and all k = 0, 1, . . . . Hence, the previous series can be bound as

Ep(v) ≤
∞∑

k=p+1

‖vk‖V
≤ C

∞∑
k=p+1

e
− τδ√

2

√
2k+1

.

Lemma A.2 in the appendix provides a bound for such a series, and this concludes
the proof.

We are now ready to prove Theorem 4.1.
Proof of Theorem 4.1. The error naturally splits into ε = (u−uh)+(uh−uh,p). The

first term depends on the space discretization only and can be estimated easily; indeed,
the function uh is the orthogonal projection of u onto the subspace L2

ρ(Γ) ⊗H1
0 (D)

with respect to the inner product
∫
Γ×D

ρa|∇ · |2. Hence

‖u− uh‖L2
ρ(Γ)⊗H1

0 (D) ≤
1

√
amin

(∫
Γ×D

ρa|∇(u− uh)|2
) 1

2

≤ 1
√
amin

inf
v∈L2

ρ(Γ)⊗Hh(D)

(∫
Γ×D

ρa|∇(u− v)|2
) 1

2

.

The second term uh − uh,p is an interpolation error. We recall, indeed, that uh,p =
Ipuh. To lighten the notation, we will drop the subscript h, being understood that
we work on the semidiscrete solution. We recall, moreover, that uh has the same
regularity as the exact solution u with respect to y.

To analyze this term we employ a one-dimensional argument. We first pass from
the norm L2

ρ to L2
ρ̂:

‖u− Ipu‖L2
ρ⊗H1

0
≤
∥∥∥∥ρρ̂
∥∥∥∥ 1

2

L∞(Γ)

‖u− Ipu‖L2
ρ̂⊗H1

0
.
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Here we adopt the same notation as in section 3; namely, we indicate with •n a
quantity relative to the direction yn and with •∗n the analogous quantity relative
to all other directions yj , j �= n. We focus on the first direction y1 and define an
interpolation operator I1 : C0

σ1
(Γ1;L

2
ρ̂∗
1
⊗H1

0 ) → L2
ρ̂1

(Γ1;L
2
ρ̂∗
1
⊗H1

0 ),

Ip1v(y1, y
∗
1 , x) =

p1+1∑
k=1

v(y1,k, y
∗
1 , x)l1,k(y1).

Then, the global interpolant Ip can be written as the composition of two interpolation

operators Ip = I1 ◦ I(1)
p , where I(1)

p is the interpolation operator in all directions

y2, y3, . . . , yN except y1: I(1)
p : C0

σ∗
1
(Γ∗

1;H
1
0 ) → L2

ρ̂∗
1
(Γ∗

1;H
1
0 ). We then have

‖u− Ipu‖L2
ρ̂×H1

0
≤ ‖u− I1u‖L2

ρ̂×H1
0︸ ︷︷ ︸

I

+ ‖I1(u− I(1)
p u)‖L2

ρ̂×H1
0︸ ︷︷ ︸

II

.

Let us bound the first term. We think of u as a function of y1 with values in a Banach
space V , u ∈ L2

ρ̂1
(Γ1;V ), where V = L2

ρ̂∗
1
(Γ∗

1) ⊗ H1
0 (D). Under Assumption 2 in

section 3 and the choice of ρ̂ given in (3.3), the following inclusions hold true:

C0
σ1

(Γ1;V ) ⊂ C0
G1

(Γ1;V ) ⊂ L2
ρ̂1

(Γ1;V )

with σ1 = G1 = 1 if Γ1 is bounded and σ1 = e−α1|y1|, G1 = e−
(δ1y1)2

4 if Γ1 is
unbounded. We know also from Lemma 4.2 that the interpolation operator I1 is
continuous both as an operator from C0

σ1
(Γ1;V ) with values in L2

ρ̂1
(Γ1;V ) and from

C0
G1

(Γ1;V ) in L2
ρ̂1

(Γ1;V ). In particular, we can estimate

I = ‖u− I1u‖L2
ρ̂1

(Γ1;V ) ≤ C2 inf
w∈Pp1⊗V

‖u− w‖C0
G1

(Γ;V ).

To bound the best approximation error in C0
G1

(Γ;V ), in the case of Γ1 bounded we
use Lemma 4.4, whereas if Γ1 is unbounded, we employ Lemma 4.6 and the fact that
u ∈ C0

σ1
(Γ1;V ) (see Lemma 3.1). In both cases, we need the analyticity result, for

the solution u, stated in Lemma 3.2. Putting everything together, we can say that

I ≤
{
Ce−r1p1 , Γ1 bounded,

CΘ(p1)e
−r1

√
p1 , Γ1 unbounded,

the value of r1 being specified in Lemmas 4.4 and 4.6. To bound the term II, we use
Lemma 4.2:

II ≤ C1‖u− I(1)
p u‖C0

σ1
(Γ1;V ).

The term on the right-hand side is again an interpolation error. Thus we have to
bound the interpolation error in all the other N−1 directions, uniformly with respect
to y1 (in the weighted norm C0

σ1
). We can proceed iteratively, defining an interpolation

I2, bounding the resulting error in the direction y2, and so on.

4.1. Convergence of moments. In some cases one might be interested only
in computing the first few moments of the solution, namely E[um], m = 1, 2, . . . . We
show in the next two lemmas that the error in the first two moments, measured in a
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suitable spatial norm, is bounded by the mean square error ‖u− uh,p‖L2
ρ⊗H1

0
, which,

due to Theorem 4.1, is exponentially convergent with respect to the polynomial degree
p employed in the y directions. In particular, without extra regularity assumptions on
the solution u of the problem, we have optimal convergence for the error in the mean
value (first moment) measured in L2(D) or H1(D) and for the error in the second
moment measured in L1(D).

Lemma 4.7 (approximation of mean value).

‖E[u− uh,p]‖V (D) ≤ ‖u− uh,p‖L2
ρ(Γ)⊗V (D), with V (D) = L2(D) or H1(D).

The proof is immediate and omitted. Although the previous estimate implies ex-
ponential convergence with respect to p, under the assumptions of Theorem 4.1, the
above estimate is suboptimal and can be improved by a duality argument (see [4] and
Remark 5.2 in [5]).

Lemma 4.8 (approximation of the second moment).

‖E[u2 − u2
h,p]‖L1(D) ≤ C‖u− uh,p‖L2

ρ(Γ)⊗L2(D)

with C independent of the discretization parameters h and p.
Proof. We have

‖E[u2 − u2
h,p]‖L1(D) ≤ ‖E[(u− uh,p)(u + uh,p)]‖L1(D)

≤ ‖u− uh,p‖L2
ρ(Γ)⊗L2(D)‖u + uh,p‖L2

ρ(Γ)⊗L2(D)

≤ ‖u− uh,p‖L2
ρ(Γ)⊗L2(D)

(
‖u‖L2

ρ(Γ)⊗L2(D) + ‖uh,p‖L2
ρ(Γ)⊗L2(D)

)
.

The term ‖uh,p‖L2
ρ⊗L2 can be bounded as

‖uh,p‖L2
ρ(Γ)⊗L2(D) = ‖Ipuh‖L2

ρ(Γ)⊗L2(D) ≤ C1‖uh‖C0
σ(Γ;L2(D)) ≤ C(f, amin),

where we have used the boundedness of the interpolation operator Ip stated in Lemma
4.2. The last inequality follows from the fact that the semidiscrete solution uh is the
orthogonal projection of the exact solution u onto the subspace Hh with respect to
the energy inner product; hence

‖
√
a(y)∇uh(y)‖L2(D) ≤ ‖

√
a(y)∇u(y)‖L2(D) ∀y ∈ Γ,

and the last term can be controlled in terms of amin and the forcing term, f .
Similarly, it is possible to estimate the approximation error in the covariance

function of the solution u.
On the other hand, to estimate the convergence rate of the error in higher or-

der moments, or of the second moment in higher norms, we need extra regularity
assumptions on the solution to ensure proper integrability and then be able to use
analyticity.

5. Numerical examples. This section illustrates the convergence of the collo-
cation method for a stochastic elliptic problem in two dimensions. The computational
results are in accordance with the convergence rate predicted by the theory.

The problem to solve is

−∇ · (a∇u) = 0 on Ω ×D,

u = 0 on Ω × ∂DD,

−a∂nu = 1 on Ω × ∂DN ,

∂nu = 0 on Ω × (∂D − (∂DD ∪ ∂DN )),



1026 IVO BABUŠKA, FABIO NOBILE, AND RAÚL TEMPONE

−∇ · (a∇u) = 0∂nu = 0 ∂nu = 0

∂nu = 0 ∂nu = 0u = 0

−a ∂nu = 1

Fig. 1. Geometry and boundary conditions for the numerical example.

with

D = {(x, z) ∈ R
2 : −1.5 ≤ x ≤ 0, −0.4 ≤ z ≤ 0.8},

∂DD = {(x, z) ∈ R
2 : −1 ≤ x ≤ −0.5, z = 0.8},

∂DN = {(x, z) ∈ R
2 : −1.5 ≤ x ≤ 0, z = −0.4};

cf. Figure 1.
The random diffusivity coefficient is a nonlinear function of the random vector Y ,

namely,

(5.1)
a(ω, x) = amin + exp

{
[Y1(ω) cos(πz) + Y3(ω) sin(πz)] e−

1
8

+ [Y2(ω) cos(πx) + Y4(ω) sin(πx)] e−
1
8

}
.

Here amin = 1/100, and the real random variables Yn, n = 1, . . . , 4, are independent
and identically distributed with mean value zero and unit variance. To illustrate the
behavior of the collocation method with either unbounded or bounded random vari-
ables Yn, this section presents two different cases, corresponding to either Gaussian or
uniform densities. The corresponding collocation points are then Cartesian products
determined by the roots of either Hermite or Legendre polynomials.

Observe that the collocation method requires only the solution of uncoupled de-
terministic problems in the collocation points, even in the presence of a diffusivity
coefficient which depends nonlinearly on the random variables as in (5.1). This is a
great advantage with respect to the classical stochastic Galerkin finite element method
as considered in [4] or [30] (see also the considerations given in section 2.1). Observe,
moreover, how easily the collocation method can deal with unbounded random vari-
ables.

Figure 2 shows some realizations of the logarithm of the diffusivity coefficient,
while Figures 3 and 4 show the mean and variance of the corresponding solutions. The
finite element space for spatial discretization is the span of continuous functions that
are piecewise polynomials with degree five over a triangulation with 1178 triangles and
642 vertices; see Figure 5. This triangulation has been adaptively graded to control
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Fig. 2. Some realizations of log(a).

the singularities at the boundary points (−1, 0.8) and (−0.5, 0.8). These singularities
occur where the Dirichlet and Neumann boundaries meet, and they essentially behave
like

√
r, with r being the distance to the closest singularity point.

To study the convergence of the tensor product collocation method, we increase
the order p for the approximating polynomial spaces, Pp(Γ), following the adaptive
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Fig. 3. Results for the computation of the expected value for the solution, E[u].

Fig. 4. Results for the computation of the variance of the solution, V ar[u].

algorithm described on page 1287 of [5]. This adaptive algorithm increases the tensor
polynomial degree with an anisotropic strategy: it increases the order of approxima-
tion in one direction as much as possible before considering the next direction.

The computational results for the H1
0 (D) approximation error in the expected

value, E[u], are shown on Figure 6, while those corresponding to the approximation
of the second moment, E[u2], are shown on Figure 7. To estimate the computational
error in the ith direction, corresponding to a multi-index p = (p1, . . . , pi, . . . , pN ), we
approximate it by E[e] ≈ E[uh,p−uh,p̃], with p̃ = (p1, . . . , pi+1, . . . , pN ). We proceed
similarly for the error in the approximation of the second moment.

As expected, the estimated approximation error decreases exponentially fast as
the polynomial order increases, for both the computation of E[u] and E[u2], with
either Gaussian or uniform probability densities.

6. Conclusions. In this work we have proposed a collocation method for the
solution of elliptic partial differential equations with random coefficients and forcing
terms. This method has the advantages of leading to uncoupled deterministic prob-
lems also in the case of input data which depend nonlinearly on the random variables;
treating efficiently the case of nonindependent random variables with the introduc-
tion of an auxiliary density ρ̂; dealing easily with unbounded random variables, such
as Gaussian or exponential ones; and dealing with no difficulty with a diffusivity
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Fig. 5. Top: Unstructured grid for the spatial discretization. The corresponding finite element
spaces are the span of continuous functions that are piecewise polynomials with degree five. Bottom:
Detail of the mesh refinement near the left singularity.

coefficient a with unbounded second moment.
We have provided a full convergence analysis and proved exponential convergence

“in probability” for a broad range of situations. The theoretical result is given in
Theorem 4.1 and confirmed numerically by the tests presented in section 5.

The method is very versatile and very accurate for the class of problems considered
(as accurate as the stochastic Galerkin approach). It leads to the solution of uncoupled
deterministic problems and, as such, is fully parallelizable like a Monte Carlo method.
The extension of the analysis to other classes of linear and nonlinear problems is the
subject of ongoing research.
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Fig. 6. Convergence results for the approximation of the expected value, E[u].

The use of tensor product polynomials suffers from the curse of dimensionality.
Hence, this method is efficient only for a small number of random variables. For a
moderate or large dimensionality of the probability space, one should rather turn to
sparse tensor product spaces. This aspect will be investigated in a future work.

Appendix.

Lemma A.1. Let r ∈ R
+, r < 1. Then

•
n∑

k=0

(2k + 1)rk =
1

(1 − r)2
{
1 + r − rn+1 [(2n + 1)(1 − r) + 2]

}
.

•
∞∑

k=n+1

(2k + 1)rk = rn+1 (2n + 1)(1 − r) + 2

(1 − r)2
.

Proof. We use the summation-by-parts formula

n∑
k=0

fkgk = fnGn −
n−1∑
k=0

Gk(fk+1 − fk), Gk =

k∑
j=0

gj
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Fig. 7. Convergence results for the approximation of the second moment, E[u2].

with fk = (2k + 1), gk = rk, and Gk = (1 − rk+1)/(1 − r). Then

n∑
k=0

(2k + 1)rk = (2n + 1)
1 − rn+1

1 − r
−

n−1∑
k=0

2
1 − rk+1

1 − r

= (2n + 1)
1 − rn+1

1 − r
− 2

1 − r

[
n− r

1 − rn

1 − r

]
=

1

1 − r

[
(2n + 1) − (2n + 1)rn+1 − 2n + 2r

1 − rn

1 − r

]
=

1

1 − r

{
1 +

2r

1 − r
− rn+1

[
(2n + 1) +

2

1 − r

]}
,

which gives the first result. Clearly,

∞∑
k=0

(2k + 1)rk =
1 + r

(1 − r)2
.

Then, computing the tail series as

∞∑
k=n+1

(2k + 1)rk =

∞∑
k=0

(2k + 1)rk −
n∑

k=0

(2k + 1)rk,

we easily obtain the second result as well.
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Lemma A.2. Let r ∈ R
+, r < 1. Then

∞∑
k=n+1

r
√

2k+1 ≤
[
2
√
n + 1

a(1 − a)
+ O(1)

]
a
√
n, a = r

√
2.

Proof. We start bounding

∞∑
k=n+1

r
√

2k+1 ≤
∞∑

k=n+1

r
√

2k =

∞∑
k=n+1

a
√
k.

Let us observe, now, that

∞∑
k=n+1

a
√
k ≤

∞∑
k=[

√
n+1]

(2k + 1)ak,

where we have denoted by [v] the integer part of a real number v. Then, using the
result from Lemma A.1, we have

∞∑
k=[

√
n+1]

(2k + 1)ak ≤ a[
√
n+1] (2[

√
n + 1] − 1)(1 − a) + 2

(1 − a)2
.

Observing now that
√
n + 1 − 1 ≤ [

√
n + 1] ≤

√
n + 1 + 1, we obtain

∞∑
k=n+1

a
√
k ≤ a

√
n+1 (2

√
n + 1 + 1)(1 − a) + 2

a(1 − a)2
,

which leads immediately to the final result.
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[16] B. Engquist, P. Löstedt, and O. Runborg, eds., Multiscale Methods in Science and Engi-
neering, Lect. Notes Comput. Sci. Eng. 44, Springer-Verlag, Berlin, 2005.

[17] P. Erdös and P. Turán, On interpolation. I. Quadrature- and mean-convergence in the
Lagrange-interpolation, Ann. of Math. (2), 38 (1937), pp. 142–155.

[18] P. Frauenfelder, C. Schwab, and R. A. Todor, Finite elements for elliptic problems
with stochastic coefficients, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 205–
228.

[19] D. Funaro and O. Kavian, Approximation of some diffusion evolution equations in unbounded
domains by Hermite functions, Math. Comp., 57 (1991), pp. 597–619.

[20] R. Ghanem, Ingredients for a general purpose stochastic finite elements implementation, Com-
put. Methods Appl. Mech. Engrg., 168 (1999), pp. 19–34.

[21] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-
Verlag, New York, 1991.

[22] M. Grigoriu, Stochastic Calculus: Applications in Science and Engineering, Birkhäuser
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CONVERGENCE ANALYSIS OF PERTURBED TWO-GRID AND
MULTIGRID METHODS∗

YVAN NOTAY†

Abstract. We consider multigrid methods for symmetric positive definite linear systems. We
present a new algebraic convergence analysis of two-grid schemes with inexact solution of the coarse
grid system. This analysis allows us to bound the convergence factor of such perturbed two-grid
schemes, assuming only a certain bound on the convergence factor for the unperturbed scheme (with
exact solution of the coarse grid system). Applied to multigrid methods with the standard W-cycle,
this analysis shows that if the convergence factor of the (unperturbed) two-grid method is uniformly
bounded by σ < 1/2, then the convergence factor of the multigrid method is uniformly bounded by
σ/(1−σ). The analysis is purely algebraic and requires only that pre- and postsmoothing are applied
in a symmetric way. It covers both geometric and algebraic multigrid methods, and the coarse grid
matrix may be of any type (not necessarily Galerkin).

Key words. multigrid, convergence analysis, linear systems, W-cycle, condition number
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1. Introduction. We consider multigrid methods for solving symmetric positive
definite (SPD) n× n linear systems

(1.1) Au = b.

We focus on symmetric multigrid schemes, more precisely on methods for which the
basic two-grid cycle is defined as follows:

• Relax ν times on Au = b using a smoother R;
we assume that R is an n× n matrix such that ρ(I −RA) < 1,
where ρ(·) stands for the spectral radius;
ν (the number of pre- and postsmoothing steps) is a given positive integer.

• Perform the coarse grid correction: u ← u + pA−1
C pT (b −Au);

we assume that AC (the coarse grid matrix) is an nc × nc SPD matrix,
where nc ≤ n is the number of coarse variables;
p (the prolongation) is an n× nc matrix.

• Relax ν times on Au = b using RT .
Note that we do not assume any specific form for the coarse grid matrix.

In this paper, we analyze the influence of the perturbations that arise when the
coarse grid systems are solved approximately. More precisely, we consider schemes as
above in which A−1

C is exchanged for some nc×nc SPD matrix KC that approximates
it. Our main result relates the convergence of this perturbed two-grid method with
that of the “ideal” two-grid method that requires the inversion of AC .

To express this relation, consider the iteration matrices that govern the conver-
gence of the schemes described above:

(1.2) TTG = (I −RTA)ν (I − pA−1
C pT A) (I −RA)ν

∗Received by the editors February 17, 2006; accepted for publication (in revised form) December
19, 2006; published electronically May 7, 2007. This work was supported by the Belgian FNRS
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for the unperturbed two-grid cycle and

(1.3) TPTG = (I −RTA)ν (I − pKC pT A) (I −RA)ν

for the perturbed one; see, e.g., [19, p. 40]. As is well known, performing m iterations
implies that

û − u
(m)
TG =

(
TTG

)m(
û − u

(0)
TG

)
or û − u

(m)
PTG =

(
TPTG

)m(
û − u

(0)
PTG

)
(respectively), where û = A−1b is the exact solution to (1.1). Hence, the asymptotic
convergence rate is equal to the spectral radius of the iteration matrix, which is
referred to as the convergence factor. On the other hand, both the perturbed and the
unperturbed two-grid cycle implicitly define a preconditioner, which we denote BTG

and BPTG, respectively. They are related to the iteration matrices by

(1.4) I −B−1
TG A = TTG and I −B−1

PTG A = TPTG.

Note that because A, BTG, and BPTG are SPD (see below), the eigenvalues of B−1
TGA

and B−1
PTGA are real and the convergence factors satisfy

ρ (TTG) = max
(
λmax(B

−1
TGA) − 1, 1 − λmin(B−1

TGA)
)
,

ρ (TPTG) = max
(
λmax(B

−1
PTGA) − 1, 1 − λmin(B−1

PTGA)
)
,

where λmax(·) and λmin(·) stand for the largest and the smallest eigenvalue, respec-
tively. In section 2, we prove

λmax(B
−1
PTG A) ≤ λmax(B

−1
TG A) · max(λmax(KC AC), 1),(1.5)

λmin(B−1
PTG A) ≥ λmin(B−1

TG A) · min(λmin(KC AC), 1).(1.6)

Multigrid cycles are obtained when a two-grid method is used recursively, ex-
changing the solution of the coarse grid system for a given number γ of two-grid
cycles on the coarser level, and so on, until the coarsest level on which an exact solve
is performed. Multigrid cycles are thus particular cases of perturbed two-grid cycles,
and the above results enable us to analyze them. For the so-called W-cycle (which
corresponds to γ = 2), we show in section 3 that if σ < 1/2 is a uniform (i.e., holding
at every level) bound on the convergence factor of the unperturbed two-grid method,
then the convergence factor of the multigrid method is bounded by σ/(1 − σ).

This improves the state of the art in multigrid convergence theory. Analyzing the
two-grid convergence factor is often sufficient to assess the convergence of a multi-
grid scheme; see, e.g., [19, p. 77]. However, this is not yet completely supported by
theoretical results. The standard algebraic analysis considers the multigrid iteration
matrix as a two-grid iteration matrix plus some perturbation term; see [11, sect. 4.2]
or [19, Thm. 3.2.1]. It allows us to obtain a useful bound on the convergence factor
of the multigrid method with the W-cycle if σ satisfies

(1.7) σ ≤ 1

4C
,

where C is a constant whose exact value is difficult to predict, except that it is in
general not smaller than 1 (see section 3 below for details). Because of this condition,
this result on multigrid convergence is sometimes stated as follows: “if the two-grid
method converges sufficiently well, then the multigrid method with W-cycle will have
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similar convergence properties” [19, p. 77]. However, condition (1.7) may be violated
when textbook multigrid efficiency is difficult to achieve. It may also be difficult to
check when using an algebraic multigrid (AMG) method. Below we also show that,
when both our new analysis and the standard algebraic analysis apply, our bound on
the convergence factor is generally sharper.

For the case of Galerkin coarse grid matrices (i.e., assuming AC = pTAp), an
interesting analysis of the W-cycle multigrid has been developed by Braess in [6,
pp. 226–228]. This analysis is based on two-grid schemes without postsmoothing,
which also gives a worst case estimate for the general case. As will be seen in section
3, our bound on the convergence factor for the W-cycle is always equal to the square
of Braess’s bound. This suggests that, as proved for the two-grid case in [15, eq. (41)],
the W-cycle multigrid scheme with symmetrized pre- and postsmoothing can converge
twice as fast as the corresponding scheme without postsmoothing.

On the other hand, in the SPD case, it is also possible to prove optimal con-
vergence properties (with respect to the number of levels) of multigrid methods via
so-called smoothing and approximation properties or via the theory of subspace cor-
rection methods (using the multilevel splitting of finite element spaces); see, e.g.,
[5, 7, 11, 12, 13, 14, 16, 17, 22, 23]. However, bounds derived in this way do not,
in general, give satisfactorily sharp predictions of actual multigrid convergence [19,
p. 96]. Moreover, they require assumptions that are more restrictive than just the con-
vergence of the two-grid method. To our knowledge, for instance, these assumptions
have not yet been checked for AMG methods. These analyses, nevertheless, play an
important role in the multigrid convergence theory, complementary to the algebraic
approach developed here. Indeed, they cover the V-cycle, for which both the standard
analysis mentioned above and our new analysis fail to deliver bounds independent of
the number of levels.

Eventually, it should be noted that our bounds (1.5), (1.6) have a wider scope than
just the analysis of standard multigrid cycles. First, these relations are similar to the
ones holding for AMLI-type methods [2, 3]. Hence, when the two-grid method does
not converge fast enough for the standard W-cycle, it is possible to use polynomially
accelerated cycles based on Chebyshev polynomials, as considered in these references
[21]. Another potential application lies in the simplification of coarse grid matrices:
(1.5), (1.6) indeed show that one may replace a given coarse grid matrix by a spectrally
equivalent approximation. For instance, the theory of algebraic two-grid methods
heavily relies on the use of Galerkin coarse grid matrices, that is, on the assumption
that AC = pTAp [8, 9, 10, 15, 18]. However, in practice, such matrices may be costly
to compute, and so it could be interesting to develop cheaper alternatives.

The remainder of this paper is organized as follows. In section 2, we prove the
main inequalities (1.5), (1.6). Their application to multigrid cycles is discussed in
section 3.

2. Perturbed two-grid methods. We first show that BTG is the Schur com-
plement of an extended matrix B̂TG given in factored form. Note that this holds for
any SPD coarse grid matrix AC ; hence, similarly, BPTG is the Schur complement of
an extended matrix B̂PTG. This factored form has been inspired by the factored form
existing for the preconditioner defined by the so-called hierarchical basis multigrid
method1 [4]. Our derivation is also related to equation (15) in [10].

1This latter method does not fit into our framework because only fine grid unknowns are relaxed
during smoothing steps, and hence R is singular.
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Let us introduce some notation. Let M be the matrix such that

(2.1) I −M−1A = (I −RA)ν ;

from the assumption, ρ(I −RA) < 1, and M exists, is invertible, and is such that
ρ(I −M−1A) < 1. This latter relation implies that

(2.2) Q = M−1 + M−T −M−T AM−1 = M−T
(
M + MT −A

)
M−1

is positive definite; see [9, 15].
Define

(2.3)

B̂TG =

(
In×n 0

−pT (I −AM−1) Inc×nc

)(
Q−1 0

0 AC

)(
In×n −(I −M−TA)p

0 Inc×nc

)
.

Straightforward calculation shows that

B̂TG

−1
=

(
In×n (I −M−TA)p

0 Inc×nc

)(
Q 0
0 A−1

C

)(
In×n 0

pT (I −AM−1) Inc×nc

)
=

(
Q + (I −M−TA)pA−1

C pT (I −AM−1) (I −M−TA)pA−1
C

A−1
C pT (I −AM−1) A−1

C

)
=

(
B−1

TG (I −M−TA)pA−1
C

A−1
C pT (I −AM−1) A−1

C

)
.

Because B̂TG is SPD, this first shows that BTG is SPD too. Further, the inverse of
BTG is a principal submatrix of the inverse of B̂TG if and only if BTG is equal to
the corresponding Schur complement in B̂TG; see, e.g., [1, eq. (3.4), p. 93]. That is,
considering the 2 × 2 block form

B̂TG =

(
(B̂TG)FF (B̂TG)FC

(B̂TG)CF (B̂TG)CC

)

(where (B̂TG)FF is n× n and (B̂TG)CC is nc × nc), BTG is the Schur complement of

B̂TG with respect to the bottom right block:

BTG = (B̂TG)FF − (B̂TG)FC (B̂TG)−1
CC (B̂TG)CF .

This, together with Theorem 3.8 in [1], proves the following lemma.
Lemma 2.1. Let BTG be defined by (1.2), (1.4) with A, R, p, AC satisfying the

assumptions stated in section 1. Let B̂TG be defined by (2.3) with M defined by (2.1)
and Q defined by (2.2). BTG is SPD, and one has, for all z ∈ �n,

(2.4) zT BTG z = min
wC∈�nc

(
zT wT

C

)
B̂TG

(
z

wC

)
.

Moreover,

λmax(B
−1
TG A) = max

z∈�n\{0}
max

wC∈�nc

zT A z(
zT wT

C

)
B̂TG

(
z

wC

) ,(2.5)

λmin(B−1
TG A) = min

z∈�n\{0}
max

wC∈�nc

zT A z(
zT wT

C

)
B̂TG

(
z

wC

) .(2.6)
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We now prove (1.5), (1.6). Note that these inequalities may also be proved from
the factored form of two-grid preconditioners as obtained by Vassilevski in [20, 21].
Their use is also implicit in the building of AMLI-cycle multigrid developed indepen-
dently by the same author [21].

Theorem 2.2. Let BTG, BPTG be defined by (1.2), (1.3), (1.4) with A, R, p,
AC , KC satisfying the assumptions stated in section 1. Inequalities (1.5) and (1.6)
hold.

Proof. Let M , Q, B̂TG be defined by (2.1), (2.2), (2.3), and define B̂PTG similarly

to B̂TG, exchanging AC for K−1
C in (2.3). Lemma 2.1 yields

λmax(B
−1
PTG A) = max

z∈�n\{0}
max

wC∈�nc

zT A z(
zT wT

C

)
B̂PTG

(
z

wC

)
≤ max

z∈�n\{0}
max

wC∈�nc

zT A z(
zT wT

C

)
B̂TG

(
z

wC

) · max
ẑ∈�n+nc\{0}

ẑT B̂TG ẑ

ẑT B̂PTG ẑ

= λmax(B
−1
TGA) · max

ŵ∈�n+nc\{0}

ŵT

(
Q−1 0

0 AC

)
ŵ

ŵT

(
Q−1 0

0 K−1
C

)
ŵ

= λmax(B
−1
TGA) · max(λmax(KC AC), 1).

Similarly, one finds

λmin(B−1
PTG A) = min

z∈�n\{0}
max

wC∈�nc

zT A z(
zT wT

C

)
B̂PTG

(
z

wC

)
≥ min

z∈�n\{0}
max

wC∈�nc

zT A z(
zT wT

C

)
B̂TG

(
z

wC

) · min
ẑ∈�n+nc\{0}

ẑT B̂TG ẑ

ẑT B̂PTG ẑ

= λmin(B−1
TGA) · min

ŵ∈�n+nc\{0}

ŵT

(
Q−1 0

0 AC

)
ŵ

ŵT

(
Q−1 0

0 K−1
C

)
ŵ

= λmin(B−1
TGA) · min(λmin(KC AC), 1).

3. Multigrid cycles. Multigrid methods are recursively defined. In the SPD

case considered here, the iteration matrix T
(�)
MG at level � depends on the iteration

matrix T
(�−1)
MG at level �− 1 (the next coarser level) according to

(3.1) T
(�)
MG =

(
I −RT

� A�

)ν�
(
I − p�

(
I −

(
T

(�−1)
MG

)γ)
A−1

�−1 p
T
� A�

)
(I −R� A�)

ν�

(see, e.g., [19, pp. 48–49]). In this equation, γ is the cycle index; γ = 1 corresponds
to the V-cycle and γ = 2 to the W-cycle; larger values of γ are seldom considered in
practice.
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Now T
(�)
MG is a perturbed two-grid iteration matrix (1.3) with A = A�, R = R�,

ν = ν�, p = p� and KC given by

KC =
(
I −

(
T

(�−1)
MG

)γ)
A−1

�−1.

Defining the iteration matrix T
(�)
TG of the (unperturbed) two-grid method by (1.2) with

AC = A�−1 and letting B
(�)
TG, B

(�)
MG be such that

I − B
(�)
TG

−1
A� = T

(�)
TG, I − B

(�)
MG

−1
A� = T

(�)
MG,

inequalities (1.5), (1.6) imply

λmax

(
B

(�)
MG

−1
A�

)
≤ λmax

(
B

(�)
TG

−1
A�

)
· max

(
λmax

(
I −

(
T

(�−1)
MG

)γ)
, 1

)
,

λmin

(
B

(�)
MG

−1
A�

)
≥ λmin

(
B

(�)
TG

−1
A�

)
· min

(
λmin

(
I −

(
T

(�−1)
MG

)γ)
, 1

)
.

Let

σ
(�)
MG = ρ

(
T

(�)
MG

)
= max

(
λmax

(
B

(�)
MG

−1
A�

)
− 1, 1 − λmin

(
B

(�)
MG

−1
A�

))
be the convergence factor of the multigrid method at level �. One has, assuming

σ
(�−1)
MG ≤ 1,

λmax

(
B

(�)
MG

−1
A�

)
−1 ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λmax

(
B

(�)
TG

−1
A�

)(
1 +

(
σ

(�−1)
MG

)γ)− 1

if γ is odd and

T
(�−1)
MG has some

negative eig.,

λmax

(
B

(�)
TG

−1
A�

)
− 1 otherwise,

whereas

1 − λmin

(
B

(�)
MG

−1
A�

)
≤ 1 − λmin

(
B

(�)
TG

−1
A�

)(
1 −

(
σ

(�−1)
MG

)γ)
.

Then let

σ
(�)
TG = ρ

(
T

(�)
TG

)
= max

(
λmax

(
B

(�)
TG

−1
A�

)
− 1, 1 − λmin

(
B

(�)
TG

−1
A�

))
be the convergence factor of the (unperturbed) two-grid method at level �. If σ

(�)
TG ≤ 1

and if either λmax(B
(�)
TG

−1
A�) ≤ 1 for all � (as occurs when using Galerkin coarse grid

matrices) or γ is even (or both), there holds

(3.2) σ
(�)
MG ≤ 1 −

(
1 − σ

(�)
TG

)(
1 −

(
σ

(�−1)
MG

)γ) ≤ 1.

If the matrix A0 on the coarsest level is inverted exactly, one has σ
(1)
MG = σ

(1)
TG, and

(3.2) defines a recursion which may be followed from � = 2, 3, . . . until the finest level.
For γ = 1 (the V-cycle), this does not yield bounds independent of the number of

levels, although the estimates may be practically relevant for few levels if the σ
(�)
TG are

small. For instance, σ
(�)
TG ≤ 0.1 yields σ

(�)
MG ≤ 0.41 for � = 5, which is not that bad.
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The most interesting application is γ = 2 (the W-cycle). No additional assump-

tion on λmax(B
(�)
TG

−1
A) is needed (γ is even), and one may check that if

σ
(�)
TG ≤ σ

and

σ
(�−1)
MG ≤ σ

1 − σ

hold for some σ < 1/2, then

σ
(�)
MG ≤ σ

1 − σ
.

This proves the following theorem.
Theorem 3.1. Consider a multigrid method recursively defined by the iteration

matrix (3.1) with γ = 2 for � = 1, 2, . . . and T
(0)
MG = 0 (exact inversion on the coarsest

level). Assume that A�, � = 0, 1, . . ., is SPD and that R�, � = 1, 2, . . ., is such that
ρ(I − R� A�) < 1. If the spectral radius of the two-grid iteration matrix (1.2) with
A = A�, R = R�, ν = ν�, p = p�, and AC = A�−l is bounded by some σ < 1/2
independently of �, then the spectral radius of the multigrid iteration matrix (3.1) is
bounded by σ/(1 − σ), independently of �.

Comparison with the standard algebraic analysis. This analysis, see, e.g.,
[11, 19], is based on matrix norms, instead of spectral radii, and applies to the
nonsymmetric case as well. In the framework considered here, this analysis proves
that if

‖T (�)
TG‖ ≤ σ∗

and ∥∥∥(I −RT
� A�

)ν�
p�

∥∥∥ ·
∥∥A−1

�−1 p
T
� A� (I −R� A�)

ν�
∥∥ ≤ C

hold for some σ∗, C such that

(3.3) 4C σ∗ ≤ 1,

then the iteration matrix for the W-cycle (γ = 2) satisfies

(3.4) ‖T (�)
TG‖ ≤ 1 −

√
1 − 4C σ∗

2C
≤ 2σ∗.

Note that this result holds for any matrix norm ‖ · ‖.
To comment on it, first observe that∥∥∥(I −RT

� A�

)ν�
p�

∥∥∥ ·
∥∥A−1

�−1 p
T
� A� (I −R� A�)

ν�
∥∥

≥
∥∥∥(I −RT

� A�

)ν�
p� A

−1
�−1 p

T
� A� (I −R� A�)

ν�

∥∥∥(3.5)

=
∥∥∥(I −RT

� A�

)ν�
(I −R� A�)

ν� − T
(�)
TG

∥∥∥
≥

∥∥∥(I −RT
� A�

)ν�
(I −R� A�)

ν�

∥∥∥−
∥∥∥T (�)

TG

∥∥∥
≥ (ρ (I −R� A�))

2 ν� − σ∗.(3.6)
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In practical situations, ρ (I −R� A�) ≈ 1 (otherwise, the coarse grid correction would
be unnecessary for fast convergence). Hence, C � 1−σ∗. Moreover, if A�−1 = pT� A� p�
(i.e., with a Galerkin coarse grid matrix), the middle term in the right-hand side of
(3.5) is a projector that leaves the vectors in the range of p� unchanged, leading to
expect C � 1 in such cases. Since σ∗ ≥ σ (the spectral radius is a lower bound on
the matrix norm for any norm), the condition (3.3) is thus generally more restrictive
than our condition σ < 1/2, even if one uses the energy norm for which σ∗ = σ. For
instance, C � 1 then means that (3.3) requires σ ≤ σ∗ � 1/4.

When both bounds apply, if, in addition,

C ≥ 1 − σ∗

(as one expects according to (3.6) and the discussion above), then our bound σ/(1−σ)
is always better than the bound (3.4). Indeed, taking σ∗ = σ (which is the most
favorable for (3.4)), one has (since σ(1 + 2C) = σ + 1

24C σ < 1)

σ

1 − σ
≤ 1 −

√
1 − 4C σ

2C
⇐⇒

√
1 − 4C σ∗ ≤ 1 − σ(1 + 2C)

1 − σ

⇐⇒ (1 − σ)2(1 − 4C σ) − (1 − σ(1 + 2C))2 ≤ 0

⇐⇒ −4C σ3 + (4C − 4C2)σ2 ≤ 0

⇐⇒ −σ + 1 − C ≤ 0.

By way of illustration, consider the case σ = σ∗ = 1/4 and C = 1. Then our bound
for the W-cycle is 1/3, whereas (3.4) gives 1/2. Note, however, that, for σ going to 0,
both bounds converge to σ.

Comparison with Braess’s analysis. Braess’s analysis [6, pp. 226–228] as-
sumes Galerkin coarse grid matrices and is based on two-grid and multigrid schemes
without postsmoothing. To make things clear, let

T̃
(�)
TG =

(
I − p� A

−1
�−1 p

T
� A�

)
(I −R� A�)

ν� ,

T̃
(�)
MG =

(
I − p�

(
I −

(
T̃

(�−1)
MG

)γ)
A−1

�−1 p
T
� A�

)
(I −R� A�)

ν�

be the corresponding iteration matrices, and denote by ρ̃
(�)
TG, ρ̃

(�)
MG their energy norm:

ρ̃
(�)
TG = ‖T̃ (�)

TG‖A�
, ρ̃

(�)
MG = ‖T̃ (�)

MG‖A�
.

The main convergence result for multigrid cycles in [6] is inequality (3.9) from Chap-
ter V. With the above notation, this inequality amounts to

(3.7) ρ̃
(�)
MG

2
≤ 1 −

(
1 −

(
ρ̃
(�)
TG

)2
)(

1 −
(
ρ̃
(�−1)
MG

)2γ
)
.

Comparing with (3.2), the requirement on ρ̃
(�)
TG to have an optimal method is less

restrictive than the requirement we have on σ
(�)
TG. However, as seen in [15, eq. (41)],

when A�−1 = pT� A� p� (as needed to prove (3.7)), there holds

A� T
(�)
TG =

(
T̃

(�)
TG

)T

A� T̃
(�)
TG
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entailing

(3.8) σ
(�)
TG =

(
ρ̃
(�)
TG

)2

.

That is, if one uses the same smoother and prolongation, the two-grid method with
symmetrized pre- and postsmoothing converges twice as fast as the method without
postsmoothing.

Acknowledging this fact, one sees that (3.7) defines recursively a bound on ρ̃
(�)
MG

which is equal to the square root of the bound on σ
(�)
MG obtained from our result (3.2).

This suggests that, as shown by (3.8) in the two-grid case, the W-cycle multigrid with
symmetrized smoothing can converge twice as fast as the corresponding algorithm
without postsmoothing.

Sometimes the bound for the scheme without postsmoothing is used as worst
case estimate for the general case. From that point of view, our analysis gives sharper
bounds. For instance, Theorem 3.4 in [6, Chapter V] states that the convergence

factor for the W-cycle is not larger that 3/5 when ρ̃
(�)
TG ≤ 1/2 for all �, whereas, with

σ
(�)
TG ≤ 1/4, our theorem, Theorem 3.1, then proves that the convergence factor for

the W-cycle does not exceed 1/3.

Acknowledgments. I thank M. Hochstenbach for a careful reading of the manu-
script. An anonymous referee suggested numerous improvements which are deeply
appreciated. Another referee drew our attention to [6].
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Abstract. The front-tracking method of Glimm et al. is designed for physical applications
which are governed by a hyperbolic system of equations in which codimension one (cd-1) jump
discontinuities in the solution are important. The core of this method is the curve propagation
algorithm. A theoretical analysis is presented here to show that this curve propagation algorithm
is stable. Chang and Lindquist developed a new curve propagation algorithm which conserves mass
for any grid of finite spacing. We also present a proof to show the new curve propagation algorithm
is stable under some conditions.

Key words. front tracking, discontinuity propagation, two phase flow
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DOI. 10.1137/040616693

1. Introduction. In 1981, Glimm et al. presented a computational method
called front tracking [5], [8], [9], which is designed for physical applications which
are governed by a hyperbolic system of equations in which codimension one (cd-1)
jump discontinuities in the solution are important. The front-tracking scheme has
been developed into a computational code, FronTier, for dealing with two or three
spatial dimensional problems [4], [11] and has been used in various applications [3],
[6], [7], [12].

In this computational method, two important problems are of concern; one is
if the mass balance is conserved when it is applied in practice; the other is if this
numerical method is stable.

For the first problem, Glimm, Lindquist, and Zhang address five algorithmic
areas that need to be corrected for maintaining mass conservation when applying this
method to two phase flow in porous media [7]. In the same paper, Glimm et al. present
algorithms to resolve four of them. The fifth algorithmic area of problem is the explicit
movement of the fluid discontinuity curves (the curve propagation algorithm). Errors
produced by the curve propagation algorithm for a nonlinear case can be absorbed
by the numerical approximations. For the linear case, errors are not dissipated and
increase with time. Chang and Lindquist analyzed the mass balance error produced
by the curve propagation algorithm for miscible flow case (linear case) and showed
that up to a finite time T , the mass balance error vanishes as the length of the line
segments of the continuous piecewise linear discontinuity curve goes to zero when
the numerical velocity field is piecewise constant or the numerical velocity field is
Lipschitz continuous [1], [2]. Meanwhile, Chang and Lindquist developed a new curve
propagation algorithm which is assured to conserve mass for any grid of finite spacing
[1].

In this paper, we study the other problem: the stability property of the front-
tracking scheme applied to miscible two phase incompressible flow in porous media.
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†Department of Applied Mathematics, National Pingtung University of Education, Pingtung
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Our analysis focuses on the stability of the curve propagation (both original and new)
algorithms, which are the core of the front-tracking scheme.

The behavior of two phase incompressible flow in porous media is governed by a
specific system of equations,

φ(X)
∂s

∂t
+ ∇ · −→v (X)f(s) = 0,(1)

∇ · −→v (X) = 0,(2)
−→v (X) = −λ(s)κ(X) � P (X),(3)

where (1) is a hyperbolic subsystem, and (2) and (3) are elliptic subsystems. In this
system of equations, X is the space variable in R2, and φ is the medium porosity
(volume fraction of pore space); s and 1 − s are the respective saturations (fractions
of available pore volume) of the two flowing fluid phases; −→v is the total fluid velocity;
f−→v and (1−f)−→v are the respective fractions of the total fluid velocity carried by each
phase; P is the pressure field in the medium; κ is the medium permeability; and λ is the
saturation-dependent total relative transmissibility. We shall also refer to the mobility
ratio, M ≡ λ(1)/λ(0), which governs the linearized analysis for fingering instability in
two phase flows; M ≤ 1 corresponds to stable flows and M > 1 to unstable flows. We
specify our problem on miscible two phase flow for more fundamental reasons, and
(1) becomes

(1′) φ(X)
∂s

∂t
+ −→v (X) · ∇s = 0.

We outline the rest of this paper as follows: section 2 will describe the front-
tracking method, curve propagation algorithms, and some relative assumptions and
definitions. Section 3 contains our proof of the stability of the original curve propaga-
tion algorithm. Section 4 shows the stability of the mass conserved curve propagation
algorithm.

2. The front-tracking method. The front-tracking method approach to solv-
ing (1)–(3) utilizes an implicit pressure explicit saturation scheme of sequential solu-
tion of the coupled hyperbolic-elliptic system (1)–(3). The elliptic subsystem is solved
by mixed finite elements yielding simultaneous solutions of P and −→v . Because our
analysis focuses on the stability of the front tracking for solving the hyperbolic subsys-
tem, we do not discuss this mixed finite element algorithm further. Besides, without
loss of generality, we may assume that the velocity field is Lipschitz continuous.

The hyperbolic subsystem is solved by the front-tracking algorithms which em-
ploy a fixed, volume filling grid to resolve the smooth part of the solution and moving
cd-1 grids to resolve jump discontinuities and their motion. The fixed grid is regular
rectangular and of discretization spacing Δx and Δy; we shall refer to it as the hyper-
bolic grid. The moving cd-1 discontinuity grids in two dimensional space are unions
of curves. For our specific miscible flow problem, the curves separate the domain geo-
metrically to several disconnected subdomains. Each curve has an orientation and is
replaced by its continuous piecewise linear approximant. We denote a linear segment
from this approximant by ab, where a is the start point and b is the end point of this
segment. The start and end points of all segments in the piecewise linear approximant
are called points of the curve or simply interior points or points. The first point on
the piecewise linear approximant is called the start node, and the last is the end node.
The points on a curve carry physical data in the left and right sides of the curve,
which are the saturations in our case. For details, we refer the reader to [10].
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The algorithmic procedure for updating the numerical solution to subsystem (1)
consists of two major tasks: (I) achieve curve propagation, which generates the dis-
continuity curves, transmits waves across the front, and updates flow tangentially to
the front; (II) update the solution on the fixed grid. We describe them as follows:

(I) Basically, curve propagation is achieved by changing the coordinates locally
at each curve point in normal and tangential directions to the discontinuity curve.
Therefore (1) becomes

(4) φ(X)st + (n̂ · ∇)−→v f(s) + (t̂ · ∇)−→v f(s) = 0

at each point p, n̂ is the normal vector to the discontinuity curve, and t̂ is the tangent
vector. The algorithm for solving (4) can be described in terms of series of splittings
of hyperbolic operators:

(a) Solve the local Riemann problem at curve point p for equation

(5) φ(X)st + (n̂ · ∇)−→v f(s) = 0,

with state values

s(p + n̂) ≡ sleft, s(p− n̂) ≡ sright,

to find propagation speed. This solution provides a new propagated position p′ for the
point. In the miscible case (i.e., the linear case), the propagation speed is −→v (x) · n̂|p.

(b) At each point on the propagated discontinuity grid, solve equation

(6) φ(X)st + (t̂ · ∇)−→v f(s) = 0

by using a one dimensional finite difference scheme to update the state value on both
sides of the discontinuity curve. For the miscible flow case, the state value on each
side should be constant.

(c) It may happen that an unphysical crossing of the discontinuity curve occurred
during movement. We need to untangle this unphysical crossing to ensure physical
correctness of the discontinuity grids. This untangling step is required between steps
(a) and (b).

(d) Points on the discontinuity curve may become too far apart or too close
together, and so a redistribution step is necessary to redistribute points on the prop-
agated grids for ensuring adequate sampling of the discontinuity grid along its arc
length. For more detail on these actions, we refer the reader to [1] and [13].

(II) Updating the solution on the fixed grid is done by solving an initial-boundary
value problem on both sides of the front (discontinuity curve). We treat the front as a
moving boundary and never use states (phase saturations s here) on the opposite side
of the front. This can be done by using any stable, two spatial dimensional, numerical
algorithm. For the miscible flow case studied here, the phase saturations remain
piecewise constant in space, and implementation of (II) is trivial and stable. Therefore
we concentrate on the curve propagation algorithms. We recall some fundamental
definitions, underlying algorithmic procedures, and theorems in [1] and [2].

Definition NBC. The normal direction to the linear segment p1p2 is the direc-
tion perpendicular to p1p2, oriented from the right side to the left side.

Definition NC. Let p1p2 and p2p3 be two consecutive segments from the piece-
wise linear approximant. Then the normal to the curve at p2 is the direction per-
pendicular to the segment p1p3, oriented from the right side to the left side of the
curve.
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Fig. 2.1. (a) q′1 (area aa′b′b) and q2 (area bb′′c′c) are the conserved mass changes by the

movement of linear segments ab and bc. (b) N̂b is the curve normal at point b. Along N̂b, find a
position p such that the mass change in the area aa′pc′cb is equal to q′1 + q2.

Algorithm BP. Given p of p1p (or pp1), then its propagated image, p′, is ob-
tained by solving a one dimensional Riemann problem along the normal to the linear
segment p1p (pp1).

Algorithm PC. Given p2 of p1p2 and p2p3, then its propagated image, p′′2 , is
obtained by the solution of a one dimensional Riemann problem along the normal to
the curve at p2.

Algorithm CP. The movement of a tracked curve is achieved by propagating
each interior point by Algorithm PC over a time step Δt.

Theorem 2.1. Let E(T,Δt) be the total mass error at time T produced by moving
the interior of discontinuity curve under Algorithm PC. Assume the curvature of the
curve is bounded by K(T ) < ∞. Then E(T,Δt) = O(Δt) as Δt → 0.

Algorithm NPC. Consider the propagation of point b, where ab and bc are two
consecutive segments from the piecewise linear approximant to the discontinuity curve.
Assume point “a” has been previously propagated to a′ in a mass conserving manner.
With reference to Figure 2.1(a), propagate b to b′ by Algorithm BP (b is considered
as a point from ab); propagate b and c, respectively, to b′′ and c′ by Algorithm BP (b
and c are considered as points from bc). Consider the respective conservative mass
changes q′1 and q2 produced by the movements ab−→a′b′ and bc−→b′′c′. Find a point p
(illustrated in Figure 2.1(b)) lying along the curve normal direction at b such that the
mass change in the area abpa′ + bcc′p is equal to q′1 + q2.

Remark 1. For the miscible flow case, the phase saturations are piecewise constant
in space (we assume the saturations are 0 and 1 here). Therefore the mass change q′1
in the quadrilateral abb′a′ is equal to the area of abb′a′, i.e., q′1 = 1

2 [
−→
ab× (

−→
aa′ +

−→
bb′) +

−→
bb′ ×

−→
aa′]. Similarly, q2 = 1

2 [
−→
bc × (

−→
bb′′ +

−→
cc′) +

−→
bb′′ ×

−→
cc′]. Since

−→
bb′′ is parallel to

−→
cc′,

q2 becomes 1
2

−→
bc × (

−→
bb′′ +

−→
cc′).

Theorem 2.2. In Algorithm NPC, there exists a unique point p lying along the
curve normal direction at b such that the mass change in the area abpa′ + bcc′p is

equal to q′1 + q2 iff N̂b ×
−→
c′a′ �= 0, where N̂b is the unit curve normal vector at b.

Proof. In order to find a unique point p lying along the curve normal direction at
b such that the mass change in the area abpa′ + bcc′p is equal to q′1 + q2, we need to
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Fig. 2.2. (a) Propagation of a point adjacent to a start node. (b) Propagation of a point
adjacent to a start node with the first linear segment perpendicular to the boundary.

find a scalar λ such that

(7) [λN̂b ×
−→
aa′ +

−→
ab × (λN̂b +

−→
aa′)] + [

−→
cc′ × λN̂b +

−→
bc × (

−→
cc′ + λN̂b)] = 2(q′1 + q2).

After an easy calculation, we have

(8) λ[N̂b ×
−→
c′a′] = 2(q′1 + q2) +

−→
aa′ ×−→

ab +
−→
cc′ ×−→

bc.

This equation has a unique solution λ iff N̂b ×
−→
c′a′ �= 0.

Remark 2. Equation (8) has no solution for λ when N̂b ×
−→
c′a′ = 0. For resolving

this problem, we reduce the time step size to produce new propagated positions c′ and

a′ for c and a. After reducing the time step, N̂b×
−→
c′a′ will still vanish only if the linear

segments ab and bc are colinear. In this case, we propagate point b by Algorithm PC,
which will be mass conserving.

Remark 3. In general, Algorithm NPC requires a minor modification when applied
to the first interior point of a curve. Assume point a of Figure 2.2(a) is the start node
of a curve and is propagated to point a′ by an appropriate node propagation algorithm.
Consider the point a′′ obtained by propagating a by Algorithm BP. In propagating the
first interior point, b, the mass change q1 in the area abb′a′′ (rather than q1

′ of abb′a′)
should be used in applying Algorithm NPC. Analogous modification is required when
NPC is applied to the last interior point of a curve.

Remark 4. In practice, for many fluid calculation cases, the contact discontinuity
curve should be perpendicular to the boundary. Algorithm NPC propagates the first
interior point of a curve in the following way: After every point of a curve has been
propagated by Algorithm NPC (general case), adjust point a′′ to a′ as well as p′ to
p such that the mass change of the area abcc′pa′ equals that of the area abcc′p′a′′

(see Figure 2.2(b)), and the linear approximation ap must be perpendicular to the
boundary. Similar modification is required when NPC is applied to the last interior
point of a curve.

3. Stability of front tracking. In this section, we will discuss the stability of
the original curve propagation algorithm. Before continuing our discussion, we will
present the definition of stability and some assumptions.

Definition 3.1. Let U be a numerical method and UΔt be the numerical solution
with the length of time step Δt. Then U is stable if there are R, M, and N depending
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on the initial U0 and the velocity field −→v (x, y) such that all approximations UΔt satisfy
the following conditions:

(a) Supp(UΔt(·, nΔt)) ⊂ [−M,M ] × [−N,N ], where nΔt ∈ [0, T ].

(b)
∑T/Δt

n=0

∑∞
i=−∞

∑∞
j=−∞(ΔtΔx|Un

i,j+1−Un
i,j |+ΔtΔy|Un

i+1,j−Un
i,j |+ΔxΔy|Un+1

i,j

−Un
i,j |) ≤ R for all Δt < Δt0 for some Δt0. Here Δx, Δy are the block lengths in the

direction of x and y, and Un
i,j is the value of UΔt at t = nΔt, x = iΔx, and y = jΔy.

Our discussions require two assumptions: one is that the velocity field −→v (x)
satisfies the Lipschitz condition; the other is the discontinuity curves at all time steps
are C2 curves, and the curvature on every point of the curve is bounded by κ. These
two assumptions are explained as follows.

Assumption L1. Let {Δi} denote the set of the mesh elements of the velocity
field. We assume the velocity −→vi in a mesh element Δi is assigned by −→v (X) for some
X ∈ Δi. Furthermore, we assume the velocity field −→v (X) is Lipschitz continuous;
i.e., |−→v (X)−−→v (Y )| ≤ K||X−Y || for some constant K, where || · || is the space norm
and X and Y are two dimensional space variables.

Assumption C1. Let σn be the discontinuity curve at time step n; we assume σn

is a C2 curve for all n, and the curvature |κ(p)| ≤ κ < ∞ for all points p of σn.
A curve is represented by its continuous piecewise linear approximant. If the

length of any of the segments from this approximant is too big, then this is a poor
approximation to the curve. If it is too small, it leads to numerical induced tangling
during propagation. Therefore we need an assumption (Assumption R1) that restricts
a piecewise linear approximation. In practice, The FronTier package uses algorithms
described in section 2 to achieve this restriction.

Assumption R1. Let σn be the discontinuity curve at time step n and h be the
hyperbolic grid size. We restrict the length bni of a linear segment from the piecewise
linear approximant to c1h < |bni | < c2h for all i, n, where c1 and c2 are constants.

Assumption R2. We assume the algorithm satisfies the CFL condition Δt ≤
αc1h/V , where α is some constant α < 1, c1 is the same as in Assumption R1, and V
is the largest magnitude velocity of discontinuity motion in the computational region
during the entire flow process. Furthermore, we assume there is a positive integer N
such that T = ΔtN .

Lemma 3.2. Let bni be a linear segment from the continuous piecewise lin-
ear approximation to the discontinuity curve σn at time step n and bn+1

i be the
line segment propagated from bni . Then under Assumptions L1 and C1, the length
|bn+1

i | ≤ |bni |(1 + Δt(2V κ + K)).
Proof. Let −→pq = bni , n̂1 be the normal to the curve at q and n̂2 be the normal to

the curve at p (see Figure 3.1). Then

(9) bn+1
i =

−→
p′q′ = (Δt−→v 1 · n̂1)n̂1 + bni − (Δt−→v 2 · n̂2)n̂2.

By triangle inequality,

(10) |bn+1
i | ≤ |bni | + |(Δt−→v1 · n̂1) · n̂1 − (Δt−→v2 · n̂2) · n̂2|,

and by an intermediate calculation, we have

|bn+1
i | ≤ |bni |+Δt|(−→v1 · (n̂1 − n̂2))n̂1| + Δt|(−→v1 · n̂2)(n̂1 − n̂2)|(11)

+Δt|((−→v1 −−→v2) · n̂2)n̂2|.

Since −→v (X) is continuous on a closed and bounded region, [−M,M ]× [−N,N ], there
is a maximum velocity, V , such that |−→v (X)| ≤ V for all X ∈ [−M,M ] × [−N,N ].



THE STABILITY OF FRONT-TRACKING SCHEME 1051

qp

v
v

p q

n n̂^

1

1

2

2

b
n+1
i

b i
n

Fig. 3.1. Piecewise linear approximation pq of discontinuity curve σn.

And, because σn is a C2 curve, if |bni | is small enough, then

(12) |n̂1 − n̂2| ≈ |κ(p)||bni | ≤ κ|bni |,

where κ(p) is the curvature at p on σn. By Assumption L1, −→v (X) is Lipschitz
continuous; then

(13) |(−→v1 −−→v2)| ≤ K|bni |.

Hence, from (11), we have

|bn+1
i | ≤ |bni | + ΔtV κ|bni | + ΔtV κ|bni | + ΔtK|bni |

≤ |bni |(1 + Δt(2V κ + K)).(14)

This completes our proof.
Lemma 3.3. Let σn be the discontinuity curve at the nth time step. Then under

Assumptions L1 and C1, |σn| ≤ |σ0|(1 + Δt(2V κ + K))n.
Proof. Assume σn consists of m linear pieces bni , i = 1, 2, ·,m. From Lemma 3.2,

(15) |σn+1| =

m∑
i=1

|bn+1
i | ≤

m∑
i=1

|bni |(1 + Δt(2V κ + K)) ≤ |σn|(1 + Δt(2V κ + K)).

By induction, we have

(16) |σn| ≤ |σ0|(1 + Δt(2V κ + K))n.

Lemma 3.4. Let Un
i,j be the numerical approximation solution of s(x, y; t) of (1),

(2), and (3) at t = nΔt, x = iΔx, and y = jΔy. Without loss of generality, we
assume Δx = Δy = h; then under Assumptions L1, C1, R1, and R2,

(17)

T/Δt∑
n=0

∞∑
i=−∞

∞∑
j=−∞

Δth|Un
i,j+1 − Un

i,j | ≤ R1

and

(18)

T/Δt∑
n=0

∞∑
i=−∞

∞∑
j=−∞

Δth|Un
i+1,j − Un

i,j | ≤ R2
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σ

Ui,j+1

U

Ui,j

i+1,j
n

Fig. 3.2. The discontinuity curve σn crosses the grid line between (i, j + 1) and (i, j).

for some constants R1 and R2 and for all Δt < Δt0.

Proof. We want to prove

T/Δt∑
n=0

∞∑
i=−∞

∞∑
j=−∞

Δth|Un
i,j+1 − Un

i,j | ≤ R1

for some constant R1. First, we see

(19)

T/Δt∑
n=0

∞∑
i=−∞

∞∑
j=−∞

Δth|Un
i,j+1 − Un

i,j | =

T/Δt∑
n=0

Δt

⎛⎝ ∞∑
i=−∞

∞∑
j=−∞

h|Un
i,j+1 − Un

i,j |

⎞⎠ .

Since Un
i,j only has two values, say 1 or 0, then

(20) |Un
i,j+1 − Un

i,j | =

{
1 if σn crosses the grid line between (i, j + 1) and (i, j),

0 otherwise,

where σn is the discontinuity curve at time step nΔt (see Figure 3.2). Then the
computation of

∞∑
i=−∞

∞∑
j=−∞

h|Un
i,j+1 − Un

i,j |

is equivalent to counting how many vertical grid lines σn intersects. Note that we re-
stricted that the length of each piece of the piecewise linear approximant is bounded
by c1h ≤ |bni | ≤ c2h. Then each piece may cross r = [c2h/h] + 1 = [c2] + 1 ver-
tical grid lines, where [c2] means the largest integer that is no greater than c2.
A discontinuity curve σn may have at most |σn|/(c1h) linear pieces. Therefore∑∞

i=−∞
∑∞

j=−∞ h|Un
i,j+1 − Un

i,j | ≤ hr|σn|/(c1h). Hence

(21)

T/Δt∑
n=0

∞∑
i=−∞

∞∑
j=−∞

Δth|Un
i,j+1 − Un

i,j | ≤
T/Δt∑
n=0

Δthr
|σn|
c1h

=
r

c1

T/Δt∑
n=0

Δt|σn|.
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By Lemma 3.3, |σn| ≤ |σ0|(1 + Δt(2V κ + K))n; then

r

c1

T/Δt∑
n=0

Δt|σn| ≤ r

c1

T/Δt∑
n=0

Δt|σ0|(1 + Δt(2V κ + K))
n

≤ r|σ0|
c1

T/Δt∑
n=0

Δt(1 + Δt(2V κ + K))
n
.(22)

From our assumption, T = ΔtN implies Δt = T
N . Therefore

r|σ0|
c1

T/Δt∑
n=0

Δt(1 + Δt(2V κ + K))
n

= Δt
r|σ0|
c1

+
r|σ0|
c1

T/Δt∑
n=1

Δt

(
1 +

T (2V κ + K)

N

)n

.(23)

Since 1 ≤ n ≤ N ,

(24) 1 +
T (2V κ + K)

N
≤ 1 +

T (2V κ + K)

n
.

Furthermore, (1 + T (2V κ + K)/n)
n

is increasing to eT (2V κ+K) as n goes to ∞; then

(25)

(
1 +

T (2V κ + K)

n

)n

≤ eT (2V κ+K)

for all n. Then

Δt
r|σ0|
c1

+
r|σ0|
c1

T/Δt∑
n=1

Δt

(
1 +

T (2V κ + K)

N

)n

≤ Δt
r|σ0|
c1

+
r|σ0|
c1

T/Δt∑
n=1

Δt

(
1 +

T (2V κ + K)

n

)n

≤ Δt
r|σ0|
c1

+
r|σ0|
c1

T/Δt∑
n=1

ΔteT (2V κ+K) =
r|σ0|
c1

TeT (2V κ+K).(26)

Define R1 = (r|σ0|/c1)TeT (2V κ+K); then we have

(27)

T/Δt∑
n=0

∞∑
i=−∞

∞∑
j=−∞

Δth|Un
i,j+1 − Un

i,j | ≤ R1.

Similarly, we may have

(28)

T/Δt∑
n=0

∞∑
i=−∞

∞∑
j=−∞

Δth|Un
i+1,j − Un

i,j | ≤ R2

for all Δt < Δt0.
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σn

n+1σ

Ui,j

Fig. 3.3. |Un+1
i,j − Un

i,j | �= 0 only when (i, j) is in the region of σ swept from time step nΔt to

time step (n + 1)Δt.

Lemma 3.5. Let Un
i,j be the numerical approximation solution of s(x, y; t) of (1),

(2), and (3) at t = nΔt, x = iΔx, and y = jΔy. Then under Assumptions L1, C1,
R1, and R2,

(29)

T/Δt∑
n=0

∞∑
i=−∞

∞∑
j=−∞

ΔxΔy|Un+1
i,j − Un

i,j | ≤ R3

for some constant R3 and for all Δt < Δt0.
Proof. Without loss of generality, one may assume Δx = Δy = h. Because we

are considering miscible two phase flow, calculating

∞∑
i=−∞

∞∑
j=−∞

h2|Un+1
i,j − Un

i,j |

is equivalent to calculating the area that the discontinuity curve sweeps from time
step nΔt to time step (n + 1)Δt (see Figure 3.3). Therefore evaluating

T/Δt∑
n=0

∞∑
i=−∞

∞∑
j=−∞

h2|Un+1
i,j − Un

i,j |

is equivalent to evaluating

T/Δt∑
n=0

A(σn),

where A(σn) is the area that the discontinuity curve σn sweeps from time nΔt to
time (n + 1)Δt. Since a discontinuity curve consists of linear pieces, we first need to
compute the area swept by a linear piece ab from time nΔt to time (n+ 1)Δt. Let us
denote by cd the image of ab at time (n + 1)Δt. Then the swept area is the area of
the quadrilateral abcd, denoted by A(abcd). Let qab be the conserved mass movement
across the linear piece ab from time nΔt to time (n + 1)Δt. Then

(30) qab = Δt

∣∣∣∣∣
∫ lab

0

−→v⊥(x, y)dσ

∣∣∣∣∣ ,
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where −→v⊥ is the normal component of the velocity field at the linear piece ab with
length lab, and σ is the arc length along ab. Because we are considering miscible flow,
−→v⊥ becomes −→v (x, y) · n̂, where −→v (x, y) is the velocity of the linear piece ab and n̂ is
its normal. If the numerical velocity field −→v (x, y) is bounded by a velocity V , i.e.,
|−→v (x, y)| ≤ V for all x and y, then

(31) qab =

∫ lab

0

Δt(−→v · n̂)dσ ≤ ΔtV lab.

If we define err(ab) to be |A(abdc) − qab|, then

|A(abdc)| = |A(abdc) − qab + qab| ≤ ΔtV |ab| + err(ab).(32)

Now assume σn has m pieces bni , i = 1, . . . ,m, at time t = nΔt. The area swept
by σn from time nΔt to (n + 1)Δt is

(33) |A(σn)| ≤
m∑
i=1

|A(bni )| ≤
m∑
i=1

(ΔtV |bni | + err(bni )) ≤ ΔtV |σn| + E(σn),

where E(σn) =
∑m

i=1 err(b
n
i ). Similarly to the proof of Lemma 3.4,

(34)

T/Δt∑
n=0

ΔtV |σn| ≤ V |σ0|TeT (2V κ+K).

By Theorem 2.1,

T/Δt∑
n=0

E(σn) → 0

as Δt → 0. Therefore, given any constant, say 1, there is Δt0 such that
∑T/Δt

n=0 E(σn) <
1 whenever Δt ≤ Δt0. Let R3 = TV |σ0| exp(T (2V κ + K)) + 1. Then
(35)

T/Δt∑
n=0

|A(σn)| ≤
T/Δt∑
n=0

(ΔtV |σn| + E(σn)) =

T/Δt∑
n=0

ΔtV |σn| +
T/Δt∑
n=0

E(σn) ≤ R3.

Now we have the following theorem.
Theorem 3.6. Under Assumptions L1, R1, R2, and C1, the curve propagation

algorithm, Algorithm PC, of the front-tracking scheme for incompressible miscible two
phase flow on porous media is stable.

Proof. By Lemmas 3.4 and 3.5, the result holds.

4. Stability of mass conserved curve propagation algorithm. By Theo-
rem 2.2, the new point propagation algorithm, Algorithm NPC, determines unique

point p′ iff N̂b ×
−→
c′a′ �= 0. The only problem is that if N̂b ×

−→
c′a′ = ε �= 0 is very small,

the new point p′ will be far away from the old point p. This will change the shape
of the discontinuity curve and make this algorithm unstable. Therefore we need to
analyze in which condition this algorithm will be stable.

In Assumption C1, we assume that the curvature of the discontinuity curve is
bounded by a constant κ. A natural consequential assumption is as follows.
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Fig. 4.1. (a) and (b) the angle θ between
−→
ab and

−→
bc is bounded by −π + θmin ≤ θ ≤ π − θmin.

(c)
−−→
c′a′ is almost parallel to N̂b.

Assumption C2. Let ab and bc be two adjoint linear segments. We assume there is

a θmin such that the angle θ between
−→
ab and

−→
bc is bounded by −π+θmin ≤ θ ≤ π−θmin

(see Figure 4.1(a)–(b)).
Remark 5. After several propagation time steps, Assumptions R1, C1, or C2 may

be violated; i.e., a linear segment may become excessively lengthened or shortened, or
the angle between two adjacent linear segments may become smaller than θmin. These
problems can be resolved by redistributing points on the propagated grids for ensuring
adequate sampling of the discontinuity grid along its arc length and eliminating any
small angle. In practice, a redistribution routine [1], [13] is used to maintain these
restrictions.

We want to investigate when N̂b×
−→
c′a′ = ε small will happen. The case happened

when the propagation time step Δt is large enough so that
−→
c′a′ is almost parallel to

the normal vector N̂b (see Figure 4.1(c)). Therefore we need to give a restriction for

Δt such that N̂b ×
−→
c′a′ is larger than some constant. Lemmas 4.1 and 4.2 give the

condition

(36) ΔtV

(
1

2
+

4c2
c1θmin

)
≤ 1

4
c1hθmin,

where c1 and c2 are the same as those in Assumption R1, so that the length between
point b and propagation image p is less than |−→ac|/4.

Lemma 4.1. Let ab and bc be two adjoint linear segments. Let a′ be the point
propagated from a by algorithm NPC and c′ be the point propagated from c along
normal to the linear segment bc by algorithm PB. If |aa′| ≤ |ac|/4 and |cc′| ≤ |ac|/4,
then |N̂b ×

−→
a′c′| ≥ |ac|/2.

Proof. Let s1 be the length of |aa′|, s2 the length of |cc′|, θ1 the angle between
−→ac and

−→
aa′, and θ2 the angle between −→ac and

−→
cc′. Since s1, s2 are less than or equal

to |ac|/4 and θ1, θ2 are arbitrary, this problem is equivalent to calculating that the

minimum of |N̂b ×
−→
a′c′| restricted by a′ is in the disk with center a and radius |ac|/4

and c′ is in the disk with center c and radius |ac|/4.
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Without loss of generality, we may assume that a = (0, 0), c = (�, 0), N̂b = (0, 1),
−→
aa′ = (s1 cos θ1, s1 sin θ1), and

−→
cc′ = (s2 cos θ2 + �, s2 sin θ2). Then

(37) |N̂b ×
−→
a′c′| = |(s2 cos θ2 − s1 cos θ1 + �)|.

By the method of Lagrange multiplier, it is easy to find the minimum of |N̂b ×
−→
a′c′| is

�/2 = |−→ac|/2 when θ2 = π, θ1 = 0, and s1 and s2 are |ac|/4.
Lemma 4.2. Let ab and bc be two adjoint linear segments and p be the image of

b by Algorithm NPC. If we choose Δt such that

(38) ΔtV

(
1

2
+

4c2
c1θmin

)
≤ 1

4
c1hθmin,

then under Assumptions L1, R1, R2, C1, and C2, |bp| ≤ |ac|/4, where V is the
maximum of the velocity field and c1, c2 are the same as those in Assumption R1.

Proof. Let a′ be the previously propagated image of a by algorithm NPC and c′

be the image of c (if c is considered as point from bc; see Figure 2.1) by Algorithm BP.
Let q′1 and q2 be the mass changes produced by the movements ab−→a′b′ and bc−→b′′c′.
Then, by Remark 1,

(39) q′1 =
1

2
[
−→
ab × (

−→
aa′ +

−→
bb′) +

−→
bb′ ×

−→
aa′], q2 =

1

2
[
−→
bc × (

−→
bb′′ +

−→
cc′)].

Similar to the proof of Theorem 2.2, λ is the unique scalar such that

(40) λ[N̂b ×
−→
c′a′] = 2(q′1 + q2) +

−→
aa′ ×−→

ab +
−→
cc′ ×−→

bc =
−→
ab×

−→
bb′ +

−→
bb′ ×

−→
aa′ +

−→
bc ×

−→
bb′′.

By Lemma 4.1, |N̂b ×
−→
c′a′| ≥ |−→ac|/2; then

(41) |λ| =
|−→ab ×

−→
bb′ +

−→
bb′ ×

−→
aa′ +

−→
bc ×

−→
bb′′|

|N̂b ×
−→
c′a′|

≤ 2

|−→ac| (|
−→
ab||

−→
bb′| + |

−→
bb′||

−→
aa′| + |−→bc||

−→
bb′′|).

Since |
−→
bb′| ≤ ΔtV , |

−→
bb′′| ≤ ΔtV , and by induction we may assume |

−→
aa′| ≤ |−→ac|/4, then

(42) |λ| ≤ 2

|−→ac|ΔtV (|−→ab| + |
−→
aa′| + |−→bc|) ≤ 1

2
ΔtV +

2

|−→ac|ΔtV (|−→ab| + |−→bc|).

Since by Assumption R1, both |−→ab| and |−→bc| are greater than or equal to c1h, and

by Assumption C2, the angle between
−→
ba and

−→
bc is greater than θmin (see Figure

4.1(a)–(b)), we have |−→ac| ≥ c1hθmin. By our assumptions, |−→ab| ≤ c2h, |−→bc| ≤ c2h, and

(43) |λ| ≤ ΔtV

(
1

2
+

4c2
c1θmin

)
.

If we choose Δt such that

(44) ΔtV

(
1

2
+

4c2
c1θmin

)
≤ 1

4
c1hθmin,

we have

(45) |−→bp| = |λN̂b| ≤ ΔtV

(
1

2
+

4c2
c1θmin

)
≤ 1

4
c1hθmin ≤ 1

4
|−→ac|.
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a b
c

d

pa

Fig. 4.2. The propagation of the first interior point of a curve.

Remark 6. In propagating the first interior point of a curve, we first propagate
start node a to a′ by a nonmass conserving propagating algorithm (see Figure 4.2).

Because |
−→
aa′| ≤ ΔtV and (1

2 + 4c2
c1θmin

) > 1, |
−→
aa′| ≤ ΔtV ( 1

2 + 4c2
c1θmin

) ≤ 1
4c1hθmin, and

this implies |−→bp| ≤ 1
4c1hθmin (the proof of Lemma 4.2). Next, in propagating point c,

we need |−→bp| ≤ 1
4 |
−→
bd|. But because |−→bp| ≤ 1

4c1hθmin and the angle between
−→
cb and

−→
cd

is greater than θmin as well as both |−→bc| and |−→cd| are greater than or equal to c1h, we

have |−→bp| ≤ 1
4 |
−→
bd|. Thus by induction it can be assumed |aa′| ≤ 1

4c1hθmin ≤ 1
4 |
−→ac| for

each interior point propagation.
Next, we want to use a method similar to that in section 3 to analyze the stability

of Algorithm NPC. Therefore we have to show that the length of the discontinuity

curve σn is bounded by |σ0|(1 + ΔtC̃)
n

for Δt small and some constant C̃ while using
Algorithm NPC. Before doing this, we need to show that the difference between two
propagation images by Algorithms PC and NPC is less than ΔthK for some constant
K. This is done by Lemma 4.3.

Lemma 4.3. Let ab and bc be two adjoint linear pieces, p′ be the image of b by
algorithm PC, and p be the image of b by Algorithm NPC. Then under assumptions
L1, R1, R2, C1, C2, and

(46) ΔtV

(
1

2
+

4c2
c1θmin

)
≤ 1

4
c1hθmin,

|bp− bp′| ≤ ΔthK for some constant K.
Proof. Because propagating point b by Algorithm NPC is related to previous

propagated point a′, two cases for a′ need to be considered. The first case is to
consider a as a start node; line segment ab is always perpendicular to the boundary

(see Figure 4.3(a)). This implies a can be propagated to a′ by Algorithm BP and
−→
aa′

is always perpendicular to ab. The second case considers a as an interior point. In

this case, a′ is the image of a by Algorithm NPC, and
−→
aa′ may not be perpendicular

to ab (see Figure 4.3(b)).
Let a′ be the previously propagated image of a by Algorithm NPC or Algorithm

BP, let c′ be the image of c by Algorithm BP, where c is considered as a point from
bc, and let b′ and b′′ be the images of b by Algorithm BP if b is considered as a point

from ab and bc, respectively. From (7), there exists a scalar λ such that
−→
bp = λN̂b
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bdry

(a)

a c

(b)

a

c

c c
a

b

b
ba b

b

p

p
p

p

b

Fig. 4.3. (a) a propagated to a′ by Algorithm PC. (b) a propagated to a′ by Algorithm NPC.

and

(47) λ[N̂b × (
−→
aa′ −−→

ab −
−→
cc′ −−→

bc)] = 2(q′1 + q2) +
−→
aa′ ×−→

ab +
−→
cc′ ×−→

bc,

where q′1 and q2 are as in Remark 1. Let γ = (Δt−→vb · N̂b) and
−→
p′p = βN̂b, where β is a

scalar. Since
−→
bp =

−→
bp′ +

−→
p′p as well as

−→
bp′ = γN̂b,

−→
bp = γN̂b +βN̂b = (γ +β)N̂b. Then

(47) implies

(48) (γ + β)[N̂b × (
−→
aa′ −−→

ab −
−→
cc′ −−→

bc)] = −
−→
bb′ ×−→

ab −
−→
bb′′ ×−→

bc.

Case I. In this case, a′ is the image of a by Algorithm BP; then
−→
aa′ = (Δt−→va ·

N̂a)N̂a. From (48),

(49) β =
1

N̂b ×
−→
c′a′

[γN̂b ×
−→
cc′ − γN̂b ×

−→
aa′ + (γN̂b −

−→
bb′) ×−→

ab + (γN̂b −
−→
bb′′) ×−→

bc].

Hence

(50) |β| ≤ |γN̂b ×
−→
cc′|

|N̂b ×
−→
c′a′|

+
|γN̂b ×

−→
aa′|

|N̂b ×
−→
c′a′|

+
|(γN̂b −

−→
bb′) ×−→

ab|
|N̂b ×

−→
c′a′|

+
|(γN̂b −

−→
bb′′) ×−→

bc|
|N̂b ×

−→
c′a′|

.

We want to estimate the values |γN̂b ×
−→
cc′|, |γN̂b ×

−→
cc′|, |(γN̂b −

−→
bb′) × −→

ab|, and

|(γN̂b −
−→
bb′′) ×−→

bc| separately. Now

(51) |γN̂b ×
−→
cc′| = |γ||

−→
cc′||N̂b × n̂bc| = (Δt−→va · N̂a)(Δt−→va · N̂a) sin θ,

where θ is the angle between N̂a and n̂bc. By Assumption R1, κ is the maximum
curvature of all σn; therefore

(52) sin θ ≈ θ ≤ κ|−→ac|.

Then

(53) |γN̂b ×
−→
cc′| ≤ (Δt−→v a)(Δt−→v c) sin θ ≤ (ΔtV )

2
κ|−→ac|,
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where V is the maximum velocity on velocity field. By Assumption R2, Δt ≤ αh,
and let αV 2κ = K1. Then

(54) |γN̂b ×
−→
cc′| ≤ (ΔtV )

2
κ|−→ac| ≤ ΔthK1|−→ac|.

From Lemma 4.1, we have |N̂b ×
−→
c′a′| ≥ 1

2 |
−→ac|. Therefore

(55)
|γN̂b ×

−→
cc′|

|N̂b ×
−→
c′a′|

≤ ΔthK1.

Similarly,

(56)
|γN̂b ×

−→
aa′|

|N̂b ×
−→
c′a′|

≤ ΔthK2

for some constant K2. Next,

(57) |(γN̂b −
−→
bb′) ×−→

ab| = |γN̂b −
−→
bb′||−→ab|| sinφ|,

where φ is the angle between γN̂b −
−→
bb′ and

−→
ab. Since | sinφ| ≤ 1 and |−→ab| ≤ c2h by

Assumption R1, we also have

|γN̂b −
−→
bb′| = |(Δt−→vb · N̂b)N̂b − (Δt−→vb · n̂ab)n̂ab|

≤ |(Δt−→vb · N̂b)N̂b − (Δt−→vb · N̂b)n̂ab| + |(Δt−→vb · N̂b)n̂ab − (Δt−→vb · n̂ab)n̂ab|
≤ ||(Δt−→vb · N̂b)||N̂b − n̂ab| + |(Δt−→vb)||N̂b − n̂ab| ≤ 2ΔtV |N̂b − n̂ab|.(58)

Since |N̂b − n̂ab| ≈ θ ≤ κc2h, then we have

(59) |γN̂b −
−→
bb′| ≤ 2ΔtV |N̂b − n̂ab| ≤ 2ΔtV κc2h.

Because |N̂b ×
−→
c′a′| ≥ 1

2 |
−→ac| and |−→ac| ≥ c1hθmin,

(60)
|(γN̂b −

−→
bb′) ×−→

ab|
|N̂b ×

−→
c′a′|

≤ |γN̂b −
−→
bb′||−→ab|

|N̂b ×
−→
c′a′|

≤ 4ΔtV κc2hc2h

c1hθmin
≤ 4ΔtV κc2hc2

c1θmin
.

Let

K3 =
4V κc2c2
c1θmin

;

then

|(γN̂b −
−→
bb′) ×−→

ab|
|N̂b ×

−→
c′a′|

≤ ΔthK3.(61)

With a similar method, we have

|(γN̂b −
−→
bb′′) ×−→

bc|
|N̂b ×

−→
c′a′|

≤ ΔthK4.(62)
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Therefore

(63)

|bp− bp′| = |β| ≤ |γN̂b ×
−→
cc′|

|N̂b ×
−→
c′a′|

+
|γN̂b ×

−→
aa′|

|N̂b ×
−→
c′a′|

+
|(γN̂b −

−→
bb′) ×−→

ab|
|N̂b ×

−→
c′a′|

+
|(γN̂b −

−→
bb′′) ×−→

bc|
|N̂b ×

−→
c′a′|

≤ ΔthK1 + ΔthK2 + ΔthK3 + ΔthK4 = ΔthK.

Case II. Consider a′ to be the image of a by Algorithm NPC. Then
−→
aa′ = (γ′ +

β′)N̂a, where γ′ = Δt−→va ·N̂a and |β′| ≤ ΔthK for some constant K. Let ξ = Δt−→vc ·N̂c.
Similarly, we have

(64) λ[N̂b × (
−→
aa′ −−→

ab −
−→
cc′ −−→

bc)] = 2(q′1 + q2) +
−→
aa′ ×−→

ab +
−→
cc′ ×−→

bc,

which leads to

β(N̂b ×
−→
c′a′) = −γ(γ′ + β′)(N̂b × N̂a) + γξ(N̂b × n̂bc) + (γN̂b −

−→
bb′)

×−→
ab + (γN̂b −

−→
bb′′) ×−→

bc.(65)

Therefore

(66)

|β| ≤ 1

|(N̂b ×
−→
c′a′)|

|γγ′(N̂b × N̂a) + γξ(N̂b × n̂bc) + (γN̂b −
−→
bb′) ×−→

ab + (γN̂b −
−→
bb′′) ×−→

bc|

+
1

|(N̂b ×
−→
c′a′)|

|γβ′(N̂b × N̂a)|.

By Case I of this proof, we have

(67)
1

|(N̂b ×
−→
c′a′)|

|γγ′(N̂b × N̂a) + γξ(N̂b × n̂bc) + (γN̂b −
−→
bb′) ×−→

ab + (γN̂b −
−→
bb′′) ×−→

bc|

≤ ΔthK

for some constant K. Since N̂b × N̂a = sin θ, where θ is the angle between N̂b and
N̂a, then

(68) sin θ ≈ θ ≤ κc2h.

Hence

(69)
1

|(N̂b ×
−→
c′a′)|

|γβ′(N̂b × N̂a)| ≤ Δt2hK.

Choose Δt ≤ 1; then

(70)
1

|(N̂b ×
−→
c′a′)|

|γβ′(N̂b × N̂a)| ≤ Δt2hK ≤ ΔthK.

Therefore

(71) |β| ≤ ΔthK.
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Lemma 4.4. Let σn be the discontinuity curve at the nth time step by Algorithm
NPC. Then under Assumptions L1, R1, R2, C1, C2, and condition

ΔtV

(
1

2
+

4c2
c1θmin

)
≤ 1

4
c1hθmin,

|σn| ≤ |σ0|(1 + ΔtC̃)
n

for some constant C̃.
Proof. From Lemma 4.2, we choose Δt small such that

ΔtV

(
1

2
+

4c2
c1θmin

)
≤ 1

4
c1hθmin

for every propagation time step, where c1, c2 are the same as in Assumption R1 and
θmin is the same as in Assumption C2.

Let
−→
ab = bni , N̂a be the normal to the curve at a and N̂b be the normal to the

curve at b. Then

(72) bn+1
i = −(γ′

a + β′
a)N̂a + bni + (γ′

b + β′
b)N̂b,

where γ′
a = (Δt−→vaN̂a), γ

′
b = (Δt−→vbN̂b), |β′

a| ≤ ΔthK, and |β′
b| ≤ ΔthK. By triangle

inequality,

(73) |bn+1
i | ≤ | − γ′

aN̂a +
−→
bni + γ′

bN̂b| + |β′
aN̂a + β′

bN̂b|,

and by Lemma 3.2,

(74) | − γ′
aN̂a + bni + γ′

bN̂b| ≤ |bni |(1 + Δt(2V κ + C)),

where V is the maximum of the velocity field, κ is the maximum curvature of all
discontinuity curves, and C is a constant. Hence

(75) |bn+1
i | ≤ |bni |(1 + Δt(2V κ + C)) + 2ΔthK.

Now

|σn+1| =

m∑
i=1

|bn+1
i | ≤

m∑
i=1

|bni |(1 + Δt(2V κ + C)) +

m∑
i=1

2ΔthK

≤ |σn|(1 + Δt(2V κ + C)) + m2ΔthK,(76)

where m is the number of pieces in σn. Since the length of every linear piece is no
less than c1h, then m ≤ |σn|/c1h. Therefore

(77)

|σn+1| ≤ |σn|(1 + Δt(2V κ + C)) +
|σn|
c1h

2ΔthK ≤ |σn|(1 + Δt(2V κ + C)) + |σn| 2

c1
ΔtK

= |σn|
(

1 + Δt

(
2V κ + C +

2

c1
K

))
.

Let C̃ = 2V κ + C + 2
c1
K; then

(78) |σn+1| ≤ |σn|(1 + ΔtC̃).
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By induction,

(79) |σn+1| ≤ |σ0|(1 + ΔtC̃)
n
.

Theorem 4.5. Under Assumptions L1, R1, R2, C1, C2, and condition

ΔtV

(
1

2
+

4c2
c1θmin

)
≤ 1

4
c1hθmin,

the curve propagation algorithm, Algorithm NPC, of the front-tracking scheme for
incompressible miscible two phase flow on porous media is stable.

Proof. The proof is similar to those of Lemmas 3.4 and 3.5 and Theorem 3.6. We
omit it here.

Remark 7. A condition is required in Theorem 4.5 that ΔtV ( 1
2 + 4c2

c1θmin
) ≤

1
4c1hθmin. Because V , c1, c2, h, and θmin are constants, ΔtV ( 1

2 + 4c2
c1θmin

) ≤ 1
4c1hθmin

will be satisfied if the time step Δt is chosen to be small enough.
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gence in editing this paper. This resulted in a new understanding and clarified my
thinking about this topic.
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Abstract. An approximate error function for the discretization error on a given mesh is obtained
by projecting (via the energy inner product) the functional residual onto the space of continuous,
piecewise quadratic functions which vanish on the vertices of the mesh. Conditions are given under
which one can expect this hierarchical basis error estimator to give efficient and reliable function
recovery, asymptotically exact gradient recovery, and convergent Hessian recovery in the square
norms. One does not find similar function recovery results in the literature. The analysis given
here is based on a certain superconvergence result which has been used elsewhere in the analysis of
gradient recovery methods. Numerical experiments are provided which demonstrate the effectivity
of the approximate error function in practice.
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1. Introduction. Hierarchical basis a posteriori error estimators were intro-
duced in the early 1980s [22], and a general framework for the analysis of their ef-
fectivity and computational cost has been given by Bank [5] and Bank and Smith
[1]. The basic idea behind such methods is that the base space of functions Vh, in
which we wish to find our finite element approximation uh, is augmented by a com-
plementary space Ṽh such that the composite space Vh ⊕ Ṽh provides an improved
finite element approximation ūh. In symbols, we show this as |||u− ūh||| ≤ β|||u− uh|||
for some β ∈ [0, 1), where ||| · ||| is the energy norm associated with the underlying
bilinear form. This improved approximation assumption is referred to as a saturation
assumption. An approximate error function εh ≈ u−uh is computed in the space Ṽh.
Using the saturation assumption and strengthened Cauchy inequalities between the
spaces Vh and Ṽh, effectivity estimates of the form

(1) c1 ≤ |||εh|||
|||u− uh|||

≤ c2

are proved.
In this paper a different sort of analysis, which yields stronger assertions, is given

for the case where Vh is the space of continuous, piecewise linear functions on a
given mesh and V̄h is the space of continuous, piecewise quadratic functions on that
same mesh. The augmenting space Ṽh consists of quadratic “bump” functions which
vanish on the vertices of the mesh. In particular, we show that the approximate error
function, εh ≈ u−uh, provides efficient and reliable function recovery, asymptotically
exact gradient recovery, and convergent Hessian recovery:

(2) c1 ≤ ||εh||0,Ω
||u− uh||0,Ω

≤ c2,
||εh||1,Ω

||u− uh||1,Ω
→ 1,

∑
τ∈Th

|εh|22,τ → |u|22,Ω.
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Our analysis is based on a superconvergence result of Bank and Xu [3, 4], which also
appears in a slightly more general form in [20]. This result was used in these papers
to explain the success of a number of popular gradient recovery methods, but we
use it here in the context of hierarchical basis error estimation to establish our key
approximation results (2).

The rest of this paper is organized as follows. In section 2 we lay out the basic
notation and assumptions for this paper. Section 3 contains a statement of the super-
convergence result of Bank and Xu, which we then use to prove the above mentioned
gradient and Hessian recovery results. In section 4 we prove the function recovery
result and show why we cannot generally hope for asymptotic exactness in this case.
Section 5 comprises almost half of the paper and consists of four examples, which are
used to verify the effectivity of our estimator in practice, and a brief subsection on
computational cost.

2. Notation and basic assumptions. Let Ω ⊂ R
2 be a bounded domain with

Lipschitz boundary ∂Ω = ∂ΩD ∪ ∂ΩN , and define

(3) H ≡
{
v ∈ H1(Ω) : v|∂ΩD

= 0 in the trace sense
}
.

The usual spaces W k
p (Ω) and Hk(Ω) ≡ W k

2 (Ω) are equipped with their standard
norms || · ||k,p,Ω and || · ||k,Ω ≡ || · ||k,2,Ω, and seminorms | · |k,p,Ω and | · |k,Ω, respectively.
For simplicity in exposition, we will assume that ∂Ω is a polygon. Let data functions
a : Ω̄ → R

2×2, b : Ω̄ → R
2, c, f : Ω̄ → R, and g : ∂ΩN → R be given. The problem is

to find u ∈ H such that

B(u, v) = F (v) for all v ∈ H,(4)

B(u, v) ≡
∫

Ω

a∇u · ∇v + (b · ∇u + cu)v dx,(5)

F (v) ≡
∫

Ω

fv dx +

∫
∂ΩN

gv ds.(6)

We will assume that the data functions are sufficiently smooth, and that the matrix a
is positive definite, with the smallest eigenvalue bounded below on Ω by some constant
γ > 0. We make the following standard assumptions concerning the bilinear form B
and linear functional F : There exist constants α, ν, μ > 0, such that, for all v, w ∈ H,

|F (v)| ≤ α||v||1,Ω,
|B(v, w)| ≤ ν||v||1,Ω||w||1,Ω,

B(v, v) ≥ μ||v||21,Ω.

Let Th denote a shape-regular triangulation of Ω with mesh size h ∈ (0, 1). Let
Vh ⊂ H denote the space of continuous, piecewise-linear polynomials defined on Th,
and let V̄h ⊂ H denote the continuous, piecewise-quadratic polynomials. We will
think of V̄h hierarchically as

(7) V̄h = Vh ⊕ Ṽh,

where Ṽh is the space of quadratic “bump” functions, i.e., continuous piecewise-
quadratic polynomials which vanish at all of the vertices of the triangulation. In
what follows, uh ∈ Vh and ūh ∈ V̄h denote, respectively, the piecewise-linear and
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piecewise-quadratic approximate solutions of (4):

B(uh, v) = F (v) for all v ∈ Vh,(8)

B(ūh, v) = F (v) for all v ∈ V̄h.(9)

Let u� ∈ Vh and uq ∈ V̄h denote piecewise-linear and piecewise-quadratic interpolants
of u on Th. We make the following standard assumptions about their asymptotic
approximation quality:

||u− u�||k,Ω � h2−k||u||2,Ω,(10)

||u− uq||k,Ω � h3−k||u||3,Ω,(11)

for 0 ≤ k ≤ 1.

3. Gradient and Hessian recovery. In this section we prove asymptotically
exact gradient recovery and convergent Hessian recovery results,

(12)
||εh||1,Ω

||u− uh||1,Ω
→ 1,

∑
τ∈Th

|εh|22,τ → |u|22,Ω

for the approximate error function εh ≈ u−uh described below. We first describe the
key assumption on the mesh that will play a role in these results. This mesh condition
and a slight generalization of it can be found in [3, 20].

Let e denote an interior edge in Th with adjacent triangles τ and τ ′. We say that
the quadrilateral formed by τ and τ ′ satisfies the approximate O(h2)-parallelogram
property provided that the lengths of opposite edges differ by only O(h2). The equiv-
alent property at the boundary is as follows: Let e and e′ denote adjacent boundary
edges sharing the vertex x, and let τ and τ ′ be the triangles having the edges e and
e′, respectively. Let t and t′ be the unit tangent vectors, corresponding to a counter-
clockwise orientation on τ and τ ′. Starting with e for τ and e′ for τ ′ we identify
corresponding edges of τ and τ ′ by traversing their edges counterclockwise. We say
that the triangles τ and τ ′ associated with the boundary vertex x satisfy the approxi-
mate O(h2)-parallelogram property, provided that the lengths of corresponding edges
in τ and τ ′ differ by only O(h2), and |t − t′| = O(h). The key assumption on the
triangulation follows.

Assumption 3.1 (an O(h2σ)-irregular triangulation).
1. Let E = E1 ⊕ E2 denote the set of interior edges in Th. For each e ∈ E1, τ

and τ ′ satisfy the approximate O(h2)-parallelogram property, while∑
e∈E2

|τ | + |τ ′| = O(h2σ).

2. Let P = P1⊕P2 denote the set of boundary vertices. The elements associated
with x ∈ P1 satisfy the approximate O(h2)-parallelogram property, and |P2| =
κ, where κ is fixed independent of h.

The second condition is necessary only in the case of Neumann boundary condi-
tions, ∂ΩN �= ∅. The following result, due to Bank and Xu [3], is the key lemma for
the results in this paper.

Lemma 3.2. Under Assumption 3.1, we have

||uh − u�||1,Ω � h1+min(σ,1)| log h|1/2‖u‖3,∞,Ω.(13)
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We now present a new result based on Lemma 3.2 for computing a superconvergent
approximation of the gradient. Suppose that we first solve for the linear finite element
approximation, uh ∈ Vh, and then augment this approximation by solving the residual
equation on Ṽh, the space of quadratic bumps. In other words,

B(uh, v) = F (v) for all v ∈ Vh,(14)

B(εh, v) = F (v) −B(uh, v) for all v ∈ Ṽh.(15)

One can think of this as a projection of the residual error onto the space Ṽh. We have
the following result.

Theorem 3.3. Under Assumption 3.1, we have

(16) ||u− (uh + εh)||1,Ω � h1+min(σ,1)| log h|1/2‖u‖3,∞,Ω.

Proof. Using Galerkin orthogonality to replace εh ∈ Ṽh with ub ∈ Ṽh, the “bump”
portion of the quadratic interpolant uq = u� + ub, we get the following estimate:

||u− (uh + εh)||21,Ω � B(u− (uh + εh), u− (uh + εh))(17)

= B(u− (uh + εh), u− (uh + ub))(18)

� ||u− (uh + εh)||1,Ω||u− (uh + ub)||1,Ω.(19)

We bound the term ||u− (uh + ub)||1,Ω as follows:

||u− (uh + ub)||1,Ω ≤ ||u− uq||1,Ω + ||uq − (uh + ub)||1,Ω(20)

= ||u− uq||1,Ω + ||u� − uh||1,Ω(21)

� h2‖u‖3,Ω + h1+min(σ,1)| log h|1/2‖u‖3,∞,Ω.(22)

This completes the proof.
As an immediate corollary, we see conditions under which we can expect ||εh||1,Ω

to be an asymptotically exact estimator of the true gradient error ||u− uh||1,Ω.
Corollary 3.4. Suppose that there is some constant c > 0 such that ||u −

uh||1,Ω ≥ ch. Then under Assumption 3.1, we have

(23)
||εh||1,Ω

||u− uh||1,Ω
→ 1.

Proof. It holds that

(24)

∣∣∣∣ ||εh||1,Ω
||u− uh||1,Ω

− 1

∣∣∣∣ ≤ ||u− (uh + εh)||1,Ω
||u− uh||1,Ω

.

Combining this with the estimate from Theorem 3.3 completes the proof.
Theorem 3.3 and Corollary 3.4 and their proofs have also appeared in [17, 18].
Recall that the quadratic interpolant uq ∈ V̄h of u is decomposed as the sum

uq = u� + ub with u� ∈ Vh and ub ∈ Ṽh. In the following lemma we compare the
first and second derivatives of εh and ub. The second of these results is used in the
proof of Theorem 3.6 to establish the Hessian recovery result, and the first will play
an important role in the next section, where we prove the function recovery result.

Lemma 3.5. Under Assumption 3.1, we have

||εh − ub||1,Ω � h1+min(σ,1)| log h|1/2‖u‖3,∞,Ω,(25) ∑
τ∈Th

|εh − ub|22,τ � h2 min(σ,1)| log h|‖u‖2
3,∞,Ω.(26)
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Proof. In the proof of Theorem 3.3, we saw that

(27) ||u− (uh + εh)||1,Ω, ||u− (uh + ub)||1,Ω � h1+min(σ,1)| log h|1/2‖u‖3,∞,Ω.

This gives us

||εh − ub||1,Ω ≤ ||u− (uh + εh)||1,Ω + ||u− (uh + ub)||1,Ω(28)

� h1+min(σ,1)| log h|1/2‖u‖3,∞,Ω.(29)

Using a standard inverse estimate, we see that

(30)
∑
τ∈Th

|εh − ub|22,τ � h−2||εh − ub||21,Ω � h2 min(1,σ) |log h| ‖u‖2
3,∞,Ω,

so we have proven both results.
The convergent Hessian recovery result follows.
Theorem 3.6. Under Assumption 3.1, we have∑

τ∈Th

|u− εh|22,τ � h2 min(σ,1)| log h|‖u‖2
3,∞,Ω.(31)

Proof. We have |u− εh|2,τ ≤ |u− ub|2,τ + |ub − εh|2,τ , so

∑
τ∈Th

|u− εh|22,τ ≤ 2

(∑
τ∈Th

|u− ub|22,τ +
∑
τ∈Th

|ub − εh|22,τ

)
(32)

� h2‖u‖2
3,∞,Ω +

∑
τ∈Th

|ub − εh|22,τ .(33)

Combining this with the second estimate in Lemma 3.5 completes the proof.
Provided that ‖u‖3,∞,Ω < ∞, the estimate in Theorem 3.5 is equivalent to

(34)
∑
τ∈Th

|εh|22,τ → |u|22,Ω.

4. Function recovery. In this section we prove that the approximate error
function εh provides efficient and reliable approximation of the true error u − uh in
the L2-norm,

(35) c1 ≤ ||εh||0,Ω
||u− uh||0,Ω

≤ c2.

We also explain why we cannot generally expect the same sort of asymptotic exactness
result which we saw for the gradient error. In other words, we cannot generally expect
that

(36)
||εh||0,Ω

||u− uh||0,Ω
→ 1,

although the constants c1, c2 may be near 1 in practice.
This first lemma will allow us to convert the gradient approximation result from

Lemma 3.5 into the function (L2) approximation results that follow.
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Lemma 4.1. Let Th be a shape-regular quasi-uniform mesh. For any b ∈ Ṽh, we
have

(37) ||b||0,Ω � h||∇b||0,Ω.

Proof. Let τ ∈ Th be given, and write b in terms of its three bump basis functions
on τ , b = c1b1 + c2b2 + c3b3 . We denote the length of the edge on which bk does not
vanish by Lk, and without loss of generality take L1 ≤ L2 ≤ L3. It holds that

||b||20,τ =
8|τ |
45

(c21 + c22 + c23 + c1c2 + c1c3 + c2c3),(38)

||∇b||20,τ =
1

3|τ |
(
(c1 − c2 − c3)

2L2
1 + (c2 − c1 − c3)

2L2
2 + (c3 − c1 − c2)

2L2
3

)
.(39)

We bound ||∇b||20,τ from below as follows:

||∇b||20,τ ≥ L2
1

3|τ |
(
(c1 − c2 − c3)

2 + (c2 − c1 − c3)
2 + (c3 − c1 − c2)

2
)

(40)

=
L2

1

3|τ | (3c
2
1 + 3c22 + 3c23 − 2c1c2 − 2c1c3 − 2c2c3)(41)

≥ L2
1

3|τ |
1

2
(c21 + c22 + c23 + c1c2 + c1c3 + c2c3).(42)

This gives us

(43) ||b||20,τ ≤ 48

45

|τ |2
L2

1

||∇b||20,τ � h2||∇b||20,τ .

Summing over triangles completes the proof.
Lemma 4.2. Under Assumption 3.1, we have

||εh − ub||0,Ω � h2+min(σ,1)| log h|1/2‖u‖3,∞,Ω,(44)

||u− (u� + εh)||0,Ω � h2+min(σ,1)| log h|1/2‖u‖3,∞,Ω.(45)

Proof. Combining the first estimate from Lemma 3.5 with the result of Lemma 4.1
proves the first of these two estimates. We also have

(46) ||u− (u� + εh)||0,Ω ≤ ||u− uq||0,Ω + ||εh − ub||0,Ω � h3||u||3,Ω + ||εh − ub||0,Ω.

Combining this second estimate with the first completes the proof.
We see from the estimate ||u− (u� + εh)||0,Ω = o(h2) that ||εh||0,Ω is an asymptoti-

cally exact estimator of the interpolation error ||u−u�||0,Ω, provided that ||u−u�||0,Ω >
m1h

2 for some positive constant m1. We are now ready to prove the main result of
this section.

Theorem 4.3. Suppose that there are constants m1,m2 > 0, such that ||u −
u�||0,Ω ≥ m1h

2 and ||u − uh||0,Ω ≥ m2h
2. Then, under Assumption 3.1, there are

constants c1, c2 > 0, such that

(47) c1 ≤ ||εh||0,Ω
||u− uh||0,Ω

≤ c2.
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Proof. It is certainly the case that there are constants M1,M2 > 0, such that
||u− u�||0,Ω ≤ M1h

2 and ||u− uh||0,Ω ≤ M2h
2. So we have

(48)
m1

M2
≤ ||u− u�||0,Ω

||u− uh||0,Ω
≤ M1

m2
.

The proof is completed by using the fact that ||εh||0,Ω is an asymptotically exact
estimator of ||u− u�||0,Ω.

Recall that the proof of the asymptotic exactness of ||εh||1,Ω as an estimator of
||u−uh||1,Ω relied on the fact that ||u�−uh||1,Ω = o(h). We see in Lemma 4.4 below that
we need ||u� − uh||0,Ω = o(h2) to get asymptotic exactness of ||εh||0,Ω as an estimator
of ||u− uh||0,Ω.

Lemma 4.4. Under Assumption 3.1, we have

(49) ||u− (uh + εh)||0,Ω = o(h2) ⇐⇒ ||uh − u�||0,Ω = o(h2).

Proof. We have the inequalities

||u− (uh + εh)||0,Ω ≤ ||u− (u� + εh)||0,Ω + ||uh − u�||0,Ω,(50)

||uh − u�||0,Ω ≤ ||u− (u� + εh)||0,Ω + ||u− (uh + εh)||0,Ω.(51)

Lemma 4.2 completes the proof.
The rest of this section is devoted to demonstrating by example that we cannot

generally expect ||u�−uh||0,Ω = o(h2) even in an ideal situation for which we can prove
||u� − uh||1,Ω � h2| log h|1/2||u||3,∞,Ω. Thus, we cannot generally expect asymptotic
exactness in the L2-norm.

Consider the following simple problem on the unit square Ω = (0, 1) × (0, 1):

−Δu = 2x(1 − x) + 2y(1 − y) in Ω,

u = 0 on ∂Ω.

The exact solution is u = x(1 − x)y(1 − y). We take the family of uniform meshes
having mesh size h = 1

n+1 and n2 degrees of freedom located at (xi, yj) = (ih, jh);

see Figure 1. We will show that h2 � ||u� − uh||0,Ω.
Let T ∈ R

n×n be the tridiagonal matrix with stencil (−1, 2, −1). Under the
standard ordering of unknowns (left to right, bottom to top) the stiffness matrix for
this problem is given by

A = T ⊗ I + I ⊗ T = (V ⊗ V )(D ⊗ I + I ⊗D)(V ⊗ V ),(52)

Vij =

√
2

n + 1
sin

ijπ

n + 1
, Dij = δij

(
2 − 2 cos

iπ

n + 1

)
= δij4 sin2 iπ

2(n + 1)
.(53)

We note that V = V T = V −1. As a notational convenience, for x ∈ R
n2

we use
x(i,j) ≡ x(i−1)n+j . Similarly, we take φ(i,j) to be the Lagrange nodal basis function
associated with the grid point (xi, yj). We define d and r to be the error and residual,
respectively, at the grid points

d(i,j) = u(xi, yj) − uh(xi, yj) = u�(xi, yj) − uh(xi, yj),(54)

r(i,j) = h2f(xi, yj) −
∫

Ω

fφ(i,j) dxdy =
2

3
h4.(55)
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Fig. 1. Uniform mesh with n = 3.

We have Ad = r. We first argue that ||u� − uh||0,Ω ≥ h
2 ||d||, and then establish that

||d|| ≥ Ch, thereby proving that h2 � ||u� − uh||0,Ω. We begin by noting that for any
linear function g on a triangle τ , given in terms of its three nodal basis functions,
g = c1
1 + c2
2 + c3
3, we have

(56) ||g||20,τ =
|τ |
6

(c21 + c22 + c23 + c1c2 + c1c3 + c2c3) ≥
|τ |
12

(c21 + c22 + c23).

Therefore, if g is continuous and piecewise-linear on T , we have

(57) ||g||20,Ω =
∑
τ∈Th

||g||20,τ ≥ |τ |
2
||c||2 =

h2

4
||c||2,

where c is the vector of coefficients. The factor of 6 comes from the fact that each
coefficient appears in 6 of the summands ||g||20,τ . This proves that

(58) ||u� − uh||0,Ω ≥ h

2
||d||.

We now consider ||d|| = ||A−1r|| = 2
3h

4||A−1(e ⊗ e)||, where e ∈ R
n is the vector of

ones. It holds that ||A−1(e ⊗ e)|| = ||(D ⊗ I + I ⊗D)−1(V e ⊗ V e)||, and

(V e)i =

√
2

n + 1

n∑
j=1

sin
ijπ

n + 1
=

√
2

n + 1
cot

iπ

2(n + 1)

∣∣∣∣sin iπ

2

∣∣∣∣ .(59)

This gives us

||A−1(e ⊗ e)||2 =
h2

4

n∑
i=1

n∑
j=1

∣∣∣∣sin iπ

2
sin

jπ

2

∣∣∣∣
(

cot iπ
2(n+1) cot jπ

2(n+1)

sin2 iπ
2(n+1) + sin2 jπ

2(n+1)

)2

(60)

>
h2

4

(
cot π

2(n+1) cot π
2(n+1)

sin2 π
2(n+1) + sin2 π

2(n+1)

)2

(61)

=
h2

16

cos4 π
2(n+1)

sin8 π
2(n+1)

>
h2

16

( 1√
2
)4

( π
2(n+1) )

8
=

4

π8
h−6.(62)
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Combining these results we have ||u� − uh||0,Ω > h
2

2h4

3
2h−3

π4 = 2h2

3π4 , which completes
the argument.

5. Experiments. In this section we offer four examples which illustrate the
effectivity of our estimator and provide some comments on its computational cost. In
particular, we wish to verify (2), the key results of this paper, in practice. The exact
error for each of the examples solution is known, so we can judge the quality of our
estimator directly. Throughout this section we use eh ≡ u − uh for the exact error
and the abbreviation EFF for each of the effectivity ratios

(63)
||εh||0,Ω
||eh||0,Ω

,
|εh|1,Ω
|eh|1,Ω

,
|εh|2,Ω
|u|2,Ω

.

For the sake of convenience we abuse notation slightly by taking

(64) |εh|2,Ω ≡
√∑

τ∈T
|εh|22,τ .

This is an abuse because |v|2,Ω is infinite by its standard definition for functions
such as εh, which have a gradient jump between elements in a mesh. Additionally,
we abbreviate the standard scientific notation by placing the base 10 exponent as a
subscript, for example, 3.54−2 ≡ 3.54 × 10−2.

The quantity N appearing in the tables is the number of triangles in the mesh.
For the larger values of N , this is roughly twice the number of vertices in the mesh.
In the first four examples, for which the exact error is known, we use the error model
E = CN−p, derived from standard a priori estimates and Nh2 ∼ 1, to give a sense
of the rate of convergence of error. In particular, we give the least-squares best fit
for each of the normed errors. We note that p = 1 (resp., p = 1/2) corresponds to
what is generally called quadratic (resp., linear) convergence—in terms of the mesh
parameter h—and we use this language in the explanations below. The code used for
the numerical experiments is PLTMG [6], with modifications necessary to implement
our error estimation technique.

5.1. The simple problem. For our first experiment, we revisit the example
from section 4 which was used to demonstrate that one cannot generally expect
asymptotic exactness from our estimator in L2. We will see, however, that the func-
tion recovery is very nearly exact in this case. Recall that the problem is to find u
such that

−Δu = 2x(1 − x) + 2y(1 − y) in Ω,

u = 0 on ∂Ω.

Here Ω is the unit square, and the exact solution is u = x(1−x)y(1− y). We provide
the values of the various norms of u so that the relative errors can be readily assessed
if desired:

||u||0,Ω =

√
1

900
= 0.03̄, |u|1,Ω =

√
1

45
≈ 0.149, |u|2,Ω =

√
22

45
≈ 0.699.

This example is also used in the numerical experiments in [21, 23].
In Table 1 we see the predicted performance of the estimator in each of the square

norms, with the L2 error estimate having effectivity very near 1 on each mesh. Below,
we give the approximate error models for the function and gradient errors:

||eh||0,Ω ≈ 0.159N−1.02, |eh|1,Ω ≈ 0.307N−0.502.
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Table 1

Estimates, exact values, and effectivity for the simple problem.

N 88 441 1887 7765 31505 126919
||εh||0,Ω 1.71−3 2.93−4 6.98−5 1.62−5 3.90−6 9.64−7

||eh||0,Ω 1.65−3 3.09−4 7.22−5 1.63−5 3.93−6 9.76−7

EFF 1.04 0.947 0.966 0.993 0.994 0.987
|εh|1,Ω 3.19−2 1.36−2 6.61−3 3.14−3 1.54−3 7.67−4

|eh|1,Ω 3.14−2 1.37−2 6.61−3 3.15−3 1.55−3 7.72−4

EFF 1.01 0.998 1.00 0.997 0.996 0.996
|εh|2,Ω 0.726 0.713 0.709 0.705 0.703 0.703
|u|2,Ω 0.699 0.699 0.699 0.699 0.699 0.699
EFF 1.04 1.02 1.01 1.01 1.01 1.00

Table 2

Estimates, exact values, and effectivity for the oscillatory problem.

N 88 434 1888 7825 31679 127552
||εh||0,Ω 0.369 0.149 8.43−2 1.50−2 3.27−3 7.99−4

||eh||0,Ω 0.499 0.172 9.60−2 1.76−2 3.89−3 9.49−4

EFF 0.738 0.865 0.878 0.853 0.846 0.842
|εh|1,Ω 15.1 8.43 6.56 3.04 1.46 0.716
|eh|1,Ω 17.6 9.78 6.92 3.07 1.46 0.720
EFF 0.859 0.862 0.949 0.991 0.993 0.995
|εh|2,Ω 304 458 603 632 634 634
|u|2,Ω 632 632 632 632 632 632
EFF 0.481 0.693 0.954 1.00 1.00 1.00

We point out that we observe the predicted a priori quadratic convergence of ||eh||0,Ω
and linear convergence of |eh|1,Ω.

5.2. The oscillatory problem. In this second example we consider the situa-
tion where the exact solution still possesses no singularities, but oscillates strongly.
The problem is to find u such that

−Δu = 128π2 sin(8πx) sin(8πy) in Ω,

u = 0 on ∂Ω.

Here Ω is again the unit square, and the exact solution is u = sin(8πx) sin(8πy). The
pertinent norms of u are given below:

||u||0,Ω =

√
1

4
= 0.5, |u|1,Ω =

√
32π2 ≈ 17.8, |u|2,Ω =

√
4096π4 ≈ 632.

In Table 2 we again see effectivity approaching 1 for the gradient error and the
Hessian in both norms. The effectivity of the function error estimate tends to stay in
the 80–85% range. We see in the approximate error models below that the adaptive
refinement seems to be producing suboptimal reduction of function and gradient error:

||eh||0,Ω ≈ 36.5N−0.873, |eh|1,Ω ≈ 149N−0.443.

This is due to the fact that the two coarsest meshes are just beginning to resolve the
oscillatory behavior. When the error data from these two initial meshes is removed,
we see the expected quadratic and linear convergence for the function and gradient
errors, respectively. More precisely, the exponents for the L2 and H1 error models
are p = 1.09 and 0.536, respectively.
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Table 3

Estimates, exact values, and effectivity for the slit domain problem.

N 94 481 2031 8334 33704 135632
||εh||0,Ω 2.81−2 3.20−3 5.26−4 1.39−4 3.43−5 8.51−6

||eh||0,Ω 0.122 3.92−2 1.33−2 3.57−3 9.08−4 1.78−4

EFF 0.230 8.18−2 3.96−2 3.88−2 3.78−2 4.78−2

|εh|1,Ω 0.419 0.231 0.132 6.93−2 3.51−2 1.62−2

|eh|1,Ω 0.590 0.331 0.189 9.91−2 4.99−2 2.25−2

EFF 0.710 0.698 0.697 0.699 0.703 0.720
|εh|2,Ωs 5.34 19.9 24.2 18.2 17.5 17.2
|u|2,Ωs 17.2 17.2 17.2 17.2 17.2 17.2
EFF 0.310 1.16 1.40 1.06 1.02 1.00
N 94 481 2031 8334 33704 135632

||εh||0,Ωs 2.81−2 3.20−3 5.04−4 1.38−4 3.43−5 8.51−6

||eh||0,Ωs 0.122 3.92−2 1.32−2 3.56−3 9.04−4 1.78−4

EFF 0.230 8.18−2 3.81−2 3.89−2 3.79−2 4.80−2

|εh|1,Ωs 0.419 0.231 6.28−2 2.69−2 1.37−2 6.89−3

|eh|1,Ωs 0.590 0.331 0.119 3.47−2 1.48−2 6.99−3

EFF 0.710 0.698 0.526 0.774 0.925 0.986

5.3. The slit domain problem. For our third example we consider a problem
for which the boundary conditions force a singularity at the origin. Because of the
infinite gradient at the origin, it is interesting to investigate the effectivity of the
estimators. The problem is to find u such that

−Δu = 0 in Ω, u(r, 0+) = 0, ∇u · n (r, 2π−) = 0, u(1, θ) = sin(θ/4).

Here Ω is the unit disk with the positive x-axis removed, and the exact solution is
u = r1/4 sin(θ/4). Though the gradient of u is infinite at the origin, |u|1,Ω is finite.
However, this is not the case for |u|2,Ω—here we must avoid the origin to get a finite
H2 seminorm. Let Ωs denote Ω with the disk of radius s about the origin removed.
In the experiments, we take s = 1/100. The pertinent norms are given below:

||u||0,Ω =

√
2π

5
≈ 1.12, |u|1,Ω =

√
π

4
≈ 0.886, |u|2,Ωs =

√
3π

32
(s−3/2 − 1) ≈ 17.2.

We note that the global smoothness condition u ∈ W 3
∞(Ω) is certainly not satisfied

here.
In Table 3 we see the clear effects of this singularity on the performance of the

function error estimates and the gradient error. Here the function error estimates
underestimate the true function error by roughly a factor of 26.5 at worst and a
factor of 5 at best, and the gradient error estimate underestimates the true gradient
error by 28% at best, though it is slowly improving. We also point out that the
second derivatives are recovered quite well. Concerning Table 3, we mention finally
that the performance of the gradient error estimate improves markedly if we restrict
our attention to the error on the subdomain Ωs, as is seen at the bottom of that table,
but the performance of the function error estimate does not improve appreciably. The
approximate error models given below, though showing subquadratic convergence of
the function error and sublinear convergence of the gradient error, are actually quite
encouraging for a problem with this sort of singularity, where we would expect p ≈ 1/8
asymptotically for the gradient error |eh|1,Ω under uniform refinement:

||eh||0,Ω ≈ 9.31N−0.894, |eh|1,Ω ≈ 5.11N−0.447.
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Table 4

Estimates, exact values, and effectivity for the jumping coefficient problem.

N 66 353 1530 6337 25734 103617
||εh||0,Ω 6.67 0.396 8.04−2 1.86−2 4.33−3 1.22−3

||eh||0,Ω 11.1 0.811 0.116 2.29−2 5.21−3 1.49−3

EFF 0.603 0.488 0.691 0.814 0.831 0.820
|εh|1,Ω 96.0 33.3 13.6 6.06 2.90 1.42
|eh|1,Ω 108 36.1 14.1 6.16 2.92 1.43
EFF 0.886 0.923 0.960 0.985 0.994 0.997

|εh|2,Ωs 1.173 2.493 2.503 2.403 2.353 2.333

|u|2,Ωs 2.323 2.323 2.323 2.323 2.323 2.323

EFF 0.504 1.07 1.07 1.03 1.01 1.00

5.4. The jumping coefficient problem. The problem is to find u such that

−akΔu = 0 in Ω, u(r, 0) = 0,

∇u · n (r, π) = 0, u(1, θ) = bk sin(αθ) + ck cos(αθ).

Here Ω is the upper half of the unit disk, which is divided into two regions having
differing coefficients of diffusion. In the first region, 0 < θ < π

4 , we have a1 = 103.
In the second region, π

4 < θ < π, we have a2 = 1. The exact solution is u =
rα(bk sin(αθ)+ck cos(αθ)), where the values α, bk, ck are determined by the boundary
conditions at θ = 0, π and the continuity of u and ak∇u · n along the interface θ = π

4
between the two regions. The boundary condition at r = 1 is chosen to match the
solution in the interior. The boundary conditions on the positive and negative x-axes
and the continuity conditions at the interface provide four equations which are linear
in b1, c1, b2, c2 (and trigonometric in α). It is clear that b1 = c1 = b2 = c2 = 0 trivially
satisfies all of the specified conditions, so we must select α so that the resulting linear
system is singular—therefore admitting nontrivial solutions. If there are any such
choices of α, then there are infinitely many. We selected the following solution, with
α ≈ 0.666422:

b1 = 1, c1 = 0, b2 ≈ 750.416, c2 ≈ −432.484,

||u||0,Ω ≈ 515, |u|1,Ω ≈ 767, |u|2,Ωs ≈ 2.323.

Again we take Ωs to be Ω with the disk of radius s = 1/100 removed. Although
u �∈ H2(Ωs) because of the jump discontinuity of ∇u at the interface between the two
regions, we abuse notation by taking

(65) |u|22,Ωs
≡

∑
τ∈Ts

|u|22,τ

for Table 4. This sum is finite because the interface between the two regions does not
pass through the interior of any of the triangles.

In Table 4, we see the data for this experiment. We point out that the performance
of the various error estimates based on the approximate error function seem to be
unaffected by the jump in the coefficient. In particular, we see effectivity ratios near
or approaching 1 for the gradient error and the Hessian, and slightly better than 80%
for the function values in each norm. The approximate error models given below
show error convergence which is better than one would expect, with superquadratic
convergence in function error and superlinear convergence in gradient error:

||eh||0,Ω ≈ 1.123N
−1.20, |eh|1,Ω ≈ 1.583N

−0.589.
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Fig. 2. The meshes for the jumping coefficient problem after three stages of adaptive refinement,
using Bank–Xu gradient recovery estimates (left) and bump function error estimates (right). The
mesh on the left has 804 vertices and 1534 triangles, and the mesh on the right has 808 vertices and
1530 triangles.

These convergence rates are elevated in the models because of the significant error re-
duction in the early stages of refinement. When we remove the error data from the first
two meshes, the convergence rates drop to the more normal quadratic and linear levels.

In addition to having an rα, α < 1 singularity at the origin, the solution also
has a jump discontinuity in its gradient at θ = π/4. It is relevant at this point to
consider which of these two types of singularities has the stronger (negative) effect on
the performance of the estimator for problems of this sort. Considering that the slit
domain problem possesses only an rα singularity and that the α for that problem is
smaller than the one for this problem, comparing the performance of the estimator in
both cases suggests that rα singularities are more influential than jump discontinuities
in the gradient. In fact, a careful reading of either the Bank–Xu paper [3] or the Xu–
Zhang paper [20] reveals that the key superconvergence result for this paper,

||uh − u�||1,Ω = o(h),

holds for u having a finite number of gradient jump discontinuities provided that u is
sufficiently smooth in each of corresponding subdomains. So we see that, asymptot-
ically, the effectivity of the estimator is affected by jumping coefficients only if they
lead to singularities which are worse than gradient jump discontinuities.

We also mention that, for problems of the sort for which we can expect gradient
jumps, a naive application of gradient recovery error estimators will lead to sub-
optimal and sometimes terrible performance. This is because of the fact that gradient
recovery schemes involve some sort of local or global averaging. If care is not taken
to avoid averaging across an interface where ∇u jumps, then the local error estimates
near the interface will tend to overestimate the actual error there—particularly when
uh approximates u well. To illustrate this explicitly we give a brief summary of the
result using the Bank–Xu recovery technique, which is a global recovery technique. In
Figure 2, we see a clear qualitative difference between the sort of refinement produced
by the bump estimator and the naive use of the Bank–Xu estimator—the sort of
difference we might have guessed due to the overestimation of error near the interface
for the latter. The error model for this refinement is |eh|1,Ω ≈ 845N−0.487, with
effectivity EFF ≈ 3 as the mesh is refined. We are not trying to make the point that
this sort of bad behavior is unavoidable for gradient recovery schemes—in practice it
can be avoided by taking care to not average out a gradient jump where there should
be one. Bank and Xu noted this in an example in [4], and performing their gradient
recovery scheme for our problem on each subdomain separately restores the optimal
performance. The point that we are trying to make with this discussion is that with
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Table 5

Timing comparison: the ratio of the costs to compute εh and R∇uh. Ratios in the first three
rows correspond to using SGS-CG to compute εh, and the bottom three rows correspond to using
unpreconditioned CG.

Simple 3.17 3.37 3.53 3.25 2.66 2.24
Oscillatory 3.15 4.07 3.61 3.40 2.05 2.38
Slit domain 3.19 2.83 2.85 3.01 2.66 2.03

Simple 2.50 2.56 2.63 2.38 1.98 1.49
Oscillatory 2.45 2.53 2.74 2.59 1.44 1.53
Slit domain 2.55 2.09 2.15 2.12 1.94 1.40

the bump error estimator it is not necessary to treat subdomains differently. We
think that this is an attractive feature of the estimator, particularly in cases where
the number of jumps in the coefficient on the diffusion term (and hence the number
of jumps in the gradient of the solution) is large, or where there are small or narrow
regions in which the number of elements needed to get a good approximation of the
true solution there is smaller than the number of elements needed to perform any of
the standard gradient recovery techniques.

5.5. Computational cost. Although the linear system involved in the compu-
tation of εh can be expected to have roughly three times the number of unknowns as
that for computing uh, the system itself is readily solved because it is well-conditioned
(see [5, p. 11], for example). But how does the cost compare with that of various gradi-
ent recovery schemes? We content ourselves with a direct comparison to the recovery
scheme of Bank and Xu as it is currently implemented in PLTMG. In Table 5, we have
the ratios of the times needed to compute εh and the recovered gradient R∇uh for
three of the four problems considered here—the jumping coefficient problem was omit-
ted because it would have required a modification of the gradient recovery subroutines
in PLTMG. We have used the symmetric Gauß–Seidel method as a preconditioner for
CG in the computation of εh, as in all of the experiments above, and these data
correspond to those experiments. For example, the ratio 3.17 for the simple prob-
lem corresponds to the coarsest mesh (88 triangles for both εh and R∇uh), and 2.24
corresponds to the finest mesh (126919 triangles for εh and 127020 for R∇uh).

For these three problems, unpreconditioned CG can be used instead with no loss
in effectivity. When this is done, the timing ratios improve, as is shown in the bottom
three rows of Table 5. We generally advocate using some sort of preconditioner for
problems such as the jumping coefficient problem because otherwise one notices a drop
in effectivity. We suggest that the greater computational cost, still quite small with
respect to the total computational cost of the adaptive algorithm, may be worthwhile
for this very robust and flexible error estimator. The robustness of the estimator is
seen theoretically in that, even in situations where the assumptions taken here do not
apply, we can fall back on the “old” analysis based on the milder saturation assumption
and on the strengthened Cauchy inequality, which hold under quite general conditions
(see [9] and [10, pp. 436–445]). The flexibility of the approximate error function
εh ≈ u − uh is clear in that it can be used to measure error in other norms or to
approximate error in certain functionals of interest (see [18]), as well as for mesh
smoothing procedures such as that proposed by Bank and Smith [2].

6. Final remarks. We have given proof and numerical evidence of the effective-
ness of the hierarchical basis type bump function estimator εh ≈ u− uh in recovering
function values and first and second derivatives. The proofs offered here are based on
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the superconvergence result ||uh − u�||1,Ω = o(h), which is usually used in the proofs
of the effectiveness of gradient recovery methods. In our proofs, we replace the stan-
dard saturation assumption and strengthened Cauchy inequality used in the analysis
commonly given for hierarchical basis methods with relatively mild mesh symmetry
conditions and relatively strong smoothness assumptions, which are sufficient but
often not seen to be necessary in practice. We thereby obtain stronger theoretical
results than are generally given for such estimators, and these results are borne out
in practice. The approximation εh ≈ u−uh is provably quite robust and can be used
for error estimation and adaptivity in a variety of norms and other measures.

In terms of the asymptotically exact recovery of gradient error, our estimator
||∇εh||0,Ω has a lot of very good competition in the many gradient recovery procedures
proposed in the literature. In addition to the recovery procedure of Bank and Xu,
which is mentioned several times above, we also cite the local least-squares fitting of
Zienkiewicz and Zhu [23, 24] (perhaps the most popular), the polynomial preserving
method of Zhang and Naga [16, 21], and the method proposed by Wiberg and Li
[15, 19], which has the most in common with our own in that it can be used directly
to produce a locally quadratic (though not globally continuous) approximation of the
error u−uh. These methods should also be suitable for recovering second derivatives—
Bank and Xu argue as much for their estimator—but not much has been written in
the gradient recovery literature about estimating the function error. The notable
exception in this regard is in the aforementioned works of Wiberg and Li, where
numerical evidence of efficiency and reliability of their estimator are given, but no
analysis is provided.

We now briefly consider a few straightforward generalizations of what has been
presented here. The O(h2σ)-irregular triangulation assumption is generalized in [20],
where Xu and Zhang call it Condition(α, σ). We note that the σ in the Xu–Zhang
paper plays the role of the 2σ used in both the Bank–Xu paper and our own, and an
O(h1+α)-parallelogram property is used instead of an O(h2)-parallelogram property.
In their paper, Xu and Zhang also use the less stringent regularity condition u ∈
H3(Ω) ∩ W 2

∞(Ω). Under these assumptions and a few natural assumptions on the
bilinear form for the problem, they prove that

(66) ||uh − u�||1,Ω � h1+min(α,1/2,σ/2)(||u||3,Ω + |u|2,∞,Ω).

The results in this paper can be modified in the obvious way to incorporate the Xu–
Zhang version of the mesh symmetry conditions and the weaker regularity assumption,
with no change in the proofs.

We will mention two other ways in which the arguments given here can be readily
generalized. The first is to consider linear simplicial elements in R

n, n > 2. Recall
that the key result from which all of the other estimates were proved was of the form

(67) ||uh − u�||1,Ω = o(h),

where uh is the linear finite element approximation and u� is the linear Lagrange
interpolant. Brandts and Kř́ıžek [7, 12] show that

(68) ||uh − u�||1,Ω � h2||u||3,Ω

on very regular meshes for u ∈ H1
0 (Ω) ∩ Hs(Ω) and s = 3 for n ≤ 5 and s > n/2

for n ≥ 6. Any s greater than 3 is needed only to ensure that the nodal interpolant
u� can be well-defined. Chen [8] generalizes the argument of [3] to mildly structured
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tetrahedral meshes in R
3 to obtain

(69) ||uh − u�||1,Ω � h1+min(1,σ)||u||3,∞,Ω,

where u ∈ H1
0 (Ω) ∩W 3

∞(Ω) and σ measures the violation of an O(h2)-parallelepiped
property. With such superconvergence results, the extension of our results proceeds
in the obvious fashion.

Another generalization would be to consider hierarchical error estimators for
higher order elements. For example, let V̂h = V̄h ⊕ (V̂h \ V̄h) be the piecewise cubic
finite element space, which we think of hierarchically. If ūh ∈ V̄h is the finite element
solution, we might want to estimate the error u− ūh using a function in V̂h \ V̄h; call
it ε̄h. Li [13, 14] has shown that Lagrange interpolation does not generally give the
analogous superconvergence results for elements of degree 3 or higher in R

2, but we
are free to use some other appropriate interpolation scheme. Let Πq : C(Ω̄) → V̄h and

Πc : C(Ω̄) → V̂h be defined by

Πqu(vi) = Πcu(vi) = u(vi) for vertices vi,∫
ej

u− Πqu ds =

∫
ej

(u− Πcu)v ds = 0 for edges ej and linear functions v,∫
τ

u− Πcu dx = 0 for triangles τ.

Huang and Xu [11] argue that

(70) ||ūh − Πqu||1,Ω � h2+min(1,σ)/2(||u||4,Ω + |u|3,∞,Ω), Πcu− Πqu ∈ V̂h \ V̄h.

One might correctly infer from the statement of the result that a similar argument to
those found in [3, 20] is used. With an estimate like this, the analogue of Theorem 3.3
can be proved in the obvious way. Using arguments like those given in Lemma 3.5
and Theorem 3.6, we see that our approximate error function ε̄h ≈ u − ūh provides
superconvergent approximation of ||u−ūh||2,Ω and convergent approximation of ||u||3,Ω.
Finally, arguing along the same lines as in section 4 we get even better results than in
the case of piecewise linears, because it actually does hold that ||ūh−Πqu||0,Ω = o(h3).
Huang and Xu have plans to extend their results to higher order elements as well,
and the analogous results should be able to be plugged into our framework with little
difficulty.
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Abstract. The purpose of this paper is to give a numerical treatment for a class of quasi-linear
elliptic equations under nonlinear boundary conditions, including the three basic types of linear
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1. Introduction. Nonlinear elliptic boundary value problems arise from many
fields of applied sciences and have been investigated extensively in the literature both
analytically and numerically. The analytical consideration is mostly for the existence,
uniqueness, multiplicity, and bifurcation of solutions, while the numerical investigation
is often devoted to accurate and efficient computational algorithms, error estimates,
and convergence of the discrete solution to the corresponding continuous solution of
the original problem. In this paper, we investigate some of the numerical aspects for a
class of quasi-linear elliptic equations under nonlinear boundary conditions, including
the three basic types of linear boundary conditions: Dirichlet, Neumann, and Robin.
The class of quasi-linear boundary problems under consideration is given in the form

−∇ · (D(u)∇u) + c(x) · (D(u)∇u) = f(x, u) (x ∈ Ω),

D(u)∂u/∂ν = g(x, u) (x ∈ ∂Ω),
(1.1)

where Ω is a bounded domain in R
p with boundary ∂Ω(p = 1, 2, . . .), ∇ is the gra-

dient operator in Ω, and ∂u/∂ν denotes the outward normal derivative of u on ∂Ω.
The vector c(x) = (c(1)(x), . . . , c(p)(x)) and the functions D(u), f(x, u), and g(x, u)
(which, in general, are nonlinear in u) are prescribed continuous functions of their
respective arguments. In terms of reaction diffusion problems, the three terms in the
quasi-linear equation of (1.1) are referred to as diffusion, convection, and reaction,
respectively. It is assumed that D(u) > 0 for u in a subset S0 of R

1(see (2.12)),
but we allow D(u) = 0 at u = 0 for homogeneous Dirichlet boundary condition in
(1.1a) below. This assumption implies that problem (1.1a) may be degenerate at the
boundary points when the boundary condition is of Dirichlet type. The consideration
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of the boundary condition in (1.1) includes the Neumann or Robin type

∂u/∂ν + β(x)u = g∗(x, u) (x ∈ ∂Ω),

where β(x) ≥ 0 on ∂Ω. In fact, the above boundary condition, including the linear case
g∗(x, u) = g∗(x), can be written in the form of (1.1) with g(x, u) = D(u)(g∗(x, u) −
β(x)u). The above nonlinear boundary condition has been given considerable atten-
tion in the literature, and various special forms of the nonlinear functions were treated
(cf. [13, 17, 21, 23, 25, 31]). In order to include all three basic types of linear boundary
conditions, we also consider the Dirichlet boundary condition

u(x) = ξ(x) (x ∈ ∂Ω)(1.1a)

and refer to this problem as problem (1.1a). It is to be noted that if the diffusion
coefficient D(u) is replaced by the more general function b(x)D(u) for a smooth func-
tion b(x) in Ω, then problem (1.1) can be reduced to the same form except with the
convection coefficient c replaced by (c + ∇b). Hence our investigation in the follow-
ing discussions is directly applicable to the above more general equation without any
complication.

Numerical treatment of the quasi-linear boundary problem (1.1) is extensive, and
various aspects of the problem, such as method of computation, error estimate, and
convergence of discrete solution, have been discussed (cf. [2, 8, 11, 15, 16, 18, 19,
32, 35]). There is also extensive numerical treatment for the corresponding time-
dependent problem (cf. [1, 6, 9, 26, 34]). However, most of the treatments in these
works are devoted either to semilinear equations where the diffusion coefficient is den-
sity independent or to quasi-linear equations with linear boundary conditions. The
papers in [23, 26, 29] are for semilinear equations with linear boundary conditions
where monotone iterative methods are used to develop computational algorithms.
The same method is used in [25] for semilinear equations with nonlinear boundary
conditions and in [26, 34] for time-dependent problems. On the other hand, the treat-
ment in [2, 8, 11, 15, 16, 18, 19, 20, 35] is for linear Dirichlet or Neumann boundary
condition, and most of the discussions are concerned with error estimates of solu-
tions using the finite element method. In the above works, a unique solution to the
problem is often assumed to exist, although the existence of more than one solu-
tion for nonlinear elliptic boundary problems occurs often in many physical problems
(cf. [23]).

In this paper, we use the method of upper and lower solutions and its associated
monotone iteration for the computation of numerical solutions of problems (1.1) and
(1.1a). Our approach to the problem is to formulate it as a coupled system of a
semilinear elliptic equation and an algebraic equation and then to develop monotone
iterative schemes for the corresponding discrete system by the finite difference method
(see also Remark 3.1). This approach makes it possible to apply the ideas and tech-
niques for semilinear equations to the present quasi-linear boundary problems. The
purpose of this paper is (i) to present three monotone iterative schemes (called Picard,
Gauss–Seidel, and Jacobi iterations, respectively) for the computation of solutions of
the finite difference system, including the existence of maximal and minimal solu-
tions, and some comparison theorems among the three monotone iterations, and (ii)
to show the convergence of the finite difference solution to the corresponding contin-
uous solution as the mesh size tends to zero. Applications are given to some physical
problems in heat transfer and combustion theory, and numerical results are given to
some heat-conduction problems.
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The plan of the paper is as follows: In section 2, we formulate the quasi-linear
boundary problem (1.1) (or (1.1a)) as a coupled system of semilinear boundary prob-
lem and an algebraic equation and then develop a Picard type of monotone iteration
for the finite difference system of the coupled equations. The Gauss–Seidel and Jacobi
iterations are given in section 3, and some comparison theorems among these mono-
tone iterations are given in section 4. Section 5 is devoted to the convergence of the
maximal and minimal solutions to the corresponding maximal and minimal solutions
of the continuous system. In section 6, we give some applications of the monotone
iterations to some heat-conduction problems. Some numerical results with (and with-
out) a known continuous solution are given in section 7 to demonstrate the monotone
property of the iterative schemes and the reliability of the numerical computations.

2. A Picard-type monotone iteration. In order to develop computational
schemes for numerical solutions of (1.1) or (1.1a), we form the problem as a coupled
system of a semilinear elliptic boundary value problem and an algebraic equation.
Define

w(x) =

∫ u(x)

0

D(s)ds (x ∈ Ω).(2.1)

Then ∇w = D(u)∇u and ∂w/∂ν = D(u)∂u/∂ν. Since dw/du = D(u), we see that if
D(u) > 0 for u ∈ S0, then the inverse function of (2.1), denoted by u = q(w), exists
and dq/dw = 1/D(u). Hence problem (1.1) may be written in the equivalent form

−∇2w + c · ∇w = f(x, u), u = q(w) (x ∈ Ω),

∂w/∂ν = g(x, u) (x ∈ ∂Ω).
(2.2)

Let γ(l)(x), l = 1, 2, be some nonnegative functions to be chosen, and define

F (x, u) = f(x, u) + γ(1)(x)

∫ u

0

D(s)ds (x ∈ Ω),

G(x, u) = g(x, u) + γ(2)(x)

∫ u

0

D(s)ds (x ∈ ∂Ω).

(2.3)

Then, by adding γ(1)w and γ(2)w on both sides of the respective equations in (2.2)
and using the relation (2.1), we obtain the equivalent system

−∇2w + c · ∇w + γ(1)w = F (x, u), u = q(w) (x ∈ Ω),

∂w/∂ν + γ(2)w = G(x, u) (x ∈ ∂Ω).
(2.4)

For the Dirichlet problem (1.1a), we replace the boundary condition in (2.4) (or (2.2))
by

w(x) =

∫ ξ(x)

0

D(s)ds ≡ ξ∗(x) (x ∈ ∂Ω)(2.4a)

and refer to this system as problem (2.4a). It is obvious that u is a solution of (1.1)
(resp., (1.1a)) if and only if (u,w) is a solution of (2.4) (resp., (2.4a)). Although the
above system can be written as an uncoupled boundary value problem in w, we find
it more convenient to treat it as a coupled system. In fact, our discretized system for
numerical solutions is based on the form (2.4) or (2.4a).
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Let i = (i1, . . . , ip) be a multiple index with iν = 1, . . . ,Mν , and let xi =
(xi1 , . . . , xip) be a mesh point on Ω ≡ Ω ∪ ∂Ω, where ν = 1, . . . , p and Mν is the

total number of intervals in the xν-direction. Denote by Λ, ∂Λ, and Λ the sets of
mesh points of Ω, ∂Ω, and Ω, respectively, and when no confusion arises we write
i ∈ Λ′ when xi ∈ Λ′, where Λ′ stands for Λ, ∂Λ, or Λ. Let hν be the spatial increment
in the xν-direction, and let ui = u(xi), wi = w(xi), and ci = (c(1)(xi), . . . , c

(p)(xi)).
Define

D(ui) = D(u(xi)), q(wi) = q(w(xi)),
Fi(ui) = F (xi, u(xi)), Gi(ui) = G(xi, u(xi)).

(2.5)

Then, by the central difference approximations

Δp[wi] ≡
p∑

ν=1

Δ(ν)wi ≡
p∑

ν=1

h−2
ν [w(xi + hνeν) − 2w(xi) + w(xi − hνeν ],

ci · δp[wi] =

p∑
ν=1

(c(ν)(xi)/2hν)[w(xi + hνeν) − w(xi − hνeν)]

(2.6)

and the boundary approximation

B̂[w0] = [w(x0) − w(x̂)]/|x0 − x̂| (x0 ∈ Λ),(2.7)

where eν is the unit vector in R
p with the νth component one and zero elsewhere

and x̂ is a suitable neighboring point of x0 in Λ, we approximate (2.4) by the finite
difference system

−Δp[wi] + ci · δp[wi] + γ
(1)
i wi = Fi(ui), ui = q(wi) (i ∈ Λ),

B̂[wi] + γ
(2)
i wi = Gi(ui) (i ∈ ∂Λ).

(2.8)

For the Dirichlet problem (2.4a), the boundary condition in (2.8) is replaced by

wi = ξ∗i (i ∈ ∂Λ),(2.8a)

and the corresponding finite difference system is referred to as problem (2.8a). Al-
though the boundary approximation in (2.7) can be approximated by a suitable central
differencing scheme, the present formulation is more convenient in the discussion for
the general multidimensional domain Ω (cf. [3, 12, 27, 29]).

To develop monotone iterative schemes for the solution of (2.8) or (2.8a), we
impose the following basic hypothesis:
(H1) (i) D(u) > 0 for u ∈ S0 and hν < |c(ν)(xi)|−1 for xi ∈ Λ and ν = 1, . . . , p.

(ii) f(·, u) and g(·, u) are C1-functions of u, and there exist nonnegative
functions γ(1)(x), γ(2)(x), not both identically zero, such that

γ(1)(x)D(u) + fu(x, u) ≥ 0,
for u ∈ S0 (x ∈ Ω, x′ ∈ ∂Ω),

γ(2)(x′)D(u) + gu(x′, u) ≥ 0,
(2.9)

where S0 is a sector in R
1 given by (2.12) below. It is clear that condition (2.9) is

trivially satisfied (with γ(1)(x) = γ(2)(x) = 0) if f(·, u) and g(·, u) are either inde-
pendent of u or nondecreasing in u for u ∈ S0. It is also satisfied by any functions
γ(1)(x), γ(2)(x) satisfying

γ(1)(x) ≥ −fu(x, u)/d0, γ(2)(x′) ≥ −gu(x′, u)/d0 (u ∈ S0)
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if D(u) ≥ d0 > 0 for u ∈ S0. Hence condition (2.9) is needed only for the degenerate
case D(0) = 0, and f(·, u) and g(·, u) are not nondecreasing in u. Since, by (2.3),

Fu(x, u) = fu(x, u) + γ(1)(x)D(u),

Gu(x, u) = gu(x, u) + γ(2)(x)D(u),
(2.10)

condition (2.9) implies that F (·, u) and G(·, u) are nondecreasing in u for u ∈ S0. The
subset S0 is the sector between a pair of upper and lower solutions which are defined
by the following.

Definition 2.1. A function (ũi, w̃i) is called an upper solution of (2.8) if

−Δp[w̃i] + ci · δp[w̃i] + γ
(1)
i w̃i ≥ Fi(ũi), ũi ≥ q(w̃i) (i ∈ A),

B̂[w̃i] + γ
(2)
i w̃i ≥ Gi(ũi) (i ∈ ∂Λ).

(2.11)

Similarly, (ûi, ŵi) is called a lower solution if it satisfies (2.11) with the inequalities
reversed. The pair (ũi, w̃i), (ûi, ŵi) is said to be ordered if (ũi, w̃i) ≥ (ûi, ŵi) for every
i ∈ Λ.

For the Dirichlet problem (2.8a), the inequalities for w̃i and ŵi on the boundary
in (2.11) are replaced by

w̃i ≥ ξ∗i ≥ ŵi (i ∈ ∂Λ).(2.11a)

It is obvious from the above definition that a solution (ui, wi) of (2.8) (or (2.8a)) is an
upper solution as well as a lower solution of the corresponding problem. For a given
pair of ordered upper and lower solutions, we set

S0 = {ui ∈ R
1; ûi ≤ ui ≤ ũi},

S = {(ui, wi) ∈ R
2; (ûi, ŵi) ≤ (ui, wi) ≤ (ũi, w̃i)}.

(2.12)

Also, for notational convenience, we define the linear operators

L[wi] = −Δp[wi] + ci · δp[wi] + γ
(1)
i wi (i ∈ Λ),

B[wi] = B̂[wi] + γ
(2)
i wi (i ∈ ∂Λ).

(2.13)

Using ũi or ûi as an initial iteration, we can construct a sequence
{
u

(m)
i , w

(m)
i

}
from

the Picard type of iteration process

L[w
(m)
i ] = Fi(u

(m−1)
i ) (i ∈ Λ),

B[w
(m)
i ] = Gi(u

(m−1)
i ) (i ∈ ∂Λ),

u
(m)
i = q(w

(m)
i ) (i ∈ Λ), m = 1, 2, . . . .

(2.14)

For the Dirichlet problem (2.8a), the boundary condition in (2.14) is replaced by

w
(m)
i = ξ∗i (i ∈ ∂Λ), m = 1, 2, . . . .(2.14a)

It is clear from (2.14) (with m = 1) that starting from any u(0) we can compute

w
(1)
i from the first two equations in (2.14) because Fi(u

(0)) and Gi(u
(0)) are known.

Using the value of w(1) in the third equation of (2.14) gives u
(1)
i . Continuation of this

process shows that the sequence {u(m), w(m)} is well defined and can be computed
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from (2.14) for every m = 1, 2, . . . . The same is true for the Dirichlet problem (2.14a).

Denote the sequence by {u(m)
i , w

(m)
i } if u

(0)
i = ũi and by {u(m)

i , w
(m)
i } if u

(0)
i = ûi,

and refer to them as maximal and minimal sequences, respectively. Our aim is to
show that each of these sequences converges monotonically to a solution of (2.8) or
(2.8a), respectively. For this purpose, we state the following well-known positivity
lemma (e.g., see [24]).

Lemma 2.1. Let hypothesis (H1) hold, and let γ
(l)
i ≥ 0, l = 1, 2. If zi satisfies

L[zi] ≥ 0 in Λ, B[zi] ≥ 0 on ∂Λ,(2.15)

and γ
(1)
i + γ

(2)
i > 0 for at least one i ∈ Λ, then either zi > 0 in Λ or zi ≡ 0 on Λ.

The same conclusion holds if

L[zi] ≥ 0 in Λ, zi ≥ 0 on ∂Λ(2.16)

without the requirement of γ
(1)
i + γ

(2)
i > 0 for some i.

Lemma 2.1 is a discrete version of the maximum principle and is useful for proving
the following monotone property of the maximal and minimal sequences.

Lemma 2.2. Under the hypothesis (H1), the sequences {u(m)
i , w

(m)
i }, {u(m)

i , w
(m)
i }

governed by (2.14) or (2.14a) possess the monotone property

(u
(m)
i , w

(m)
i ) ≤ (u

(m+1)
i , w

(m+1)
i ) ≤ (u

(m+1)
i , w

(m+1)
i ) ≤ (u

(m)
i , w

(m)
i )(i ∈ Λ)(2.17)

for every m = 0, 1, 2, . . . .

Proof. Let z
(0)
i = w

(0)
i − w

(1)
i ≡ w̃i − w

(1)
i . By (2.11), (2.13), and (2.14),

L[z
(0)
i ] = (−Δp[w̃i] + ci · δp[w̃i] + γ

(1)
i w̃i) − Fi(ũi) ≥ 0,

B[z
(0)
i ] = (B̂[w̃i] + γ

(2)
i w̃i) −Gi(ũi) ≥ 0.

In view of Lemma 2.1, we have z
(0)
i ≥ 0, which gives w

(0)
i ≥ w

(1)
i . Since q(wi) is

nondecreasing in wi, the above result and (2.11) imply that

u
(0)
i − u

(1)
i = ũi − q(w(1)) ≥ ũi − q(w̃i) ≥ 0.

This proves (u
(0)
i , w

(0)
i ) ≥ (u

(1)
i , w

(1)
i ). A similar argument gives (u

(1)
i , w

(1)
i ) ≥

(u
(0)
i , w

(0)
i ). Moreover, by (2.14) and the nondecreasing property of Fi(ui) and Gi(ui),

L[w
(1)
i − w

(1)
i ] = Fi(u

(0)
i ) − Fi(u

(0)
i ) ≥ 0,

B[w
(1)
i − w

(1)
i ] = Gi(u

(0)
i ) −Gi(u

(0)
i ) ≥ 0.

This leads to w
(1)
i ≥ w

(1)
i . Again the nondecreasing property of q(wi) gives u

(1)
i −

u
(1)
i = q(w

(1)
i ) − q(w

(1)
i ) ≥ 0, which proves (u

(1)
i , w

(1)
i ) ≥ (u

(1)
i , w

(1)
i ). The above

conclusions show that (2.17) holds for m = 0. Assume, by induction, that (2.17)
holds when m is replaced by (m− 1). Then, by (2.14),

L[w
(m)
i − w

(m+1)
i ] = Fi(u

(m−1)
i ) − Fi(u

(m)
i ) ≥ 0,

B[w
(m)
i − w

(m+1)
i ] = Gi(u

(m−1)
i ) −Gi(u

(m)
i ) ≥ 0.
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It follows from Lemma 2.1 that w
(m)
i ≥ w

(m+1)
i . This implies that

u
(m)
i − u

(m+1)
i = q(w

(m)
i ) − q(w

(m+1)
i ) ≥ 0,

which proves (u
(m+1)
i , w

(m+1)
i ) ≤ (u

(m)
i , w

(m)
i ). A similar argument yields (u

(m+1)
i ,

w
(m+1)
i ) ≥ (u

(m)
i , w

(m)
i ) and (u

(m+1)
i , w

(m+1)
i ) ≥ (u

(m+1)
i , w

(m+1)
i ). The conclusion of

the lemma follows from the principle of induction. The proof for the Dirichlet problem
(2.14a) is similar and is omitted.

Based on the monotone property (2.17), we have the following conclusion for the
nonlinear boundary problem (2.8).

Theorem 2.1. Let (ũi, w̃i), (ûi, ŵi) be ordered upper and lower solutions of

(2.8), and let hypothesis (H1) hold. Then {u(m)
i , w

(m)
i } converges monotonically to a

maximal solution (ui, wi) of (2.8) in S, while {u(m)
i , w

(m)
i } converges monotonically

to a minimal solution (ui, wi). Moreover,

(ûi, ŵi) ≤ (u
(m)
i , w

(m)
i ) ≤ (u

(m+1)
i , w

(m+1)
i ) ≤ (ui, wi) ≤ (ui, wi)

≤ (u
(m+1)
i , w

(m+1)
i ) ≤ (u

(m)
i , w

(m)
i ) ≤ (ũi, w̃i), m = 1, 2, . . . ,

(2.18)

and if (ui, wi) = (ui, wi) (≡ (u∗
i , w

∗
i )), then (u∗

i , w
∗
i ) is the unique solution of (2.8) in

S.
Proof. By the monotone property (2.17), the limits

lim
m→∞

(u
(m)
i , w

(m)
i ) = (ui, wi), lim

m→∞
(u

(m)
i , w

(m)
i ) = (ui, wi)(2.19)

exist and satisfy relation (2.18). Letting m → ∞ in (2.14) shows that both (ui, wi)
and (ui, wi) are solutions of (2.8). We show that these solutions are the respective
maximal and minimal solutions in the sense that if (ui, wi) is any other solution of
(2.8) in S, then (ui, wi) ≤ (ui, wi) ≤ (ui, wi) on Λ.

Let z
(m)
i = w

(m)
i − wi. By (2.8) and (2.14),

L[z
(m)
i ] = Fi(u

(m−1)
i ) − Fi(ui),

B[z
(m)
i ] = Gi(u

(m−1)
i ) −Gi(ui), m = 1, 2, . . . .

Since ûi ≤ ui ≤ ũi and Fi(ui) and Gi(ui) are nondecreasing functions of ui, the above
relation for m = 1 gives

L[z
(1)
i ] = Fi(ũi) − Fi(ui) ≥ 0,

B[z
(1)
i ] = Gi(ũi) −Gi(ui) ≥ 0.

This yields w
(1)
i ≥ wi. Hence u

(1)
i − ui = q(w

(1)
i ) − q(wi) ≥ 0, which proves

(u
(1)
i , w

(1)
i ) ≥ (ui, wi). As in the proof of Lemma 2.2, an induction argument shows

that (u
(m)
i , w

(m)
i ) ≥ (ui, wi) for every m. Letting m → ∞ and using the relation in

(2.19) lead to (ui, wi) ≥ (ui, wi). A similar argument gives (ui, wi) ≤ (ui, wi), which
proves the maximal and minimal property of (ui, wi) and (ui, wi). It is obvious from
this property that (u∗

i , w
∗
i ) is the unique solution of (2.8) in S if (ui, wi) = (ui, wi).

This proves the theorem.
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To ensure that (ui, wi) = (ui, wi), it is necessary to impose some additional
conditions on f(·, u) and g(·, u). A sufficient condition is given in the following.
(H2) fu(x, u) ≤ 0, gu(x′, u) ≤ 0 for x ∈ Ω, x′ ∈ ∂Ω, u ∈ S0, and either

fu(x, u) < 0 for some x ∈ Ω or gu(x′, u) < 0 for some x′ ∈ ∂Ω.
Theorem 2.2. Let (ũi, w̃i), (ûi, ŵi) be ordered upper and lower solutions of (2.8),

and let hypotheses (H1), (H2) hold. Then (ui, wi) = (ui, wi) (≡ (u∗
i , w

∗
i )) and (u∗

i , w
∗
i )

is the unique solution of (2.8) in S.
Proof. Since, by (2.1) and (2.3),

Fi(ui) = fi(ui) + γ
(1)
i wi, Gi(ui) = gi(ui) + γ

(2)
i wi,

the maximal and minimal solutions (ui, wi), (ui, wi) of (2.8) satisfy the equations

−Δp[wi] + ci · δp[wi] = fi(ui), B̂[wi] = gi(ui), ui = q(wi),

−Δp[wi] + ci · δp[wi] = fi(ui), B̂[wi] = gi(ui), ui = q(wi).

A subtraction of the corresponding equations in the above relation and using the
nonincreasing property of fi(ui), gi(ui) in (H2) lead to

−Δp[wi − wi] + ci · δp[wi − wi] = fi(ui) − fi(ui) ≥ 0,

B̂[wi − wi] = gi(ui) − gi(ui) ≥ 0,

ui − ui = q(wi) − q(wi).

Applying Lemma 2.1 to the first two of the above relations gives wi − wi ≥ 0. By
Theorem 2.1, we obtain wi = wi, which ensures that ui = ui. This proves (ui, wi) =
(ui, wi) and thus the uniqueness of the solution.

When the nonlinear boundary condition in (2.8) is replaced by the Dirichlet

boundary condition (2.8a), the equation for w
(m)
i on ∂Λ in the iteration process (2.14)

is replaced by (2.14a). By using the same argument as that in the proof of Theorems
2.1 and 2.2, we have the following analogous conclusions.

Theorem 2.3. Let (ũi, w̃i), (ûi, ŵi) be ordered upper and lower solutions of the
Dirichlet problem (2.8a), and let hypothesis (H1) hold. Then all the conclusions in

Theorem 2.1 hold true for the corresponding sequences {u(m)
i , w

(m)
i }, {u(m)

i , w
(m)
i }

from (2.14), (2.14a). Moreover, the uniqueness result in Theorem 2.1 holds if fu(x, u)
≤ 0 for x ∈ Ω, u ∈ S0.

Proof. The proof follows from the same argument as that in the proof for problem
(2.8) and is omitted.

Remark 2.1. (a) If D(u) = d0 is a positive constant, then all the conclusions
in Theorems 2.1–2.3 hold true for the semilinear system (2.8) with wi = d0ui and
q(wi) = wi/d0. In this situation, the iteration process (2.14) (or (2.14a)) is reduced
to that in [25, 27]. On the other hand, Theorems 2.1 and 2.3 hold true for any
D(u) > 0 if either fi(ui) = fi or gi(u) = gi is independent of u since the requirement
in (H1) is trivially satisfied.

(b) For the uniqueness result in Theorem 2.2, the strict inequality fu(x, u) < 0
for some x ∈ Ω or gu(x′, u) < 0 for some x′ ∈ ∂Ω in hypothesis (H2) is needed. For
example, if f(x, u) = f(x), g(x′, u) = g(x′), and D(u) = d0 are all independent of
u, then problem (2.2) has no solution or infinite number of solutions depending on
whether

∫
Ω
f(x)dx + d0

∫
∂Ω

g(x′)dx′ is nonzero or zero. However, for the Dirichlet
problem (2.8a), this requirement is not needed.



QUASI-LINEAR ELLIPTIC EQUATIONS 1089

(c) For each m, (u
(m)
i , w

(m)
i ) is an upper bound of the maximal solution (ui, wi),

while (u
(m)
i , w

(m)
i ) is a lower bound of the minimal solution (ui, wi), and if (ui, wi) =

(ui, wi) (≡ (u∗
i , w

∗
i )), then they become upper and lower bounds of (u∗

i , w
∗
i ). In the

latter situation, the difference (u
(m)
i − u

(m)
i , w

(m)
i − w

(m)
i ) gives a maximum possible

error of the solution and is often used as a stopping criterion in practical computation.
(d) In the hypothesis (H1) − (i), it is assumed that hν < |c(ν)(xi)|−1 for ν =

1, . . . , p. If the convection coefficient |c| is extremely large (that is, convection domi-
nate diffusion), then the conclusions in Theorems 2.1–2.3 remain true, provided that
an upwind differencing scheme is used for the convection term c · ∇w (cf. [3, 12]).

3. Gauss–Seidel and Jacobi monotone iterations. In the Picard-type iter-
ation (2.14), it is necessary to solve a linear algebraic system for each iteration. Since
the number of equations in this system may be very large when the spatial domain
Ω is of multiple dimension, it may require another iterative scheme for the compu-

tation of the iteration (u
(m)
i , w

(m)
i ). To avoid additional iterations while maintaining

the monotone convergence of the sequence, we consider two additional iteration pro-
cesses, called Gauss–Seidel and Jacobi iterations. To describe these iterations, it is
more convenient to write the finite difference system (2.8) (or (2.8a)) in vector form.

Let M = (M1 − 1) · · · (Mp − 1) be the total number of interior mesh points in Λ.
Define (column) vectors

U = (u1, . . . , uM )T , W = (w1, . . . , wM )T , Q(W ) = (q(w1), . . . , q(wM ))T ,

F (U) = (F1(u1), . . . , FM (uM ))T , G(U) = (G1(u1), . . . , GM (uM ))T ,
(3.1)

where (·)T denotes the transpose of a row vector. Then the finite difference system
(2.8) may be written in the vector form

AW = F (U) + G(U), U = Q(W ),(3.2)

where A = A + Γ. The matrix A is, in general, an M by M block matrix which is
associated with the diffusion-convection operator in (2.6) and the boundary approx-
imation in (2.7), and Γ is a nonnegative diagonal matrix with its diagonal elements

determined by γ
(1)
i and γ

(2)
i (cf. [25, 26, 27]) for some details). For the Dirichlet

problem (2.8a), the vector form is given by

AW = F (U) + ξ∗, U = Q(W ),(3.2a)

where ξ∗ is associated with (ξ∗1 , . . . , ξ
∗
M )T . Since our concern here is the mathematical

structure of the finite difference system, detailed formulation of the above vector form
will not be given here. However, we make the following hypothesis on the matrix A.
(H3) The matrix A = (ajk) is irreducible, and ajj > 0, ajk ≤ 0 for k 
= j and

M∑
k=1

ajk ≥ 0 for all j = 1, . . . ,M.(3.3)

It is easy to show from (2.6) and hν < |c(ν)(xi)|−1 that for both the Neumann
boundary problem (2.8) and the Dirichlet problem (2.8a) the conditions in (H3) are
all satisfied. In fact, for the Dirichlet problem (2.8a), A is symmetric, and strict
inequality in (3.3) holds for at least one j, while for the Neumann problem (2.8)
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condition (3.3) becomes

M∑
k=1

ajk = 0 for all j = 1, . . . ,M.(3.4)

The connectedness of Ω ensures that A is irreducible. The condition in (H3) implies
that A is an M -matrix, and for any nontrivial nonnegative diagonal matrix Γ the
inverse A−1 = (A + Γ)−1 exists and is a positive matrix (cf. [33, 36]). Moreover, the
smallest eigenvalue μ0 of A is nonnegative, and its corresponding eigenvector may
be chosen positive. For the boundary problem (2.8a), μ0 > 0, and A−1 exists and
is a positive matrix (cf. [33]). In the following discussion, we consider the Dirichlet

problem (3.2a) as a special case of (3.2) with G(U) = ξ∗ and Γ ≡ diag(γ
(1)
1 , . . . , γ

(1)
M ).

In terms of the above vector form, the definition of upper and lower solutions in
Definition 2.1 is reduced to the following.

Definition 3.1. A vector (Ũ , W̃ ) ∈ R
M ×R

M is called an upper solution of (3.2)
if

AW̃ ≥ F (Ũ) + G(Ũ), Ũ ≥ Q(W̃ ).(3.5)

Similarly, (Û , Ŵ ) is called a lower solution if it satisfies (3.5) with the inequalities
reversed.

In the above definition, inequalities between vectors are always in the componen-
twise sense. It is easy to check that if the components (ũi, w̃i), (ûi, ŵi) of (Ũ , W̃ ) and
(Û , Ŵ ) satisfy the requirements in Definition 2.1, then (Ũ , W̃ ) and (Û , Ŵ ) satisfy the
requirements in Definition 3.1. For a given pair of ordered upper and lower solutions
(Ũ , W̃ ), (Û , Ŵ ) (that is, (Ũ , W̃ ) ≥ (Û , Ŵ )), we again set

S0 = {U ∈ R
M ; Û ≤ U ≤ Ũ},

S = {(U,W ) ∈ R
M × R

M ; (Û , Ŵ ) ≤ (U,W ) ≤ (Ũ , W̃ )}.
(3.6)

To describe the Gauss–Seidel and Jacobi iterations, we write the matrix A in the
split form A = D−L−U , where D, −L, and −U are the diagonal, lower-off-diagonal,
and upper-off-diagonal submatrices of A, respectively. It is clear from hypothesis (H3)
that all the diagonal elements of D are positive and all the elements of L and U are
nonnegative. Define a triangular matrix G and a diagonal matrix J by

G = D + Γ − L, J = D + Γ.(3.7)

Then we have the following three types of iterations:
Picard iteration

AW (m) = F (U (m−1)) + G(U (m−1)), U (m) = Q(W (m)).(3.8)

Gauss–Seidel iteration

GW (m) = UW (m−1) + F (U (m−1)) + G(U (m−1)), U (m) = Q(W (m)).(3.9)

Jacobi iteration

JW (m) = (U + L)W (m−1) + F (U (m−1)) + G(U (m−1)), U (m) = Q(W (m)).(3.10)
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For the Dirichlet problem (3.2a), we replace G(U (m−1)) in (3.8)–(3.10) by ξ∗ for every
m. It is clear that the Picard iteration (3.8) is simply a vector representation of the
iteration process (2.14).

To obtain monotone convergent sequences, we observe from hypothesis (H3) that
the inverse matrices A−1, G−1, and J−1 all exist and are positive matrices (cf.
[33, 36]). This implies that given any initial iteration U (0) the sequence {U (m),W (m)}
governed by any one of the iteration processes in (3.8), (3.9), and (3.10) is well de-

fined. In each case, we denote the sequences by {U (m)
,W

(m)} if U (0) = Ũ , and by

{U (m),W (m)} if U (0) = Û , and refer to them as maximal and minimal sequences, re-
spectively. The following theorem gives the monotone convergence of these sequences.

Theorem 3.1. Let (Ũ , W̃ ), (Û , Ŵ ) be ordered upper and lower solutions of

(3.2), and let {U (m)
,W

(m)}, {U (m),W (m)} be the maximal and minimal sequences
governed by any one of the iteration processes in (3.8), (3.9), and (3.10). Assume

that hypotheses (H1) and (H3) hold. Then {U (m)
,W

(m)} converges monotonically to

a maximal solution (U,W ) of (3.2), and {U (m),W (m)} converges monotonically to a
minimal solution (U,W ). Moreover,

(Û , Ŵ ) ≤ (U (m),W (m)) ≤ (U (m+1),W (m−1)) ≤ (U,W ) ≤ (U,W )

≤ (U
(m+1)

,W
(m+1)

) ≤ (U
(m)

,W
(m)

) ≤ (Ũ , W̃ ), m = 1, 2, . . . ,
(3.11)

and if hypothesis (H2) holds, then (U,W ) = (U,W ) (≡ (U∗,W ∗)) and (U∗,W ∗) is
the unique solution of (3.2) in S.

Proof. Since the Picard iteration (3.8) is a vector representation of the iteration
process (2.14), the conclusion of the theorem for the Picard iteration follows from
Theorems 2.1 and 2.2. We show the monotone property

(U (m),W (m)) ≤ (U (m+1),W (m+1))

≤ (U
(m+1)

,W
(m+1)

) ≤ (U
(m)

,W
(m)

), m = 0, 1, 2, . . . ,
(3.12)

for the Gauss–Seidel iteration (3.9). It is obvious from (3.5), (3.9) (with m = 1), and
A = G − U that

G(W
(0) −W

(1)
) = GW (0) − [UW (0)

+ F (U
(0)

) + G(U
(0)

)]

= AW̃ − F (Ũ) −G(Ũ) ≥ 0.

The positivity of G−1 implies that W
(0) ≥ W

(1)
. Using this relation in the second

equation of (3.9) and applying the nondecreasing property of Q(W ) yield

U
(0) − U

(1)
= Ũ −Q(W

(1)
) ≥ Ũ −Q(W̃ ) ≥ 0.

This proves (U
(1)

,W
(1)

) ≤ (U
(0)

,W
(0)

). A similar argument gives (U (0),W (0)) ≤
(U (1),W (1)). Moreover, by the nonnegative property of U and the nondecreasing
property of F (U) and G(U), we have

G(W
(1) −W (1)) = U(U

(0) − U (0)) + F (U
(0)

) − F (U (0)) + G(U
(0)

) −G(U (0)) ≥ 0.

This leads to W
(1) ≥ W (1), and therefore U

(1) − U (1) = Q(W
(1)

) − Q(W (1)) ≥ 0.
The above conclusions show that (3.12) holds for m = 0. Assume, by induction, that
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(3.12) is satisfied when m is replaced by m−1 for some m > 1. Then, again by U ≥ 0
and the nondecreasing property of F (U) and G(U),

G(W
(m) −W

(m+1)
) = U(W

(m−1) −W
(m)

) + F (U
(m−1)

) − F (U
(m)

)

+ G(U
(m−1)

) −G(U
(m)

) ≥ 0.

This gives W
(m) ≥ W

(m+1)
, and hence U

(m)−U
(m+1)

= Q(W
(m)

)−Q(W
(m+1)

) ≥ 0,

which proves (U
(m+1)

,W
(m+1)

) ≤ (U
(m)

,W
(m)

). The same reasoning shows that

(U (m),W (m)) ≤ (U (m+1),W (m+1)) ≤ (U
(m+1)

,W
(m+1)

). The monotone property
(3.12) follows from the principle of induction.

In view of (3.12), the limits

lim
m→∞

(U
(m)

,W
(m)

) = (U,W ), lim
m→∞

(U (m),W (m)) = (U,W )(3.13)

exist and satisfy relation (3.11). Letting m → ∞ in (3.9) and using the relation
A = G − U show that both (U,W ) and (U,W ) are solutions of (3.2). The maximal
property of (U,W ) and the minimal property of (U,W ) follow from the argument in
the proof of Theorem 2.1. Finally, if (H2) holds, then, by (3.2),

A(W −W ) = [F (U) + G(U)] − [F (U) + G(U)] ≥ 0.

The positivity of A−1 ensures W ≥ W . In view of (3.11), we have W = W . This
implies that U − U = Q(W ) −Q(W ) = 0, which shows that (U,W ) = (U,W ). The
uniqueness of the solution in S∗ follows from the maximal and minimal property of
(U,W ) and (U,W ). This proves the theorem for the Gauss–Seidel iteration. The
proof for the Jacobi iteration is similar and is omitted.

For the Dirichlet problem (3.2a), we have the following analogous results.
Theorem 3.2. Let (Ũ , W̃ ), (Û , Ŵ ) be ordered upper and lower solutions of (3.2a),

and let hypotheses (H1) and (H3) hold. Then the maximal and minimal sequences
obtained from any one of the iterations in (3.8), (3.9), and (3.10), where G(U (m−1))
is replaced by ξ∗, possess the convergence property in Theorem 3.1. Moreover, the
solution is unique in S if fu(x, u) ≤ 0 for x ∈ Ω, u ∈ S0.

Proof. Since the proof of the theorem is similar to that for Theorem 3.1, we omit
the details.

Remark 3.1. Although the discrete system (3.2a) for the Dirichlet boundary
problem is formulated by the finite difference method, the same vector form can also
be obtained by the finite element method. It can be shown by a suitable choice of
the basis in the finite element method that the matrix A and the function F (U)
possess the same property as that given in hypotheses (H1) and (H3). Hence all the
conclusions in Theorems 2.3 and 3.2 are directly applicable to the corresponding finite
element system of the Dirichlet problem (2.8a).

4. Comparison of monotone sequences. In this section, we present some
comparison results for the maximal and minimal sequences of the three iterative
schemes (3.8), (3.9), and (3.10). The following comparison results among the three
monotone iterations are for both the nonlinear boundary condition and Dirichlet
boundary condition.
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Theorem 4.1. Let the conditions in Theorem 3.1 be satisfied, and let ({U (m)

P ,

W
(m)

P }, {U (m)
P ,W

(m)
P }), ({U (m)

G ,W
(m)

G }, {U (m)
G ,W

(m)
G }), ({U (m)

J ,W
(m)

J }, {U (m)
J ,W

(m)
J })

be the maximal-minimal sequences given by (3.8), (3.9), and (3.10), respectively, where

(U
(0)

P ,W
(0)

P ) = (U
(0)

G ,W
(0)

G ) = (U
(0)

J ,W
(0)

J ) = (Ũ , W̃ ) and (U
(0)
P ,W

(0)
P ) = (U

(0)
G ,W

(0)
G ) =

(U
(0)
J ,W

(0)
J ) = (Û , Ŵ ). Then

(U
(m)

P ,W
(m)

P ) ≤ (U
(m)

G ,W
(m)

G ) ≤ (U
(m)

J ,W
(m)

J ),

(U
(m)
P ,W

(m)
P ) ≥ (U

(m)
G ,W

(m)
G ) ≥ (U

(m)
J ,W

(m)
J ), m = 1, 2, . . . .

(4.1)

Proof. We first prove the theorem for the maximal sequences between Picard and

Gauss–Seidel iterations. Let Z(m) = W
(m)

G −W
(m)

P for m = 1, 2, . . . . By a subtraction

of (3.8) from (3.9) and using the relation A = G − U and U(U
(m−1)

G − U
(m)

G ) ≥ 0, we
have

AZ(m) = (G − U)W
(m)

G −AW
(m)

P

= U(W
(m−1)

G −W
(m)

G ) + [F (U
(m−1)

G ) + G(U
(m−1)

G )]

− [F (U
(m−1)

P ) + G(U
(m−1)

P )]

≥ F (U
(m−1)

G ) − F (U
(m−1)

P ) + G(U
(m−1)

G ) −G(U
(m−1)

P ),

U
(m)

G − U
(m)

P = Q(W
(m)

G ) −Q(W
(m)

P ), m = 1, 2, . . . .

(4.2)

Since U
(0)

G = U
(0)

P , the above relation for m = 1 yields AZ(1) ≥ 0. This gives Z(1) ≥ 0

or, equivalently, W
(1)

P ≤ W
(1)

G . Using this result in the last equation in (4.2) (with

m = 1) gives U
(1)

G − U
(1)

P = Q(W
(1)
G ) − Q(W

(1)
P ) ≥ 0. This proves (U

(1)

P ,W
(1)

P ) ≤
(U

(1)

G ,W
(1)

G ). Assume (U
(m−1)

P ,W
(m−1)

P ) ≤ (U
(m−1)

G ,W
(m−1)

G ) for some m > 1. Then,
by (4.2) and the nondecreasing property of F (U) and G(U), we obtain AZ(m) ≥ 0,

which yields W
(m)

P ≤ W
(m)

G . This implies that U
(m)

G −U
(m)

P = Q(W
(m)

G )−Q(W
(m)

P ) ≥
0, and therefore (U

(m)
P ,W

(m)
P ) ≤ (U

(m)

G ,W
(m)
G ). The first inequality in (4.1) for the

maximal sequences follows from the principle of induction.
To show the second inequality for the maximal sequences between Gauss–Seidel

and Jacobi iterations, we consider Z
(m)

= W
(m)

J − W
(m)

G for m = 1, 2, . . . . By a

subtraction of (3.9) from (3.10) and using the relation G = J − L and L(W
(m−1)

J −
W

(m)

J ) ≥ 0, we obtain

GZ(m)
= (J − L)W

(m)

J − GW (m)

G

= [UW (m−1)

J + L(W
(m−1)

J −W
(m)

J ) + F (U
(m−1)

J ) + G(U
(m−1)

J )]

− [UW (m−1)

G + F (U
(m−1)

G ) + G(U
(m−1)

G )]

≥ UZ(m−1)
+ F (U

(m−1)

J ) − F (U
(m−1)

G )

+ G(U
(m−1)

J ) −G(U
(m−1)

G ), m = 1, 2, . . . .

(4.3)
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Since U
(0)

J = U
(0)

G and W
(0)

J = W
(0)

G , the above relation for m = 1 gives GZ(1) ≥
0. The positivity of G−1 yields Z

(1) ≥ 0, that is, W
(1)

G ≤ W
(1)

J . It follows from

U
(1)

J − U
(1)

G = Q(W
(1)

J ) − Q(W
(1)

G ) ≥ 0 that (U
(1)

G ,W
(1)

G ) ≤ (U
(1)

J ,W
(1)

J ). Using the

relation (4.3), an induction argument shows that (U
(m)

G ,W
(m)

G ) ≤ (U
(m)

J ,W
(m)

J ) for
every m. This proves the theorem for the maximal sequences. The proof for the
minimal sequences is similar and is omitted.

Remark 4.1. The comparison result in Theorem 4.1 implies that with the same
initial iteration, which is either an upper solution or a lower solution, the sequence
given by the Picard iteration converges faster than the one given by the Gauss–Seidel
iteration, which in turn converges faster than the one by Jacobi iteration. This is
true for both the maximal sequence and the minimal sequence. However, the Jacobi
iteration is the simplest to use in practical computation, while the Picard iteration
may require additional iterations when the size of the system is large.

5. Convergence of finite difference solutions. To investigate the conver-
gence of a finite difference solution of (2.8) to its corresponding continuous solution of
(2.4), we make use of a similar monotone iteration process for the continuous problem
by the method of upper and lower solutions. To ensure the existence of a classical
solution of (2.4), we assume that f(x, ·), g(x, ·), c(x), and γ(l)(x), l = 1, 2, are all
Hölder continuous in x and hypothesis (H1) is satisfied. For the Dirichlet problem
(2.4a), it is assumed that ξ∗ ∈ C2+α(Ω), where Cm+α(Ω) (m = 0, 1, 2, . . .) is the set
of functions C(m)(Ω) that are Hölder continuous in Ω with exponents α ∈ (0, 1). The
product space C(m)(Ω′) × C(m)(Ω′) is denoted by C(m)(Ω′), where Ω′ stands for Ω,
∂Ω, or Ω. Set |h| = h1 + · · · + hp, and define

L[w] = −∇2w + c · ∇w + γ(1)w.

Then we have the following similar definition of upper and lower solutions for the
continuous problem.

Definition 5.1. A function (ũ, w̃) ∈ C(2)(Ω)∩C(0)(Ω) is called an upper solution
of (2.4) if

L[w̃] ≥ F (x, ũ), ũ ≥ q(w̃) in Ω,

∂w̃/∂ν + γ(2)w̃ ≥ G(x, ũ) on ∂Ω.
(5.1)

Similarly, (û, ŵ) is called a lower solution if it satisfies (5.1) with the inequalities
reversed.

For the Dirichlet boundary problem (2.4a), the boundary requirement in (5.1) is
replaced by

w̃(x) ≥ ξ∗(x) ≥ ŵ(x) (x ∈ ∂Ω).(5.1a)

The pair (ũ, w̃), (û, ŵ) is said to be ordered if (ũ, w̃) ≥ (û, ŵ). For a given pair of
ordered upper and lower solutions, we set

S∗
0 ≡ {u ∈ C(Ω); û ≤ u ≤ ũ},

S∗ ≡ {(u,w) ∈ C(Ω); (û, ŵ) ≤ (u,w) ≤ (ũ, w̃)}.
(5.2)
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Using either ũ or û as an initial iteration, we construct a sequence from the linear
iteration process

L[w(m)] = F (x, u(m−1)) (x ∈ Ω),

∂w(m)/∂ν + γ(2)w(m) = G(x, u(m−1)) (x ∈ ∂Ω),

u(m) = q(w(m)) (x ∈ Ω), m = 1, 2, . . . .

(5.3)

For the Dirichlet problem (2.4a), we replace the boundary condition in (5.3) by

w(m)(x) = ξ∗(x) (x ∈ ∂Ω), m = 1, 2, . . . .(5.3a)

Denote the sequence by {u(m), w(m)} if u(0) = ũ and by {u(m), w(m)} if u(0) = û, and
refer to them as maximal and minimal sequences, respectively. The following theorem
from [28] is analogous to Theorem 2.1.

Theorem 5.1. Let (ũ, w̃), (û, ŵ) be ordered upper and lower solutions of (2.4) (or
(2.4a), and let hypothesis (H1) hold. Then {u(m), w(m)} converges monotonically to
a maximal solution (u,w) of (2.4) in S∗, while {u(m), w(m)} converges monotonically
to a minimal solution (u,w). Moreover,

(û, ŵ) ≤ (u(m), w(m)) ≤ (u(m+1), w(m+1)) ≤ (u,w) ≤ (u,w)

≤ (u(m+1), w(m+1)) ≤ (u(m), w(m)) ≤ (ũ, w̃), m = 1, 2, . . . ,
(5.4)

and if either hypothesis (H2) is satisfied or (u,w) = (u,w) (≡ (u∗, w∗)), then (u∗, w∗)
is the unique solution of (2.4). The same conclusions hold true for the Dirichlet
boundary problem (2.4a).

Based on Theorems 2.1 and 5.1, we show the convergence of the maximal and
minimal finite difference solutions to their respective maximal and minimal solutions
of the continuous problem for xi ∈ Λ

∗
, where Λ

∗
is a fixed partition of Ω. It is

assumed that every refinement of Λ
∗

contains Λ
∗

and there exist ordered upper and
lower solutions ((ũi, w̃i), (ûi, ŵi)) and ((ũ(x), w̃(x)), (û(x), ŵ(x))) of (2.4) and (2.8),
respectively (or (2.4a) and (2.8a), respectively). We also assume that given any ε > 0
there exists δ > 0 such that

|ũ(xi)−ũi|+|w̃(xi)−ŵi| < ε, |û(xi)−ûi|+|ŵ(xi)−ŵi| < ε whenever |h| < δ.(5.5)

Theorem 5.2. Let hypothesis (H1) and condition (5.5) be satisfied, and let
((ui, wi), (ui, wi)) and ((u(x), w(x)), (u(x), w(x))) be the respective maximal-minimal
solutions of (2.4) and (2.8) (or (2.4a) and (2.8a)). Then, as |h| → 0,

(ui, wi) → (u(xi), w(xi)) and (ui, wi) → (u(xi), w(xi))(5.6)

at every point xi ∈ Λ
∗
. The same convergence result holds true for the Dirichlet

boundary problem (2.4a) and (2.8a).
Proof. It suffices to show that given any ε′ > 0 there exists δ′ > 0 such that for

every xi ∈ Λ
∗

|u(xi) − ui| + |w(xi) −wi| < ε′, |u(xi) − ui| + |w(xi) −wi| < ε′ when |h| < δ′.(5.7)

We prove (5.7) for the maximal solutions (u(xi), w(xi)) and (ui, wi) because the proof

for the minimal solutions is similar. Let {u(m)(xi), w
(m)(xi)}, {u(m)

i , w
(m)
i } be the
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respective maximal sequences of (2.4) and (2.8). By Theorems 2.1 and 5.1, there

exists m∗ ≥ 1 such that for all m ≥ m∗ and i ∈ Λ
∗

|u(m)(xi) − u(xi)| + |u(m)
i − ui| < ε′/3, |w(m)(xi) − w(xi)| + |w(m)

i − wi| < ε′/3.

Since

|u(xi) − ui| ≤ |u(xi) − u(m)(xi)| + |u(m)(xi) − u
(m)
i | + |u(m)

i − ui|,

|w(xi) − wi| ≤ |w(xi) − w(m)(xi)| + |w(m)(xi) − w
(m)
i | + |w(m)

i − wi|,

condition (5.7) is fulfilled if, for some m ≥ m∗,

|u(m)(xi) − u
(m)
i | + |w(m)(xi) − w

(m)
i | < ε′/3 when |h| < δ′.(5.8)

It is easily seen from (5.3) and the central difference and boundary approximations
in (2.6) and (2.7) that

−L[w(m)(xi)] = Fi(u
(m−1)(xi)) + o(m)(|h|) (xi ∈ Λ∗),

B[w(m)(x′
i)] = Gi(u

(m−1)(x′
i)) + o(m)(|h|) (x′

i ∈ ∂Λ
∗
),

u(m)(xi) = q(w(m)(xi)) + o(m)(|h|) (xi ∈ Λ∗),

(5.9)

where o(m)(|h|) → 0 as |h| → 0. Let (v
(m)
i , z

(m)
i ) = (u(m)(xi)−u

(m)
i , w(m)(xi)−w

(m)
i ).

Then a subtraction of (2.14) from (5.9) gives

L[z
(m)
i ] = Fi(u

(m−1)(xi)) − Fi(u
(m−1)
i ) + o(m)(|h|),

B[z
(m)
i ] = Gi(u

(m−1)(x′
i)) −Gi(u

(m−1)
i ) + o(m)(|h|),

v
(m)
i = q(w(m)(xi)) − q(w

(m)
i ) + o(m)(|h|).

In vector form, the above system is equivalent to

AZ(m) = [F (U
(m−1)

(x)) + G(U
(m−1)

(x))] − [F (U
(m−1)

) + G(U
(m−1)

)] + O(m)(|h|)

V (m) = Q(W
(m)

(x)) −Q(W
(m)

) + O(m)(|h|),
(5.10)

where Z(m) = (z
(m)
1 , . . . , z

(m)
M )T , U

(m)
(x) = (u(m)(x1), . . . , u

(m)(xM ))T , etc., and for

any convenient norm in R
M , ||O(m)(|h|)|| → 0 as |h| → 0. By the positivity of A−1,

the above relation implies that

|Z(m)| ≤ A−1[(kf + kg)|V (m−1)| + |O(m)(|h|)|],
|V (m)| ≤ kq|Z(m)| + |O(m)(|h|)|,

(5.11)

where kf , kg, and kq are the Lipschitz constants of F (U), G(U), and Q(W ), respec-
tively, and |Y | = |y1| + · · · + |yM | for any vector Y = (y1, . . . , yM )T .

It is well known that given any ε1 > 0 there exist a matrix norm and a vector
norm in R

M such that

||A−1|| ≤ (μ0 + γ − ε1)
−1 ≡ σ, ||A−1Y || ≤ σ||Y ||

for every Y ∈ R
M , where μ0 is the smallest eigenvalue of A and γ ≡ max{γ(l)

i ; i =
1, . . . ,M, l = 1, 2} (cf. [36]). Since μ0 ≥ 0, it suffices to choose σ = (γ − ε)−1, which
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is independent of A and therefore is independent of |h|. Using this relation in (5.11)
leads to

||Z(m)|| ≤ σ(kf + kg)||V (m−1)|| + ||O(m)(|h|)||,
||V (m)|| ≤ kq||Z(m)|| + ||O(m)(|h|)||,

where ||O(m)(|h|)|| → 0 as |h| → 0. For notational convenience, we define

r(m) = ||V (m)||, s(m) = ||Z(m)||, c = max{kq, σ(kf + kg)}.

Then the above inequalities yield

s(m) ≤ cr(m−1) + o(|h|),
r(m) ≤ cs(m) + o(|h|), m = 1, 2, . . . ,

(5.12)

where o(|h|) = sup{||O(m)(|h|)||;m ≥ 1}.
Consider the case m = 1. Since r(0) = ||V (0)|| = ||U (0)

(x) − U
(0)|| and U

(0)
(x) =

(ũ(x1), . . . , ũ(xM ))T , U
(0)

= (ũ1, . . . , ũM )T , we see from (5.5) that for any ε0 > 0
there exists δ0 > 0 such that O(|h|) < ε0 when |h| < δ0. In view of (5.12), we have

s(1) ≤ cr(0) + o(|h|) ≤ cε0 + ε0 = (1 + c)ε0,

r(1) ≤ cs(1) + o(|h|) ≤ c(1 + c)ε0 + ε0 = (c2 + c + 1)ε0.

An induction argument gives

s(2) = (c3 + c2 + c + 1)ε0, r(2) ≤ (c4 + c3 + c2 + 1)ε0,

...

s(m) = (c2m−1 + c2m−2 + · · · + 1)ε0, r(m) ≤ (c2m + c2m−1 + · · · + 1)ε0.

Let m ≥ m∗ be fixed. Then by choosing ε0 sufficiently small there exists δ′ > 0 such
that s(m) + r(m) < ε′/3 when |h| < δ′. This is equivalent to

||V (m)|| + ||Z(m)|| < ε′/3 when |h| < δ′.

The above relation implies that (5.8) holds because the components of V (m) and Z(m)

are (u(m)(xi) − u
(m)
i ) and (w(m)(xi) − w

(m)
i ), respectively. This proves (5.7) for the

maximal solutions. Proofs for the minimal solutions and for the Dirichlet problem
are similar and are omitted.

An immediate consequence of Theorem 5.2 is the following result.
Theorem 5.3. Let the conditions in Theorem 5.2 be satisfied. If hypothesis (H2)

holds, then each of the problems (2.4) and (2.8) has a unique solution (u∗(x), w∗(x))

and (u∗
i , w

∗
i ), and at every mesh point xi ∈ Λ

∗
,

(u∗
i , w

∗
i ) → (u∗(xi), w

∗(xi)) as |h| → 0.(5.13)

The same is true for the Dirichlet problems (2.4a) and (2.8a) if fu(x, u) ≤ 0.
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6. Application to model problems. In this section, we apply the results of the
previous sections to some model problems in heat transfer and chemical engineering
as illustrations. In the application of the iterative scheme (2.14) (or (2.14a), we make
use of the relation

Fi(u
(m−1)
i ) = γ

(1)
i

∫ u
(m−1)
i

0

D(s)ds + fi(u
(m−1)
i ) = γ

(1)
i w

(m−1)
i + fi(u

(m−1)
i ),

Gi(u
(m−1)
i ) = γ

(2)
i

∫ u
(m−1)
i

0

D(s)ds + gi(u
(m−1)
i ),

= γ
(2)
i w

(m−1)
i + gi(u

(m−1)
i ), m = 1, 2, . . . ,

(6.1)

to obtain an equivalent iterative scheme in the form

L[w
(m)
i ] = γ

(1)
i w

(m−1)
i + fi(u

(m−1)
i ),

B[w
(m)
i ] = γ

(2)
i w

(m−1)
i + gi(u

(m−1)
i ),

u
(m)
i = q(w

(m)
i ),m = 1, 2, . . . .

(6.2)

This form of iteration avoids the computation of the integral term
∫ u

0
D(s)ds in each

iteration, especially when it cannot be given in explicit form. The value of u
(m)
i in (6.2)

can be solved from the algebraic equation w
(m)
i = D(u

(m)
i ) if the inverse function q(w)

cannot be explicitly given. For Dirichlet boundary problems, the boundary condition
in (6.2) is replaced by

w
(m)
i = ξ∗i , m = 1, 2, . . . ,(6.2a)

where ξ∗i is assumed nonnegative.

Some heat-conduction problems. In the heat-conduction problem, the ther-
mal conductivity is often considered temperature dependent, and the boundary or
internal source may also be temperature dependent. A frequently assumed form of
the source function is based on the so-called Boltzmann fourth-power law, which is
given in the form σ(a4 − u4), where u ≡ u(x) denotes the steady-state temperature
distribution, a ≡ a(x) is the surrounding temperature, and σ is a positive constant.
This leads to the boundary value problem (1.1) with

f(x, u) = 0, g(x, u) = σ(a4 − u4)(6.3)

if the fourth-power law applies to the boundary surface and

f(x, u) = σ(a4 − u4), g(x, u) = 0(6.4)

if the law applies to the conducting medium (cf. [2, 10, 13, 22, 23]), The above heat-
conduction problem, including some numerical aspect and the corresponding time-
dependent system, has been investigated by many workers (e.g., see [13, 14, 21, 22,
23, 24, 25]). Although various forms of the thermal conductivity D(u) have been
assumed, including the special cases of D(u) = d0 + d1u and D(u) = eαu, we need
only the positivity of D(u) ≥ d0 > 0 in the construction of upper and lower solutions.

It is easy to verify that the functions f(x, u), g(x, u) in either (6.3) or (6.4) satisfy
hypotheses (H1) and (H2) for u ≥ 0 (that is, S0 = R+). Hence, by Theorems 2.1
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and 2.2, the finite difference system (2.8), (6.3) (that is, problem (2.8) with f(x, u),
g(x, u) given by (6.3)) has a unique nonnegative solution (ui, wi) if there exists a pair
of ordered nonnegative upper and lower solutions. The same is true for the system
(2.8), (6.4) (or (2.8a), (6.4)). Moreover, by the positivity lemma, Lemma 2.1, for
discrete boundary problems, the solution (ui, wi) is positive in Λ. Consider the case
where f(x, u) and g(x, u) are given by (6.3). It is easy to verify from fi(ui) = 0,
gi(0) = σa4

i > 0 and gi(a) ≤ 0 for any constant a ≥ max{ai, i ∈ Λ} that the pair

(ũi, w̃i) = (a, a∗), (ûi, ŵi) = (0, 0),(6.5)

where a∗ =
∫ a

0
D(s)ds, are ordered upper and lower solutions of (2.8), (6.3). By

Theorems 2.1 and 2.2, problem (2.8), (6.3) has a unique positive solution (u∗
i , w

∗
i )

and (u∗
i , w

∗
i ) ≤ (a, a∗).

In order to compute the solution (u∗
i , w

∗
i ) by any one of the iterative schemes in

(3.8), (3.9), and (3.10), we need to find the functions γ(1)(x), γ(2)(x) that satisfy the
condition (2.9) in (H1). Since fu(x, u) = 0, gu(x, u) = −4σu3 and S0 = [0, a], it
suffices to choose γ(1) = 0, γ(2) = 4σa3/d0 (or any γ(2) ≥ 4σa3/d0). Using the above
values of (γ(1), γ(2)) and the functions

fi(u
(m−1)
i ) = 0, gi(u

(m−1)
i ) = σ

[
a4
i − (u

(m−1)
i )4

]
(6.6)

in the iteration process (6.2), we can compute the maximal and minimal sequences

{u(m)
i , w

(m)
i }, {u(m)

i , w
(m)
i }, where (u

(0)
i , w

(0)
i ) = (a, a∗) and (u

(0)
i , w

(0)
i ) = (0, 0). The

function q(wi) in (6.2) is determined from (2.1) and can sometimes be obtained ex-
plicitly. For example, if D(u) = d0e

αu or D(u) = d0 + d1u, where d0 and d1 are
positive constants and α 
= 0, then

q(w) = α−1 ln[1 + (α/d0)w] and q(w) = d−1
1 [d2

0 + 2d1w)1/2 − d0],(6.7)

respectively. In the special case of the linear function D(u), which will be used in our

numerical computations, the equation u
(m)
i = q(w

(m)
i ) in (6.2) is given explicitly by

u
(m)
i = d−1

1 [(d2
0 + 2d1w

(m))1/2 − d0].(6.8)

By writing the finite difference problem (2.8), (6.3) in the vector form (3.2), we

can also compute the maximal and minimal sequences {U (m)
,W

(m)}, {U (m),W (m)}
from either the Gauss–Seidel iteration (3.9) or the Jacobi iteration (3.10), where

(U
(0)

,W
(0)

) = (aE, a∗E), (U (0),W (0)) = (0, 0), and E = (1, . . . , 1)T ∈ R
M . By

Theorem 3.1, these sequences converge monotonically to the unique solution (U∗,W ∗),
where U∗ = (u∗

1, . . . , u
∗
M )T , and W ∗ = (w∗

1 , . . . , w
∗
M )T .

To guarantee the convergence of the finite difference solution of this model, we
observe that the pair in (6.5) are also ordered upper and lower solutions of the contin-
uous problem (2.4), (6.3). By Theorem 5.1, the continuous problem (2.4), (6.3) has
a unique solution (u∗(x), w∗(x)). Since condition (5.5) is trivially satisfied, Theorem
5.2 implies that (u∗

i , w
∗
i ) → (u∗(xi), w

∗(xi)) as |h| → 0. To summarize the above
conclusions, we have the following.

Theorem 6.1. Let f(x, u), g(x, u) be given by (6.3) and D(u) ≥ d0 > 0, and

let (u
(0)
i , w(0)) = (a, a∗), (u

(0)
i , w

(0)
i ) = (0, 0), and (γ

(1)
i , γ

(2)
i ) = (0, 4σa3/d0), where

a ≥ a(x) on Ω. Then the following statements hold true for the problem (2.8), (6.3):
(i) A unique positive solution (u∗

i , w
∗
i ) exists and is bounded by (a, a∗).
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(ii) The maximal sequence {u(m)
i , w

(m)
i } from (6.2) converges monotonically from

above to (u∗
i , w

∗
i ), while the minimal sequence {u(m)

i , w
(m)
i } converges monotonically

from below to (u∗
i , w

∗
i ).

(iii) In vector form, the sequences {U (m)
,W

(m)}, {U (m),W (m)} given either by
(3.9) or by (3.10) converge monotonically to the unique solution (U∗,W ∗).

(iv) As |h| → 0, the finite difference solution (u∗, w∗) converges to the continuous
solution (u∗(xi), w

∗(xi)) at every mesh point xi ∈ Λ∗.
We next consider the case where f(x, u) and g(x, u) are given by (6.4). It is

easy to verify that the pair in (6.5) are also ordered upper and lower solutions of

(2.8), (6.4). This leads to the choice of (γ
(1)
i , γ

(2)
i ) = (4σa3/d0, 0), which ensures that

condition (2.9) is satisfied. With this value of (γ
(1)
i , γ

(2)
i ) and the functions

fi(u
(m−1)
i ) = σ[a4

i − (u
(m−1)
i )4], gi(u

(m−1)
i ) = 0(6.9)

in the iteration process (6.2), we compute the maximal and minimal sequences {u(m)
i ,

w
(m)
i }, {u(m)

i , w
(m)
i } as in the previous problem. In the special case of D(u) = d0+d1u,

the equation u
(m)
i = q(w

(m)
i ) is given by (6.8). As a consequence of the theorems in

the previous sections, we have the following conclusion.
Theorem 6.2. Let f(x, u), g(x, u) be given by (6.4) and D(u) ≥ d0 > 0, and let

(u
(0)
i , w

(0)
i ) = (a, a∗), (ui, wi) = (0, 0), and (γ

(1)
i , γ

(2)
i ) = (4σa3/d0, 0). Then all the

conclusions in (i)–(iv) of Theorem 6.1 hold true for problem (2.8), (6.4).
If the boundary condition in (2.8), is replaced by (2.8a), where 0 ≤ ξ∗i ≤ a∗

(that is, 0 ≤ ξi ≤ a), then the pair in (6.4) are ordered upper and lower solutions of

problem (2.8a), (6.4), and therefore the choice of (γ
(1)
i , γ

(2)
i ) remains the same. The

only difference in the iteration process (6.2) is that the boundary condition should be
replaced by (6.2a). In vector form, the function G(U (m−1)) in (3.9) and (3.10) should
be replaced by ξ∗ ≡ (ξ∗1 , . . . , ξ

∗
M )T . This observation leads to the following.

Theorem 6.3. Let the conditions in Theorem 6.2 be satisfied for the problem
(2.8a), (6.4), where 0 ≤ ξ∗i ≤ a∗, and let the boundary condition in (6.2) be replaced
by (6.2a). In vector form, let G(U (m−1)) in (3.9) and (3.10) be replaced by ξ∗. Then all
the conclusions in (i)–(iv) of Theorem 6.1 hold true for the Dirichlet problem (2.8a),
(6.4).

A chemical reactor problem. In a nonisothermal chemical reactor with first-
order reaction, if the diffusion coefficient is density dependent, then the equation
governing the steady-state chemical concentration u(x) is given by (1.1) with

f(x, u) = σ(1 − u)exp[γu/(1 + u)], g(x, u) = −β(x)u,(6.10)

where σ and γ are positive constants and β(x) ≥ 0 on ∂Ω (cf. [4, 5, 7, 10, 23, 27, 30]).
This implies that the boundary condition of this model problem is given by the Robin
type

D(u)∂u/∂ν + β(x)u = 0 (x ∈ ∂Ω).

Problem (1.1), (6.10) also describes the temperature distribution in a combustible
material and has been investigated by many workers in combustion theory (see [10]
and the references therein). It is obvious that for any D(u) ≥ d0 > 0, condition (2.9)
in (H1) is satisfied by some (γ(1), γ(2)). Unlike the heat-conduction problem, this
model may have multiple positive solutions depending on the parameters of σ and γ.
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In fact, it is known that in the case of constant diffusion coefficient D(u) = d0 this
problem has a unique solution if σ and γ are either small or large, and it has two or
more positive solutions if σ and γ have certain intermediate values (see [23, p. 124]
and [27] for some numerical results). Since, by (6.10),

f(x, 0) = σ > 0, g(x, 0) = 0 and f(x, 1) = 0, g(x, 1) ≤ 0,

Definition 2.1 implies that for any constant a ≥ 1 the pair in (6.5) are ordered upper

and lower solutions of problem (2.8), (6.10). To find (γ
(1)
i , γ

(2)
i ), we observe from

(6.10) that

fu(x, u) = −σ(1 + u)−2exp[(γu/(1 + u))][u2 + (2 + γ)u + (u− γ)],

gu(x, u) = −β(x).
(6.11)

This implies that −fu(x, u) ≤ 4σeγ for 0 ≤ u ≤ 1. Hence, by choosing a = 1, we see

that condition (2.9) holds for any γ
(1)
i ≥ 4σeγ/d0, γ

(2)
i ≥ βi/d0. Using this value of

(γ
(1)
i , γ

(2)
i ), we compute the maximal and minimal sequences from (6.2) with

fi(u
(m−1)
i ) = σ(1 − u

(m−1)
i )exp[γu

(m−1)
i /(1 + u

(m−1)
i )],

gi(u
(m−1)
i ) = −βiu

(m−1)
i , m = 1, 2, . . . .

(6.12)

It is easy to verify that the pair in (6.5) (with a = 1) are also ordered upper and
lower solutions of the continuous problem (2.4), (6.10). This implies that condition
(5.5) is trivially satisfied, and, by Theorem 5.1, problem (2.4), (6.10) has a positive
maximal solution (u(x), w(x)) and a positive minimal solution (u(x), w(x)). It follows
from Theorems 2.1, 3.1, and 5.2 that we have the following conclusion.

Theorem 6.4. Let D(u) ≥ d0 > 0 and f(x, u), g(x, u) be given by (6.10), and let

(u
(0)
i , w

(0)
i ) = (a, a∗), (u

(0)
i , w

(0)
i ) = (0, 0), and (γ

(1)
i , γ

(2)
i ) = (4σeγ/d0, βi/d0), where

a = 1. Then the following statements hold true:

(i) {u(m)
i , w

(m)
i } converges monotonically from above to a maximal solution (ui, wi)

of problem (2.8), (6.10), and {u(m)
i , w

(m)
i } converges monotonically from below to a

minimal solution (ui, wi).
(ii) Every solution (ui, wi) of problem (2.8), (6.10) in S satisfies (ui, wi) ≤

(ui, wi) ≤ (ui, wi), and problem (2.8), (6.10) has a unique solution in S if (ui, wi) =
(ui, wi).

(iii) In vector form, the sequences {U (m)
,W

(m)}, {U (m),W (m)} obtained from
either (3.9) or (3.10) converge monotonically to (U,W ) and (U,W ), respectively.

(iv) As |h| → 0, the finite difference solution (ui, wi) converges to (u(xi), w(xi)),

and (ui, wi) converges to (u(xi), w(xi)) at every mesh point xi ∈ Λ
∗
.

7. Numerical results. To compute numerical solutions of (2.8) or (2.8a) by
the monotone iterative schemes, we consider some model problems from heat transfer,
where the true continuous solution is explicitly given. This continuous solution is then
used to compare with the computed solution to check the accuracy of the monotone
iterative scheme. Numerical results for the model where the true solution is not known
explicitly is also obtained.

Example 1. In the first example, we consider a heat-conduction problem in a
one-dimensional domain Ω = (0, 1), which is given by

−[(1 + u)ux]x + 2(1 + u)ux = a4(x) − u4 (0 < x < 1),

u(0) = 0, u(1) = 1 − e−1,
(7.1)
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Table 1

Numerical results of Example 1(a).

(a) Picard’s method

Iteration n x = 0.2 x = 0.4 x = 0.6 x = 0.8 x = 1.0
u 0.547609 0.792582 0.893433 0.868080 0.632121

1 u∗ 0.181269 0.329680 0.451188 0.550671 0.632121
u 0.092069 0.163246 0.243168 0.375888 0.632121
u 0.329443 0.555804 0.682750 0.711287 0.632121

2 u∗ 0.181269 0.329680 0.451188 0.550671 0.632121
u 0.137211 0.249549 0.357278 0.481156 0.632121
u 0.246641 0.437489 0.566088 0.630337 0.632121

3 u∗ 0.181269 0.329680 0.451188 0.550671 0.632121
u 0.159969 0.291740 0.408116 0.519978 0.632121
u 0.195209 0.353711 0.477574 0.569074 0.632121

5 u∗ 0.181269 0.329680 0.451188 0.550671 0.632121
u 0.176472 0.321280 0.441844 0.544120 0.632121
u 0.182710 0.332185 0.453958 0.552606 0.632121

8 u∗ 0.181269 0.329680 0.451188 0.550671 0.632121
u 0.180772 0.328812 0.450226 0.549997 0.632121
u 0.181422 0.329944 0.451479 0.550874 0.632121

11 u∗ 0.181269 0.329680 0.451188 0.550671 0.632121
u 0.181221 0.329594 0.451092 0.550603 0.632121
u 0.181306 0.329742 0.451256 0.550718 0.632121

13 u∗ 0.181269 0.329680 0.451188 0.550671 0.632121
u 0.181262 0.329664 0.451170 0.550658 0.632121

where

a(x) =
[
6e−x − 4e−2x + (1 − e−x)4

]1/4
.(7.2)

The above model is a special case of (1.1a), (6.4) with D(u) = 1+u, c = 2, σ = 1, and
ξ(0) = 0, ξ(1) = 1− e−1. It is easy to check that u = 1− e−x is the unique solution of
(7.1). To compute numerical values of the solution by the monotone iterative scheme
(6.2), (6.2a), we observe that

wi = ui + u2
i /2, L[wi] = −Δ1[wi] + 2δi[wi], q(wi) = (1 + 2wi)

1/2 − 1.

Since a4
i ≤ 7 and 0 ≤ ξ∗i ≤ 3/2, it suffices to choose (ũi, w̃i) = (7, 32), (ûi, ŵi) =

(0, 0), and (γ
(1)
i , γ

(2)
i ) = (28, 0). With the above data in the iteration process (6.2)–

(6.2a), we compute the maximal and minimal sequences {u(m)
i , w

(m)
i }, {u(m)

i , w
(m)
i }

for various values of h ≡ Δx. The stopping criterion in the iteration process is
||u(m)−u(m)||+ ||w(m)−w(m)|| < ε for various ε > 0, where ||u|| is the maximal norm

of ui over i = 1, . . . ,M . Numerical values of the sequences {u(m)
i }, {u(m)

i } together
with the values of the true analytical solution u∗

i at various mesh points in (0, 1) for
the case h = 1/80, ε = 10−4 are given in Table 1. It is seen from this table that the
monotone property of both the maximal sequence and minimal sequence are observed

at every mesh point, and after about 14 iterations the values of u
(m)
i and u

(m)
i differ

from u∗
i by less than 0.01 percent. We also compute the solution for various values of

a(x) where the true solution is not explicitly known. Numerical values of {u(m)
i } and

{u(m)
i } corresponding to the case a(x) = 1 are given in Table 2 and are sketched in

Figure 1.
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Table 2

Numerical results of Example 1(b).

(b) Picard’s method

Iteration n x = 0.2 x = 0.4 x = 0.6 x = 0.8 x = 1.0
1 u 0.530901 0.781567 0.890490 0.869091 0.632121

u 0.060073 0.121327 0.208178 0.358766 0.632121
2 u 0.271157 0.476435 0.605334 0.656579 0.632121

u 0.091499 0.185127 0.296503 0.442104 0.632121
3 u 0.179227 0.338634 0.466401 0.560791 0.632121

u 0.106495 0.213778 0.331399 0.468508 0.632121
5 u 0.128554 0.253374 0.375640 0.499062 0.632121

u 0.116027 0.231208 0.351283 0.482456 0.632121
7 u 0.119933 0.238172 0.358983 0.487717 0.632121

u 0.117746 0.234284 0.354695 0.484792 0.632121
9 u 0.118431 0.235503 0.356041 0.485711 0.632121

u 0.118049 0.234822 0.355290 0.485198 0.632121
11 u 0.118169 0.235036 0.355526 0.485359 0.632121

u 0.118102 0.234917 0.355394 0.485269 0.632121
12 u 0.118136 0.234978 0.355462 0.485316 0.632121

u 0.118108 0.234928 0.355407 0.485278 0.632121

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

upper solutions

m=1

m=2

lower solutions

m=1

m=2

Fig. 1. Upper and lower sequences for Example 1(b).

Example 2. We next consider a quasi-linear equation with a nonlinear boundary
condition in the form

−[(1 + u)ux]x + 2(1 + u)ux = 0 (0 ≤ x < 1),

u(0) = 0, (1 + u(1))ux(1) = a4 − u4(1),
(7.3)

where a is a constant given by

a4 = 2e2 + [(2e2 − 1)1/2 − 1]4.(7.4)

This problem is a special case of (1.1a), (6.3) with D(u) = 1 + u, c = 2, and σ = 1,
and the analytical solution is

u(x) = (2e2x − 1)1/2 − 1.(7.5)
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Table 3

Numerical results of Example 2(a).

(a) Picard’s method

Iteration n x = 0.2 x = 0.4 x = 0.6 x = 0.8 x = 1.0
u 0.430854 0.899955 1.437382 2.068933 2.821820

1 u∗ 0.408421 0.857709 1.374918 1.984303 2.711888
u 0.118280 0.274495 0.477150 0.736053 1.062758
u 0.417727 0.875273 1.400922 2.019567 2.757727

2 u∗ 0.408421 0.857709 1.374918 1.984303 2.711888
u 0.217687 0.484242 0.810366 1.209152 1.696607
u 0.412393 0.865217 1.386046 1.999409 2.731543

3 u∗ 0.408421 0.857709 1.374918 1.984303 2.711888
u 0.294903 0.639031 1.047602 1.537672 2.129240
u 0.409151 0.859097 1.376986 1.987128 2.715586

5 u∗ 0.408421 0.857709 1.374918 1.984303 2.711888
u 0.378317 0.800575 1.290110 1.869162 2.562162
u 0.408459 0.857789 1.375050 1.984503 2.712175

8 u∗ 0.408421 0.857709 1.374918 1.984303 2.711888
u 0.405597 0.852380 1.367037 1.973637 2.698054
u 0.408401 0.857680 1.374889 1.984284 2.711891

11 u∗ 0.408421 0.857709 1.374918 1.984303 2.711888
u 0.408160 0.857223 1.374212 1.983366 2.710698
u 0.408397 0.857671 1.374875 1.984265 2.711867

14 u∗ 0.408421 0.857709 1.374918 1.984303 2.711888
u 0.408376 0.857633 1.374819 1.984189 2.711767

Table 4

Numerical results of Example 2(b).

(b) Picard’s method

Iteration n x = 0.2 x = 0.4 x = 0.6 x = 0.8 x = 1.0
1 u 0.070658 0.168152 0.300080 0.475127 0.703153

u 0.012119 0.029934 0.055952 0.093618 0.147514
2 u 0.054097 0.129999 0.234591 0.375926 0.563204

u 0.019717 0.048443 0.089892 0.148951 0.231807
3 u 0.045148 0.109093 0.198161 0.319914 0.483089

u 0.024473 0.059934 0.110733 0.182470 0.282051
5 u 0.036911 0.089655 0.163907 0.266616 0.405965

u 0.029268 0.071447 0.131452 0.215478 0.331009
8 u 0.033264 0.080987 0.148504 0.242428 0.370638

u 0.031521 0.076832 0.141091 0.230735 0.353479
11 u 0.032440 0.079024 0.145004 0.236912 0.362550

u 0.032041 0.078073 0.143307 0.234234 0.358620
14 u 0.032252 0.078576 0.144204 0.235649 0.360697

u 0.032161 0.078358 0.143815 0.235036 0.359797
17 u 0.032209 0.078473 0.144021 0.235360 0.360273

u 0.032188 0.078423 0.143932 0.235220 0.360067
19 u 0.032201 0.078454 0.143986 0.235306 0.360194

u 0.032193 0.078435 0.143953 0.235254 0.360117

By using (ũi, w̃i) = (3, 8), (ûi, ŵi) = (0, 0), and (γ
(1)
i , γ

(2)
i ) = (0, 108) in the iter-

ation process (6.2), we compute the maximal and minimal sequences {u(m)
i , w

(m)
i },

{u(m)
i , w

(m)
i }, using the same criteria as that in Example 1. Numerical values of

{u(m)
i }, {u(m)

i } and the true solution u∗(xi) are given in Table 3. Table 4 and Figure

2 give the values of {u(m)
i } and {u(m)

i } for the case a = 1.
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Fig. 2. Upper and lower sequences for Example 2(b).
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We say that matrix A = (aij)1≤i,j≤n is strictly diagonally dominant by rows if
|aii| >

∑
j �=i |aij | for all i = 1, . . . , n. The Skeel condition number of a matrix A is

defined as Cond(A) = ‖ |A−1| |A| ‖∞, where |M | denotes the matrix whose entries
are the absolute values of the entries of the matrix M . Given a real matrix A =
(aij)1≤i,j≤n whose rows are not null, the minimal scaled diagonal element of A is
the number p defined as: p := mini=1,...,n |aii|/(

∑n
j=1 |aij |). Observe that, if U is the

upper triangular matrix obtained after Gauss elimination of a matrix A, then the
minimal scaled diagonal element of U coincides with the concept (introduced in [1])
of the minimal scaled pivot of A. The minimal scaled diagonal element p of matrix
which is strictly diagonally dominant by rows satisfies 1/2 < p ≤ 1. The following
result uses p to obtain an optimal bound for the Skeel condition number of a triangular
matrix strictly diagonally dominant by rows. Besides, it provides a proof for Theorem
3.1 of [1] when p > 1/2 and shows the optimality of the corresponding bound. The
proof of Theorem 3.1 of [1] is correct only when p < 1/2 because only in this case
(1 − p)/p > 1 and the proof that |(V −1)ij | < ((1 − p)/p)(j−i) is correct.

Theorem 0.1. Let U = (uij)1≤i,j≤n be an upper triangular matrix which is
strictly diagonally dominant by rows, and let p(> 1/2) be its minimal scaled diagonal
element. Then

Cond(U) ≤
1 −

(
1−p
p

)n−1

(2 − 2p)

2p− 1
.(0.1)

Moreover, for any p > 1/2 and n ≥ 1 there exist matrices U for which the previous
inequality (0.1) is an equality.

Proof. Let V := D−1U , where D is the diagonal matrix whose (i, i)-entry is uii

for all i. Then Cond(U) =Cond(V ) and V = (Vij)1≤i,j≤n is upper triangular with
Vii = 1. Let r := max1≤i≤n{

∑n
j=i+1 |Vij |}(< 1). Then

r = max
1≤i≤n

⎧⎨⎩
n∑

j=i+1

|uij |
|uii|

⎫⎬⎭ = max
1≤i≤n

{∑n
j=i |uij | − |uii|

|uii|

}
=

1

p
− 1 =

1 − p

p
.(0.2)

Let us now prove by induction on n that, if V is an n×n upper triangular matrix
with a unit diagonal which is strictly diagonally dominant by rows with a minimal

∗Received by the editors December 12, 2006; accepted for publication (in revised form) January
31, 2007; published electronically May 7, 2007. This research was partially supported by the Spanish
Research grant MTM2006-03388 and by Gobierno de Aragón and Fondo Social Europeo.

http://www.siam.org/journals/sinum/45-3/67756.html
†Departamento de Matemática Aplicada, Universidad de Zaragoza, 50009 Zaragoza, Spain

(jmpena@unizar.es).
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scaled diagonal element not less than p, then

‖V −1‖∞ ≤ 1 − rn−1(2 − 2p)

(2p− 1)(r + 1)
.(0.3)

The result is trivial for n = 1. Let us assume that it holds for n− 1, and let us prove
it for n.

If we compute V −1 by Gauss–Jordan, starting from the last column, we can easily
obtain the following bound for the absolute value of (V −1)ij for any i ∈ {1, . . . , n}
and j > i:

|(V −1)ij | ≤ |Vij |+|Vi,j−1| |(V −1)j−1,j |+|Vi,j−2| |(V −1)j−2,j |+· · ·+|Vi,i+1| |(V −1)i+1,j |.
Then, taking into account that (V −1)ii = 1, we can derive

n∑
j=i

|(V −1)ij | ≤ 1 + |Vi,i+1|

⎛⎝ n∑
j=i+1

|(V −1)i+1,j |

⎞⎠ + · · · + |Vi,n|.

Let Z−1 be the submatrix of V −1 formed by rows and columns 2, . . . , n. From the
previous formula, we can deduce that

n∑
j=i

|(V −1)ij | ≤ 1 + ‖Z−1‖∞

⎛⎝ n∑
j=i+1

|Vij |

⎞⎠ .(0.4)

Since Z is an (n− 1)× (n− 1) matrix satisfying the induction hypothesis, ‖Z−1‖∞ ≤
(1 − rn−2(2 − 2p))/((2p − 1)(r + 1)). Then, using the definition of r and taking the
maximum in (0.4) among i = 1, . . . , n, we can deduce from the previous formula that

‖V −1‖∞ ≤ 1 + ‖Z−1‖∞r ≤ 2p(1 + r) − 1 − rn−1(2 − 2p)

(2p− 1)(r + 1)
.(0.5)

By (0.2), 2p(1 + r) − 1 = 1, and so we deduce from (0.5) that (0.3) (and so, the
induction) holds. Since ‖V ‖∞ ≤ 1 + r, the bound (0.1) follows from (0.3) and (0.2).

Now let 0 ≤ r < 1, and let us consider the following matrix U and its inverse
U−1:

U =

⎛⎜⎜⎜⎜⎜⎜⎝

1 −r 0 · · · 0

0 1 −r
. . .

...
...

. . .
. . .

. . . 0
...

. . . 1 −r
0 · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ , U−1 =

⎛⎜⎜⎜⎜⎜⎝
1 r r2 · · · rn−1

0 1 r · · · rn−2

...
. . .

. . .
. . .

...
...

. . . 1 r
0 · · · · · · 0 1

⎞⎟⎟⎟⎟⎟⎠ .

Then the minimal scaled diagonal element of U is p = 1/(1 + r) and then

Cond(U) =
2rn − r − 1

r − 1
.(0.6)

Substituting p = 1/(1 + r) in (0.1), we deduce that Cond(U) is bounded above by
the right-hand side of (0.6), and so this bound can be achieved for any p > 1/2 and
positive integer n ≥ 1.
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ON CORNER AVOIDANCE PROPERTIES OF RANDOM-START
HALTON SEQUENCES∗
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Abstract. Recently, the analysis of quasi-Monte Carlo (QMC) sampling of integrands with
singularities has gained considerable interest. In this setting error bounds for QMC integration, in
addition to discrepancy, include a measure of how well the singularities are avoided by the utilized
sequences. The article aims to generalize results for the corner avoidance of the classical Halton
sequence to Halton sequences that start in an arbitrary point of the unit cube. In particular, it is
shown that almost all (in Lebesgue sense) random-start Halton sequences exhibit the same corner
avoidance property as the original Halton sequence.

Key words. quasi-Monte Carlo integration for singular integrands, random-start Halton se-
quence, corner avoidance
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1. Introduction. Quasi-Monte Carlo (QMC) methods are deterministic alter-
natives to classical Monte Carlo methods with asymptotically superior error bounds
for integration problems when the integrand belongs to a suitable class of functions.

Let Ūs = [0, 1]s be the s-dimensional unit cube, and consider functions f : Ūs →
R such that I =

∫
Ūs f(x)dx exists. Furthermore, let (xn)n>0 be a sequence with

xn = (x
(1)
n , . . . , x

(s)
n ) ∈ [0, 1)s. For a subset B ⊆ Ūs, denote by λ(B) its Lebesgue

measure and by χB its characteristic function, i.e., χB(x) equals 1 for x ∈ B and
0 otherwise. The star discrepancy of the set (xn)1≤n≤N , measuring its uniformness,
is given by

D∗
N (x1, . . . ,xN ) = sup

J∈J ∗

∣∣∣∣∣ 1

N

N∑
n=1

χJ (xn) − λ(J)

∣∣∣∣∣ ,
where J ∗ is the set of all subintervals of Ūs of the form

∏s
i=1 [0, ui). Sequences with

best known order of discrepancy (O(N−1(logN)s)) are called low-discrepancy se-
quences (LDS). Different LDS constructions were proposed by Halton [3], Sobol’ [15],
Faure [2], and Niederreiter [7, 8]. Tezuka and Tokuyama [17] show that the last three
approaches can be unified by a generalization of Niederreiter’s principles.

We define the QMC estimator of I as ÎN = 1
N

∑N
n=1 f (xn). Hlawka’s theorem [6]

bounds the QMC integration error as follows:∣∣∣I − ÎN

∣∣∣ ≤ VHK(f)D∗
N (x1, . . . ,xN ) ,
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where VHK(f) denotes the variation in the sense of Hardy and Krause (for a defini-
tion and a survey on concepts of multidimensional variation, see [11]). A thorough
introduction to the field of QMC integration may be found in the monograph [9].

Mainly inspired by financial applications, the theory of QMC quadrature formulae
for singular integrands (those that do not have bounded Hardy–Krause variation) was
intensively studied recently. In a setting where the singularities lie in the boundary,
Owen [12] shows that the QMC convergence order under suitable growth conditions
on the integrand in addition to the discrepancy depends on the speed with which the
utilized sequence approaches the boundary of the unit cube.

The quantity of main interest within this setting is the hyperbolic distance from a
point z = (z1, . . . , zs) ∈ [0, 1)s to a corner of the unit cube h = (h1, . . . , hs) ∈ {0, 1}s,
which is defined by ‖z‖h =

∏s
i=1 |zi − hi|. In order to get (asymptotically) efficient

QMC rules for these integrands one has to find point sequences satisfying the condition

(1) ∃n0 ∈ Z
+ : ∀n ≥ n0 : ‖xn‖h ≥ c n−r,

with a constant c = c(r) > 0 and small r. A sequence is said to avoid the corner h if
(1) is fulfilled with r ≤ 1 + ε for all ε > 0.

Let us state Owen’s result [12] in order to shed some light on the role of r. Let
f : (0, 1]s → R be a real-valued Lebesgue measurable function which is singular in
the origin. Moreover, we assume some growth conditions. For a set u ⊂ {1, . . . , s}
of indices, the symbol ∂uf(x) represents (

∏
j∈u ∂/∂xj)f(x), with the convention that

∂∅f(x) = f(x). Our growth condition is that

(2) |∂uf(x)| ≤ B

s∏
j=1

(xj)
−Aj−1j∈u

holds for some Aj > 0, some B < ∞, and all u ⊆ {1, . . . , s}, where 1j∈u = 1 if j ∈ u
and 1j∈u = 0 otherwise. Now we can state Owen’s result [12, Theorem 5.5].

Theorem 1. Let f(x) be as above and suppose x1, . . . ,xN satisfy (1). Then for
any η > 0,

|ÎN − I| ≤ C1D
∗
N (x1, . . .xN )Nη+r maxj Aj + C2N

r(maxj Aj−1)

holds for finite C1 and C2 that may depend on η.
A similar result also holds for other corners than 0.
As Owen [12] remarks, the QMC integration is superior to Monte Carlo inte-

gration, if maxj Aj < 1/(2r), provided D∗
N (x1, . . .xN ) = O(N−1+ε). In view of

applications of QMC integration of singular functions, we have to use LDS which
avoid corners with small r.

In the case h = 0, the lower bound r ≥ 1 is obvious for (t, s)-sequences (for a
definition, see, e.g., [9]) and for Halton sequences. Sobol’ [16] shows that r = 1 holds
for Sobol’ sequences, and Owen [12] establishes r = 1 for Halton sequences. Hartinger,
Kainhofer, and Ziegler [4] show r = 1 for generalized Niederreiter sequences. For all
h, i.e., minh∈{0,1}s ‖xN‖h, much less is known: Hartinger, Kainhofer, and Ziegler [4]
establish that r ≤ 1 + ε for Halton sequences and r ≥ 3/2 for the Faure sequence. In
a randomized setting Owen [10] shows that the expected error of randomized QMC
(under mild conditions on the moments of the integrand) is superior to Monte Carlo
even if there exist point singularities with unknown locations. In this paper we show
that r ≤ 1 + ε holds also for almost all random-start Halton sequences.



ON CORNER AVOIDANCE PROPERTIES 1111

Section 2 reviews the definition of random-start Halton sequences, that might be
considered as Halton sequences started at an arbitrary point in the unit cube (the
classical Halton sequence starts in 0). In view of an application of Schmidt’s subspace
theorem we formulate and discuss this theorem in section 3. The subspace theorem
will be an essential part of the proof of the results in section 4, which establishes
corner avoidance results for Halton sequences started in special points of the unit
cube. In section 5 we show that the set of start points inducing Halton sequences
that do not avoid all corners has Lebesgue measure zero.

2. Random-start Halton sequences. For a base p ∈ Z
+ (Z+ denotes the set

of positive integers) and an integer n with p-adic expansion n =
∑l

r=1 ar(n)pr−1,

define the radical inverse function by Φp(n) =
∑l

r=1 ar(n)p−r. The nth element of
the s-dimensional Halton sequence [3] in relatively coprime bases p1, . . . , ps (typically
the first s primes) is given by xn = (Φp1(n), . . . ,Φps(n)).

Wang and Hickernell [18] propose to generalize the Halton sequence in the fol-
lowing way: Let z ∈ [0, 1) be written as

(3) z =

∞∑
r=1

ar(z)

pr
,

where for all r0 ∈ Z
+ there exists an r ≥ r0 such that ar(z) < p−1 and 1 =

∑∞
r=1

p−1
pr .

The p-adic von Neumann–Kakutani transform is given by rightward-carry addition

in base p, i.e., Tp(z) = z ⊕ 1
p = 1+am(z)

pm +
∑

r>m
ar(z)
pr , where m = min{r ∈ Z

+ |
ur 
= p− 1}. For relatively coprime bases p1, . . . , ps, the s-dimensional z-start Halton

sequence is recursively defined by z = x0 = (x
(1)
0 , . . . , x

(s)
0 ) ∈ [0, 1]s and xn+1 =

(Tp1(x
(1)
n ), . . . , Tps(x

(s)
n )) for n ∈ Z

+
0 . Wang and Hickernell [18] show that for all

z ∈ [0, 1]s the induced Halton sequence is an LDS and propose a randomization of
the Halton sequence by choosing z through a realization of a uniformly distributed
random variable on [0, 1]s (therefore this construction is known as a random-start
Halton sequence).

For later convenience, we give an equivalent p-adic definition of the z-start Halton
sequence: For a prime p, let Zp denote the set of all p-adic integers. Supposing z =∑∞

r=1 ar(z)p
r−1 ∈ Zp, we define the extended radical inverse function Φp : Zp → [0, 1],

with z �→
∑∞

r=1 ar(z)p
−r. Since ar(z) ∈ {0, 1, . . . , p − 1}, the sum converges and Φp

is a well-defined function. The z-start van der Corput sequence (φp(n; z))n≥1 for
a starting point z ∈ Zp is defined by φp(n; z) = Φp(n + z). Finally, for distinct
primes p1, . . . , ps and fixed pi-adic integers zi (1 ≤ i ≤ s), the z-start Halton sequence
(xn)n≥1 is given by

xn = (φp1(n; z1), . . . , φps(n; zs)) .

For k ∈ Z
+, the sequence (φp(n; k))n≥1 = (Φp(n+ k))n≥1 is a shift of the van der

Corput sequence by k elements. Therefore a z-start Halton sequence with z ∈ Z
s is

called a finitely shifted Halton sequence. If there exists a coordinate in z such that
zi ∈ Zp \ Z, the corresponding Halton sequence is said to be infinitely shifted.

Let us define the map Φ̃p(z) : [0, 1] → Zp with z �→
∑∞

r=1 ar(z)p
r−1, where the

coefficients are obtained by (3). Thus, we have Φp ◦ Φ̃p = id. For z = (z1, . . . , zs) ∈
[0, 1)s and n ∈ Z

+, the corresponding z-start Halton sequence may now be written in
the following form:

xn := x(z1,...,zs)
n =

(
φp1(n; Φ̃(z1)), . . . , φps(n; Φ̃(zs))

)
.
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Remark. Note that we have defined the Halton sequence only for prime basis.
A similar construction may be obtained for relative prime basis. Observe that for a
prime p, Zp may be defined by Zp = lim

←
Z/pkZ, the inverse limit of the rings Z/pkZ.

This inverse limit exists even if p is not a prime. Considered as a limit of rings, it
does not give a suitable structure, i.e., in general Zp is not a domain. Nevertheless,
viewed as a limit of additive groups one gets a similar structure as in the prime case.
Since in the definition above only the additive structure is needed, the definition is
suitable to any relatively coprime basis.

3. The subspace theorem. Akin to the classical Halton sequence (cf. [4]) the
backbone in the proof for finitely shifted Halton sequences (see section 4) is the p-adic
subspace theorem due to Schlickewei [13] (see also [14, Chapter V, Theorem 1D]). In
the literature there exist many versions of the subspace theorem. The most general
form was established by Evertse and Schlickewei [1]. Because of technical reasons we
only state a nonquantitative version of this theorem, which can be found in Schmidt’s
book [14, Chapter V]. Before we state the subspace theorem, we introduce some
notations.

Let Q be the field of rationals; then there exist several absolute values on Q.
One of them is the so-called Archimedian absolute value | · |∞, which is the usual
absolute value. For any prime p we obtain an absolute value | · |p, with |x|p = p−α,
where x = pαu/v with p � uv; these absolute values are called non-Archimedian. The
Archimedian and non-Archimedian absolute values form the set M(Q), the canonical
absolute value. Let K be some number field; then every absolute value can be ex-
tended to an absolute value on K, possibly in several ways. Absolute values obtained
in this way are called Archimedian again, if they are extensions of the usual absolute
value and are called non-Archimedian if they are induced by an absolute value of the
form | · |p with p a prime. The union of these absolute values is denoted by M(K)
and is called the set of canonical absolute values. Let p ∈ {∞, 2, 3, 5, . . . } = M(Q)
(we identify p with | · |p) and let ν ∈ M(K); then we write ν|p if ν is induced by p.
Again let ν ∈ M(K) with ν|p. Then we denote by Kν the (topological) closure of K
with respect to ν. The index nν := [Kν : Qp] is called the local degree. Note that if
p = ∞, then nν = 1, 2 depending on whether the Kν is real or complex. We also use
the following notation. Let x ∈ Ks; then we use the notation

|x| = max
1≤i≤s

ν∈M(K), ν|∞

|xi|ν .

Note that by linear forms we mean homogeneous polynomials of degree 1 over
some number field K. We say that linear forms are linearly independent if they
are linearly independent over their (fixed) field of coefficients. Now we can state a
nonquantitative form of the subspace theorem (see [14, Chapter V, Theorem 1D]—
note the misprint non-Archimedian instead of Archimedian).

Theorem 2. Let K be an algebraic number field, and let S ⊂ M(K) be a
finite set of absolute values containing all of the Archimedian ones. For each ν ∈ S
let Lν,1, . . . , Lν,s be s linearly independent (over K) linear forms in s variables with
coefficients in K. Then for a given δ > 0, the solutions of the inequality∏

ν∈S

s∏
i=1

|Lν,i(x)|nν
ν < |x|−δ

with x ∈ osK and x 
= 0, where oK is the ring of integers of K, lie in finitely many
proper subspaces of Ks.
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In view of the next section we only need Theorem 2 in the case of K = Q.
Therefore we state also following version of the subspace theorem.

Theorem 3. Let {∞} ⊂ S ⊂ M(Q) be a finite set of absolute values. For each
ν ∈ S let Lν,1, . . . , Lν,s be s rational, linearly independent linear forms in s variables.
Then for a given δ > 0, the solutions of the inequality∏

ν∈S

s∏
i=1

|Lν,i(x)|ν <

(
max
1≤i≤s

|xi|
)−δ

with x ∈ Z
s and x 
= 0 lie in finitely many proper subspaces of Q

s.

4. Finite shifts. In this section we show that almost all finite shifts preserve
the corner avoidance properties of the Halton sequence in basis p1, . . . , ps. The first
step is to establish a relation between the hyperbolic distance and exact powers of
basis elements dividing certain p-adic integers. For a p-adic integer z, we say α is the
exact power of p dividing z (in symbols pα‖z), if α = min{r ≥ 0 : ar+1(z) 
= 0}.

Lemma 1. Let h be a corner of the unit cube and let z ∈ [0, 1]s such that
pαi
i ‖(Φ̃pi

(zi) + hi) for i = 1, . . . , s. Then

s∏
i=1

p−αi−1
i ≤ ‖z‖h ≤

s∏
i=1

p−αi
i .

Proof. Obviously, it suffices to prove

p−αi−1
i ≤ |zi − hi| ≤ p−αi

i ,

for i = 1, . . . , s.
First, consider the case hi = 0. For notational convenience omit the index i. Due

to pα‖Φ̃(z), we have Φ̃(z) =
∑∞

r=α+1 ar(z)p
r−1 (aα+1(z) 
= 0). Since Φ is the left

inverse of Φ̃, we obtain

z = Φ ◦ Φ̃(z) =

∞∑
r=α+1

ar(z)

pr
, aα+1(z) 
= 0.

Now, p−α−1 ≤ z ≤ p−α follows immediately by 0 ≤ ar(z) ≤ p− 1 for r ≥ 1.
Consider the case hi = 1. Omitting indices again, we have pα‖(Φ̃(z) + 1). Hence,

Φ̃(z) + 1 =
∑∞

r=α+1 ar(z)p
r−1 (aα+1(z) 
= 0), and

Φ̃(z) =

α∑
r=1

(p− 1)pr−1 + (aα+1(z) − 1)pα +

∞∑
r=α+2

ar(z)p
r−1.

Again, an application of Φ to Φ̃(z) yields

z = Φ ◦ Φ̃(z) =
α∑

r=1

p− 1

pr
+

aα+1(z) − 1

pα+1
+

∞∑
r=α+2

ar(z)

pr

and furthermore

1 − z =
∞∑
r=1

p− 1

pr
−

α∑
r=1

p− 1

pr
− aα+1(z) − 1

pα+1
−

∞∑
r=α+2

ar(z)

pr

=
p− aα+1(z)

pα+1
+

∞∑
r=α+2

p− 1 − ar(z)

pr
.
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Thus, p−α−1 ≤ 1 − z ≤ p−α.
Theorem 4. For k = (k1, . . . , ks) ∈ Z

s, let

xn = (x(1)
n , . . . , x(s)

n ) = (φp1
(n; k1), . . . , φps

(n; ks))

be the k-start Halton sequence in relatively coprime basis p1, . . . , ps. Denote by K(L)
the set of all shift-vectors k with ‖k‖∞ < L such that the k-start Halton sequence
does not avoid all corners, i.e.,

K(L) = {k ∈ ([0, L] ∩ Z)s : ∃ε > 0 ∃h ∈ {0, 1}s ∀n0 ∈ Z
+ ∃n ≥ n0

: ‖xn‖h < n−1−ε}.

Then

lim
L→∞

#K(L)

Ls
= 0.

Proof. Let 1 ≤ i ≤ s. Let us first assume that all quantities ki + hi are the same,
say equal to β. By the virtue of Lemma 1, it suffices to show that for every ε > 0
there are only finitely many n ∈ Z

+, such that

(4) pαi
i ‖(n + ki + hi) = n + β and

s∏
i=1

pαi
i ≥ n1+ε.

Since our assumption we have
∏s

i=1 p
αi
i |(n + β), and therefore (4) can hold only for

finitely many n.
Now let us assume not all ki + hi are the same. Let us write xi = n + ki + hi =

Cip
αi
i . Note that Ci and pi are relative prime. We may assume that the quantities

ki + hi are pairwise distinct. (If ki + hi = kj + hj for two indices i 
= j, set xi = xj =

C̃ip
αi
i p

αj

j .) Fix some index j and assume that C1···Cs∏
i�=j xi

≥ n−ε/2. For n large, such that

n1+ε/2 ≥ n + kj + hj = xj , we obtain

n1+ε ≥ xjn
ε/2 ≥ xj

∏
i �=j xi∏s
i=1 Ci

=

s∏
i=1

pαi
i .

Now, assume that C1···Cs∏
i�=j xi

≤ n−ε/2. We now come to the key point of the proof,

the application of the subspace theorem (Theorem 3). Let S be the set of abso-
lute values corresponding to a prime that divides a basis together with the usual
Archimedian absolute value. For every non-Archimedian absolute values ν we choose
Lν,i(x1, . . . , xs) = xi. The linear forms corresponding to the Archimedian absolute
value are L∞,j(x1, . . . , xs) = xj and L∞,i(x1, . . . , xs) = xj − xi for i 
= j. For n
large, such that n2 ≥ max{n+ ki + hi, (ki + hi)

8s/ε} for all i, we obtain the following
inequality:

|x|−ε/8
=

(
max

i=1,...,s
|n + ki + hi|

)−ε/8

≥ n−ε/4 ≥ n−ε/2 max
1≤i≤s

(ki + hi)
s

≥ C1 · · ·Cs∏
i �=j xi

∏
i �=j

|kj + hj − ki − hi|
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=
xj

p
αj

j

∏
i �=j

|kj + hj − ki − hi|
pαi
i

≥
∏
ν∈S

s∏
i=1

|Lν,i(x)|ν .

The last inequality holds since |L∞,i(x)| = |xj − xi| = |kj + hj − ki − hi| in case
of j 
= i and |L∞,j(x)| = |xj |. Furthermore, |Lp,i(x)|p = |Cip

αi
i |p = p−αi if p|pi, and

|Lp,i(x)|p ≤ 1 otherwise.

By Theorem 2 the solutions of this inequality lie only in finitely many subspaces.
Therefore the vector x satisfies the linear system (let T be an adequate subspace)

x1t1 + · · · + xsts = 0 (subspace T ),

xj − xi = kj + hj − ki − hi (i 
= j).
(5)

System (5) may be written in the following form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 t2 · · · tj−1 tj tj+1 · · · ts
−1 0 · · · 0 1 0 · · · 0
0 −1 · · · 0 1 0 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · −1 1 0 · · · 0
0 0 · · · 0 1 −1 · · · 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 1 0 · · · −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

...
xj

xj+1

...
xs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
kj + hj − k1 − h1

kj + hj − k2 − h2

...
kj + hj − kj−1 − hj−1

kj + hj − kj+1 − hj+1

...
kj + hj − ks − hs

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that the k-start Halton sequence avoids the corner h if and only if system (5)
has infinitely many solutions. But the system has infinitely many solutions if and only
if

(6)
s∑

i=1

ti = 0 and
∑
i �=j

ti(ki + hi) = −tj(kj + hj).

But (6) yields at most Ls−1 possibilities for (k1 + h1, . . . , ks + hs) such that
max1≤i≤s(ki + hi) ≤ L. Moreover, the subspace theorem yields only a finite number
of t subspaces. Thus, we have at most tLs−1 different vectors k that do not admit

corner avoidance. Hence, K(L) ≤ tLs−1 and limL→∞
#K(L)

Ls = 0.
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5. Metric results. This section aims to provide metric results on corner proper-
ties of random-start Halton sequences. It is shown that (Lebesgue) almost all z-start
Halton sequences avoid corners. In the spirit of Lemma 1 we use the following notion
to characterize points that are near the corners.

Definition 1. Let f : Z
+ → R

+ be a fixed arithmetic function such that f(n) ≥ 1
and

∞∑
n=1

(log(nf(n)))s−1

nf(n)
< ∞.

For z = (z1, . . . , zs) ∈ Zp1
× · · · ×Zps

and n ≥ 1, let xn = (φp1
(n; z1), . . . , φps

(n; zs))
be the z-start Halton sequence in relatively coprime basis p1, . . . , ps. The point xn is
said to be close to the corner h if there exist α1, . . . , αs such that for i = 1, . . . , s,

(7) pαi
i ‖(zi + hi + n) and

s∏
i=1

pαi
i > nf(n).

If (7) is fulfilled for infinitely many n, the z-start Halton sequence (xn)n≥1 is said to
approach h.

For the rest of this section we fix an arithmetic function f , which is assumed to
fulfill the properties of Definition 1.

Theorem 5. For z = (z1, . . . , zs) ∈ [0, 1)s and n ≥ 1, let

(xn)n≥1 = (xz
n)n≥1 =

(
φp1(n; Φ̃(z1)), . . . , φps(n; Φ̃(zs))

)
n≥1

be the z-start Halton sequence in relatively coprime basis p1, . . . , ps. Then the set

A = {z ∈ [0, 1)s : (xz
n)n≥1 approaches a corner h}

has Lebesgue measure zero, i.e., λ(A) = 0.
Proof. The proof will be done in several steps.
• A tiling for Zp1 × · · · × Zps .

For l1, . . . , ls ∈ Z
+, let us define the fundamental tile by

Xl1,...,ls := {y ∈ Zp1 × · · · × Zps : pαi |yi, i = 1, . . . , s}.

A tiling of Zp1 × · · · × Zps is obtained by the tiles

Xl1,...,ls + (k1, . . . , ks) := {y ∈ Zp1 × · · · × Zps : pαi |(yi − ki), i = 1, . . . , s},

for all integers ki with at most αi pi-adic digits, i.e., ki < plii ∈ Z
+ (i =

1, . . . , s).
Since Φp is surjective we also have a tiling of [0, 1]s. In most cases we will
need a tiling induced by the fundamental tile Xl := Xl,...,l, for a fixed l ∈ Z

+.
Remark. The tiles Xl1,...,ls + (k1, . . . , ks) generate the σ-algebra of the Borel
sets of the topological group Zp1 × · · · × Zps . The Haar measure μ such
that μ(Zp1 × · · · × Zps) = 1 is obtained if we allocate to each tile Xl1,...,ls +

(k1, . . . , ks) the measure p−l1
1 · · · p−ls

s (see [5, pp. 202–203]). Moreover, the
functions Φ and Φ̃ are measurable and the Haar measure μ is induced by
the Lebesgue measure λ and vice versa, i.e., μ(A) = λ(Φ̃−1(A)) and λ(B) =
μ(Φ−1(B)) for all measurable (Borel) sets A ⊆ Zp1×· · ·×Zps and B ⊆ [0, 1)s.
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To prove that Φ is measurable we only need to show that every element of a
generating system of the Borel sets of [0, 1)s has as preimage a Borel set of
Zp1 × · · · × Zps . In fact, we have

Φ−1

([
k1

pl11
,
k1 + 1

pl11

)
× · · · ×

[
ks

plss
,
ks + 1

plss

))
= X−

l1,...,ls
+ (k1, . . . , ks),

where X−
l1,...,ls

is Xl1,...,ls without elements which have a component yi ∈ Zpi

of the form yi =
∑∞

r=li+1(pi − 1)pri . Loosely speaking, X−
l1,...,ls

is Xl1,...,ls

without right upper border. It is easily seen that this right upper border is
a Borel set, which shows that Φ is measurable, since Xl1,...,ls is also a Borel
set.
Similarly we have

Φ̃−1 (Xl1,...,ls + (k1, . . . , ks)) =

[
k1

pl11
,
k1 + 1

pl11

]
× · · · ×

[
ks

plss
,
ks + 1

plss

]
.

Since the right side is a Borel set, Φ̃ is measurable.
• Let N ∈ Z

+ be fixed and l ∈ Z
+ be large. Consider the tiling induced by Xl;

if xz
N is close to the corner 0, then the whole tile corresponding to z is close

to the corner 0.
Define Φ(z) := (Φp1(z1), . . .Φps(zs)). First, observe that for i = 1, . . . , s and
ai ∈ Zpi , we have

(8)
(
pαi
i |(Φ̃pi(zi) + N)

)
=⇒

(
pαi
i |(Φ̃pi(zi) + aip

αi
i + N)

)
.

For i = 1, . . . , s, let k̄i =
∑αi

r=0 ar+1(zi)p
r
i . From (8), we conclude that if xz

N

is close to 0, then x
Φ(k̄)
N is close to 0. Thus, all points of the form x

Φ(k̄+y)
N

with y ∈ Xα1,...,αs are close to 0.

The same holds for all points of the form x
Φ(k̄+y)
N with y ∈ Xβ1,...,βs , where

βi ≥ αi (i = 1, . . . , s), in particular for y ∈ Xl with l ≥ max{α1, . . . , αs}.
• Reduction of the problem to a counting problem.

Let us define the set

AN := {z ∈ [0, 1)s : xz
N is close to 0}.

The idea is to find a Borel measureable set A′
N ⊃ AN , such that we are able

to estimate the measure of A′
N by solving a counting problem. We denote

the set of s-tuples of integers that possess pi-adic expansions with at most l
digits by F(l), i.e.,

F(l) = Z
s ∩
(
[0, pl1) × · · · × [0, pls)

)
,

and consider the set

CN,l = {(k1, . . . , ks) ∈ F(l) : x
Φ(k1,...,ks)
N is close to 0}.

Let l > log(Nf(N))
log 2 ; thus l ≥ max{α1, . . . , αs}. We know that with k ∈ CN,l

all x
Φ(k+y)
N are close to 0 provided y ∈ Xl. Therefore we define

A′
N =

∞⋂
l=� log(Nf(N))

log 2 �+1

A′
N,l and A′

N,l = Φ

( ⋃
k∈CN,l

k + Xl

)
.
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Since the sets Φ(k+Xl) are disjunct intervals with side lengths p−l
i , we have

λ(A′
N,l) =

�CN,l

(p1 · · · ps)l
.

• Reduction to compute a volume.

We define the set HN,l = {xΦ(k)
N : k ∈ F(l)} and the following tiling of [0, 1)s:

Tk,l =

[
k1

pl1
,
k1 + 1

pl1

)
× · · · ×

[
ks
pls

,
ks + 1

pls

)
, k ∈ F(l).

We know that distinct elements of HN,l lie in distinct sets Tk,l. Suppose u,v ∈
F(l) and x

Φ(u)
N ,x

Φ(v)
N ∈ Tk,l. Then for i = 1, . . . , s, pli|((ui + N) − (vi + N));

thus ui − vi ≥ pli or ui − vi = 0. By 0 ≤ ui, vi < pli, we have u = v.
In order to compute �CN,l we have to compute the number of elements of HN,l,
which have hyperbolic distance less than 1

Nf(N) . As each element of HN,l lies

in one and only one tile Tk,l, we get an upper bound on �CN,l by computing
the number of tiles Tk,l possessing a left lower corner with hyperbolic distance
less than 1

Nf(N) , i.e.,

�CN,l ≤ �

{
k ∈ F(l) : ||Φ(k)||0 ≤ 1

Nf(N)

}
.

Thus, we have reduced the problem to count lattice points contained in some
body. The number of lattice points contained in a body is about the volume
of the body divided by the volume of the fundamental parallelotope plus the
number of lattice points that lie near the border. Here, to each lattice point
there is a parallelotope with side lengths p−l

i (i = 1, . . . , s) attached. Let R
denote the number of points lying on one of the hyperplanes characterized by
{z ∈ [0, 1]s : xi = 0} for some i = 1, . . . , s. Furthermore, define the sets

CNf(N) =

{
z ∈ [0, 1)s : z1 · · · zs <

1

Nf(N)

}
and

δCNf(N) =

{
z ∈ [0, 1)s : z1 · · · zs =

1

Nf(N)

}
.

Set ε :=
√
p−2l
1 + · · · + p−2l

s . The area near the border is given by

ΔCNf(N) = {z ∈ (R+)s : |δCNf(N) − z| < ε} \ CNf(N),

where |δCNf(N) − z| denotes the minimal Euclidean distance from δCNf(N)

to z.
Thus, a bound for �CN,l is given by

�CN,l ≤
(
λ(CNf(N)) + λ(ΔCNf(N))

)
(p1 · · · ps)l + R,

where R is the number of lattice points lying in CNf(N)∩{z ∈ [0, 1)s : zi = 1}
for some i ∈ {1, . . . , s}, i.e., the number of lattice points which lie on the
remaining borders. By the definition of R we find that

R ≤ (p1 · · · ps)l
s∑

j=1

p−l
j ≤ (p1 · · · ps)l

√
sε.
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Since δCNf(N) is convex, we may project it on each hyperplane xi = 0 to get
a bound for the volume of ΔCNf(N) of the form sε. This yields

�CN,l ≤
(
λ(CNf(N)) + (s +

√
s)ε
)
(p1 · · · ps)l.

• Computation of the volume.
We claim that

λ(Ck) =
1

k

s−1∑
j=0

(log k)j

j!
<

(log k)s−1

k
e.

Let us denote by C
(j)
k the cylinder {(z1, . . . zs) ∈ [0, 1)s : z1 · · · zj ≤ 1/k}.

Once we have proved λ
(
C

(j+1)
k \ C(j)

k

)
= (log k)j

k(j!) , the claim follows by induc-
tion,

λ
(
C

(j+1)
k \ C(j)

k

)
=

∫ 1

z1=
1
k

∫ 1

z2=
1

kz1

· · ·
∫ 1

zj=
1

kz1···zj−1

∫ 1
kz1···zj

zj+1=0

∫ 1

zj+2=0

· · ·
∫ 1

zs=0

1 dzs · · · dz1

=

∫ 1

z1=
1
k

∫ 1

z2=
1

kz1

· · ·
∫ 1

zj=
1

kz1···zj−1

1

kz1 · · · zj
dzj · · · z1

=

∫ 1

z1=
1
k

∫ 1

z2=
1

kz1

· · ·
∫ 1

zj−1=
1

kz1···zj−2

log(kz1 · · · zj−1)

kz1 · · · zj−1
dzj−1 · · · dz1

=

∫ 1

z1=
1
k

∫ 1

z2=
1

kz1

· · ·
∫ 1

zj−2=
1

kz1···zj−3

(log(kz1 · · · zj−2))
2

2kz1 · · · zj−2
dzj−2 · · · dz1

= · · · =
(log k)j

k(j!)
.

• The probability that the N th point of a Halton sequence is close to 0.

Remember that A′
N :=

⋂∞
l=l0

A′
N,l, where l0 =

⌊ log(Nf(N))
log 2

⌋
+ 1. Since

A′
N,l+1 ⊂ A′

N,l, the set A′
N is measurable.

The volume of A′
N,l may now be estimated by

λ(A′
N,l) ≤ e

(log(Nf(N)))s−1

Nf(N)
+ (s +

√
s)ε.

Since ε → 0 as l → ∞, we conclude that

λ(A′
N ) ≤ e

(log(Nf(N)))s−1

Nf(N)
.

• The probability that the random-start Halton sequence is approaching 0.
Let us define the sets

B0 := {z : (xz
n)n≥1 is approaching 0} and

B(k)
0 := {z : (xz

n)n≥1 has at least k points that are close to 0}.
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Hence, B(k+1)
0 ⊂ B(k)

0 and

∞⋂
k=1

B(k)
0 = B0.

If in a sequence (xn) there are k points close to 0, then the index Nk of the
kth point xNk

that is close to 0 is in the set {N ∈ Z
+ : N ≥ k}. Therefore

B(k)
0 ⊂

∞⋃
N=k

A′
N .

If we take into account the definition of B0, then

B0 ⊂ B′
0 :=

∞⋂
k=1

∞⋃
N=k

A′
N .

Since the Lebesgue measure is continuous, we find

B′
0 = lim

k→∞

∞∑
N=k

λ(A′
N ) ≤ lim

k→∞

∞∑
N=k

e
(log(Nf(N)))s−1

Nf(N)
= 0,

by the assumption
∑∞

N=1
(log(Nf(N)))s−1

Nf(N) < ∞. Finally, λ(B′
0) = 0 includes

λ(B0) = 0 by the completeness of the Lebesgue measure.
• Deduction from one corner to all corners.

If a sequence (xz
n)n≥1 approaches a corner h ∈ {0, 1}s, then the sequence(

xz′

n

)
n≥1

with z′i = Φpi(Φ̃pi(xi) − hi) approaches the corner 0. Thus, the

probability for a random-start Halton sequence to approach any corner is
2s times the probability for approaching 0. Hence, λ(A) = 0.

Finally, let us give the following corollary.
Corollary 1. Almost all random-start Halton sequences avoid all corners, i.e.,

for any fixed ε > 0 there exists a constant c = c(ε, p1, . . . , ps) > 0 such that for any
corner h ∈ {0, 1}s and all n ≥ 1 the condition

‖xn‖h > cn−1−ε

is fulfilled.
Proof. The result is a direct consequence of Theorem 5 and Lemma 1 combined

with the fact that

∞∑
n=1

log(n1+ε)s−1

n1+ε
=

∞∑
n=1

(1 + ε)s−1 log(n)s−1

n1+ε
< ∞.

Remark. Theorem 4 could also be proved by similar methods (counting lattice
points in hyperbolic areas) as used in the proof of Theorem 5. However, we gave a
“Diophantine proof” of Theorem 4, because it is completely different and, moreover, it
provides more information on the structure whose points avoid corners. For example,
it is possible to show that the (nonrandomized) Halton sequence avoids all corners
with the “Diophantine approach” (cf. [4]).

On the other hand we could also use Theorem 4 in the proof of Theorem 5. Indeed
instead of counting lattice points one could apply Theorem 4 directly to estimate the
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number of starting points that come close to a corner. But in this case we had to
restrict the proof to the case f(n) = nε.

Lastly, note that in Corollary 1 the factor c
n1+ε could be replaced by

c
n(log n)s log2 n··· logl−1 n(logl n)1+ε , where logk n is the k times iterated logarithm of n.
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ANALYSIS OF PROFILE FUNCTIONS FOR GENERAL LINEAR
REGULARIZATION METHODS∗

BERND HOFMANN† AND PETER MATHÉ‡

Abstract. The stable approximate solution of ill-posed linear operator equations in Hilbert
spaces requires regularization. Tight bounds for the noise-free part of the regularization error are
constitutive for bounding the overall error. Norm bounds of the noise-free part which decrease to
zero along with the regularization parameter are called profile functions and are the subject of our
analysis. The interplay between properties of the regularization and certain smoothness properties of
solution sets, which we shall describe in terms of sourcewise representations, is crucial for the decay
of associated profile functions. On the one hand, we show that a given decay rate is possible only if
the underlying true solution has appropriate smoothness. On the other hand, if smoothness fits the
regularization, then decay rates are easily obtained. If smoothness does not fit, then we will measure
this in terms of some distance function. Tight bounds for these allow us to obtain profile functions.
Finally we study the most realistic case when smoothness is measured with respect to some operator
which is related to the one governing the original equation only through a link condition. In many
parts the analysis is done on geometric basis, extending classical concepts of linear regularization
theory in Hilbert spaces. We emphasize intrinsic features of linear ill-posed problems which are
frequently hidden in the classical analysis of such problems.

Key words. linear ill-posed problems, regularization, distance function, convergence rates,
index function, source condition, qualification, range inclusion
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1. Introduction. We study noisy linear operator equations

(1.1) yδ = Ax† + δξ (‖ξ‖ ≤ 1) ,

where A : X → Y is some bounded linear operator mapping between infinite-
dimensional separable Hilbert spaces X and Y and δ > 0 denotes the noise level.
The spaces X and Y are equipped with norms ‖ · ‖. The same norm symbol is also
used for associated operator norms.

We assume that A is injective and that the range R(A) is not closed in Y . Then
the linear operator equation Ax = y has a unique solution x = x† ∈ X, for every
y ∈ R(A), but the equation is ill-posed since A−1 is an unbounded operator. Thus
regularization is required in order to find stable approximate solutions of the operator
equation based on noisy data yδ ∈ Y . We consider general linear regularization
schemes based on a family of piecewise continuous functions gα(t) (0 < t ≤ a :=
‖A∗A‖) for regularization parameters 0 < α ≤ α. The family gα determines the
regularization method. Once a regularization gα is chosen, the approximate solution
to (1.1) is given by

xδ
α = gα(A∗A)A∗yδ.
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For such approximate solution xδ
α we obtain an obvious error bound, using the inter-

mediate quantity xα = gα(A∗A)A∗y = gα(A∗A)A∗Ax†, as

(1.2) e(x†, α, δ) := ‖xδ
α − x†‖ ≤ ‖x† − xα‖ + δ‖gα(A∗A)A∗‖ for all 0 < α ≤ α.

The second summand on the right is independent of the underlying true solution. Let
us denote by rα(t) := 1 − t gα(t) (0 < t ≤ a) the residual or bias functions related to
the regularization method gα, thus ‖x† − xα‖ = ‖rα(A∗A)x†‖. In these terms, tight
bounds on the norm of the residual are constitutive for the accuracy of the regularized
solution. Bounds which are increasing functions in α > 0 will give rise to what we
call profile functions.

The outline is as follows. In section 2 we recall the basic underlying quantities,
namely general linear regularization methods for operator equations in Hilbert space
and the concept of solution smoothness in terms of general source conditions. Then,
in section 3 we associate profile functions to any given regularization and to any set
of smooth solutions and discuss their existence. The rate at which profile functions
decay to zero turns out to be crucial and is the objective of our analysis. It will
become clear that this rate depends on the underlying regularization as well as on the
solution smoothness. In section 4 we indicate situations when maximal rates of decay
occur, regardless of the underlying solution smoothness, namely due to the limited
qualification of the regularization method. We close this part by showing that decay
rates imply solution smoothness.

The constructive part of obtaining explicit descriptions of profile functions, as
dependent on the qualification of the regularization and smoothness properties of the
solution with respect to the operator A, is carried out in sections 5 and 6 for several
degrees of generality. We start in section 5 with the easiest case, when solution
smoothness is measured in terms of general source conditions given through functions
of A∗A. This is then extended to the situation where a source condition is satisfied
only approximately, measured in terms of a specific concept of distance functions.
Tight upper bounds for such distance functions imply profile functions.

We close the analysis with section 6 discussing the situation when solution smooth-
ness is measured with respect to a self-adjoint operator G : X → X with nonclosed
range which is different from A∗A. In this case an assumption, linking A∗A and
G, will allow us to draw conclusions on the decay rate of the associated profile
functions.

In many parts the analysis is done on a geometric basis, extending classical con-
cepts as those used in the theory of linear ill-posed equations in Hilbert space. By
doing so we not only extend previous results to a more general situation, but we aim
at emphasizing intrinsic features of the problems under consideration. Such features
are often hidden in the classical analysis of linear ill-posed problems.

2. General linear regularization methods and general smoothness. As
mentioned in the introduction, profile functions will be assigned to regularization
methods and solution sets of (1.1). We start with the notion of a general linear
regularization scheme. Then we turn to the description of solution smoothness in
terms of general source conditions.

The basic underlying objects are index functions, and we recall the following
definition, as known in the literature (e.g., [7, 14, 3]).

Definition 2.1. A real function ϕ(t) (0 < t ≤ t̄) is called an index function if it
is continuous, strictly increasing, and satisfies the limit condition limt→0+ ϕ(t) = 0.
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2.1. General regularization methods.

Definition 2.2. A family of functions gα(t) (0 < t ≤ a), defined for parameters
0 < α ≤ α, is called a regularization if they are piecewise continuous in α and the
following three properties are satisfied:

(i) For each 0 < t ≤ a there is convergence |rα(t)| → 0 as α → 0.
(ii) There is a constant γ1 such that |rα(t)| ≤ γ1 for all 0 < α ≤ α.
(iii) There is a constant γ∗ such that

√
t |gα(t)| ≤ γ∗/

√
α for all 0 < α ≤ α.

Example 2.3. The most famous method of regularization is the Tikhonov method
with gα(t) = 1/ (t + α) , which satisfies the properties of Definition 2.2 for the con-
stants γ1 = 1 and γ∗ = 1/2 and arbitrarily large α > 0.

Example 2.4. Another common regularization method is spectral cut-off, which
is given as

gα(t) =

{
0 (0 < t < α)

1/t (α ≤ t ≤ a)
with respective residual rα(t) =

{
1 (0 < t < α)
0 (α ≤ t ≤ a).

Obviously this obeys the properties from Definition 2.2 with γ1 = γ∗ = 1. Also
for that method, the upper bound α for the regularization parameter can be selected
arbitrarily.

Example 2.5. Iterative regularization methods, as, for instance, Landweber iter-
ation, where for some 0 < μ < 1/‖A∗A‖ we let

xδ
n := μ

n−1∑
j=0

(I − μA∗A)jA∗yδ, n = 1, 2, . . . ,

are conform to this approach when assigning n := �1/α� (0 < α < 1). Thus with
this identification we obtain gα(t) := 1/t

(
1 − (1 − μt)�1/α�

)
and the corresponding

residual rα(t) := (1 − μt)�1/α� (0 < α < 1), hence obviously γ1 = 1. It remains to
bound γ∗. Bernoulli’s inequality yields 1 − nμt ≤ (1 − μt)n, which can be used to
bound

√
tgα(t) = 1/

√
t (1 − (1 − μt)n) ≤ (1/t (1 − (1 − μt)n))

1/2 ≤ √
μn .

By the definition of n this yields γ∗ =
√
μ.

The above requirements (i)–(iii) are made to ensure convergence of regularization
methods for any given element x† ∈ X. However, these are not enough to describe
rates of convergence.

As introduced in the papers [13, 14, 15, 16], we measure the qualification of any
regularization method in terms of index functions ψ.

Definition 2.6. Let ψ(t) (0 < t ≤ a) be an index function. A regularization gα
for the operator equation (1.1) is said to have qualification ψ with constant γ ∈ (0,∞)
if

(2.1) sup
0<t≤a

|rα(t)|ψ(t) ≤ γ ψ(α) for all 0 < α ≤ a .

This definition generalizes the concept of qualification of a regularization method as
a finite number or infinity, as, for example, used in [5]. We remark that a first system-
atic discussion of the interrelations between solution smoothness and the traditional
concept of qualification was given in [25, 26].
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For Tikhonov regularization (see Example 2.3) we can give sufficient conditions
for ψ being a qualification in different ways, as this is formulated in the following
proposition. For more details and proofs we refer to [15, 16, 3].

Proposition 2.7. The index function ψ(t) (0 < t ≤ a) is a qualification of
Tikhonov regularization with constant γ = 1 if either (a) ψ(t)/t is nonincreasing on
(0, a] or (b) ψ(t) is concave on (0, a].

If there exists an argument t̂ ∈ (0, a) such that (c) ψ(t)/t is nonincreasing on (0, t̂ ]
or (d) ψ(t) is concave on (0, t̂ ], then ψ is a qualification with constant γ = ψ(a)/ψ(t̂ ).

2.2. Measuring solution smoothness. In a wide sense the smoothness of
expected solutions x† to (1.1) can be written as a property of the form x† ∈ M with
M ⊆ R(G) for some “smoothing” linear operator G : X → X, where G is assumed
to be positive self-adjoint with nonclosed range R(G) (see also [3, 18]). Specifically,
here we shall assume that the solution x† belongs to a set

(2.2) Gτ (R) := {x ∈ X : x = τ(G)w, ‖w‖ ≤ R}

with some index function τ(t) (0 < t ≤ ‖G‖).
As the following lemma asserts, such a set is closed in X and even compact

whenever G is compact.
Lemma 2.8. For a positive self-adjoint bounded linear operator G : X → X

and an index function τ(t) (0 < t ≤ ‖G‖) the set Gτ (R) from (2.2) is closed in X.
Moreover, Gτ (R) is a compact subset of X whenever G is a compact operator.

Proof. First we show that Gτ (R) is a closed subset in X. We show that the image
{x ∈ X : x = Gw, w ∈ X, ‖w‖ ≤ R} of the centered ball with radius R in X with
respect to any bounded positive self-adjoint linear operator G : X → X is a closed
subset of X. Since τ(G) has the same properties as a consequence of the boundedness
of any index function τ , this shows the closedness of Gτ (R). Consider a convergent
sequence of images Gxn → y0 ∈ X with ‖xn‖ ≤ R. Since any closed ball in X is weakly
precompact and weakly closed, there is a weakly convergent subsequence xnk

⇀ x0

with ‖x0‖ ≤ R. Since every continuous operator G is also weakly continuous and
hence weakly closed, this implies the weak convergence Gxnk

⇀ Gx0, thus y0 = Gx0

which shows the required closedness. Moreover, for compact G it is evident that
τ(G) : X → X is a compact operator and then Gτ (R) is a precompact subset of X.
Since Gτ (R) is closed in X, this implies the compactness and proves the lemma.

In our analysis below for index functions τ we shall assign pairs (G, τ) Hilbert
spaces XG

τ having Gτ (1) as their unit balls. In particular, we use the shortcut H :=
A∗A and consider Hilbert spaces XH

ϕ for index functions ϕ with the set Hϕ(1) as unit
ball, where we define

(2.3) Hϕ(R) := {x ∈ X : x = ϕ(A∗A)w, ‖w‖ ≤ R} .

Corresponding norms will be denoted by ‖ · ‖XG
τ

and ‖ · ‖XH
ϕ

, respectively. This

construction is basically due to [6].

3. Profile functions. In this section we shall introduce the notion of a profile
function, discuss the problem of existence, and show that their decay is related to
smoothness of the underlying solution x† of (1.1).

3.1. Definition and existence. Having chosen a linear regularization gα, and
having fixed a set M ⊂ X of possible solutions to (1.1) we assign profile functions as
follows.



1126 BERND HOFMANN AND PETER MATHÉ

Definition 3.1. An index function f : (0, α] → (0,∞) is called profile function
for (M, gα) whenever

(3.1) sup
x∈M

‖rα(A∗A)x‖ ≤ f(α) for all 0 < α ≤ α .

In the definition we suppress the dependence of profile functions f on the operator
A, governing (1.1). If M := {x} ∈ X is a singleton, then we shall write (x, gα) instead
of ({x} , gα). Note that the bound (3.1) is required only for α ≤ α, which is useful for
asymptotic considerations as δ → 0 in (1.1).

The character of possible profile functions f for (M, gα) is closely connected with
three ingredients and their interplay. In this context, properties of the regularization
gα as first component and of the set M ⊂ X expressing the solution smoothness as
second components meet as third component the smoothing behavior of the operator
A in (1.1), which leads to the nonclosedness of the range R(A).

Remark 3.2. Once a profile function f(α) as above is found, together with prop-
erty (iii) of Definition 2.2, we may then continue the estimate (1.2) to derive

(3.2) e(x†, α, δ) ≤ f(α) +
γ∗ δ√
α

for all 0 < α ≤ α ,

uniformly for x† ∈ M. The bound on the right in (3.2) can be balanced with respect
to the choice of α depending on δ. To this end we consider the index function

Θ(α) :=
√
α f(α) (0 < α ≤ α).

Let α∗ = α∗(δ) = Θ−1(δ) (0 < δ ≤ Θ(ᾱ)). Then we obtain uniformly for x† ∈ M
that

(3.3) e(x†, α∗, δ) ≤ (1 + γ∗)f(α∗).

Thus the function f(Θ−1(δ)) yields a convergence rate of the regularization gα for x†

as δ → 0. This rate is achieved by an a priori parameter choice α∗ = α∗(δ).
First we shall establish that profile functions exist for any regularization gα and

compact subsets M ⊂ X.
Proposition 3.3. Let gα be any regularization and M ⊂ X be compact. Then

there is a profile function for (M, gα).
Proof. From the properties (i) and (ii) of Definition 2.2, we deduce for α → 0

pointwise convergence rα(A∗A)x → 0 for all x ∈ X (see, e.g., [5, Theorem 4.1]). This
convergence is uniform on compact sets M ⊂ X. Hence we have

h(α) := sup
x∈M

‖rα(A∗A)x‖ → 0 as α → 0.

Its increasing majorant h̄(α) := sup0<s≤α h(s), which is well-defined for sufficiently

small positive α, satisfies limα→0 h̄(α) = 0. If h̄(α) is continuous and nonvanishing,
then it is a profile function. Otherwise, suppose h̄(s) = 0 for some s > 0. We fix some
t > 0 with h̄(t) > 0 and let

ĥ(x) :=

⎧⎪⎨⎪⎩
h̄(x), x > t,

h̄(t), s < x ≤ t,

x/s h̄(t), 0 < x ≤ s,
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which, when continuous, defines an index function.

Thus if G is compact and τ is an index function, then for any regularization gα
there are profile functions for (Gτ (R), gα), where the sets Gτ (R) were defined in (2.2).

On the other hand, there cannot exist profile functions for (M, gα), where M :=
{x ∈ X : ‖x‖ ≤ 1} is the unit ball in X. Their existence would imply that ‖rα(A∗A)‖
tends to zero as α → 0 and hence that the range R(A) were closed, which would be
contrary to the ill-posedness of the problem under consideration (see, e.g., [23] and
[5, Chapter 3.1]). More generally, extending this argument, profile functions cannot
exist for (M, gα), whenever M possesses an interior point.

However, there are profile functions for noncompact sets. In Proposition 5.1,
profile functions for (Hϕ(R), gα) will be obtained, where the operator A may be
compact (ill-posedness of type II in the sense of Nashed [19]) or noncompact (ill-
posedness of type I). In the latter case this yields noncompact sets M = Hϕ(R).
Another specific example of profile functions for the noncompact set M = {x ∈
L∞(0, 1) : ‖x‖L∞(0,1) ≤ R} ⊂ X = L2(0, 1) for the Tikhonov regularization and
multiplication operators A mapping in L2(0, 1) can be taken from [10]. This is not
by chance and some explanation will be given in Remark 5.2. Roughly speaking,
if smoothness properties of M are appropriate for the underlying operator A from
(1.1), then profile functions exist for (M, gα), regardless of their compactness. In
this respect, compactness of M may be viewed as universal (problem independent)
smoothness.

3.2. Decay rates yield solution smoothness. To exhibit the fact that a de-
cay rate of a profile function implies solution smoothness in the sense of section 2.2,
we start with the following result, which extends analysis in [21], and we also refer
to the recent monograph [1]. We recall that the operator H = A∗A admits a spec-
tral resolution with a family (Eλ)0<λ≤a of projections, which is assumed to be such

that λ �→ ‖Eλx
†‖2 is left continuous, thus representing a (spectral) measure. We

start with the following technical result from [21, Lemma 2.1]; see also [5, Proof of
Proposition 4.13].

Lemma 3.4. Let gα(t) (0 < t ≤ a, 0 < α ≤ ᾱ) be a regularization with con-
stant γ∗. If 0 < t ≤ min {α, a}, then

∣∣r(4γ2
∗α)(t)

∣∣ ≥ 1/2.

The above lemma yields the following estimate.

Lemma 3.5. Let gα be a regularization with constant γ∗ as in property (iii) of
Definition 2.2. The following estimate holds true:

(3.4) ‖r(4γ2
∗α)x

†‖ ≥ 1

2

(∫ α

0

d‖Eλx
†‖2

)1/2

for all 0 < α ≤ min
{
a, ᾱ/4γ2

∗
}
.

Before turning to the main result of this section we state the following lemma.

Lemma 3.6. Suppose ϕ(t) (0 < t ≤ t̄) is an index function. There is a sequence
fn(t) (0 < t ≤ t̄) of step functions of the form

∑m
j=1 cjχ(0,αj)(t) converging to 1/ϕ(t)

pointwise and fn(t) ≤ 1/ϕ(t).

Proof. Given any such ϕ and n ∈ N large enough n ≥ n0, we let f(t) = 1/ϕ(t)
and truncate at tn = f−1(n) < t̄ to obtain gn(t) (0 ≤ t ≤ t), which is a nonincreasing
bounded continuous function on the closed interval [0, t̄]. Thus there is a step function
fn(t) of the required form, satisfying |fn(t) − gn(t)| ≤ 1/n. The sequence fn(t) (0 <
t ≤ t̄), n = n0, n0 + 1, . . . , converges pointwise to f .

Given a regularization gα with constant γ∗ and any index function h(t) (0 < t ≤
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a), we can assign a nonnegative measure Φh on (0, a] by letting

Φh[0, α) := h(4γ2
∗α) (0 < 4γ2

∗α ≤ a).

With this notation we can formulate the following result.
Theorem 3.7. Let gα(t) (0 < t ≤ a) for the parameters 0 < α ≤ ᾱ be a

regularization with constant γ∗. We assume that the index function f(α) (0 < α ≤ ᾱ)
is a profile function for (x†, gα) with associated measure Φ = Φf2 , restricted to the
interval J∗ := (0,min

{
a, ᾱ/4γ2

∗
}
]. Then the following assertions are true:

(a) If ψ is any index function such that 1/ψ ∈ L2(J∗, dΦ), then necessarily x† ∈
XH

ψ .

(b) Let ψ be an index function for which t �→ 1/(ψ2((f2)−1(t))) ∈ L1
loc(J∗, dt),

i.e., it is locally integrable. Then x† ∈ XH
ψ .

Proof. Using Lemma 3.5 and the fact that f(α) (0 < α ≤ ᾱ) is assumed to be a
profile function for (x†, gα) we conclude that the estimate

(3.5)
1

4

∫ α

0

d‖Eλx
†‖2 ≤ ‖r(4γ∗α)x

†‖2 ≤ f2(4γ2
∗α) =

∫ α

0

dΦ(λ) (α ∈ J∗)

is valid.
Now let ψ be any index function such that 1/ψ(t) ∈ L2(J∗, dΦ). By Lemma 3.6

we can find a sequence fn(t) of step functions on J∗, converging to 1/ψ2(t) pointwise.
Using (3.5) and the particular form of fn we deduce that

1

4

∫
J∗

fn(λ)d‖Eλx
†‖2 ≤

∫
J∗

fn(λ)dΦ(λ) ≤
∫
J∗

1

ψ2(λ)
dΦ(λ).

By Fatou’s lemma we conclude that also 1/ψ(t) ∈ L2(J∗, d‖Eλx
†‖2) and

‖1/ψ‖L2(J∗,d‖Eλx†‖2) ≤ 2‖1/ψ‖L2(J∗,dΦ).

Consequently,

‖x†‖2
XH

ψ
=

∫ a

0

1

ψ2(λ)
d‖Eλx

†‖2

=

∫
J∗

1

ψ2(λ)
d‖Eλx

†‖2 +

∫
(0,a]\J∗

1

ψ2(λ)
d‖Eλx

†‖2

≤ 4‖1/ψ‖2
L2(J∗,dΦ) +

1

minλ∈(0,a]\J∗ ψ
2(λ)

‖x†‖2 < ∞,(3.6)

because the second summand on the right is finite, which proves assertion (a).
We use a change of measure to establish assertion (b). The proof is complete.
Remark 3.8. If the interval J∗ coincides with (0, a], then the second summand on

the right in (3.6) does not appear and we get a bound ‖x†‖XH
ψ

≤ 2‖1/ψ‖L2((0,a],dΦ).

The following elementary observation is useful.
Lemma 3.9. Suppose ψ,ψ1 and f, f1 are pairs of index functions which are related

by some common strictly increasing function g as f(t) = f1(g(t)) and ψ(t) = ψ1(g(t))
on the respective domains of the definition. Then it holds true that f(ψ−1(t)) =
f1(ψ

−1
1 (t)).
Theorem 3.7 also covers cases which were known before, like the ones discussed

in the following examples.
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Example 3.10 (see [21]). If the profile function f for (x†, gα) is a monomial
f(α) = αν for some ν > 0, then we can draw the following conclusion. For every
monomial ψ(t) = tμ we obtain 1/ψ2((f2)−1(t)) = t−μ/ν , which is integrable on every
finite interval for μ < ν. Hence we deduce that necessarily x† ∈ XH

ψ for all 0 < μ < ν.

Example 3.11 (see [12, Theorem 8]). If the profile function f for (x†, gα) is of
logarithmic type, say f(α) = log−ν(1/α) (0 < α < 1) for some ν > 0, then by
using Lemma 3.9 we also deduce that necessarily x† ∈ XH

ψ for all functions ψ(t) =

log−μ(1/t) (0 < t < 1) with μ < ν, because both are related to the respective functions
from Example 3.10 through g(t) := log−1(1/t) (0 < t < 1).

4. Lower bounds for profile functions. In general profile functions f(α) can
decrease to zero arbitrarily fast as α tends to zero. This is, for instance, the case when
gα is chosen as spectral cut-off in Example 2.4 and x† is an eigenelement of A∗A, in
which case ‖rα(A∗A)x†‖ ≡ 0 for α small enough.

However, for many regularization methods there is a maximal speed of conver-
gence ‖rα(A∗A)x†‖ → 0 as α → 0, for any x† �= 0, regardless of its smoothness.
This phenomenon is related to saturation, as was studied, e.g., in [21, 22], and in
more generality in [13], from which the present approach is taken. The impact of
limited qualification on profile functions can be seen under an additional convexity
assumption.

Theorem 4.1. Let gα be any regularization with residual rα. Suppose that for
all 0 < t ≤ a the functions

(4.1) α �→ |rα(t)| (0 < α ≤ α)

are increasing, and for all 0 < α ≤ α the functions

(4.2) t �→ |rα(t)|2 (0 < t ≤ a)

are convex. Let ψ̄ be given as

(4.3) ψ̄(α) := inf
0<t≤a

|rα(t)| (0 < α ≤ α).

Then for each 0 �= x ∈ X we have

(4.4) ψ̄(α) ≤ 1

‖x‖ ‖rα(A∗A)x‖ for all 0 < α ≤ α.

Hence ψ̄ is a nondecreasing lower bound to any profile function for (x0, gα) uniformly
for all elements x0 ∈ X of the unit sphere, i.e., with ‖x0‖ = 1.

Sketch of a proof. To prove that ψ̄ is a lower bound to any profile function for
(x0, gα) we use a Jensen-type inequality (see, e.g., [13]), which yields that under (4.2)
we have

ψ̄(α) ≤
∣∣rα(‖Ax‖2/‖x‖2)

∣∣ ≤ ‖rα(A∗A)x‖
‖x‖ for all 0 < α ≤ α.

Moreover, under (4.1) the function ψ̄ is nondecreasing. This completes the proof.
Remark 4.2. In many cases, the above function ψ̄(α) turns out to be a qualifica-

tion of the regularization gα. In such a case it is maximal qualification.
We shall exhibit the above result in the following examples.
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Example 4.3. For Tikhonov regularization as in Example 2.3 we easily verify
that the assumptions are satisfied. We conclude that ψ̄(α) = α/(α + a) with ψ̄(α) ≥
α/(2a) (0 < α < a). In this case this corresponds to the maximal qualification which
is ψ(α) = α.

Example 4.4. The n-fold iterated Tikhonov regularization, which has rα(t) =
(α/(α+ t))n as its residual function, also satisfies the assumptions from Theorem 4.1
and ψ̄(α) = (α/(α + a))n ≥ (α/(2a))n. This method corresponds to the maximal
known qualification ψ(α) = αn.

As in [13] we close with the following example, which is interesting as it shows
that regularization, which has arbitrary classical qualification in the form ψ(t) = tq

for any 0 < q < ∞, still has a limited rate of decay for the profile functions, although
these can decay exponentially fast.

Example 4.5. Landweber iteration from Example 2.5 also satisfies all the as-
sumptions. The function ψ̄, letting 0 < b := 1/(1 − μa) < ∞, turns out to be
ψ̄(α) = (1 − μa)�1/α� ≥ exp(−b/α) (0 < α < 1).

Finally we stress that spectral cut-off, as in Example 2.4, does not fulfill the above
assumptions. Moreover, formally we would obtain the lower bound ψ̄(α) ≡ 0, which
is trivial.

Remark 4.6. Lower bounds for profile functions are related to the saturation
phenomenon as we shall briefly sketch. The following estimate is shown in the cause
of the proof of the theorem in [13]:

(4.5) sup
‖ξ‖≤1

e(x†, gα, δ) ≥ max
{
‖rα(A∗A)x†‖, δ/

√
α
}

(0 < α ≤ ᾱ).

Thus, if ψ̄(α) is a lower bound as in (4.4), then for any x† with ‖x†‖ = 1 we derive
that

sup
‖ξ‖≤1

e(x†, gα, δ) ≥ max
{
ψ̄(α), δ/

√
α
}
≥ ψ̄(Θ−1(δ)) (0 < α ≤ ᾱ)

with Θ(t) :=
√
t ψ̄(t) (0 < t ≤ α). Hence, the function ψ̄(Θ−1(δ)) is a lower bound

for the error at x†, no matter how smooth the true solution x† ∈ X was.
The functions ψ̄ derived in Examples 4.3–4.5 can be seen to be the saturation

rates caused by the limited qualifications of the underlying regularization methods.

5. Impact of solution smoothness. As stressed earlier, the behavior of profile
functions is determined by both the chosen regularization gα and the underlying solu-
tion smoothness. As introduced in section 2.2, we measure this in terms of smoothness
conditions of the form x† ∈ Gτ (R), see (2.2), determined by an operator G and an
index function τ . The impact of such a smoothness assumption on the decay rate of
profile functions is best seen if G is a function of A∗A.

5.1. G as a function of A∗A. To obtain profile functions f for the regulariza-
tion method gα, the concept of general source conditions, as expressed in

(5.1) x† = ψ(A∗A)w (w ∈ X, ‖w‖ ≤ R),

for some index functions ψ(t) (0 < t ≤ a) was used recently (see, e.g., [12, 14, 15, 24]).
We note that (5.1) is a specific smoothing condition (2.2) with τ(G) = ψ(A∗A) (cf. [3]
for further discussion of such conditions).

We are going to find profile functions f uniformly for sets Hψ(R), as defined by
formula (2.3), provided the corresponding function ψ is a qualification of the chosen
regularization gα.
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Proposition 5.1. Let the index function ψ be a qualification of the regularization
method gα with constant 0 < γ < ∞. Then uniformly for each x† ∈ Hψ(R) the
inequality

(5.2) ‖xα − x†‖ ≤ γ Rψ(α) for all 0 < α ≤ a

is valid. Hence f(α) := γ Rψ(α) is a profile function for (Hψ(R), gα).
Proof. From spectral theory (see, e.g., [5, formula (2.47)]) we have with (5.1) that

‖xα − x†‖ = ‖rα(A∗A)x†‖ = ‖rα(A∗A)ψ(A∗A)w‖ ≤ R sup
0<t≤a

|rα(t)|ψ(t) .

Taking into account inequality (2.1), this yields (5.2) and proves the proposition.
Remark 5.2. This proposition can be reformulated as follows. Suppose that we

are given a pair (M, gα) of a solution set M and a regularization gα. If we can find an
index function ψ on (0, a] that is both a qualification for gα and a smoothness for M ,
i.e., M ⊆ Hψ(R) for some R, then there is a profile function for (M, gα). In addition
the index function ψ provides a decay rate. Although this is a simple observation it
explains the existence of profile functions for noncompact sets M , as discussed at the
end of section 3.1.

5.2. Approximate source conditions. An important extension of the above
concept is obtained by relaxing requirement (5.1). In this context, we restrict ourselves
to a fixed index function ϕ(t) (0 < t ≤ a) as benchmark function. We suppose that
the solution x† ∈ X of (1.1) is not smooth enough to satisfy a condition (5.1) with
ϕ instead of ψ even if R ≥ 0 is arbitrary large. The injectivity of A implies the
injectivity of ϕ(A∗A) for any index function ϕ. Hence the range R(ϕ(A∗A)) is dense
in X. Consequently, for all 0 ≤ R < ∞ the element x† satisfies such a general source
condition in an approximate manner as x† = ϕ(A∗A)w + ξ ( ‖w‖ ≤ R, ξ ∈ X),
where the norm of the perturbation ‖ξ‖ tends to zero as R tends to infinity.

In the following we shall confine to this situation, when

(5.3) x† �∈ R(ϕ(A∗A)).

The quality of the approximation of x† by elements from Hϕ(1) can be expressed
by favor of the distance function

(5.4)

ρx†(t) = ρ
(H,ϕ)

x† := dist(tx†, Hϕ(1)) = inf
{
‖tx† − ϕ(H)v‖ : v ∈ X, ‖v‖ ≤ 1

}
(t > 0).

If the reference to the benchmark (H,ϕ) is clear, as in the following lemma, then we
shall omit the superscript.

Lemma 5.3. Under the assumption (5.3) the functions ρx†(t) and ρx†(t)/t (t > 0)
are both index functions. Moreover, we have limt→∞ ρx†(t) = ∞.

Proof. The idea of the proof is standard in regularization theory. For each t > 0
the value ρx†(t)/t = dist(x†, Hϕ(1/t)) is obtained from constrained minimization, and
Lagrange multipliers can be used to determine this value. Hence, given x† ∈ X let

Fx†(λ) := ‖x† − ϕ(A∗A)v‖2 + λ‖v‖2.

At given λ its minimizer with respect to v ∈ X is

vλ :=
[
ϕ2(A∗A) + λI

]−1
ϕ(A∗A)x†,
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which has to obey the side constraint χ(λ) = 1/t, where setting

(5.5) χ(λ) := ‖
[
ϕ2(A∗A) + λI

]−1
ϕ(A∗A)x†‖.

Based on the injectivity of ϕ(A∗A), spectral calculus yields that the function χ(λ) (λ >
0) is positive, continuous, and strictly decreasing to zero as λ → ∞. Moreover, un-
der (5.3) we have limλ→0+ χ(λ) = ∞. Therefore for all t > 0 the function λ(t) :=
χ−1(1/t) exists and is an index function. Hence we obtain

(5.6) ρx†(t)/t = ‖x† − ϕ(A∗A)vλ(t)‖ = λ(t) ‖
[
ϕ2(A∗A) + λ(t)I

]−1
x†‖ (t > 0),

which is the composition of two index functions in t. As a consequence, both functions
ρx†(t)/t and ρx†(t) have that property. On the other hand, we have

lim
t→∞

ρx†(t) = lim
t→∞

t

(
ρx†(t)

t

)
= ∞ ,

since ρx†(t)/t as an index function cannot tend to zero as t → ∞. This completes the
proof.

Remark 5.4. By using distance functions of the form

(5.7) d(R) := dist(x†, Hϕ(R)) = Rρx†(1/R) (0 < R < ∞),

error estimates for the Tikhonov regularization were obtained in [9] and [4]; see also [2,
8, 11] for variants thereof. The fundamental estimate for profile functions under
approximate source conditions is as follows.

Theorem 5.5. Let gα be a regularization method with qualification ϕ and con-
stant γ. If the solution x† to (1.1) obeys (5.3), then

(5.8) ‖xα − x†‖ ≤ max {γ, γ1}
1

t
(ρx†(t) + ϕ(α)) for all t > 0 and 0 < α ≤ a.

Thus the function

(5.9) f(α) := 2 max {γ, γ1}
ϕ(α)

ρ−1
x† (ϕ(α))

(0 < α ≤ a)

is a profile function for (x†, gα).
Proof. First we establish (5.8). For any v ∈ X with ‖v‖ ≤ 1 we can estimate

‖xα − x†‖ =
1

t
‖rα(A∗A)tx†‖

=
1

t
‖rα(A∗A) tx† − rα(A∗A)ϕ(A∗A)v + rα(A∗A)ϕ(A∗A)v‖

≤ 1

t

(
‖rα(A∗A)(tx† − ϕ(A∗A)v)‖ + ‖rα(A∗A)ϕ(A∗A)v‖

)
≤ 1

t

(
γ1‖tx† − ϕ(A∗A)v‖ + ‖rα(A∗A)ϕ(A∗A)‖

)
≤ 1

t

(
γ1 ‖tx† − ϕ(A∗A)v‖ + γ ϕ(α)

)
.

Since this estimate remains true if we substitute ‖tx†−ϕ(A∗A)v‖ by its infimum over
all v from the unit ball of X and since ϕ is a qualification of the used regularization
method, we obtain

‖x† − xα‖ ≤ max {γ, γ1}
1

t
(ρx†(t) + ϕ(α)) for all t > 0 and 0 < α ≤ a,
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which proves estimate (5.8). Since this estimate is valid for all t > 0 and we have by
Lemma 5.3 for the index function ρx† the limit condition limt→∞ ρx†(t) = ∞, we can
equate the two terms in brackets of the right-hand side of (5.8). Taking into account
the strict monotonicity of function ρx†(t) (t > 0), (5.9) is yielded.

Remark 5.6. We notice that the upper bound in (5.8) cannot be improved by
other values of t, because it is the balance of a strictly increasing function ρx†(t)/t
and a decreasing, with respect to t, function ϕ(α)/t.

We also mention that the same arguments yield a slightly different bound

‖x† − xα‖ ≤ (γ + γ1)

t
max {ρx†(t), ϕ(α)} for all t > 0 and 0 < α ≤ a,

which is better if the constants γ and γ1 differ. This implies that in all estimates
below the expression 2 max {γ, γ1} can be replaced by (γ + γ1).

Remark 5.7. Since the denominator ρ−1
x† (ϕ(α)) in (5.9) expresses an index func-

tion tending to zero as α tends to zero, the decay rate of f(α) → 0 as α → 0 is always
lower than the corresponding rate of the benchmark function ϕ, i.e., ϕ(α) = o(f(α))
as α → 0. In particular, one has to choose a sufficiently good benchmark function
and a regularization with high enough qualification to achieve by that way the best
possible rate for given x†.

5.3. Approximate source conditions for solutions in sourcewise rep-
resentation. It is worthwhile to discuss the situation when x† has a sourcewise
representation (5.1), but the benchmark function ϕ is chosen in such a way that
x† �∈ R(ϕ(A∗A)). This can happen in the following case only.

Lemma 5.8. Suppose x† obeys (5.1). If x† �∈ R(ϕ(A∗A)), then necessarily
(ϕ/ψ) (t) → 0 as t → 0.

Proof. Suppose ϕ(t) �= o(ψ(t)). Then there is C < ∞ such that ψ(t) ≤ Cϕ(t) for
small 0 < t ≤ t̄. Given 0 < ε ≤ t̄ we can bound∫ a

ε

1

ϕ2(λ)
d‖Eλx

†‖2 =

∫ t̄

ε

1

ϕ2(λ)
d‖Eλx

†‖2 +

∫ a

t̄

1

ϕ2(λ)
d‖Eλx

†‖2

≤ C2

∫ t̄

ε

1

ψ2(λ)
d‖Eλx

†‖2 + sup
λ≥t̄

ψ2(λ)

ϕ2(λ)

∫ a

t̄

1

ψ2(λ)
d‖Eλx

†‖2

≤ max

{
C2, sup

λ≥t̄

ψ2(λ)

ϕ2(λ)

}∫ a

ε

1

ψ2(λ)
d‖Eλx

†‖2

≤ max

{
C2, sup

λ≥t̄

ψ2(λ)

ϕ2(λ)

}
‖x†‖2

XH
ψ
.

Letting ε → 0 we obtain ‖x†‖XH
ϕ

< ∞, thus x† ∈ R(ϕ(A∗A)), which completes the
proof.

If, slightly stronger but geometrically intuitive, we assume that the quotient
(ϕ/ψ) (t) is strictly increasing, then we can give a clear picture of the resulting func-
tion ρx†(t) for t > 0 sufficiently small.

Theorem 5.9. We suppose that x† obeys (5.1) and that the quotient (ϕ/ψ) (t) is
an index function for 0 < t ≤ a. Then we can estimate the distance function as

(5.10) ρx†(t) ≤ ϕ

((
ϕ

ψ

)−1

(Rt)

)
for all 0 < t ≤ 1

R

ϕ(a)

ψ(a)
.
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Proof. The proof is carried out using the analysis from the proof of Lemma 5.3,
and we shall make use of the notation introduced there. According to the proof
of Lemma 5.3, let λ(t) := χ−1(1/t) (t > 0) with function χ from (5.5). Then for
x† = ψ(A∗A)v with ‖v‖ ≤ R, representation (5.6) allows for the following bound:

ρx†(t) = tλ(t)‖
[
ϕ2(A∗A) + λ(t)I

]−1
x†‖ ≤ (Rt)λ(t)‖

[
ϕ2(A∗A) + λ(t)I

]−1
ψ(A∗A)‖

= (Rt) sup
0<s≤a

λ(t)ψ(s)

ϕ2(s) + λ(t)
= (Rt) sup

0<u≤ϕ2(a)

λ(t)

u + λ(t)
ψ((ϕ2)−1(u)) ,

where we make the crucial observation that u �→ λ(t)/(u + λ(t)) is the residual of
Tikhonov regularization. To continue we introduce the auxiliary function

(5.11) κ(s) :=
ψ((ϕ2)−1(s))√

s
=

(
ψ

ϕ

)(
(ϕ2)−1(s)

)
(0 < s ≤ ϕ2(a)).

It is clear that 1/κ(s) is an index function, hence lims→0+ κ(s) = ∞. Also, the
function κ(u)/

√
u is decreasing whenever κ is. Hence Proposition 2.7(a) applies and

allows us to conclude the estimate

(5.12) ρx†(t) ≤ (Rt)ψ((ϕ2)−1(λ(t))) (t > 0) ,

noting that ψ((ϕ2)−1(s)) for sufficiently small s > 0 is an index function.
Next we shall establish for sufficiently small t > 0 an upper bound λ̃(t) for λ(t)

which then will yield estimate (5.10). Indeed, let λ̃(t) be obtained as inverse

(5.13) λ̃(t) = κ−1(1/(Rt)).

It is enough to show that λ(t) ≤ λ̃(t). To this end notice that κ was decreasing, hence
u �→ (ψ((ϕ2)−1(u))

√
u)/u is so, and we derive, again using arguments as above, that

for 0 < t ≤ 1
R

ϕ(a)
ψ(a) the estimate

κ(λ̃(t)) ≤ 1

Rt
=

χ(λ(t))

R
≤ ‖

[
ϕ2(A∗A) + λ(t)I

]−1
ϕ(A∗A)ψ(A∗A)‖

≤ 1

λ(t)
sup

0<u≤ϕ2(a)

λ(t)

u + λ(t)
ψ((ϕ2)−1(u))

√
u ≤ 1

λ(t)
ψ((ϕ2)−1(λ(t)))

√
λ(t)

= κ(λ(t)) .

Consequently, λ(t) ≤ λ̃(t) and we arrive at

(5.14) ρx†(t) ≤ (Rt)ψ((ϕ2)−1(λ(t))) ≤ (Rt)ψ((ϕ2)−1(λ̃(t))) =

√
κ−1

(
1

Rt

)
.

It is a routine matter to check that both versions in the right-hand side of (5.14)
are equal. Indeed, starting from the identity ψ(u)/ϕ(u) = ψ(u)/ϕ(u), a variable

substitution u := (ϕ/ψ)
−1

(Rt) yields

1

Rt
=

ψ
(
(ϕ/ψ)

−1
(Rt)

)
ϕ
(
(ϕ/ψ)

−1
(Rt)

) = κ

(
ϕ2

((
ϕ

ψ

)−1

(Rt)

))
,

completing the proof.
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Corollary 5.10. Suppose that ϕ is a qualification for gα with constant γ. Under
the assumptions of Theorem 5.9 there is some α > 0 such that

(5.15) f(α) := 2 max{γ, γ1}Rψ(α) (0 < α ≤ α)

is a profile function for (Hψ(R), gα).
Proof. For proving that (5.15) is a profile function for (Hψ(R), gα) we use the

estimate (5.8) of Theorem 5.5 and the bound (5.10) which together yield for some
sufficiently small t > 0 the error bound

‖xα − x†‖ ≤ max {γ, γ1}
1

t

(
ϕ

((
ϕ

ψ

)−1

(Rt)

)
+ ϕ(α)

)
(0 < t ≤ t, 0 < α ≤ a).

Then for sufficiently small α > 0 there is some t∗ = t∗(α) ∈ (0, t ] satisfying the equa-
tion

ϕ

((
ϕ
ψ

)−1

(Rt∗)

)
= ϕ(α), namely t∗ = ϕ(α)/(Rψ(α)) implying

‖xα − x†‖ ≤ 2 max {γ, γ1}
ϕ(α)

t∗
= 2 max {γ, γ1} Rψ(α).

This, however, completes the proof.
Example 5.11. For monomials ϕ(t) = tν and ψ(t) = tη with ν, η > 0, everything

can be made explicit. Lemma 5.8 states that (5.3) is valid if and only if 0 < η < ν,
which in the case of monomials is equivalent to saying that (ϕ/ψ)(t) is an index
function. We obtain the bound ρx†(t) ≤ (Rt)ν/(ν−η) .

The global properties required for the quotient function ϕ/ψ on (0, a] are rather
strong assumptions in Theorem 5.9 used for obtaining the estimate (5.15) in Corol-
lary 5.10. On the other hand, in [11] and [4] by a completely different technique there
have been developed error estimates of type (5.15) with some other constant which
only need local properties of ϕ/ψ on an arbitrarily small interval (0, ε]. In order to
show that our approach is powerful enough to work with such weaker assumptions,
we conclude this section with a local variant of Theorem 5.9 yielding the results of
Corollary 5.10 with different constant under the local assumption on the quotient
function.

Theorem 5.12. We suppose that x† obeys (5.1) and that ϕ, ψ are index func-
tions on (0, a]. Moreover, it is assumed that there exists some 0 < ε ≤ a such that the
quotient function ϕ/ψ is an index function on the interval (0, ε]. Then with the con-

stants Cε = ψ(a)
ψ(ε) ≥ 1 and Kε = ψ(a)

ψ(ε)
ϕ(a)
ϕ(ε) ≥ 1 we can estimate the distance function

as

(5.16) ρx†(t) ≤ Cε

Kε
ϕ

((
ϕ

ψ

)−1

(RKε t)

)
for all 0 < t ≤ t

and sufficiently small t > 0. If, moreover, ϕ is a qualification for gα with constant γ,
then there is ᾱ > 0 such that the function

(5.17) f(α) := 2 max{γ, γ1}Kε Rψ(α) (0 < α ≤ ᾱ)

is a profile function for (Hψ(R), gα).
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Sketch of a proof. We follow the proof of Theorem 5.9, but the local version of
the estimate (5.12) is obtained using Proposition 2.7(c) with t̂ = ϕ2(ε) as

ρx†(t) ≤ (Rt)Cε ψ((ϕ2)−1(λ(t)))

for sufficiently small t > 0. Moreover, instead of (5.13) in the local variant we have
to set

λ̃(t) : = κ−1(1/(RKε t)) ,

which is well-defined for t ∈ (0, t ] with t > 0 sufficiently small. Then as in the original
proof it can be shown that λ(t) ≤ λ̃(t) for 0 < t ≤ t again based on Proposition
2.7(c). Precisely, we have the estimate

κ(λ̃(t)) =
1

RKεt
=

χ(λ(t))

RKε
≤ 1

Kε
‖
[
ϕ2(A∗A) + λ(t)I

]−1
ϕ(A∗A)ψ(A∗A)‖

=
1

Kελ(t)
sup

0<u≤ϕ2(a)

λ(t)

u + λ(t)
ψ((ϕ2)−1(u))

√
u ≤ 1

λ(t)
ψ((ϕ2)−1(λ(t)))

√
λ(t)

= κ(λ(t)) .

Finally we arrive at

ρx†(t) ≤ (Rt)Cε ψ((ϕ2)−1(λ(t))) ≤ (Rt)Cε ψ((ϕ2)−1(λ̃(t))) =
Cε

Kε

√
κ−1

(
1

RKεt

)
which proves (5.16). For proving (5.17) we use the estimate (5.8) of Theorem 5.5
yielding here for sufficiently small t > 0 and α > 0, and since Cε

Kε
≤ 1,

‖xα − x†‖ ≤ max {γ, γ1}
1

t

(
ϕ

((
ϕ

ψ

)−1

(RKε t)

)
+ ϕ(α)

)
.

Now we choose t∗ = t∗(α) such that the equation

ϕ

((
ϕ

ψ

)−1

(RKε t∗)

)
= ϕ(α)

holds. This is possible for sufficiently small α > 0 and yields t∗ = ϕ(α)
ψ(α)

1
RKε

. Hence

we obtain the profile function (5.17) as required.

6. Linking scales by range inclusions. Since the initial study of linear inverse
problems in Hilbert scales (see [20]), it is well known that the operator G measuring
smoothness of the solution x† must be linked to the operator A governing (1.1) in
order to obtain error bounds. There are various ways to establish such a link and we
will investigate its impact on profile functions next.

Again we start with the benchmark function ϕ and assume in addition that

(6.1) x† ∈ Gτ (R)

with Gτ (R) defined by (2.2). Moreover, we impose the following link condition; pre-
cisely, that there is an index function σ(t) (0 < t ≤ ‖G‖) and a constant C < ∞ such
that

(6.2) ‖σ(G)v‖ ≤ C‖ϕ(A∗A)v‖ for all v ∈ X.
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Remark 6.1. There is an extensive analysis in [3] of linking conditions in var-
ious ways. In particular, it is shown as Proposition 2.1 in [3] that the validity of
condition (6.2) with some positive C is equivalent to the range inclusion

(6.3) R(σ(G)) ⊆ R(ϕ(A∗A)) .

We mention the following consequence of (6.2) (see, e.g., [17]). Given Hilbert spaces
X and Z with Z ⊂ X let J : Z → X be the canonical embedding, leaving elements
from Z invariant.

Lemma 6.2. Under (6.2) the canonical embedding JH,ϕ
G,σ : XG

σ → XH
ϕ is norm

bounded by C and we have

(6.4) Gσ(R) ⊆ Hϕ(C R).

Proof. It is well known that for any pair S, T of operators a relation ‖Sv‖ ≤ ‖Tv‖
implies ‖T−1v‖ ≤ ‖S−1v‖, whenever the right-hand sides are finite. Thus (6.2)
implies for any x ∈ XG

σ with ‖x‖XG
σ
≤ 1 that ‖x‖XH

ϕ
≤ C and hence (6.4).

We will distinguish two scenarios and start with the easier one.

Proposition 6.3. Let gα be a regularization which has qualification ϕ with
constant γ and assume that x† obeys (6.1). If condition (6.2) is valid for an index
function σ, and if there is K < ∞ such that τ(t)/σ(t) ≤ K (0 < t ≤ ‖G‖), then the
function

(6.5) f(α) := γ C K Rϕ(α) (0 < α ≤ a)

is a profile function for (Gτ (R), gα).

Proof. From τ(t)/σ(t) ≤ K (0 < t ≤ a) we deduce from Lemma 6.2 that Gτ (R) ⊆
Gσ(KR), which is equivalent to ‖τ(G)x‖ ≤ K ‖σ(G)x‖ for all x ∈ X. Furthermore,
in the light of Lemma 6.2, the link condition (6.2) implies Gσ(KR) ⊆ Hϕ(CKR), and
any profile function for Hϕ(CKR) provides us with a profile function for Gτ (R), such
that the proof can be completed using Proposition 5.1.

Thus we are left with the case when

(6.6) (σ/τ)(t) → 0 as t → 0.

Then we have XG
σ ⊂ XG

τ and the canonical embedding JG,τ
G,σ : XG

σ → XG
τ is norm

bounded. The question is whether one can use condition (6.2) to draw conclusions
for the behavior of profile functions in this case.

Suppose we assume a linking condition (6.3), but smoothness is measured as
x† ∈ Gτ (R) with respect to a different index function τ . Can we establish an index
function ψ, assigned to a triplet (σ, τ, ϕ), such that the following range implication
holds true:

(6.7) R(σ(G)) ⊆ R(ϕ(H)) =⇒ R(τ(G)) ⊆ R(ψ(H))?

In specific situations this problem was already posed (cf. [11, formula (5.10), p. 815])
and partially answered previously (cf. [3, Corollary 2.3]). Most prominently, the
Heinz–Kato inequality (see [5, Proposition 8.21]) yields

R(G) ⊆ R(H) =⇒ R(Gμ) ⊆ R(Hμ)



1138 BERND HOFMANN AND PETER MATHÉ

for 0 < μ ≤ 1 as a consequence of operator monotonicity. In fact this can be ex-
tended to more general situations in which operator monotone functions occur. It is
convenient to draw the following diagram.

(6.8)

G:XG
σ

JG,τ
G,σ−−−−→ XG

τ

JI
G,τ−−−−→ X⏐⏐�JH,ϕ

G,σ

⏐⏐�JH,ψ
G,τ

⏐⏐�I

H:XH
ϕ

JH,ψ
H,ϕ−−−−→ XH

ψ?

JI
H,ψ−−−−→ X

Under (6.6) the upper row shows embeddings which are bounded. Using Lemma 6.2

the embedding JH,ϕ
G,σ is norm bounded by C, provided the link condition (6.2) holds

true. Plainly the identity I : X → X has norm equal to one. The question ad-
dressed in this diagram is whether we can describe an index function ψ such that
the corresponding embedding JH,ψ

G,τ is norm bounded, say by some constant L < ∞.
Diagram (6.8) also suggests that the resulting function ψ will describe smoothness
not covered by ϕ, and approximate source conditions must be used to obtain results.

Remark 6.4. If the embedding JH,ψ
G,τ were norm bounded, say by some constant

L < ∞, then Gτ (R) ⊆ Hψ(LR), and any profile function for (Hψ(LR), gα) would also
be a profile function for (Gτ (R), gα).

As the diagram (6.8) clearly indicates, interpolation properties may help to find
suitable index function ψ. The implication (6.7) of range inclusions is indeed true if
operator monotonicity occurs and we shall mention the following result from [17].

Theorem 6.5. Let x† obey (6.1). We assume that G and A∗A are linked by (6.2),
where we suppose that σ is such that there is an extension σ(t) (0 < t ≤ b) with σ(b) ≥
ϕ(a) and this extension is an index function. Moreover, given an index function
τ(t) (0 < t ≤ ‖G‖) we assign the index function

(6.9) ψ(t) := τ(σ−1(ϕ(t))) (0 < t ≤ a).

Then the implication (6.7) is satisfied whenever the function τ2((σ2)−1(t)) (0 < t ≤
ϕ2(a)) is operator monotone and (σ/τ)(t) (0 < t ≤ ‖G‖) is an index function.

Precisely, the norm bound

(6.10) ‖JH,ψ
G,τ : XG

τ → XH
ψ ‖ ≤ max {1, C}

with C from (6.2) is valid.

Now we return to the analysis of profile functions. To establish these functions
the full strength of the implication (6.7) is not necessary. But we shall also indicate its
strength in Theorem 6.11. However, the function ψ from (6.9) will occur, nonetheless.

There are in principle two ways to use the link conditions (6.2) or (6.3), respec-
tively, to obtain profile functions. One can either transfer all information to the scale
generated by the operator G or to the scale generated by H := A∗A. Both ways finally
provide the same asymptotic results but under assumptions of different strength. We
start with the first approach which requires weaker assumptions.

Lemma 6.6. The link condition (6.2) implies

(6.11) ρ
(H,ϕ)

x† (t) ≤ 1

C
ρ
(G,σ)

x† (Ct) for all 0 < t < ∞.
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Proof. Plainly, condition (6.2) yields Gσ(1/C) ⊆ Hϕ(1) and we obtain

ρ
(H,ϕ)

x† (t) = dist(tx†, Hϕ(1)) ≤ dist(tx†, Gσ(1/C))

=
1

C
dist(Ctx†, Gσ(1)) =

1

C
ρ
(G,σ)

x† (Ct).

With this preparation we can state the main result of this section.
Theorem 6.7. Let gα be a regularization method with qualification ϕ and con-

stant γ for the operator equation (1.1) with solution x† the smoothness of which is
characterized by the conditions (5.3) and (6.1) with some index functions ϕ and τ .
We suppose the link condition (6.2) with some index function σ for connecting A∗A
and G. If the function

(6.12) (σ/τ)(t) (0 < t ≤ ‖G‖) is an index function ,

then there is some ᾱ > 0 for which the function ψ(t) (0 < t ≤ ᾱ) from (6.9) is an
index function and

(6.13) f(α) := 2 max{γ, γ1} max{1, C}R ψ(α) (0 < α ≤ ᾱ)

is a profile function for (Gτ (R), gα).
Remark 6.8. Assume (6.3) instead of (6.2). Let C := ‖(ϕ(A∗A))−1τ(G)‖ < ∞.

Then the function f from (6.13) is a profile function with the constant C.
Proof of Theorem 6.7. For an arbitrary x† ∈ Gτ (R) using the bound (5.8) and

Lemma 6.6 we obtain for all 0 < α ≤ a that

‖xα−x†‖ ≤ max{γ, γ1}
t

(
ρ
(H,ϕ)

x† (t) + ϕ(α)
)
≤ max{γ, γ1}

1

t

(
1

C
ρ
(G,σ)

x† (Ct) + ϕ(α)

)
.

By exploiting Theorem 5.9 in the scale generated by G we can continue and bound

(6.14) ‖xα − x†‖ ≤ max{γ, γ1}
t

(
1

C
σ

((σ
τ

)−1

(RCt)

)
+ ϕ(α)

)
for 0 < α ≤ 1

RC

(
σ
τ

)
(‖G‖). There is some 0 < ᾱ ≤ ‖G‖/C for which we can equate

both summands on the right of formula (6.14) whenever 0 < α ≤ ᾱ. This leads to

t∗ = t∗(α) :=
1

R

ϕ(α)

τ(σ−1(Cϕ(α)))
(0 < α ≤ ᾱ).

Moreover, by (6.12) we have that τ(σ−1(Ct)) ≤ max{1, C} τ(σ−1(t)) for 0 < t ≤ α.
Thus we can estimate for 0 < α ≤ ᾱ

‖xα − x†‖ ≤ 2 max{γ, γ1}
ϕ(α)

t∗
≤ 2 max{γ, γ1}Rτ(σ−1(Cϕ(α))) .

Consequently, we obtain

‖xα − x†‖ ≤ 2 max{γ, γ1} max {1, C} Rψ(α) (0 < α ≤ ᾱ),

completing the proof.
Remark 6.9. The results of Theorem 6.7 with an appropriately modified constant

in (6.13) can also be obtained under the weaker assumption that

(σ/τ)(t) (0 < t ≤ ε) is an index function



1140 BERND HOFMANN AND PETER MATHÉ

for arbitrarily small ε > 0 instead of the global assumption (6.12). This is an im-
mediate result of the opportunity of localization as outlined in Theorem 5.12 and its
proof.

As mentioned above, we can also try to transfer the information from the link
conditions (6.2) and (6.3) to the scale generated by H = A∗A.

We recall the definition of the function ψ in formula (6.9) in the context of The-
orem 6.5. The following observation is useful.

Lemma 6.10. Let the functions τ, σ and ϕ,ψ be as in Theorem 6.5. If the quotient
σ/τ is an index function on (0, ‖G‖], then ϕ/ψ is an index function on (0, a].

Proof. We assign s = s(t) := σ−1(ϕ(t)) (0 < t ≤ a), thus s ∈ (0, b]. With this
identification we obtain

ϕ(t)

ψ(t)
=

σ(s)

ψ(ϕ−1(σ(s)))
=

σ(s)

τ(σ−1(σ(s)))
=

σ(s)

τ(s)
.

Keeping this lemma in mind we can prove the following counterpart of Theo-
rem 6.7.

Theorem 6.11. Assume that the regularization gα has qualification ϕ with con-
stant γ and that σ/τ is an index function on (0, ‖G‖]. Under the assumptions of The-
orem 6.5, in particular the operator monotonicity of the function τ2((σ2)−1(t)) (0 <
t ≤ ϕ2(a)), the function

(6.15) f(α) = 2 max {γ, γ1} max {1, C} Rψ(α) (0 < α ≤ a)

is a profile function for (Gτ (R), gα).
Proof. Let L := max {1, C}. The estimate (6.10) of Theorem 6.5 yields the

inclusion Gτ (R) ⊂ Hψ(LR). Thus profile functions for (Hψ(LR), gα) are also profile
functions for (Gτ (R), gα). By Lemma 6.10 the function ϕ(t)/ψ(t) (0 < t ≤ a) is an

index function and we can apply Theorem 5.9 to bound the distance function ρ
(H,ψ)

x†

as

ρ
(H,ψ)

x† (t) ≤ ϕ

((
ϕ

ψ

)−1

(LRt)

) (
0 < t ≤ ϕ(a)

LRψ(a)

)
.

Corollary 5.10 provides us with the profile function as given in (6.15).
Example 6.12. Again, let us discuss the situation when the index functions are

in the form of monomials; more precisely, we assume that σ(t) = tμ, τ(t) = t. Then
the operator monotonicity as required in Theorem 6.11 is fulfilled whenever μ ≥ 1,
which can be deduced from the Heinz–Kato inequality. If the link condition (6.2) is
assumed to hold for ϕ(t) = tν , and if the regularization has qualification ϕ, then we
arrive at a profile function f(α) = Cαν/μ, uniformly for x† satisfying (5.3) and (6.1).
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to discretize div-curl systems. We give error estimates based on the reformulation of these systems
into equivalent equations for the potentials. Numerical results illustrate the use of the method on
several types of meshes, some of which are degenerating triangular meshes and nonconforming locally
refined meshes.
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1. Introduction. Discretization schemes which are based on a discrete vector
analysis satisfying discrete analogues of the usual continuous theorems lead to robust
and efficient approximations of various physical models. Based on finite volume-like
formulations, they provide discrete approximations of differential operators such as
gradient, divergence, and curl.

Such schemes were, for example, constructed by Hyman, Shashkov, and co-
workers, initially on logically rectangular grids. We refer to [13, 14] for the con-
struction of the discrete operators and to [15] for the proof of a discrete Hodge
decomposition. These schemes were then applied in several different circumstances
(see, e.g., [16, 17]) and extended to unstructured [5] or even nonconforming grids [19],
although on those types of meshes, to our knowledge, no discrete Hodge decomposition
has been proved.

Our interests in this paper are related to other schemes based on a discrete vector
analysis. These schemes were proposed by Nicolaides and co-workers to solve fluid
mechanics problems [7], div-curl problems [20, 12], or Maxwell equations [21]. In
these works, these so-called covolume schemes are restricted to locally equiangular
triangular meshes in the two-dimensional case. Given such a primal triangular mesh,
a dual mesh is constructed by joining the circumcenters of adjacent triangles. Thus
the edges of the primal and dual meshes are orthogonal. In what follows, this property
will be called “the orthogonality property.” The necessity for the mesh to verify this
property might in certain cases be a severe restriction, particularly with respect to
mesh adaptivity.
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In [20], discrete field components are defined as normal to the edges of the primal
mesh and, therefore, thanks to the orthogonality property, along the edges of the
dual mesh. This single component is enough to permit the definition of a discrete
divergence operator on the primal mesh and of a discrete curl operator on the dual
mesh. Reciprocally, discrete analogues of the normal (with respect to the edges of
the primal mesh) components of the gradients (resp., vector curls) are obtained over
the edges with the help of scalar quantities defined at the circumcenters (resp., at the
vertices) of the primal cells.

Due to the anisotropy of the media considered in [12], the authors are led to
introduce both components of vector fields on the edges of the mesh, which allows
them to define discrete divergence and curl operators on both the primal and dual
meshes. Nevertheless, they keep on considering only the normal components of the
discrete gradient and curl vectors, thus leaving the generalization of [20] incomplete.

In the present work, we extend the covolume ideas of Nicolaides to almost arbi-
trary two-dimensional meshes, including, in particular, nonconforming meshes. The
only requirement on the mesh is that the dual cells (which are obtained in a different
way) form a partition of the domain of computation. These meshes do not necessarily
verify the orthogonality property, and we therefore discretize vector fields by their two
components over so-called diamond-cells which are quadrilaterals whose vertices are
the extremities of primal and associated dual edges. Like in [12], these two field com-
ponents enable us to define discrete divergence and curl operators both on the primal
and dual meshes. Reciprocally, and in contrast to [12], both components of discrete
gradient and vector curl operators are defined over the diamond-cells with the help
of scalar quantities given on both the primal and dual cells. Together with the defini-
tion of appropriate discrete scalar products, we establish that these discrete operators
verify discrete properties which are analogous to those verified by their continuous
counterparts: discrete Green formulae, discrete Hodge decomposition of vector fields,
the divergence of vector curls, and the curl of gradients vanish. These results thus
generalize those obtained in [12, 20], with the major novelty that they hold on a
much wider class of meshes. Because of the discrete Green formulae, finite volume
schemes based on these ideas have been named discrete duality finite volume (DDFV)
schemes in [9] and their use has started with the construction and analysis of a finite
volume method for the Laplace equation on almost arbitrary two-dimensional meshes
[10]. Then, these ideas have been applied to the discretization of nonlinear elliptic
equations [2], drift-diffusion and energy-transport models [6], and electro-cardiology
problems [22].

In this article, we apply these ideas to the numerical solution of div-curl problems
which occur, for example, in fluid dynamics and electro- and magnetostatics. Using
the discrete Hodge decomposition of the discrete unknown vector field, this problem
is recast into two discrete Laplace equations for the discrete potentials, just like in the
continuous problem. Using results obtained in [10], we prove the convergence of the
scheme provided the continuous potentials are smooth enough and under geometrical
hypotheses related to the nondegeneracy of the diamond-cells.

This paper is organized as follows: in section 2, we explain the construction of the
primal, dual, and diamond meshes and define our notations. In section 3 we construct
the discrete differential operators, while section 4 is devoted to the proof of the prop-
erties of the discrete operators. Then, we apply these ideas in section 5 to discretize
the div-curl problem and obtain error estimates. Several numerical experiments are
reported in section 6 and conclusions are drawn in section 7.
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Sk
Pk

Ti

Gi

Fig. 2.1. An example of a primal mesh and its associated dual mesh.

2. Definitions and notations. Let Ω be a bounded polygon of R
2, not neces-

sarily simply connected, whose boundary is denoted by Γ. We suppose, in addition,
that the domain has Q holes. Throughout the paper, we shall assume that Q > 0,
but the results also hold for the case Q = 0.

Let Γ0 denote the exterior boundary of Ω and let Γq, with q ∈ [1, Q], be the
interior polygonal boundaries of Ω, so that Γ = Γ0

⋃
q∈[1,Q] Γq.

The domain Ω will be covered by three different meshes whose constructions are
similar to those given in [10].

2.1. Construction of the primal mesh. We consider a first partition of Ω
(named primal mesh) composed of elements Ti, with i ∈ [1, I], which are supposed
to be convex polygons. For each element Ti of the mesh, we associate a node Gi

located inside Ti. This point may be the barycenter of Ti, but is not necessarily. The
area of Ti is denoted by |Ti|. We shall denote by J the total number of edges of this
mesh. Note that in the case of a nonconforming mesh, an edge is any segment whose
extremities are nodes of the mesh. We also denote by JΓ the number of edges which
are located on the boundary Γ and we associate with each of these boundary edges its
midpoint, also denoted by Gi with i ∈ [I + 1, I + JΓ]. By a slight abuse of notations,
we shall write i ∈ Γq iff Gi ∈ Γq.

2.2. Construction of the dual mesh. We denote by Sk, with k ∈ [1,K], the
nodes of the polygons of the primal mesh. For each of these points, we associate a
polygon denoted by Pk, obtained by joining the points Gi associated with the elements
of the primal mesh (and possibly to the boundary edges) of which Sk is a node. The
area of Pk is denoted by |Pk|. In what follows, we shall only consider the cases where
the Pks constitute a second partition of Ω, which we name dual mesh.1 Figure 2.1
displays an example of a nonconforming primal mesh and its associated dual mesh.

Moreover, we suppose that the set [1,K] is ordered so that when Sk is not on Γ,
then k ∈ [1,K − JΓ], and when Sk is on Γ, then k ∈ [K − JΓ + 1,K]. We shall also
write k ∈ Γq iff Sk ∈ Γq.

2.3. Construction of the diamond mesh. With each edge of the primal mesh,
denoted by Aj (whose length is |Aj |), with j ∈ [1, J ], we associate a quadrilateral

1It may happen that the Pks overlap, as seen on Figure 2 of [10].
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Sk1
Sk2

Gi1

Gi2
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Gi2
Sk2

Sk1

Gi1

Dj

Fig. 2.2. Examples of diamond-cells.

A k
~

S k Γn~k

Fig. 2.3. Definition of Ãk and ñk for the boundary nodes.

named “diamond-cell” denoted by Dj . When Aj is not on the boundary, this cell is
obtained by joining the points Sk1(j) and Sk2(j), which are the two nodes of Aj , with
the points Gi1(j) and Gi2(j) associated with the elements of the primal mesh which
share this edge. When Aj is on the boundary Γ, the cell Dj is obtained by joining
the two nodes of Aj with the point Gi1(j) associated with the only element of the
primal mesh of which Aj is an edge and to the point Gi2(j) associated with Aj (i.e.,
by convention, i2(j) is an element of [I + 1, I + JΓ] when Aj is located on Γ). The
cells Dj constitute a third partition of Ω, which we name “diamond mesh.” The area
of the cell Dj is denoted by |Dj |. Such cells are displayed on Figure 2.2.

Moreover, we suppose that the set [1, J ] is ordered so that when Aj is not on Γ,
then j ∈ [1, J − JΓ], and when Aj is on Γ, then j ∈ [J − JΓ + 1, J ]. We shall also
write j ∈ Γq iff Aj ⊂ Γq.

2.4. Definitions of geometrical elements. The unit vector normal to Aj is
denoted by nj and is oriented so that Gi1(j)Gi2(j) · nj ≥ 0. We further denote by A′

j

the segment [Gi1(j)Gi2(j)] (whose length is |A′
j |) and by n′

j the unit vector normal to
A′

j oriented so that Sk1(j)Sk2(j) · n′
j ≥ 0.

When Sk ∈ Γ (k ∈ [K − JΓ + 1,K]), we define Ãk as the part of the boundary
Γ which consists of the union of the halves of the two segments Aj located on Γ, of

which Sk is a node and by ñk the exterior unit normal vector to Ãk (see Figure 2.3).
We denote by Miα(j) kβ(j) the midpoint of the segment [Giα(j)Skβ(j)], for each pair of
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Fig. 2.4. Notations for the diamond-cell.
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Dj,1

Gi1

Sk2
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Dj

Sk1

Sk1

Sk2

Sk2

Sk2

1
Sk

1
Sk

Fig. 2.5. A diamond-cell may be split into two triangles in two distinct ways.

integers (α, β) in {1; 2}2
(see Figure 2.4). We define for each i ∈ [1, I] the set V(i) of

integers j ∈ [1, J ] such that Aj is an edge of Ti and for each k ∈ [1,K] the set E(k) of
integers j ∈ [1, J ] such that Sk is a node of Aj .

We define for each j ∈ [1, J ] and each k such that j ∈ E(k) (resp., each i such that
j ∈ V(i)) the real-valued number s′jk (resp., sji) whose value is +1 or −1 whether n′

j

(resp., nj) points outwards or inwards Pk (resp., Ti). We define n′
jk := s′jkn

′
j (resp.,

nji := sjinj) and remark that n′
jk (resp., nji) always points outwards Pk (resp., Ti).

For j ∈ [1, J − JΓ], as indicated on Figure 2.5, we also denote by Dj,1 and Dj,2,
the triangles Sk1(j)Gi1(j)Sk2(j) and Sk2(j)Gi2(j)Sk1(j)). In the same way, we denote
by D′

j,1 and D′
j,2, the triangles Gi2(j)Sk1(j)Gi1(j) and Gi1(j)Sk2(j)Gi2(j).

The characteristic functions of the cells Ti and Pk will be denoted by θTi and θPk .

2.5. Definitions of discrete and continuous scalar products and norms.
As will be seen in what follows, we shall associate with each point Gi (i ∈ [1, I + JΓ])
and each vertex Sk (k ∈ [1,K]) discrete values. This leads us to the definition of the
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following discrete scalar product for all (φ, ψ) =
(
(φT

i , φ
P
k ), (ψT

i , ψ
P
k )
)
∈
(
R

I × R
K
)2

:

(φ, ψ)T,P :=
1

2

⎛⎝ ∑
i∈[1,I]

|Ti|φT
i ψT

i +
∑

k∈[1,K]

|Pk|φP
k ψP

k

⎞⎠.(2.1)

In the same way, we define a discrete scalar product on the diamond mesh for all

(u,v) = ((uj), (vj)) ∈
(
R

2
)J ×

(
R

2
)J

(u,v)D :=
∑

j∈[1,J]

|Dj |uj · vj(2.2)

and a discrete scalar product for the traces of u ∈ R
J and φ ∈ R

I+JΓ × R
K on the

boundaries Γq

(u, φ)Γq,h :=
∑
j∈Γq

|Aj |uj ×
1

4

(
φP
k1(j)

+ 2φT
i2(j)

+ φP
k2(j)

)
and on Γ

(u, φ)Γ,h :=
∑

q∈[0,Q]

(u, φ)Γq,h.(2.3)

Further, for any φ ∈ R
I+JΓ × R

K , we define a discrete H1 seminorm on the diamond
mesh with the help of the discrete gradient operator (see (3.2)):

|φ|1,D :=
(
∇D

h φ,∇D
h φ
)1/2

D
.

Finally, Hm is the space of functions v of L2(Ω) whose partial derivatives (in the
distributional sense) ∂αv, with |α| ≤ m, all belong to L2(Ω), while || · ||m,Ω is the
associated norm. The standard L2(Ω) inner product will be denoted by (·, ·)Ω.

3. Construction of the discrete operators. In this section, we approach the
gradient, divergence, and curl operators by discrete counterparts. We would like to
stress that in two dimensions a distinction is usually made between the vector curl
operator from R to R

2, defined by ∇×φ = (∂φ∂y , −∂φ
∂x )T and the scalar curl operator

from R
2 to R, defined by ∇× u =

∂uy

∂x − ∂ux

∂y .

Figure 3.1 shows the stencils of the different operators and their combinations:
The stencil for the discrete gradient and vector curl operators simply consists of the
four corners of the diamond-cell Dj . The stencil for the discrete divergence and scalar
curl operators consists of the diamonds associated with the edges of the primal and
dual cells. Arrows are displayed on Figure 3.1 to represent the normal and tangential
components of the vector fields associated with the diamonds. The stencils for the
discrete Laplacian on the primal and dual cells, respectively, consist of the black and
white circles on the left and right part of the figure.

3.1. Construction of the discrete gradient and vector curl operators on
the diamond-cells. We define the discrete gradient of a function φ by its values on
the diamond-cells of the mesh. We follow [8, 10] and compute the mean-value of the
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Ti

Dj

Pk

Dj

Fig. 3.1. Stencils for the discrete operators. Left part: primal cell. Right part: dual cell.

gradient of any function φ on such a cell Dj by the following formula:

|Dj |
〈
∇φ|Dj

〉
=

∫
Dj

∇φ(x) dx =

∫
∂Dj

φ(ξ)n(ξ) dξ

=
∑
(α,β)

∫
[GiαSkβ

]

φ(ξ)n dξ,

(3.1)

where n(ξ) stands for the outward unit normal vector to Dj at point ξ. The integrals
in (3.1) can be approximated by the following formula:∫

[GS]

φ(ξ) dξ ≈ 	GS
[φ(G) + φ(S)]

2
,

where 	GS denotes the length of the segment [GS]. Summing the contributions of the
different vertices of Dj and using elementary geometrical equalities allows us to give

the definition of the discrete gradient ∇D
h on Dj .

Definition 3.1. The discrete gradient ∇D
h is defined by its values over the

diamond-cells Dj:

(∇D
h φ)j :=

1

2 |Dj |

{[
φP
k2

− φP
k1

]
|A′

j |n′
j +

[
φT
i2 − φT

i1

]
|Aj |nj

}
,(3.2)

where we set φP
kα

:= φ(Skα) and φT
iα

:= φ(Giα), for α ∈ {1; 2}.
Note that formula (3.2) is exact for polynomials of degree one. Computing the

discrete gradient only requires the values of φ at the nodes of the primal and dual

meshes. The operator ∇D
h thus acts from R

I+JΓ × R
K into

(
R

2
)J

.

In the same way, we may approach the vector curl operator ∇×• = ( ∂•∂y , − ∂•
∂x )T

by a discrete vector curl operator.
Definition 3.2. The discrete vector curl operator ∇D

h × is defined by its values
over the diamond-cells Dj:

(∇D
h × φ)j := − 1

2 |Dj |

{[
φP
k2

− φP
k1

]
|A′

j |τ ′
j +

[
φT
i2 − φT

i1

]
|Aj |τ j

}
,(3.3)

where the unit vectors τ j and τ ′
j are such that (nj , τ j) and (n′

j , τ
′
j) are orthonormal

positively oriented bases of R
2.
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Remark 3.3. In a connected domain, the discrete gradient and vector curl of
a given φ = ((φT

i ), (φP
k )) vanish iff there exist two constants cT and cP , such that

φT
i = cT ∀ i and φP

k = cP ∀ k. The fact that cT and cP may differ from each other
means that such a φ may, in general, present oscillations. However, in the applications
studied in the present work, such oscillations never appear due to information on the
mean-value of φ (see (4.16) and (5.7d)), or due to boundary conditions (4.17) and
(5.8e).

3.2. Construction of the discrete divergence and scalar curl operators
on the primal and dual meshes. Next, we choose to define the discrete divergence
of a vector field u by its values both on the primal and dual cells of the mesh. A very
natural way to do so on the primal cell Ti is to write

|Ti|
〈
∇ · u|Ti

〉
=

∫
Ti

∇ · u(x) dx =

∫
∂Ti

u(ξ) · n(ξ) =
∑

j∈V(i)

∫
Aj

u(ξ) · nji ,

where we recall that V(i) is the set of integers j ∈ [1, J ] such that Aj is an edge
of Ti and that nji is the unit vector orthogonal to Aj pointing outward Ti. Supposing
that the vector field u is given by both of the Cartesian components of its discrete
values uj on the diamond-cells Dj , and performing a similar computation over the
cells Pk, we obtain the definition of the discrete divergence ∇T

h · on each Ti and the
discrete divergence ∇P

h · on each Pk.

Definition 3.4. The discrete divergence ∇T,P
h · := (∇T

h ·,∇P
h ·) is defined by its

values over the primal cells Ti and the dual cells Pk:

(∇T
h · u)i :=

1

|Ti|
∑

j∈V(i)

|Aj |uj · nji,

(∇P
h · u)k :=

1

|Pk|

⎛⎝ ∑
j∈E(k)

|A′
j |uj · n′

jk +
∑

j∈E(k)∩[J−JΓ+1,J]

1

2
|Aj |uj · nj

⎞⎠ .

(3.4)

Remark that if the node Sk is not on the boundary Γ (i.e., if k ∈ [1,K − JΓ]),
then the set E(k)∩ [J −JΓ +1, J ] is empty. On the contrary, if Pk is a boundary dual
cell, then the set E(k)∩ [J − JΓ + 1, J ] is composed of the two boundary edges which
have Sk as a vertex. In this case, the quantity

∑
j∈E(k)∩[J−JΓ+1,J]

1
2 |Aj |uj · nj is an

approximation of
∫
Ãk

u · ñk(ξ) dξ (see Figure 2.3).

For a given vector field u, it is easily checked that these formulae are the exact
mean-values of ∇·u over the primal and inner dual cells if uj ·nji and uj ·n′

jk represent
the mean-values of u ·nji over Aj and of u ·n′

jk over A′
j . The operator ∇h· acts from(

R
2
)J

into R
I × R

K .

In the same way, we may approach the scalar curl operator ∇× • = (
∂•y

∂x − ∂•x

∂y )
by a discrete scalar curl operator in the following definition.

Definition 3.5. The discrete scalar curl operator ∇T,P
h × := (∇T

h×,∇P
h×) is
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defined by its values over the primal cells Ti and the dual cells Pk:

(∇T
h × u)i : =

1

|Ti|
∑

j∈V(i)

|Aj |uj · τ ji,

(∇P
h × u)k : =

1

|Pk|

⎛⎝ ∑
j∈E(k)

|A′

j |uj · τ
′

jk +
∑

j∈E(k)∩[J−JΓ+1,J]

1

2
|Aj |uj · τ j

⎞⎠ .

(3.5)

4. Properties of the operators.

4.1. Discrete Green formulae. Here, we check that the discrete operators
verify some discrete duality principles.

Proposition 4.1. The following discrete analogues of the Green formulae hold:

(∇T,P
h · u, φ)T,P = −(u,∇D

h φ)D + (u · n, φ)Γ,h,(4.1)

(∇T,P
h × u, φ)T,P = (u,∇D

h × φ)D + (u · τ , φ)Γ,h(4.2)

for all u ∈
(
R

2
)J

and all φ = (φT , φP ) ∈ R
I+JΓ × R

K , where the definitions (2.1),
(2.2), and (2.3) have been used.

Proof. The proof of (4.1) may be found in [10] and is based on a discrete summa-
tion by parts. The proof of (4.2) follows exactly the same lines.

4.2. Compositions of the discrete operators. The aim of this section is
to verify a discrete analogue of the following continuous identities: ∇ · (∇×) = 0,
∇×∇ = 0, and ∇×∇× = −∇ ·∇. For this, we start with a useful lemma.

Lemma 4.2. Recall that sji and s′jk are defined in section 2.4. Then,∑
j∈V(i)

sji

(
φP
k2(j)

− φP
k1(j)

)
= 0 ∀i ∈ [1, I],(4.3)

∑
j∈E(k)

s′jk

(
φT
i2(j)

− φT
i1(j)

)
= 0 ∀ k ∈ [1,K − JΓ].(4.4)

Proof. Let us consider a given primal cell Ti. For each edge Aj of Ti, with
j ∈ V(i), there are two possibilities for the orientation of nj (see Figure 4.1): If nj is
the inward unit normal vector to Ti (case 1), then sji = −1 and sji (φ

P
k2(j)

−φP
k1(j)

) =

φP
k1(j)

− φP
k2(j)

. If nj is the outward unit normal vector to Ti (case 2), then sji = 1

and sji (φ
P
k2(j)

− φP
k1(j)

) = φP
k2(j)

− φP
k1(j)

; moreover, Sk1(j) and Sk2(j) are swapped.

What appears finally is that, whatever the case, the value φP
k associated with the

“left” vertex of the considered edge Aj appears in the sum (4.3) with a positive sign
and the value φP

k associated with the “right” vertex of the considered edge Aj appears
in the sum (4.3) with a negative sign. But each φP

k appears twice in that sum, once
as the value associated with the “right” vertex of a given edge, and once as the value
associated with the “left” vertex of the following edge, so that these two contributions
cancel. This ends the proof of (4.3). The proof of (4.4) follows the same lines.

Next, the following properties are direct consequences of the computation of the
area |Dj |.
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Lemma 4.3.

|Aj | |A′
j |

2 |Dj |
nj · τ ′

j = 1 ∀j ∈ [1, J ],(4.5)

|Aj | |A′
j |

2 |Dj |
n′
j · τ j = −1 ∀j ∈ [1, J ].(4.6)

We may now state the following results.
Proposition 4.4. Given any φ = (φT

i , φ
P
k ) ∈ R

I+JΓ × R
K , there holds(

∇T
h · (∇D

h × φ)
)
i
= 0 ∀i ∈ [1, I],(4.7) (

∇P
h · (∇D

h × φ)
)
k

= 0 ∀k ∈ [1,K − JΓ],(4.8) (
∇T

h × (∇D
h φ)

)
i
= 0 ∀i ∈ [1, I],(4.9) (

∇P
h × (∇D

h φ)
)
k

= 0 ∀k ∈ [1,K − JΓ].(4.10)

Moreover, on each boundary dual cell Pk (k ∈ [K − JΓ + 1,K]), (4.8) and (4.10) still
hold if there exist for each boundary Γq, with q ∈ [0, Q], two real numbers (cTq , c

P
q )

such that φT
i = cTq and φP

k = cPq uniformly over Γq.
Proof. Let us first prove (4.7); combining (3.4), (3.3), and the fact that nji·τ j = 0,

we get

(∇T
h · (∇D

h × φ))i =
1

|Ti|
∑

j∈V(i)

|Aj |(∇D
h × φ)j · nji

= − 1

|Ti|
∑

j∈V(i)

|Aj | |A′
j |

2 |Dj |
nj · τ ′

j sji

(
φP
k2(j)

− φP
k1(j)

)
∀i ∈ [1, I].

Applying (4.5) and (4.3) successively, we obtain

(∇T
h · (∇D

h × φ))i = 0 ∀i ∈ [1, I].

Equation (4.9) can be proved in a similar way.
Next, for each interior dual cell Pk, with k ∈ [1,K−JΓ], the set E(k)∩[J−JΓ+1, J ]

is empty, so that (4.8) and (4.10) can be proved like (4.7) and (4.9), using (4.6), (4.4)
and the fact that n′

jk · τ ′
j = 0.

As far as the boundary dual cells Pk are concerned (k ∈ [K −JΓ + 1,K]), similar
computations show that (see Figure 4.2 for the notations)

(∇P
h · (∇D

h × φ))k =
1

|Pk|
(
φT
I2 − φT

I1

)
+

1

2 |Pk|
(
φP
K1

− φP
K2

)
.(4.11)

If all φT
i are equal to the same constant cTq over Γq and if all φP

k are equal to the same

constant cPq over Γq, then φT
I2

= φT
I1

and φP
K1

= φP
K2

so that

(∇P
h · (∇D

h × φ))k = 0,
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Fig. 4.1. Two possibilities of orientation for each edge.
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I 2
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1k
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Fig. 4.2. Notations for the boundary dual cells.

for the boundary dual cells, and (4.10) for the boundary dual cells is proved in a
similar way.

Proposition 4.5. The following equalities hold:

(∇T
h ×∇D

h × φ)i = −(∇T
h ·∇D

h φ)i ∀i ∈ [1, I],

(∇P
h ×∇D

h × φ)k = −(∇P
h ·∇D

h φ)k ∀k ∈ [1,K].

(4.12)

Proof. These formulae follow immediately from the definitions (3.2), (3.3), (3.4),
and (3.5) and from the equality τ j · τ ′

j = nj · n′
j ∀j ∈ [1, J ].

4.3. Hodge’s decomposition. In the continuous case, the Hodge decomposi-
tion for nonsimply connected domains reads

(L2)2 = ∇V
⊥
⊕ ∇×W,(4.13)

with V = {φ ∈ H1 :
∫
Ω
φ = 0} and W = {ψ ∈ H1 : ψ|Γ0

= 0, ψ|Γq
= cq ∀q ∈ [1, Q]}.

To prove an analogous property in the discrete case, we rely on the following result.
Lemma 4.6 (Euler’s formula). For a nonsimply connected bidimensional domain

covered by a mesh with I elements, K vertices, J edges, and Q holes, there holds

I + K = J + 1 −Q.(4.14)

We may now state the following discrete Hodge decomposition.
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Theorem 4.7. Let (uj)j∈[1,J] be a discrete vector field defined by its values
on the diamond-cells Dj. There exist unique φ = (φT

i , φ
P
k )i∈[1,I+JΓ],k∈[1,K], ψ =

(ψT
i , ψ

P
k )i∈[1,I+JΓ],k∈[1,K], and (cTq , c

P
q )q∈[1,Q] such that

uj = (∇D
h φ)j + (∇D

h × ψ)j ∀j ∈ [1, J ],(4.15) ∑
i∈[1,I]

|Ti|φT
i =

∑
k∈[1,K]

|Pk|φP
k = 0,(4.16)

ψT
i = 0 ∀i ∈ Γ0, ψP

k = 0 ∀k ∈ Γ0,(4.17)

and

∀q ∈ [1, Q], ψT
i = cTq ∀i ∈ Γq, ψP

k = cPq ∀k ∈ Γq.(4.18)

Moreover, the decomposition (4.15) is orthogonal.
Proof. There are 2(I + K + JΓ) + 2Q unknowns corresponding to (φT

i , φ
P
k ) and

(ψT
i , ψ

P
k ) and to the constants (cTq , c

P
q ). On the other hand, 2J equations are given

by (4.15), while (4.17) and (4.18) provide 2JΓ constraints. Finally, (4.16) gives two
supplementary equalities, so that the total number of equations is 2J +2+2JΓ. Con-
sequently, according to (4.14), there are as many equations as unknowns. Therefore,
existence and uniqueness of the decomposition are equivalent, and we shall prove
uniqueness through injectivity.

Proving the orthogonality of (∇D
h φ) and (∇D

h ×ψ) for any (φ, ψ) verifying (4.17)
and (4.18) amounts to showing (∇D

h × ψ,∇D
h φ)D = 0. Thanks to (4.1), there holds

(∇D
h × ψ,∇D

h φ)D = −(∇T,P
h ·∇D

h × ψ, φ)T,P + (∇D
h × ψ · n, φ)Γ,h.

Next, thanks to Proposition 4.4, ∇T,P
h · ∇D

h × ψ vanishes on all primal and inner
dual cells. Because ψ verifies (4.17) and (4.18), we infer from Proposition 4.4 that

∇T,P
h ·∇D

h × ψ also vanishes on the boundary dual cells. Finally, according to (3.3),
we have

(∇D
h × ψ)j · nj = − 1

2 |Dj |
(
ψP
k2

− ψP
k1

)
|A′

j |τ
′

j · nj ,

which also vanishes on the boundary because of (4.17) and (4.18). Thus, orthogonality
is proved. In order to prove injectivity, we suppose uj = 0 ∀j ∈ [1, J ]:

0 = (∇D
h φ)j + (∇D

h × ψ)j ∀j ∈ [1, J ].(4.19)

We carry out the scalar product of (4.19) with |Dj | (∇D
h φ)j and sum over j ∈ [1, J ]:

0 = (∇D
h φ,∇D

h φ)D + (∇D
h × ψ,∇D

h φ)D.(4.20)

Thanks to the orthogonality proved above, (4.20) implies that (∇D
h φ,∇D

h φ)D =∑
j∈[1,J]|Dj ||(∇D

h φ)j |2 = 0, so that (∇D
h φ)j = 0 ∀ j. Since the domain is connected,

there exist two real constants α and β such that φP
k = α ∀k ∈ [1,K] and φT

i = β
∀i ∈ [1, I + JΓ]. Equation (4.16) implies that these two constants vanish, so that

φT
i = 0 ∀i ∈ [1, I + JΓ] and φP

k = 0 ∀k ∈ [1,K].



1154 SARAH DELCOURTE, KOMLA DOMELEVO, AND PASCAL OMNES

Consequently, (4.19) is equivalent to (∇D
h × ψ)j = 0 ∀j ∈ [1, J ]. Since the domain is

connected, there exist two real constants α and β such as ψP
k = α ∀ k ∈ [1,K] and

ψT
i = β ∀ i ∈ [1, I + JΓ]. As ψ = 0 over Γ0 these two constants vanish and

ψT
i = 0 ∀i ∈ [1, I + JΓ] and ψP

k = 0 ∀k ∈ [1,K] .

Remark 4.8. The two equalities in (4.16) are discrete analogues, respectively
stated on the primal mesh and dual mesh, of the condition

∫
Ω
φ = 0 that appears in

the definition of the space V in (4.13), while formulae (4.17) and (4.18) are discrete
analogues of the boundary conditions that appear in the definition of W .

5. Numerical solution of the div-curl problem for nonsimply connected
domains.

5.1. Discretization of the div-curl problem with normal boundary con-
ditions. We are interested in the approximation of the following continuous problem:
given f , g, σ, (kq)q∈[1,Q], find u such that⎧⎪⎪⎨⎪⎪⎩

∇ · u = f in Ω,
∇× u = g in Ω,
u · n = σ on Γ,∫
Γq

u · τ = kq ∀q ∈ [1, Q].

(5.1)

A necessary condition for the existence of a solution to (5.1) is given by the formula∫
Ω

f(x)dx =

∫
Γ

σ(ξ) dξ.(5.2)

We discretize the solution of this problem by a vector field (uj)j∈[1,J] defined by
its values over the diamond-cells of the mesh. Using the discrete differential operators
defined in section 3, and following [12], we write the following discrete equations:(

∇T
h · u

)
i
= fT

i ∀i ∈ [1, I],(5.3a) (
∇P

h · u
)
k

= fP
k ∀k ∈ [1,K],(5.3b) (

∇T
h × u

)
i
= gTi ∀i ∈ [1, I],(5.3c) (

∇P
h × u

)
k

= gPk ∀k ∈ [1,K − JΓ],(5.3d)

uj · nj = σj ∀j ∈ [J − JΓ + 1, J ],(5.3e)

(u · τ , 1)Γq,h = kq ∀q ∈ [1, Q],(5.3f) ∑
k∈Γq

|Pk| (∇P
h × u)k =

∑
k∈Γq

|Pk| gPk ∀q ∈ [1, Q],(5.3g)

where the following definitions have been used:

fT
i =

1

|Ti|

∫
Ti

f(x) dx ∀i ∈ [1, I], fP
k =

1

|Pk|

∫
Pk

f(x) dx ∀k ∈ [1,K],(5.4)

gTi =
1

|Ti|

∫
Ti

g(x) dx ∀i ∈ [1, I], gPk =
1

|Pk|

∫
Pk

g(x) dx ∀k ∈ [1,K],(5.5)

σj =
1

|Aj |

∫
Aj

σ(ξ) dξ ∀j ∈ [J − JΓ + 1, J ].(5.6)
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Using the discrete Hodge decomposition of (uj)j∈[1,J], problem (5.3) may be split into
two independent problems involving the following potentials.

Proposition 5.1. Problem (5.3) can be split into two independent problems:
Find (φT

i , φ
P
k )i∈[1,I+JΓ],k∈[1,K] such that

(∇T
h ·∇D

h φ)i = fT
i ∀i ∈ [1, I],(5.7a)

(∇P
h ·∇D

h φ)k = fP
k ∀k ∈ [1,K],(5.7b)

(∇D
h φ)j · nj = σj ∀j ∈ [J − JΓ + 1, J ],(5.7c) ∑

i∈[1,I]

|Ti|φT
i =

∑
k∈[1,K]

|Pk|φP
k = 0.(5.7d)

Find (ψT
i , ψ

P
k )i∈[1,I+JΓ],k∈[1,K] and (cTq , c

P
q )q∈[1,Q] such that

−(∇T
h ·∇D

h ψ)i = gTi ∀i ∈ [1, I],(5.8a)

−(∇P
h ·∇D

h ψ)k = gPk ∀k ∈ [1,K − JΓ],(5.8b)

(∇D
h ψ · n, 1)Γq,h = −kq ∀q ∈ [1, Q],(5.8c)

−
∑
k∈Γq

|Pk| (∇P
h ·∇D

h ψ)k =
∑
k∈Γq

|Pk| gPk ∀q ∈ [1, Q],(5.8d)

ψT
i = ψP

k = 0 ∀i ∈ Γ0 ∀k ∈ Γ0,(5.8e)

∀q ∈ [1, Q] ψT
i = cTq ∀i ∈ Γq,(5.8f)

∀q ∈ [1, Q] ψP
k = cPq ∀k ∈ Γq.(5.8g)

The vector u is then reconstructed by

uj = (∇D
h φ)j + (∇D

h × ψ)j ∀j ∈ [1, J ].(5.9)

Proof. First, the discrete Hodge decomposition of (uj)j∈[1,J] shows the existence
of (φT

i , φ
P
k )i∈[1,I+JΓ],k∈[1,K], (ψT

i , ψ
P
k )i∈[1,I+JΓ],k∈[1,K], and (cTq , c

P
q )q∈[1,Q] such that

(5.9), (5.7d), and (5.8e)–(5.8g) are verified. Next, (5.7a) is proved using (4.7):

fT
i = (∇T

h · u)i = (∇T
h · (∇D

h φ + ∇D
h × ψ))i = (∇T

h ·∇D
h φ)i ∀i ∈ [1, I].

Similarly, using (4.8) and ψT
i = cTq and ψP

k = cPq ∀q ∈ [0, Q], we obtain (5.7b). As
far as the boundary conditions are concerned, using (3.3) shows that

(∇D
h × ψ)j · nj = − 1

2 |Dj |
(ψk2

− ψk1
) |A′

j |τ
′

j · nj ∀j ∈ [J − JΓ + 1, J ].(5.10)

Since ψP
k = cPq ∀q ∈ [0, Q], we infer from (5.10)

(∇D
h × ψ)j · nj = 0 ∀j ∈ [J − JΓ + 1, J ],

so that (5.3e) and (5.9) imply (5.7c). Further, using (5.9), (5.3c)–(5.3d), (4.9), (4.10),
and (4.12), we may prove (5.8a)–(5.8b). Moreover, there holds

(∇D
h φ)j · τ j =

1

2|Dj |

(
φT
k2(j)

− φT
k1(j)

)
|A′

j |n′
j · τ j ,
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so that, using (4.6),

(∇D
h φ · τ , 1)Γq,h =

∑
j∈Γq

|Aj | |A′
j |

2 |Dj |
n′
j · τ j

(
φT
k2(j)

− φT
k1(j)

)
= −

∑
j∈Γq

(
φT
k2(j)

− φT
k1(j)

)
,

which vanishes because Γq is a closed contour. Thus, (5.3f) implies (5.8c) because

(∇D
h × ψ) · τ j = −∇D

h ψ · nj . Finally, a computation similar to that which led to
(4.11) shows that

(∇P
h × (∇D

h φ))k =
1

|Pk|
(
φT
I2 − φT

I1

)
+

1

2 |Pk|
(
φP
K1

− φP
K2

)
for boundary cells k ∈ [K −JΓ +1,K] (see Figure 4.2 for the notations). Thus, when
summing these contributions over a closed contour Γq, we obtain∑

k∈Γq

|Pk|(∇P
h × (∇D

h φ))k = 0,

so that (5.3g) implies (5.8d).
Proposition 5.2. Problems (5.7) and (5.8) both have a unique solution.
Proof. As far as problem (5.7) is concerned, the existence and uniqueness of its

solution have been proved in [10] if the following discrete equivalent of (5.2) is verified:∑
i∈[1,I]

|Ti| fT
i =

∑
k∈[1,K]

|Pk| fP
k =

∑
j∈[J−JΓ+1,J]

|Aj | σj ,

which is the case here because, thanks to the definitions (5.4) and (5.6), we have∑
i∈[1,I]

|Ti| fT
i =

∑
k∈[1,K]

|Pk| fP
k =

∫
Ω

f(x) dx and
∑

j∈[J−JΓ+1,J]

|Aj | σj =

∫
Γ

σ(ξ) dξ.

As far as problem (5.8) is concerned, there are I+K+JΓ+2Q unknowns, while (5.8a)
and (5.8b), respectively, provide I and K−JΓ equations. Equations (5.8c) and (5.8d)
provide 2Q additional relations. Finally, boundary conditions (5.8e)–(5.8g) provide
the last 2JΓ equations. Since there are as many equations as unknowns, it suffices to
check the injectivity of the system. Let us set gTi = gPk = kq = 0 in system (5.8) and

compute the following discrete scalar product (∇T,P
h ·∇D

h ψ,ψ)T,P (see (2.1) for the
definition). In this scalar product, the sum over the indices i ∈ [1, I] and the sum over
the indices k ∈ [1,K−JΓ] vanish, respectively, because of (5.8a) and (5.8b). Further,
due to (5.8e), the contributions of the indices k ∈ Γ0 also vanish, so that

(∇T,P
h ·∇D

h ψ,ψ)T,P =
1

2

∑
q∈[1,Q]

∑
k∈Γq

|Pk| (∇P
h ·∇D

h ψ)k ψP
k .

Further, (5.8g) implies that

(∇T,P
h ·∇D

h ψ,ψ)T,P =
1

2

∑
q∈[1,Q]

cPq
∑
k∈Γq

|Pk| (∇P
h ·∇D

h ψ)k,

which vanishes due to (5.8d). Thanks to the discrete Green formula (4.2), there holds

(∇T,P
h ·∇D

h ψ,ψ)T,P = −(∇D
h ψ,∇D

h ψ)D + (∇D
h ψ · n, ψ)Γ,h = 0.(5.11)
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Now, due to boundary conditions (5.8e)–(5.8g), we may write

(∇D
h ψ · n, ψ)Γ,h =

∑
q∈[1,Q]

cTq + cPq
2

(∇D
h ψ · n, 1)Γq,h,(5.12)

which vanishes thanks to (5.8c). Thus, (5.11), (5.12), and definition (2.2) imply that

(∇D
h ψ,∇D

h ψ)D =
∑

j∈[1,J]

|Dj ||∇D
h ψ|2 = 0.

Consequently, just like at the end of the proof of Theorem 4.7, we infer that

ψT
i = 0 ∀i ∈ [1, I + JΓ] and ψP

k = 0 ∀k ∈ [1,K],

which proves uniqueness and thus existence.

5.2. The div-curl problem with tangential boundary conditions. We
consider the following continuous problem: given f , g, σ, (kq)q∈[1,Q], find u such that⎧⎪⎪⎨⎪⎪⎩

∇ · u = f in Ω,
∇× u = g in Ω,
u · τ = σ on Γ,∫
Γq

u · n = kq ∀q ∈ [1, Q].

A necessary condition for the existence of a solution to this system is given by Green’s
formula:

∫
Ω
g(x)dx =

∫
Γ
σ(ξ) dξ. This problem is discretized like in section 5.1 by a

vector field (uj)j∈[1,J] defined by its values over the diamond-cells. Using the discrete
differential operators defined in section 3, we write the following discrete equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∇T

h · u
)
i

= fT
i ∀i ∈ [1, I],(

∇P
h · u

)
k

= fP
k ∀k ∈ [1,K − JΓ],(

∇T
h × u

)
i

= gTi ∀i ∈ [1, I],(
∇P

h × u
)
k

= gPk ∀k ∈ [1,K],

uj · τ j = σj ∀j ∈ [J − JΓ + 1, J ],

(u · n, 1)Γq,h = kq ∀q ∈ [1, Q],∑
k∈Γq

|Pk| (∇P
h · u)k =

∑
k∈Γq

|Pk| fP
k ∀q ∈ [1, Q].

(5.13)

Existence and uniqueness of the solution of (5.13) are proved similarly to section 5.1;
the main difference is that the Hodge decomposition is modified in the following way.

Theorem 5.3. Let (uj)j∈[1,J] be a discrete vector field defined by its values
on the diamond-cells Dj. There exist unique φ = (φT

i , φ
P
k )i∈[1,I+JΓ],k∈[1,K], ψ =

(ψT
i , ψ

P
k )i∈[1,I+JΓ],k∈[1,K], and (cTq , c

P
q )q∈[1,Q] such that

uj = (∇D
h ψ)j + (∇D

h × φ)j ∀j ∈ [1, J ],∑
i∈[1,I]

|Ti|φT
i =

∑
k∈[1,K]

|Pk|φP
k = 0,

ψT
i = 0 ∀i ∈ Γ0, ψP

k = 0 ∀k ∈ Γ0,

(5.14)
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and

∀q ∈ [1, Q], ψT
i = cTq ∀i ∈ Γq, ψP

k = cPq ∀k ∈ Γq.

Moreover, the decomposition (5.14) is orthogonal.
Further, problem (5.13) decouples into two independent subproblems involving

the following potentials.
Proposition 5.4. Problem (5.13) can be split into two independent problems.
Find (φT

i , φ
P
k )i∈[1,I+JΓ],k∈[1,K] such that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−(∇T
h ·∇D

h φ)i = gTi ∀i ∈ [1, I],

−(∇P
h ·∇D

h φ)k = gPk ∀k ∈ [1,K],

−(∇D
h φ)j · nj = σj ∀j ∈ [J − JΓ + 1, J ],∑

i∈[1,I] |Ti|φT
i =

∑
k∈[1,K] |Pk|φP

k = 0.

Find (ψT
i , ψ

P
k )i∈[1,I+JΓ],k∈[1,K] and (cTq , c

P
q )q∈[1,Q]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∇T
h ·∇D

h ψ)i = fT
i ∀i ∈ [1, I],

(∇P
h ·∇D

h ψ)k = fP
k ∀k ∈ [1,K − JΓ],

(∇D
h ψ · n, 1)Γq

= kq ∀q ∈ [1, Q],∑
k∈Γq

|Pk| (∇P
h ·∇D

h ψ)k =
∑

k∈Γq
|Pk| fP

k ∀q ∈ [1, Q],

ψT
i = ψP

k = 0 ∀i ∈ Γ0, ∀k ∈ Γ0,

∀q ∈ [1, Q], ψT
i = cTq ∀i ∈ Γq,

∀q ∈ [1, Q], ψP
k = cPq ∀k ∈ Γq.

The vector u is then reconstructed by

uj = (∇D
h ψ)j + (∇D

h × φ)j ∀j ∈ [1, J ].

5.3. Error estimate for the div-curl problem. Unlike in [20], we shall derive
estimates for the potentials involved in the Hodge decomposition of u; indeed we shall
rely on similar estimates which have been obtained in [10]. For the sake of simplicity,
we shall restrict ourselves to the case where all diamond-cells are convex; the case of
nonconvex diamond-cells requires additional hypotheses similar to those given in [10].
We shall obtain error estimates under the following hypothesis (see Figures 2.5 and
5.1 for the notations).

Hypothesis 5.5. There exists an angle τ∗, strictly lower than π and independent
of the mesh, such that the following hold:

1. For any interior diamond-cell Dj , the smallest in the maximum angle of the
couple of triangles (Dj,1, Dj,2) or in the maximum angle of the couple of triangles
(D′

j,1, D
′
j,2) is bounded by τ∗:

min (max(α1, β1, μ1 + μ2, α2, β2, ν1 + ν2),max(μ1, ν1, α1 + α2, μ2, ν2, β1 + β2)) ≤ τ∗.

2. The greatest angle of any boundary cell Dj is bounded by the angle τ∗.
Obtaining error estimates usually relies on regularity assumptions on the solution

of the problem. In order to apply results given in [10], we shall assume regularity of
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Fig. 5.1. Notations for section 5.3.

the potentials given by the following proposition.

Proposition 5.6. Let (f, g, σ) belong to L2(Ω)
2 ×H1/2(Γ), and let (kq)q∈[1,Q] be

a set of given real numbers; let û be the exact solution of problem (5.1). Then, there

exist φ̂ and ψ̂ both in H1(Ω) and a set of real numbers (Cq)q∈[1,Q] such that

û = ∇φ̂ + ∇× ψ̂,

where φ̂ is the solution of ⎧⎪⎪⎨⎪⎪⎩
Δφ̂ = ∇ · û = f in Ω,

∇φ̂ · n = û · n = σ on Γ,∫
Ω
φ̂ = 0,

(5.15)

and ψ̂ is the solution of ⎧⎪⎪⎪⎨⎪⎪⎪⎩
−Δψ̂ = ∇× û = g in Ω,

ψ̂|Γ0
= 0; ψ̂|Γq

= Cq ∀ q ∈ [1, Q],∫
Γq

∇ψ̂ · n = −kq.

(5.16)

Proof. The Hodge decomposition of û and the determination of φ̂ and ψ̂ through
(5.15) and (5.16) are direct consequences of [11, Theorem 3.2 and Corollary 3.1].

Hypothesis 5.7. We suppose that the potentials φ̂ and ψ̂ given by Proposition 5.6
belong to H2(Ω).

We remark that due to reentrant corners related to the internal polygonal bound-
aries Γq, the H2 regularity of the potentials is not a consequence of the regularity of
the data (f, g, σ).

Obviously, we may relate the L2 error between the solution û of (5.1) and the dis-

crete solution (uj)j∈[1,J] of (5.3) to the errors between the solutions φ̂ and ψ̂ of (5.15)
and (5.16) and the discrete solutions (φT

i , φ
P
k ) and (ψT

i , ψ
P
k ) defined in Proposition 5.1,
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respectively, by (5.7) and (5.8). Indeed we see that

∑
j∈[1,J]

∫
Dj

|uj − û(x)|2 dx ≤ 2

( ∑
j∈[1,J]

∫
Dj

∣∣∣(∇D
h φ)j −∇φ̂(x)

∣∣∣2 dx
+

∑
j∈[1,J]

∫
Dj

∣∣∣(∇D
h ψ)j −∇ψ̂(x)

∣∣∣2 dx).

(5.17)

5.3.1. Equivalent finite element formulations for the potentials. In order
to evaluate the errors on the potentials, we follow [10] and rewrite (5.7) and (5.8) in
terms of equivalent (nonconforming) finite element formulations. Recalling that the
points Miα(j) kβ(j) are illustrated on Figure 2.4, we construct the following functions.

Proposition 5.8. Let (φT
i , φ

P
k ) ∈ R

I+JΓ × R
K be given; there exists a function

φh defined by

(φh)|Dj
∈ P 1(Dj) ∀j ∈ [1, J ],

φh(Miα(j) kβ(j)) =
1

2
(φT

iα(j) + φP
kβ(j)) ∀j ∈ [1, J ], ∀(α , β) ∈ {1; 2}2

.(5.18)

Moreover, we have the following essential property:

(∇φh)|Dj
= (∇D

h φ)j ∀j ∈ [1, J ].(5.19)

Proof. The proof is given in [10]. We recall that the definition of φh through the
four equalities contained in (5.18) is possible because (Mi1k1Mi1k2Mi2k2Mi2k1) is a
parallelogram and φh(Mi1k1) + φh(Mi2k2) = φh(Mi1k2) + φh(Mi2k1) .

Definition 5.9. We shall denote by L the linear operator which associates φh,
defined by Proposition 5.8, with a given (φT

i , φ
P
k ) ∈ R

I+JΓ ×R
K . Further, the solution

of (5.7) is in the following space:

VN :=

⎧⎨⎩(φT
i , φ

P
k ) ∈ R

I+JΓ × R
K /

∑
i∈[1,I]

|Ti|φT
i =

∑
k∈[1,K]

|Pk|φP
k = 0

⎫⎬⎭ .

The solution of (5.8) is in the following space:

VD :=
{

(φT
i , φ

P
k ) ∈ R

I+JΓ × R
K / φT

i = φP
k = 0 ∀ i ∈ Γ0 ∀ k ∈ Γ0 and

∃ (cTq,φ, c
P
q,φ) ∈ (R2)Q s.t. φT

i = cTq,φ ∀ i ∈ Γq, and φP
k = cPq,φ ∀ k ∈ Γq ∀ q ∈ [1, Q]

}
.

Remark 5.10. It is easily proved that the linear operator L introduced in Defini-
tion 5.9 is injective over VN and over VD. Thus, for any Φh in L(VN ) or in L(VD),

there exists a unique Φ = (ΦT
i ,Φ

P
k ) in R

I+JΓ × R
K , either in VN or in VD such that

Φh = L(Φ). The values (ΦT
i ,Φ

P
k ) are used in the definitions of Φ∗

h and Φ̃h associated
with Φh, respectively, by (5.22) and (5.23).

With these definitions, we may state the following result.
Proposition 5.11. Problem (5.7) amounts to finding φh ∈ L(VN ), such that

ah(φh,Φh) = 	N (Φh) ∀ Φh ∈ L(VN )(5.20)
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with

ah(φh,Φh) :=
∑

j∈[1,J]

∫
Dj

∇φh ·∇Φh (x)dx,

	N (Φh) := −
∫

Ω

fΦ∗
h(x)dx +

∫
Γ

σ Φ̃h(ξ) dξ,

(5.21)

where Φ∗
h is defined over Ω by

Φ∗
h(x) :=

1

2

⎛⎝ ∑
i∈[1,I]

ΦT
i θ

T
i (x) +

∑
k∈[1,K]

ΦP
k θ

P
k (x)

⎞⎠(5.22)

and Φ̃h is defined over Γ by

Φ̃h(ξ) =
∑

j∈[1,J]

1

4

(
ΦP

k1(j)
+ 2ΦT

i2(j)
+ ΦP

k2(j)

)
θΓ
j (ξ),(5.23)

where we recall that θTi , θPk , and θΓ
j are, respectively, the characteristic functions of

the cells Ti, Pk and of the boundary edge Aj.
Proof. Let us suppose that φ ∈ VN is the solution of (5.7); then multiplying the

first equation by 1
2 |Ti|ΦT

i , the second equation by 1
2 |Pk|ΦP

k , and summing over all
i ∈ [1, I] and all k ∈ [1,K] yields

(∇T,P
h ·∇D

h φ,Φ)T,P = (f,Φ)T,P .(5.24)

Thanks to the discrete Green formula (4.1), we may write the left-hand side of (5.24)
in the following way:

−(∇D
h φ,∇D

h Φ)D + (∇D
h φ · n,Φ)Γ,h = −

∑
j∈[1,J]

|Dj | (∇D
h φ)j · (∇D

h Φ)j

+
∑

j∈[J−JΓ+1,J]

|Aj | (∇D
h φ)j · nj ×

1

4

(
ΦP

k1(j)
+ 2ΦT

i2(j)
+ ΦP

k2(j)

)
.

Next, thanks to (5.19), and because (∇D
h φ)j · (∇D

h Φ)j is a constant over Dj , we may
write

−
∑

j∈[1,J]

|Dj | (∇D
h φ)j · (∇D

h Φ)j = −
∑

j∈[1,J]

∫
Dj

∇φh ·∇Φh (x)dx.

Moreover, according to the boundary conditions given by (5.7c),

|Aj | (∇D
h φ)j · nj = |Aj |σj =

∫
Aj

σ(ξ)dξ,

so that

|Aj | (∇D
h φ)j · nj ×

1

4

(
ΦP

k1
+ 2ΦT

i2 + ΦP
k2

)
=

∫
Aj

σ
(
Φ̃h

)
|Aj

(ξ) dξ.
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Finally, the left-hand side of (5.24) is equal to

−ah(φh,Φh) +

∫
Γ

σ Φ̃h(ξ) dξ.

By (5.4), and because ΦT
i θ

T
i (x)|Ti

= ΦT
i and ΦP

k θ
P
k (x)|Pk

= ΦP
k , the right-hand side

of (5.24) is equal to

∫
Ω

f(x)
1

2

⎛⎝ ∑
i∈[1,I]

ΦT
i θ

T
i (x) +

∑
k∈[1,K]

ΦP
k θ

P
k (x)

⎞⎠ dx,

which ends this part of the proof.
Conversely, let φh ∈ L(VN ) satisfy (5.20) for all Φh ∈ L(VN ); then φ = L−1(φh)

satisfies (5.7d) by definition of VN . Further, we prove that the boundary condi-
tion (5.7c) is verified along each boundary edge j0 ∈ [J − JΓ + 1, J ] by considering
its corresponding basis element Φ0 ∈ VN defined by (recall that the index i2(j0) is
associated with the unknown located at the center of the segment Aj0)

∀i ∈ [1, I + JΓ], (Φ0)
T
i = δ

i2(j0)
i and ∀k ∈ [1,K], (Φ0)

P
k = 0.

Then, defining (Φ0)h = L(Φ0), we obviously have the following properties:

(∇(Φ0)h)|Dj
= 0 if j �= j0 and (∇(Φ0)h)|Dj0

=
1

2 |Dj0 |
|Aj0 |nj0

and

(Φ0)
∗
h(x) = 0 ∀x ∈ Ω and (Φ̃0)h(ξ) =

1

2
θΓ
j0(ξ) ∀ξ ∈ Γ.

We thus have∑
j∈[1,J]

∫
Dj

∇φh ·∇(Φ0)h (x)dx =
1

2
|Aj0 | (∇φh)|Dj0

· nj0 =
1

2
|Aj0 | (∇D

h φ)j0 · nj0

and

−
∫

Ω

f(Φ0)
∗
h(x)dx +

∫
Γ

σ (Φ̃0)h(ξ) dξ =

∫
Aj0

1

2
σ(ξ) dξ =

1

2
|Aj0 |σj0 .

Finally, writing (5.20) for (Φ0)h proves that φ satisfies the boundary condition

(∇D
h φ)j0 · nj0 = σj0 ∀ j0 ∈ [J − JΓ + 1, J ].

Next, in order to prove (5.7a) for any primal cell i0 ∈ [1, I], we consider its corre-
sponding basis element Φ1 ∈ VN defined by

∀i ∈ [1, I + JΓ], (Φ1)
T
i = δi0i − |Ti0 |

|Ω| , and ∀k ∈ [1,K], (Φ1)
P
k = 0.

Then, defining (Φ1)h = L(Φ1) and according to (5.20), we may write∑
j∈[1,J]

∫
Dj

∇φh ·∇(Φ1)h (x)dx = −
∫

Ω

f(Φ1)
∗
h(x)dx +

∫
Γ

σ (Φ̃1)h(ξ) dξ.(5.25)
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To evaluate the left-hand side of (5.25), we consider Φ ∈ R
I+JΓ × R

K such that

∀i ∈ [1, I + JΓ], ΦT
i = δi0i and ∀k ∈ [1,K], ΦP

k = 0.

Note that Φ /∈ VN but that its discrete gradient (see (3.2)) obviously equals that
of Φ1. Thanks to this equality and to (5.19), we have∑

j∈[1,J]

∫
Dj

∇φh ·∇(Φ1)h (x)dx = (∇D
h φ,∇D

h Φ1)D = (∇D
h φ,∇D

h Φ)D,

which, in turn, can be transformed, thanks to (4.1), into

−(∇T,P
h ·∇D

h φ,Φ)T,P + (∇D
h φ · n,Φ)Γ,h.

Thanks to the definition of Φ, this quantity reduces to the contribution of i0, which
proves that the left-hand side of (5.25) may be written∑

j∈[1,J]

∫
Dj

∇φh ·∇(Φ1)h (x)dx = −1

2
|Ti0 | (∇T

h ·∇D
h φ)i0 .(5.26)

Next, we compute the right-hand side of (5.25)

−
∫

Ω

f(Φ1)
∗
h(x)dx = −1

2

∑
i∈[1,I]

∫
Ti

(
δi0i − |Ti0 |

|Ω|

)
f(x) dx

= −1

2

∫
Ti0

f(x) dx +
1

2

|Ti0 |
|Ω|

∫
Ω

f(x) dx;

∫
Γ

σ (Φ̃1)h(ξ) dξ =
∑

j∈[J−JΓ+1,J]

∫
Aj

σ(ξ)
1

4

(
−2

|Ti0 |
|Ω|

)
dξ = −1

2

|Ti0 |
|Ω|

∫
Γ

σ(ξ)dξ,

so that the right-hand side of (5.25) equals

−1

2

∫
Ti0

f(x) dx +
1

2

|Ti0 |
|Ω|

∫
Ω

f(x) dx − 1

2

|Ti0 |
|Ω|

∫
Γ

σ(ξ)dξ.

Because of (5.2), the last two terms in the previous sum cancel and we get

−
∫

Ω

f(Φ1)
∗
h(x)dx +

∫
Γ

σ (Φ̃1)h(ξ) dξ = −1

2

∫
Ti0

f(x) dx = −1

2
|Ti0 | fT

i0 .(5.27)

Comparing (5.25), (5.26), and (5.27), we infer that

(∇T
h ·∇D

h φ)i0 = fT
i0 .

In a similar way, we can prove (5.7b) for any dual cell k0 ∈ [1,K] by considering its
corresponding basis element Φ2 ∈ VN , defined by

∀i ∈ [1, I + JΓ], (Φ2)
T
i = 0 and ∀k ∈ [1,K], (Φ2)

P
k = δk0

k − |Pk0 |
|Ω| ,

which ends the proof of the equivalence.
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Proposition 5.12. Problem (5.8) is equivalent to finding ψh ∈ L(VD), such that
∀Ψh ∈ L(VD),

ah(ψh,Ψh) = 	D(Ψh)(5.28)

with

	D(Ψh) :=

∫
Ω

gΨ∗
h(x)dx −

∑
q∈[1,Q]

kq

(
cTq,Ψ + cPq,Ψ

2

)
.

Proof. Let us suppose that ψ ∈ VD is the solution of (5.8); then we may compute
the following discrete scalar product:

−(∇T,P
h ·∇D

h ψ,Ψ)T,P = − 1

2

∑
i∈[1,I]

|Ti|(∇T
h ·∇D

h ψ)iΨ
T
i

− 1

2

∑
k∈[1,K−JΓ]

|Pk|(∇P
h ·∇D

h ψ)kΨ
P
k(5.29)

− 1

2

∑
k∈[K−JΓ+1,K]

|Pk|(∇P
h ·∇D

h ψ)kΨ
P
k .

Due to (5.8a)–(5.8b), the sum of the first two terms on the right-hand side of (5.29)
equals

1

2

∑
i∈[1,I]

|Ti|gTi ΨT
i +

1

2

∑
k∈[1,K−JΓ]

|Pk|gPk ΨP
k .

Next, using the fact that ΨP is equal to a constant cPq,Ψ over each Γq and vanishes
over Γ0, we may write, according to (5.8d),

−
∑

k∈[K−JΓ+1,K]

|Pk|(∇P
h ·∇D

h ψ)kΨ
P
k = −

∑
q∈[1,Q]

cPq,Ψ
∑
k∈Γq

|Pk|(∇P
h ·∇D

h ψ)k

=
∑

q∈[1,Q]

cPq,Ψ
∑
k∈Γq

|Pk|gPk =
∑

k∈[K−JΓ+1,K]

|Pk|gPk ΨP
k .

Finally, (5.29) may be rewritten in the following way:

−(∇T,P
h ·∇D

h ψ,Ψ)T,P = (g,Ψ)T,P .(5.30)

Using the discrete Green formula (4.1), the left-hand side of (5.30) is equal to

(∇D
h ψ,∇D

h Ψ)D − (∇D
h ψ · n,Ψ)Γ,h.

Like previously, the first of these terms equals ah(ψh,Ψh). Next, using the fact
that ΨP (resp., ΨT ) is equal to a constant cPq,Ψ (resp., cTq,Ψ) over each Γq and vanishes
over Γ0, and using (5.8c), there holds

(∇D
h ψ·n,Ψ)Γ,h =

∑
q∈[1,Q]

(
cTq,Ψ + cPq,Ψ

2

)∑
Γq

(∇D
h ψ)j ·nj = −

∑
q∈[1,Q]

kq

(
cTq,Ψ + cPq,Ψ

2

)
,
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which shows that the left-hand side of (5.30) is equal to

ah(ψh,Ψh) +
∑

q∈[1,Q]

kq

(
cTq,Ψ + cPq,Ψ

2

)
.

This ends the first part of the proof.
Conversely, if ψh ∈ L(VD) satisfies (5.28) for all Ψh ∈ L(VD), then ψ = L−1(ψh)

verifies (5.8e), (5.8f), and (5.8g) by definition of VD. Next, in order to prove (5.8a)
for any primal cell i0 ∈ [1, I], let us consider its associated basis element Ψ1 ∈ VD

defined through

(Ψ1)
T
i = δi0i ∀ i ∈ [1, I + JΓ] and (Ψ1)

P
k = 0 ∀ k ∈ [1,K].

Applying (5.28) for Ψh = L(Ψ1) and using (5.19), (4.1), and (5.5) shows that (5.8a) is
verified for the considered i0 ∈ [1, I]. Equality (5.8b) can be proved in the same way
for any dual cell k0 ∈ [1,K −JΓ] by considering its associated basis element Ψ2 ∈ VD

defined through

(Ψ2)
T
i = 0 ∀ i ∈ [1, I + JΓ] and (Ψ2)

P
k = δk0

k ∀ k ∈ [1,K].

Next, let us consider an internal boundary Γq0 with q0 ∈ [1, Q] and let us consider
Ψ3 ∈ VD which vanishes everywhere but on Γq0 , where it has a constant value:

(Ψ3)
T
i = (Ψ3)

P
k = 0 ∀ i ∈ [1, I], ∀ k ∈ [1,K] and (Ψ3)

T
i = δq0q ∀ i ∈ Γq, ∀ q ∈ [0, Q].

Applying (5.28) for Ψh = L(Ψ3) and using (5.19) and (4.1) shows that (5.8c) is verified
for the considered q0 ∈ [1, Q]. In the same way, we prove (5.8d) for a given q0 ∈ [1, Q]
by choosing Ψ4 ∈ VD defined through

(Ψ4)
T
i = 0 ∀ i ∈ [1, I], (Ψ4)

P
k = 0 ∀ k ∈ [1,K − JΓ],

(Ψ4)
T
i = δq0q ∀ i ∈ Γq and (Ψ4)

P
k = −δq0q ∀ k ∈ Γq, ∀ q ∈ [0, Q].

This ends the proof of Proposition 5.12.

5.3.2. Error estimates for the potentials. We may now turn to error esti-
mates for the potentials φ̂ and ψ̂. First, given the equivalent finite element formulation
stated by Proposition 5.11 (resp., Proposition 5.12), we may study the numerical error

concerning φ̂ (resp., ψ̂) in a traditional way by noting that ah acts on H1 + L(VN )
(resp., H1 +L(VD)), on which we define |x|1,h :=

√
ah(x, x), and by using the so-called

“Strang second lemma” [24]:

|φ̂− φh|1,h ≤ 2 inf
ωh∈L(VN )

|φ̂− ωh|1,h + sup
ωh∈L(VN )

|ah(φ̂, ωh) − 	N (ωh)|
|ωh|1,h

(5.31)

and

|ψ̂ − ψh|1,h ≤ 2 inf
ωh∈L(VD)

|ψ̂ − ωh|1,h + sup
ωh∈L(VD)

|ah(ψ̂, ωh) − 	D(ωh)|
|ωh|1,h

.(5.32)

The first term in (5.31) and (5.32) is named the “interpolation error,” while the second
is called the “consistency error.”
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Interpolation error for φ̂. We start with the following proposition.
Proposition 5.13. If all diamond-cells are convex and under Hypotheses 5.5

and 5.7, there exists a constant C(τ∗) depending only on τ∗ such that

inf
ωh∈L(VN )

|φ̂− ωh|1,h ≤ C(τ∗)h ||φ̂||2,Ω .(5.33)

Proof. Consider the pointwise projection of the exact solution onto R
I+JΓ ×R

K :

∀i ∈ [1, I + JΓ] , (Πφ̂)Ti = φ̂(Gi) and ∀k ∈ [1,K] , (Πφ̂)Pk = φ̂(Sk) .

Then, this element is itself projected onto VN in the following way:

∀i ∈ [1, I + JΓ], (Π̃φ̂)Ti = (Πφ̂)Ti −

∑
i∈[1,I]

|Ti|(Πφ̂)Ti

|Ω|

∀k ∈ [1,K], (Π̃φ̂)Pk = (Πφ̂)Pk −

∑
k∈[1,K]

|Pk|(Πφ̂)Pk

|Ω| .

Obviously, Π̃φ̂ and Πφ̂ have the same discrete gradient so that the interpolation error
in (5.33) is bounded in the following way:

inf
ωh∈L(VN )

|φ̂− ωh|1,h ≤ |φ̂− L(Π̃φ̂)|1,h = |φ̂− L(Πφ̂)|1,h.

Finally, an upper bound for |φ̂ − L(Πφ̂)|1,h has been given in [10] and is based on

the relation between L(Πφ̂) and the standard Lagrange P 1 interpolants on the pairs
(Dj,1, Dj,2) and (D′

j,1, D
′
j,2). It leads to the estimation (5.33). Hypothesis 5.5 is here

to ensure that the so-called maximum angle condition [3, 18] is verified for at least
one of the pairs of triangles (Dj,1, Dj,2) or (D′

j,1, D
′
j,2).

Consistency error for φ̂. Let ωh = L(ω). Thanks to (5.21), we start by writing

ah(φ̂, ωh)− 	N (ωh) =

[
ah(φ̂, ωh) + (f, ωh)Ω −

∫
Γ

σ ω̃h(ξ) dξ

]
− (f, ωh − ω∗

h)Ω.(5.34)

The last term in (5.34) can be bounded by the following lemma.
Lemma 5.14. If all diamond-cells are convex, there exists a constant C indepen-

dent of the grid such that

|(f, ωh − ω∗
h)Ω| ≤ Ch||f ||0,Ω|ωh|1,h.(5.35)

Proof. The proof is identical to that given in [10] for homogeneous Dirichlet
conditions.

Then, we follow [10] with a slight modification due to nonhomogeneous Neumann
boundary conditions. We divide each interior diamond-cell Dj (with j ∈ [1, J − JΓ])
either into Dj,1 ∪ Dj,2, or into D′

j,1 ∪ D′
j,2 (see Figure 2.5). Note that this choice

is local to Dj and does not influence the choice which can be made for the division
of Dj′ , for j′ �= j. Boundary diamond-cells are such that Dj,1 = Dj and Dj,2 = ∅
and will never be split into D′

j,1 ∪ D′
j,2. To simplify notations, we shall write Tj,α
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to represent either Dj,α or D′
j,α. Further, we define RT (∇φ̂), the Raviart–Thomas

interpolation of ∇φ̂ on each Tj,α (see [23]), by

RT (∇φ̂)|Tj,α
∈ (P0(Tj,α))

2 ⊕
(
x
y

)
P0(Tj,α) and

∫
s

RT (∇φ̂) · n dξ =

∫
s

∇φ̂.n dξ

for any edge s of Tj,α whose normal exterior unit vector is denoted by n. We can
state the following lemma.

Lemma 5.15. Let φ̂ be the solution of (5.15) and let ωh ∈ L(VN ). Denote
by 〈ωh〉j,α the average value of ωh over Tj,α. Then, if all diamond-cells are convex,
we have

ah(φ̂, ωh) + (f, ωh)Ω −
∫

Γ

σ ω̃h(ξ) dξ(5.36)

=
∑

j∈[1,J]

2∑
α=1

∫
Tj,α

[
(∇φ̂−RT (∇φ̂)) ·∇ωh − f

(
〈ωh〉j,α − ωh

)]
dx.

Proof. By definition, RT (∇φ̂) · n is a constant on each edge of Tj,α. In addition,

on two neighboring triangles Tj,α, the values of RT (∇φ̂) · n on both sides of their
common edge are opposite of each other, because of the orientation of the normal
vector n. By noting S the set of all the edges of all the Tj,α, n the normal unit vector
to an edge s in S, and [ωh]s the jump of ωh through s, then

∑
j∈[1,J]

2∑
α=1

∫
∂Tj,α

RT (∇φ̂) · nωh dξ =
∑

s∈S, s �⊂Γ

RT (∇φ̂) · n
∫
s

[ωh]s dξ

+
∑

s∈S, s⊂Γ

RT (∇φ̂) · n
∫
s

ωh dξ.

(5.37)

Since ωh is in L(VN ), then [ωh]s is a polynomial of degree one, which vanishes at the
midpoint of s (by construction of the functions of L(VN )). Its integral on s is thus null.
Further, there is an obvious one-to-one correspondence between a given s ∈ S, s ⊂ Γ,
and some boundary edge Aj , with j ∈ [J−JΓ +1, J ] because boundary diamond-cells
are such that Dj = Dj,1 = Tj,α, with α = 1. Therefore, for such s ∈ S, s ⊂ Γ, there
exists a unique j ∈ [J − JΓ + 1, J ] such that

RT (∇φ̂) · n =
1

|Aj |

∫
Aj

RT (∇φ̂) · nj =
1

|Aj |

∫
Aj

∇φ̂ · nj =
1

|Aj |

∫
Aj

σ(ξ) dξ.

Further, on this Aj , the function ωh is a polynomial of degree one, whose integral is
easy to compute: ∫

s

ωh dξ =
|Aj |
4

(
ωP
k1

+ 2ωT
i2 + ωP

k2

)
.

Recalling the definition (5.23) of the piecewise constant function ω̃h, we may write

∑
j∈[1,J]

2∑
α=1

∫
∂Tj,α

RT (∇φ̂) · nωh dξ =
∑

s∈S, s⊂Γ

RT (∇φ̂) · n
∫
s

ωh dξ =

∫
Γ

σω̃h(ξ)dξ.
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But we may also write the previous equality in the following way:

∑
j∈[1,J]

2∑
α=1

(∫
Tj,α

∇ · (RT (∇φ̂))ωh dx +

∫
Tj,α

RT (∇φ̂) ·∇ωh dx

)
=

∫
Γ

σω̃h(ξ)dξ.

By subtracting this equality from ah(φ̂, ωh), we obtain

ah(φ̂, ωh) −
∫

Γ

σω̃h(ξ)dξ =
∑

j∈[1,J]

2∑
α=1

∫
Tj,α

(∇φ̂−RT (∇φ̂)) ·∇ωh dx

−
∑

j∈[1,J]

2∑
α=1

∫
Tj,α

∇ · (RT (∇φ̂))ωh dx.

(5.38)

Let us note 〈ωh〉j,α the mean value of ωh on Tj,α. Since ∇·(RT (∇φ̂)) is by construction
a constant on Tj,α, we may write the following series of equalities:∫

Tj,α

∇ · (RT (∇φ̂))ωh dx = 〈ωh〉j,α
∫
Tj,α

∇ · (RT (∇φ̂)) dx

= 〈ωh〉j,α
∫
∂Tj,α

RT (∇φ̂) · n dξ = 〈ωh〉j,α
∫
∂Tj,α

∇φ̂ · n dξ

= 〈ωh〉j,α
∫
Tj,α

Δφ̂ dx = 〈ωh〉j,α
∫
Tj,α

f dx.

(5.39)

Equality (5.36) follows from (5.38) and (5.39).

The first term in the right-hand side of (5.34) can be bounded by the following
lemma.

Lemma 5.16. If all diamond-cells are convex and under Hypotheses 5.5 and 5.7,
there exists a constant C independent of the grid such that∣∣∣∣ah(φ̂, ωh) + (f, ωh)Ω −

∫
Γ

σω̃h(ξ) dξ

∣∣∣∣ ≤ C
h

sin τ∗
|ωh|1,h

(
||f ||0,Ω + ||φ̂||2,Ω

)
.(5.40)

Proof. By virtue of Lemma 5.15, bounding the left-hand side of (5.40) amounts to
bounding the right-hand side of (5.36). This was performed in [10]. Again, Hypothe-
sis 5.5 is here to ensure the maximum angle condition needed by the Raviart–Thomas
interpolation of ∇φ̂; see [1].

We end the consistency error estimation with the following proposition.

Proposition 5.17. If all diamond-cells are convex and under Hypotheses 5.5
and 5.7, then there exists a constant C independent of the grid such that

sup
ωh∈L(VN )

|ah(φ̂, ωh) − 	N (ωh)|
|ωh|1,h

≤ C
h

sin τ∗

(
||f ||0,Ω + ||φ̂||2,Ω

)
.(5.41)

Proof. The result follows from (5.34), (5.35), and (5.40).
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Interpolation error for ψ̂. Next, given the equivalent finite element formulation
stated by Proposition 5.12, we may study the numerical error concerning ψ in a very
analogous way: The interpolation error is bounded by choosing ωh = L(Πψ̂) with

Πψ̂ ∈ VD defined by

∀i ∈ [1, I + JΓ] , (Πψ̂)Ti = ψ̂(Gi) and ∀k ∈ [1,K] , (Πψ̂)Pk = ψ̂(Sk)

and we obtain a result analogous to (5.33).
Proposition 5.18. If all diamond-cells are convex and under Hypotheses 5.5

and 5.7, then there exists a constant C(τ∗) depending only on τ∗ such that

inf
ωh∈L(VD)

|ψ̂ − ωh|1,h ≤ C(τ∗)h ||ψ̂||2,Ω.(5.42)

Consistency error for ψ̂. Concerning the consistency error, we may prove a result
analogous to (5.36).

Lemma 5.19. Let ψ̂ be the solution of (5.16) and let ωh ∈ L(VD). Then, if all
diamond-cells are convex, we have

ah(ψ̂, ωh) − (g, ωh)Ω +
∑

q∈[1,Q]

kq

(
cTq,ω + cPq,ω

2

)

=
∑

j∈[1,J]

2∑
α=1

∫
Tj,α

[
(∇ψ̂ −RT (∇ψ̂)) ·∇ωh + g

(
〈ωh〉j,α − ωh

)]
dx.

(5.43)

Proof. We first write for ψ̂ an equality analogous to (5.37). For the same reasons
as in the proof of Lemma 5.15, this amounts to evaluating the boundary part:

∑
j∈[1,J]

2∑
α=1

∫
∂Tj,α

RT (∇ψ̂) · nωh dξ =
∑

q∈[1,Q]

∑
j∈Γq

RT (∇ψ̂) · nj

∫
Aj

ωh dξ

=
∑

q∈[1,Q]

(
cTq,ω + cPq,ω

2

)∑
j∈Γq

|Aj |RT (∇ψ̂) · nj =
∑

q∈[1,Q]

(
cTq,ω + cPq,ω

2

)∑
j∈Γq

∫
Aj

∇ψ̂ · nj

=
∑

q∈[1,Q]

(
cTq,ω + cPq,ω

2

)∫
Γq

∇ψ̂ · nj = −
∑

q∈[1,Q]

kq

(
cTq,ω + cPq,ω

2

)
.

The end of the proof of (5.43) follows exactly the same lines as that of (5.36) and is
thus skipped.

Next, bounding the right-hand side of (5.43) is performed like in [10], and we
obtain a result analogous to (5.41)

Proposition 5.20. If all diamond-cells are convex and under Hypotheses 5.5
and 5.7, then there exists a constant C independent of the grid such that

sup
ωh∈L(VD)

|ah(ψ̂, ωh) − 	D(ωh)|
|ωh|1,h

≤ C
h

sin τ∗

(
||g||0,Ω + ||ψ̂||2,Ω

)
.(5.44)
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To conclude subsection 5.3.2, estimates (5.31), (5.33), and (5.41) on the one hand
and (5.32), (5.42), and (5.44) on the other hand allow us to state the following theorem.

Theorem 5.21. If all diamond-cells are convex and under Hypotheses 5.5 and 5.7,
then there exists a constant C(τ∗) independent of the grid such that

|φ̂− φh|1,h ≤ C(τ∗)h
(
||f ||0,Ω + ||φ̂||2,Ω

)
(5.45)

and

|ψ̂ − ψh|1,h ≤ C(τ∗)h
(
||g||0,Ω + ||ψ̂||2,Ω

)
.(5.46)

To conclude section 5.3, Theorem 5.21, along with (5.17) and (5.19), leads to the
following theorem.

Theorem 5.22. If all diamond-cells are convex and under Hypotheses 5.5 and 5.7,
then there exists a constant C(τ∗) independent of the grid such that⎛⎝ ∑

j∈[1,J]

∫
Dj

|uj − û(x)|2 dx

⎞⎠1/2

≤ C(τ∗)h
(
||f ||0,Ω + ||g||0,Ω + ||φ̂||2,Ω + ||ψ̂||2,Ω

)
.

6. Numerical results. We test the finite volume method over different types
of meshes and define the discrete relative L2 error by

e2(h) :=

∑
j |Dj | |u − Πû|2j∑

j |Dj | |Πû|2j
,

where (Πû)j is the value of the exact solution at the barycenter of Dj (noted Bj):

∀ j ∈ [1, J ], (Πû)j = û(Bj).

For the first three families of meshes (triangular unstructured, nonconforming,
and degenerating triangular), the domain of computation is the unit square Ω =
[0; 1] × [0; 1]. We choose the data f , g and the boundary conditions so that the
analytical solution is given by

û(x, y) =

(
exp(x) cos(πy) + π sin(πx) cos(πy)

−π exp(x) sin(πy) − π cos(πx) sin(πy)

)
.

This means that the exact potentials are given by

φ̂(x, y) = exp(x) cos(πy) and ψ̂(x, y) = sin(πx) sin(πy).

In addition, we always choose the points Gi associated with the control volumes of
the primal mesh to be the barycenters of the cell Ti.

6.1. Unstructured meshes. First of all, we consider a family of six unstruc-
tured grids made up of increasingly small triangles. The first two of these grids are
represented on the left and central parts of Figure 6.1. The numerical errors in the
discrete L2 norm are presented in logarithmic scale on the right part of Figure 6.1,
on which we also plotted a straight line of slope 1. We remark, as proved previously,
a first order convergence of the presented scheme.
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Fig. 6.1. Unstructured triangular meshes.
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h

error
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Fig. 6.2. Nonconforming square meshes.

6.2. Nonconforming meshes. Next, we consider the nonconforming family of
meshes constructed in the following way. Let n be a nonzero integer. We split Ω into
(2n + 1) × (2n + 1) identical squares. Then, every other square is itself divided into
2n × 2n identical subsquares. We choose n ∈ [1; 4]N . The left and central parts of
Figure 6.2 display the first two of these meshes. Of course, this family of meshes is
not of practical use, but constitutes, in our opinion, a good choice in order to test
the applicability of the presented method on arbitrarily locally refined nonconforming
meshes. A zoom on the most distorted diamond-cell for this type of mesh (with n = 2)
is displayed on Figure 6.3. Comparing this figure with Figure 5.1, we infer that

max(α1, β1, μ1 + μ2, α2, β2, ν1 + ν2) = β2,

which is always lower than 3π
4 for all values of n. Moreover, it is easily checked that

the maximum angle of every boundary diamond-cell equals π
2 , so that this family

of meshes satisfies Hypothesis 5.5 with an angle τ∗ = 3π
4 . The discrete L2 error is

displayed in logarithmic scale on the right part of Figure 6.2, together with a reference
straight line with a slope equal to one. We observe, on this family of nonconforming,
locally refined meshes, a first order convergence in the discrete L2 norm.

6.3. Degenerating meshes. The third family is made up of grids of increas-
ingly flat triangles built in the following way. Let n be a nonzero integer. We divide
Ω into 4n horizontal stripes of the same height and divide each of these stripes into
similar triangles (except those at both ends) so that there are 2n bases of triangles in
the width of a stripe and choose n ∈ [1; 6]N . The left and central parts of Figure 6.4
represent the first two of these grids. The numerical errors in the L2 norm are pre-
sented in logarithmic scale on the right part of Figure 6.4, as well as a straight line of
slope 1.5. Although such a family of meshes does not verify Hypothesis 5.5 (due to
boundary diamond-cells), we observe a superconvergence of the method in this case,
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Fig. 6.3. Zoom on a diamond-cell for the locally refined meshes with n = 2.
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Fig. 6.4. Degenerating triangular meshes.

which is due to the fact, as shown in [10], that almost all diamond-cells (except those
at the boundary) are parallelograms.

6.4. Nonsimply connected domains. Here, the domain of computation is
Ω = [0, 1]2 \ [1/3, 2/3]2 and the data and boundary conditions are chosen so that the
analytic solution is given by

û(x, y) =

(
exp(x) cos(πy) + 3π sin(3πx) cos(3πy)

−π exp(x) sin(πy) − 3π cos(3πx) sin(3πy)

)
.

This means that the exact potentials are given by

φ̂(x, y) = exp(x) cos(πy) and ψ̂(x, y) = sin(3πx) sin(3πy).

We compute the numerical solution on a family of five increasingly fine triangular
meshes. The first two of the meshes are displayed on the left and central parts of
Figure 6.5. The numerical errors in the L2 norm are presented in logarithmic scale on
the right part of Figure 6.5, as well as a straight line of slope 1. We observe the first
order convergence of the scheme on this type of nonconvex meshes when the solution
is regular enough, which is not the case of the last example.

6.5. Nonconvex domains and less regular solutions. Here, the domain of
computation is Ω =] − 1/2; 1/2[2\]0; 1/2[2 and the data and boundary conditions are
chosen so that the analytic solution, expressed in polar coordinates centered on (0, 0),
is given by

û(r, θ) = ∇
(
r2/3 cos

(
2

3
θ

))
,
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Fig. 6.5. Nonsimply connected meshes.
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Fig. 6.6. Nonconvex meshes.

that is to say φ̂(r, θ) = r2/3 cos( 2
3θ) and ψ̂ = 0. Note that φ̂ is still in H1 but not

in H2, so that the error estimate derived in section 5.3 is not valid. More precisely,
φ̂ ∈ (H1+s(Ω))2 with s < 2/3. We use a family of five unstructured triangular grids.
The first two meshes of this family are displayed on the left and central parts of
Figure 6.6, while the error curve in the discrete L2 norm is shown on the right part
of Figure 6.6, together with a reference line of slope 2/3. The order of convergence of
the scheme seems to be 2/3 in this case, like that obtained in [4].

7. Conclusion. We have proposed new discretizations of differential operators
such as divergence, gradient, and curl on almost arbitrary two-dimensional meshes.
These discrete operators verify discrete properties analogous to their continuous coun-
terparts. We have applied these ideas to approximate the solution of two-dimensional
div-curl problems and have given error estimations for the resulting scheme. Finally,
we have demonstrated the possibilities of the method by providing a series of numerical
tests. Extensions of these ideas to problems with inhomogeneous and/or anisotropic
and/or discontinuous coefficients and to the discretization of Stokes-like problems are
currently being investigated.
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B-SPLINE-BASED MONOTONE MULTIGRID METHODS∗

MARKUS HOLTZ† AND ANGELA KUNOTH†

Abstract. For the efficient numerical solution of elliptic variational inequalities on closed convex
sets, multigrid methods based on piecewise linear finite elements have been investigated over the past
decades. Essential to their success is the appropriate approximation of the constraint set on coarser
grids which is based on function values for piecewise linear finite elements. On the other hand, there
are a number of problems which profit from higher order approximations. Among these are the
problem of pricing American options, formulated as a parabolic boundary value problem involving
Black–Scholes’ equation with a free boundary. In addition to computing the free boundary (the
optimal exercise price of the option) of particular importance are accurate pointwise derivatives of
the value of the stock option up to order two, the so-called Greek letters. In this paper, we propose a
monotone multigrid method for discretizations in terms of B-splines of arbitrary order to solve elliptic
variational inequalities on a closed convex set. In order to maintain monotonicity (upper bound) and
quasi optimality (lower bound) of the coarse grid corrections, we propose an optimized coarse grid
correction (OCGC) algorithm which is based on B-spline expansion coefficients. We prove that the
OCGC algorithm is of optimal complexity of the degrees of freedom of the coarse grid and, therefore,
the resulting monotone multigrid method is of asymptotically optimal multigrid complexity. Finally,
the method is applied to a standard model for the valuation of American options. In particular, it
is shown that a discretization based on B-splines of order four enables us to compute the second
derivative of the value of the stock option to high precision.

Key words. variational inequality, linear complementary problem, monotone multigrid method,
cardinal higher order B-spline, system of linear inequalities, optimized coarse grid correction algo-
rithm, optimal complexity, convergence rates, American option, Greek letters, high precision
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1. Introduction. The motivation for this paper stems from an application in
Mathematical Finance, the fair pricing of American options. In a standard model,
this problem can be formulated as a parabolic boundary value problem involving
Black–Scholes’ equation [BS] with a free boundary. In addition to computing the free
boundary (the optimal exercise price of the option), pointwise higher order derivatives
of the solution (the value of the stock option) are particularly important. These so-
called Greek letters are needed with high precision as they play a crucial role as hedge
parameters in the analysis of market risks. Thus, a discretization in terms of higher
order basis functions is preferable.

On the other hand, for the fast numerical solution of the resulting (semidiscrete)
elliptic variational inequality, the method of choice is the monotone multigrid method
developed in [Ko1, Ko2]. Multigrid methods have been proposed previously for such
problems using second order discretizations (i.e., standard finite difference stencils
or piecewise linear finite elements) in different variants [BC, HM, Ho, Ma] where,
however, not all of them have assured, consequently, that the obstacle criterion is
met. Using piecewise linear finite element ansatz functions, geometric considerations
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based on point values are used in [Ko1] to represent the problem-inherent obstacles on
coarser grids in such a way that a violation of the obstacle is excluded. The difficulty
to correctly identifying coarse grid approximations has also been the motivation for a
cascadic multigrid algorithm for variational inequalities in [BBS] for which, however,
no convergence theory is yet available.

In this paper, we generalize the monotone multigrid (MMG) method from [Ko1,
Ko2] to discretizations involving higher order B-splines. One of the key ingredients
of an MMG method are restrictions of the obstacle to coarser grids which satisfy the
(upper) bound imposed by the obstacle (monotonicity) as well as a lower one which
corresponds to the condition of quasi optimality in [Ko1]. We formulate the con-
struction of coarse grid approximations as a linear constrained optimization problem
with respect to the B-spline expansion coefficients. Our construction heavily profits
from properties of B-splines [Bo, Sb]. In particular, we present with our optimized
coarse grid correction (OCGC) algorithm a method to construct monotone and quasi-
optimal coarse grid approximations to the obstacle function in optimal complexity of
the coarse grid for B-spline basis functions of any degree.

Building the OCGC scheme into the MMG method, our higher order MMG
method is shown to be of optimal multigrid complexity. Moreover, following the
arguments in [Ko1], we can prove that our method is globally convergent and reduces
asymptotically to a linear subspace correction method once the contact set has been
identified [HzK]. Hence, we can expect particular robustness of the scheme and full
multigrid efficiency in the asymptotic range in the numerical experiments. This is
confirmed by computations for an American option pricing problem in terms of cubic
B-splines. Details about the derivation of the problem of fair pricing American options
and its formulation as a free boundary value problem and corresponding results can
be found in [WHD, Hz]. Of course, once higher order MMG methods are available,
they may be applied to other obstacle problems like Signorini’s problem which has
been solved using piecewise linear hat functions in [Kr].

This paper is structured as follows. In section 2 we introduce monotone multigrid
methods, recollect the main features of B-splines, and specify a B-spline-based pro-
jected Gauss–Seidel relaxation as a smoothing component of the scheme. In section 3
the crucial ingredients of the higher order MMG schemes, suitable restriction opera-
tors for the obstacle function, are presented for B-spline functions of arbitrary degree
in the univariate case. Their construction for higher spatial dimensions is presented
in section 4 using tensor products. In section 5 some short remarks concerning the
convergence theory for B-spline-based MMG schemes are made. Finally, in section 6
we present a numerical example of pricing American options. The convergence be-
havior of the projected Gauss–Seidel and the multigrid schemes is compared for basis
functions of different orders. We conclude with an estimation of asymptotic multigrid
convergence rates which exhibit full multigrid efficiency for the truncated version.

2. MMG methods.

2.1. Elliptic variational inequalities and linear complementary prob-
lems. Let Ω be a domain in R

d and J (v) := 1
2a(v, v) − f(v) a quadratic func-

tional induced by a continuous, symmetric, and H1
0– elliptic bilinear form a(·, ·) :

H1
0 (Ω) ×H1

0 (Ω) → R and a linear functional f : H1
0 (Ω) → R. As usual, H1

0 (Ω) is the
subspace of functions belonging to the Sobolev space H1(Ω) with zero trace on the
boundary. We consider the constrained minimization problem

(2.1) find u ∈ K : J (u) ≤ J (v) for all v ∈ K
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on the closed and convex set

K := {v ∈ H1
0 (Ω) : v(x) ≤ g(x) for all x ∈ Ω} ⊂ H1

0 (Ω).

The function g ∈ H1
0 (Ω) represents an upper obstacle for the solution u ∈ H1

0 (Ω).
Lower obstacles can be treated in the obvious analogous way. If g satisfies g(x) ≥ 0 for
all x ∈ ∂Ω, then problem (2.1) admits a unique solution u ∈ K by the Lax–Milgram
theorem. It is well-known that (2.1) can be rewritten as a variational inequality; see,
e.g., [EO, KS]: find u ∈ K : a(u, v − u) ≥ f(v − u) for all v ∈ K or, equivalently, as
a linear complementary problem

(2.2)

Lu ≥ f,

u ≤ g,

(u− g)(Lu− f) = 0

almost everywhere in Ω. Here L : H1
0 (Ω) → H−1(= (H1

0 (Ω))′) is the Riesz operator
defined by 〈Lu, v〉 := a(u, v) for all v ∈ H1

0 (Ω).
Discretizing in a finite dimensional spline space SL of piecewise polynomials on a

grid ΔL with uniform grid spacing hL leads to the discrete formulation of (2.1),

(2.3) find uL ∈ KL : J (uL) ≤ J (vL) for all vL ∈ KL

on the closed and convex set KL := {vL ∈ SL : vL(x) ≤ gL(x) for all x ∈ Ω} ⊂ SL,
or, equivalently,

(2.4)

LLuL ≥ fL,

uL ≤ gL,

(uL − gL)(LLuL − fL) = 0.

In [BHR] regularity u ∈ H5/2−ε(Ω) of the solution u to (2.2) is shown for arbitrary
ε > 0. Moreover, error estimates ‖u − uL‖H1(Ω) = O(hL) and ‖u − uL‖H1(Ω) =

O(h
3/2−ε
L ) are proved in the case of piecewise linear (respectively, piecewise quadratic)

functions, provided the functions f, g are sufficiently regular.

2.2. The MMG-algorithm. For solving (2.3) numerically, a now-popular meth-
od is the MMG method [Ko1]. By adding a projection step and employing specific re-
striction operators, it can be implemented as a variant of a standard multigrid scheme.
Let S1 ⊂ S2 ⊂ · · · ⊂ SL ⊂ H1

0 (Ω) be a nested sequence of finite dimensional spaces,
and let uν

L ∈ SL be the approximation in the νth iteration of the MMG method. The

basic multigrid idea is that the error vL := uL − uν,1
L between the smoothed iterate

uν,1
L := S (uν

L) (S always being the standard Gauss–Seidel iteration) and the exact
solution uL can be approximated without essential loss of information on a coarser
grid ΔL−1. We explain how this is realized in the case of a linear complementary
problem for two grids ΔL and ΔL−1. Introducing the defect dL := fL −LLu

ν,1
L , (2.4)

can be written as

(2.5)

LLvL ≥ dL,

vL ≤ gL − uν,1
L ,

(vL − gL + uν,1
L )(LLvL − dL) = 0.
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On a coarser grid ΔL−1, the defect problem can now be approximated by

LL−1vL−1 ≥ dL−1,

vL−1 ≤ gL−1,

(vL−1 − gL−1)(LL−1vL−1 − dL−1) = 0,

where dL−1 := r dL and gL−1 := r̃(gL − uν,1
L ) with (different) restriction operators

r, r̃ : SL → SL−1. The solution vL−1 of the coarse grid problem is then used as
an approximation to the error vL. It is first transported back to the fine grid by a
prolongation operator p and is then added to the approximation uν,1

L . It is important
that the restriction r̃ is chosen such that the new iterate satisfies the constraint

(2.6) uν,2
L := uν,1

L + pvL−1 ≤ gL

on the fine grid. Applying this idea recursively on several different grids, one obtains
the MMG method for linear complementary problems.

Algorithm 2.1. MMG� (νth cycle on level � ≥ 1).
Let uν

� ∈ S� be a given approximation.

1. A priori smoothing and projection: uν,1
� := (P ◦ S(uν

� ))
η1 .

2. Coarse grid correction: d�−1 := r(f� − L�u
ν,1
� ),

g�−1 := r̃(g� − uν,1
� ),

L�−1 := rL�p.

If � = 1, solve exactly the linear complementary problem

L�−1v ≥ d�−1,

v ≤ g�−1,

(v − g�−1)(L�−1v − d�−1) = 0,

and set v�−1 := v.
If � > 1, do γ steps of MMG�−1 with initial value u0

�−1 := 0 and solution v�−1.

Set uν,2
� := uν,1

� + pv�−1.

3. A posteriori smoothing and projection: uν,3
� := (P ◦ S(uν,2

� ))η2 .

Set uν+1
� := uν,3

� .
The number of a priori and a posteriori smoothing steps is denoted by η1 and η2,
respectively. For γ = 1 one obtains a V-cycle, for γ = 2 a W-cycle. P denotes a
projection operator defined in (2.7) and (2.11).

Condition (2.6) leads to an inner approximation of the solution set KL and ensures
that the multigrid scheme is robust [Ko1]. Striving for optimal multigrid efficiency,
satisfaction of the constraint should not be checked by interpolating v� back to the
finest grid. Instead, special restriction operators r̃ are needed for the obstacle function.
A corresponding construction for B-splines of general order k will be introduced in
sections 3 and 4. Next we discuss the projection step for general order B-splines.

2.3. A B-spline-based projected Gauss–Seidel scheme. Since the operator
L is symmetric positive definite and continuous piecewise linear functions are used
for discretization, the discrete form (2.4) can be solved by the projected Gauss–
Seidel scheme; see, e.g., [Cr]. Given an iterate uν

L, a standard Gauss–Seidel sweep
ūν
L := S (uν

L) is supplemented by a projection uν+1
L = P ūν

L into the convex set KL. If
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SL consists of hat functions, the projection can be defined for given grid points {θi}i
by

(2.7) P vL(θi) := min{vL(θi), gL(θi)}.

For higher order functions vL, the difficulty arises already in the univariate case that
for given x ∈ [θi, θi+1] the estimate

(2.8) min {vL(θi), vL(θi+1)} ≤ vL(x) ≤ max {vL(θi), vL(θi+1)}

is no longer valid. Thus, controlling function values on grid points is not a sufficient
criterion in this case. Instead, we propose here a construction using higher order
B-splines, which compares B-spline expansion coefficients instead of function values
and heavily profits from the fact that B-splines are nonnegative. We begin with the
univariate case. For readers’ convenience, we recall the relevant facts about B-spline
bases from [Bo].

Definition 2.2 (B-spline basis functions). For k ∈ N and n ∈ N let T :=
{θi}i=1,...,n+k be an expanded knot sequence with uniform grid spacing hL in the
interior of the interval I := [a, b] of the form

(2.9) θ1 = · · · = θk = a < θk+1 < · · · < θn < b = θn+1 = · · · = θn+k.

Then the B-spline basis functions Ni,k of order k are recursively defined for i =
1, . . . , n by

(2.10)

Ni,1(x) =

{
1 if x ∈ [θi, θi+1)
0 else,

Ni,k(x) =
x− θi

θi+k−1 − θi
Ni,k−1(x) +

θi+k − x

θi+k − θi+1
Ni+1,k−1(x)

for x ∈ I.
It is known that suppNi,k ⊆ [θi, θi+k] (local support), Ni,k(x) ≥ 0 for all x ∈

I (nonnegativity), and Ni,k ∈ Ck−2(I) (differentiability) holds. Moreover, the set
ΣL := {N1,k, . . . , Nn,k} constitutes a locally independent and unconditionally stable
basis with respect to ‖ ·‖Lp

, 1 ≤ p ≤ ∞ for the finite dimensional space SL = Nk,T :=
span ΣL of the splines of order k.

Lemma 2.3. If the B-spline coefficients of vL, gL ∈ Nk,T = SL satisfy vi ≤ gi for
all i = 1, . . . , n, then vL(x) ≤ gL(x) holds for all x ∈ I.

Proof. Using the representation vL =
∑n

i=1 vi Ni,k and gL =
∑n

i=1 gi Ni,k and the
nonnegativity Ni,k(x) ≥ 0 for all x ∈ I, we deduce that gL(x) − vL(x) =

∑n
i=1(gi −

vi)Ni,k(x) ≥ 0 for all x ∈ I.
Here and in section 5, we use the subscript i in vi = (vL)i to denote B-spline

expansion coefficients.
The projection can now be defined for B-spline functions of general order k similar

to (2.7), but now involving expansion coefficients by setting

(2.11) P vi := min{vi, gi}.

Using the same arguments as in [Cr], the resulting projected Gauss–Seidel scheme
still converges since the discrete solution set {v ∈ R

n : vi ≤ gi for i = 1, . . . , n}
describes a cuboid in R

n. Moreover, if the problem is nondegenerate, the contact set,



1180 MARKUS HOLTZ AND ANGELA KUNOTH

defined by all coefficients for which equality holds, is identified after a finite number
of iterations [Cr, EO].

We treat the multivariate case by taking tensor products. Specifying the domain
Ω as Ω :=

∏d
�=1[a�, b�] ⊂ R

d, the ith d-dimensional tensor product B-spline of order
k on a tensorized extended knot sequence T (d) is defined by

(2.12) N
(d)
i,k (x) :=

d∏
�=1

Ni�,k(x�), x ∈ Ω,

where i := (i1, . . . , id) denotes a multi-index. Defining SL in analogy to the univariate
case, the result of Lemma 2.3 immediately carries over to the d-dimensional setting.

3. Construction of monotone and quasi-optimal obstacle approxima-
tions. In this section, the second essential ingredient for our B-spline-based MMG
methods is provided, the construction of so-called monotone and quasi-optimal coarse
grid approximations of the obstacle function, which lead to suitable restriction oper-
ators r̃. We begin with the univariate case; the extension to d dimensions follows in
section 4. We consider in what follows only two grids, as the generalization to several
grids is obvious. Given an obstacle function S̃ which is defined on a fine grid Δ ⊂ I,
we provide an approximation S with respect to a coarser grid T which satisfies

1. S(x) ≤ S̃(x) for all x ∈ I;
2. S(x) ≥ Lk(x) for all x ∈ I and a still-to-be-specified lower barrier Lk(x)

provided in section 3.2;
3. S ≈ S̃ with respect to a target functional Fk defined below in (3.10).

The first condition ensures the monotonicity and robustness of the multigrid scheme,
the second an asymptotical reduction of the method to a linear relaxation, and the
third an efficient coarse grid correction. As the construction is used as a compo-
nent of the monotone multigrid scheme striving for optimal computational multigrid
complexity, it also has to satisfy

4. the number of arithmetic operations must be of order O(n), where n denotes
the number of degrees of freedom on the coarse grid.

Specifically, let T be an extended knot sequence with grid spacing H as in (2.9) and
let Δ := {θ̃i}i=1,...,ñ+k be a finer knot sequence

(3.1) θ̃1 = · · · = θ̃k = a < θ̃k+1 < · · · < θ̃ñ < b = θ̃ñ+1 = · · · = θ̃ñ+k

with grid spacing h = 1
2H. It is defined such that θi = θ̃2i−k for i = k, . . . , n + 1 and

1
2 (θi−1 + θi) = θ̃2i−k−1 for i = k + 1, . . . , n + 1. Then it holds that

(3.2) ñ = 2n + 1 − k.

The corresponding spline spaces are Nk,Δ and Nk,T with member functions Ni,k,Δ

and Ni,k,T , respectively. Now let the obstacle function on the fine grid S̃ ∈ Nk,Δ and
its approximation S ∈ Nk,T be expanded as

(3.3) S̃ =

ñ∑
i=1

c̃i Ni,k,Δ =: c̃T Nk,Δ, S =

n∑
i=1

ci Ni,k,T =: cT Nk,T .

There is a natural prolongation operator p from Nk,T to Nk,Δ for B-splines Ni,k,T in
terms of their refinement or mask coefficients [Bo, Sb]. In the special case H = 2h
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considered here the refinement relation is given by

(3.4) Ni,k,T =

k∑
j=0

aj N2i−k+j,k,Δ

with the subdivision or mask coefficients

(3.5) aj := 21−k

(
k

j

)
for j = 0, . . . , k.

In step 2 of Algorithm 2.1, we choose the restriction r as the adjoint of p, following
[Ha]. However, for the obstacle function the restriction operator r cannot be used
since it does not satisfy condition (2.6).

3.1. Monotone coarse grid approximations. There is a vast amount of lit-
erature, see, e.g., [DV, Mv, Pi] especially from approximation theory, dealing with
monotone approximations to a given function g. The function ĝ is a monotone (or
one-sided) lower approximation to g if ĝ(x) ≤ g(x) for all x ∈ I. There the number
n of degrees of freedom of the function ĝ is chosen such that a given approximation
accuracy can be reached. In contrast to these studies, the question here is different,
since the number n of degrees of freedom is given by the mesh size H.

Definition 3.1 (monotone coarse grid approximation). For knot sequences T
and Δ from (2.9) and (3.1), respectively, we call S ∈ Nk,T a monotone lower coarse

grid approximation to S̃ ∈ Nk,Δ if S(x) ≤ S̃(x) holds for all x ∈ I.
For hat functions such approximations are constructed in [Ma, Ko1]. A corre-

sponding construction for higher order functions has, to our knowledge, not been
provided so far. In view of Lemma 2.3 we propose here to control B-spline expansion
coefficients.

Theorem 3.2 (monotone coarse grid approximation). Let S̃ ∈ Nk,Δ be an upper

obstacle with S̃ = c̃T Nk,Δ for a given order k and the knot sequence Δ from (3.1).
Then S ∈ Nk,T with S = cT Nk,T defined on the knot sequence T from (2.9) is a

monotone lower coarse grid approximation to S̃ if the inequality system

(3.6) Ak c ≤ c̃

is satisfied. The two-slanted matrix Ak is defined by

Ak :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak−1 ak−3

ak ak−2

. . .

ak−1 a0

ak a1

. . . a2

...

ak−1

. . .

ak

. . . a0

a1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ R
ñ×n

with the subdivision coefficients aj from (3.5) and has maximal rank.
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Proof. The proof relies on the subdivision property (3.4) and on the nonnega-
tivity of B-splines. We only consider the case k even as the other case is analogous.
Substituting (3.4) into (3.3) and sorting according to the basis functions Ni,k,Δ leads
to

S(x) =
ñ∑

i=1
i odd

(
ak−1 c(i+1)/2 + ak−3 c(i+3)/2 + · · · + a1 c(i+k−1)/2

)
Ni,k,Δ(x)

+

ñ−1∑
i=2
i even

(
ak ci/2 + ak−2 c(i+2)/2 + · · · + a0 c(i+k)/2

)
Ni,k,Δ(x),

where all cj with j < 1 or j > n are treated as zero. Defining the coefficients

di :=

{
c̃i −

(
ak−1 c(i+1)/2 + ak−3 c(i+3)/2 + · · · + a1 c(i+k−1)/2

)
if i is odd,

c̃i −
(
ak ci/2 + ak−2 c(i+2)/2 + · · · + a0 c(i+k)/2

)
if i is even,

which can be written in compact matrix/vector form as

(3.7) di = c̃i − (Ak c)i

(involving the ith component of the vector Ak c), we obtain

(3.8) S̃(x) − S(x) =
ñ∑

i=1

di Ni,k,Δ(x).

By Lemma 2.3 we have S̃(x) − S(x) ≥ 0 for all x ∈ I, provided di ≥ 0 holds for all
i = 1, . . . , ñ. By (3.7), we obtain the inequality system (3.6). Since the B-splines form
bases for Nk,T and Nk,Δ, the matrix Ak has full rank for each k.

Example 3.3. In the special case of continuous, piecewise linear functions (k = 2),
C1-smooth; piecewise quadratic (k = 3); and C2-smooth, piecewise cubic (k = 4)
splines, one has

A2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
2

1
2

1
1
2

1
2

. . . 1
2

1
1
2

1
2

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

(2n−1)×n, A3 =
1

4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 1
1 3

3 1
1 3

. . .
. . .

3 1
1 3

3 1
1 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

(2n−2)×n,

A4 =
1

8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 4
1 6 1

4 4
1 6 1

. . .
. . .

1 6 1
4 4
1 6 1

4 4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

(2n−3)×n.
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Table 3.1

The values βk and γk for orders k = 2, 4, 6, 8.

k 2 4 6 8

βk 1 2
3

17
30

166
315

γk 0 1
3

13
30

149
315

3.2. Quasi-optimal coarse grid approximations. Now we can immediately
derive a monotone lower coarse approximation.

Proposition 3.4. The spline Lk := qT Nk,T ∈ Nk,T with coefficients

(3.9) qi := min {c̃2i−k, . . . , c̃2i} for i = 1, . . . , n

(leaving out c̃j in the right-hand side if j < 1 or j > ñ) is a monotone lower coarse

grid approximation to S̃ = c̃T Nk,Δ ∈ Nk,Δ.
Proof. As all row sums of Ak are equal to one, the vector q := (q1, . . . , qn)T defined

in (3.9) obviously satisfies the inequality system Ak q ≤ c̃ so that the assertion directly
follows from Theorem 3.2.

Remark 3.5. In the special case k = 2, the restriction operator r̂ : N2,Δ → N2,T ,

S̃ �→ L2 induced by Proposition 3.4 coincides with the restriction operator from [Ma].
As is illustrated in Figures 3.1 and 3.2 for the cases k = 2 and k = 3, the

approximation Lk can be further improved in many cases. This will be the subject of
the next subsections: there q is interpreted as a componentwise lower barrier for the
B-spline coefficients c of the desired coarse grid approximation.

Definition 3.6 (quasi-optimal coarse grid approximation). We call a monotone
lower coarse grid approximation S = cT Nk,T to the spline S̃ = c̃T Nk,Δ quasi-optimal
if it is an improvement over Lk in the sense that c ≥ q holds with q defined in (3.9).

3.3. A linear optimization problem. Aiming at improving the coarse grid
approximation Lk from Proposition 3.4, we define an optimal monotone and quasi-
optimal coarse grid approximation S = cT Nk,T to a given S̃ = c̃T Nk,Δ by formulat-
ing a linear optimization problem. We choose a target functional Fk which estimates
the sum of the distances from approximation to obstacle on all coarse grid points, i.e.,

(3.10) Fk(c) :=
∑
θ∈T

|S̃(θ) − S(θ)|.

Lemma 3.7. The function Fk defined in (3.10) is a linear function R
n → R of

the form

(3.11) Fk(c) = ξT c + η,

where

(3.12) ξ := −AT
k sk ∈ R

n, sk := (βk, γk, βk, . . . )
T ∈ R

ñ, and η := sTk c̃ ∈ R.

The values βk and γk can be computed explicitly: for odd k we have βk = γk = 1
2 , and

for even k = 2, 4, 6, 8 the values are displayed in Table 3.1.
Proof. By Theorem 3.2 we have |S̃(x)− S(x)| = S̃(x)− S(x) for all x ∈ I. Using

(3.8) we obtain

(3.13) Fk(c) =
∑
θ∈T

(
S̃(θ) − S(θ)

)
=

∑
θ∈T

ñ∑
i=1

di Ni,k,Δ(θ) =

ñ∑
i=1

di
∑
θ∈T

Ni,k,Δ(θ).



1184 MARKUS HOLTZ AND ANGELA KUNOTH

Abbreviating (̃sk)i :=
∑

θ∈T Ni,k,Δ(θ), we next show that s̃k coincides with sk defined
in (3.12). In fact,

∑
θ∈Δ Ni,k,Δ(θ) = 1 is easily shown by induction for k ∈ N. For

odd k we can use a simple symmetry argument to conclude (̃sk)i = 1
2 . For even k

two cases must be distinguished according to the position of Ni,k,Δ. Evaluating the
B-spline on coarse grid points leads to (̃sk)i = βk if θi+k/2 ∈ T and (̃sk)i = γk in the
other case. For orders k = 2, 4, 6, 8, the concrete values βk and γk are displayed in
Table 3.1. Thus, we have (sk)i = (̃sk)i and employing (3.7) in (3.13) leads to (3.11),

i.e., Fk(c) =
∑ñ

i=1(sk)i (c̃i − (Ak c)i) = sTk c̃ − sTk Ak c = ξT c + η.
We can now define an optimal monotone and quasi-optimal coarse grid approxi-

mation as the solution of the linear optimization problem

(3.14)
Minimize the target functional Fk(c) = ξT c + η

with respect to the constraints Ak c ≤ c̃ and c ≥ q.

Here Ak ∈ R
ñ×n, c̃ ∈ R

ñ, and q ∈ R
n are defined as before with ñ = 2n − k + 1

and ξ ∈ R
n and η ∈ R are given as in (3.12). The upper inequality guarantees the

monotonicity of the approximation by Theorem 3.2, while the second one ensures
quasi optimality by Proposition 3.4.

3.4. Solution of the linear optimization problem. Via the linear optimiza-
tion formulation (3.14) a (with respect to the target functional Fk) optimal monotone
and quasi-optimal coarse grid approximation may now be obtained, in principle, by
the simplex algorithm; see, e.g., [Sj]. Here the point q ∈ R

n could be used as a
starting corner by Proposition 3.4. In a multigrid scheme, however, the simplex algo-
rithm should not be used because the optimal complexity O(n) would be destroyed.
As shown next, a direct solution for k = 2 can be obtained by the Fourier–Motzkin
elimination; see, e.g., [Sj]. For the general case k > 2 we present afterwards an
approximate solution algorithm which can be applied in optimal complexity.

Lemma 3.8 (direct solution for hat functions). For k = 2 and given c̃ ∈ R
ñ, the

solution of the linear optimization problem (3.14) is recursively given by

(3.15)

c1 := min{c̃1, 2c̃2 − q2}
ci := min{2 c̃2i−2 − ci−1, c̃2i−1, 2 c̃2i − qi+1} for i = 2, . . . , n− 1,

cn := min{2 c̃2n−2 − cn−1, c̃2n−1}

with qi = min {c̃2i−2, c̃2i−1, c̃2i} for i = 1, . . . , n defined in (3.9). In particular, S =
cT Nk,T is a monotone and quasi-optimal coarse grid approximation to the obstacle

S̃ = c̃T N2,Δ.
Proof. First, the n conditions −c ≤ −q are integrated into the inequality system

A2 c ≤ c̃ from Theorem 3.2. Then, Fourier–Motzkin elimination is applied to the
resulting (3n− 1) × n inequality system so that we obtain the solution range

q1 ≤ c1 ≤ min{c̃1, 2c̃2 − q2},
qi ≤ ci ≤ min{2c̃2i−2 − ci−1, c̃2i−1, 2c̃2i − qi+1} for i = 2, . . . , n− 1,

qn ≤ cn ≤ min{2c̃2n−2 − cn−1, c̃2n−1}.

Because of (3.9), q1 ≤ min{c̃1, 2c̃2 − q2} holds. To minimize the target function F2

given by Lemma 3.7, all coefficients ci must be chosen as large as possible which leads
to (3.15).

Remark 3.9. The restriction operator r̃ : N2,Δ → N2,T , S̃ �→ S, implied by
Lemma 3.8, corresponds to the restriction operator from [Ko1] which is derived by
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Fig. 3.1. Continuous piecewise linear upper obstacle function on the fine grid [0, 4] ∩ Z/2 and
coarse grid approximations according to Lemma 3.8 and Proposition 3.4, respectively, on the coarse
grid [0, 4] ∩ Z.

geometric considerations. It is an improvement of the restriction operator r̂ from
Remark 3.5 or [Ma] since r̃(S̃) ≥ r̂(S̃) holds for all S̃ ∈ N2,Δ.

In Figure 3.1 a continuous, piecewise linear, upper obstacle function, the optimal
coarse grid approximation according to Lemma 3.8 and the coarse grid approximation
according to Proposition 3.4 are displayed. The improvement of the simple approx-
imation L2 is clearly visible. Since the band width of Ak increases with increasing
order k, and since the Fourier–Motzkin elimination is only suited for small matrices
or for matrices with mainly zero entries [Sj], a different approach must be found to
solve the linear optimization problem in the higher order case k > 2.

To simplify the notation we define in addition to (3.5) that aj := 0 for j > k and
j < 0.

Theorem 3.10 (optimized coarse grid correction (OCGC) scheme). Let S̃ ∈
Nk,Δ be given with S̃ = c̃T Nk,Δ. Let Lk ∈ Nk,T with Lk = qTNk,T be as in (3.9)
and define

(3.16) b̃j = b̃j(c1, . . . , c�(j+k)/2�−1) := c̃j −
�(j+k)/2�−1∑

ν=1

aj+k−2ν cν

for j = 1, . . . , ñ and b̃j := ∞ for j < 1. Let b̂m,i := ∞ for m > ñ or m < 1 and

(3.17) b̂m,i = b̂m,i(c1, . . . , ci−1) := c̃m −
i−1∑
ν=1

am+k−2ν cν −
�(m+k)/2�∑

ν=i+1

am+k−2ν qν

for i = 1, . . . , n and m = 2i− k + 2, . . . , 2i, where qj := 0 for j > n. Further, let the
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vector c be recursively defined by

(3.18) ci := min

{
b̃2i−k

a0
,
b̃2i−k+1

a1
,
b̂2i−k+2,i

a2
, . . . ,

b̂2i,i
ak

}
for i = 1, . . . , n.

Then S = cT Nk,T ∈ Nk,T is a monotone and quasi-optimal coarse grid approximation

to S̃, i.e.,

Lk(x) ≤ S(x) ≤ S̃(x) for all x ∈ I.

Proof. We only consider the case k odd as the other case is analogous.
We first derive conditions which guarantee monotonicity (3.6) of the approxi-

mation. Moving all entries ai+k−2jcj of the inequality system (3.6) except for the
rightmost nonzero ones in each row to the right-hand side leads to

(3.19)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 0
a1 0
0 a0 0
0 a1 0

. . .

0 a0

0 · · · 0 a1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎝
c�+1

c�+2

...
cn

⎞⎟⎟⎟⎠ ≤

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b̃1
b̃2
b̃3
b̃4
...

b̃ñ−1

b̃ñ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
with � := �(k − 1)/2� and the new right-hand side coefficients b̃i defined in (3.16).
From (3.19) we immediately obtain that the inequality system Akc ≤ c̃ is satisfied
for arbitrary c1, . . . , c� if

(3.20) ci ≤ min

{
b̃2i−k

a0
,
b̃2i−k+1

a1

}
for i = � + 1, . . . , n

holds.
Second, we derive conditions which ensure quasi-optimality c ≥ q of the approxi-

mation. For an arbitrary j ∈ {�+1, . . . , n} the first inequality of (3.20) and definition
(3.16) imply

a0cj ≤ b̃2j−k = c̃2j−k −
j−1∑
ν=1

a2j−2ν cν .

For every i ∈ {1, . . . , j − 1}, we therefore obtain the condition

a2j−2ici ≤ c̃2j−k −
j∑

ν=1
ν �=i

a2j−2ν cν .

When we determine ci, we can assume that the cν ’s for ν = 1, . . . , i − 1 are already
computed. For the cν , ν = i + 1, . . . , j, which are yet to be determined, demanding
quasi-optimality cν ≥ qν leads to

(3.21) a2j−2ici ≤ c̃2j−k −
i−1∑
ν=1

a2j−2ν cν −
j∑

ν=i+1

a2j−2ν qν = b̂2j−k,i
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with b̂j,i defined in (3.17). Analogously we get

(3.22) a2j−2i+1ci ≤ b̂2j−k+1,i

for i < j using the second inequality of (3.20). Because of am = 0 for m > k, the
inequalities (3.21) and (3.22) only apply for i + 1 ≤ j ≤ i + � so that we obtain the
conditions

(3.23) ci ≤ min

{
b̂2i−k+2,i

a2
, . . . ,

b̂2i,i
ak

}

for i = 1, . . . , n. Then both (3.20) and (3.23) are satisfied by defining ci, i = 1, . . . , n,
as in (3.18) which completes the proof.

Remark 3.11. If one only aims at a coarse grid approximation S which is mono-
tone by construction, one could use the relation (3.20) and replace the inequality by
an equality sign. However, in many cases the as-large-as-possible choice of the com-
ponents ci according to (3.20) then has to be balanced to preserve monotonicity by
very small, maybe even negative components cj , j > i, which leads to undesirable
oscillations in the solution. This is avoided by taking in addition the lower bounds
into consideration.

Example 3.12. In the case k = 2 the recursion (3.18) recovers the direct solution

(3.24) ci = min{2 c̃2i−2 − ci−1, c̃2i−1, 2 c̃2i − qi+1}

from Lemma 3.8. For k = 3 the recursion (3.18) simplifies to

(3.25) ci = min
{
4 c̃2i−3 − 3 ci−1,

4
3 c̃2i−2 − 1

3ci−1,
4
3 c̃2i−1 − 1

3qi+1, 4 c̃2i − 3 qi+1

}
.

In the case k = 4, one obtains

ci := min
{
8c̃2i−4 − ci−2 − 6ci−1, 2c̃2i−3 − ci−1,

4
3 c̃2i−2 − 1

6 (ci−1 + qi+1),

2c̃2i−1 − qi+1, 8c̃2i − 6qi+1 − qi+2} ,(3.26)

where we use the notation that all terms in (3.24)–(3.26) which involve cj with j < 1
or qj with j > n have to be omitted.

Using (3.2) and exploiting the fact that the number of nonzero terms in each of
the sums in the definitions (3.16) and (3.17) is bounded by k, the above algorithm
works in optimal complexity.

Theorem 3.13. For fixed k ∈ N, the costs of the OCGC algorithm is restricted
by O(n) operations.

Next, we visualize the effect of our algorithm. In Figure 3.2, one can see a C1-
smooth, piecewise quadratic upper obstacle, the coarse grid approximation obtained
by the OCGC algorithm, the coarse grid approximation L3 ∈ N3,T according to
Proposition 3.4, and the optimal coarse grid approximation obtained by the simplex
algorithm. (Recall, however, that the simplex algorithm does not yield the solution
in optimal complexity.) The improvement of the OCGC approximation over the
spline L3 is clearly visible. There is no difference of our OCGC approximation to the
optimal coarse grid approximation obtained by the simplex method, except for a slight
variation in the interval [0,2]. This difference seems to be caused by boundary effects
which has been confirmed in further numerical experiments. As expected, smooth
parts of the obstacle are very well approximated, while variations of the obstacle
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simplex method approximation
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Fig. 3.2. Right: C1-smooth, quadratic upper obstacle function on the fine grid Δ := [0, 13]∩Z/2
with OCGC-optimized quadratic restriction, the optimal coarse grid approximation obtained by the
simplex method and lower quasi–optimal barrier L3, all three of which are defined on the coarse grid
T := [0, 13] ∩ Z.

of higher frequency can only be partly approximated as it is visible in the interval
[10, 12]. In this example, the control polygon of the B-spline coefficients of the OCGC
approximation (which is not displayed here) is partly above the control polygon of
the obstacle function, although by construction the OCGC approximation always lies
below the obstacle. This indicates that the result of our OCGC algorithm is superior
to alternative methods in which monotone approximations are obtained via monotone
restrictions of control polygons.

4. Higher spatial dimensions. In the multivariate case Ω ⊂ R
d, using (2.12),

a d-dimensional spline S : Ω → R of order k can be represented by

(4.1) S(x) =
∑
i∈Ic

ci N
(d)
i,k,T (x) =: cT N

(d)
k,T (x), x ∈ Ω,

with coefficients c ∈ R
nd

and indices from Ic := {i ∈ N
d : 1 ≤ im ≤ n, m = 1, . . . , d}.

The two-scale relation (3.4) attains the multivariate refinement relation

(4.2) N
(d)
i,k,T =

∑
j∈J

a
(d)
j N

(d)
2i−k+j,k,Δ

with the index set J := {j ∈ N
d : 0 ≤ jm ≤ k for m = 1, . . . , d} and the subdivision

coefficients

(4.3) a
(d)
j := 2(1−k)d

d∏
ν=1

(
k

jν

)
for j ∈ J.

The extension of Theorem 3.2 then reads as follows.
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Theorem 4.1 (monotone coarse grid approximation). The spline S = cTN
(d)
k,T

is a monotone coarse grid approximation to the upper obstacle S̃ = c̃TN
(d)
k,Δ if their

B-spline expansion coefficients satisfy the linear inequality system

(4.4) A
(d)
k c ≤ c̃

with the tensor product matrix A
(d)
k := Ak ⊗ . . .⊗Ak ∈ R

(ñ×n)d and Ak as in (3.6).
Proof. The proof follows by the same arguments as in the univariate case, by using

the refinement relation (4.2) and applying the multivariate version of Lemma 2.3 to

S̃(x) − S(x) =
∑
i∈If

(A
(d)
k c − c̃)i N

(d)
i,k,Δ(x),

where If := {i ∈ N
d : 1 ≤ im ≤ ñ, m = 1, . . . , d} using the nonnegativity of (tensor

product) B-splines.
Example 4.2. In the special case of C2-smooth, piecewise cubic (k = 4) splines

on a two-dimensional domain, the system (4.4) reads

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
8
A4

4
8
A4

1
8
A4

6
8
A4

1
8
A4

4
8
A4

4
8
A4

1
8
A4

6
8
A4

. . .
. . .

6
8
A4

1
8
A4

4
8
A4

4
8
A4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1,1
...

c1,n
...
...

cn,1

...
cn,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≤

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c̃1,1
...

c̃1,ñ

c̃2,1
...

c̃2,ñ
...

c̃ñ,1

...
c̃ñ,ñ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As all rows in the system (4.4) sum to one we immediately obtain from Theo-
rem 4.1 the following generalization of Proposition 3.4.

Proposition 4.3. The spline Lk := qT N
(d)
k,T with expansion coefficients

(4.5) qi := min{c̃j : 2im − k ≤ jm ≤ 2im, m = 1, . . . , d} for i ∈ Ic

(leaving out c̃j in the right-hand side if jm < 1 or jm > ñ) is a monotone coarse grid

approximation to the obstacle function S̃ = c̃TN
(d)
k,Δ.

In the special case k = 2 Fourier–Motzkin elimination can be applied to the
inequality system (4.4) with the constraint c ≥ q as in the univariate case to obtain
Lemma 3.8 for arbitrary d.

Lemma 4.4 (direct solution for hat functions). Define the sum s�,i of all neigh-
boring coarse grid coefficients cj to a given fine grid coefficient c̃� except ci by

s�,i :=
∑

{j∈Ic: j �=i, |θj+1−θ̃�+1|<H}

cj for � ∈ If , i ∈ Ic,

with the Euclidean distance | · | and the mesh size H of the coarse grid. Define s̄�,i as
s�,i with the modification that all coefficients cj in the sum which are not yet known
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are replaced by qj given from (4.5). Then, for k = 2, a monotone and quasi-optimal
coarse grid approximation is recursively given by

ci := min{2
∑d

m=1 |�m−(2im−1)| c̃� − s̄�,i : 2im − 2 ≤ �m ≤ 2im for m = 1, . . . , d}

for i ∈ Ic, leaving out c̃j in the right-hand side if jm < 1 or jm > ñ.

To improve the approximation from Proposition 4.3 in the case k > 2, the OCGC
algorithm can be applied recursively with respect to the dimension d as follows.

Theorem 4.5 (optimized coarse grid correction (OCGC) scheme for d > 1). The
OCGC algorithm applied dimension-recursively to the multivariate inequality system
(4.4) provides in optimal complexity of O(nd) arithmetic operations a coarse grid
approximation S which satisfies the monotonicity and quasi-optimality condition

Lk(x) ≤ S(x) ≤ S̃(x) for all x ∈ Ω.

Proof. We provide the proof for the case k = 3; the other cases follow immediately

by exchanging the system matrix A
(d)
3 by A

(d)
k . The (n × ñ)d tensor product matrix

A
(d)
3 can be written as a n× ñ matrix of (n× ñ)(d−1) tensor product matrices

A
(d)
3 :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
4 A

(d−1)
3

1
4A

(d−1)
3

1
4A

(d−1)
3

3
4 A

(d−1)
3

3
4 A

(d−1)
3

1
4A

(d−1)
3

1
4A

(d−1)
3

3
4 A

(d−1)
3

. . .
. . .

3
4A

(d−1)
3

1
4A

(d−1)
3

1
4A

(d−1)
3

3
4A

(d−1)
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Accordingly, we define ci• := (cij)i=1,...,n,j∈N(d−1): 1≤jl≤n ∈ R
n(d−1)

. Applying the

OCGC algorithm for d = 1 (3.25) to this formulation, we obtain for i = 1, . . . n the
conditions

A
(d−1)
3 ci• ≤ min{4 c̃2i−3• − 3A

(d−1)
3 ci−1•,

4
3 c̃2i−2• − 1

3A
(d−1)
3 ci−1•,

4
3 c̃2i−1• − 1

3A
(d−1)
3 qi+1•, 4 c̃2i• − 3A

(d−1)
3 qi+1•}

for ci• ∈ R
n(d−1)

. Each of these conditions can again be reduced by one dimension by
a further application of the OCGC algorithm until the whole system is solved. As the
complexity of the OCGC algorithm is O(n), the overall complexity is given by O(nd)
arithmetic operations.

Example 4.6. In the case k = 3 and d = 2 the multivariate OCGC algorithm is
defined as follows:

(1) For given c̃ ∈ R
ñ2

determine q ∈ R
n2

by (4.5).

(2) For i = 1, . . . , n
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Fig. 4.1. Two-dimensional C1-smooth, quadratic, upper obstacle function defined on fine grid
[0, 6]2∩(Z/2)2 and coarse grid approximations from Proposition 4.3 (quasi-optimal) and Theorem 4.5
(OCGC) on the coarse grid [0, 6]2 ∩ Z

2 .

define g ∈ R
n by gj := qi,j and f ∈ R

ñ by fj := min{4 c̃2i−3,j − 3(A3 ci−1•)j ,
4
3 c̃2i−2,j − 1

3 (A3ci−1•)j , 4
3 c̃2i−1,j − 1

3 (A3qi+1•)j , 4 c̃2i,j − 3(A3 qi+1•)j},
solve the univariate problem A3e ≤ f , e ≥ g by the 1d-OCGC Algorithm,

set ci,j := ej .
The splines which correspond to the coefficient vector q and c from Proposition 4.3
and Theorem 4.5, respectively, are displayed in Figure 4.1 for a given upper obstacle
function defined on the fine grid [0, 6]2 ∩ (Z/2)2.

The resulting MMG method in the multivariate case can now be implemented
by adding the projection operator (2.11) and the obstacle approximation from Theo-
rem 4.5 to a standard multigrid method. The standard multigrid method for tensor
products of higher order B-splines is described, e.g., in [Hö, HRW] for the case d > 1.

5. Convergence theory for B-spline-based MMG methods. It is shown
in [Ko1] that MMG methods are globally convergent and asymptotically reducing to a
linear subspace correction method, provided nodal basis functions and monotone and
quasi-optimal restriction operators r̃ are used. Because of the lack of such restriction
operators for smooth functions, the MMG method has so far been restricted to hat
functions. Using B-splines as basis functions, we have already transferred the scheme
to functions of general smoothness in section 2. Suitable restriction operators have
been constructed in sections 3 and 4. We have established in the extended version of
this paper [HzK] that all convergence results from [Ko1] can be transferred to B-spline
basis functions, using their expansion coefficients instead of function values.

6. Numerical example. To present a numerical example from the area of
Mathematical Finance, we choose the domain ΩL := R

+ × [0, T ), the differential
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Fig. 6.1. Solution V (S, t) of the linear complementary problem (6.2).

operator

(6.1) L := ∂
∂t + 1

2σ
2S2 ∂2

∂S2 + rS ∂
∂S − r,

and the function H(S) := (K − S)+. We consider the linear complementary problem
to find V = V (S, t) ∈ H1(ΩL), such that

(6.2)

[(LV )(S, t)] (V (S, t) −H(S)) = 0,

(LV )(S, t) ≤ 0,

V (S, t) ≥ H(S)

holds for all (S, t) ∈ ΩL, with boundary data V (S, t) = 0 for S → ∞, V (S, t) = H(S)
for S → 0 and final data V (S, T ) = H(S) for S ∈ R

+.
As it is shown in [WHD], the solution V describes the fair value of an American

put option with strike price K and maturity T which depends on an underlying stock
with value S and volatility σ. No analytical solution is known for the problem (6.2) so
that one has to resort to numerical solution schemes. In the numerical experiments we
used for the linear complementary problem (6.2), the parameters K = 10 for the strike
price, T = 1 for maturity, σ = 0.6 for volatility, and r = 2.5% for the interest rate.
The numerical solution V and the obstacle function H are displayed in Figure 6.1 in
the case of M = N = 64 grid points in space and time.

If the obstacle function is set to minus infinity, the solution V describes the fair
value of a European put option (see [WHD]). In that case an analytical solution is
known and given by the famous Black–Scholes formula; see [BS].

Using a Crank–Nicolson finite difference scheme for the time discretization and at
least continuous piecewise finite elements for the space discretization, the method con-
verges quadratically. Employing higher order finite element functions, the derivatives
of the solution V which provide important hedge parameters in the option pricing con-
text can be determined by direct differentiation of the basis functions. Using B-spline
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Fig. 6.2. Comparison of pointwise error for Delta and Gamma at time t = 0 for orders
k = 2, 3, 4 and N = M = 275.

bases of order k we obtain all derivatives up to the (k − 2)th derivative in quadratic
convergence. In particular, pointwise derivatives, the so-called Greek letters, can be
computed up to high accuracy. These results, as well as extensive discussion, can
be found in [Hz]. As an illustration of the impressible difference a variable order
k may offer, we display in Figure 6.2 only the pointwise errors of Delta:= ∂V

∂S and

Gamma:= ∂2V
∂S2 .

In view of this application, we would like to point out that our higher order MMG
method could also be applied to the valuation of basket options, at least for small
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Fig. 6.3. PSOR–iteration history of one time step with M = 256.

baskets with d = 2 or d = 3. Similar to the univariate case, the multivariate Black–
Scholes equation can be transformed into a multivariate heat diffusion problem, as
shown in [RW].

6.1. Convergence behavior of Gauss–Seidel and MMG schemes. In the
following, only one time step of problem (6.2) is considered to analyze the performance
of the multigrid scheme. In Figure 6.3, the iteration errors of the projected Gauss–
Seidel scheme are displayed for different orders k. The impact of the order k is clearly
visible. Next we compare the convergence behavior of the following methods:
PSOR Projected Gauss–Seidel scheme,

MMG Monotone multigrid method with optimized approximation of
the obstacle according to Lemma 3.8 and Theorem 3.10,

TrMMG Truncated version of the monotone multigrid method [Ko1]
with optimized approximation of the obstacle according to
Lemma 3.8 and Theorem 3.10,

MMG (q-opt) Monotone multigrid method with simple approximation of the
obstacle according to Proposition 3.4,

TrMMG (q-opt) Truncated version of the monotone multigrid method with sim-
ple approximation of the obstacle according to Proposition 3.4,

MG Linear multigrid method applied to the unrestricted problem.

To analyze the influence of the order k on the convergence behavior, the case
k = 2 is systematically compared to the case k = 3. For k > 3 similar results are
expected. In the experiments of the finance parameters used in the previous section,
the finest level L = 7 and a random initial guess have been chosen. To make sure
that the iteration does not terminate too early, we have selected independently of the
discretization error the stopping criterion

‖uν+1
L − uν

L‖∞ ≤ 10−12,
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Fig. 6.4. Iteration history for hat functions (k = 2) (top) and for C1-smooth basis functions
(k = 3) (bottom).

where uν
L denotes the νth iterate on the finest grid L.

The numerical results are summarized in Figure 6.4 and Table 6.1. In the third
column in Table 6.1, the number ν0 of iterations needed to identify the contact set
K•(uL) is displayed. In the next column �It., we list the number of iterations which
are needed to solve the problem up to machine accuracy. To compare the costs of
the schemes, we employ the definition of a work unit (WU) from [BC]. A work unit
WU = WUL denotes the costs of one iteration step of the projected Gauss–Seidel scheme
on the finest grid L. The costs WU� of one iteration step on level � ≤ L is then given
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Scheme 1 smoothing step 2 smoothing steps
ν0 � It. �WU ν0 � It. � WU

PSOR 134 403 403 — — —
MMG (q-opt) 6 30 59.06 5 21 82.69

k = 2 TrMMG (q-opt) 7 28 55.13 5 17 66.94
MMG 7 28 55.13 5 14 55.13
TrMMG 7 23 45.28 5 13 51.19

PSOR 103 447 447 — — —
MMG (q-opt) 5 31 61.03 4 20 78.75

k = 3 TrMMG (q-opt) 6 27 53.16 4 17 66.94
MMG 5 27 53.16 4 14 55.13
TrMMG 5 16 31.5 4 11 43.31

Table 6.1

Number of iterations needed to identify the contact set and to compute the solution up to
machine accuracy and the cost in work units.

by

WU� = 2L−� WUL.

The number of work units which is needed to reach the stop criteria is displayed in
the last column �WU in Table 6.1.

The numerical results show that already one or two smoothing steps are suffi-
cient with regard to cost and accuracy. In comparison to the Gauss–Seidel relaxation,
the cost is substantially reduced in the multigrid schemes. The truncated versions
TrMMG and TrMMG (q-opt) converge in all cases faster than the standard versions
MMG or MMG (q-opt). Moreover, multigrid methods with an optimized approxima-
tion of the obstacle according to Lemma 3.8 or Theorem 3.10 converge faster than
the simple approximations according to Proposition 3.4. For hat functions, this cor-
responds to the results in [Ko1]. For the higher order case, this indicates the quality
of the OCGC approximations from section 3.4. The contact set is identified correctly
by all methods within only a few iterations.

Considering the above results within the time discretization when solving the
instationary problem, we wish to point out that the average number of iterations per
time step is much smaller. This is due to the fact that the solution of the previous
time step serves as a good initial guess. Therefore, we can expect that the asymptotic
phase dominates the convergence behavior of the multigrid scheme. The asymptotic
multigrid rates are discussed in the following section.

6.2. Multigrid convergence rates. The convergence rate ρ� of a multigrid
scheme with � + 1 levels is given by

‖uν+1
� − u�‖�2 ≤ ρ�‖uν

� − u�‖�2 .

Here u� ∈ S� denotes the exact solution and uν
� ∈ S� the approximate solution in the

νth iteration step. A scheme is said to have multigrid convergence if ρ� is bounded
independently of the grid size by a constant ρ∞ < 1.

The asymptotic convergence rates are estimated for the V-cycle of the truncated
version TrMMG with � + 1 levels according to

ρ� ≈
‖uν∗+1

� − uν∗

� ‖�2
‖uν∗

� − uν∗−1
� ‖�2

.
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Fig. 6.5. Asymptotic convergence rates for the case k = 2 (left) and k = 3 (right) depending
on the number M of unknowns.

Here ν∗ is chosen such that ‖uν∗+1
� − uν∗

� ‖�2 ≤ 10−12. In Figure 6.5 the results are
displayed on the left-hand side for continuous, piecewise linear basis functions and on
the right-hand side for C1-smooth, piecewise quadratic basis functions. We recover
the favorable convergence rates of standard multigrid schemes which are bounded in
our case by ρ∞ ≈ 0.31 (k = 2) and ρ∞ ≈ 0.27 (k = 3) in the case of only one
smoothing step on each refinement level.
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[Hö] K. Höllig, Finite Element Methods with B-Splines, Frontiers Appl. Math. 26, SIAM,
Philadelphia, 2003.
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SMOOTHNESS EQUIVALENCE PROPERTIES OF
MANIFOLD-VALUED DATA SUBDIVISION SCHEMES BASED ON

THE PROJECTION APPROACH∗

GANG XIE† AND THOMAS P.-Y. YU†

Abstract. Interpolation of manifold-valued data is a fundamental problem which has appli-
cations in many fields. The linear subdivision method is an efficient and well-studied method for
interpolating or approximating real-valued data in a multiresolution fashion. A natural way to apply
a linear subdivision scheme S to interpolate manifold-valued data is to first embed the manifold
at hand into an Euclidean space and construct a projection operator P that maps points from the
ambient space to a closest point on the embedded surface, and then consider the nonlinear subdivi-
sion operator S := P ◦ S. When applied to symmetric spaces such as Sn−1, SO(n), SL(n), SE(n),
G(n, k) the projection method can also be carried out in such a way that the resulting schemes enjoy
natural coordinate invariance properties and robust numerical implementations. Despite such nice
features, the mathematical analysis of such nonlinear subdivision schemes is in its infancy. In this
article, we attack the so-called smoothness equivalence conjecture, which asserts that the smoothness
property of S is exactly the same as that of S. We show that in the cases of Sn−1, SO(n), and related

manifolds, we have a proximity condition of the form |(S − S)y|∞ .
∑p−1

i=1 |Δiy|∞|Δp−iy|∞, where

p is the accuracy order of S. Armed with this proximity condition and other known approximation
theoretic results, we can establish the result that the Hölder smoothness exponent of S is always as
high as that of S—no matter how high the latter is.

Key words. linear subdivision schemes, nonlinear subdivision schemes, Riemannian manifold,
Lie groups, sphere, SO(n), smoothness, approximation order, closest point projection, interpolation,
singular value decomposition
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1. Introduction. Given a smooth manifold M and a sequence of points pi ∈
M on the manifold (called a control polygon), a fundamental problem is to find a
smooth curve that either interpolates or approximates the control polygon. A typical
application in robotics and computer vision is rigid body motion interpolation, in
which the manifold is the Lie group M = SE(3) [2]. In the curve design problem
on the sphere described in [27], we have M = S

2. In the “grand tour” method for
visualizing p-dimensional data points based on ortho-projection of the points to two-
dimensional subspaces [1], we have the Grassmannian manifold M = G(p, 2). Time
series that take values on a Grassmannian manifold G(n, k) also arise in array signal
processing. There is also a lot of interest in numerical analysis for interpolation in
Lie groups, especially in the geometric methods for numerical solution of ODEs; see,
e.g., [20, 18, 17].

Some, if not many, of the existing methods for the manifold interpolation problem
appear to be quite specific to the manifold at hand. On the other hand, in certain
applications it is quite desirable that the curve be given in various levels of detail; in
this case subdivision-based methods would be very attractive.
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In recent papers [30, 24, 31], various general subdivision methods have been pro-
posed which can be used to subdivide data that takes values on a manifold (or data
that obeys some other forms of nonlinear constraints). A common feature of these
methods is that they are all based on adapting a linear subdivision scheme to a man-
ifold, resulting in nonlinear algorithms that are easy to implement but difficult to
analyze. Since in each case the method is based on taking a linear subdivision scheme
and applying it to subdivision of data obeying nonlinear constraints, we refer to such
a method as a linearization method. Here, we discuss the following three classes of
linearization methods:

• Tangent plane approach: In this approach, the basic operation is that for any
given p ∈ M there is a map fp with inverse f−1

p such that the map points
in a neighborhood of p back and forth between the manifold and the tangent
plane TpM. Then a subdivided point is obtained from a group of points in
the coarser scale by first mapping these points to the tangent plane based at
one of these points using the corresponding map fp, then applying the linear
subdivision rule in TpM (a linear space) and mapping the subdivided point
in the tangent plane back to the manifold using f−1

p . The specific fp and
f−1
p proposed in [24] are the logarithmic and exponential maps (in either the

setting of a Riemannian manifold or Lie group; see, e.g., [3, 11]); we refer to
this linearization method as the Log-Exp scheme.

• Factorization-geodesic scheme: The mask of any linear subdivision scheme
can be factorized (in a nonunique way) into a number of two point weighted
averages [30, Theorem 1]. On any Riemannian manifold, the notion of geodesic
is well defined, and so one can perform subdivision based on replacing the
weighted averages by “weighted geodesic averages.” See [30] for details.

• Projection approach: In this approach M is supposed to be immersed or
embedded in an Euclidean space R

n; as such, we view M as a subset of R
n.

Also a projection operator that maps points in a neighborhood of M onto M
is chosen. A natural example of such an operator would be the one that maps
a p ∈ R

n to a point in M closest to p. We refer to this as the closest point
projection scheme. A subdivision step is based on first applying the linear
subdivision rule in R

n, resulting in points that are typically not in M, then
followed by applying the projection operator to force these subdivided points
back to M.

Any of the above linearization methods can be used in conjunction with an arbitrary
linear subdivision scheme.

The Log-Exp scheme and the factorization-geodesic schemes are both based on
geodesics and are intrinsic in nature, whereas the projection approach is extrinsic
in nature: in the projection approach, one may have two isometric embeddings of a
given Riemannian manifold (M, g) into two Euclidean spaces, and the (closest point,
say) projection scheme may result in two different curves on M for the same set
of initial points on M. From a practical point of view, the projection method is
probably the most natural to use for manifolds with a “natural” embedding1 into
an Euclidean space, e.g., S

n ↪→ R
n+1, SO(n) ↪→ SL(n) ↪→ GL(n) ↪→ R

n×n, or
SE(n) ↪→ GL(n + 1) ↪→ R

(n+1)×(n+1).

1If G is a group that acts transitively on M, some authors call an embedding Φ : M → R
n

natural if there is a smooth group homomorphism ρ : G → SE(n) such that φ(g · x) = ρ(g) ·Φ(x) for
all x ∈ M and g ∈ G.
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1.1. Linear subdivision schemes. We recall in this section some of the basic
definitions, notions, and notation related to linear subdivision schemes. We keep the
exposition to the minimum, as there are plenty of references on this topic; see, for
example, [4, 14, 25, 6, 7] and the references therein.

In the simplest setting, a linear stationary subdivision scheme is defined by a
linear operator S on �(Z) := {x | x : Z → R} of the form

(1.1) (Sx)(2k) =
∑
i∈Z

x(i) ae(k − i), (Sx)(2k + 1) =
∑
i∈Z

x(i) ao(k − i),

where ae and ao are two finitely supported real-valued sequences such that
∑

i ae(i) =∑
i ao(i) = 1. This operator is usually written by analysts in the following more

compact form: (Sx)(k) =
∑

i∈Z
x(i) a(k − 2i). Here, a is called the mask of the

subdivision scheme and can be easily assembled from the ao and ae above.
If ae = δ0 (the Kronecker sequence), then we say S is interpolatory. Interpolatory

subdivision schemes were first studied in [12, 9].
A subdivision operator S is meant to be iterated. Moreover, for any initial se-

quence v : Z → R, one is supposed to visualize Sjv as a function on the grid 2−j
Z, as

opposed to a function on Z as our mathematical notation may unduly suggest. We
say S is convergent if for any v ∈ �(Z) the sequence fj :=

∑
k∈Z

vj,k1[2−jk, 2−j(k+1)),
j = 0, 1, 2, . . . , vj := Sjv, converges uniformly on compact sets to a limit function; we
denote this (necessarily unique) limit function by S∞v. For a convergent subdivision
operator S, we define its critical Hölder smoothness (a.k.a. L∞-Lipschitz smoothness)
by

(1.2) s∞(S) := inf
v∈�∞

sup{α : S∞v ∈ Lip α}.

While a subdivision scheme S as defined above operates on scalars, one can apply
it in a componentwise fashion to m-vectors; this, in particular, gives a practical curve
drawing algorithm with input being a coarse control polygon in R

m (m = 2 or 3).
When we later write Sy, where y is a sequence of m-vectors, this is to be interpreted
as the componentwise application of S to y.

For any (finite or infinite) sequence of m-vectors y = (yi)i∈I , yi ∈ R
m, I = Z or

{1, . . . , n}, we write

|y|∞ := sup
i∈I

‖yi‖2

and define its difference sequences by (Δy)i := yi − yi−1, (Δky)i := (Δk−1y)i −
(Δk−1y)i−1, k > 1, where i ranges through the appropriate set of indices when I is
finite. We denote by �∞(Z → R

m), or simply �∞ when there is no source of confusion,
the space of all sequences y : Z → R

m such that |y|∞ is finite.
An interpolatory subdivision scheme S is said to have approximation order p

(∈ Z+) if for any bounded Cp function f : R → R the interpolant of f on the grid hZ

defined by

(1.3) fh := (S∞v)(·/h), vk = f(kh),

satisfies

‖f − fh‖∞ = O(hp), h → 0.



MANIFOLD-VALUED DATA SUBDIVISION SCHEMES 1203

For an interpolatory scheme S, it is not hard to show that, based on simple twists
of the arguments already presented by Dubuc [12], S has approximation order p if and
only if S reproduces the polynomial space Πp−1, i.e., S(p |Z) = p | 1

2 Z
for all p ∈ Πp−1.

This condition imposes a set of linear conditions on the mask of S.
If s∞(S) > p, then S must have approximation order p + 1; the converse is far

from the truth: an interpolatory scheme can have an arbitrarily high approximation
order but an arbitrarily low smoothness.

1.2. Smoothness equivalence. Intuitively, both the Log-Exp scheme and the
factorization-geodesic scheme try to use geodesics to mimic weighted averages (1.1)
on a manifold locally. Hence, one may expect that the nonlinearities presented in
the resulting schemes are rather weak at fine subdivision levels. This seems to be
true in the sense that the nonlinearity at fine scales is too weak to affect either the
smoothness or the approximation order. We discuss smoothness in this paper and
approximation order in a companion paper [35].

From many computational experiments both the Log-Exp scheme and the factor-
ization-geodesic scheme are observed empirically to produce limit paths on the man-
ifold with Hölder regularity exactly the same as that produced by the underlying
linear scheme [24, 36]. This is the so-called smoothness equivalence property and
is conjectured to hold for both the Log-Exp scheme and the factorization-geodesic
scheme when applied in conjunction with any linear subdivision scheme on any C∞

Riemannian manifold.
The smoothness equivalence conjecture is true for both Log-Exp and factorization-

geodesic schemes if M is an Abelian Lie group (e.g., the n-torus T
n) viewed as a

Riemannian manifold with a bi-invariant metric. (Caution: For T
n, we are referring

to the so-called flat torus; when n = 2, it is diffeomorphic, but not isometric, to the
bagel-like torus as drawn in R

3 with the induced Riemannian metric from R
3. We

still believe that the conjecture is true for the “bagel-like torus,” just that the proof
is not going to be as trivial.)

The goal of this paper is to study the smoothness equivalence properties of the
closest point projection scheme, which is not based on geodesics. Our empirical exper-
iments suggest that the corresponding smoothness equivalence conjecture for closest
point projection schemes also holds true. We note that, even in the case of the circle
S

1 (∼= T
1), the proof is, unlike that for Log-Exp or factorization-geodesic, already not

trivial.

1.3. Warming up on the circle. As a warmup, we consider here the case when
M = S

1 = {x ∈ R
2 : ‖x‖2 = 1} and the linear subdivision schemes are Deslauriers–

Dubuc 2L-point interpolatory subdivision schemes. Here the metric on S
1 is induced

by the standard Euclidean metric of R
2. In this case the geodesic distance is just

the arc length on the circle, and the Log-Exp and factorization-geodesic schemes are
essentially the same. If p0,k = [cos(θ0,k), sin(θ0,k)]

T ∈ S
1, and we assume for simplicity

that all θ0,k ∈ (−δ, δ) for a not so big δ, then either scheme generates the subdivided
points pj,k = [cos(θj,k), sin(θj,k)]

T based on linearly subdividing the angles θj,k using
the linear rule:

(1.4) θj+1,2k = θj,k, θj+1,2k+1 =

L∑
i=−L+1

wiθj,k+i.

Here the wi’s are the mask entries of the 2L-point Deslauriers–Dubuc scheme; e.g.,
w0 = w1 = 9/16, w−1 = w2 = −1/16 if L = 2. In this case, the Log-Exp scheme
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produces a limit function f : R → S
1 of the form f(t) = [cos(θ(t)), sin(θ(t))]T , where

θ(t) is the scalar-valued limit function obtained by applying the Deslauriers–Dubuc
scheme to the initial scalar data (θ0,k)k∈Z. Thus smoothness equivalence between the
linear subdivision scheme and the associated “nonlinear” scheme is readily clear.

On the other hand, the nonlinear subdivision scheme based on closest point pro-
jection gives: pj+1,2k = pj,k, pj+1,2k+1 =

∑L
i=−L+1 wipj,k+i/‖

∑L
i=−L+1 wipj,k+i‖2,

or

θj+1,2k = θj,k, θj+1,2k+1 = arctan

∑L
i=−L+1 wi sin(θj,k+i)∑L
i=−L+1 wi cos(θj,k+i)

.

The smoothness equivalence property is far less obvious in this case. Using Taylor’s
theorem, one can show that

(1.5) arctan

∑L
i=−L+1 wi sin(θj,k+i)∑L
i=−L+1 wi cos(θj,k+i)

=

L∑
i=−L+1

wiθj,k+i + O
(
|Δθj |3∞

)
.

Using the proximity and perturbation arguments detailed in this article, the above
estimate allows us to conclude that the closest point projection scheme on S

1 shares the
same Hölder regularity of the underlying linear subdivision scheme if the linear scheme
has a critical Hölder regularity � 3. However, when L � 4, the Deslauriers–Dubuc
schemes have critical Hölder regularity > 3, and the above estimate is insufficient for
proving smoothness equivalence. We can still use (1.5) to conclude that the nonlinear
scheme has critical Hölder smoothness no less than 3, but we can no longer conclude
that the nonlinear scheme is as smooth as the linear scheme.

We note that (1.5) is a kind of proximity condition between a linear and a non-
linear scheme, similar to, but not the same as, the proximity results in [30]. Using
either a general result in [30] or the first part of Theorem 3.7, we have

(1.6)

∑L
i=−L+1 wipj,k+i

‖
∑L

i=−L+1 wipj,k+i‖
=

L∑
i=−L+1

wipj,k+i + O
(
|Δpj |2∞

)
.

This is yet another proximity condition. While (1.6) may seem more natural than
(1.5), the former is not as powerful as the latter: (1.6) allows us to conclude smooth-
ness equivalence only when the linear scheme has smoothness � 2.

Regardless, neither (1.6) nor (1.5) is nearly good enough to prove the smoothness
equivalence conjecture of the S

1-closest point projection scheme based on Deslauriers–
Dubuc schemes for an arbitrary L, as it is well known that the smoothness of
Deslauriers-Dubuc schemes grows unboundedly as L → ∞.

1.4. Contributions and organization of this paper. This paper aims to at-
tack the arbitrary degree smoothness equivalence conjectures as described in previous
sections. We prove that smoothness equivalence holds when the closest point projec-
tion scheme is applied in conjunction with an arbitrary linear interpolatory subdivision
scheme to data that takes values on S

n, SO(n), and their direct products.
These results stand in contrast to the recent low degree smoothness equivalence

results in [30, 29, 36]. Related low degree smoothness equivalence results of nonlinear
subdivision schemes arising from other applications can be found in [33, 32, 8].

The idea—and limitation—of [30, 36] are that by bounding the nonlinearity using
a quadratic term, one can show smoothness equivalence when—and only when—the
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linear scheme has smoothness � 2. Wallner’s preprint [29] shows how one may go from
“� 2” to “� 3” for certain linear schemes used in conjunction with the factorization-
geodesic and the projection schemes.

The key discovery reported in this paper is that the polynomial reproducibility
property of a linear interpolatory subdivision scheme S can lend itself to a useful
“factorization” of the nonlinearity (section 3.1): by bounding the nonlinearity of the
S
n-closest point projection scheme expressed in specific quadratic terms that involve

the interpolatory subdivision mask (see (3.7)-(3.9)), we can somehow lift the quadratic
proximity bound |(S − S)y|∞ = O(|Δy|2∞) into a higher order proximity bound

(∗) |(S − S)y|∞ � Bp

p−1∑
i=1

|Δiy|∞|Δp−iy|∞

when S reproduces Πp−1.
Once (∗) is proved, we have a strong enough proximity condition that allows us,

when it is combined with the perturbation theorem [8, Theorem 3.3] and a “bootstrap-
ping” argument that relies on the interpolatory property of the subdivision scheme,
to prove the desired arbitrary degree smoothness equivalence result. See section 3.2.

In section 3.3, we show how to relax the closest point projection operator to a near-
closest projection operation without jeopardizing the arbitrary degree smoothness
equivalence property.

In section 4, we show how to extend the main smoothness equivalence result to
SO(n), SE(n), and related manifolds.

We discuss in section 5 possible extensions of our results.
In section 2, we streamline some of the general proximity results in [30, 29]. The

proofs of a number of lemmas and theorems are recorded in the appendix.

2. General proximity results. The following theorem is a restatement of [29,
Theorem 2]. It is an extension of [30, Theorem 2].

Theorem 2.1. Let T1, T2 : �∞ → �∞. Suppose that there exist δ, A > 0, μ ∈
(0, 1), and α > 1 such that for any p ∈ �∞ with |Δp|∞ < δ we have

|ΔT j
1 p|∞ � μj |Δp|∞ ∀j ∈ N,(2.1)

|T1p− T2p|∞ � A|Δp|α∞.

Then for any ε > 0 there exists δ′ > 0 such that when |Δp|∞ < δ′,

|ΔT j
2 p|∞ � (μ + ε)j |Δp|∞ ∀j ∈ N.

Our goal is to extend the above theorem to Theorem 2.4. For this purpose, we
need the next two lemmas.

Lemma 2.2. Let T1, T2 : �∞ → �∞. Suppose that there exist C, δ,A > 0 and
α > 1 such that for all p ∈ �∞ with |Δp|∞ < δ we have

|ΔT1p|∞ � C|Δp|∞,(2.2)

|T1p− T2p|∞ � A|Δp|α∞.(2.3)

Then there exist C ′ > 0 and δ′ > 0 such that when |Δp|∞ < δ′,

(2.4) |ΔT2p|∞ � C ′|Δp|∞.
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Proof. See Appendix A.1 for the proof.
The following lemma is an extension of [29, Lemma 2].
Lemma 2.3. Let T1, T2 : �∞ → �∞. Suppose that there exist C,A, δ > 0 and

α > 1 such that for all p ∈ �∞ with |Δp|∞ < δ we have

|ΔT1p|∞ � C|Δp|∞,(2.5)

|T1p− T2p|∞ � A|Δp|α∞.(2.6)

If T1 is bounded and linear, then for any j ∈ N there exist δj , Cj > 0 such that when
|Δp|∞ < δj,

(2.7) |T j
1 p− T j

2 p|∞ � Cj |Δp|α∞.

Proof. See Appendix A.2 for the proof.
Theorem 2.4. Let T1, T2 : �∞ → �∞. Suppose that there exist C,A, δ > 0,

μ ∈ (0, 1), and α > 1 such that for all p ∈ �∞ with |Δp|∞ < δ we have

|ΔT j
1 p|∞ � Cμj |Δp|∞ ∀j ∈ N,(2.8)

|T1p− T2p|∞ � A|Δp|α∞.(2.9)

If at least one of T1 and T2 is bounded and linear, then for any ε > 0 there exist
δ′, C ′ > 0 such that when |Δp|∞ < δ′,

|ΔT j
2 p|∞ � C ′(μ + ε)j |Δp|∞ ∀j ∈ N.

Proof. See Appendix A.3 for the proof.
Remark 2.5. In Theorem 2.4, we make the assumption that one of T1 and T2

is bounded and linear to accommodate the assumption (2.8) on T1, which is weaker
than (2.1) in Theorem 2.1.

3. Closest point projection scheme for S
m−1-valued data. Let S be a

linear interpolatory subdivision operator defined by

(3.1) (Sy)2k = yk, (Sy)2k+1 =

n∑
i=1

wi yk+i+�,

where � ∈ Z is fixed. We also assume that S reproduces Πp−1. By linearity and
the well-posedness of Lagrange interpolation, it is necessary that p � n, and there
is a unique mask with p = n. Since we are in the business of proving smoothness
equivalence, we assume that S has at least some smoothness: s∞(S) > 0. This, in
turn, implies that (i) p � 1, (ii)

(3.2)

n∑
i=1

wi = 1,

and (iii) there exists a subdivision operator S
[1]

such that S
[1] ◦ Δ = Δ ◦ S. The

special cases of Deslauriers–Dubuc schemes [12, 9] correspond to n = 2L (i.e., n is
even), � = −L, and p = n.
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In the z-transform domain, the polynomial reproduction property is equivalent
to the existence of a polynomial b(z) such that

(3.3)

n∑
i=1

w′
iz

2i + z2n′+1 = (1 + z)p b(z),

where w′
i = wn+1−i and n′ = n + �. By taking derivatives of both sides of (3.3) and

evaluating at z = −1, we get the sum rules

(3.4)
n∑

i=1

(
2i

γ

)
w′

i =

(
2n′ + 1

γ

)
, γ = 0, . . . , p− 1,

where
(
u
v

)
is the standard binomial coefficient, i.e.,(

u

v

)
=

{ u!
v!(u−v)! if u � v � 0,

0 otherwise.

Let S
m−1 be the unit sphere in R

m, i.e., S
m−1 = {x ∈ R

m : ‖x‖ = 1}. Let
P : R

m\{0} → S
m−1 be the closest point projection operator onto the sphere, i.e.,

P (x) = x/‖x‖.
Consider the nonlinear subdivision operator S for S

m−1-valued data defined by

(3.5) (Sy)2k = yk, (Sy)2k+1 = P

(
n∑

i=1

wiyk+i+�

)
.

Remark 3.1. The subdivision operation (3.5) is well defined as long as y : Z →
S
m−1 is such that

∑n
i=1 wi yk+i+� 
= 0 for all k ∈ Z. We show in Lemma 3.3 that as

long as |Δy|∞ is small enough, Sjy is well defined for all j.
Let x1, . . . , xn ∈ S

m−1 with
∑n

i=1 wi xi 
= 0. For any y ∈ R
m\{0},

(3.6)
∥∥∥y − P (y)

∥∥∥ =

∥∥∥∥y − y

‖y‖

∥∥∥∥ =
∣∣∣1 − ‖y‖

∣∣∣ �
∣∣∣1 − ‖y‖2

∣∣∣.
Combined with the facts that xi ∈ S

m−1 and
∑

i wi = 1, we have∥∥∥∥∥
n∑

i=1

wixi − P

(
n∑

i=1

wixi

)∥∥∥∥∥ =

∣∣∣∣∣1 −
∥∥∥∥∥

n∑
i=1

wixi

∥∥∥∥∥
∣∣∣∣∣ �

∣∣∣∣∣∣1 −
∥∥∥∥∥

n∑
i=1

wixi

∥∥∥∥∥
2
∣∣∣∣∣∣(3.7)

=

∣∣∣∣∣∣
n∑

i=1

wi〈xi, xi〉 −
n∑

i=1

n∑
j=1

wiwj〈xi, xj〉

∣∣∣∣∣∣(3.8)

=

∣∣∣∣∣∣
n∑

i=1

n∑
j=1

c0i,j〈xi, xj〉

∣∣∣∣∣∣ ,
where the n× n matrix C0 = (c0i,j) is given by

(3.9) c0i,j :=

{
wi − w2

i , i = j,
−wiwj , i 
= j.
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We shall come back to this matrix after a few remarks.
Remark 3.2. Using the identity 〈xi, xj〉 = 1 − ‖xi − xj‖2/2, we can also rewrite

the upper bound (3.7) as
(3.10)∥∥∥∥∥

n∑
i=1

wixi − P

(
n∑

i=1

wixi

)∥∥∥∥∥ �

∣∣∣∣∣∣1 −
∥∥∥∥∥

n∑
i=1

wixi

∥∥∥∥∥
2
∣∣∣∣∣∣ =

∣∣∣∣∣∣12
n∑

i=1

n∑
j=1

wiwj‖xi − xj‖2

∣∣∣∣∣∣ .
Lemma 3.3 (well-definedness of Sjy). There exist δ∗ > 0 and K > 0 such that

for any y : Z → S
m−1 with ‖Δy‖∞ � δ∗, |ΔSjy|∞ � Kδ∗ and Sjy is well defined for

all j = 1, 2, . . . .
Proof. The proof is easy, and we just give the main idea: (3.10) says that as

long as |Δy|∞ is small enough, (Sy)k stays away from the origin for every k. Since

we assume s∞(S) > 0, |ΔS
j
y|∞ = O(2−jν) for any 0 < ν < min(1, s∞(S)), with

(hidden constant) ∝ |Δy|∞. Again by (3.10), S and S satisfy the proximity condition

(2.9) in Theorem 2.4 (with α = 2); hence by the theorem, |ΔSjy|∞ = O(2−jν−
) for

any ν− < ν, again with (hidden constant) ∝ |Δy|∞. This means that if |Δy|∞ is small
enough to begin with, then all |ΔSjy|∞ are small (in fact, decay that exponentially
fast as j increases) and all Sjy are well defined.

Remark 3.4. We define convergence of Sjy and the limit function S∞y analogous
to the linear case. Similar to (1.2), we define

s∞(S) := inf
y

sup{α : S∞y ∈ Lip α},

where the infimum is taken over all sequences y for which S∞y is well defined. Since,
for any such y, |ΔSjy|∞ decays and the smoothness of S∞y does not depend on the
behavior of Sjy at coarse scales, there is no difference if we take the infimum over all
y such that |Δy|∞ � δ, for any 0 < δ � δ∗, where δ∗ is given by Lemma 3.3.

3.1. Main proximity theorem. In this section, we show that the difference
between Sy and Sy can be bounded by the magnitudes of high order differences of y.

Lemma 3.5. Let y1, . . . , yn, z1, . . . , zn ∈ R
m. Suppose

yi =

n∑
j=1

fi,jzj , i = 1, . . . , n.

Let F = (fi,j) and A0 = (a0
i,j) be n× n real matrices. Then

n∑
i=1

n∑
k=1

a0
i,k〈yi, yk〉 =

n∑
i=1

n∑
k=1

a1
i,k〈zi, zk〉,

where matrix A1 = (a1
i,k) is given by

A1 = FTA0F.

The proof is straightforward and we omit it.
Define d0

i = xi, i = 1, . . . , n, and for k = 1, . . . , n,

(3.11) dki =

{
dk−1
i , i = 1, . . . , k

dk−1
i − dk−1

i−1 , i = k + 1, . . . , n.
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It follows from Lemma 3.5 and (3.11) that we can further rewrite (3.8) as follows:

(3.12)
n∑

i=1

n∑
j=1

c0i,j〈xi, xj〉 =

n∑
i=1

n∑
j=1

cki,j〈dki , dkj 〉, k = 1, . . . , n− 1,

where Ck = (cki,j) is given by

Ck = FT
k−1Ck−1Fk−1, k = 1, . . . , n− 1,

and
(3.13)

Fk−1 =

⎛⎜⎜⎜⎝
Ik−1

1
...

. . .

1 · · · 1

⎞⎟⎟⎟⎠ . (Ik−1 is the (k − 1) × (k − 1) identity matrix.)

The next result says that the matrix Ck has many vanishing entries when the
interpolatory subdivision mask reproduces polynomials; in particular, if n = p, i.e.,
the interpolatory mask has the highest possible order of polynomial reproducibility,
then Cn−1 has the following form:

Cn−1 =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 · · · · · · 0
0 · · · · · · 0 ∗
...

... ..
.

∗
...

... 0 ∗ · · ·
...

0 ∗ · · · · · · ∗

⎤⎥⎥⎥⎥⎥⎥⎦ .

Lemma 3.6 (vanishing property of Ck). If the interpolatory subdivision mask that
defines the matrices Ck reproduces Πp−1, then cki,j = 0 if i = 1 or j = 1 or i, j � k,
i + j � p + 1.

Proof. See Appendix A.4 for the proof.
Lemma 3.6 leads to our main proximity result, as follows.
Theorem 3.7. Let S be a linear interpolatory subdivision scheme which repro-

duces Πp−1. There are constants B2, . . . , Bp such that for any y : Z → S
m−1 such

that (3.5) is well defined, we have

if p � 1, |Sy − Sy|∞ � B2|Δy|2∞;(3.14)

if p � 3, |Sy − Sy|∞ � Bk

k−1∑
i=1

|Δiy|∞|Δk−iy|∞, k = 3, . . . , p.(3.15)

Proof. Let 1 � k � p. By Lemma 3.6, cki,j = 0 when i = 1 or j = 1 or i+j � k+1.
When k = 1, we have∣∣∣∣∣∣

n∑
i=1

n∑
j=1

c1i,j〈d1
i , d

1
j 〉

∣∣∣∣∣∣ =

∣∣∣∣∣∣
n∑

i=2

n∑
j=2

c1i,j〈d1
i , d

1
j 〉

∣∣∣∣∣∣ �
n∑

i=2

n∑
j=2

|c1i,j |
∥∥d1

i

∥∥∥∥d1
j

∥∥ � B2|Δx|2∞,

where B2 is a constant that depends on w1, . . . , wn.
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If p � 3, then for 3 � k � p,

∣∣∣∣∣∣
n∑

i=1

n∑
j=1

cki,j 〈dki , dkj 〉

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑

i+j>k+1
i>1,j>1

cki,j 〈dki , dkj 〉

∣∣∣∣∣∣∣∣ �
∑

i+j>k+1
i>1,j>1

|cki,j |
∥∥dki ∥∥∥∥dkj∥∥

� Bk

k−1∑
i=1

|Δix|∞|Δk−ix|∞,

where Bk is a constant that depends on w1, . . . , wn.
Combined with (3.8) and (3.12), the above two estimates yield

if p � 1,

∥∥∥∥∥
n∑

i=1

wixi − P

(
n∑

i=1

wixi

)∥∥∥∥∥
∞

� B2|Δx|2∞;

if p � 3,

∥∥∥∥∥
n∑

i=1

wixi − P

(
n∑

i=1

wixi

)∥∥∥∥∥
∞

� Bk

k−1∑
i=1

|Δix|∞|Δk−ix|∞, k = 3, . . . , p .

The above can be applied to any n consecutive entries of an infinite sequence y, so
we have proved the theorem.

3.2. Smoothness equivalence. We now prove the main smoothness equiva-
lence result, as follows.

Theorem 3.8. If S is a linear interpolatory subdivision scheme with s∞(S) > 0,
then

s∞(S) � s∞(S).

To prove this theorem, we need to first recall two results.
The first one is well known; see, e.g., [5, 10], which basically says that one can

characterize the Hölder smoothness of a continuous function based on its samples at
dyadic points. If f : R → R is bounded and continuous, then for any α > 0,

f ∈ Lip α ⇐⇒ ∃ r ∈ Z+, r > α, s.t. |(Δrfj)k|∞ = O(2−jα)

⇐⇒ ∀ r ∈ Z+, r > α, |(Δrfj)k|∞ = O(2−jα),
(3.16)

where fj := f |2−jZ, i.e., (fj)k := f(2−jk). These equivalences also imply that the
critical Hölder regularity exponent of f can be determined from the exact asymptotic
decay rate of |(Δrfj)k|∞ for a large enough differencing order r, i.e.,

(3.17) sup{α : f ∈ Lip α} = sup
{
α : |(Δrfj)k|∞ = O(2−jα)

}
.

The second result is the perturbation theorem [8, Theorem 3.3]. Originally derived
to meet the needs of the analysis of a specific nonlinear subdivision algorithm, the
theorem has been proved to be useful in the analysis of other nonlinear subdivision
algorithms as well; see [33, 32, 23, 22, 36]. We restate this result in a form convenient
to us, as follows.
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Theorem 3.9 (see [8, Theorem 3.3]). Let S be a linear subdivision operator
with s∞(S) > 0. Let S be a (linear or nonlinear) subdivision operator that maps
D(S) ⊆ �∞ into itself. Let y ∈ D(S). If there exists ν > 0 such that∣∣(S − S )Sjy

∣∣
∞ = O(2−jν),

then S is convergent and s∞(S, y) := sup{α : S∞y ∈ Lip α} � min(ν, s∞(S)).
Proof of Theorem 3.8. By Remark 3.4, it suffices to prove s∞(S, y) := sup{α :

S∞y ∈ Lip α} � s∞(S) for those y such that |Δy|∞ is small.
1◦ For any 0 < γ < min(1, s∞(S)), there exists a constant C > 0 such that

|ΔS
j
y|∞ � C 2−γj |Δy|∞ ∀ y ∈ �∞.

For any γ′ ∈ (0, γ), let ε := 2−γ′ − 2−γ > 0. Then it follows from (3.14) and
Theorem 2.4 that there exist δγ′ > 0 and C ′ > 0 such that
(3.18)

|ΔSjy|∞ � C ′ (2−γ + ε)j |Δy|∞ = C ′ 2−γ′j |Δy|∞ ∀ y : Z → S
m−1 s.t. |Δy|∞ < δγ′ .

2◦ It suffices to consider a fixed y with |Δy|∞ small enough so that (3.18) can be
applied and all Sjy are well defined. Recall Lemma 3.3 and Remark 3.4.

By (3.14) in Theorem 3.7, we have

|S(Sjy) − S(Sjy)|∞ � B2|ΔSjy|2∞
(3.18)
= O(2−2γ′j).

Then, by Theorem 3.9, we have s∞(S, y) � min(2γ′, s∞(S)). Since γ′ can be arbi-
trarily close to min(1, s∞(S)), we get

(3.19) s∞(S, y) � min(2, s∞(S)).

Thus the theorem is proved if s∞(S) � 2. From now on we assume s∞(S) > 2.
3◦ Let q be the unique integer such that

(3.20) p � q + 1 � s∞(S) > q � 2.

(Recall that S reproduces Πp−1 with p � s∞(S) according to the theory of linear
subdivision.)

We use induction to prove

(3.21) s∞(S, y) � q.

Let 2 � k < q. Assume that we have proved s∞(S, y) � k. By (3.16),

|Δ�Sjy|∞ = O(2−�j), � = 1, . . . , k − 1,

|ΔkSjy|∞ = O(2−(k−ε)j).
(3.22)

Since p > k + 1, Theorem 3.7 applies, and we have

(3.23) |SSjy − Sj+1y|∞ � Bk+1

k∑
�=1

|Δ�Sjy|∞|Δk+1−�Sjy|∞
(3.22)
= O(2−(k+1−ε)j).

So by Theorem 3.9,

s∞(S, y) � min(k + 1 − ε, s∞(S))
(3.20)
= k + 1 − ε
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for any ε > 0, which implies s∞(S, y) � k + 1. This completes the induction.
Since we have now proved (3.21), both (3.22) and (3.23) hold for k = q. Using

Theorem 3.9 one more time gives

s∞(S, y) � min(q + 1, s∞(S))
(3.20)
= s∞(S).

This completes the proof.

3.3. Near-closest projections onto the sphere. In this section, we show
that for projections that are close to the closest point projection onto the sphere, the
associated nonlinear schemes are also at least as smooth as the underlying interpola-
tory linear scheme. Such a result is to be expected: recall that the starting point of
our proximity result is the simple inequality in (3.6); it is clear that we can relax P a
little to achieve essentially the same upper bound on the right-hand side of (3.6). It
is also clear that for any such projection operator, all the arguments for our smooth-
ness equivalence result pertaining to the nonlinear subdivision operator S = P ◦S go
through verbatim.2

In order for S = P ◦ S to have a chance of being convergent, for any sequence y
such that all Sjy are well defined, |ΔSjy|∞ must converge to zero as j → ∞. Also,
by (3.10), as long as consecutive points in a sequence z : Z → S

m−1 are sufficiently
close to each other, the points in Sz can be made as close to the sphere as we want.
Therefore, we need to study only the property of P in a neighborhood of the sphere
as far as the smoothness analysis of S is concerned.

Lemma 3.10. Let P : R
m → S

m−1. If there exist δ, C > 0 such that when∣∣‖x‖ − 1
∣∣ < δ,

(3.24) cos(∠(x, P (x))) � 1 + ‖x‖2 − C(1 − ‖x‖2)2

2‖x‖ ,

then ‖P (x) − x‖ �
√
C
∣∣1 − ‖x‖2

∣∣ when
∣∣‖x‖ − 1

∣∣ < δ.
Proof. Since 〈x, P (x)〉 = ‖x‖ ‖P (x)‖ cos(∠(x, P (x))) = ‖x‖ cos(∠(x, P (x))), it

follows from (3.24) that

〈x, P (x)〉 � 1 + ‖x‖2 − C(1 − ‖x‖2)2

2
.

Hence

‖P (x) − x‖2 = 〈P (x) − x, P (x) − x〉

= 1 − 2〈x, P (x)〉 + ‖x‖2

� 1 − (1 + ‖x‖2 − C(1 − ‖x‖2)2) + ‖x‖2

= C(1 − ‖x‖2)2.

Thus ‖P (x) − x‖ �
√
C
∣∣1 − ‖x‖2

∣∣.
When P is the closest point projection, we always have ∠(x, P (x)) = 0. The

above lemma shows that as long as P satisfies (3.24), the same bound (3.8) applies

2We abuse notation and extend the definition of P to a map that maps sequences of m-vectors to
sequences of points on the sphere; i.e. if y is a sequence of non-zero m-vectors, P (y) is the sequence
P (y)i = yi/‖yi‖. We will abuse notation in a similar manner later without mention.
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with an adjustment of the hidden constant. Consequently, we have the following
result.

Theorem 3.11. For any projection operator P satisfying (3.24) and any in-
terpolatory linear subdivision scheme S, the corresponding nonlinear subdivision SP

satisfies s∞(SP ) � s∞(S).

4. Projection scheme for SO(m)-valued data and extensions. In this
section, we first extend our smoothness equivalence result to the Lie group of special
orthogonal matrices:

SO(m) = {Y ∈ R
m×m : Y Y T = I, det(Y ) = 1}.

In order to use the projection approach for data taking values in SO(m), we need
to (i) embed SO(m) into an Euclidean space and (ii) define a projection operator P
from the Euclidean space to the embedded surface. From a practical point of view,
we would also like such a P to be efficiently computable.

There is a natural way to embed SO(m) in R
m2

: simply treat every matrix in

SO(m) as a point in R
m2

. It is not hard to prove that such a procedure indeed defines
a smooth embedding; so SO(m) now “looks like” a m(m − 1)/2-dimensional curved

surface in R
m2

, and we shall decide how to project a given point outside of this surface
onto the surface.

For X1, X2 ∈ R
m×m, define 〈, 〉 by

(4.1) 〈X1, X2〉 := trace(X1X
T
2 ),

where trace(X) =
∑m

i=1 xi,i is the trace of a matrix X = (xi,j). This inner product
induces the so-called Frobenius norm:

(4.2) ‖X‖F :=

⎛⎝ m∑
i=1

m∑
j=1

x2
i,j

⎞⎠1/2

.

Recall that for any orthogonal matrices U, V ,

(4.3) ‖UXV ‖2
F = ‖X‖2

F .

If we identify R
m×m with R

m2

, then (4.1) and (4.2) are just the most standard

inner product and Euclidean norm (respectively) in R
m2

.

We can also extend the definitions of Δ and | · |∞ to sequences with entries in
R

m×m. For example, |Y |∞ := supi ‖Yi‖F .

The closest point projection onto SO(m) of a matrix with positive determinant
can be computed efficiently using its singular value decomposition (SVD); a now-
classical reference for (especially the computational aspect of) SVD is [15].

Proposition 4.1. Let A ∈ R
m×m with det(A) > 0. Then

(4.4) P (A) := argmin
X∈SO(m)

‖A−X‖F = UV T = (AAT )−1/2A,

where A = UΣV T is an SVD of A.
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Proof. Let A = UΣV T be an SVD of A, where U, V are orthogonal matrices and
D is a diagonal matrix with positive diagonal entries σ1 � · · · � σm > 0. Then

argmin
X∈SO(m)

‖A−X‖F = argmin
X∈SO(m)

‖UΣV T −X‖F

= U

(
argmin
X∈SO(m)

‖Σ − UTXV ‖F

)
V T

= U

(
argmin
R∈SO(m)

‖Σ −R‖F

)
V T .

It is easy to show that argminR∈SO(m) ‖Σ −R‖F = I:

‖Σ −R‖2
F =

m∑
i=1

⎡⎣(σi −Rii)
2 +

∑
j �=i

R2
ij

⎤⎦ =

m∑
i=1

[
(σi −Rii)

2 + (1 −R2
ii)
]

=

m∑
i=1

(σ2
i + 1 − 2σiRii).

Since Rii � 1, the right-hand side is minimized when Rii = 1 which, since R ∈
SO(m), also implies R = I. Notice also that (AAT )−1/2A = (UΣ2UT )−1/2UΣV T =
(UΣ−1UT )UΣV T = UV T .

Remark 4.2. Proposition 4.1 is essentially a result published in [2, 28] and seems
to be known to others as well. We present our proof anyway not only because it is
short and elementary but also because we want to address a subtle point. First of
all, we note that the projection operator defined by (4.4) has the invariance property:
P (R1AR2) = R1P (A)R2 for any R1, R2 ∈ SO(m). It implies that our resulting sub-
division algorithm has the desirable property that it does not depend on the artificial
choice of orthogonal coordinate system for representing m-dimensional rotations. Our
presentation above is more elementary than that in [2] because we are unconcerned

with invariance at the beginning, simply think of SO(m) as a regular surface in R
m2

,

and use the plain Euclidean metric in R
m2

. The approach in [2], instead, considers
SO(m) as a subgroup GL(m) and uses a (left-)invariant Riemannian metric of GL(m)
in defining “closest.” While the two different points of view yield the same projector
P (A) = (AAT )−1/2A, the coincidence is due to (4.3) and is specific to SO(m). We
will revisit this issue in section 4.2.

Let X = (X1, . . . , Xn) with Xi ∈ SO(m) and w1, . . . , wn be as in (3.1). Then it
follows from

∑n
i=1 wi = 1 that∥∥∥∥∥

n∑
i=1

wiXi −X1

∥∥∥∥∥
F

=

∥∥∥∥∥
n∑

i=1

wi(Xi −X1)

∥∥∥∥∥
F

�

⎛⎝ n∑
j=1

|wj |

⎞⎠max
i

‖Xi −X1‖F .(4.5)

Since det(X) is a continuous function of X ∈ R
m×m and det(X1) = 1 > 0, it follows

from (4.5) that there exists δ > 0 such that when maxi ‖Xi −X1‖F < δ,

det

(
n∑

i=1

wiXi

)
> 0,
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and consequently Proposition 4.1 can be applied to define P (
∑n

i=1 wiXi).
Let

∑n
i=1 wiXi = UΣV T be the SVD of

∑n
i=1 wiXi, where U, V are orthogonal

matrices and Σ is a diagonal matrix with positive diagonal entries σ1 � σ2 � · · · �
σm > 0. Then it follows from Proposition 4.1 that

∥∥∥∥∥
n∑

i=1

wiXi − P

(
n∑

i=1

wiXi

)∥∥∥∥∥
F

= ‖UΣV T − UV T ‖F = ‖Σ − I‖F =

(
m∑
�=1

(σ� − 1)2

)1/2

�
√
mmax

�
|σ� − 1| �

√
mmax

�
|σ2

� − 1|.

(4.6)

Since (
∑n

i=1 wiXi)V = UΣ, it follows that (
∑n

i=1 wiXi)v� = σ� u�, where u�, v� ∈
S
m−1 are the columns of U, V respectively. So

σ2
� = ‖σ�u�‖2 =

∥∥∥∥∥
(

n∑
i=1

wiXi

)
v�

∥∥∥∥∥
2

=

〈(
n∑

i=1

wiXi

)
v�,

(
n∑

i=1

wiXi

)
v�

〉

=

n∑
i=1

n∑
j=1

wiwjv
T
� X

T
j Xiv�.

Note that ‖(Xi −Xj)v�‖2 = 〈Xiv� −Xjv�, Xiv� −Xjv�〉 = 2 − 2vT� X
T
j Xiv�; hence

σ2
� =

n∑
i=1

n∑
j=1

wiwj

(
1 − 1

2
‖(Xi −Xj)v�‖2

)

= 1 − 1

2

n∑
i=1

n∑
j=1

wiwj‖(Xi −Xj)v�‖2.

Thus

|σ2
� − 1| =

∣∣∣∣∣∣12
n∑

i=1

n∑
j=1

wiwj‖(Xi −Xj)v�‖2

∣∣∣∣∣∣ .
Now fix � and let xi := Xiv�, i = 1, . . . , n. Then

(4.7) |σ2
� − 1| =

∣∣∣∣∣∣12
n∑

i=1

n∑
j=1

wiwj‖xi − xj‖2

∣∣∣∣∣∣ .
Note that the right-hand side of (4.7) looks exactly the same as the right-hand side
of (3.10). Following exactly the same arguments there, we can show the following: If
p � 1,

(4.8)

∣∣∣∣∣∣12
n∑

i=1

n∑
j=1

wiwj‖xi − xj‖2

∣∣∣∣∣∣ �
n∑

i=2

n∑
j=2

|c1i,j |
∥∥d1

i

∥∥∥∥d1
j

∥∥ .
If p � 3, then for 3 � k � p,

(4.9)

∣∣∣∣∣∣12
n∑

i=1

n∑
j=1

wiwj‖xi − xj‖2

∣∣∣∣∣∣ �
∑

i+j>k+1
i>1,j>1

|cki,j |
∥∥dki ∥∥∥∥dkj∥∥ ,
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where cki,j and dki are as defined in section 3.

Parallel to the definition of dki , we define D0
i = Di, i = 1, . . . , n, and for k =

1, . . . , n,

Dk
i =

{
Dk−1

i , i = 1, . . . , k,

Dk−1
i −Dk−1

i−1 , i = k + 1, . . . , n.

Then for any k and i,

dki = Dk
i v�.

So

(4.10) ‖dki ‖ = ‖Dk
i v�‖ � ‖Dk

i ‖2‖v�‖ = ‖Dk
i ‖2 � ‖Dk

i ‖F ,

where ‖.‖2 denotes the 2-norm of a matrix and we used the fact that ‖Y ‖2 � ‖Y ‖F
for any matrix Y .

Combining (4.10) with (4.7), (4.8), and (4.9), we get

(p � 1) |σ2
� − 1| �

n∑
i=2

n∑
j=2

|c1i,j |
∥∥D1

i

∥∥
F

∥∥D1
j

∥∥
F

� B2|ΔX|2∞

and for 3 � k � p,

(p � 3) |σ2
� − 1| �

∑
i+j>k+1
i>1,j>1

|cki,j |‖Dk
i ‖F ‖Dk

j ‖F � Bk

k−1∑
i=1

|ΔiX|∞|Δk−iX|∞,

where B2, B3, . . . , Bp are constants that depend only on w1, . . . , wn. Combining this
with (4.6), we get∥∥∥∥∥

n∑
i=1

wiXi − P

(
n∑

i=1

wiXi

)∥∥∥∥∥
F

(4.11)

�
{ √

mB2|ΔX|2∞ if p � 1√
mBk

∑k−1
i=1 |ΔiX|∞|Δk−iX|∞, k = 3, . . . , p, if p � 3.

(4.12)

This is essentially the same as (3.14) and (3.15) in Theorem 3.7, on which the proof
of Theorem 3.8 is based; this also means that we have proved the following claim.

Theorem 4.3. For any interpolating linear subdivision S, the corresponding
closest point projection scheme S for SO(m)-valued data satisfies s∞(S) � s∞(S).

4.1. Extensions to related Lie groups. We consider rigid body displace-
ments:

SE(m) = {TA,b : R
m → R

m | TA,b(x) = Ax + b, A ∈ SO(m), b ∈ R
m}.

There is a standard way to smoothly embed this matrix Lie group into R
(m+1)×(m+1):

TA,b �→
[
A b
0 1

]
.
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This embedding is also a group homomorphism from SE(m) to the general linear
group GL(m + 1), as TA′,b′ ◦ TA,b = TA′A,A′b+b and[

A′ b′

0 1

] [
A b
0 1

]
=

[
A′A A′b + b′

0 1

]
.

So, once again, we are in the situation as discussed in Remark 4.2: for the purpose of
constructing a subdivision scheme for SE(m)-valued data based on a linear subdivi-
sion scheme S, we take the point of view that SE(m) is a regular surface in the linear
space R

(m+1)×(m+1); however, for the purpose of constructing a projection operator
P with a sensible invariance property, we should take the point of view that SE(m) is
embedded in the Lie group GL(m) and define a projection operator based on a (left-)
invariant metric with respect to the group operation. In this case, the projection
operator is given by

(4.13) P

([
A b
0 1

])
=

[
UV T b

0 1

]
,

where A = UΣV T is an SVD of A. However, again as in the case of SO(m), it
does not quite matter whether we think of “closest point projection” in terms of the
standard Euclidean metric in R

m2

or an invariant metric in GL(m + 1).
After all, the most important fact is that the nonlinear subdivision operator

S = P ◦ S with P given by (4.13) and S a linear interpolatory subdivision scheme
acting componentwise is well defined when applied to any sequence Y : Z → SE(m)
with a small enough |ΔY |∞; moreover, S has the desirable property that it is invariant
under any change of orthogonal reference frame for representing rigid motions in an
m-dimensional space.

Motivated by motion design, we are also interested in direct products of SO(m);
e.g., one can model the combined motion of 17 major human joints as an element in

SO(3)︸ ︷︷ ︸
neck

× SO(3) × SO(3)︸ ︷︷ ︸
shoulders

×SO(2) × SO(2)︸ ︷︷ ︸
elbows

×SO(3) × SO(3)︸ ︷︷ ︸
wrists

× SO(3) × SO(3)︸ ︷︷ ︸
hips

×SO(2) × SO(2)︸ ︷︷ ︸
knees

×SO(3) × SO(3)︸ ︷︷ ︸
ankles

× SO(3) × SO(3) × SO(3) × SO(3)︸ ︷︷ ︸
spine

.

See [19, Figure 3.2] for a graphical illustration.
It is obvious that we can extend the projection approach to subdivide data taking

values on such a direct product. It is also obvious that we can extend Theorem 4.3 to
SE(m) and such direct products. For the record, let us state it formally, as follows.

Theorem 4.4. Let M = SE(m) or
∏k

i=1 SO(mi) ×
∏k′

j=1 SE(nj). For any

interpolating linear subdivision S, the corresponding closest point projection scheme
S = P ◦ S for M-valued data satisfies s∞(S) � s∞(S).

4.2. SL(m). We recall once again the dual view first discussed in Remark 4.2.
This time we consider the matrix Lie group of all measure- and orientation-preserving
linear transformations:

SL(m) := {Y ∈ R
m×m : det(Y ) = 1}.
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SL(m) has a natural embedding as a regular hypersurface in R
m2

, but is also a
subgroup of GL(m). Unlike the cases of SO(m) and SE(m), the two points of view
give different projectors. Using the latter setup which offers invariance, the resulting
projector P is given by (see [13])

(4.14) A �→ A/detA1/m.

Note that P (UAV ) = UP (A)V for all U, V ∈ SL(m). On the other hand, solving
minX∈SL(m) ‖A − X‖F is in principle a straightforward application of the method
of Lagrange multipliers but gives a very complicated projector—which also lacks
invariance—even in dimension m = 2.

Our computational experiment (akin to those “smoothness equivalence experi-
ments” found in [33, 23, 24]) clearly indicates that the nonlinear subdivision scheme
S = P ◦ S enjoys the same smoothness equivalence property as in the case of Theo-
rems 3.8, 4.3, 4.4. A proof is yet to be found.

5. Conclusions and discussions. Interpolation of manifold-valued data is a
fundamental problem that has applications in many fields. The linear subdivision
method is an efficient and very well-studied method for interpolating or approximat-
ing real-valued data in a multiresolution fashion. We described in section 1 three
sets of approaches for adapting a linear subdivision scheme to subdivide manifold-
valued data. The mathematical analysis of such nonlinear subdivision schemes is at
its infancy. We mentioned a number of articles which offer some low degree smooth-
ness equivalence results for certain nonlinear subdivision schemes. To the best of
our knowledge, this is the first article that attacks the arbitrary degree smoothness
equivalence conjectures.

We suspect that Theorems 3.8, 4.3, and 4.4 can be extended to any C∞ k-
dimensional regular surface in R

n with any near-closest projection operator.
We mention a recent smoothness non-equivalence result in the nonlinear subdi-

vision literature: in [37], a seemingly nonadaptive nonlinear subdivision scheme is
shown to have a fairly strong data-dependent property, unlike any linear subdivision
scheme or weakly nonlinear subdivision schemes such as the ones studied in this arti-
cle. Specifically, it is shown in [37] that a nonlinear convexity-preserving subdivision
scheme produces limit curves with critical Hölder regularity depending on the initial
data, and the regularity can be anywhere between 1 and 2.

We discuss potential applications of our results in the following two seemingly
unrelated problems:

• Conics-reproducing subdivision scheme. A standard complaint of standard
B-splines and standard linear subdivision schemes is that they can reproduce
only polynomials and not conic sections. The industrial standard NURBS
uses rational B-splines because rational polynomials can reproduce conics
while polynomials cannot. But it is widely argued that NURBS methods
lack some of the key advantages of subdivision methods.3 A linear but non-
stationary 4-point interpolatory scheme is derived in [14, 26], which repro-
duces span(1, x, cos(x), sin(x)) instead of the usual Π3 = span(1, x, x2, x3),
and hence can reproduce circles when the initial control polygon is sampled
uniformly from a circle. Given the result in this paper, it seems as though
a better way to solve this problem is to use the projection approach. When
one demands that a subdivision scheme exactly reproduce a circle, or any

3The debate, however, is mostly on surface modeling, not curve modeling.
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conic section, or any other prespecified shape C, our proposed method is to
use a nonlinear but stationary scheme of the form S = PC ◦ S, as opposed to
the linear but nonstationary scheme proposed in [14, 26]. The projection ap-
proach seems more general and flexible: it does not require uniform sampling,
it can be used in conjunction with any interpolatory subdivision scheme (not
just 4-point), and, for the circle at least, Theorem 3.8 says that the nonlinear
scheme is as smooth as the underlying linear scheme. (The exact Hölder reg-
ularity of the specific non-stationary 4-point scheme in [14, 26] is not known,
but the scheme is shown to be at least C1.)

• Normal multiresolution of curves. Underlying the method of normal multires-
olution of curves in [8] is a nonlinear subdivision scheme of almost exactly
the same form as those studied in this paper, i.e., S = P ◦ S. The key
difference is that the P ’s in this article are such that P (y)i is dependent
only on yi, whereas the P in [8] is more data-adaptive: P (y)2i = y2i and
P (y)2i+1 = an intersection point of C with the line passing through y2i+1

and normal to the line y2i y2i+2. See [8, Figure 2] for a graphical illustration.
(Here C is a planar curve subject to a normal multiresolution analysis.) It is
conjectured that the parametrization induced by a normal multisolution has
exactly the same smoothness as that of the underlying interpolatory subdivi-
sion scheme. Similar to the other low degree smoothness equivalence results
in [29, 30, 36], Daubechies et al. prove the smoothness equivalence only when
(in the notation of this paper) s∞(S) � 2. It seems possible to adapt the ideas
and results in this paper to solve the full smoothness equivalence conjecture
pertaining to normal multiresolution.

Yet another extension is to consider Hermite subdivision schemes on manifolds.
See, e.g., [20] for the interests of Hermite interpolation in Lie groups arising from
geometric integration of ODEs. Hermite subdivision schemes in the linear setting
are quite well studied; see [21, 34, 16] and the references therein. It is not hard to
construct Hermite subdivision schemes on Lie groups, but the analysis of such schemes
is likely to be difficult.

Finally, it is needless to say that similar smoothness equivalence results for the
more intrinsic linearization methods described in section 1 are waiting to be developed.

Appendix.

A.1. Proof of Lemma 2.2. Since |Δx− Δy|∞ � 2|x− y|∞ for any x, y ∈ �∞,
it follows that

|ΔT2p− ΔT1p|∞ � 2|T2p− T1p|∞.

Combining this with (2.3), we get

|ΔT2p− ΔT1p|∞ � 2A|Δp|α∞ ∀ p ∈ �∞, |Δp|∞ < δ.

Thus

|ΔT2p|∞ � |ΔT1p|∞ + 2A|Δp|α∞ ∀ p ∈ �∞, |Δp|∞ < δ.

Since we have (2.2), it follows that for all p ∈ �∞ with |Δp|∞ < min(δ, 1), we have

(A.1) |ΔT2p|∞ � C|Δp|∞ + 2A|Δp|α∞ = (C + 2A|Δp|α−1
∞ )|Δp|∞ < (C + 2A)|Δp|∞.

Therefore (2.4) holds for C ′ = C + 2A and δ′ = min(δ, 1).
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A.2. Proof of Lemma 2.3. We use induction. For j = 1, (2.7) follows imme-
diately from (2.6) by choosing δ1 = δ and C1 = A. Now suppose that (2.7) holds for
some j � 1.

It follows from Lemma 2.2 that there exist C ′ > 1 and δ′ > 0 such that when
|Δp|∞ < δ′,

|ΔT2p|∞ � C ′|Δp|∞.

Thus for any j ∈ N,

|ΔT j
2 p|∞ � C ′j |Δp|∞ < δ if |Δp|∞ < min(δ, δ′)C ′−j .

Since T1 is bounded and linear, it follows from (2.6) that for q ∈ �∞ satisfying |Δq|∞ <
δ we have

|T1p− T2q|∞ � |T1p− T1q|∞ + |T1q − T2q|∞ � |T1|∞|p− q|∞ + A|Δq|α.

Hence if |Δp|∞ < min(min(δ, δ′)C ′−j , δj), then

|T j+1
1 p− T j+1

2 p|∞ � |T1|∞|T j
1 p− T j

2 p|∞ + A|ΔT j
2 p|α∞

� |T1|∞|T j
1 p− T j

2 p|∞ + AC ′jα|Δp|α∞

� (|T1|∞Cj + AC ′jα)|Δp|α∞.

This means that (2.7) holds for j + 1. By induction, (2.7) holds for any j ∈ N.

A.3. Proof of Theorem 2.4. Theorem 2.1 already covers the case of C � 1,
so we can assume C > 1.

For any ε ∈ (0, 1 − μ), we can find N ∈ N such that C1/N < 1 + ε/μ. So
CμN < (μ + ε)N < 1. Hence when |Δp|∞ < δ,

|ΔT jN
1 p|∞ � CμjN |Δp|∞ � (CμN )j |Δp|∞ ∀j ∈ N.

It follows from (2.8), (2.9), and Lemma 2.2 that there exist C̃, δ̃ > 0 such that
when |Δp|∞ < δ̃,

(A.2) |ΔT2p|∞ � C̃|Δp|∞.

Since one of T1 and T2 is bounded and linear, it follows from (2.8), (A.2), (2.9),
and Lemma 2.3 that there exist CN > 0 and δN > 0 such that when |Δp|∞ < δN ,

|TN
1 p− TN

2 p|∞ � CN |Δp|α∞.

Now we can apply Theorem 2.1 to operators TN
1 and TN

2 . We have that for any
0 < ε0 < (μ + ε)N − CμN there exists 0 < δ0 < δ such that

|ΔTN
2 p|∞ � (CμN + ε0)|Δp|∞ � (μ + ε)N |Δp|∞ if |Δp|∞ < δ0.

Therefore for k = 0, 1, . . . , and r = 0, 1, . . . , N − 1

(A.3) |ΔT kN+r
2 p|∞ � (μ + ε)kN |ΔT r

2 p|∞ if |ΔT r
2 p|∞ < δ0.

It follows from (A.2) that

(A.4) |ΔT r
2 p|∞ � C̃r|Δp|∞ < δ0 if |Δp|∞ < min(δ0, δ̃)C̃

−r.



MANIFOLD-VALUED DATA SUBDIVISION SCHEMES 1221

Combining (A.3) and (A.4), we have

|ΔT kN+r
2 p|∞ � (μ + ε)kN C̃r|Δp|∞ � (μ + ε)kN+r(μ + ε)−N C̃N |Δp|∞

if |Δp| < δ′ := min(δ0, δ̃)C̃
−r. Let C ′ = (μ + ε)−N C̃N . Then when |Δp|∞ < δ′,

|ΔT j
2 p|∞ � C ′(μ + ε)j |Δp|∞

for any j ∈ N and |Δp|∞ < δ′.

A.4. Proof of Lemma 3.6. By (3.9), c0i,j = c0j,i and for j = 1, . . . , n,

n∑
i=1

c0i,j = c0j,j +

n∑
i=1
i �=j

c0i,j = wj − w2
j −

n∑
i=1
i �=j

wiwj = wj − w2
j − wj(1 − wj) = 0.(A.5)

Thus the first row and first column of C0 both sum to zero.
Lemma A.1. Let A0 = (a0

i,j) be an n×n real matrix. For k = 0, . . . , n−2, define

Ak+1 = FT
k AkFk,

where Fk is defined by (3.13). Then for k = 0, . . . , n− 2, Ak+1 = (ak+1
α,β ) is given by

(A.6) ak+1
α,β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

n∑
j=1

(
i−1
α−1

)(
j−1
β−1

)
a0
i,j , α, β � k + 1,

n∑
i=1

n∑
j=1

(
i−α+k

k

)(
j−1
β−1

)
a0
i,j , α > k + 1, β � k + 1,

n∑
i=1

n∑
j=1

(
i−1
α−1

)(
j−β+k

k

)
a0
i,j , α � k + 1, β > k + 1,

n∑
i=1

n∑
j=1

(
i−α+k

k

)(
j−β+k

k

)
a0
i,j , α, β > k + 1.

Proof. We prove (A.6) by induction. It follows from A1 = FT
0 A0F0 that

a1
α,β =

n∑
i=α

n∑
j=β

a0
i,j =

n∑
i=1

n∑
j=1

(
i− α

0

)(
j − β

0

)
a0
i,j .

This shows that (A.6) is true for k = 0.
Suppose that (A.6) is true for k = q − 1; i.e.,

(A.7) aqα,β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

n∑
j=1

(
i−1
α−1

)(
j−1
β−1

)
a0
i,j , α, β � q,

n∑
i=1

n∑
j=1

(
i−α+q−1

q−1

)(
j−1
β−1

)
a0
i,j , α > q, β � q,

n∑
i=1

n∑
j=1

(
i−1
α−1

)(
j−β+q−1

q−1

)
a0
i,j , α � q, β > q,

n∑
i=1

n∑
j=1

(
i−α+q−1

q−1

)(
j−β+q−1

q−1

)
a0
i,j , α, β > q.
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It follows from Aq+1 = FT
q AqFq that

(A.8) aq+1
α,β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aqα,β , α, β � q,

n∑
s=α

aqs,β , α > q, β � q,

n∑
t=β

aqα,t, α � q, β > q,

n∑
s=α

n∑
t=β

aqs,t, α, β > q.

Substituting (A.7) into (A.8), we get

aq+1
α,β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

n∑
j=1

(
i−1
α−1

)(
j−1
β−1

)
a0
i,j , α, β � q,

n∑
s=α

n∑
i=1

n∑
j=1

(
i−s+q−1

q−1

)(
j−1
β−1

)
a0
i,j , α > q, β � q,

n∑
t=β

n∑
i=1

n∑
j=1

(
i−1
α−1

)(
j−t+q−1

q−1

)
a0
i,j , α � q, β > q,

n∑
s=α

n∑
t=β

n∑
i=1

n∑
j=1

(
i−s+q−1

q−1

)(
j−t+q−1

q−1

)
a0
i,j , α, β > q.

Using the following identities on combinatorial numbers,

n∑
s=α

(
i− s + q − 1

q − 1

)
=

(
i− α + q

q

)
,

n∑
t=β

(
j − t + q − 1

q − 1

)
=

(
j − β + q

q

)
,

we get

(A.9) aq+1
α,β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

n∑
j=1

(
i−1
α−1

)(
j−1
β−1

)
a0
i,j , α, β � q,

n∑
i=1

n∑
j=1

(
i−α+q

q

)(
j−1
β−1

)
a0
i,j , α > q, β � q,

n∑
i=1

n∑
j=1

(
i−1
α−1

)(
j−β+q

q

)
a0
i,j , α � q, β > q,

n∑
i=1

n∑
j=1

(
i−α+q

q

)(
j−β+q

q

)
a0
i,j , α, β > q.

It can be easily verified that (A.9) agrees with (A.6) when k = q. This concludes the
proof.
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It follows from Lemma A.1 that for k = 1, . . . , n− 1,

(A.10) ckα,β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
i=1

n∑
j=1

(
i−1
α−1

)(
j−1
β−1

)
c0i,j , α, β � k,

n∑
i=1

n∑
j=1

(
i−α+k−1

k−1

)(
j−1
β−1

)
c0i,j , α > k, β � k,

n∑
i=1

n∑
j=1

(
i−1
α−1

)(
j−β+k−1

k−1

)
c0i,j , α � k, β > k,

n∑
i=1

n∑
j=1

(
i−α+k−1

k−1

)(
j−β+k−1

k−1

)
c0i,j , α, β > k.

Combining this with (A.5), we get for k = 1, . . . , n− 1 and � = 1, . . . , n that

(A.11) ck�,1 = ck1,� =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n∑

i=1

n∑
j=1

(
j−1
�−1

)
c0i,j , � � k

n∑
i=1

n∑
j=1

(
j−�+k−1

k−1

)
c0i,j , � > k

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = 0.

For any z ∈ R and � ∈ N∪ {0}, the generalized binomial coefficient
(
z
�

)
is defined

as (
z

�

)
=

z(z − 1) · · · (z − � + 1)

�!
.

For each fixed �, let q�(z) =
(
z
�

)
. Then q�(z) is the unique polynomial in z of degree �

satisfying

q�(0) = q�(1) = · · · = q�(�− 1) = 0, q�(�) = 1.

Furthermore, q0(z), q1(z), . . . , q�(z) form a basis of the polynomial space Π�. So for
each γ ∈ N ∪ {0}, there exist constants τγ0 , . . . , τ

γ
γ satisfying(

n− z
2

γ

)
=

γ∑
j=0

τγj

(
z

j

)
.

Combining this with (3.4), we get for γ = 0, . . . , p− 1

(A.12)

n∑
i=1

(
n− i

γ

)
w′

i =

n∑
i=1

γ∑
j=0

τγj

(
2i

j

)
w′

i =

γ∑
j=0

τγj

(
2n′ + 1

j

)
=

(
n− n′ − 1

2

γ

)
.

More generally, for each γ1, γ2 ∈ N ∪ {0}, there exist constants τγ1,γ2

0 , . . . , τγ1,γ2

γ1+γ2

satisfying (
n− z

2

γ1

)(
n− z

2

γ2

)
=

γ1+γ2∑
j=0

τγ1,γ2

j

(
z

j

)
∀z ∈ R.

Together with (3.4), we get for γ1 + γ2 � p− 1

n∑
i=1

(
n− i

γ1

)(
n− i

γ2

)
w′

i =

n∑
i=1

γ1+γ2∑
j=0

τγ1,γ2

j

(
2i

j

)
w′

i =

γ1+γ2∑
j=0

τγ1,γ2

j

(
2n′ + 1

j

)

=

(
n− n′ − 1

2

γ1

)(
n− n′ − 1

2

γ2

)
.

(A.13)
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Therefore it follows from (A.10), (3.9), (A.12), and (A.13) that for α, β � k and
α + β � p + 1 we have

ckα,β =

n∑
i=1

n∑
j=1

(
i− 1

α− 1

)(
j − 1

β − 1

)
c0i,j

=

n∑
i=1

(
i− 1

α− 1

)(
i− 1

β − 1

)
wi −

n∑
i=1

n∑
j=1

(
i− 1

α− 1

)(
j − 1

β − 1

)
wiwj

=

n∑
i=1

(
n− i

α− 1

)(
n− i

β − 1

)
w′

i −
(

n∑
i=1

(
n− i

α− 1

)
w′

i

)⎛⎝ n∑
j=1

(
n− j

β − 1

)
w′

j

⎞⎠
=

(
n− n′ − 1

2

α− 1

)(
n− n′ − 1

2

β − 1

)
−
(
n− n′ − 1

2

α− 1

)(
n− n′ − 1

2

β − 1

)
= 0.

We have completed the proof of Lemma 3.6.
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Abstract. For Runge–Kutta methods and linear multistep methods, much attention has been
paid, in the literature, to special nonlinear stability properties indicated by the terms total-variation-
diminishing (TVD), strong-stability-preserving (SSP), and monotonicity. Stepsize conditions, guar-
anteeing these properties, were studied, e.g., by Shu and Osher [J. Comput. Phys., 77 (1988),
pp. 439–471], Gottlieb, Shu, and Tadmor [SIAM Rev., 43 (2001), pp. 89–112], Hundsdorfer and
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[SIAM J. Numer. Anal., 42 (2004), pp. 1073–1093] and [Math. Comp., 74 (2005), pp. 201–219]. In
the present paper, we obtain a special stepsize condition guaranteeing the above properties, for a
generic numerical process. This condition is best possible in a well defined and natural sense. It is
applicable to the important class of general linear methods, and it can also be used to answer some
open questions, for methods of which the above stability properties were studied earlier.
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1. Introduction.
1.1. Maximal stepsize-coefficients for monotonicity. Consider an initial

value problem for a system of ordinary differential equations of type

d

dt
U(t) = f(t, U(t)) (t ≥ 0), U(0) = u0.(1.1)

We shall deal with step-by-step-methods for finding numerical approximations un

to the true solution values U(nΔt), where Δt denotes a positive stepsize and n =
1, 2, 3, . . . .

The general Runge–Kutta method (RKM) for computing un can be written in
the form

yi = un−1 + Δt ·
s∑

j=1

aij f((n− 1 + cj)Δt, yj) (1 ≤ i ≤ s + 1),(1.2.a)

un = ys+1.(1.2.b)

Here ai,j and cj are parameters defining the method, whereas yi (1 ≤ i ≤ s) are
intermediate approximations used for computing un = ys+1 from un−1. If aij = 0
(for j ≥ i), the method is called explicit.

In the following, V stands for the vector space on which the differential equation
is defined, and ‖·‖ denotes a convex function on V (i.e., ‖λv+(1−λ)w‖ ≤ λ‖v‖+(1−
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λ)‖w‖ for 0 ≤ λ ≤ 1 and v, w ∈ V). Much attention has been paid in the literature
to the property

(1.3) ‖yi‖ ≤ ‖un−1‖ (for 1 ≤ i ≤ s + 1).

Clearly, (1.3) implies ‖un‖ ≤ ‖un−1‖. The latter property, as well as property (1.3),
is often referred to by the term monotonicity or strong stability ; it is of particular
importance in situations where (1.1) results from (method of lines) semidiscretizations
of time-dependent partial differential equations. Choices for ‖ · ‖, which occur in that
context, include, e.g., the supremum norm ‖x‖ = ‖x‖∞ = supi |ξi| and the total
variation seminorm ‖x‖ = ‖x‖TV =

∑
i |ξi+1 − ξi| (for vectors x with components

ξi). Numerical processes satisfying ‖un‖TV ≤ ‖un−1‖TV play a special role in the
solution of hyperbolic conservation laws and are called total variation diminishing ;
cf., e.g., Harten [13], Shu [28], Shu and Osher [30], LeVeque [26], and Hundsdorfer
and Verwer [21]. We note that, for practical calculations, special importance has been
attached to the inequality ‖yi‖ ≤ ‖un−1‖ being fulfilled for all i with 1 ≤ i ≤ s + 1
(rather than just for i = s + 1); see, e.g., Shu [29] and Gottlieb [8].

Conditions on Δt which guarantee (1.3) were given in the literature, mainly for
autonomous differential equations (i.e., f is independent of t). These conditions apply,
however, equally well to general f and we discuss them below for that case. In many
papers one starts from an assumption about f which, for given τ0 > 0, essentially
amounts to

(1.4) ‖v + τ0 f(t, v)‖ ≤ ‖v‖ (for t ∈ R, v ∈ V).

Assumption (1.4) means that the forward Euler method is monotonic with stepsize
τ0. It can be interpreted as a condition on the manner in which the semidiscretization
is performed, in case d

dtU(t) = f(t, U(t)) stands for a semidiscrete version of a partial
differential equation.

In the literature, stepsize-coefficients c were determined such that monotonicity,
in the sense of (1.3), is present for all Δt with

0 < Δt ≤ c · τ0.(1.5)

For explicit RKMs, this was done by rewriting the right-hand members of (1.2.a) as
convex combinations of forward Euler steps; see, e.g., Shu and Osher [30], Spiteri
and Ruuth [31], and Ruuth [27]. For more general RKMs, stepsize-coefficients were
obtained, e.g., in Gottlieb, Shu, and Tadmor [10], Higueras [14, 16], and Ferracina and
Spijker [6, 7]. We note that, in the context of discretizations for hyperbolic problems,
the above coefficients c are sometimes called CFL coefficients; see, e.g., Gottlieb and
Shu [9] and Shu [29].

The linear multistep method (LMM) for computing un can be written in the form

(1.6) un =

k∑
j=1

αj un−j + Δt ·
k∑

j=0

βj f((n− j)Δt, un−j).

Here αj , βj are parameters defining the method and un is computed from un−k, . . . , un−1.
If β0 = 0, the method is called explicit.

Monotonicity has been studied for (1.6) in the sense of the inequality

(1.7) ‖un‖ ≤ max
1≤j≤k

‖un−j‖.
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For explicit LMMs, stepsize-coefficients c, with the property that (1.4), (1.5) guaran-
tee (1.7), were determined by rewriting the right-hand member of (1.6) as a convex
combination of forward Euler steps; see, e.g., Shu [28]. Stepsize-coefficients, relevant
to more general LMMs, were given, e.g., in Gottlieb, Shu, and Tadmor [10], Hunds-
dorfer and Ruuth [19], and Hundsdorfer, Ruuth, and Spiteri [20].

Clearly, the larger c is, the less restrictive is condition (1.5). For any given
method, the maximal stepsize-coefficient c, with the property that (1.4), (1.5) imply
monotonicity, is thus an important and characteristic quantity. When comparing the
computational efficiency of different methods, it is natural to take these characteristic
quantities into account.

Special attention was paid to the problem of determining, for any given RKM, the
corresponding maximal stepsize-coefficient; in Higueras [14] and Ferracina and Spijker
[6, 7] conditions were given under which this coefficient equals the famous coefficient
R(A, b), which was introduced by Kraaijevanger [24]. For completeness, we note also
that much attention was paid to the related, but different, problem of optimizing,
over given classes of RKMs or LMMs, the special stepsize-coefficients obtainable via
convex combinations of Euler steps; see, e.g., Shu [28], Shu and Osher [30], Gottlieb
and Shu [9], Gottlieb [8], Spiteri and Ruuth [31], and Ruuth [27].

Both RKMs and LMMs are examples of methods belonging to the important
and very large class of general linear methods (GLMs), introduced by Butcher [3],
and studied extensively in the literature; see, e.g., Butcher [4, 5], Hairer, Nørsett,
and Wanner [12], Hairer and Wanner [11], and the references therein. No theory
seems to be available in the literature for determining maximal stepsize-coefficients
for arbitrary GLMs.

In this paper, we determine the maximal stepsize-coefficient for a generic nu-
merical process. This result enables us to obtain maximal stepsize-coefficients for
arbitrary GLMs and to gain new insights for numerical methods of which the mono-
tonicity properties were studied earlier.

For completeness we note that, already in Burrage and Butcher [2], monotonicity
of GLMs was studied, but, for seminorms ‖ · ‖ generated by (pseudo) inner products,
excluding, e.g., the seminorm ‖·‖TV . This paper deals with arbitrary convex functions
‖ · ‖; as a result, our analysis is largely different from the one in the paper just
mentioned.

1.2. Scope of the paper. Section 2 contains our theory for the generic numer-
ical process mentioned above. In section 2.1, we specify GLMs as well as the generic
numerical process and characterize them by a pair of matrices S, T . We also give a
formal definition of monotonicity.

In section 2.2, we introduce in an algebraic way a coefficient c(S, T ), which can
be viewed as a generalization of Kraaijevanger’s coefficient R(A, b). We state typical
properties of c(S, T ) in Theorem 2.2. This theorem extends earlier results about
R(A, b).

In section 2.3 we state, without proof, the basic results of the paper, Theorems 2.4
and 2.7. These theorems specify situations in which the maximal stepsize-coefficient,
for monotonicity of the generic numerical process, is equal to c(S, T ). Theorem 2.7 has
a wider scope than Theorem 2.4, but the latter theorem has a more simple structure
and is of independent interest.

Section 3 contains examples and applications of the theory given in section 2.
In section 3.1, we focus on arbitrary GLMs. Theorem 3.1 tells us that the maximal
stepsize-coefficient for these methods equals c(S, T ). Corollaries 3.3 and 3.4, respec-
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tively, show that c(S, T ) is not only relevant to monotonicity, but also to a discrete
maximum principle and numerical contractivity of GLMs.

In section 3.2, we apply the preceding theory to RKMs, LMMs, and a class
of multistep-multistage methods (MMMs). We arrive at conclusions supplementing
earlier results about these methods. In particular, we find (optimal) second order and
third order MMMs which we have not seen elsewhere.

In section 3.3, we apply material from section 2 to the interesting class of additive
Runge–Kutta methods. In this way we obtain Theorem 3.6, which answers an open
and fundamental question about these methods.

Section 4 contains the proof of Theorems 2.4 and 2.7. In section 4.1, we prove
c(S, T ) to be a stepsize-coefficient for the generic numerical process, and in section
4.2 we prove it to be maximal.

2. A theory for monotonicity.

2.1. Monotonicity in a general setting.

2.1.1. General linear methods. The GLM for solving (1.1) depends on pa-
rameters cj (1 ≤ j ≤ m) and parameter matrices S = (si,j) ∈ R

m×l, T = (ti,j) ∈
R

m×m, where 1 ≤ l ≤ m. The method can be written in the following form:

yi =

l∑
j=1

sij u
(n−1)
j + Δt ·

m∑
j=1

tij f((n− 1 + cj)Δt, yj) (1 ≤ i ≤ m),(2.1.a)

u
(n)
i = ym−l+i (1 ≤ i ≤ l).(2.1.b)

Here u
(n−1)
i are input vectors available at the nth step of the method, whereas yi

are (intermediate) approximations used for computing the input vectors u
(n)
i for the

next step; cf., e.g., Butcher [4, pp. 336–338] and [5, p. 358] and Hairer, Nørsett, and
Wanner [12, p. 390] for related representations of GLMs.

Obviously, the RKM (1.2) is an example of (2.1), with l = 1, m = s + 1, u
(n)
i =

un � U(n · Δt), and si1 = 1, tij = aij (for 1 ≤ j ≤ s), tij = 0 (for j = s + 1).

The LMM (1.6) is another example of (2.1), with l = k, m = k + 1, and u
(n)
i =

un−l+i (1 ≤ i ≤ l), yi = un−m+i (1 ≤ i ≤ m). Method (1.6) can be written in the

form (2.1) with cj = j − k, S =
(
I
A

)
, T =

(
O
B

)
, where I denotes the k × k identity

matrix, O the k × (k + 1) zero matrix and A = (αk, . . . , α1), B = (βk, . . . , β0).
We denote the vector space on which the differential equation is defined again by

V, and assume ‖ · ‖ to be a convex function on V. We will say that method (2.1) is
monotonic (for the stepsize Δt, function f , and convex function ‖.‖) if

(2.2) ‖yi‖ ≤ max
1≤j≤l

‖u(n−1)
j ‖ (for 1 ≤ i ≤ m),

whenever u
(n−1)
i and yi satisfy (2.1.a). Note that the inequalities (2.2) reduce to

(1.3) or (1.7), respectively, if method (2.1) stands for (1.2) or (1.6) in the way just
indicated.

In the following, we shall assume that the parameters si,j satisfy

(2.3) si 1 + si 2 + · · · + si l = 1 (1 ≤ i ≤ m).

This condition is fulfilled if (2.1) stands, in the above way, for (1.2) or (1.6) (provided
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j αj = 1). Moreover, the condition can be seen to be no essential restriction for the

general process (2.1): any (preconsistent) GLM can be transformed into an equivalent
method satisfying (2.3); see Butcher [5, pp. 358–360] for transformations of GLMs.

2.1.2. A generic numerical process with a simple form. The relations
(2.1.a) can be rewritten a bit more compactly. Defining

(2.4)

xi = u
(n−1)
i (for 1 ≤ i ≤ l), fi(v) = f((n− 1 + ci)Δt, v) (for 1 ≤ i ≤ m, v ∈ V),

the relations (2.1.a) reduce to

(2.5) yi =

l∑
j=1

sij xj + Δt ·
m∑
j=1

tij fj(yj) (1 ≤ i ≤ m).

Furthermore, when f : R × V → V satisfies (1.4), then definition (2.4) implies

(2.6) ‖v + τ0 fi(v)‖ ≤ ‖v‖ (for 1 ≤ i ≤ m and v ∈ V).

In the rest of section 2 we shall deal with (2.5) rather than (2.1.a), not only
because (2.5) has a more simple form, but also because this widens, in a natural way,
the range of applications: in section 3.3 we shall apply our results, to be obtained for
the generic process (2.5), to numerical methods which, strictly speaking, are not of
the form (2.1).

We shall interpret xi ∈ V and yi ∈ V as input and output vectors, respectively,
of the process (2.5). In the general situation (2.3), (2.5), (2.6), we shall focus on the
bound

(2.7) ‖yi‖ ≤ max
1≤j≤l

‖xj‖ (for 1 ≤ i ≤ m),

and we will say that process (2.5) is monotonic (for the stepsize Δt, functions fi, and
convex function ‖.‖) if (2.7) holds whenever xi and yi satisfy (2.5). Clearly, when
(2.5) stands for (2.1.a) via the relations (2.4), then monotonicity of (2.5) corresponds
to monotonicity as defined above for the GLM.

In section 2.3 we shall present the basic results of the paper, the best possible
stepsize conditions which guarantee monotonicity of process (2.5). In formulating
these results we need a coefficient which we first introduce in section 2.2.

2.2. The coefficient c(S, T ). Throughout this section we denote by S ∈
R

m×l and T ∈ R
m×m arbitrary matrices, with property (2.3). In section 2.3 we

shall use a coefficient c(S, T ) which can be adjoined to S and T . The definition of
this coefficient involves the following condition, in which γ denotes a real variable:

(2.8) I + γ T is invertible and (I + γ T )−1
[
S γ T

]
≥ 0.

Here I denotes the m×m identity matrix, and
[
S γ T

]
stands for the m× (l + m)

matrix whose first l columns equal to those of S and whose last m columns equal
those of γ T . The inequality in (2.8) should be interpreted entrywise; all inequalities
for matrices occurring below are to be interpreted in the same way.

Definition 2.1 (the coefficient c(S, T )). We define c(S, T ) = 0 if there is no
γ > 0 satisfying (2.8); otherwise

c(S, T ) = sup{γ : γ satisfies (2.8)}.
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The previous definition may seem to appear out of the blue. The author was
led to it, however, by important earlier work of Kraaijevanger [24] and Higueras [16].
In case (2.1) stands for the RKM (1.2) in the way indicated in section 2.1.1, then
c(S, T ) can be seen to reduce to the coefficient introduced and denoted by R(A, b) in
Kraaijevanger [24]; see also section 3.2.1 of this paper. In Higueras [16] the original
conditions used by Kraaijevanger for defining his coefficient were simplified to an
elegant form which has a resemblance to condition (2.8).

By Definition 2.1 we have c(S, T ) ≥ 0. Part (i) of Theorem 2.2 makes it relatively
easy to see whether c(S, T ) is zero or not. If c(S, T ) > 0, part (ii) of Theorem
2.2 is useful for simplifying the (numerical) computation of c(S, T ); e.g., by using a
bisection-type algorithm as in Ferracina and Spijker [6, section 4.3] and Kraaijevanger
[24, p. 498].

In part (i) of Theorem 2.2 we use, for any given matrix M = (mij), the notation
Inc(M) to denote the incidence matrix of M (which has the same dimensions as M),
given by

Inc(M) = (m̃ij), with m̃ij = 1 (if mij �= 0) and m̃ij = 0 (if mij = 0).

Theorem 2.2 (properties of c(S, T )).
(i) c(S, T ) > 0 if and only if S ≥ 0, T ≥ 0, Inc(T S) ≤ Inc(S), and Inc(T 2) ≤

Inc(T ).
(ii) Suppose 0 < γ < ∞ with γ ≤ c(S, T ). Let D = diag(δ1, . . . , δm) , where

0 ≤ δi ≤ 1. Then (2.8) holds, with T replaced by TD.
We note that part (ii) of the theorem is already nontrivial and useful in the simple

case where D equals the identity matrix I. The theorem can be viewed as an extension
(and improvement) of earlier results in the literature; for related results concerning
R(A, b), see Kraaijevanger [24, Theorem 4.2, Lemma 4.4], Higueras [15, Proposition
2.11], and Horváth [18, Theorem 4].

Below we shall prove Theorem 2.2 using Lemma 2.3. We think the lemma is
of independent interest: it gives an interesting interpretation of (2.8). We shall use
for x ∈ R

n (with components ξi) and arbitrary A = (ai,j) ∈ R
m×n the notations

‖x‖∞ = maxi |ξi|, ‖A‖∞ = maxx�=0
‖Ax‖∞
‖x‖∞

, and the well known formula ‖A‖∞ =

maxi

∑
j |ai,j |.

Lemma 2.3 (interpretation of (2.8)). Let 0 < γ < ∞. Then (2.8) holds if and
only if (I + γ T ) is invertible and ‖(I + γ T )−1

[
S γ T

]
‖∞ ≤ 1.

Proof of Lemma 2.3. For any integer q ≥ 1 we denote by eq the vector in R
q with

all components equal to 1. We assume that 0 < γ < ∞ and I + γ T is invertible.
In view of (2.3) we have Sel = em. Introducing the matrices

(2.9) P = (pi,j) = (I + γ T )−1(γT ), Q = (qi,j) = (I + γ T )−1, R = (ri,j) = QS,

we thus have R = (I − P )S and
[
R P

]
el+m = Rel + P em = em. Consequently,

(2.10)
l∑

j=1

ri,j +

m∑
j=1

pi,j = 1 (for 1 ≤ i ≤ m).

If (2.8) holds, then all ri,j , pi,j are nonnegative, so that (2.10) implies ‖
[
R P

]
‖∞

≤ 1. Conversely, if ‖
[
R P

]
‖∞ ≤ 1, then

∑l
j=1 |ri,j | +

∑m
j=1 |pi,j | ≤

∑l
j=1 ri,j +∑m

j=1 pi,j . The last inequality proves that all ri,j , pi,j are nonnegative, so that (2.8)
holds.
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We now turn to the proof of Theorem 2.2.

Proof of Theorem 2.2(i). In view of part (ii) of Theorem 2.2 (to be proved below),
we have c(S, T ) > 0 if and only if there is a γ0 > 0 such that the matrix M(γ) =
(I + γ T )−1

[
S γ T

]
is nonnegative for all γ ∈ [0, γ0]. Therefore, we can assume with

no loss of generality that S ≥ 0, T ≥ 0.

We have, for γ > 0 sufficiently small, M(γ) = {
∑∞

k=0(γ T )2 k}
[

(I − γ T )S (I −
γ T )γ T

]
. It follows that M(γ) ≥ 0 for γ ↓ 0 if and only if Inc(TS) ≤ Inc(S) and

Inc(TT ) ≤ Inc(T ), which proves (i).

Proof of Theorem 2.2(ii). Let γi be any finite values with 0 ≤ γi ≤ c(S, T ) and
put Γ = diag(γ1 . . . γm). In order to prove statement (ii), it is enough to assume
c(S, T ) > 0 and to show that (2.8) holds with matrix γ T replaced throughout by the
product T Γ.

Choose any finite γ satisfying (2.8) with 0 < γ ≤ c(S, T ) and put E = diag(ε1 . . . εm),
where εi = (γ − γi) γ

−1. In order to prove the invertibility of I + T Γ, we write

I + T Γ = (I + γ T )(I −X), with X = P E and P as in (2.9).

In view of Lemma 2.3, we have ‖P‖∞ ≤ 1, so that ‖X‖∞ ≤ ‖E‖∞.

First, consider the special case where c(S, T ) < ∞ and γi = c(S, T ) (for 1 ≤ i ≤
m). Choosing the above γ sufficiently close to c(S, T ), we can arrange that ‖E‖∞ < 1,
which implies that in this special case I + T Γ = I + c(S, T )T is invertible. Using a
continuity argument it follows that (2.8) holds with γ = c(S, T ).

Next, consider again the general case of arbitrary finite γi with 0 ≤ γi ≤ c(S, T ) ≤
∞. In view of the above, we can choose a positive γ satisfying (2.8), with γ ≥ maxi γi.
With this γ we have 0 ≤ X = P E ≤ P , which implies that the spectral radii
of X and P satisfy spr(X) ≤ spr(P ) ≤ ‖P‖∞ ≤ 1. In view of (2.9), the matrix
Q = I − P is invertible, so that P has no eigenvalue equal to 1. Applying the
Perron–Frobenius theory (see, e.g., Horn and Johnson [17, p. 503]), it follows that
spr(P ) < 1. Hence spr(X) < 1, so that I + T Γ = (I + γT )(I − X) has an inverse
equal to (I −X)−1(I + γ T )−1. Using (I +T Γ)−1 =

(∑∞
0 Xk

)
(I + γ T )−1, it follows

that (2.8) is valid with γ T replaced by T Γ.

2.3. Stepsize-coefficients for monotonicity. In this section we give, without
proof, the basic results of the paper, Theorems 2.4 and 2.7. Throughout the section,
S ∈ R

m×l and T ∈ R
m×m are again arbitrary matrices satisfying (2.3). We study

stepsize conditions 0 < Δt ≤ c · τ0, guaranteeing monotonicity of process (2.5) when
fi satisfies (2.6). The following inequality will be of crucial importance:

(2.11) c ≤ c(S, T ).

Our first result is as follows.

Theorem 2.4 (monotonicity for arbitrary fi satisfying (2.6)). Consider numer-
ical process (2.5). Let τ0, c be given with 0 < τ0 < ∞, 0 < c ≤ ∞. Then each of the
following statements (2.12), (2.13) is equivalent to (2.11):

Condition 0 < Δt ≤ c · τ0 implies monotonicity whenever V is a vector space,(2.12)

‖ · ‖ a convex function on V, and arbitrary fi : V → V satisfy (2.6);

Condition 0 < Δt ≤ c · τ0 implies monotonicity when V = R
m, ‖ · ‖ = ‖ · ‖∞,(2.13)

and arbitrary fi : V → V satisfy (2.6).
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Clearly, (2.12) is a priori a stronger statement than (2.13). Accordingly, the essence
of Theorem 2.4 is that the (algebraic) property (2.11) implies the (strong) statement
(2.12), whereas already the (weaker) statement (2.13) implies (2.11).

The theorem highlights the importance of the quantity c(S, T ): Theorem 2.4
shows that, with respect to the situations specified in (2.12), (2.13), the maximal
stepsize-coefficient c, with the property that condition 0 < Δt ≤ c · τ0 guarantees
monotonicity, is equal to c(S, T ).

Our second result, Theorem 2.7, deals with important situations not adequately
covered by Theorem 2.4: it is often not natural to allow, as in Theorem 2.4, that
all functions fi are different from each other. For instance, if in method (2.1) we
have ci = cj for some i �= j, or if the differential equation is autonomous, then (2.1)
is represented by a process (2.5) with fi = fj for some, or all, indices i �= j. In
section 3.3 we will come across another situation where the functions fi in (2.5) are
not independent of each other. In order to cover all of such cases, we consider index
sets Iq with Iq ⊂ {1, . . . ,m} (for 1 ≤ q ≤ r) and functions fi : V → V (for 1 ≤ i ≤ m),
such that

(2.14)
I1, . . . , Ir are nonempty and mutually disjoint, with I1 ∪ · · · ∪ Ir = {1, . . . ,m},

(2.15) fi = fj whenever i and j belong to the same index set Iq.

According to Theorem 2.4, also when (2.14), (2.15) hold, inequality (2.11) is
sufficient in order that condition 0 < Δt ≤ c · τ0 implies monotonicity of numerical
process (2.5); but the following counterexample shows that, under the assumptions
(2.14), (2.15), the maximal stepsize-coefficient c = cmax can be larger than c(S, T ).

Example 2.5. Consider process (2.5) with l = 1, m = 2, and si,1 = 1, ti,1 =
2, ti,2 = −1 (for i = 1, 2). Suppose (2.14), (2.15) with r = 1, I1 = {1, 2}. Since
condition T ≥ 0 in Theorem 2.2(i) is violated, we have c(S, T ) = 0. But, with f1 =
f2 = f , the process reduces to the (backward Euler) method y1 = x1 +Δt f(y1), which

is again of the form (2.5), with l̃ = m̃ = 1 and c(S̃, T̃ ) = ∞. In line with Theorem
2.4, the maximal stepsize-coefficient c = cmax such that condition 0 < Δt ≤ c · τ0
implies monotonicity (for the original process with m = 2 and (2.6), (2.14), (2.15) in
force), is equal to cmax = ∞ > c(S, T ) = 0.

Theorem 2.7 will make clear that the inequality cmax > c(S, T ), in Example
2.5, is an anomaly related to reducibility of the method. We shall use the following
formal definition of reducibility and irreducibility, with regard to index sets I1, . . . , Ir
satisfying (2.14).

Definition 2.6 (reducibility and irreducibility). Process (2.5) is called reducible
with respect to I1, . . . , Ir, if indices i, j, q exist with the following properties: i ∈
Iq, j ∈ Iq, and i �= j, whereas the ith and the jth row of the matrix

[
S T

]
are equal

to each other. Process (2.5) is called irreducible with respect to I1, . . . , Ir, if such
indices i, j, q do not exist.

Clearly, if r < m and there is reducibility with respect to I1, . . . , Ir, then process
(2.5), with fi satisfying (2.15), is equivalent to a process (2.5) with a smaller value of
m.

Theorem 2.7 (monotonicity when fi satisfy (2.6), (2.15)). Assume (2.14) and
irreducibility of process (2.5) with respect to I1, . . . , Ir. Let τ0, c be given with 0 <
τ0 < ∞, 0 < c ≤ ∞. Then each of the following statements (2.16), (2.17) is equivalent
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to (2.11):

Condition 0 < Δt ≤ c · τ0 implies monotonicity whenever V is a vector space,(2.16)

‖ · ‖ a convex function on V, and functions fi : V → V satisfy (2.6), (2.15);

Condition 0 < Δt ≤ c · τ0 implies monotonicity whenever V = R
m, ‖ · ‖ =(2.17)

‖ · ‖∞, and functions fi : V → V satisfy (2.6), (2.15).

Theorem 2.7 implies that, in the situations specified by (2.16) and (2.17), the
maximal stepsize-coefficient c, such that condition 0 < Δt ≤ c · τ0 implies monotonic-
ity, is still equal to c(S, T ), provided there is irreducibility with respect to the relevant
index sets.

The following counterexample shows that the dimension of the space V in state-
ments (2.13) and (2.17) cannot be replaced, in general, by an integer smaller than
m.

Example 2.8. Consider numerical process (2.5) with l = 1, m = 2, and s1,1 =
s2,1 = 1, t1,1 = 1/3, t1,2 = 8/3, t2,1 = 0, t2,2 = 1. A straightforward calculation
yields c(S, T ) = 3/5. On the other hand, it can be proved that propositions (2.13) and
(2.17) would be valid with c = 3/2 > c(S, T ), if the space V = R

m = R
2 would be

replaced by V = R
1.

Theorem 2.4 can formally be viewed as a special case of Theorem 2.7; the latter
theorem with r = m reduces to the former. We have formulated Theorem 2.4 sep-
arately in view of its importance and simplicity: it does not need (2.14), (2.15) or
Definition 2.6. Furthermore, in section 4, where the theorems are proved, we will see
that it is convenient to focus first on Theorem 2.4 and to use (arguments used in the
proof of) that theorem for proving Theorem 2.7.

3. Examples and applications.

3.1. Applications to arbitrary GLMs. In this section we consider method
(2.1). We assume (2.3) and give some results which follow readily from the above
theory. We focus on stepsize-coefficients c such that

Condition 0 < Δt ≤ c · τ0 implies monotonicity whenever V is a vector space,(3.1)

‖ · ‖ a convex function on V, and functions f : R × V → V satisfy (1.4).

In the following theorem, the columns of the matrix T = (tij) are denoted by Ti

(1 ≤ i ≤ m) and the rows of the m× (l + m) matrix [S T ] by Ri (1 ≤ i ≤ m).
Theorem 3.1 (monotonicity of GLMs). Consider method (2.1), and given τo >

0.
(i) Let c ≤ c(S, T ). Then statement (3.1) is valid.
(ii) Assume the method is irreducible in the sense that Ri �= Rj for all i, j with

i �= j, Ti �= 0, Tj �= 0, ci = cj. Then, conversely, statement (3.1) implies that
c ≤ c(S, T ).

Note that the irreducibility assumption in (ii) is trivially fulfilled if the method
is nonconfluent, i.e., if ci �= cj (for all i �= j). Moreover, in case ci = cj (for some
i �= j), the assumption of irreducibility is no strong restriction, because any given
method, violating the assumption, is equivalent to a method (with a smaller number
of stages) which is irreducible. The theorem highlights the importance of c(S, T ) for
(irreducible) GLMs: it implies that the maximal stepsize-coefficient c, with property
(3.1), is equal to c(S, T ).
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Proof of Theorem 3.1. In order to prove (i), it is enough to apply Theorem 2.4 to
process (2.5), where xi and fi are defined via (2.4).

For proving (ii), note that, when Tk = 0, the value of the parameter ck is irrelevant
to monotonicity of method (2.1). We can thus arrange, without loss of generality, that
ck �= ci (for Tk = 0 and i �= k). Under the irreducibility assumption in (ii), we thus
have

Ri �= Rj whenever i �= j, ci = cj .

In order to apply Theorem 2.7, we specify index sets Iq by the following require-
ment: indices i, j belong to the same index set, if and only if ci = cj . Since process
(2.5) is now irreducible in the sense of Definition 2.6, we can apply Theorem 2.7. For
proving (ii) it is thus enough to show that (3.1) (for the GLM) implies (2.16) (for
process (2.5)).

In order to prove the last implication, we assume (3.1) and suppose xi, yi satisfy
(2.5) with 0 < Δt ≤ c · τ0 and functions fi : V → V satisfying (2.6), (2.15).

We shall show that (2.1) holds with u
(n−1)
i = xi and some function f satisfying

(1.4). In defining f we use the notations ti = (n−1+ci)Δt, α = min ti, β = max ti.
We put f(ti, v) = fi(v), and extend this function to a function f : R × V → V by
linear interpolation for α ≤ t ≤ β, and by setting f(t, v) = f(α, v) (for t < α) and
f(t, v) = f(β, v) (for t > β). This function f satisfies (1.4); and (2.1) holds with

u
(n−1)
i = xi.

Applying (3.1), it follows that (2.2)—and therefore also (2.7)—is fulfilled. This
implies (2.16) and concludes the proof.

Remark 3.2. Theorems 2.4 and 2.7, used in the above proof, can also be applied
to prove a variant of Theorem 3.1 tuned to autonomous differential equations. In such
a variant, property (3.1) is modified by including that f is independent of t, and the
irreducibility condition in (ii) becomes: Ri �= Rj whenever i �= j, Ti �= 0, Tj �= 0.

The subsequent corollaries to Theorem 3.1 involve two properties different in
appearance from (2.2).

Property 1 (discrete maximum principle). Let V = R
N , N ≥ 1. Suppose vectors

yi, u
(n−1)
i ∈ R

N satisfy (2.1.a). We denote the components of these vectors by ypi

and u
(n−1)
pi , respectively (1 ≤ p ≤ N). The property

(3.2)

min
1≤j≤l

min
1≤q≤N

u
(n−1)
qj ≤ ypi ≤ max

1≤j≤l
max

1≤q≤N
u

(n−1)
qj (for 1 ≤ i ≤ m, 1 ≤ p ≤ N)

can be interpreted as a discrete maximum principle. It is of importance in the solution
of partial differential equations (via the method of lines) and can be associated with
the absence of undesirable overshoots and undershoots; see, e.g., Hundsdorfer and
Verwer [21, pp. 9 and 118]. Below we denote the components of f(t, x) ∈ R

N by
fp(t, x) (1 ≤ p ≤ N).

Corollary 3.3 (discrete maximum principle for GLMs). Let f : R×R
N → R

N

and τ0 > 0 be such that, for x ∈ R
N with components ξp,

min
1≤q≤N

ξq ≤ ξp + τ0 · fp(t, x) ≤ max
1≤q≤N

ξq (for 1 ≤ p ≤ N).

Then (3.2) holds, whenever u
(n−1)
i and yi satisfy (2.1.a) with 0 < Δt ≤ c(S, T ) · τ0.

Proof of Corollary 3.3. Define the convex functions ‖x‖+ = maxp ξp and ‖x‖− =
−minp ξp for x ∈ V. The assumption in the corollary, about f and τ0, can be
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rewritten as

‖x + τ0 f(t, x)‖− ≤ ‖x‖− , ‖x + τ0 f(t, x)‖+ ≤ ‖x‖+,

so that (1.4) holds with ‖ · ‖ equal to ‖ · ‖− and ‖ · ‖+, respectively.
Assume (2.1.a) with 0 < Δt ≤ c(S, T ) · τ0. Choosing c = c(S, T ) and applying

Theorem 3.1(i), we get from (3.1) the inequalities ‖yi‖+ ≤ max1≤j≤l ‖u(n−1)
i ‖+ and

‖yi‖− ≤ max1≤j≤l ‖u(n−1)
i ‖−, which imply (3.2).

Property 2 (contractivity). Let ‖.‖ be a convex function on the vector space V.
We consider the contractivity property

(3.3) ‖ỹi − yi‖ ≤ max
1≤j≤l

‖ũ(n−1)
j − u

(n−1)
j ‖ (for 1 ≤ i ≤ m),

where u
(n−1)
i , yi and ũ

(n−1)
i , ỹi satisfy (2.1.a) with the same stepsize Δt > 0. Con-

tractivity of numerical processes were studied earlier in various frameworks; cf., e.g.,
Kraaijevanger [24] Hairer and Wanner [11].

Corollary 3.4 (contractivity for GLMs). Let f : R×V → V and τ0 > 0 be such
that ‖ṽ − v + τ0 · (f(t, ṽ) − f(t, v))‖ ≤ ‖ṽ − v‖ (for t ∈ R and v, ṽ ∈ V). Then (3.3)

holds, whenever u
(n−1)
i , yi and ũ

(n−1)
i , ỹi satisfy (2.1.a) with 0 < Δt ≤ c(S, T ) · τ0.

Proof of Corollary 3.4. The corollary follows from Theorem 3.1, using argu-
ments similar to those in Burrage and Butcher [2, p. 190]: We introduce the auxil-
iary space W = V × V and put ‖w‖ = ‖ṽ − v‖, g(t, w) = (f(t, ṽ), f(t, v)) (for
w = (ṽ, v) with ṽ, v ∈ V). The above assumption, about f and τ0, implies that
‖w + τ0 · g(t, w)‖ ≤ ‖w‖ (for w ∈ W).

Let u
(n−1)
i , yi and ũ

(n−1)
i , ỹi satisfy (2.1.a). Defining Ui = (ũ

(n−1)
i , u

(n−1)
i ), Yi =

(ỹi, yi), we have Yi =
∑

j sij Uj + Δt ·
∑

j tij g((n − 1 + cj)Δt, Yj) and ‖Yi‖ =

‖ỹi − yi‖, ‖Ui‖ = ‖ũ(n−1)
i − u

(n−1)
i ‖. An application of Theorem 3.1(i) (to the space

W and the function g) proves the proposition.

3.2. Applications to RKMs, LMMs, and a MMM. We illustrate the pre-
ceding theory by applying it to some concrete numerical methods.

3.2.1. Runge–Kutta methods. Consider method (1.2). We denote by As+1

the (s+ 1)× s matrix with entries aij and by As the matrix of order s obtained from
As+1 by omitting its last row. By Es+1 and Es, respectively, we denote the (s+1)×1
and the s × 1 matrix with all entries equal to 1. In section 2.1.1, method (1.2) was
already represented as a GLM of form (2.1), with l = 1, m = s + 1 and

S = Es+1, T = [As+1 O ].

Monotonicity of this GLM amounts to (1.3). Hence, according to Theorem 3.1, the
largest stepsize-coefficient c, such that (3.1) holds for the RKM, is essentially equal
to c(S, T ). Below we reformulate this result in a more explicit form.

For S, T just defined, it follows easily, similarly as in Higueras [16], that (2.8) is
equivalent to the following condition:

(3.4)
I + γ As is invertible and As+1(I + γ As)

−1 ≥ O, Es+1 ≥ γ As+1(I + γ As)
−1 Es.

In view of Definition 2.1, it thus follows, after a simple application of Theorem 2.2(i),
that c(S, T ) = Γ, where

(3.5) Γ = sup{γ : γ satisfies (3.4)} (if As+1 ≥ O) and Γ = 0 (otherwise).



GENERAL MONOTONICITY 1237

We denote the rows of the s× s matrix As by r1, . . . , rs. Applying Theorem 3.1, we
immediately arrive at the following two conclusions:

(i) For method (1.2), statement (3.1) is valid with c = Γ, where Γ is given by
(3.5).

(ii) Assume the RKM is irreducible in the sense that ri �= rj for all i, j with
i �= j, ci = cj. Then the value c = Γ in conclusion (i) is optimal, in that (3.1) is not
valid with c > Γ.

These results imply that for (irreducible) RKMs the maximal stepsize-coefficient
c with property (3.1) equals Γ. Statements (i) and (ii) supplement related material in
Higueras [14, 16] and Ferracina and Spijker [6, 7]. The irreducibility condition in (ii)
is essentially weaker than in these papers, whereas the monotonicity property (3.1) in
(i) and (ii) is stronger than in (most of) the papers.

Definition (3.5) can be viewed as a smooth variant of similar definitions in the
papers just mentioned. For many RKMs, the corresponding value of Γ is explicitly
known, because it equals the coefficient introduced, and denoted by R(A, b), in Kraai-
jevanger [24]; the equality Γ = R(A, b) is an easy consequence of Theorem 2.2(ii). For
various interesting RKMs, the actual value of R(A, b) was studied and computed in
the last mentioned paper; see also Higueras [14] and Ferracina and Spijker [6].

Versions of (i) and (ii) tuned to autonomous differential equations can easily be
obtained by applying the variant of Theorem 3.1 mentioned in Remark 3.2. In these
versions, the assumption on f in (3.1) includes that f is independent of t, and the
irreducibility condition on the RKM becomes: ri �= rj (whenever i �= j).

3.2.2. Linear multistep methods. Consider method (1.6), with
∑k

1 αi = 1.
In section 2.1.1, the method was represented as a GLM of form (2.1), with l = k, m =
k + 1, cj = j − k, S =

(
I
A

)
, T =

(
O
B

)
, where A = (αk, . . . , α1), B = (βk, . . . , β0).

This GLM is irreducible in the sense of Theorem 3.1, because ci �= cj (for i �= j). Its
monotonicity amounts to (1.7). Theorem 3.1 thus implies that the largest c, for which
the LMM has property (3.1), is equal to c = c(S, T ).

In order to find a convenient expression for c(S, T ), we consider, for γ > 0,

condition (2.8) with S, T as defined above. One easily sees (using
∑k

1 αi = 1) that
(2.8) is equivalent to the requirement that β0 ≥ 0 and αi ≥ 0, βi ≥ 0, αi − γ βi ≥
0 (1 ≤ i ≤ k). By Definition 2.1, we obtain c(S, T ) = Γ, where

(3.6) Γ = min
1≤i≤k

αi/βi (if all αi, βi are nonnegative) and Γ = 0 (otherwise).

Here we use the convention that a/0 = ∞ for all a ≥ 0. In view of the above, we
have the following conclusions:

(i) For method (1.6), statement (3.1) is valid with c = Γ, where Γ is given by
(3.6).

(ii) The value c = Γ in conclusion (i) is optimal, in that (3.1) is not valid with
c > Γ.

Statements (i) and (ii) imply that the maximal stepsize-coefficient c with property
(3.1) equals Γ. Results similar to (i) were given earlier; see, e.g., Shu [28], Gottlieb,
Shu, and Tadmor [10], Hundsdorfer and Ruuth [19], and Hundsdorfer, Ruuth, and
Spiteri [20].

As an illustration we consider the following LMM, taken from Shu [28]:

(3.7) un = 3
4 un−1 + 1

4 un−3 + 3
2 Δt f((n− 1)Δt, un−1).
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For this second order method, we have Γ = 1/2, so that (3.1) holds with c = 1/2. In
Gottlieb, Shu, and Tadmor [10], the method was proved to be optimal, in that there
exists no explicit second order method (1.6), with k = 3 and Γ > 1/2. In view of
statement (ii), it follows that (3.7) is even optimal in a wider and more fundamental
sense than stated in the last paper: there exists no explicit second order method (1.6),
with k = 3, satisfying (3.1) with c > 1/2.

Versions of (i) and (ii) for autonomous differential equations follow again from
the variant of Theorem 3.1 mentioned in Remark 3.2. No explicit irreducibility as-
sumption, about the LMM, is needed in these versions.

3.2.3. A multistep-multistage method. We illustrate Theorems 2.2 and 3.1
with the method

vn = γ1 un−1 + γ2 un−2 + Δt · [δ0 fn + δ1 fn−1 + δ2 fn−2 + δ3 gn],(3.8.a)

un = α1 un−1 + α2 un−2 + Δt · [β0 fn + β1 fn−1 + β2 fn−2 + β3 gn].(3.8.b)

Here vn is an intermediate approximation used for computing un from un−1, un−2,
and fn = f(nΔt, un), gn = f((n−σ)Δt, vn). We assume α1 +α2 = γ1 + γ2 = 1 and,
in order to prevent reducibility, that the coefficient vectors (α1, α2, β0, β1, β2, β3) and
(γ1, γ2, δ0, δ1, δ2, δ3) are different. Method (3.8) can be viewed as a modified LMM or
a two-step RKM; cf., e.g., Butcher [5] and Jackiewicz and Tracogna [22]. In Gottlieb,
Shu, and Tadmor [10, pp. 102 and 103], methods of type (3.8) were explored which
are explicit, i.e., β0 = δ0 = δ3 = 0.

The general method (3.8) can be written as a GLM (2.1), with l = 2, m = 4 and
with matrices S, T , determined by αi, βi, γi, δi, such that y1 = vn, y2 = un−2, y3 =
un−1, y4 = un. The monotonicity relation (2.2) reduces to max{‖vn‖, ‖un‖} ≤
max{‖un−1‖, ‖un−2‖}. Applying Theorem 3.1, we conclude that the largest c, for
which method (3.8) satisfies (3.1), is equal to c(S, T ). By combining this conclusion
with Theorem 2.2(i), we arrive after a short calculation at the following proposition.

Proposition 3.1. For method (3.8), a positive c exists with property (3.1), if
and only if all coefficients αi, βi, γi, δi are nonnegative, with αi

βi+β3 γi
> 0, γi

δi+δ0 αi
>

0 (i = 1, 2) and βi−1

β3 δi−1
> 0, δi

δ0 βi
> 0 (i = 1, 2, 3).

Here we use again the convention that a/0 = ∞ > 0 for a ≥ 0.
With E2 we denote the class of all explicit methods (3.8) with order of accuracy 2.

We consider the problem of determining a method in the class which is optimal, in that
it has property (3.1) with a value c which is maximal in E2. In view of Theorem 3.1,
this problem amounts to finding the maximum of c(S, T ) over the class E2. According
to Definition 2.1, this maximum can be computed by performing an optimization, with
objective function γ and search variables αi, βi, γi, δi, σ, γ, under the constraints
(2.8), supplemented by the order conditions. We performed a numerical search along
these lines (using MATLAB) and obtained an (optimal) method of form (3.8), for
which we found that the nonzero parameters can be represented (up to 13 decimal
digits) as follows:

α1 = 2(
√

2−1), α2 = 3−2
√

2, β1 = β3 = 2−
√

2, γ1 = 1, δ1 =
√

2/2, σ = 1−
√

2/2.

This method is of order 2 and it satisfies (3.1) with stepsize-coefficient c =
√

2.
Second order methods with a larger stepsize-coefficient can be found in the class

G2 of general second order methods (3.8). By a numerical search in G2, similar to
the above, we arrived at an (optimal) method with the following nonzero parameters:

α1 = γ1 = 1, β0 = β1 = δ1 = δ3 = 1/4, β3 = 1/2, σ = 1/2.



GENERAL MONOTONICITY 1239

This method is of order 2 and it satisfies (3.1) with stepsize-coefficient c = 4. Note
that the method is equivalent to two applications of the trapezoidal rule (TR) starting
from un−1 and using stepsize Δt/2; we refer to Lenferink [25, p. 180] for a related
interesting optimality property of the TR.

We also performed a similar numerical search in the class E3 of all explicit third
order methods (3.8). Our search resulted in an (optimal) method for which the
nonzero parameters can be represented (up to 13 decimal digits) as follows:

α1 = 6
√

3 − 10, α2 = 11 − 6
√

3, β1 = 4 − 2
√

3, β2 = 2 −
√

3, β3 = 6 − 3
√

3,

γ1 = 2/3, γ2 = 1/3, δ1 = (1 +
√

3)/3, σ = 1 −
√

3/3.

The method is of order 3 and satisfies (3.1) with stepsize-coefficient c =
√

3 − 1 ≈
0.732. This result extends an earlier numerical search in Gottlieb, Shu, and Tadmor
[10, pp. 102 and 103], where a special method of class E3 was found which can be
implemented, at the cost of an additional function evaluation f̃n−1, such that (3.1)
holds with c ≈ 0.473.

We also did a numerical search in the class G3 of general third order methods
(3.8). The best method we could find has a coefficient δ0 = 0 and it satisfies (3.1) with
stepsize-coefficient c ≈ 3.233, but we did not succeed in finding simple closed-form
expressions, similarly as above, for the parameters specifying the method.

We do not go into details here of higher order methods. We just refer to Gottlieb,
Shu, and Tadmor [10, p. 103] for an interesting proposition about explicit fourth order
methods, and note that fifth order methods with δ0 = 0 exist satisfying (3.1) with
positive c.

3.3. Applications to additive RKMs. Numerical methods of the form

yi = un−1 + Δt ·
s∑

j=1

aij f(yj) + Δt ·
s∑

j=1

âij f̂(yj) (1 ≤ i ≤ s + 1),(3.9.a)

un = ys+1(3.9.b)

have been considered for the efficient solution of equations d
dtU(t) = f(U(t))+f̂(U(t)),

where f and f̂ have different stiffness properties; cf., e.g., Ascher, Ruuth, and Spiteri
[1] and Kennedy and Carpenter [23]. The methods are known as additive Runge–
Kutta methods; and also as implicit-explicit (IMEX) methods in case the RKM with
coefficients aij is implicit and the one with âij explicit. Furthermore, methods of the
form (3.9) have been studied under the name of perturbed Runge–Kutta methods, in
the context of solving semidiscrete versions of hyperbolic problems. In that situation,
(3.9) is equivalent to a Shu–Osher implementation of a standard RKM where some
aij are negative; cf. Higueras [15, 16].

In the last mentioned papers, monotonicity, in the sense of (1.3), was studied for
(3.9), under the assumption

(3.10) ‖v + τ0f(v)‖ ≤ ‖v‖, ‖v + τ̂0f̂(v)‖ ≤ ‖v‖ (for all v ∈ V);

a stepsize (Δt)∗ was presented with the following crucial property:

Condition 0 < Δt ≤ (Δt)∗ implies monotonicity of (3.9) whenever V is a(3.11)

vector space, ‖.‖ a convex function on V, and functions f, f̂ : V → V satisfy (3.10).
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In order to specify (Δt)∗, we introduce the (s + 1) × s matrices A = (aij), Â =

(âij), and the (s + 1) × (s + 1) matrices K = [A O], K̂ = [Â O]. We define R to be
the set of all pairs (γ, γ̂) ∈ R

2 such that

(3.12) I + γ K + γ̂ K̂ is invertible and (I + γ K + γ̂ K̂)−1
[
E γ K γ̂ K̂

]
≥ 0.

Here E stands for the (s+ 1)× 1 matrix with all entries equal to 1 and the inequality
in (3.12) is to be interpreted entrywise. For a given τ0 > 0, τ̂0 > 0, we put

(Δt)∗ = 0 if there is no pair (γ, γ̂) in R with γ τ0 = γ̂ τ̂0 > 0; otherwise(3.13)

(Δt)∗ = sup{τ : τ = γ τ0 = γ̂ τ̂0 > 0 with (γ, γ̂) in R}.

The following theorem follows immediately from the material in Higueras [15].
Theorem 3.5 (Higueras, 2006). Consider method (3.9) and let τ0 > 0, τ̂0 > 0

be given. Then statement (3.11) is valid, with (Δt)∗ defined by (3.13).
In Higueras [15], sets R were computed for a series of important additive RKMs.

For any given τ0, τ̂0, these sets allow the immediate calculation of (Δt)∗ defined by
(3.13). One may be tempted to view these sets as important characteristics of the
underlying methods, and to compare the efficiency of different methods by taking
(the magnitude of) the corresponding sets R into account. However, if (3.11) would
also be valid for some (Δt)∗ which is greater than the one given by (3.13), such a
use of these sets might be misleading. The natural question arises of whether the
value (Δt)∗, given in the above theorem, is best possible. We think this fundamental
question has not yet been answered in the literature.

By applying the theorems of section 2, one can recover the above theorem and
essentially answer the question just raised (in the positive); we have the following
theorem.

Theorem 3.6 (upper bound for (Δt)∗ in (3.11)). Let (3.9) be irreducible, in the

sense that the first s rows of the (s + 1) × 2 s matrix
[
A Â

]
are different from each

other. Let τ0 > 0, τ̂0 > 0 be given. If (Δt)∗ is such that statement (3.11) holds, then
(Δt)∗ cannot exceed the value given in (3.13).

Proof of Theorems 3.5 and 3.6 using the theory of section 2. (i) Let τ0 > 0, τ̂0 > 0
be given. We shall relate (3.9) to a numerical process of the form (2.5): we put

l = 1, m = 2(s + 1), and S = (sij) =
(
E
E

)
, T = (tij) =

(K δK̂
K δK̂

)
, where δ = τ0/τ̂0. We

define index sets I1 = {1, . . . , s}, I2 = {s + 1}, I3 = {s + 2, . . . , 2s + 1}, and I4 =
{2(s + 1)}.

Let yi, un−1 satisfy (3.9.a) with f, f̂ as in (3.10). Then x1 = un−1 and yi, with

(3.14) ys+1+i = yi (for 1 ≤ i ≤ s + 1),

can be seen to fulfill (2.5), with some functions fi satisfying (2.6).
Conversely, let xi, yi fulfill (2.5) with fi satisfying (2.6), (2.15). Then (3.14) holds,

so that yi and un−1 = x1 satisfy (3.9.a) with some f, f̂ as in (3.10).
(ii) In view of the above, it follows that (3.11) holds, with (Δt)∗ = c · τ0, as

soon as (2.12) is in force for process (2.5). According to Theorem 2.4, we can choose
c = c(S, T ). Hence (3.11) is valid with (Δt)∗ = c(S, T ) · τ0. A straightforward
calculation shows that c(S, T ) · τ0 is equal to the value (Δt)∗ defined by (3.13). This
proves Theorem 3.5.

(iii) Assume (3.11) holds for some (Δt)∗. We see now that property (2.16) must be
valid for process (2.5), with c = (Δt)∗/τ0. The irreducibility assumption in Theorem
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3.6 implies that process (2.5) is irreducible with respect to I1, . . . , I4, so that Theorem
2.7 can be applied. It follows that the largest value c in (2.16) equals c(S, T ), which
implies (Δt)∗/τ0 ≤ c(S, T ). Using again that c(S, T ) · τ0 equals the value defined by
(3.13), we arrive at Theorem 3.6.

Remark 3.7. The set R has the following interesting property:

(3.15) If (γ, γ̂) ∈ R, then (β, β̂) ∈ R whenever 0 ≤ β ≤ γ, 0 ≤ β̂ ≤ γ̂.

This can be proved by defining S, T similarly as in the above proof and applying
Theorem 2.2(ii).

For related material, see Higueras [15].

4. Proof of Theorems 2.4 and 2.7.

4.1. Sufficiency of the inequality (2.11). In order to write (2.5) and similar
relations more concisely, we introduce some notations relevant to the vector space V.
For any integer n ≥ 1 and vectors x1, . . . , xn ∈ V, we denote the vector in V

n with
components xi by

x = [xi] =

⎛⎜⎝ x1

...
xn

⎞⎟⎠ ∈ V
n.

Furthermore, we denote with a boldface letter the linear operators from V
n to V

m

determined in a natural way by m × n matrices: for any matrix A = (ai,j) ∈ R
m×n

and x = [xi] ∈ V
n we define A(x) = y, where y = [yi] ∈ V

m is given by yi =∑n
j=1 aij xj (1 ≤ i ≤ m).

We combine the vectors xi and yi, occurring in (2.5), into the vectors x = [xi] ∈ V
l

and y = [yi] ∈ V
m, respectively. Furthermore, for given functions fi : V → V

(1 ≤ i ≤ m), we define a function F , from V
m to V

m, by F (y) = [fi(yi)] ∈ V
m for

y = [yi] ∈ V
m. With these notations, the relations (2.5) can be written as an equality

in V
m:

(4.1) y = Sx + Δt · T F (y).

The simple Lemma 4.1 will be quite useful, in the present section for proving that
(2.11) implies (2.12) and (2.16), and in the next section for proving that (2.13) and
(2.17) imply (2.11). In the lemma we use the notations (2.9) and we relate (4.1), with
fi satisfying (2.6), (2.15), to the conditions

y = Rx + P z, with ‖zi‖ ≤ ‖yi‖ (1 ≤ i ≤ m),(4.2.a)

zi = zj , whenever yi = yj and i, j belong to the same index set Iq.(4.2.b)

Lemma 4.1 (reformulation of (4.1) with fi satisfying (2.6), (2.15)). Let τ0 >
0, Δt > 0, γ = Δt/τ0, and I + γT be invertible. Assume (2.14), and let x = [xi] ∈
V

l and y = [yi] ∈ V
m be given. Then (4.1) holds for some fi : V → V satisfying (2.6),

(2.15), if and only if there exists a vector z = [zi] ∈ V
m such that (4.2) holds.

Proof of Lemma 4.1. Assume (4.1), (2.6), (2.15), and define zi = yi+τ0 fi(yi), z =
[zi] ∈ V

m. Applying (2.6), (2.9), and the equality y = Sx + γ T (−y + z), we arrive
at (4.2.a); and by applying (2.15) we obtain (4.2.b).

Conversely, suppose (4.2.a) and (4.2.b) hold. For i ∈ Iq we define fi : V → V by

fi(v) = (1/τ0)(−yj + zj) (if v = yj , j ∈ Iq), and fi(v) = 0 (otherwise) .
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Using again (2.9), it follows easily that (4.1) holds with fi satisfying (2.6), (2.15).

Proof that inequality (2.11) implies (2.12) and (2.16). Assume 0 < τ0 < ∞, 0 <
c ≤ c(S, T ). We shall prove (2.12), which is enough because (2.16) follows from (2.12).

Let V, ‖.‖, fi be as assumed in (2.12), and suppose xi, yi satisfy (2.5) with 0 <
Δt ≤ c · τ0. We put γ = Δt/τ0 so that 0 < γ ≤ c(S, T ). Applying Theorem 2.2(ii), it
thus follows that γ satisfies (2.8), so that I + γ T is invertible.

Since (4.1) holds with fi satisfying (2.6), we can apply Lemma 4.1, with the trivial
index sets Iq = {q} for 1 ≤ q ≤ m. It follows that (4.2.a) holds, so that, with the
notations (2.9),

yi =

l∑
j=1

rij xj +

m∑
j=1

pij zj , ‖zi‖ ≤ ‖yi‖ (1 ≤ i ≤ m).

In view of (2.8), (2.9), we have rij ≥ 0, pij ≥ 0; similarly, as in the proof of Lemma
2.3 we have (2.10), i.e.,

∑
j rij +

∑
j pij = 1.

We denote the column vector in R
l with components ‖xi‖ by [‖xi‖], and we use

a similar notation with regard to yi and zi. Using the convexity of the function ‖ · ‖,
it thus follows that [‖yi‖] ≤ R [‖xi‖] + P [‖zi‖] ≤ QS [‖xi‖] + (I − Q) [‖yi‖], i.e.,
Q [‖yi‖] ≤ QS [‖xi‖]. Multiplying the last inequality by the matrix Q−1 = I + γ T
(which is nonnegative, in view of Theorem 2.2(i)), we get

(4.3) ‖yi‖ ≤
l∑

j=1

sij ‖xj‖ (1 ≤ i ≤ m).

Using (2.3) and the nonnegativity of sij (cf. Theorem 2.2(i)), we obtain (2.7).

4.2. Necessity of the inequality (2.11). In proving that (2.13) and (2.17)
imply (2.11), we shall use the following lemma.

Lemma 4.2 (invertibility of I + γ T ). Let τ0 > 0, Δt > 0 be given and γ = Δt/τ0.
Assume V = R

m, ‖ · ‖ = ‖ · ‖∞, and let I1, . . . , Ir be index sets as in (2.14). Suppose
process (2.5) is monotonic for all functions fi satisfying (2.6), (2.15). Then I + γ T
is invertible.

Proof of Lemma 4.2. Suppose (I + γ T ) η = 0 for some vector η = [ηi] ∈ R
m.

Define fi(v) = −(1/τ0) v (for all v ∈ V). Then (2.5) is satisfied by the vectors
xi = 0 (1 ≤ i ≤ l) and yi = ηi em (1 ≤ i ≤ m), where em is the vector in R

m with
all components equal to 1. Since the functions fi satisfy (2.6), (2.15), it follows that
|ηi| = ‖yi‖ ≤ maxj ‖xj‖ = 0, so that η = 0.

Proof that (2.13) implies (2.11). Let τ0, c be given with 0 < τ0 < ∞, 0 < c ≤ ∞,
and assume (2.3), (2.13). We choose Δt = γ τ0, where γ is an arbitrary finite value
with 0 < γ ≤ c; and we define V = R

m.
An application of Lemma 4.2, with the trivial index sets Iq = {q} (for 1 ≤ q ≤ m),

shows that the matrix I + γ T is invertible. We thus can use the notations (2.9) and
apply Lemma 4.1 (again with the trivial index sets), so as to conclude that, for any
x ∈ V

l and y, z ∈ V
m, the relations

(4.4) y = Rx + P z, with ‖zj‖∞ ≤ ‖yj‖∞ (1 ≤ j ≤ m),

imply that

(4.5) ‖yj‖∞ ≤ max
1≤k≤l

‖xk‖∞ (for 1 ≤ j ≤ m).
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Below we shall use this implication for proving that

(4.6) ‖ [R P ] ‖∞ ≤ 1.

By Lemma 2.3, inequality (4.6) implies that γ ≤ c(S, T ). Since γ was chosen arbi-
trarily in (0, c], the last inequality implies (2.11).

In proving (4.6), we shall use the notation sgn(α) = 1 (for α ≥ 0), sgn(α) =
−1 (for α < 0). We put xij = sgn(rij), zij = sgn(pij), where rij , pij are the entries
of R and P , and we consider the special vectors xj , zj ∈ V = R

m with components
xij and zij , respectively (1 ≤ i ≤ m). We define x ∈ V

l and y, z ∈ V
m by x =

[xj ], z = [zj ], y = [yj ] = Rx + Pz, and denote the components of the vectors yj by
yij (1 ≤ i ≤ m).

The relations (4.4) hold, with these special vectors, because

‖yj‖∞ ≥ yjj =
∑
k

rjk xjk +
∑
k

pjk zjk =
∑
k

|rjk| +
∑
k

|pjk|,

and, in view of (2.10),

‖zj‖∞ = 1 =
∑
k

rjk +
∑
k

pjk ≤
∑
k

|rjk| +
∑
k

|pjk|.

Since (4.4) implies (4.5), we obtain
∑

k |rjk| +
∑

k |pjk| ≤ 1, i.e., (4.6).

Proof that (2.17) implies (2.11). (i) Assume (2.3), (2.14) and irreducibility with
respect to the index sets under consideration. Let τ0, c be given with 0 < τ0 < ∞, 0 <
c ≤ ∞, and assume (2.17). We choose Δt = γ τ0, where γ is an arbitrary finite value
with 0 < γ ≤ c and we define V = R

m.
Similar to the proof above, I+γ T is invertible, and for any x ∈ V

l and y, z ∈ V
m,

the implication

(4.4) and (4.2.b) ⇒ (4.5)

is valid. For completing the present proof, it is again enough to deduce (from the last
implication) that (4.6) holds.

Below we shall denote by xj , yj , zj the special vectors in V = R
m, with compo-

nents xij , yij , zij , used in the previous proof that (2.13) implies (2.11).
(ii) First, assume that yi �= yj whenever indices i �= j belong to the same index

set. Clearly, under this assumption (4.2.b) holds. Furthermore, just as in the previous
proof, we have (4.4) so that (4.5) is valid. This again implies (4.6).

(iii) Next, assume the last assumption is violated, i.e., there are indices s, q be-
longing to the same index set, with s �= q and ys = yq. In this situation, we modify
(only) the qth component of our special vectors xj , yj , zj into x̃qj = ξj , ỹqj = ηj ,
and z̃qj = ζj , respectively. Here ξ = [ξj ] ∈ R

l, η = [ηj ] ∈ R
m, and ζ = [ζj ] ∈ R

m are
vectors such that

η = Rξ + P ζ, with ‖ξ‖∞ ≤ 1, ‖ζ‖∞ ≤ 1,(4.7.a)

ηi �= ηj whenever i �= j belong to the same index set.(4.7.b)

We will show that such vectors exist in part (iv) of the proof. In order to distin-
guish the original vectors xj , yj , zj from the modified ones, we denote the latter by
x̃j , ỹj , z̃j , respectively.
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Clearly, for x̃ = [x̃j ], ỹ = [ỹj ], z̃ = [z̃j ], the equality ỹ = R x̃ + P z̃ holds.
Furthermore, ỹi �= ỹj , whenever i �= j belong to the same index set. Finally (using
|yss| = |ysq| ≤ ‖ỹq‖∞), we see that ‖z̃j‖∞ ≤ 1 ≤ ‖ỹj‖∞ (1 ≤ j ≤ m). The modified
vectors thus satisfy (4.4), (4.2.b). Consequently, they satisfy (4.5), which implies∑

k |rjk| +
∑

k |pjk| ≤ 1 (for all j �= q). By interchanging the role of s and q, we see
that the last inequality is also valid for all j �= s. Hence, (4.6) holds.

(iv) In view of the irreducibility assumption, the polynomials fi(λ) =
∑l

k=1 sik λ
k

+ γ ·
∑m

k=1 tik λ
l+k satisfy fi �= fj , if i �= j belong to the same index set. It follows

that, for sufficiently small λ > 0, the vectors ξ = [ξj ], η = [ηj ], ζ = [ζj ], with
ξk = λk (1 ≤ k ≤ l), ηk = fk(λ) (1 ≤ k ≤ m), ζk = λl+k + fk(λ) (1 ≤ k ≤ m), satisfy
(4.7).
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ROBIN–ROBIN DOMAIN DECOMPOSITION METHODS FOR THE
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Abstract. In this paper we consider a coupled system made of the Stokes and Darcy equations,
and we propose some iteration-by-subdomain methods based on Robin conditions on the interface.
We prove the convergence of these algorithms, and for suitable finite element approximations we
show that the rate of convergence is independent of the mesh size h. Special attention is paid to the
optimization of the performance of the methods when both the kinematic viscosity ν of the fluid and
the hydraulic conductivity tensor K of the porous medium are very small.
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1. Introduction and problem setting. Let Ω ⊂ R
d (d = 2, 3) be a bounded

domain, decomposed in two nonintersecting subdomains Ωf and Ωp separated by an
interface Γ, i.e., Ω = Ωf ∪ Ωp, Ωf ∩ Ωp = ∅, and Ωf ∩ Ωp = Γ.

We are interested in the case in which Γ is a surface separating an upper domain
Ωf filled by a fluid, from a lower domain Ωp formed by a porous medium. We assume
that the fluid contained in Ωf has an upper fixed surface (i.e., we do not consider the
free surface fluid case) and can filtrate through the porous medium beneath.

The motion of the fluid in Ωf is modeled by the Stokes equations:

(1) −∇ · T(uf , pf ) = f , ∇ · uf = 0 in Ωf ,

where T(uf , pf ) = 2 ν D(uf )− pf I is the stress tensor, and D(uf ) = 1
2 (∇uf +∇Tuf )

is the deformation tensor; as usual, ∇ and ∇· denote the gradient operator and
the divergence operator, respectively, with respect to the space coordinates. The
parameter ν > 0 is the kinematic viscosity of the fluid, while uf and pf denote the
fluid velocity and pressure, respectively. We suppose ν to be constant in the whole
domain Ωf .

In the lower domain Ωp we define the piezometric head ϕ = z + pp/(ρg), where
z is the elevation from a reference level, pp the pressure of the fluid in Ωp, ρ > 0 the
density of the fluid (assumed to be constant in the whole domain Ω), and g > 0 the
gravity acceleration.

The flow in Ωp is modeled by the equations:

(2) up = −K

n
∇ϕ, ∇ · up = 0 in Ωp,
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Fig. 1. Schematic representation of a 2D vertical section of the computational domain.

where up is the fluid velocity, and n > 0 is the volumetric porosity. The tensor K is the
hydraulic conductivity K = diag (K1, . . . ,Kd), and we suppose that Ki ∈ L∞(Ωp) and
infΩp Ki > 0, i = 1, . . . , d. In the following we shall denote K = K/n = diag (Ki/n)
(i = 1, . . . , d). The first equation in (2) is Darcy’s law.

For the sake of simplicity, we adopt homogenous boundary conditions. We impose
the no-slip condition uf = 0 on Γf = ∂Ωf \ Γ for the Stokes problem (1), while, for
the Darcy problem (2), we set the piezometric head ϕ = 0 on the lateral surface Γp,
and we require a slip condition on Γb

p: up · np = 0 on Γp, where ∂Ωp = Γ ∪ Γb
p ∪ Γp

(see Figure 1). The vectors np and nf denote the unit outward normal vectors to the
surfaces ∂Ωp and ∂Ωf , respectively; in particular, we have nf = −np on Γ. In the
following we shall indicate n = nf for simplicity of notation. We also assume that
the boundary ∂Ω and the interface Γ are piecewise smooth manifolds.

Other boundary conditions (see, e.g., [6, 7, 13, 10, 11]) could also be considered,
and all of the results in this paper would remain true without essential changes in the
proofs.

We supplement the Stokes and Darcy problems with the following matching con-
ditions on Γ (see [12]):

up · n = uf · n,(3)

−ετ j · (T(uf , pf ) · n) = νuf · τ j , j = 1, . . . , d− 1,(4)

−n · (T(uf , pf ) · n) = gϕ|Γ,(5)

where τ j (j = 1, . . . , d−1) are linear independent unit tangential vectors to the inter-
face Γ, and ε represents the characteristic length of the pores of the porous medium.

Conditions (3)–(5) impose the continuity of the normal velocity on Γ, as well as
that of the normal component of the normal stress, but they allow the pressure to be
discontinuous across the interface.

This problem has been studied in several works. In [8, 6, 7] the mathematical and
numerical analysis of the coupled problem was carried out, in the case in which the
Darcy equation is replaced by a scalar elliptic problem for the sole piezometric head ϕ.
The analysis of the coupled problem in its original form (1)–(2) has been considered
in [13, 10], and the recent works [18, 11] address the analysis and preconditioning of
mortar discretizations of the Stokes–Darcy problem.

A domain decomposition method of the Dirichlet–Neumann type based on the
choice of the fluid normal velocity across Γ as an interface variable was proposed and
analyzed in [6, 7]. A similar approach, using the trace of ϕ on Γ as an interface
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variable, has been studied in [8]. After proving that this method is equivalent to
a preconditioned Richardson algorithm for the Steklov–Poincaré interface equation
associated to the Stokes–Darcy problem, it was proved that the convergence rate of
the algorithm is independent of the mesh parameter h, for suitable conforming finite
element approximations of the coupled problem. An extension to the time-dependent
case has been presented in [9].

The previous results indicate that, in the steady case, preconditioners of the
Dirichlet–Neumann type may be sensitive to the variation of the viscosity ν and of
the entries of the hydraulic conductivity K, downgrading the convergence rate of the
algorithm.

In this work we extend some preliminary results contained in [8], by presenting
improved domain decomposition methods based on Robin interface conditions. The
aim is twofold: first, to propose an algorithm whose rate of convergence does not
deteriorate as ν and the entries of K become smaller and smaller, and second, to
devise an algorithm that is more “symmetric” with respect to the treatment of either
Ωf and Ωp, namely, being based on solvers that treat simultaneously (i.e., in parallel)
the two subdomains.

After having presented in section 2 the weak formulation of the coupled problem,
in section 3 we introduce two methods, based on a multiplicative and on an additive
paradigm, respectively. Then, in section 4 the convergence analysis of the algorithms
is developed. Finally, some numerical results are presented in section 5.

The first algorithm has optimal convergence properties with respect to ν and K.
On the other hand, the second algorithm, which indeed for small values of ν and
K does not outperform the Dirichlet–Neumann scheme, is interesting for its parallel
nature. Moreover, its convergence analysis is rather simple and is based on the fact
that the so-called Robin-to-Dirichlet and Robin-to-Neumann maps are symmetric and
positive, uniformly with respect to the mesh size h. These important properties seem
to be yet overlooked in the literature and could be revealed to be very useful also in
different contexts.

2. Weak form of the coupled problem. From now on, instead of (2), we will
take the following scalar formulation of the Darcy problem:

(6) −∇ · (K∇ϕ) = 0 in Ωp.

Accordingly, (3) becomes

(7) −K∇ϕ · n = uf · n on Γ.

We define the following functional spaces:

Hf = {v ∈ (H1(Ωf ))d| v = 0 on Γf}, Q = L2(Ωf ),(8)

Hp = {ψ ∈ H1(Ωp)| ψ = 0 on Γb
p}(9)

and the bilinear forms

af (v,w) = 2ν

∫
Ωf

D(v) : D(w) ∀v,w ∈ (H1(Ωf ))d,(10)

bf (v, q) = −
∫

Ωf

q∇ · v ∀v ∈ (H1(Ωf ))d, ∀q ∈ Q,(11)

ap(ϕ,ψ) =

∫
Ωp

∇ψ · K∇ϕ ∀ϕ,ψ ∈ H1(Ωp).(12)
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The coupling conditions (4), (5), and (7) can be incorporated in the weak formu-
lation of the global problem as natural conditions on Γ. In particular, we can write
the following weak saddle-point formulation of the coupled Stokes–Darcy problem:

Find (uf , pf ) ∈ Hf ×Q, ϕ ∈ Hp such that

af (uf ,v) + bf (v, pf ) + g ap(ϕ,ψ) +

∫
Γ

g ϕ(v · n) −
∫

Γ

g ψ(uf · n)

+

∫
Γ

d−1∑
j=1

ν

ε
(uf · τ j)(v · τ j) =

∫
Ωf

f · v ∀v ∈ Hf , ψ ∈ Hp,(13)

bf (uf , q) = 0 ∀q ∈ Q.(14)

Using Brezzi’s theory of saddle-point problems [2], we can guarantee that the
coupled problem (13)–(14) has a unique solution (see [8, 6, 13]).

In the rest of the paper, instead of (4) we shall adopt the following simplified
condition on the interface:

(15) uf · τ j = 0 on Γ (j = 1, . . . , d− 1),

and, consequently, we will use the functional space:

(16) Hτ
f = {v ∈ Hf | v · τ j = 0 on Γ, j = 1, . . . , d− 1}.

This simplification is acceptable from the physical viewpoint, since the term in
(4) involving the normal derivative of uf is multiplied by ε and the velocity itself can
be supposed at least of order O(ε) in the neighborhood of Γ, so that the left-hand
side can be approximated by zero. We point out that this simplification does not
dramatically influence the coupling of the two subproblems, since (4) is not strictly
speaking a coupling condition but only a boundary condition for the fluid problem
in Ωf . In any case, all of the results in the paper are still true for the more general
interface condition (4), provided Hτ

f is replaced by Hf and the bilinear form af (w,v)

by af (w,v) +
∫
Γ

∑d−1
j=1

ν
ε (w · τ j)(v · τ j).

Remark 2.1. In [6, 7] we considered another simplified form of (4), i.e., τ j ·
(T(uf , pf ) · n) = 0 on Γ. Although not completely precise from the physical point of
view, this simplified condition is perfectly acceptable from the mathematical viewpoint
for the setup and analysis of solution methods for the coupled problem.

3. Iterative domain decomposition methods for solving the coupled
problem. In this section we propose new iterative methods to compute the solu-
tion of the coupled problem which exploit the decoupled structure of the problem,
thus requiring one at each step to solve independently the fluid and the groundwater
subproblems, i.e., using as building blocks a Stokes solver and an elliptic solver.

As we have already remarked, the numerical performances of the domain decom-
position methods of the Dirichlet–Neumann type presented in [6, 7] strongly depend
on the fluid viscosity ν and on the entries of the hydraulic conductivity K. More
precisely, the convergence rate of the algorithm deteriorates as ν and the entries of K
decrease. The following numerical example illustrates the situation.

Example 3.1. We consider the computational domain Ω ⊂ R
2, with Ωf = (0, 1)×

(1, 2), Ωp = (0, 1) × (0, 1), and Γ = (0, 1) × {1}, and choose the parameter g = 1;
moreover, we assume that the hydraulic conductivity tensor K is a multiple of the
identity tensor, namely, a scalar function. Boundary conditions and the right-hand
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Table 1

Iterations using PCG with the Dirichlet–Neumann preconditioner with respect to several values
of ν and K and of the grid parameter h (h1 ≈ 0.14 and hi = h1/2i−1, i = 2, 3, 4).

ν K h1 h2 h3 h4

1 1 5 5 5 5
10−1 10−1 10 10 8 8
10−2 10−1 13 15 14 14
10−3 10−2 19 49 60 55
10−4 10−3 20 58 143 167
10−6 10−4 20 56 138 202

side f are chosen in such a way that the exact solution of the coupled Stokes–Darcy
problem is uf = (y2 − 2y + 1, x2 − x)T , pf = 2ν(x + y − 1) + 1/(3K), ϕ = (x(1 −
x)(y−1)+ y3/3− y2 + y)/K+2xν, with ν and K constant in Ωf and Ωp, respectively.
Table 1 reports the number of iterations obtained for several choices of ν and K and
four different grid sizes, using the preconditioned conjugate gradient (PCG) method
on the interface equation, with the preconditioner characterized by the Dirichlet–
Neumann method. A tolerance of 10−9 has been imposed on the relative increment.
Taylor–Hood finite elements have been used to approximate the Stokes problem and
quadratic Lagrangian elements for the Darcy equation (6).

Such small values of ν and K are quite realistic for real-life physical flows. This
fact motivates our interest to set up new algorithms that are more robust to parameter
variations.

3.1. Iterative methods based on Robin interface conditions. We present
two possible domain decomposition methods based on the adoption of Robin interface
conditions, i.e., proper linear combinations of the coupling conditions (5) and (7).

3.1.1. A sequential Robin–Robin method. We consider a sequential Robin–
Robin (sRR) method, which at each iteration requires one to solve a Darcy problem
in Ωp followed by a Stokes problem in Ωf , both with Robin conditions on Γ. Precisely,
the algorithm reads as follows.

Having assigned a trace function η0 ∈ L2(Γ) and two acceleration parameters
γf ≥ 0 and γp > 0, for each k ≥ 0:

(i) find ϕk+1 ∈ Hp such that

(17) γpap(ϕ
k+1, ψ) +

∫
Γ

gϕk+1
|Γ ψ|Γ =

∫
Γ

ηkψ|Γ ∀ ψ ∈ Hp.

This corresponds to imposing the following interface condition (in weak, or
natural, form) for the Darcy problem:

(18) −γpK∇ϕk+1 · n + gϕk+1
|Γ = ηk on Γ.

(ii) Then find (uk+1
f , pk+1

f ) ∈ Hτ
f ×Q such that

(19)

af (uk+1
f ,v) + bf (v, pk+1

f ) + γf

∫
Γ

(uk+1
f · n)(v · n)

=

∫
Γ

(γf
γp

ηk − γf + γp
γp

gϕk+1
|Γ

)
(v · n) +

∫
Ωf

f · v ∀ v ∈ Hτ
f ,

bf (uk+1
f , q) = 0 ∀ q ∈ Q.
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This corresponds to imposing on the Stokes problem the following matching
conditions on Γ (still in natural form):

n · (T(uk+1
f , pk+1

f ) · n) + γfu
k+1
f · n =

γf
γp

ηk − γf + γp
γp

gϕk+1
|Γ

= −gϕk+1
|Γ − γfK∇ϕk+1 · n,(20)

uk+1
f · τ j = 0, j = 1, . . . , d− 1.

(iii) Finally, set

ηk+1 = −n · (T(uk+1
f , pk+1

f ) · n) + γpu
k+1
f · n

= (γf + γp)(u
k+1
f · n) +

γf + γp
γp

gϕk+1
|Γ − γf

γp
ηk ∈ L2(Γ).(21)

Concerning the solvability of problem (19), we note first that using the trace
theorem and the Korn inequality (see, e.g., [3, p. 416]), there exist two constants
κ1, κ2 > 0 such that

(22)

∫
Γ

|uf · n|2 ≤ κ1

(∫
Ωf

(|uf |2 + |∇uf |2)
)

≤ κ2

∫
Ωf

|D(uf )|2.

Therefore, the bilinear form

af (uf ,v) + γf

∫
Γ

(uf · n)(v · n)

is continuous and coercive in Hτ
f ×Hτ

f . Moreover, the bilinear form bf (v, p) satisfies
an inf–sup condition on the space Hτ

f × Q (see, e.g., [17, pp. 157–158]). Then, for

every f ∈ (L2(Ωf ))d, ηk ∈ L2(Γ), and ϕk+1
|Γ ∈ L2(Γ), there exists a unique solution of

problem (19).
If the sRR method converges, in the limit we recover the solution (uf , pf ) ∈

Hτ
f ×Q and ϕ ∈ Hp of the coupled Stokes–Darcy problem. Indeed, denoting by ϕ∗ the

limit of the sequence ϕk in H1(Ωp) and by (u∗
f , p

∗
f ) that of (uk

f , p
k
f ) in (H1(Ωf ))d×Q,

we obtain

(23) −γpK∇ϕ∗ · n + gϕ∗
|Γ = −n · (T(u∗

f , p
∗
f ) · n) + γpu

∗
f · n on Γ,

so that, as a consequence of (20), we have

(γf + γp)u
∗
f · n = −(γf + γp)K∇ϕ∗ · n on Γ,

yielding, since γf + γp �= 0, u∗
f · n = −K∇ϕ∗ · n on Γ and also, from (23), that

n · (T(u∗
f , p

∗
f ) · n) = −gϕ∗

|Γ on Γ. Thus, the two interface conditions (5) and (7) are

satisfied, and we can conclude that the limit functions ϕ∗ ∈ Hp and (u∗
f , p

∗
f ) ∈ Hτ

f ×Q
are the solutions of the coupled Stokes–Darcy problem.

The proof of convergence will be given in section 4.1.

3.1.2. A parallel Robin–Robin method. We consider now a parallel Robin–
Robin (pRR) algorithm. The idea behind this new method resembles that for a
Neumann–Neumann scheme. However, the latter cannot be considered straightfor-
wardly in our case, since we would not be able to guarantee the correct regularity of
the data for each subproblem, as we shall point out more precisely in Remark 3.1.
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The pRR algorithm that we propose reads as follows: Let μk ∈ L2(Γ) be an
assigned trace function on Γ, and let γ1, γ2 be two positive parameters; then, for
k ≥ 0,

(i) find (uk+1
f , pk+1

f ) ∈ Hτ
f ×Q such that

(24)

af (uk+1
f ,v) + bf (v, pk+1

f ) − γ1

∫
Γ

(uk+1
f · n)(v · n)

=

∫
Γ

μk(v · n) +

∫
Ωf

f · v ∀ v ∈ Hτ
f ,

bf (uk+1
f , q) = 0 ∀ q ∈ Q,

and, at the same time, find ϕk+1 ∈ Hp such that

(25) ap(ϕ
k+1, ψ) +

1

γ1

∫
Γ

gϕk+1
|Γ ψ|Γ = − 1

γ1

∫
Γ

μkψ|Γ ∀ ψ ∈ Hp.

Remark that on the interface Γ we are imposing the matching conditions

(26)

n · (T(uk+1
f , pk+1) · n) − γ1u

k+1
f · n = μk

= −gϕk+1
|Γ + γ1K∇ϕk+1 · n,

uk+1
f · τ j = 0, j = 1, . . . , d− 1.

(ii) As a second step, find (ω̂k+1, π̂k+1) ∈ Hτ
f ×Q such that

(27)

af (ω̂k+1,v) + bf (v, π̂k+1) + γ2

∫
Γ

(ω̂k+1 · n)(v · n)

= γ2

∫
Γ

σ̂k+1(v · n) ∀ v ∈ Hτ
f ,

bf (ω̂k+1, q) = 0 ∀ q ∈ Q,

and find χ̂k+1 ∈ Hp such that

(28) ap(χ̂
k+1, ψ) +

1

γ2

∫
Γ

gχ̂k+1
|Γ ψ|Γ =

∫
Γ

σ̂k+1ψ|Γ ∀ ψ ∈ Hp,

where

(29) σ̂k+1 = uk+1
f · n + K∇ϕk+1 · n = uk+1

f · n +
1

γ1
(gϕk+1

|Γ + μk) ∈ L2(Γ).

Note that on the interface Γ we are now imposing the matching conditions

(30)

n · (T(ω̂k+1, π̂k+1) · n) + γ2ω̂
k+1 · n = γ2σ̂

k+1

= gχ̂k+1
|Γ − γ2K∇χ̂k+1 · n,

ω̂k+1 · τ j = 0, j = 1, . . . , d− 1.

(iii) Finally, set

(31)
μk+1 = μk − θ[n · (T(ω̂k+1, π̂k+1) · n) + gχ̂k+1

|Γ ]

= μk − θ[γ2(σ̂
k+1 − ω̂k+1 · n) + gχ̂k+1

|Γ ] ∈ L2(Γ),

where θ > 0 is a further acceleration parameter.
Before moving to the convergence analysis of the pRR method (24)–(31), a few

remarks are in order.
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Concerning the well-posedness of problem (24), since the inf–sup condition is
satisfied (see [17, pp. 157–158]), and thanks to (22), the bilinear form

af (uf ,v) − γ1

∫
Γ

(uf · n)(v · n)

is coercive in Hτ
f ×Hτ

f provided

(32) γ1 <
2ν

κ2
.

As regards the consistency of the algorithm, note that if we find a fixed point μ∗,
from (31) we have (again denoting the limit functions by an upper ∗)

(33) γ2(ω̂
∗ · n − σ̂∗) = gχ̂∗

|Γ on Γ

and also, equivalently,

(34)
1

γ2
gχ̂∗

|Γ − σ̂∗ =
2

γ2
gχ̂∗

|Γ − ω̂∗ · n on Γ.

Therefore, if we multiply (28) by g, sum the resulting equation to (27), and use
relations (33) and (34), we obtain

af (ω̂∗,v) + bf (v, π̂∗) +

∫
Γ

gχ̂∗
|Γ(v · n) + gap(χ̂

∗, ψ)

−
∫

Γ

g(ω̂∗ · n)ψ|Γ +

∫
Γ

2g2

γ2
χ̂∗
|Γψ|Γ = 0 ∀(v, ψ) ∈ Hτ

f ×Hp.

Taking v = ω̂∗ and ψ = χ̂∗, we find

af (ω̂∗, ω̂∗) + gap(χ̂
∗, χ̂∗) +

∫
Γ

2g2

γ2
(χ̂∗

|Γ)2 = 0 ;

hence, χ̂∗ = 0 in Ωp, and ω̂∗ = 0 in Ωf thanks to the Korn inequality.
The interface equation (30) gives σ̂∗ = 0 on Γ; hence, u∗

f · n = −K∇ϕ∗ · n on
Γ. Moreover, using (26), we obtain n · (T(u∗

f , p
∗
f ) · n) = −gϕ∗

|Γ on Γ. Thus, the two

interface conditions (5) and (7) are fulfilled, so that the solutions (u∗
f , p

∗
f ) ∈ Hτ

f ×Q
and ϕ∗ ∈ Hp (corresponding to the fixed point μ∗) satisfy the coupled Stokes–Darcy
problem.

Our aim is now to prove that the map generating the sequence μk is a contraction
in L2(Γ). We shall address this point in section 4.2.

Remark 3.1. A Neumann–Neumann method corresponding to the choice of the
normal velocity uf · n as an interface variable would involve the following steps. For

an assigned function λk ∈ H
1/2
00 (Γ), with

∫
Γ
λk = 0 (we refer to [14] for a definition of

the trace space H
1/2
00 (Γ)), first solve a Stokes problem in Ωf with boundary conditions

uk+1
f ·n = λk, uk+1

f ·τ j = 0 on Γ, and a Darcy problem in Ωp imposing −K∇ϕk+1 ·n =

λk on Γ. Then, similarly to (29), we have to compute σ̂k+1 = −n · (T(uk+1
f , pk+1

f ) ·
n) − gϕk+1

|Γ on Γ. Here we would have σ̂k+1 ∈ H−1/2(Γ). Therefore, this regularity

of σ̂k+1 would not be enough to guarantee the solvability of the subsequent Darcy
problem, which would demand one to impose gχ̂k+1

|Γ = σ̂k+1 as a boundary condition
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on Γ. Thus, a Neumann–Neumann method does not guarantee that the regularity of
the interface data is preserved at each iteration and that the sequence λk generated

by the algorithm is in H
1/2
00 (Γ).

Of course one may speculate that this issue of lack of regularity is not relevant at
the finite dimensional level, for instance, for finite element approximation. However,
the difficulty is only hidden, and we should expect that it will show up as the mesh
parameter h goes to 0.

4. Convergence analysis. In what follows, for either an open set or a manifold
D, we denote the norm in the Sobolev space Hs(D), s ≥ −1, by ‖ · ‖s,D.

4.1. Convergence of the sRR method. We prove that the sequences ϕk and
(uk

f , p
k
f ) generated by the sRR method (17)–(21) converge in H1(Ωp) and (H1(Ωf ))d×

Q, respectively. As a consequence, the sequence ηk is convergent in the dual space
H−1/2(Γ) and weakly convergent in L2(Γ).

The proof of convergence that we are presenting follows the guidelines of the
theory by Lions [15] for the Robin–Robin method (see also [17, section 4.5]).

We denote by eku = uk
f − uf , ekp = pkf − pf , and ekϕ = ϕk − ϕ the errors at the

kth step. Remark that, thanks to the linearity, the functions (eku, e
k
p) satisfy problem

(19) with f = 0, while ekϕ is a solution to (17). Moreover, we assume that γp = γf ,
and we denote by γ their common value.

Finally, let us point out that the solutions (uf , pf ) ∈ Hτ
f × Q and ϕ ∈ Hp of

the coupled Stokes–Darcy problem satisfy n · (T(uf , pf ) · n) ∈ H1/2(Γ) (as it is equal
to −gϕ|Γ on Γ), and ∇ϕ · n ∈ L2(Γ) (as it is equal to −K−1uf · n on Γ); i.e., these
functions enjoy a better regularity than one might usually expect. Therefore, the
interface conditions (18) and (20) for the error functions hold in L2(Γ).

Let us come to the proof of convergence. Choosing ψ = ek+1
ϕ in (17), and using

the identity

AB =
1

4
[(A + B)2 − (A−B)2],

we have

g ap(e
k+1
ϕ , ek+1

ϕ ) =
1

γ

∫
Γ

(ηk − gek+1
ϕ|Γ )gek+1

ϕ|Γ

=
1

4γ

∫
Γ

(ηk)2 − 1

4γ

∫
Γ

(ηk − 2gek+1
ϕ|Γ )2.(35)

Similarly, taking v = ek+1
u in (19) and using (21), we have

af (ek+1
u , ek+1

u ) =
1

γ

∫
Γ

(ηk − 2gek+1
ϕ|Γ − γek+1

u · n)(γek+1
u · n)

=
1

4γ

∫
Γ

(ηk − 2gek+1
ϕ|Γ )2 − 1

4γ

∫
Γ

(ηk − 2gek+1
ϕ|Γ − 2γek+1

u · n)2

=
1

4γ

∫
Γ

(ηk − 2gek+1
ϕ|Γ )2 − 1

4γ

∫
Γ

(ηk+1)2.(36)

Adding (35) and (36), we find

g ap(e
k+1
ϕ , ek+1

ϕ ) + af (ek+1
u , ek+1

u ) +
1

4γ

∫
Γ

(ηk+1)2 =
1

4γ

∫
Γ

(ηk)2.
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Summing over k from k = 0 to k = N , with N ≥ 1, we finally obtain

N∑
k=0

(
g ap(e

k+1
ϕ , ek+1

ϕ ) + af (ek+1
u , ek+1

u )
)

+
1

4γ

∫
Γ

(ηN+1)2 =
1

4γ

∫
Γ

(η0)2.

Thus, the series

∞∑
k=0

(
g ap(e

k+1
ϕ , ek+1

ϕ ) + af (ek+1
u , ek+1

u )
)

is convergent, and the errors ekϕ and eku tend to zero in H1(Ωp) and (H1(Ωf ))d,

respectively. The convergence of the pressure error ekp to 0 in Q is then a well-known
consequence of the convergence of the velocity.

4.1.1. Interpretation of the sRR method as an alternating direction
scheme. The sRR method can be interpreted as an alternating direction scheme (see
[1]; see also [8]). For technical reasons, to make precise this statement let us assume
that a flux boundary condition T(uf , pf ) · n = g is imposed on the top of the fluid
domain Ωf , g being a given vector function. Moreover, we assume that the interface
Γ is smooth, say, a C2-manifold with a boundary.

Then introduce the spaces

Ĥf = {v ∈ (H1(Ωf ))d| v = 0 on the lateral boundary of Ωf},
Ĥτ

f = {v ∈ Ĥf | v · τ j = 0 on Γ, j = 1, . . . , d− 1},
Ĥτ,n

f = {v ∈ Ĥτ
f | v · n = 0 on Γ}, H0

p = {ψ ∈ Hp| ψ = 0 on Γp},

and define the operator Sf as

Sf : H
1/2
00 (Γ) → (H

1/2
00 (Γ))′, χ → Sfχ = n · (T(uχ, pχ) · n),

where (uχ, pχ) ∈ Ĥτ
f ×Q satisfies

af (uχ,v) + bf (v, pχ) = 0 ∀ v ∈ Ĥτ,n
f (Ωf ),

bf (uχ, q) = 0 ∀ q ∈ Q,

with uχ · n = χ on Γ.

In a similar way, for each η ∈ (H
1/2
00 (Γ))′ define the operator Sp as

Sp : (H
1/2
00 (Γ))′ → H

1/2
00 (Γ), η → Spη = gϕη|Γ,

where ϕη ∈ H0
p is the solution to

ap(ϕη, ψ) = 〈η, ψ|Γ〉Γ ∀ ψ ∈ H0
p ,

where 〈·, ·〉Γ denotes the duality pairing between (H
1/2
00 (Γ))′ and H

1/2
00 (Γ). As a con-

sequence, we have −K∇ϕη · n = η on Γ.
Since for each ϕ ∈ H0

p we have Sp(−K∇ϕ · n) = gϕ|Γ, the first step (19) of our
procedure corresponds to imposing on Γ

−γpK∇ϕk+1 · n + gϕk+1
|Γ = −γpK∇ϕk+1 · n + Sp(−K∇ϕk+1 · n)

= (γpI + Sp)(−K∇ϕk+1 · n) = ηk ;



1256 M. DISCACCIATI, A. QUARTERONI, AND A. VALLI

hence

(37) −K∇ϕk+1 · n = (γpI + Sp)
−1ηk.

On the other hand, the right-hand side in (20) can be written as

−gϕk+1
|Γ − γfK∇ϕk+1 · n = Sp(K∇ϕk+1 · n) − γfK∇ϕk+1 · n

= −(γfI − Sp)K∇ϕk+1 · n
= (γfI − Sp)(γpI + Sp)

−1ηk.(38)

In an analogous way, still denoting by (uk+1
f , pk+1

f ) the solution to (19) with f = 0

and Hτ
f replaced by Ĥτ

f , one has Sf (uk+1
f · n) = n · (T(uk+1

f , pk+1
f ) · n). Then, the

left-hand side in (20) can be written as

n · (T(uk+1, pk+1) · n) + γfu
k+1 · n = Sf (uk+1 · n) + γfu

k+1 · n
= (γfI + Sf )(uk+1 · n).(39)

Using (38) and (39), the interface condition (20) becomes

(40) uk+1 · n = (γfI + Sf )−1(γfI − Sp)(γpI + Sp)
−1ηk.

In conclusion, our iterative procedure (with homogeneous data f and g) can be written
as

ηk+1 = −n · (T(uk+1, pk+1) · n) + γpu
k+1 · n

= −Sf (uk+1 · n) + γpu
k+1 · n

= (γpI − Sf )uk+1 · n
= (γpI − Sf )(γfI + Sf )−1(γfI − Sp)(γpI + Sp)

−1ηk.(41)

This is an alternating direction scheme, à la Peaceman and Rachford (see [16]),
that has been deeply analyzed. Sufficient conditions for convergence are that γf = γp
and that the operators Sf and Sp are bounded and strictly positive in a given Hilbert
space. These do not apply in the present situation, as the operators Sf and Sp act
from a space into its dual. In fact, we can prove only that the iteration operator is

nonexpansive but not a contraction in (H
1/2
00 (Γ))′.

On the other hand, it is worthy to note that the convergence of this alternating
direction scheme can be easily proved in the discrete case, as the matrices that cor-
respond to the finite dimensional Steklov–Poincaré operators Sf and Sp are in fact
symmetric and positive definite.

To illustrate how the proof of convergence works, we consider a suitable mod-

ification of the iteration scheme. Let us introduce the operators J− : H
1/2
00 (Γ) →

(H
1/2
00 (Γ))′ and J+ : (H

1/2
00 (Γ))′ → H

1/2
00 (Γ) defined as follows:

(J−χ, μ)−1/2,00,Γ = 〈μ, χ〉Γ ∀ χ ∈ H
1/2
00 (Γ), μ ∈ (H

1/2
00 (Γ))′,

(J+η, ξ)1/2,00,Γ = 〈η, ξ〉Γ ∀ η ∈ (H
1/2
00 (Γ))′, ξ ∈ H

1/2
00 (Γ).

(Here and in what follows we are denoting by (·, ·)1/2,00,Γ and (·, ·)−1/2,00,Γ the scalar

products in H1/2(Γ) and (H
1/2
00 (Γ))′, respectively, and by ‖ · ‖1/2,00,Γ and ‖ · ‖−1/2,00,Γ

the associated norms.)
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The existence of these operators is guaranteed by the Riesz representation theo-
rem. Moreover, it is easily verified that ‖J−χ‖−1/2,00,Γ = ‖χ‖1/2,00,Γ, ‖J+η‖1/2,00,Γ =
‖η‖−1/2,00,Γ (and consequently the operator norms are ‖J−‖ = ‖J+‖ = 1), and
(J−χ, η)−1/2,00,Γ = (χ, J+η)1/2,00,Γ.

We consider the following iterative scheme:

(42) ηk+1 = (γJ− − Sf )(γJ− + Sf )−1J−(γJ+ − Sp)(γJ+ + Sp)
−1J+η

k.

This represents a slight modification of (41), in which we have inserted the operators
J− and J+ instead of the identity I, and we have taken γp = γf = γ. The convergence
of (42) is a consequence of the contraction mapping theorem (see the appendix).

Remark 4.1. One could argue that the iterative scheme (42) is not relevant with
the problem at hand, since it is not equivalent to (41). Indeed, (42) converges to our
original problem with slightly modified interface conditions, which read

γ J−(uf · n) + n · (T(uf , pf ) · n) = −γ J−J+(K∇ϕ · n) − J−(gϕ|Γ) on Γ,
γ J+J−(uf · n) − J+(n · (T(uf , pf ) · n)) = −γ J+(K∇ϕ · n) + gϕ|Γ on Γ.

The operators J− and J+ have the role of assuring that the functions on either side
are in the same trace space.

The problem of equalization of trace spaces can be encountered in other domain
decompositions of heterogeneous problems as well. For these cases, the procedure that
we have advocated here (and the associated convergence proof) might be useful.

4.2. Convergence of the pRR method. We turn now to the proof of conver-
gence of the parallel method (24)–(31). Our aim is to prove that the map μk → μk+1

defined through (24)–(31) is a contraction in L2(Γ). As a consequence of linearity, in
the whole section we can assume without restriction that f = 0. In order to introduce
a suitable representation of this map, we define several interface operators.

Let HS be the Robin-to-Dirichlet map for the Stokes problem,

(43) HS : L2(Γ) → L2(Γ), μ → HSμ = uμ · n,

where (uμ, pμ) ∈ Hτ
f ×Q is the solution to (24) with f = 0 and the Robin boundary

datum μ.
Define HD as the Robin-to-Neumann operator for the Darcy scalar problem,

(44) HD : L2(Γ) → L2(Γ), μ → HDμ =
1

γ1
(gϕμ|Γ + μ),

where ϕμ ∈ Hp is the solution to (25) corresponding to the Robin boundary datum μ.
Moreover, let KS be the Robin-to-Neumann operator for the Stokes problem,

(45) KS : L2(Γ) → L2(Γ), σ → KSσ = γ2(σ − ωσ · n),

where (ωσ, πσ) ∈ Hτ
f ×Q is the solution to (27) with the Robin boundary datum σ.

Finally, KD denotes the Robin-to-Dirichlet operator for the Darcy scalar problem,

(46) KD : L2(Γ) → L2(Γ), σ → KDσ = gχσ|Γ,

χσ ∈ Hp being the solution to (28) with the Robin boundary datum σ.
By means of these operators, we reformulate (29) as

σ̂k+1 = HSμ
k + HDμk = (HS + HD)μk
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and the relaxation step (31) as

μk+1 = μk − θ(KS σ̂
k+1 + KDσ̂k+1) = μk − θ(KS + KD)(HS + HD)μk

= [I − θ(KS + KD)(HS + HD)]μk.

Proposition 4.1. The operators defined in (43)–(46) enjoy the following
properties:

1. HS and KD are symmetric, continuous, and nonnegative in L2(Γ);
2. HD and KS are symmetric, continuous, and coercive in L2(Γ).

Proof. 1. We consider first the operator HS . For every η and μ, letting uη · n =
HSη and uμ · n = HSμ, we have∫

Γ

(HSμ)η =

∫
Γ

uμ · n η = af (uη,uμ) − γ1

∫
Γ

(uη · n)(uμ · n)

=

∫
Γ

μuη · n =

∫
Γ

μ (HSη);

therefore, HS is symmetric.
Now, taking v = uμ in (24) (with f = 0), thanks to (22) we have

2ν

∫
Ωf

|D(uμ)|2 = af (uμ,uμ) = γ1

∫
Γ

|uμ · n|2 +

∫
Γ

μuμ · n

≤ γ1κ2

∫
Ωf

|D(uμ)|2 + κ
1/2
2 ‖μ‖0,Γ‖D(uμ)‖0,Ωf

.

Therefore, for γ1 < (2ν)/κ2, one has ‖D(uμ)‖0,Ωf
≤ κ3‖μ‖0,Γ, with κ3 = κ

1/2
2 /(2ν −

γ1κ2). Hence, from (22), HS is a continuous operator.
Finally, for γ1 < (2ν)/κ2 we have∫
Γ

(HSμ)μ = 2ν

∫
Ωf

|D(uμ)|2 − γ1

∫
Γ

|uμ · n|2 ≥ (2ν − γ1κ2)

∫
Ωf

|D(uμ)|2 ≥ 0;

hence, HS is a nonnegative operator.
We consider now the operator KD. We denote by χσ and χξ the solutions to (28)

with data σ and ξ, respectively. Thus, KDσ = gχσ|Γ and KDξ = gχξ|Γ. Then using
(28) we have ∫

Γ

(KDσ)ξ =

∫
Γ

gχσ|Γξ = g ap(χξ, χσ) +
g2

γ2

∫
Γ

χξ|Γ χσ|Γ

=

∫
Γ

gσχξ|Γ =

∫
Γ

σ(KDξ),

which proves the symmetry of KD.
Now if we take in (28) the test function ψ = χσ, we find

ap(χσ, χσ) +
1

γ2

∫
Γ

gχ2
σ|Γ =

∫
Γ

σχσ|Γ ≤
(∫

Γ

σ2

)1/2 (∫
Γ

χ2
σ|Γ

)1/2

;

consequently, since ap(χσ, χσ) ≥ 0, we have g‖χσ|Γ‖0,Γ ≤ γ2‖σ‖0,Γ; i.e., KD is a
continuous operator.
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Finally, KD is nonnegative, since∫
Γ

(KDσ)σ =

∫
Γ

gχσ|Γ σ = g ap(χσ, χσ) +
g2

γ2

∫
Γ

χ2
σ|Γ ≥ 0 ∀σ ∈ L2(Γ).

2. Consider now the operator HD. For all μ and η we denote by ϕμ and ϕη

the solutions of (25) corresponding to the data μ and η, respectively, so that HDμ =
(gϕμ|Γ+μ)/γ1 and HDη = (gϕη|Γ+η)/γ1. Then, proceeding as we did for the operator
KD, we have ∫

Γ

(HDμ) η =
1

γ1

∫
Γ

(μ η + gϕμ|Γ η)

=
1

γ1

∫
Γ

μ η − g2

γ1

∫
Γ

ϕη|Γϕμ|Γ − g ap(ϕη, ϕμ)

=
1

γ1

∫
Γ

μ η +
g

γ1

∫
Γ

μϕη|Γ =

∫
Γ

μ (HDη);

thus, HD is symmetric.
Moreover, taking ψ = ϕμ in (25), the continuity of HD easily follows from the

estimate:

ap(ϕμ, ϕμ) +
g

γ1

∫
Γ

ϕ2
μ|Γ = − 1

γ1

∫
Γ

μϕμ|Γ ≤ 1

γ1

(∫
Γ

μ2

)1/2 (∫
Γ

ϕ2
μ|Γ

)1/2

,

which yields ‖ϕμ|Γ‖0,Γ ≤ g−1‖μ‖0,Γ, as ap(ϕμ, ϕμ) ≥ 0.
Finally, let us show that HD is a coercive operator. Recalling its definition, we

have

ap(ϕμ, ϕμ) = − 1

γ1

∫
Γ

gϕ2
μ|Γ − 1

γ1

∫
Γ

μϕσ|Γ = −
∫

Γ

(HDμ)ϕμ|Γ

= −1

g

∫
Γ

(HDμ)(γ1HDμ− μ) =
1

g

∫
Γ

(HDμ)μ− γ1

g

∫
Γ

(HDμ)2.

Consequently, since ap(ϕμ, ϕμ) ≥ κ3

∫
Ωp

|∇ϕμ|2 for a suitable constant κ3 > 0, there

exists a constant q1 > 0 such that∫
Γ

(HDμ)μ ≥ q1

(∫
Γ

(HDμ)2 +

∫
Ωp

|∇ϕμ|2
)
.

On the other hand, using the trace inequality and the Poincaré inequality,∫
Γ

μ2 =

∫
Γ

(γ1HDμ− gϕμ|Γ)2 ≤ 2γ2
1

∫
Γ

(HDμ)2 + 2g2

∫
Γ

ϕ2
μ|Γ

≤ Q1

(∫
Γ

(HDμ)2 +

∫
Ωp

|∇ϕμ|2
)

where Q1 > 0 is a suitable constant. The coerciveness of HD now follows.
Turning now to the operator KS , its symmetry can be proved as we did for HS .

Moreover, taking v = ωσ in (27) (where ωσ is the solution with datum σ), one has

af (ωσ,ωσ) + γ2

∫
Γ

(ωσ · n)2 = γ2

∫
Γ

σωσ · n.
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Since af (ωσ,ωσ) ≥ 0, this yields∫
Γ

(ωσ · n)2 ≤
∫

Γ

σωσ · n ≤
(∫

Γ

σ2

)1/2 (∫
Γ

(ωσ · n)2
)1/2

,

and this proves that the operator KS is continuous.
Finally, using the definition (45) of KS , we have

af (ωσ,ωσ) = −γ2

∫
Γ

(ωσ · n)2 + γ2

∫
Γ

σωσ · n =

∫
Γ

(KSσ)ωσ · n

=

∫
Γ

(KSσ) (σ − γ−1
2 KSσ) =

∫
Γ

(KSσ)σ − γ−1
2

∫
Γ

(KSσ)2.

Therefore, since af (ωσ,ωσ) = 2ν
∫
Ωf

|D(ωσ)|2, there exists a constant q2 > 0 such

that ∫
Γ

(KSσ)σ ≥ q2

(∫
Ωf

|D(ωσ)|2 +

∫
Γ

(KSσ)2

)
.

On the other hand, by the trace and the Korn inequalities, we have∫
Γ

σ2 =

∫
Γ

(ωσ · n + γ−1
2 KSσ)2 ≤ 2

∫
Γ

(ωσ · n)2 + 2γ−2
2

∫
Γ

(KSσ)2

≤ Q2

(∫
Ωf

|D(ωσ)|2 +

∫
Γ

(KSσ)2

)
for a suitable constant Q2 > 0. Thus, the operator KS is coercive.

It follows from Proposition 4.1 that the operators H = HS+HD and K = KS+KD

are both symmetric, continuous, and coercive on L2(Γ).
To prove the convergence of the pRR iterative scheme, we shall apply the following

abstract result whose proof is similar to that of Theorem 4.2.5 in [17].
Theorem 4.1. Let X be a (real) Hilbert space and X ′ its dual. We consider a

linear invertible continuous operator Q : X → X ′, which can be split as Q = Q1 +Q2,
where both Q1 and Q2 are linear operators. Take Z ∈ X ′, let x ∈ X be the unknown
solution to the equation Qx = Z, and consider for its solution the preconditioned
Richardson method

(47) xk+1 = xk + θN (Z −Qxk), k ≥ 0,

θ being a positive relaxation parameter and N : X ′ → X a suitable scaling operator.
Suppose that the following conditions are satisfied:

1. Qi (i = 1, 2) are continuous and coercive;
2. N is symmetric, continuous, and coercive.

Then there exists θmax > 0 such that for each θ ∈ (0, θmax) and for any given x0 ∈ X
the sequence (47) converges in X to the solution of problem Qx = Z.

We can now prove the main result of this section.
Corollary 4.1. Under the constraint (32), the pRR iterative method (24), (25),

(27), (28), (31) converges to the solution (uf , pf ) ∈ Hτ
f × Q, ϕ ∈ Hp of the coupled

Stokes–Darcy problem for any choice of the initial guess μ0 ∈ L2(Γ) and for suitable
values of the relaxation parameter θ.

Proof. It follows from Theorem 4.1, whose hypotheses are satisfied thanks to
Proposition 4.1.
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5. Finite element approximation and numerical results. We consider a
regular family of triangulations Th of the domain Ωf ∪ Ωp depending on a positive
parameter h > 0, made up of triangles if d = 2 or of tetrahedra in the 3-dimensional
case. We assume that the triangulations Tfh and Tph induced on the subdomains Ωf

and Ωp are compatible on Γ; i.e., they share the same edges (if d = 2) or faces (if
d = 3) therein. The family of triangulations induced on Γ will be denoted by Bh.

Several choices of finite element spaces can be made to approximate the cou-
pled problem (13)–(14). For the sake of exposition, we will consider the following
conforming spaces (d = 2, 3):

Hfh = {vh ∈ (Xfh)d|vh = 0 on Γf},

with

Xfh = {vh ∈ C0(Ωf )| vh|T ∈ P2(T ) ∀T ∈ Tfh},

and

Qh = {qh ∈ C0(Ωf )| qh|T ∈ P1(T ), ∀T ∈ Tfh};

moreover, Hτ
fh will be an internal approximation of Hτ

f .
On the other hand, we set

Hph = {ψh ∈ Xph|ψh = 0 on Γb
p},

with

Xph = {ψh ∈ C0(Ωp)|ψh|T ∈ P2(T ) ∀T ∈ Tph}.

Finally, we define

Λh = {ηh ∈ L2(Γ) | ηh|τ ∈ P2(τ) ∀τ ∈ Bh};

in particular, we have that vh · n ∈ Λh for each vh ∈ Hfh and ψh|Γ ∈ Λh for each
ψh ∈ Hph.

We will now present the discrete counterpart of the sRR and pRR algorithms.

5.1. The discrete sRR method. The finite element discretization of the cou-
pled Stokes–Darcy problem (13)–(16) reads as follows:

Find (ufh, pfh) ∈ Hτ
fh ×Qh, ϕh ∈ Hph such that

af (ufh,vh) + bf (vh, pfh) + g ap(ϕh, ψh) +

∫
Γ

g ϕh(vh · n)

−
∫

Γ

g ψh(ufh · n) =

∫
Ωf

f · vh ∀vh ∈ Hτ
fh, ψh ∈ Hph,(48)

bf (ufh, qh) = 0 ∀qh ∈ Qh.(49)

The sRR algorithm on the discrete problem (48)–(49) becomes, taking a trace
function η0

h ∈ Λh and considering two acceleration parameters γf ≥ 0 and γp > 0, for
each k ≥ 0,

(i) find ϕk+1
h ∈ Hph such that

(50) γpap(ϕ
k+1
h , ψh) +

∫
Γ

gϕk+1
h|Γ ψh|Γ =

∫
Γ

ηkhψh|Γ ∀ ψh ∈ Hph.



1262 M. DISCACCIATI, A. QUARTERONI, AND A. VALLI

(ii) Then find (uk+1
fh , pk+1

fh ) ∈ Hτ
fh ×Qh such that

(51)

af (uk+1
fh ,vh) + bf (vh, p

k+1
fh ) + γf

∫
Γ

(uk+1
fh · n)(vh · n)

=

∫
Γ

(γf
γp

ηkh − γf + γp
γp

gϕk+1
h|Γ

)
(vh · n) +

∫
Ωf

f · vh ∀ vh ∈ Hτ
fh,

bf (uk+1
fh , qh) = 0 ∀ qh ∈ Qh.

(iii) Finally, set

(52) ηk+1
h = (γf + γp)(u

k+1
fh · n) +

γf + γp
γp

gϕk+1
h|Γ − γf

γp
ηkh ∈ Λh.

For γp = γf , the convergence of this algorithm to the solution of (48)–(49) can
be proved as we did in section 4.1 to show the convergence of (17)–(20) to the solu-
tion of problems (13)–(16). Moreover, it is also possible to prove the convergence of
the alternating direction scheme (see section 4.1.1), as the discrete Steklov–Poincaré
operators are positive definite (however, in principle the proof of convergence cannot
assure that the rate of convergence is independent of the mesh size h).

For the numerical tests we have exploited the interpretation of the method in
terms of ADI iterations (section 4.1.1) in order to obtain some guidelines for the
choice of the relaxation parameters, at least for the case of our interest, that is, when
ν and the entries of K are very small (we recall that in this case the convergence rate
of the Dirichlet–Neumann method deteriorates).

In particular, considering (41), we are led to investigate the behavior of the eigen-
values, say δjf and δjp, of the operators Sf and Sp, respectively; in fact, if we can
estimate

(53) max
j

∣∣∣∣∣γp − δjf

γf + δjf

∣∣∣∣∣ · max
j

∣∣∣∣∣γf − δjp

γp + δjp

∣∣∣∣∣ ,
this could be taken as a rough estimate of the convergence rate of the algorithm.

Assuming that K is a constant multiple of the identity, we proved that in the limit
ν → 0 and K → 0 (for a fixed mesh size h) δjf → 0 while δjp → ∞ [8]. Thus, for small
values of ν and K the ratio (53) behaves like γp/γf . This provides a first indication for
the choice of the relaxation parameters; i.e., one should take γf > γp > 0. Moreover,
γf and γp should not be taken too large to avoid possible increases of the condition
numbers of the Stokes and Darcy stiffness matrices in (50) and (51), respectively. A
reasonable trade-off is to choose both parameters approximately equal to 10−1.

For the numerical tests, we take the same setting as in Example 3.1. In Table
2 we report the number of iterations obtained using the sRR method for some small
values of ν and K and for four different computational grids. A convergence test based
on the relative increment of the trace of the discrete normal velocity on the interface

Table 2

Number of iterations using the sRR method with respect to ν, K, and four different grid sizes
h (h1 ≈ 0.14 and hi = h1/2i−1, i = 2, 3, 4); the acceleration parameters are γf = 0.3 and γp = 0.1.

ν K h1 h2 h3 h4

10−4 10−3 19 19 19 19
10−6 10−4 20 20 20 20
10−6 10−7 20 20 20 20
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uk
fh ·n|Γ has been considered with tolerance 10−9. In all computations we have taken

γf = 0.3 and γp = 0.1.

5.2. The discrete pRR method. The pRR algorithm designed on (48)–(49)
reads as follows: Let μ0

h ∈ Λh be a discrete trace function on Γ, and let γ1, γ2 > 0 be
two positive relaxation parameters; then for k ≥ 0

(i) find (uk+1
fh , pk+1

fh ) ∈ Hτ
fh ×Qh such that

(54)

af (uk+1
fh ,vh) + bf (vh, p

k+1
fh ) − γ1

∫
Γ

(uk+1
fh · n)(vh · n)

=

∫
Γ

μk
h(vh · n) +

∫
Ωf

f · vh ∀ vh ∈ Hτ
fh,

bf (uk+1
fh , qh) = 0 ∀ qh ∈ Qh,

and find ϕk+1
h ∈ Hph such that

(55) ap(ϕ
k+1
h , ψh) +

1

γ1

∫
Γ

gϕk+1
h|Γ ψh|Γ = − 1

γ1

∫
Γ

μk
hψh|Γ ∀ ψh ∈ Hph.

(ii) Then find (ω̂k+1
h , π̂k+1

h ) ∈ Hτ
fh ×Qh such that

(56)

af (ω̂k+1
h ,vh) + bf (vh, π̂

k+1
h ) + γ2

∫
Γ

(ω̂k+1
h · n)(vh · n)

= γ2

∫
Γ

σ̂k+1
h (vh · n) ∀ vh ∈ Hτ

fh,

bf (ω̂k+1
h qh) = 0 ∀ qh ∈ Qh,

and find χ̂k+1
h ∈ Hph such that

(57) ap(χ̂
k+1
h , ψh) +

1

γ2

∫
Γ

gχ̂k+1
h|Γ ψh|Γ =

∫
Γ

σ̂k+1
h ψh|Γ ∀ ψh ∈ Hph,

where

(58) σ̂k+1
h = uk+1

fh · n +
1

γ1
(gϕk+1

h|Γ + μk
h) ∈ Λh.

(iii) Finally, update μk
h as follows:

(59) μk+1
h = μk

h − θ[γ2(σ̂
k+1
h − ω̂k+1

h · n) + gχ̂k+1
h|Γ ] ∈ Λh,

where θ > 0 is an acceleration parameter.
As for the continuous case, this iterative scheme can be reformulated in terms

of suitable interface operators on Λh. Precisely, let HSh and KDh be the discrete
Robin-to-Dirichlet maps:

HSh : Λh → Λh, μh → HShμh = uμh
· n,

KDh : Λh → Λh, σh → KDhσh = gχσh|Γ,

where (uμh
, pμh

) ∈ Hτ
fh ×Qh is the solution to (54) with f = 0 and Robin boundary

datum μh, while χσh
∈ Hph is the solution of (57) with boundary datum σh on Γ.
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Then consider the discrete Robin-to-Neumann operators

HDh : Λh → Λh, μh → HDhμh =
1

γ1
(gϕμh|Γ + μh),

KSh : Λh → Λh, σh → KShσh = γ2(σh − ωσh
· n),

where ϕμh
∈ Hph is the solution of (55) with boundary datum μh, and (ωσh

, πσh
) is

the solution of (56) with boundary datum σh.
Finally, we denote by (ũh, p̃h) ∈ Hτ

fh×Qh the solution of (54) with null boundary

conditions, so that uk+1
fh · n = HShμ

k
h + ũh · n for all k ≥ 0.

Then (58) becomes

σ̂k+1
h = HShμ

k
h + HDhμ

k
h + ũh · n.

Problem (48)–(49) can be associated with the discrete interface problem

(60) Find μh ∈ Λh : (HSh + HDh)μh = −ũh · n on Γ.

Thus the discrete pRR method can be interpreted as the following preconditioned
Richardson scheme to solve (60):

(61) μk+1
h = μk

h − θ(KSh + KDh)[ũh · n + (HSh + HDh)μk
h], k ≥ 0,

the preconditioner being

(62) P = (KSh + KDh)−1.

The convergence of (61) is proved as done in section 4.2 for the infinite dimensional
case; besides, its rate of convergence is independent of the mesh size h, as it depends
only on the continuity and coerciveness constants of the operators HSh, HDh, KSh,
and KDh, which are all independent of h.

Moreover, since the operators HSh and HDh are symmetric, we can use the PCG
method to compute the solution of (60) using the same preconditioner (62).

More generally, we consider the following (variable) preconditioner:

(63) Pk = (σk
1KSh + σk

2KDh)−1,

where σk
1 and σk

2 are two suitable acceleration coefficients (possibly depending on the
iteration k).

The choice of the coefficients γ1, γ2, σk
1 , and σk

2 to accelerate convergence is
not straightforward. In our numerical experiments we have adopted two different
strategies. First, we have used the PCG method with P−1 = σ1KSh + σ2KDh with
a suitable choice of the acceleration coefficients. Second, we have considered the
preconditioner P−1

k as in (63) in the framework of a Richardson method, and we have
computed σk

1 and σk
2 according to an Aitken acceleration procedure (see, e.g., [5, 4]).

More precisely, the algorithm reads: Let r0
h be the residual of (60) computed with

respect to an initial datum μ0
h ∈ Λh, and let z0

h = P−1
0 r0

h. Then for k ≥ 0
1. compute the local preconditioned residuals zkDh = KDhr

k
h, zkSh = KShr

k
h;

2. solve the linear system

AT
kAk

(
σk

1

σk
2

)
= −AT

k (μk
h − μk−1

h ),

where Ak is the two column matrix Ak = (zkSh − zk−1
Sh ; zkDh − zk−1

Dh ).
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Table 3

Number of iterations using the PCG method with the pRR preconditioner P as in (62), with
respect to ν and the grid size h (h1 ≈ 0.14 and hi = h1/2i−1, i = 2, 3, 4).

ν K γ1 γ2 σ1 σ2 h1 h2 h3 h4

1 1 0.5 0.5 1 1 11 12 11 12
10−1 1 10−1 1 1 1 27 28 29 28
10−2 1 10−2 1 1 1 68 76 72 64

Table 4

Number of iterations using the Aitken-accelerated Richardson method with the pRR precondi-
tioner Pk as in (63); in the last two columns we indicate the mean value of the absolute values of
the parameters σk

1 and σk
2 generated by the method. The hi are as in Table 3.

ν K γ1 γ2 Grid size Iter. |σ̄1| |σ̄2|
h1 10 2.68 0.64

1 1 0.5 0.5 h2 10 2.67 0.66
h3 10 2.66 0.67
h4 10 2.66 0.68
h1 12 1.53 0.13

10−1 1 10−1 1 h2 11 1.50 0.13
h3 11 1.54 0.13
h4 12 1.50 0.12
h1 23 0.90 0.06

10−2 1 10−2 1 h2 23 0.95 0.04
h3 23 0.96 0.06
h4 23 0.94 0.06
h1 47 0.33 0.07

10−3 1 10−3 1 h2 47 0.38 0.04
h3 50 0.37 0.03
h4 52 0.38 0.03
h1 23 0.90 0.06

10−1 10−1 10−1 10 h2 23 0.95 0.04
h3 23 0.96 0.06
h4 23 0.94 0.06
h1 40 0.25 0.02

10−2 10−1 10−2 102 h2 39 0.26 0.01
h3 40 0.30 0.01
h4 44 0.27 0.01

This corresponds to minimizing

‖(μk
h − μk−1

h ) + σ1(z
k
Sh − zk−1

Sh ) + σ2(z
k
Dh − zk−1

Dh )‖

over all possible values of σ1 and σ2.
3. Finally, update zk+1

h = σk
1z

k
Sh + σk

2z
k
Dh, rk+1

h = rkh − (HSh + HDh)zk+1
h , and

μk+1
h = μk

h + zk+1
h .

For the numerical tests, we have considered the same settings as in Example
3.1. A tolerance of 10−9 has been imposed on the relative increment, and a maximal
number of iterations maxit = 300 has been required.

Table 3 reports the number of iterations obtained using the PCG method for
three values of ν and four different grids. It is apparent that the rate of convergence
deteriorates as ν goes to 0. We have noticed a similar behavior for small values of K
as well.

The Richardson–Aitken strategy gives better results, as shown in Table 4. How-
ever, the Dirichlet–Neumann algorithm still turns out to be more efficient in this
respect (see Table 1).
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6. Appendix. We present here the proof of the convergence of the (modified)
sRR scheme (42).

Theorem 6.1. Let us assume that the interface Γ is smooth, say, a C2-manifold
with a boundary. Then for each γ > 0 the operator (γJ− − Sf )(γJ− + Sf )−1 is a

contraction in (H
1/2
00 (Γ))′, and the operator (γJ+ − Sp)(γJ+ + Sp)

−1 is a contraction

in H
1/2
00 (Γ).
Proof. We have

‖(γJ− − Sf )(γJ− + Sf )−1‖2 = sup
μ�=0

‖(γJ− − Sf )(γJ− + Sf )−1μ‖2
−1/2,00,Γ

‖μ‖2
−1/2,00,Γ

= sup
χ�=0

‖(γJ− − Sf )χ‖2
−1/2,00,Γ

‖(γJ− + Sf )χ‖2
−1/2,00,Γ

= sup
χ�=0

γ2‖J−χ‖2
−1/2,00,Γ − 2γ(Sfχ, J−χ)−1/2,00,Γ + ‖Sfχ‖2

−1/2,00,Γ

γ2‖J−χ‖2
−1/2,00,Γ + 2γ(Sfχ, J−χ)−1/2,00,Γ + ‖Sfχ‖2

−1/2,00,Γ

= sup
χ�=0

γ2‖χ‖2
1/2,00,Γ − 2γ〈Sfχ, χ〉Γ + ‖Sfχ‖2

−1/2,00,Γ

γ2‖χ‖2
1/2,00,Γ + 2γ〈Sfχ, χ〉Γ + ‖Sfχ‖2

−1/2,00,Γ

.

We prove now that Sf is positive and bounded; that is, there exist two positive
constants C1 and C2 such that

(64) 〈Sfχ, χ〉Γ ≥ C1‖χ‖2
1/2,00,Γ, ‖Sfχ‖2

−1/2,00,Γ ≤ C2‖χ‖2
1/2,00,Γ.

In fact, using the Korn and the trace inequality in H
1/2
00 (Γ) we have

〈Sfχ, χ〉Γ = 〈n · (T(uχ, pχ) · n),uχ · n〉Γ

=

〈
T(uχ, pχ) · n,n(uχ · n) +

d−1∑
j=1

τ j(uχ · τ j)

〉
Γ

(as uχ · τ j = 0 on Γ)

=

∫
Ωf

∇ · [T(uχ, pχ) · uχ] = 2ν

∫
Ωf

|D(uχ)|2

≥ c1‖uχ‖2
1,Ωf

≥ c2‖uχ|Γ‖2
1/2,00,Γ.

The regularity assumption on Γ yields ‖uχ · n‖1/2,00,Γ ≤ c3‖uχ|Γ‖1/2,00,Γ; hence,

〈Sfχ, χ〉Γ ≥ C1‖uχ · n‖2
1/2,00,Γ = C1‖χ‖2

1/2,00,Γ.

Moreover, the regularity assumption on Γ also yields

‖n · (T(uχ, pχ) · n)‖−1/2,00,Γ ≤ c4‖T(uχ, pχ) · n‖−1/2,00,Γ;

therefore, the trace inequality in (H
1/2
00 (Γ))′ and the a priori estimate for the solution

of the Stokes problem give

‖Sfχ‖2
−1/2,00,Γ ≤ c24‖T(uχ, pχ) · n‖2

−1/2,00,Γ

≤ c5‖T(uχ, pχ)‖2
0,Ωf

≤ C2‖χ‖2
1/2,00,Γ,

so that both inequalities in (64) are proved.
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Consequently, setting q0 = (C2 − 2γC1 + γ2)/(C2 + 2γC1 + γ2), we can easily
prove that

sup
χ�=0

γ2‖χ‖2
1/2,00,Γ − 2γ〈Sfχ, χ〉Γ + ‖Sfχ‖2

−1/2,00,Γ

γ2‖χ‖2
1/2,00,Γ + 2γ〈Sfχ, χ〉Γ + ‖Sfχ‖2

−1/2,00,Γ

≤ q0 < 1.

The proof that ‖(γJ+ − Sp)(γJ+ + Sp)
−1‖ < 1 can be done in a similar way. In

fact, using the trace inequality in (H
1/2
00 (Γ))′ we have

〈η, Spη〉Γ = −g〈K∇ϕη · n, ϕη|Γ〉Γ

= g

∫
Ωp

∇ · [ϕηK∇ϕη] = g

∫
Ωp

∇ϕη · K∇ϕη

= g

∫
Ωp

K−1K∇ϕη · K∇ϕη ≥ c6

∫
Ωp

|K∇ϕη|2

≥ C3‖K∇ϕη · n‖2
−1/2,00,Γ = C3‖η‖2

−1/2,00,Γ.

Moreover, by the trace inequality in H
1/2
00 (Γ) and the a priori estimate for the solution

of the Laplace equation, we obtain

‖Spη‖2
1/2,00,Γ = ‖gϕη|Γ‖2

1/2,00,Γ ≤ c7‖ϕη‖2
1,Ωp

≤ C4‖η‖2
−1/2,00,Γ.

These two inequalities permit one to repeat for the operator Sp the same procedure
used for the operator Sf .
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Abstract. In this paper, the authors present two formulations for the Stokes problem which
make use of the existing H(div) elements of the Raviart–Thomas type originally developed for the
second-order elliptic problems. In addition, two new H(div) elements are constructed and analyzed
particularly for the new formulations. Optimal-order error estimates are established for the corre-
sponding finite element solutions in various Sobolev norms. The finite element solutions feature a full
satisfaction of the continuity equation when existing Raviart–Thomas-type elements are employed
in the numerical scheme.
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1. Introduction. This paper is concerned with numerical solutions of incom-
pressible fluid flow problems by finite element methods. Our objective is to introduce
a finite element scheme with attention paid to the discretization of the mass continu-
ity equation. For illustrative purposes, we show how the method works for the Stokes
problem, which seeks a pair of unknown functions (u; p) satisfying

−νΔu + ∇p = f in Ω,(1.1)

∇ · u = 0 in Ω,(1.2)

u = 0 on ∂Ω,(1.3)

where ν denotes the fluid viscosity; Δ, ∇, and ∇· denote the Laplacian, gradient,
and divergence operators, respectively; Ω ⊂ R

d is the region occupied by the fluid;
f = f(x) ∈ (L2(Ω))d is the unit external volumetric force acting on the fluid at x ∈ Ω.

The commonly used finite element methods for the Stokes problem (1.1)–(1.3) are
based on a variational equation which is obtained by testing the momentum equation
(1.1) by functions in (H1

0 (Ω))d and the continuity equation (1.2) by functions in
L2(Ω) (see section 2 for their definition). The corresponding finite element method
requires a pair of finite element spaces which are conforming in (H1

0 (Ω))d × L2(Ω)
and satisfy the inf-sup condition of Babus̆ka [2] and Brezzi [3]. These constraints
result in finite element approximations, denoted by (uh; ph), which hardly satisfy the
continuity equation

(1.4) ∇ · uh(x) = 0 ∀ x ∈ Ω.

Readers are referred to [8, 19, 21] for more details regarding the approximation meth-
ods and their properties.
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The recent development in discontinuous Galerkin methods [1, 4, 5, 6, 10, 11,
13] provides new means of solving the Stokes equations numerically. However, the
corresponding finite element solutions are usually totally discontinuous and fail to
satisfy the continuity equation (1.4) in the classical sense [12, 22, 24, 27].

The continuity equation (1.4) requires the numerical solution uh to be a member
of the Sobolev space H(div; Ω). Therefore, the discontinuous Galerkin methods [12,
22, 24, 27] appear to be noncompetitive when (1.4) needs to be satisfied. On the other
hand, the (H1

0 )d×L2 conforming finite element methods require the total continuity of
uh, which is too much to satisfy for (1.4). Therefore, it seems that the H(div) elements
of Raviart–Thomas type [25, 7, 8, 17] might be good candidates for producing new
numerical schemes that satisfy (1.4).

The goal of this paper is to present a method that demonstrates the use of H(div)
elements in solving the Stokes problem. Our main contribution is on the development
of a new formulation for the Stokes problem which makes use of the existing H(div)
elements in numerical schemes. Optimal-order error estimates are derived for the
resulting H(div) finite element approximations. In addition, two new families of
H(div) elements are proposed and analyzed in this article.

This paper is organized as follows. In section 2, we introduce some preliminaries
and notations for Sobolev spaces. A new variational formula is presented in section 3
for the Stokes problem. In section 4, we present a H(div) finite element method by
using the variational formula developed in section 3. In section 5, we establish some
optimal-order error estimates for the new finite element approximations in H1 and
L2 norms. Finally, in section 6, we review some representatives of H(div) elements,
followed with a detailed description of two new H(div) elements.

2. Preliminaries and notations. Let D be any domain in R
d, d = 2, 3. For

simplicity, the method will be presented for two-dimensional problems only. An ex-
tension to higher-dimensional problems can be made formally for general polyhedral
domains.

We use standard definitions for the Sobolev spaces Hs(D) and their associated
inner products (·, ·)s,D, norms ‖ · ‖s,D, and seminorms | · |s,D for s ≥ 0. For example,
for any integer s ≥ 0, the seminorm | · |s,D is given by

|v|s,D =

⎛⎝ ∑
|α|=s

∫
D

|∂αv|2dD

⎞⎠
1
2

,

with the usual notation

α = (α1, α2), |α| = α1 + α2, ∂α = ∂α1
x1

∂α2
x2

.

The Sobolev norm ‖ · ‖m,D is given by

‖v‖m,D =

⎛⎝ m∑
j=0

|v|2j,D

⎞⎠
1
2

.

The space H0(D) coincides with L2(D), for which the norm and the inner product
are denoted by ‖·‖D and (·, ·)D, respectively. When D = Ω, we shall drop the subscript
D in the norm and inner product notation. We also use L2

0(Ω) to denote the subspace
of L2(Ω) consisting of functions with mean value zero.
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The space H(div; Ω) is defined as the set of vector-valued functions on Ω which,
together with their divergence, are square integrable; i.e.,

H(div; Ω) =
{
v : v ∈ (L2(Ω))2,∇ · v ∈ L2(Ω)

}
.

The norm in H(div; Ω) is defined by

‖v‖H(div;Ω) =
(
‖v‖2 + ‖∇ · v‖2

) 1
2 .

Let K ⊂ Ω be a triangle or quadrilateral. For any smooth vector-valued functions
w and v, it follows from the divergence theorem that

(2.1)

∫
K

(−Δw) · vdK = (∇w,∇v)K −
∫
∂K

∂w

∂nK
· v ds,

where ds represents the boundary element, nK is the outward normal direction on
∂K, and

(∇w,∇v)K =

2∑
i,j=1

∫
K

∂wi

∂xj

∂vi
∂xj

dK.

Let τK be the tangential direction to ∂K so that nK and τK form a right-hand
coordinate system. It follows from the representation

v = (v · nK)nK + (v · τK)τK

that

(2.2)
∂w

∂nK
· v =

∂(w · nK)

∂nK
(v · nK) +

∂(w · τK)

∂nK
(v · τK).

3. A variational formula. For simplicity, we let ν = 1 for the fluid viscosity
in the Stokes equation (1.1). Furthermore, we assume that Ω is a plane polygonal
domain without cracks.

Let Th be a finite element partition of the domain Ω with mesh size h. Assume
that the partition Th is shape regular so that the routine inverse inequality in finite
elements holds true (see [9]). Define the finite element spaces Vh and Wh for the
velocity and pressure variables, respectively, by

Vh = {v ∈ H(div; Ω) : v|K ∈ Vr(K) ∀K ∈ Th; v · n|∂Ω = 0}

Wh = {q ∈ L2
0(Ω) : q|K ∈ Wm(K) ∀K ∈ Th},

where n is the outward normal direction on the boundary of Ω, Vr(K) is a space of
vector-valued polynomials on the element K with index r ≥ 1, and Wm(K) is a set
of polynomials on the element K with index m ≥ 0. Examples of Vr(K) and Wm(K)
will be given in section 6.

To derive a weak formulation, we multiply the equation (1.1) by any v ∈ Vh and
use (2.1) to obtain∑

K∈Th

(
(∇u,∇v)K −

∫
∂K

∂u

∂nK
· v ds

)
− (p,∇ · v) = (f ,v),(3.1)



1272 JUNPING WANG AND XIU YE

where we have also used the integration by parts to deduce∫
Ω

∇p · vdΩ = −(p,∇ · v).

The fact that v ∈ Vh implies that v · nK is continuous across each interior boundary.
Thus, it follows from (2.2) that

(3.2)
∑

K∈Th

∫
∂K

∂u

∂nK
· v ds =

∑
K∈Th

∫
∂K

∂(u · τK)

∂nK
v · τK ds.

Introduce the following notation:

(∇hu,∇hv) =
∑

K∈Th

(∇u,∇v)K .

By substituting (3.2) into (3.1) we obtain

(3.3) (∇hu,∇hv) − (p,∇ · v) −
∑

K∈Th

∫
∂K

∂(u · τK)

∂nK
v · τKds = (f ,v),

which is the basis of our first equation in the new variational form. Our second
equation can be derived from testing (1.2) against any q ∈ Wh, yielding

(3.4) (∇ · u, q) = 0.

We now reformulate the boundary integrals in (3.3). Let e be an interior edge
shared by two elements K1 and K2, and let n1 and n2 be unit normal vectors on e
pointing exterior to K1 and K2, respectively. Denote by τ1 and τ2 the two tangential
directions which make the right-hand coordinate systems with n1 and n2, respectively.
We define the average {{·}} and jump [[ · ]] on e for vector-valued functions w as follows:

{{ε(w)}} =
1

2
(n1 · ∇(w · τ1)|∂K1

+ n2 · ∇(w · τ2)|∂K2
) ,

[[w]] = w|∂K1
· τ1 + w|∂K2

· τ2.

For boundary edge e = ∂K1 ∩ ∂Ω, the above two operations must be modified by

{{ε(w)}} = n1 · ∇(w · τ1)|∂K1 , [[w]] = w|∂K1 · τ1.

Let Eh denote the union of the boundaries of all elements K in Th. For sufficiently
smooth u (e.g., u ∈ H

3
2+ε(Ω) for some ε > 0), it is not hard to see that∑

K∈Th

∫
∂K

∂(u · τK)

∂nK
v · τKds =

∑
e∈Eh

∫
e

{{ε(u)}}[[v]]ds.

Substituting the above into (3.3) we obtain

(3.5) (∇hu,∇hv) − (∇ · v, p) −
∑
e∈Eh

∫
e

{{ε(u)}}[[v]]ds = (f ,v).

Let V (h) = Vh + (Hs(Ω) ∩H1
0 (Ω))2, with s > 3

2 . Denote by

ao(u,v) = (∇hu,∇hv) −
∑
e∈Eh

∫
e

{{ε(u)}}[[v]]ds
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and

b(v, q) = (∇ · v, q)

two bilinear forms on V (h) × V (h) and V (h) × L2
0(Ω). With the conditions specified

in this paper, it can be proved that the exact solution (u; p) of the Stokes problem
in 2D belongs to V (h) for some s > 3

2 . Readers are referred to [20, 15, 14, 23] for
details. As a result, it follows from (3.5) and (3.4) that the exact solution of the 2D
Stokes problem satisfies the following variational equations:

ao(u,v) − b(v, p) = (f ,v) ∀v ∈ Vh,(3.6)

b(u, q) = 0 ∀q ∈ Wh.(3.7)

However, it is not clear if the same statement can be made for the Stokes problem
in three-dimensional space without assuming a smooth boundary ∂Ω or a convex
polyhedral domain Ω [16, 18].

4. Finite element schemes. Our goal of this section is to propose two finite
element schemes based on two modifications of the weak formulation (3.6)–(3.7) for
the Stokes problem (1.1)–(1.3). To this end, let us introduce a symmetric bilinear
form on V (h) × V (h) as follows:

as(w,v) = ao(w,v) +
∑
e∈Eh

∫
e

(
αh−1

e [[w]][[v]] − {{ε(v)}}[[w]]
)
ds,

where α > 0 is a parameter to be determined later, and he is the length of the edge
e. For the exact solution (u; p) of the Stokes problem, we clearly have

as(u,v) = ao(u,v) ∀v ∈ Vh.

Therefore, it follows from (3.6) and (3.7) that

as(u,v) − b(v, p) = (f ,v) ∀v ∈ Vh,(4.1)

b(u, q) = 0 ∀q ∈ Wh.(4.2)

The corresponding finite element scheme for (1.1)–(1.3) seeks (uh; ph) ∈ Vh×Wh such
that

as(uh,v) − b(v, ph) = (f ,v) ∀v ∈ Vh,(4.3)

b(uh, q) = 0 ∀q ∈ Wh.(4.4)

To investigate the properties of the above numerical scheme, we introduce two
norms ||| · |||1 and ||| · ||| for the set V (h) as follows:

(4.5) |||v|||21 = |v|21,h +
∑
e∈Eh

h−1
e ‖[[v]]‖2

e,

(4.6) |||v|||2 = |||v|||21 +
∑
e∈Eh

he‖{{ε(v)}}‖2
e,

where |v|21,h =
∑

K∈Th
|v|21,K and ‖v‖2

e =

∫
e

v · vds.
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Let K be an element with e as an edge. It is well known that there exists a
constant C such that for any function g ∈ H1(K)

(4.7) ‖g‖2
e ≤ C

(
h−1
K ‖g‖2

K + hK‖∇g‖2
K

)
.

In particular, for any v ∈ Vh, we have

(4.8) he‖{{ε(v)}}‖2
e ≤ C

(
‖∇v‖2

K + h2
K‖∇2v‖2

K

)
.

The standard inverse inequality can be employed to the last term of the above in-
equality, yielding

(4.9) he‖{{ε(v)}}‖2
e ≤ C‖∇v‖2

K

for some constant C independent of the mesh size h. Consequently, there is a constant
C such that

(4.10) |||v||| ≤ C0|||v|||1 ∀v ∈ Vh.

The following result is concerned with the ellipticity of the bilinear form as(·, ·)
in Vh × Vh.

Lemma 4.1. There exists a constant α0 independent of h such that for any v ∈ Vh

we have

(4.11) as(v,v) ≥ α0|||v|||2,

provided that α is sufficiently large.
Proof. It follows from the Cauchy–Schwarz inequality that there is a constant C

such that∣∣∣∣∣∑
e∈Eh

∫
e

{{ε(w)}}[[v]]ds

∣∣∣∣∣ ≤ C

(∑
e∈Eh

he‖{{ε(w)}}‖2
e

) 1
2
(∑

e∈Eh

h−1
e ‖[[v]]‖2

e

) 1
2

≤ C|w|1,h

(∑
e∈Eh

h−1
e ‖[[v]]‖2

e

) 1
2

≤ 1

2
|w|21,h + C

∑
e∈Eh

h−1
e ‖[[v]]‖2

e,

where we have used the estimate (4.9) in the second line. Using the above inequality
and (4.10), we obtain

as(v,v) = (∇hv,∇hv) + α
∑
e∈Eh

h−1
e

∫
e

[[v]]
2
ds− 2

∑
e∈Eh

∫
e

{{ε(v)}}[[v]]ds

≥ |v|21,h + α
∑
e∈Eh

h−1
e ‖[[v]]‖2

e −
1

2
|v|21,h − C

∑
e∈Eh

h−1
e ‖[[v]]‖2

e

=
1

2
|v|21,h + (α− C)

∑
e∈Eh

h−1
e ‖[[v]]‖2

e ≥ α1|||v|||21 ≥ α0|||v|||2,

with α1 = min(1
2 , α−C) and α0 = α1/C0. For example, one may have α0 = 1/(2C0)

if the parameter α is chosen so that α ≥ C + 1
2 .
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In the rest of the paper, we assume that the parameter α is chosen so that (4.11)
holds true for the symmetric bilinear from as(·, ·). The proof of Lemma 4.1 indicates
that the value of α depends upon the constant in the inverse inequality for finite
element functions. Therefore, the value of α for which as(·, ·) is coercive is mesh-
dependent. Existing results for saddle-point problems indicate that it is theoretically
and computationally important to have the coercivity (4.11). Therefore, the mesh de-
pendence of the parameter α makes the finite element scheme (4.3)–(4.4) conditionally
interesting in practical computation.

To overcome the difficulty on the parameter selection, we introduce a second finite
element scheme which is parameter-insensitive. To this end, we define a nonsymmetric
bilinear form on V (h) × V (h) as follows:

ans(w,v) = ao(w,v) +
∑
e∈Eh

∫
e

(
αh−1

e [[w]][[v]] + {{ε(v)}}[[w]]
)
ds.

Similar to the bilinear form as(·, ·), for the exact solution (u; p) of the Stokes problem
we have

ans(u,v) = ao(u,v) ∀v ∈ Vh.

Consequently, the solution of the Stokes problem satisfies the following variational
equations:

ans(u,v) − b(v, p) = (f ,v) ∀v ∈ Vh,(4.12)

b(u, q) = 0 ∀q ∈ Wh.(4.13)

Our second finite element scheme for (1.1)–(1.3) seeks (uh; ph) ∈ Vh ×Wh such that

ans(uh,v) − b(v, ph) = (f ,v) ∀v ∈ Vh,(4.14)

b(uh, q) = 0 ∀q ∈ Wh.(4.15)

To see the coercivity of the bilinear form ans(·, ·), we use its definition and (4.10)
to obtain

ans(v,v) = (∇hv,∇hv) + α
∑
e∈Eh

h−1
e

∫
e

[[v]]
2
ds

≥ min(1, α)|||v|||21 ≥ min(1, α)C−1
0 |||v|||2,

where v ∈ Vh. Thus, the coercivity (4.11) holds true for the bilinear form ans(·, ·)
with any value of α > 0.

The following is a result on the boundedness of the bilinear forms as(·, ·) and
ans(·, ·).

Lemma 4.2. There exists a constant C independent of h such that

(4.16) |ai(w,v)| ≤ C|||w||||||v||| ∀w,v ∈ V (h),

where i = s, ns.
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Proof. For simplicity, we shall present the analysis for as(·, ·) only. By the defini-
tion of as(w,v) and the Schwarz inequality, there exists a constant C such that

|as(w,v)| ≤ C

⎧⎨⎩|w|1,h|v|1,h +

(∑
e∈Eh

he‖{{ε(w)}}‖2
e

) 1
2
(∑

e∈Eh

h−1
e ‖[[v]]‖2

e

) 1
2

+

(∑
e∈Eh

he‖{{ε(v)}}‖2
e

) 1
2
(∑

e∈Eh

h−1
e ‖[[w]]‖2

e

) 1
2

+ α

(∑
e∈Eh

h−1
e ‖[[w[]‖2

e

) 1
2
(∑

e∈Eh

h−1
e ‖[[v[]‖2

e

) 1
2

⎫⎬⎭
≤ C|||w||||||v|||,

which proves the desired boundedness.

5. Error estimates. The first goal of this section is to derive an optimal-order
error estimate for the pressure in L2(Ω) and the velocity in the norm given by (4.6).
The second goal is to derive an optimal-order error estimate for the velocity approxi-
mation in the L2-norm for the symmetric scheme (4.3)–(4.4).

Assumption 1. There exists an operator Πh : (H1
0 (Ω))2 → Vh such that

(5.1) b(v − Πhv, q) = 0 ∀q ∈ Wh.

In addition, the operator Πh is assumed to satisfy the following:

(5.2) |v − Πhv|s,K ≤ Cht−s|v|t,K ∀K ∈ Th, s = 0, 1,

where the constant C depends only on the shape of K and 1 ≤ t ≤ r + 1.
From (5.2) and the inequality (4.7) it is not hard to see that

|||v − Πhv|||1 ≤ C‖v‖1 ∀v ∈ (H1
0 (Ω))2.

Thus, it follows from |||v|||1 = |v|1 ≤ ‖v‖1 and the triangle inequality that

(5.3) |||Πhv|||1 ≤ C‖v‖1.

For our finite element formulations, the inf-sup condition given in Brezzi’s frame-
work would read as follows: There exists a positive constant β, independent of h, such
that

(5.4) sup
v∈Vh

b(v, q)

|||v||| ≥ β‖q‖ ∀q ∈ Wh.

To verify (5.4), we first use the operator Πh to obtain

(5.5) sup
v∈Vh

b(v, q)

|||v||| ≥ sup
v∈(H1

0 (Ω))2

b(Πhv, q)

|||Πhv|||
= sup

v∈(H1
0 (Ω))2

b(v, q)

|||Πhv|||
.

Observe that by using (5.3), and (4.10), we have for all v ∈ (H1
0 (Ω))2

(5.6) |||Πhv||| ≤ C|||Πhv|||1 ≤ C‖v‖1.

Thus, substituting (5.6) into the inequality (5.5) gives

sup
v∈Vh

b(v, q)

|||v||| ≥ C−1 sup
v∈(H1

0 (Ω))2

b(v, q)

‖v‖1
≥ β‖q‖,

where we have used the inf-sup condition for the continuous case [19, 8].
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5.1. Error estimates in H1×L2. The error analysis requires the L2 projection
from L2

0(Ω) to the finite element space Wh, which is denoted by Qh. In addition, the
following error equations turn out to be useful:

as(u − uh,v) − b(v, p− ph) = 0 ∀v ∈ Vh,(5.7)

b(u − uh, q) = 0 ∀q ∈ Wh.(5.8)

These error equations can be obtained by subtracting (4.3)–(4.4) from (4.1)–(4.2).
Similar error equations hold true for the nonsymmetric scheme (4.14)–(4.15) with
as(·, ·) being replaced by ans(·, ·). Now we are in a position to present an error
estimate for the new finite element approximations.

Theorem 5.1. Let (u; p) be the solution of (1.1)–(1.3) and (uh; ph) ∈ Vh ×Wh

be obtained from either (4.3)–(4.4) or (4.14)–(4.15). Assume that Assumption 1 holds
true. Then, there exists a constant C independent of h such that

(5.9) |||u − uh||| + ‖p− ph‖ ≤ C (|||u − Πhu||| + ‖p−Qhp‖) .

Proof. Let

ξh = uh − Πhu, ηh = ph −Qhp

be the error between the finite element solution (uh; ph) and the projection (Πhu;Qhp)
of the exact solution. Denote by

ξ = u − Πhu, η = p−Qhp

the error between the exact solution (u; p) and its projection. It follows from the error
equations (5.7) and (5.8) that

a(ξh,v) − b(v, ηh) = a(ξ,v) − b(v, η),(5.10)

b(ξh, q) = b(ξ, q) = 0(5.11)

for any v ∈ Vh and q ∈ Wh. Here and in what follows of this section, a(·, ·) denotes
either as(·, ·) or ans(·, ·).

By letting v = ξh in (5.10) and q = ηh in (5.11), the sum of (5.10) and (5.11)
gives

a(ξh, ξh) = a(ξ, ξh) − b(ξh, η).

Thus, it follows from the coercivity (4.11) and the boundedness (4.16) that

α0|||ξh|||2 ≤ C(|||ξ||||||ξh||| + ‖η‖|||ξh|||),

which implies the following:

|||ξh||| ≤ C (|||ξ||| + ‖η‖) .

The above estimate can be rewritten as

(5.12) |||uh − Πhu||| ≤ C (|||u − Πhu||| + ‖p−Qhp‖) .

Now using the triangle inequality and the error estimate (5.12) we get

|||u − uh||| ≤ C (|||u − Πhu||| + ‖p−Qhp‖) ,(5.13)

which completes the estimate for the velocity approximation.
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It remains to estimate the pressure approximation ph. To this end, we use the
discrete inf-sup condition (5.4) to obtain

‖ph −Qhp‖ ≤ 1

β
sup
v∈Vh

b(v, ph −Qhp)

|||v|||

=
1

β
sup
v∈Vh

b(v, ph − p) + b(v, p−Qhp)

|||v|||

=
1

β
sup
v∈Vh

a(u − uh,v) + b(v, p−Qhp)

|||v|||

≤ C sup
v∈Vh

1

|||v||| |||v|||(|||u − uh||| + ‖p−Qhp‖)

≤ C(|||u − uh||| + ‖p−Qhp‖),

which, together with (5.13), implies that

‖ph −Qhp‖ ≤ C (|||u − Πhu||| + ‖p−Qhp‖) .

The error estimate for the pressure approximation is then completed by combining
the above inequality with the standard triangle inequality.

5.2. An L2-error estimate for the velocity approximation. Consider only
the finite element approximate solutions arising from the symmetric finite element
scheme. To derive an L2-error estimate for the velocity approximation, we seek
(w;λ) ∈ (H1

0 (Ω))2 × L2
0(Ω) satisfying

−Δw + ∇λ = u − uh in Ω,

∇ · w = 0 in Ω,

w = 0 on ∂Ω.

Note that for any (v; q) ∈ V (h) × L2
0(Ω) the solution (w;λ) satisfies

as(w,v) − b(v, λ) = (u − uh,v),(5.14)

b(w, q) = 0.(5.15)

Assume that the Stokes problem has the H2(Ω) ×H1(Ω)-regularity property in
the sense that the solution (w;λ) ∈ (H2(Ω))2 × H1(Ω) and the following a priori
estimate holds true:

(5.16) ‖w‖2 + ‖λ‖1 ≤ C‖u − uh‖.

In addition, we assume that the finite element space Vh and the projection operator
Πh have the following property:

(5.17) |||w − Πhw||| ≤ Ch‖w‖2.

With these assumptions, it is not hard to see that there exists a constant C indepen-
dent of h such that

(5.18) |||w − Πhw||| + ‖λ−Qhλ‖ ≤ Ch‖u − uh‖.

It must be pointed out that the H2 ×H1-regularity property assumption stated
as above requires that the polygonal domain Ω be convex. For nonconvex but smooth



H(DIV) FINITE ELEMENT METHOD 1279

domains, the regularity (5.16) can be proved to be valid. However, isoparametric
elements would need to be employed in the finite element scheme in order to maintain
optimal-order error estimates in either H1- or L2-norms.

Theorem 5.2. Let (uh; ph) ∈ Vh × Wh and (u; p) be the solutions of (4.3)–
(4.4) and (1.1)–(1.3), respectively. Assume that Assumption 1 and the estimate (5.17)
hold true and that the Stokes problem (1.1)–(1.3) has the H2(Ω) × H1(Ω)-regularity
property. Then there exists a constant C independent of h such that

(5.19) ‖u − uh‖ ≤ Ch(|||u − Πhu||| + ‖p−Qhp‖).

Proof. By letting v = u − uh in (5.14) we arrive at

(5.20) as(u − uh,w) − b(u − uh, λ) = ‖u − uh‖2.

Notice that

(5.21) b(u − uh, λ) = b(u − uh, λ−Qhλ)

and

as(u − uh,w) = as(u − uh,w − Πhw) + as(u − uh,Πhw)

= as(u − uh,w − Πhw) + b(Πhw, p− ph)

= as(u − uh,w − Πhw) + b(Πhw − w, p− ph).(5.22)

Substituting (5.21) and (5.22) into (5.20) we obtain

‖u − uh‖2 = as(u − uh,w − Πhw) + b(Πhw − w, p− ph) − b(u − uh, λ−Qhλ).

Thus,

‖u − uh‖2 ≤ C (|||u − uh||| + ‖p− ph‖) (|||w − Πhw||| + ‖λ−Qhλ‖) .

Substituting (5.18) into the above estimate we obtain

‖u − uh‖2 ≤ Ch (|||u − uh||| + ‖p− ph‖) ‖u − uh‖,

which implies that

‖u − uh‖ ≤ Ch (|||u − uh||| + ‖p− ph‖) .

The above inequality and the error estimate (5.9) imply

‖u − uh‖ ≤ Ch(|||u − Πhu||| + ‖p−Qhp‖).

This completes the proof of the theorem.

6. Examples of H(div) elements. Let us recall that the error estimates es-
tablished in section 5 are based on the following three properties:

B1. Vh ⊂ H(div; Ω),
B2. Assumption 1 and the estimate (5.17) as described in section 5, and
B3. the H2 ×H1-regularity property assumption for the Stokes problem.
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The last property (B3) is required only for the L2-error estimate for the velocity
approximation. This means that any finite element pair Vh×Wh satisfying properties
B1–B2 is applicable for the formulations presented earlier in this manuscript.

Denote by Pk(K) the space of polynomials of degree ≤ k and

Pk1,k2
(K) =

⎧⎨⎩p(x1, x2) : p(x1, x2) =
∑

0≤i≤k1,0≤j≤k2

aijx
i
1x

j
2

⎫⎬⎭ .

Pk1,k2,k3(K) is defined similarly in three-dimensional spaces. Define Qk(K) as follows:

Qk(K) =

{
Pk,k(K) for d = 2,
Pk,k,k(K) for d = 3.

Observe that the finite element pair Vh ×Wh is constructed from local elements
Vr(K) and Wm(K) as described in section 3. Therefore, it suffices to specify the local
pair Vr(K) ×Wm(K) for each example to be presented.

6.1. Existing elements. All of the existing H(div) elements designed for the
second-order elliptic problems (e.g., see [25, 8, 7, 17, 19]) satisfy properties B1–B2,
except the estimate (5.17) for the lowest-order Raviart–Thomas element on triangles
and quadrilaterals. Therefore, there are plenty of finite element spaces applicable to
the new formulation of the Stokes problem. For illustrative purposes, we mention
three examples. Readers are referred to the book by Brezzi and Fortin [8] for more
examples of the H(div) element.

6.1.1. Raviart–Thomas elements on triangles or tetrahedra: RTk(K).
Let k ≥ 1 be any integer. For any triangular or tetrahedral element K, the local
element Vr(K) ×Wm(K) is defined by

Vk(K) = (Pk(K))d ⊕ xPk(K), Wk(K) = Pk(K),

where d = 2 if K is a triangle and d = 3 if K is a tetrahedron. The projection
operator Πh satisfying all of the required properties is given locally on each element
K. For example, the restriction of Πh on the element K, denoted by ΠK , is defined
as follows: ∫

∂K

(v − ΠKv) · nqds = 0 ∀q ∈ Pk(∂K),∫
K

(v − ΠKv) · qdK = 0 ∀q ∈ (Pk−1(K))d, k ≥ 1.

6.1.2. BDM elements on triangles or tetrahedra: BDMk(K) [8]. Let
k ≥ 1 be any integer. For any triangular or tetrahedral element K, the local element
Vr(K) ×Wm(K) is defined by setting r = m + 1 = k and

Vk(K) = (Pk(K))d, Wk−1(K) = Pk−1(K).

On a triangular element K, the local projection operator ΠK : (H1(K))2 → Vk(K) is
defined by ∫

∂K

(v − ΠKv) · nqds = 0 ∀q ∈ Pk(∂K),∫
K

(v − ΠKv) · ∇qdK = 0 ∀q ∈ Pk−1(K),∫
K

(v − ΠKv) · curl(bKq)dK = 0 ∀q ∈ Pk−2(K), k ≥ 2,
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where bK is the bubble function defined on K. On a tetrahedral element K, the
corresponding local projection ΠK is given by∫

∂K

(v − ΠKv) · nqds = 0 ∀q ∈ Pk(∂K),∫
K

(v − ΠKv) · ∇qdK = 0 ∀q ∈ Pk−1(K),∫
K

(v − ΠKv) · qdK = 0 ∀q ∈ Φk(K),

where

Φ(K) = {φ ∈ (Pk(K))3 : ∇ · φ = 0, φ · n = 0 on ∂K}.

6.1.3. BDM elements on quadrilaterals: BDM[k](K). It is sufficient to
describe the element on the unit square. Let k ≥ 1 be any integer. The local element
Vr(K) ×Wm(K) is defined by

Vk(K) = (Pk(K))2 ⊕ curl(xk+1
1 x2) ⊕ curl(x1x

k+1
2 ),

Wk−1(K) = Pk−1(K).

On the unit square element K, the local projection operator ΠK : (H1(K))2 → Vk(K)
is defined by ∫

∂K

(v − ΠKv) · nqds = 0 ∀q ∈ Pk(∂K),∫
K

(v − ΠKv) · wdK = 0 ∀w ∈ (Pk−2(K))2, k ≥ 2.

6.1.4. Error estimates for the existing elements. Recall that the velocity
Vh and the pressure space Wh are defined, respectively, by

(6.1) Vh = {v ∈ H(div; Ω) : v|K ∈ Vr(K) ∀K ∈ Th; v · n|∂Ω = 0}

and

(6.2) Wh = {q ∈ L2
0(Ω) : q|K ∈ Wm(K) ∀K ∈ Th}.

For the existing H(div) elements listed above, we have Vr(K) = RTk(K), BDMk(K),
or BDM[k](K) and Wm(K) = Pk(K), Pk−1(K), or Pk−1(K), respectively. The
projection operator Πh is given by

(6.3) (Πhv)
∣∣
K

= ΠK(v
∣∣
K

).

The definition of Πh implies that

(6.4) b(v − Πhv, q) = 0 ∀q ∈ Wh.

Furthermore, it has been proved in [8] that (5.2) and (5.17) hold true for Πh defined
in (6.3). Therefore, properties B1–B2 are well justified.

Let Qh be the L2 projection from L2
0(Ω) to Wh. It is not hard to see that Wh

has the following local approximation properties: For BDMk(K) and BDM[k](K)

(6.5) |p−Qhp|s,K ≤ Chk−s|p|k,K ∀K ∈ Th, s = 0, 1,
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and for RTk(K)

(6.6) |p−Qhp|s,K ≤ Chk+1−s|p|k+1,K ∀K ∈ Th, s = 0, 1.

The constant C in (6.5)–(6.6) depends only on k and the shape of K.
The following result follows from (5.17), (6.5)–(6.6), and Theorems 5.1 and 5.2.
Proposition 6.1. Let (u; p) be the solution of (1.1)–(1.3) and (uh; ph) ∈ Vh×Wh

be obtained from either (4.3)–(4.4) or (4.14)–(4.15). Assume that (u; p) ∈ (Ht+1(Ω))2×
Ht(Ω) for some 1 ≤ t ≤ k. Then there exists a constant C independent of h such that
for BDMk(K), BDM[k](K), and RTk(K)

|||u − uh||| + ‖p− ph‖ ≤ Cht(‖u‖t+1 + ‖p‖t).(6.7)

Furthermore, if the H2 × H1-regularity property holds true for the Stokes problem,
then there is a constant C such that the finite element approximation (uh; ph) from
the symmetric formulation has the following error estimate:

‖u − uh‖ ≤ Cht+1(‖u‖t+1 + ‖p‖t).

We comment that the above error estimates hold true for all of the H(div) ele-
ments listed in [8].

6.2. New elements. Stability and accuracy are two main factors in the con-
struction of new finite elements. For the variational schemes presented in this paper,
the stability part is realized by a combination of the inf-sup condition and the co-
ercivity for the corresponding bilinear forms. The accuracy part is characterized by
Assumption 1 and a balanced pressure space Wh. For example, Proposition 6.1 indi-
cates that the Raviart–Thomas element can be used to approximate the solution of
the Stokes equations, which is convergent as the mesh size decreases (note that we
do not know any convergence when RT0(K) is used). However, the Raviart–Thomas
elements do not appear to be well balanced, because both the velocity and the pres-
sure unknowns are approximated by polynomials of order k. In contrast, the BDM
elements offer a better/optimal combination for the solution of the Stokes problem.
But the BDM[k](K) element on rectangles is constructed in an awkward way by in-
volving the curl of some polynomials. We feel that better constructed elements should
be explored on rectangles and cubes for solving the Stokes problem. For this purpose,
we would like to propose some alternatives on rectangles and cubes which are suitable
for approximating the solution of the Stokes problem. These elements can be used on
quadrilaterals through local transformations as described in [26].

6.2.1. A new element on rectangles: NE1k(K). We illustrate the con-
struction of the new NE1k(K) element on the unit square K = [0, 1] × [0, 1]. Let
k ≥ 1 be any integer. We define local elements Vr(K) ×Wm(K) by

Vk(K) = (Qk(K))2, Wk−1(K) = Qk−1(K).

For the first component of v = (v1, v2), we define an operator ΠK,1 : H1(K) → Qk(K)
as follows: ∫

e

(v1 − ΠK,1v1)φds = 0 ∀φ ∈ Pk(e), e = west, east,(6.8) ∫
K

(v1 − ΠK,1v1)ψdK = 0 ∀ψ ∈ Pk−2,k(K),(6.9)
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where e = west means that e is the west edge (i.e., e = {(0, x2) : x2 ∈ [0, 1]}) of the
unit square; the east edge is defined accordingly.

The system (6.8) involves exactly 2(k + 1) linear equations and (6.9) involves
(k − 1)(k + 1) linear equations. The total number of equations is given by

2(k + 1) + (k − 1)(k + 1) = (k + 1)2,

which is the same as the total number of degrees of freedom for a polynomial in
Qk(K). The following proposition shows that the linear systems (6.8) and (6.9)
uniquely determine the projection ΠK,1v1.

Proposition 6.2. Let v ∈ Qk(K) be such that∫
e

vφds = 0 ∀φ ∈ Pk(e), e = west, east,(6.10) ∫
K

vψdK = 0 ∀ψ ∈ Pk−2,k(K).(6.11)

Then we must have v ≡ 0.
Proof. The condition (6.10) implies that v = 0 at the east and west edges of the

unit square K. Thus, there is a polynomial g = g(x1, x2) ∈ Pk−2,k(K) such that
v = x1(1− x1)g. Substitute v = x1(1− x1) into (6.11), and then let ψ = g. It follows
that g ≡ 0. This shows that v ≡ 0.

The projection of the second component of v, denoted by ΠK,2v2, can be defined
in a similar fashion. The local projection operator is then given by

ΠKv = (ΠK,1v1,ΠK,2v2).

It is not hard to show that such a defined projection satisfies all of the conditions
required in the previous sections. As a result, the element NE1k(K) can be used to
approximate the Stokes problem.

6.2.2. A new element on cubes: NE2k(K). Again, we shall describe details
only on the unit cube K = [0, 1]3. Let k ≥ 1 be an integer. A straightforward
extension of the NE1k element to three-dimensional space is given by

Vk(K) = (Qk(K))3, Wk−1(K) = Qk−1(K).

Our goal here is to show that the above extension actually works. To this end, it
suffices to construct a projection operator ΠK which satisfies the required properties.

Let v = (v1, v2, v3) ∈
(
H1(Ω)

)3
be a vector-valued function. For each component

vi, we define its projection to Qk(K) as follows:∫
ei

(vi − ΠK,ivi)φds = 0 ∀φ ∈ Qk(ei),(6.12) ∫
K

(vi − ΠK,ivi)ψdK = 0 ∀ψ ∈ Pk1,k2,k3(K),(6.13)

where ei = {(x1, x2, x3) : xj ∈ [0, 1], j 
= i; xi = 0 or 1} are the two faces of the cube
K which are orthogonal to the xi-axis, and ki = k − 2, kj = k for j 
= i.

There are 2(k+1)2 linear equations from the condition (6.12) and (k− 1)(k+1)2

linear equations from the condition (6.13). The total number of linear equations is
then given by

2(k + 1)2 + (k − 1)(k + 1)2 = (k + 1)3,
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which is the same as the total number of degrees of freedom for a polynomial in the
space Vk(K).

A similar argument as in the previous subsection for NE1k(K) can be applied
to show that the projection ΠK,ivi is uniquely determined by (6.12) and (6.13). Fur-
thermore, the local projection given by

ΠKv = (ΠK,1v1,ΠK,2v2,ΠK,3v3)

can be verified to satisfy all of the properties required by the convergence theory
developed in previous sections for the new finite element methods.

6.2.3. Another new element on rectangles: NE3k(K). Again for simplic-
ity, we shall describe the new element on the unit square K = [0, 1]2. This element
will be a simplified version of NE1k(K) but with the same order of accuracy.

Let k ≥ 1 be any integer, and define

Vk(K) = (Pk(K) ⊕ {x1x
k
2}) × (Pk(K) ⊕ {x2x

k
1}),

Wk−1(K) = Pk−1(K).

For the first component of v = (v1, v2), we define its projection ΠK,1v1 ∈ Pk(K) ⊕
{x1x

k
2} by using the following equations:∫

e

(v1 − ΠK,1v1)φds = 0 ∀φ ∈ Pk(e), e = west, east,(6.14) ∫
K

(v1 − ΠK,1v1)ψdK = 0 ∀ψ ∈ Pk−2(K).(6.15)

There are 2(k + 1) equations from the condition (6.14) and 1
2 (k− 1)k equations from

the condition (6.15). The total number of linear equations is given by

2(k + 1) +
1

2
(k − 1)k =

1

2
(k + 1)(k + 2) + 1,

which is the same as the total number of degrees of freedom for functions in the space
Pk(K) ⊕ {x1x

k
2}. Using the same technique as in the analysis for NE1k(K), it can

be proved that ΠK,1v1 is uniquely determined by (6.14) and (6.15). The projection
of the second component of v can be determined in a similar way. The resulting
local projection ΠKv = (ΠK,1v1,ΠK,2v2) satisfies all of the properties required in the
convergence theory.

6.2.4. Error estimates for the new elements. First, we define the velocity
space Vh by

(6.16) Vh = {v ∈ H(div; Ω) : v|K ∈ Vr(K) ∀K ∈ Th; v · n|∂Ω = 0}

and the pressure space Wh by

(6.17) Wh = {q ∈ L2
0(Ω) : q|K ∈ Wm(K) ∀K ∈ Th},

where Vr(K) = NE1k(K), NE2k(K), or NE3k(K) and Wm(K) = Qk−1(K), Qk−1(K),
or Pk−1(K), respectively. For any v ∈ (H1

0 (Ω))d, with d = 2, 3, define Πhv ∈ Vh by

(6.18) (Πhv)|K = ΠKv ∀K ∈ Th,
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where ΠK is the corresponding local projection operator on each element. From the
construction of ΠK , it is easy to see that it is indeed true that Πhv ∈ Vh, and,
moreover, one has

(6.19) b(v − Πhv, q) = 0 ∀q ∈ Wh

and that properties B1–B2 are satisfied for the three new elements NE1k(K),
NE2k(K), and NE3k(K). Similar to Proposition 6.1, we have the following con-
vergence estimates.

Proposition 6.3. Let (u; p) be the solution of (1.1)–(1.3) and (uh; ph) ∈ Vh ×
Wh be obtained from either (4.3)–(4.4) or (4.14)–(4.15) by using the new elements
described in this subsection. Assume that (u; p) ∈ (Ht+1(Ω))d × Ht(Ω) for some
1
2 < t ≤ k. Then there exists a constant C independent of h such that

|||u − uh||| + ‖p− ph‖ ≤ Cht(‖u‖t+1 + ‖p‖t),

and for the symmetric formulation we also have

‖u − uh‖ ≤ Cht+1(‖u‖t+1 + ‖p‖t),

provided that the H2 ×H1-regularity property holds true for the Stokes problem.
We point out that, unlike the existing H(div) elements, the new H(div) elements

described in this section do not yield numerical velocities that satisfy the continuity
equation (1.4) in the classical sense. However, the numerical approximations arising
from the new elements indeed conserve mass locally on each element.
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Abstract. We consider numerical approximations of incompressible Newtonian fluids having
variable, possibly discontinuous, density and viscosity. Since solutions of the equations with vari-
able density and viscosity may not be unique, numerical schemes may not converge. If the solution
is unique, then approximate solutions computed using the discontinuous Galerkin method to ap-
proximate the convection of the density and stable finite element approximations of the momentum
equation converge to the solution. If the solution is not unique, a subsequence of these approximate
solutions will converge to a solution.
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1. Introduction. We consider numerical approximations of the incompressible
Navier–Stokes equations with variable density and viscosity,

ρ
(
vt + (v · ∇)v

)
+ ∇p − div

(
μ(ρ)D(v)

)
= ρf,

div(v) = 0,(1.1)

ρt + div(ρv) = 0,

on a bounded domain Ω ⊂ R
d with initial and boundary conditions

v|∂Ω = 0, v|t=0 = v0, ρ|t=0 = ρ0.

These equations model the motion of mixtures of immiscible fluids having different
densities and viscosities. The density and viscosity may be discontinuous, so, in
general, the solutions will not enjoy any regularity beyond that given by the basic
estimates

d

dt

∫
Ω

(ρ/2)|v|2 dx +

∫
Ω

μ(ρ)|D(v)|2 dx =

∫
Ω

ρf · v dx

and ρ ∈ L∞[0, T ;L∞(Ω)]; in particular, ρ does not have bounded variation. In this
situation we can establish convergence of approximate numerical solutions; however,
in the absence of additional regularity no rates of convergence can be guaranteed.

The existence of a weak solutions to (1.1) has been established by Lions [15]. Some
additional regularity was proven by Antontsev, Kazhikhov, and Monakhov [1] and
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Fujita and Kato [6] when the viscosity is constant and the initial density is bounded
from below. In [4], Desjardins provides similar results under weaker assumptions; for
instance, when the viscosity does not vary too much with the density. To establish
the existence of solutions of the Navier–Stokes equations with discontinuous density
and viscosity, sharp results for the convection equation governing the density are
required. These were developed by DiPerna and Lions [5], who showed that the
weak solutions of convection equations were unique even when the velocity was not
Lipschitz, so that characteristics may not exist. They also showed that the solutions
would converge strongly when the velocities converged weakly in L2[0, T ;H1

0 (Ω)]. For
technical reasons they only considered velocity fields v vanishing1 on ∂Ω, and for
this reason we only consider Dirichlet boundary data for v. Currently, uniqueness of
solutions to the coupled system can only be established if the velocity and density
satisfy ∇v ∈ L2[0, T ;L∞(Ω)], vt ∈ L2[0, T ;L∞(Ω)], and ∇ρ ∈ L2[0, T ;L∞(Ω)]; see
[15], so, in general, uniqueness is not expected. In this situation we can only show
that subsequences of approximate solutions converge to solutions of the Navier–Stokes
equations.

While there is a rich body of literature on numerical approximation of the classical
(constant density and viscosity) Navier–Stokes equations, very few results are available
for the situation considered here. Algorithms proposed for the approximation of (1.1)
include front tracking techniques [7, 8] and level set/phase field methods [2, 16, 17].
Recall that level set methods seek a smooth function φ satisfying φt+div(φv) = 0 and
compute ρ = H(φ), where H(.) is a suitable translation of the Heaviside graph. Nu-
merical approximations typically approximate the Heaviside graph to give a smooth
transition over several grid points. Since φ is “smooth,” accurate approximations can
be computed; however, difficulties arise when attempting to estimate the accuracy of
ρ = H(φ). Indeed, it is difficult to write down the approximate equation satisfied by
ρ in this context. For this reason we chose to compute ρ directly using the discon-
tinuous Galerkin method [9, 12]. Below we use the results of Walkington [18], which
show that approximations of the density computed using the discontinuous Galerkin
method converge strongly in L2[0, T ;L2(Ω)]. Traditionally the analysis of schemes
for hyperbolic equations is based upon the (nonlinear) theory of Kruzkov [10], which
requires the coefficients to be C1. This guarantees that the solutions are regular, in
the sense that they have bounded variation, and rates of convergence can be estab-
lished [11]. This theory fails for the problem considered here since v is not C1 and ρ
does not have bounded variation. This problem was circumvented in [18] by drawing
upon the (linear) DiPerna–Lions theory [5]. We refer to [18] for further discussion
and references on this topic.

It will be assumed that the viscosity can be determined as a continuous function
of the density, μ = μ(ρ). Physically each material particle has an associated viscosity,
so μ should satisfy the convection equation μt + v.∇μ = 0. If μ = μ(ρ), then this
equation is satisfied when ρt +div(ρv) = 0 and the fluid is incompressible, div(v) = 0.
In order to model a mixture of fluids where different components have the same
density but different viscosities, the convection equation for μ may be approximated
independently. This does not change the analysis below where the major difficulties
are due to the coupling between the density and velocity in the convection terms.

1.1. Weak solutions and the energy estimate. Since the solutions of equa-
tions (1.1) are not smooth we consider weak solutions. A pair (v, ρ) is a weak solution

1Lions and DiPerna also considered the periodic problem and the convection equation on all of
R
d.
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of (1.1) with initial data (v0, ρ0) ∈ L2(Ω) × L∞(Ω) if

v ∈ V = {v ∈ L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1
0 (Ω)] | div(v) = 0},

ρ ∈ R = L∞[0, T ;L∞(Ω)], and∫ T

0

∫
Ω

−ρv.wt − (ρv ⊗ v) · ∇w + μ(ρ)D(v) ·D(w) =

∫
Ω

ρ0v0.w(0) +

∫ T

0

∫
Ω

ρf.w,

∫ T

0

∫
Ω

ρ(ψt + v.∇ψ) =

∫
Ω

ρ0ψ(0),(1.2)

for all w ∈ {w ∈ D([0, T ) × Ω) | div(w) = 0} and ψ ∈ D([0, T ) × Ω). DiPerna and
Lions [5] and Lions [15] established existence of solutions of this weak problem when
ρ0 is nonnegative. Their weak solutions satisfy the natural energy estimate

d

dt

∫
Ω

(ρ/2)|v|2 +

∫
Ω

μ(ρ)|D(v)|2 ≤
∫

Ω

ρf.v,(1.3)

which may be derived by formally setting w = v in the weak statement of the mo-
mentum equation and ψ = |v|2/2 in the weak statement of the density equation.

1.2. Outline. In the next section we motivate and then state the numerical
scheme used to approximate the Navier–Stokes equations with variable density and
viscosity (1.1). The requirement of stability, consistency, and nonnegativity of the
density, give rise to conflicting requirements. The scheme presented in section 2.4
satisfies these requirements and is subsequently analyzed in section 3.

1.3. Notation. Below, Ω ⊂ R
d will be a bounded domain with unit outward

normal n. We will consider a regular family of finite element meshes {Th}h>0, each of
which is assumed to triangulate Ω exactly. It is assumed that the finite elements have
uniformly bounded aspect ratio, and the parameter h > 0 represents the diameter of
the largest element in Th. The space of polynomials of degree k on an element K ∈ Th
is denoted Pk(K). For simplicity we assume that for each h > 0 a uniform partition
of [0, T ] used with tn = nτ , where τ = T/N , N ∈ N, is assumed to converge to zero as
h tends to zero. We will denote the approximate solutions by (vh, ρh); in particular,
the dependence upon τ is implicit. If a ∈ R, then the positive and negative parts are
denoted by a± with a+ = max(a, 0) and a− = min(a, 0).

Divergences of vectors and matrices are denoted div(v) = vi,i and div(T )i =
Tij,j , and gradients of vector valued quantities are interpreted as matrices, (∇v)ij =
vi,j . Here indices after the comma represent partial derivatives and the summation
convention is used. The symmetric part of the velocity gradient (stretching tensor)
is written as D(v). Inner products of vectors v, w ∈ R

d are written as v.w and their
tensor product v ⊗ w is the matrix having components viwj . The Frobenius inner
product of two matrices A, B ∈ R

d×d is denoted by A·B =
∑

i,j AijBij ; we frequently

use the elementary identities AB · C = A · CBT = B ·ATC.
Standard notation is adopted for the Lebesgue spaces, Lp(Ω), and the Sobolev

spaces, Wm,p(Ω) or Hm(Ω). The dual exponent to p will be denoted by p′, 1/p+1/p′ =
1. Solutions of the evolution equation will be functions from [0, T ] into these spaces,
and we adopt the usual notion, L2[0, T ;H1(Ω)], C[0, T ;H1(Ω)], etc. to indicate the
temporal regularity of such functions. The space of C∞ test functions having compact
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support in Ω is denoted by D(Ω). For vector valued quantities, such as the velocity v,
we write v ∈ L2(Ω) to indicate that each component lies in the specified space. The
space H(div; Ω) is the set of vector valued functions in L2[0, T ;L2(Ω)] with divergence
in L2[0, T ;L2(Ω)]. Strong convergence of a sequence will be indicated as ρh → ρ, weak
convergence by ρh ⇀ ρ, and weak � convergence by ρh ⇀∗ ρ.

2. Construction of numerical schemes.

2.1. Overview. Convergence proofs of numerical schemes for linear partial dif-
ferential equations are almost always a variant of the old adage “stability and con-
sistency imply convergence.” For nonlinear problems, some form of compactness is
usually also required. Our proof of convergence follows this line of argument; in par-
ticular, numerical schemes are constructed so that discrete versions of energy estimate
(1.3) (and hence stability) hold.

The low regularity of the solution gives rise to many technical problems. If high
order approximations of the density are used, Gibbs phenomena arise, and stable
approximations of the momentum equation require the density to be truncated or
projected onto a set of strictly positive functions. Since the density has low regularity
we cannot establish consistency of such schemes. In this situation we are forced to
resort piecewise constant approximations of the density which give rise to monotone
schemes. Unfortunately, piecewise constant approximations of the density give rise
to a different consistency error; specifically, jump terms arise when the test functions
are not continuous.

In the current context the key compactness result is that solutions of the equation
for the density ρ will converge strongly in L2[0, T ;L2(Ω)] when the velocity converges
weakly in L2[0, T ;H1

0 (Ω)], [5, 15]. The analogous statement for discontinuous Galerkin
approximations of the density equation was established by Walkington in [18] and this
result will be used below. Again the low regularity of the velocity, which appears as
a nonconstant coefficient in the density equation, gives rise to technical problems.
Specifically, in order to establish strong convergence of the density the (approximate)
velocity fields are required to have average divergence equal to zero on each element
[18].

2.2. Stability. The natural energy estimate given in (1.3) was derived assuming
that the balance of mass is satisfied exactly. Since the balance of mass is only approx-
imately satisfied by numerical approximations, the energy estimate is not automatic.
Also, numerical approximations of the density may not be nonnegative, so even if an
“energy estimate” holds it may not be useful. One way to circumvent these problems
is to observe that if ρt + div(ρv) = 0, then

ρ
(
vt + (v.∇)v

)
=

1

2

(
ρvt + (ρv.∇)v + (ρv)t + div(ρv ⊗ v)

)
.

Taking the dot product of the right-hand side with v vanishing on ∂Ω and integrating
gives (d/dt)

∫
(ρ|v|2/2). This identity holds independently of the equation for the

balance of mass and also holds if different approximations of the velocity are used as
coefficients of the convective terms. This motivates the following weak statement of
the momentum equation:

1

2

∫
Ω

ρ̄vt.w + (ρv̄.∇)v.w+(ρ̄v)t.w − (ρv̄.∇)w.v(2.1)

+

∫
Ω

−pdiv(w) + μ(ρ)D(v) ·D(w) =

∫
Ω

ρ̄f.w.
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In the context of a numerical scheme, ρ is an approximation of the density which
may not be positive and ρ̄ is a nonnegative projection or truncation of ρ. Similarly,
in order to obtain stability of the convection equation, a projection, v̄, of v onto a
suitable subspace of H(div; Ω) may be required for the convection terms; see [18].
Selecting w(t) = v(t) in the above equation immediately gives

d

dt

∫
Ω

(1/2)ρ̄|v|2 +

∫
Ω

μ(ρ)|D(v)|2 =

∫
Ω

ρ̄f.v.

2.3. Consistency. While numerical schemes based upon the weak statement (2.1)
will “automatically” be stable, they are not “automatically” consistent. Specifically,
in the absence of any estimates on vt it is necessary to integrate the first term by
parts. Then∫ T

0

∫
Ω

ρ̄vt.w + (ρv̄.∇)v.w =

∫ T

0

∫
Ω

−v.(ρ̄w)t + (ρv̄.∇)v.w

=

∫ T

0

∫
Ω

−(ρ̄− ρ)t v.w − ρ̄v.wt −
(
ρt(v.w) − (ρv̄.∇)v.w

)
.

(1) If a high order approximation of the density equation is used it is possible to
select v.w as a test function in the Galerkin approximation of ρt + div(ρv̄) = 0. Then∫ T

0

∫
Ω

ρ̄vt.w + (ρv̄.∇)v.w =

∫ T

0

∫
Ω

−(ρ̄− ρ)t v.w − ρ̄v.wt − (ρv̄ ⊗ v) · ∇w

and consistency requires the first term to vanish in the limit. For the continuous
problem ρ is bounded in L∞[0, T ;L∞(Ω)] so that the momentum, ρv, is bounded in
L2[0, T ;L2(Ω)]. Since ρt+div(ρv) = 0, it follows that ρt is bounded in L2[0, T ;H−1(Ω)].
Unfortunately, L∞ bounds could not be established for high order approximations of
the density, so the analogous estimates could not be established for the time derivative
of the discrete density. For this reason we could not construct nonnegative approx-
imations, ρ̄, for which (ρ̄ − ρ)t converged to zero in L2[0, T ;H−1(Ω)]. In particular,
we could not establish consistency of numerical schemes constructed using high order
approximations of the density equation.

(2) If piecewise constant approximations of the density are used, then numerical
approximations of ρ are nonnegative so it is possible to select ρ̄ = ρ. The first term
in (2.1) then becomes∫ T

0

∫
Ω

ρvt.w + (ρv̄.∇)v.w =

∫ T

0

∫
Ω

−ρv.wt − ρtv.w + (ρv̄.∇)v.w.

To establish consistency we would like to multiply the Galerkin approximation of
ρt + div(ρv̄) = 0 by v.w. When the density is approximated using piecewise constant
functions we must first approximate v.w by a (discontinuous) piecewise constant func-
tion. This leads to an expression of the form∫ T

0

∫
Ω

ρvt.w + (ρv̄.∇)v.w =

∫ T

0

∫
Ω

−ρv.wt − (ρv̄ ⊗ v) · ∇w + “jump terms,”

and the scheme is consistent provided the “jump terms” vanish in the limit. In
section 3 we show that the jump terms do vanish in the limit, which establishes
consistency.
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2.4. Scheme. In light of the above discussion we will consider approximations
of equations (1.1) where the density is approximated using piecewise constant ap-
proximations in space and time, and the momentum equation is approximated using
the implicit Euler scheme with velocity-pressure spaces satisfying the Babuska–Brezzi
condition. In order to minimize the technicalities it will be assumed that the pressure
space contains the (discontinuous) piecewise constant functions on each triangulation.
Relaxing this condition is considered in section 4. Since the accuracy of the piecewise
constant approximation of the density is formally first order, at each discrete time we
can first advance the density and then the velocity and pressure without further loss
of accuracy. In this situation the linear systems for the density and velocity/pressure
can be decoupled.

Given a triangulation Th of Ω and time step τ = T/N , let

Rh = {ρ ∈ L2(Ω) | ρ|K ∈ R ∀K ∈ Th}.

If ρ0 is the projection of ρ(0) onto Rh, then the (piecewise constant) discontinuous
Galerkin approximation of ρ(tn) satisfies ρn ∈ Rh and∫

K

ρnψn + τ

∫
∂K

(
ρn−(vn−1.n)+ + ρn+(vn−1.n)−

)
ψn =

∫
K

ρn−1ψn,(2.2)

for K ∈ Th and ψn ∈ R. Here v.n = (v.n)+ + (v.n)− are the positive and negative
parts of v.n and ρn±(x) = lims↘0 ρ

n(x±sn) so that the middle term gives the “upwind”
value of ρnvn−1.n.

To march the velocity forward, let

Vh ⊂ {v ∈ H1
0 (Ω) | v|K ∈ Pk(K), K ∈ Th},

and

Ph ⊂ {p ∈ L2(Ω)/R | p|K ∈ P�(K), K ∈ Th},

be a pair of spaces satisfying the Babuska–Brezzi condition and let v0 be the L2(Ω)
projection of v(0) onto Vh. Then the approximations, (vn, pn) ∈ Vh×Ph, of (v(tn), p(tn))
are the solution of

1

2

∫
Ω

{
ρn−1

(
vn − vn−1

τ

)
.w + (ρnvn−1.∇)vn.w

+

(
(ρv)n − (ρv)n−1

τ

)
.w − (ρnvn−1.∇)w.vn

}
(2.3)

+

∫
Ω

−pn div(w) + μnD(vn) ·D(w) =

∫
Ω

ρnfn.w,

∫
Ω

div(vn) q = 0

for all (w, q) ∈ Vh×Ph. In the above equation, fn is an approximation of the average
of f on (tn−1, tn] and μn = μ(ρn).
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3. Analysis of the numerical scheme.

3.1. Estimates. To establish stability of the scheme (2.2)–(2.3) we first state
the natural energy estimate the scheme was designed to satisfy.

Notation: If {vn}Nn=0 ⊂ Vh and {ρn}Nn=0 ⊂ Rh, then we let vh ∈ L2[−τ, T ;Vh]
and ρh ∈ L2[−τ, T ;Rh] denote the piecewise constant functions taking values vn and
ρn on (tn−1, tn], respectively.

Lemma 3.1. Let (ρh, vh, ph) be the approximate solution of equations (1.1) com-
puted using the scheme (2.2)–(2.3). Then

1

2

∫
Ω

ρn|vn|2 +
1

2

n∑
i=1

∫
Ω

ρn−1|vn − vn−1|2+
n∑

i=1

τ

∫
Ω

μn|D(vn)|2

=
1

2

∫
Ω

ρ0|v0|2 +

n∑
i=1

τ

∫
Ω

ρnfn.vn.

Let the pressure space contain the piecewise constant functions. If 0 < c ≤ ρ(0) ≤ C
and 0 < c ≤ μ(ρ) ≤ C for constants c, C ∈ R, v0 ∈ L2(Ω), and f ∈ L2[0, T ;L2(Ω)],
then {vh}h>0 is bounded in L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1

0 (Ω)] and∫ T

τ

‖vh(t) − vh(t− τ)‖2
L2(Ω) ≤ C(v0, f)τ.

The first estimate follows directly upon substituting w = vn and q = pn into
equations (2.3). The assumption on the pressure space guarantees that the scheme
for the density is monotone [18, Theorem 6.1], so the bounds on the initial data are
preserved,

min
Ω

ρ0 ≤ ρn(x) ≤ max
Ω

ρ0, x ∈ Ω.(3.1)

The bounds on {vh}h>0 then follow from the energy estimate.

3.2. Consistency of the density equation. To establish compactness of the
sequence {vh}h>0 in L2[0, T ;L2(Ω)], it is necessary to use test functions ψ in the
discrete density equation (2.2) which are not piecewise constant. This gives rise to
consistency errors which are estimated in this section. The following lemma provides
explicit expressions for these errors.

Lemma 3.2. Let ρh ∈ Rh satisfy (2.2). If ψ ∈ H1
0 (Ω) and ψ̄ ∈ Rh is the function

taking the average value of ψ on each element K ∈ Th, then∫
Ω

(ρn − ρn−1)ψ − τ

∫
Ω

ρnvn−1.∇ψ = τ

∫
Ω

ρn(ψ − ψ̄)div(vn−1)

+ τ
∑

K∈Th

∫
∂K

[ρn](vn−1.n)−(ψ − ψ̄),

where the value of ψ̄ on ∂K is taken as ψ̄|K (that is, the trace from inside K) and
[ρn] = ρn+ − ρn−.

Proof. Select ψn = ψ̄|K in (2.2) and sum over all of the simplices K ∈ Th to get∫
Ω

ρnψ + τ
∑

K∈Th

∫
∂K

(
ρn−(vn−1.n)+ + ρn+(vn−1.n)−

)
ψ̄ =

∫
Ω

ρn−1ψ.(3.2)
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In the middle term ρn±(x) = lims↘0 ρ
n(x ± n) and ψ̄|∂K = ψ̄|K . If E0 denotes all of

the interior edges (faces in 3d) of the elements, then the middle term may be written
as ∑

K∈Th

∫
∂K

(
ρn−(vn−1.n)+ + ρn+(vn−1.n)−

)
ψ̄

=
∑
e∈E0

∫
e

−
(
ρn−(vn−1.N)+ + ρn+(vn−1.N)−

)
[ψ̄].

Here N is one of the normals to e, ρn±(x) = lims↘0 ρ
n(x ± sN) and [ψ̄] = ψ̄+ − ψ̄−.

Integrals over the edges e ⊂ ∂Ω vanish since
∫
e
v.n = 0 on boundary edges. If

ψ : Ω̄ → R is continuous and vanishes on ∂Ω, then [ψ] = 0 on each edge e ∈ E0, so
[ψ̄] = [ψ̄ − ψ]. Reversing the above calculation shows

∑
K∈Th

∫
∂K

(
ρn−(vn−1.n)+ + ρn+(vn−1.n)−

)
ψ̄

=
∑

K∈Th

∫
∂K

(
ρn−(vn−1.n)+ + ρn+(vn−1.n)−

)
(ψ̄ − ψ)

=
∑

K∈Th

∫
∂K

(
ρn−(vn−1.n) + (ρn+ − ρn−)(vn−1.n)−

)
(ψ̄ − ψ)

=
∑

K∈Th

∫
K

div
(
ρnvn−1(ψ̄ − ψ)

)
+

∑
K∈Th

∫
∂K

(ρn+ − ρn−)(vn−1.n)−(ψ̄ − ψ)

= −
∫

Ω

(
ρnvn−1.∇ψ + ρn(ψ − ψ̄)div(vn−1)

)
−

∑
K∈Th

∫
∂K

[ρn](vn−1.n)−(ψ − ψ̄).

The last step used the property that ρn and ψn are constant on each element K ∈ Th.
The lemma follows upon substituting this expression into (3.2).

The following corollary expresses the weak statement satisfied by the discrete
density ρh in a more convenient form. Given a sequence of functions {ψn}Nn=0 ⊂ Rh,
recall the convention that ψh : (−τ, T ] → Rh is the function taking values ψh(t) = ψn

for t ∈ (n− 1)τ, nτ ].

Corollary 3.3. Let ρh ∈ Rh satisfy (2.2), {ψn}Nn=0 ⊂ H1
0 (Ω), and let {ψ̄n}Nn=0 ⊂

Rh be the piecewise constant approximations of {ψn}Nn=0. Then

n∑
j=m+1

∫
Ω

(ρj − ρj−1)ψj −
∫ tn

tm

∫
Ω

ρhvh(.− τ).∇ψh(3.3)

=

∫ tn

tm

∫
Ω

ρh(ψh − ψ̄h)div(vh(.− τ)) +

∫ tn

tm

∑
K∈Th

∫
∂K

[ρh](vh(.− τ).n)−(ψh − ψ̄h),

where the value of ψ̄h on ∂K is taken as ψ̄h|K .

The two terms on the right-hand side represent the consistency error of the piece-
wise constant DG scheme. The first term is easy to bound, and the following lemma
will be used to bound the last one.

Lemma 3.4. Let K ⊂ R
d be a simplex, v ∈ P�(K)d, ψ ∈ P�(K) and p, q ≥ 1.

Then there exists a constant C depending only upon d, p, q, 	 and the aspect ratio of
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K such that ∫
∂K

|v.n||ψ − ψ̄|q ≤ C‖v‖Lp′ (K)h
q−1
K |ψ|qW 1,pq(K),

where ψ̄ = (1/|K|)
∫
K
ψ is the average of ψ on K and hK is the diameter of K.

Proof. Let K̂ be the usual reference simplex and χ(ξ) = x0 + Bξ be an affine
mapping of K̂ onto K. We use a hat to denote the natural correspondence between
functions defined on K and K̂, ψ̂ = ψ ◦ χ. Writing the integral over the boundary as
the sum over the faces e ⊂ ∂K gives∫

∂K

|v.n||ψ − ψ̄|q =
∑

e⊂∂K

∫
e

|v.n||ψ − ψ̄|q

=
∑

ê⊂∂K̂

|e|
|ê|

∫
ê

|v̂.n||ψ̂ − ψ̄|q

≤ C
∑

ê⊂∂K̂

|e|‖v̂‖Lp′ (K̂)‖ψ̂ − ψ̄‖q
Lqp(K̂)

≤ C
∑

ê⊂∂K̂

|e|‖v̂‖Lp′ (K̂)|ψ̂|
q

W 1,pq(K̂)
.

To obtain the third line the trace theorem was used and the finite dimensionality of
P�(K̂) allowed the use of the indicated norms. The last line follows from the Poincaré

inequality and the observation that the average of ψ is the average of ψ̂.
Since

‖v̂‖Lp′ (K̂) = (|K̂|/|K|)1/p′‖v‖Lp′ (K), |ψ̂|W 1,pq(K̂) ≤ C(|K̂|/|K|)1/pqhK |ψ|W 1,pq(K),

and |e| ≤ C|K|/hK , where C depends upon the aspect ratio of K, the lemma
follows.

3.3. Compactness. The energy estimate shows that {vh}h>0 is bounded in
L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1

0 (Ω)]. A result of Lions [13] and Lions and Magenes [14]
states that compactness of the sequence in L2[0, T ;L2(Ω)] will follow if∫ T

δ

‖vh(t) − vh(t− δ)‖L2(Ω) ≤ Cδα,

for 0 ≤ δ ≤ T and some α > 0.
We recall Lions’ argument [13] which shows that weak solutions of the Navier–

Stokes equations with variable density and viscosity satisfy this inequality. This proof
carries over to Galerkin approximations with a few modifications which will be con-
sidered subsequently.

Lions’ compactness argument. Beginning with the weak statement of the
momentum equation (cf. (2.3))∫

Ω

{
(1/2) (ρvt + (ρv)t) .w + (1/2)(ρv.∇)v.w − (1/2)(ρv.∇)w.v

− pdiv(w) + μD(v) ·D(w)
}

=

∫
Ω

ρf.w,
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the identity ρvt = (ρv)t − ρtv is used to obtain∫
Ω

(ρv)t.w =

∫
Ω

{
ρf.w + (1/2)ρt(v.w) − (1/2)(ρv.∇)v.w

+ (1/2)(ρv.∇)w.v + pdiv(w) − μD(v) ·D(w)
}
.

The second term on the right-hand side can be eliminated upon writing the weak
statement of the balance of mass as∫

Ω

ρtψ =

∫
Ω

ρv.∇ψ,(3.4)

and selecting ψ = v.w, to give∫
Ω

(ρv)t.w =

∫
Ω

ρf.w + (ρv.∇)w.v + pdiv(w) − μD(v) ·D(w).

Integrating this expression with respect to s ∈ (t − δ, t) and letting w = w(t) be
independent of s gives∫

Ω

ρv|tt−δ .w(t) =

∫ t

t−δ

∫
Ω

ρf.w(t) + (ρv.∇)w(t).v + pdiv(w(t)) − μD(v) ·D(w(t)) ds.

Integrating the weak statement of the balance of mass (3.4) with respect to s ∈ (t−δ, t)
and setting ψ = v(t).w(t) shows∫

Ω

ρ|tt−δ v(t).w(t) =

∫ t

t−δ

∫
Ω

ρv.∇(v(t).w(t)).

Subtracting this equation from the previous one and observing that

ρv|tt−δ .w(t) − ρ|tt−δ v(t).w(t) = ρ(t− δ)(v(t) − v(t− δ)).w(t)

gives ∫
Ω

ρ(t− δ)(v(t) − v(t− δ)).w(t) =

∫ t

t−δ

∫
Ω

{
ρf.w(t) + (ρv.∇)w(t).v(3.5)

+pdiv(w(t)) − μD(v) ·D(w(t)) − ρv.∇(v(t).w(t))
}
ds.

Upon electing w(t) = v(t)−v(t−δ) the left-hand side dominates ‖v(t) − v(t− δ)‖2
L2(Ω)

when ρ is bounded below by c > 0. The right-hand side is estimated using the
following lemma.

Lemma 3.5. Let Ω ⊂ R
d with d = 2 or 3 and v, w ∈ L2[0, T ;H1

0 (Ω)]∩L∞[0, T ;L2(Ω)],
ρ, μ ∈ L∞[0, T ;L∞(Ω)], and f ∈ L2[0, T ;L2(Ω)]. Then there exists a constant C > 0
and α ∈ (0, 1) such that∣∣∣∣∣
∫ T

δ

∫ t

t−δ

∫
Ω

ρf.w(t) + (ρv.∇)w(t).v − μD(v) ·D(w(t)) − ρv.∇(v(t).w(t)) ds dt

∣∣∣∣∣ ≤ Cδα,

for 0 < δ < T . Here C depends only upon d, T , and f , ρ, μ, v, and w through the
norms stated in the hypotheses.

This lemma follows from elementary applications of Holder’s inequality and the
Sobolev embedding theorem, ‖v‖L4(Ω) ≤ ‖v‖βL2(Ω)‖∇v‖1−β

L2(Ω), where β = 1/2 and

β = 1/4 for d = 2 and 3, respectively.
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Compactness for the discrete problem. The calculations above can be repli-
cated for numerical solutions computed using (2.2)–(2.3) provided the discrete weak
statement of the balance of mass (3.3) is used in place of (3.4). This gives rise to four
extra terms on the right-hand side of (3.5).

Lemma 3.6. Let {(ρh, vh)}h>0 be numerical approximations of the Navier–Stokes
equations with variable density and viscosity computed using (2.2)–(2.3) over a quasi-
regular family of triangulations {Th}h>0 of Ω ⊂ R

d with d = 2 or = 3. Assume the
following:

• v0 ∈ L2(Ω), ρ0 ∈ L∞(Ω) satisfies 0 < c ≤ ρ0(x) ≤ C, and f ∈ L2[0, T ;L2(Ω)].
• μ : R → R

+ is continuous.
• The spaces for the velocity and pressure satisfy the Babuska–Brezzi condition

and the pressure space contains the piecewise constant functions.
Then there exists a constant C > 0 independent of h and α ∈ (0, 1) such that∫ T

δ

‖vh(t) − vh(t− δ)‖2
L2(Ω) ≤ Cδα,

for 0 < δ < T .
Proof. Since {vh}h>0 are piecewise constant in time it suffices to consider δ a

multiple of the time step τ . Writing (t− δ, t) = (tm, tn) and w(t) = vn − vm = wmn,
the discrete analogue of (3.5) is∫

Ω

ρm(vn − vm).wmn =

∫ tn

tm

∫
Ω

{
ρhf.w

mn + (ρhvh(.− τ).∇)wmn.vh

− μhD(vh) ·D(wmn) − ρhvh.∇(vn.wmn)
}
ds

+

∫ tn

tm

∫
Ω

{
ρh(vh.w

mn − vh.wmn) div(vh(.− τ))

− ρh(vn.wmn − vn.wmn) div(vh(.− τ))
}
ds

+τ

n∑
j=m+1

∑
K∈Th

∫
∂K

{
[ρj ](vj−1.n)− (vj .wmn − vj .wmn)

− [ρj ](vj−1.n)−(vn.wmn − vn.wmn)
}
.

The last four terms represent the consistency errors associated with the density equa-
tion and the term involving the pressure vanishes since wmn = vn − vm is discreetly
divergence free. (Recall that ψ̄ is the piecewise constant function having average value
of ψ on each element K ∈ Th.)

We bound the first term in each of the last two lines since the second is bounded
similarly. Since ‖ψ̄‖Lp(Ω) ≤ ‖ψ‖Lp(Ω) for any ψ ∈ Lp(Ω), the first term on the second
to last line may be bounded as∫ tn

tm

∫
Ω

ρh(vh.w
mn − vh.wmn) div(vh(.− τ)) ds

≤ 2‖ρh‖L∞[0,T ;L∞(Ω)]

∫ tn

tm
‖vh‖L4(Ω)‖wmn‖L4(Ω)‖div(vh(.− τ))‖L2(Ω) ds

≤ C

∫ tn

tm
‖∇vh‖1−β

L2(Ω)‖div(vh(.− τ))‖L2(Ω) ds ‖∇wmn‖1−β
L2(Ω)
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≤ C

∫ tn

tm
‖∇vh‖1−β

L2(Ω)‖∇vh(.− τ)‖L2(Ω) ds ‖∇wmn‖1−β
L2(Ω)

≤ C‖∇vh‖2−β
L2[0,T ;L2(Ω)](t

n − tm)β/2‖∇wmn‖1−β
L2(Ω)

(here β = 1/2 or 1/4 for d = 2 or 3, respectively). Since vh, wmn ∈ L∞[0, T ;L2(Ω)],
quantities involving ‖vh‖L2(Ω) and ‖wmn‖L2(Ω) have been absorbed into the constant
C. Integrating with respect to tn ∈ (δ, T ) and recalling that tm = tn − δ and wmn =
vh(tn) − vh(tn − δ) shows that this term may be bounded by a constant of the form
Cδβ/2 with C independent of h.

To estimate the first jump term use Lemma 3.4 with q = 1 to obtain

τ

n∑
j=m+1

∑
K∈Th

∫
∂K

[ρj ](vj−1.n)−(vj .wmn − vj .wmn)

≤ C‖ρh‖L∞[0,T ;L∞(Ω)]τ

n∑
j=m+1

∑
K∈Th

∫
K

‖vj−1‖Lp′ (K)|vj .wmn|W 1,p(K)

≤ C‖ρh‖L∞[0,T ;L∞(Ω)]

∫ tn

tm
‖vh(.− τ)‖Lp′ (Ω)|vh.wmn|W 1,p(Ω).

When p < 2 the terms of the form ∇(v.w) can be estimated as

|∇(v.w)|W 1,p(Ω) ≤ ‖|v||∇w| + |∇v||w|‖Lp(Ω)

≤ ‖|v||∇w|‖Lp(Ω) + ‖|∇v||w|‖Lp(Ω)

≤ ‖v‖L2p/(2−p)(Ω)‖∇w‖L2(Ω) + ‖∇v‖L2(Ω)‖w‖L2p/(2−p)(Ω).

Letting p = 4/3 so that 2p/(2 − p) = 4, the first jump term becomes

τ
n∑

j=m+1

∑
K∈Th

∫
∂K

[ρj ](vj−1.n)−(vj .wmn − vj .wmn)

≤ C

∫ tn

tm
‖vh(.− τ)‖L4(Ω)

(
‖vh‖L4(Ω)‖∇wmn‖L2(Ω) + ‖∇vh‖L2(Ω)‖wmn‖L4(Ω)

)
ds

≤ C

∫ tn

tm
‖∇vh(.− τ)‖1−β

L2(Ω)

(
‖∇vh‖1−β

L2(Ω)‖∇wmn‖L2(Ω) + ‖∇vh‖L2(Ω)‖∇wmn‖1−β
L2(Ω)

)
ds

≤ C
(
‖∇vh‖2(1−β)

L2[0,T ;L2(Ω)](t
n − tm)β‖∇wmn‖L2(Ω)

+‖∇vh‖2−β
L2[0,T ;L2(Ω)](t

n − tm)β/2‖∇wmn‖1−β
L2(Ω)

)
.

Integration with respect to tn ∈ (δ, T ) bounds this term by a constant of the form
Cδβ/2 with C independent of h.

3.4. Convergence. The bound on the sequence {vh}h>0 and the compactness
result of Lions [13] and Lions and Magenes [14] allows passage to a subsequence for
which

vh ⇀∗ v in L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1
0 (Ω)] and vh → v in L2[0, T ;L2(Ω)].

In this situation, Theorem 5.1 of [18] states that the corresponding densities {ρh}h>0

converge in L2[0, T ;L2(Ω)] to a limit which we denote by ρ. We will show that the
pair (v, ρ) is a solution of (1.1).
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Note that since {ρh}h>0 is bounded in L∞[0, T ;L∞(Ω)] and converges in
L2[0, T ;L2(Ω)] it also converges in Lp[0, T ;Lp(Ω)] for any 1 ≤ p < ∞. Similarly,
since {vh}h>0 is bounded in L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1

0 (Ω)] and converges in
L2[0, T ;L2(Ω)], the Sobolev embedding theorem and elementary interpolation show
that vh converges in Lp[0, T ;Lq(Ω)] for any pair p, q ≥ 1 satisfying 1/2 < 1/q+ 2/dp.

Theorem 3.7. Let Ω ⊂ R
d, d = 2 or 3, be a bounded Lipschitz and {Th}h>0

be a regular family of quasi-uniform triangulations of Ω. Let f ∈ L2[0, T ;L2(Ω)],
v0 ∈ L2(Ω), and ρ0 ∈ L∞(Ω) satisfy 0 < c ≤ ρ0(x) ≤ C for positive constants c and
C. Assume that the viscosity, μ : R → (0,∞), is a continuous nonnegative function
of the density.

Let {(vh, ρh)}h>0 be the approximate solution of equations (1.1) computed using
the scheme presented in section 2.4 with time steps τ converging to zero as h →
0. In particular, assume that the density is computed using the piecewise constant
discontinuous Galerkin method, that the velocity-pressure spaces satisfy the Babuska–
Brezzi condition, and that the pressure space contains the piecewise constant functions.

Then, after passing to a subsequence, the densities {ρh} converge strongly in
L2[0, T ;L2(Ω)], and the velocities {vh} converge strongly in L2[0, T ;L2(Ω)] and weakly
star in L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1

0 (Ω)] to a weak solution of equations (1.1) with
initial data (v0, ρ0) and homogeneous Dirichlet boundary data on the velocity. If the
solution of equations (1.1) is unique, then the whole sequence {(vh, ρh)}h>0 converges.

Proof. Notice that the hypotheses of Lemma 3.1 are satisfied since monotonicity
of the scheme (2.2) for computing the density guarantees that 0 < c ≤ ρh(x, t) ≤ C.
Also, μ : R → (0,∞) is continuous so μh = μ(ρh) satisfies a similar inequality.

Let w ∈ D([0, T ) × Ω) be divergence free and let wn be the Stokes projection of
w(tn) onto the space

Ṽh =

{
vh ∈ Vh |

∫
Ω

div(vh) qh = 0∀qh ∈ Ph

}
,

and let wh ∈ L2[0, T ;Vh] be the piecewise constant function taking values wn on
(tn−1, tn] and ŵh ∈ C[0, T ;Vh] be the corresponding piecewise linear interpolant.
Since the pair (Vh, Ph) satisfies the Babuska–Brezzi condition, wh and ŵh converge to
w in L∞[0, T,H1

0 (Ω)] and W 1,∞[0, T ;H1
0 (Ω)], respectively. Selecting wn as the test

function in (2.3) and summing over n gives

1

2

N∑
n=1

∫
Ω

(ρn−1 − ρn)vn.wn +

N∑
n=1

∫
Ω

(ρv)n−1.(wn−1 − wn)

+
τ

2

N∑
n=1

∫
Ω

(ρnvn−1.∇)vn.wn − (ρnvn−1.∇)wn.vn

+τ

N∑
n=1

∫
Ω

μnD(vn) ·D(wn) =

∫
Ω

ρ0v0.w0 + τ

N∑
n=1

∫
Ω

ρnfn.w.

To obtain the first line we used the identity

1

2

(
ρn−1(vn − vn−1).wn +

(
(ρv)n − (ρv)n−1

)
.wn

)
=

1

2
(ρn−1 − ρn)vn.wn +

(
(ρv)n − (ρv)n−1

)
.wn,
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and summed the second term by parts. The upper limit of the summation vanishes
since w ∈ D([0, T )×Ω) implies wN = 0. Recalling the notation that vh(t) ∈ Vh is the
function taking on value vn on (tn−1, tn], we find that

1

2

N∑
n=1

∫
Ω

(ρn−1 − ρn)vn.wn −
∫ T

0

∫
Ω

ρh(.− τ)vh(.− τ)ŵt

+
1

2

∫ T

0

∫
Ω

(
ρhvh(.− τ).∇

)
vh.wh −

(
ρhvh(.− τ).∇

)
wh.vh

+

∫ T

0

∫
Ω

μhD(vh) ·D(wh) =

∫
Ω

ρ0v0.w0 +

∫ T

0

∫
Ω

ρhfh.wh.

Selecting ψ = vh.wh in Corollary 3.3 shows that the first term can be rewritten as

N∑
n=1

∫
Ω

(ρn−1 − ρn)vn.wn = −
∫ T

0

∫
Ω

ρhvh(.− τ).∇(vh.wh) − eh,

where

eh =

∫ T

0

∫
Ω

ρh(vh.wh − vh.wh)div(vh(.− τ))

+

∫ T

0

∑
K∈Th

∫
∂K

[ρh](vh(.− τ).n)−(vh.wh − vh.wh)

is the consistency error. Then

−
∫ T

0

∫
Ω

ρh(.− τ)vh(.− τ)ŵt +
(
ρhvh(.− τ) ⊗ vh

)
· ∇wh

+

∫ T

0

∫
Ω

μhD(vh) ·D(wh) =

∫
Ω

ρ0v0.w0 +

∫ T

0

∫
Ω

ρhfh.wh + eh.

Now pass to a subsequence along which vh and ρh converge in L2[0, T ;L2(Ω)]
and vh ⇀ v in L2[0, T ;H1

0 (Ω)]. Since ρh and μh are bounded in L∞[0, T ;L∞(Ω)],
they converge in Lp[0, T ;Lp(Ω)] for 1 ≤ p < ∞ and vh converges in Lp[0, T ;L4(Ω)]
for p < 8/3. This is sufficient to pass to the limit term-by-term in the above equation;
the theorem will then follow provided eh → 0.

It suffices to show that the consistency error eh vanishes as h → 0. The first term
in eh is bounded using classical estimates for piecewise constant approximations [3],∫ T

0

∫
Ω

ρh(vh.wh − vh.wh)div(vh(.− τ))

≤ C‖ρh‖L∞[0,T ;L∞(Ω)]‖div(vh)‖L2[0,T ;L2(Ω)]‖vh.wh − vh.wh‖L2[0,T ;L2(Ω)]

≤ C‖ρh‖L∞[0,T ;L∞(Ω)]‖div(vh)‖L2[0,T ;L2(Ω)]|vh.wh|L2[0,T ;W 1,p(Ω)h
1+d(1/2−1/p).

As in the proof of Lemma 3.6

|vh.wh|W 1,4/3(Ω) ≤ ‖vh‖L4(Ω)‖∇wh‖L2(Ω) + ‖∇vh‖L2(Ω)‖wh‖L4(Ω)

≤ C‖vh‖H1(Ω)‖wh‖H1(Ω).



NAVIER–STOKES EQUATIONS WITH VARIABLE DENSITY 1301

It follows that |vh.wh|L2[0,T ;W 1,4/3] ≤ ‖vh‖L2[0,T ;H1(Ω)]‖wh‖L∞[0,T ;H1(Ω)] is bounded
so∫ T

0

∫
Ω

ρh(vh.wh − vh.wh)div(vh(.− τ))

≤ C‖ρh‖L∞[0,T ;L∞(Ω)]‖div(vh)‖L2[0,T ;L2(Ω)]‖vh‖L2[0,T ;H1(Ω)]‖wh‖L∞[0,T ;H1(Ω)]h
1−d/4

→ 0.

The second term of eh is bounded using Lemma 3.4 with q ≤ 2,∫ T

0

∑
K∈Th

∫
∂K

[ρh](vh(.− τ).n)−(vh.wh − vh.wh)

≤
(
‖ρh‖q

′−2
L∞[0,T ;L∞(Ω)]

∫ T

0

∑
K∈Th

∫
∂K

|vh(.− τ).n|[ρh]2

)1/q′

×
(∫ T

0

∑
K∈Th

∫
∂K

|vh(.− τ)|(vh.wh − vh.wh)q

)1/q

≤ C‖ρh‖1−2/q′

L∞[0,T ;L∞(Ω)](J
N
h )1/q

′

(∫ T

0

∫
Ω

‖vh(.− τ)‖Lp′ (Ω)|vh.wh|qW 1,pq(Ω)h
q−1

)1/q

≤ C‖ρh‖1−2/q′

L∞[0,T ;L∞(Ω)](J
N
h )1/q

′‖vh‖1/q

Lr′ [0,T,Lp′ (Ω)]
|vh.wh|Lrq [0,T ;W 1,pq(Ω)]h

1−1/q,

where q′ ≥ 2 and

JN
h =

∑
e∈E0

∫ T

0

∫
e

|vh(.− τ).n| [ρh]2.

JN
h measures the jumps in the density across the interelement boundaries e ∈ E0, and

it was shown in [18, Theorem 5.1] that, under the hypotheses assumed above, JN
h → 0

as h (and τ) tend to zero. The parameters p, q, and r are selected so that the norms
of vh and vh.wh are bounded. If

p = 26/21, p′ = 26/5, q = 14/13, q′ = 14, r = 13/7, r′ = 13/6,

then 1/2 = 1/p′ + 2/dr′ when d = 3, so the terms ‖vh‖Lr′ [0,T,Lp′ (Ω)] and

|vh.wh|Lrq [0,T ;W 1,pq(Ω)] = |vh.wh|L2[0,T ;W 1,4/3(Ω)]

are bounded, and the second term in eh vanishes as h → 0.

4. Projections of the velocity field. In order to guarantee that the piecewise
constant DG scheme is monotone and convergent, the average divergence of the ve-
locity field in (2.2) must vanish on each simplex K ∈ Th. Above we assumed space
Ph contains the piecewise constant functions so that solution vh of the approximate
momentum equation (2.3) automatically satisfies this condition. In this section pro-
jections of the velocity field vh ∈ Vh onto a space V̄h ⊂ H(Ω; div) having average
divergence on each element equal to zero are considered when Ph does not contain



1302 CHUN LIU AND NOEL J. WALKINGTON

the piecewise constant functions. In this case the density and velocity/pressure are
approximated by ρn ∈ Rh satisfying∫

K

ρnψn + τ

∫
∂K

(
ρn−(v̄n−1.n)+ + ρn+(v̄n−1.n)−

)
ψn =

∫
K

ρn−1ψn,(4.1)

for K ∈ Th and ψn ∈ R, and (vn, pn) ∈ Vh × Ph satisfying

1

2

∫
Ω

ρn−1

(
vn − vn−1

τ

)
.w+(ρnv̄n−1.∇)vn.w

+
1

2

∫
Ω

(
(ρv)n − (ρv)n−1

τ

)
.w − (ρnv̄n−1.∇)w.vn

+

∫
Ω

−pn div(w) + μnD(vn) ·D(w) =

∫
Ω

ρnfn.w,(4.2)

∫
Ω

div(vn) q = 0,

for all (w, q) ∈ Vh × Ph.
Writing v̄n−1 = PV̄h

vn−1, where

V̄h ⊂
{
vh ∈ H(Ω; div) |

∫
K

div(vh) = 0, K ∈ Th
}
,

examining the proofs shows that the modified scheme will also converge if the projec-
tion PV̄h

: Vh → V̄h satisfies the following hypotheses.
Assumption 4.1.

1. There exists 	 ∈ N independent of h such that v̄h|K ∈ P�(K) for each K ∈ Th.
2. For each v̄h ∈ V̄h∫

K

div(v̄h) = 0, and

∫
∂K∩∂Ω

v̄h.n = 0, K ∈ Th.

3. If vh ∈ Vh and v̄h = PV̄h
vh, then there exists C > 0 independent of h such

that ‖div(v̄h)‖L2(Ω) ≤ C‖vh‖H1(Ω).
4. If vh ∈ Vh and v̄h = PV̄h

vh, then there exists C > 0 independent of h such
that ‖v̄h‖L2(Ω) ≤ C‖vh‖L2(Ω) and ‖v̄h‖L6(Ω) ≤ C‖∇vh‖H1(Ω).

5. Let {vh}h>0, vh ∈ Vh be bounded in L∞[0, T ;L2(Ω)] ∩ L2[0, T ;H1
0 (Ω)], and

v̄h = PV̄h
vh. If vh → v in L2[0, T ;L2(Ω)], then v̄h → v.

Stokes projections. If (V̄h, P̄h) ⊂ H1
0 (Ω)

d×L2(Ω)/R is a family of finite element
spaces constructed on Th which satisfies the Babuska–Brezzi condition, and if P̄h

contains the piecewise constant functions, then the Stokes projection PV̄h
: Vh → V̄h

satisfies Assumption 4.1.
The Stokes projection of vh ∈ Vh is computed from the unique solution (v̄h, p̄h) ∈

(V̄h, P̄h) of

a(v̄h, w̄h) + b(p̄h, w̄h) + b(q̄h, v̄h) = a(vh, w̄h)(4.3)

for all (w̄h, q̄h) ∈ (V̄h, P̄h). The bilinear forms a : H1(Ω) × H1(Ω) → R and b :
L2(Ω) ×H1(Ω) → R are defined by

a(v, w) = (v, w)H1(Ω), b(p, v) = (p,div(v))L2(Ω).
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By construction the average of div(v̄h) vanishes on each simplex K ∈ Th. The next
lemma shows that the continuity properties of Assumption 4.1 are also satisfied by
this construction.

Lemma 4.2. Let Ω ⊂ R
d be sufficiently regular to guarantee H2(Ω)

d × H1(Ω)
regularity of the Stokes operator, and let {Th}h>0 be a regular quasi-uniform family
of triangulations of Ω.

Let (Vh, Ph) and (V̄h, P̄h) ⊂ H1
0 (Ω)

d×L2(Ω)/R be families of finite element spaces
constructed on Th which satisfy the Babuska–Brezzi condition, and let (v̄h, p̄h) ∈
(V̄h, P̄h) be the Stokes projection of a velocity field vh ∈ Vh satisfying b(qh, vh) = 0 for
all qh ∈ Ph. Then

• ‖v̄h‖H1(Ω) ≤ ‖vh‖H1(Ω), and
• ‖v̄h − vh‖L2(Ω) ≤ C‖vh‖H1(Ω)h ≤ C‖vh‖L2(Ω).

The first statement of the lemma follows upon setting w̄h = v̄h in (4.3), and
the Aubin–Nitsche trick and inverse inequalities are used to establish the second
statement. The Sobolev embedding theorem guarantees

‖v̄h‖L6(Ω) ≤ C‖v̄h‖H1(Ω) ≤ C‖vh‖H1(Ω).

It follows that the Stokes projection vh → v̄h satisfies Assumption 4.1.
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UNIFORM ESTIMATES FOR EULERIAN–LAGRANGIAN METHODS
FOR SINGULARLY PERTURBED TIME-DEPENDENT PROBLEMS∗
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Abstract. We prove a priori optimal-order error estimates in a weighted energy norm for
several Eulerian–Lagrangian methods for singularly perturbed, time-dependent convection-diffusion
equations with full regularity. The estimates depend only on certain Sobolev norms of the initial and
right-hand side data, but not on ε or any norm of the true solution, and so hold uniformly with respect
to ε. We use the interpolation of spaces and stability estimates to derive an ε-uniform estimate for
problems with minimal or intermediate regularity, where the convergence rates are proportional to
certain Besov norms of the initial and right-hand side data.
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1. Introduction. Time-dependent convection-diffusion equations arise in math-
ematical models of petroleum reservoir simulation, environmental modeling, and other
applications [10, 12]. These problems admit solutions with moving fronts and com-
plex structures and present serious mathematical and numerical difficulties. Classical
finite difference or finite element methods tend to generate numerical solutions with
nonphysical oscillations, while upwind methods often produce excessive numerical
diffusion that smears out fronts and generates spurious grid orientation effects [10].

Eulerian–Lagrangian methods combine the convection and capacity terms in the
governing equations to carry out the temporal discretization in a Lagrangian coor-
dinate and discretize the diffusion term on a fixed mesh [6, 8, 16, 17, 19]. These
methods symmetrize the governing equation and stabilize their numerical approxi-
mations. They generate accurate numerical solutions and significantly reduce the
numerical diffusion and grid-orientation effect present in upwind methods, even if
large time steps and coarse spatial meshes are used. Eulerian–Lagrangian methods
were shown to be very competitive in terms of accuracy and efficiency [6, 17, 19].

Optimal-order error estimates were derived for various Eulerian–Lagrangian meth-
ods [1, 7, 8, 15, 18]. This type of estimates has drawn debates for two potential
problems: The general constant may depend inversely on the parameter ε. Further,
the smoothness norms of the true solutions on the right side depend inversely on the
parameter ε. Consequently, these estimates could blow up as ε tends to zero.

The goal of the present paper is to derive a priori optimal-order error estimates in
an ε-weighted energy norm for Eulerian–Lagrangian methods for singularly perturbed,
time-dependent convection-diffusion equations with full regularity. The estimates
depend only on certain Sobolev norms of the initial and right-hand side data but not
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on ε or any norm of the true solution. The general constant in the estimate does
not depend on ε either. Thus, these estimates avoid the problems in the standard
estimates. We then use the interpolation of spaces and stability estimates to derive an
ε-uniform estimate for problems with minimal or intermediate regularity, where the
convergence rates are proportional to certain Besov norms of the initial and right-hand
side data.

This paper is organized as follows. In section 2 we recall preliminary results
on Sobolev and Besov spaces and interpolation of spaces. In section 3 we revisit
the Eulerian-Lagrangian localized adjoint method (ELLAM), the modified method of
characteristics (MMOC), and the modified method of characteristics with adjusted
advection (MMOCAA). In section 4 we prove an ε-uniform optimal-order error esti-
mate for problems with full regularity. In section 5 we derive ε-uniform error estimates
for problems with minimal or intermediate regularity. In section 6 we prove auxil-
iary lemmas. In section 7 we prove uniform stability of the true solutions in various
smoothness norms. Section 8 contains concluding remarks.

2. Model problem and preliminaries. We consider a singularly perturbed,
time-dependent convection-diffusion equation in one space dimension

ut + (V (x, t)u− εD(x, t)ux)x = f(x, t), (x, t) ∈ (a, b) × (0, T ),

u(x, 0) = uo(x), x ∈ [a, b].
(2.1)

Here V (x, t) is a velocity field, f(x, t) accounts for external sources and sinks, uo(x)
is prescribed initial data, and u(x, t) is the ε-dependent unknown function. D(x, t) is
a diffusion coefficient with

0 < Dmin ≤ D(x, t) ≤ Dmax < +∞ ∀(x, t) ∈ [a, b] × [0, T ].

Here 0 < ε << 1 is a parameter that scales the diffusion and characterizes the
convection dominance of (2.1).

Such Eulerian–Lagrangian methods as the MMOC [8] and the MMOCAA [6, 7]
were developed and analyzed for problem (2.1) with periodic boundary conditions.
Other methods, such as the ELLAM [3, 18], could handle more general boundary
conditions. We analyze these methods in a unified framework and close problem (2.1)
with periodic boundary conditions at x = a and x = b. This would require that
all data functions in the problem are periodic. The assumption of periodicity of the
problem may in principle exclude the appearance of boundary layers.

2.1. Sobolev spaces and approximation properties. Let W k
p (a, b) consist

of functions whose weak derivatives up to order-k are pth Lebesgue integrable in (a, b).
Let Hk(a, b) := W k

2 (a, b) and H1
E(a, b) be a subspace of H1(a, b) with period b − a.

We introduce an ε-weighted Sobolev norm for any v ∈ Hk(a, b)

‖v‖Hk
ε (a,b) :=

(
‖v‖2

Hk−1(a,b) + ε
∥∥∥dkv
dxk

∥∥∥2

L2(a,b)

)1/2

.(2.2)

For any Banach space X, we introduce Sobolev spaces involving time [9]

W k
p (t1, t2;X) :=

{
f :

∥∥∥∂αf

∂tα
(·, t)

∥∥∥
X

∈ Lp(t1, t2), 0 ≤ α ≤ k, 1 ≤ p ≤ ∞
}
,

‖f‖Wk
p (t1,t2;X) :=

⎧⎪⎪⎨⎪⎪⎩
( k∑
α=0

∫ t2

t1

∥∥∥∂αf

∂tα
(·, t)

∥∥∥p
X
dt
)1/p

, 1 ≤ p < ∞,

max
0≤α≤k

ess sup
(t1,t2)

∥∥∥∂αf

∂tα
(·, t)

∥∥∥
X
, p = ∞.
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We define a uniform space-time partition on [a, b]× [0, T ]: xi := a+ ih for 0 ≤ i ≤
I, with h := (b− a)/I, and tn := nΔt for 0 ≤ n ≤ N , with Δt := T/N . If a function
f(x, t) is defined only at discrete time steps tn, we understand that the function f
has been extended by constant to the time interval (tn−1, tn]. Thus, the preceding
space-time norm reduces to the following equivalent discrete norm:

‖f‖Lp(0,T ;X) :=

⎧⎪⎪⎨⎪⎪⎩
( N∑
n=1

‖f(·, tn)‖pXΔt
)1/p

, 1 ≤ p < ∞,

max
0≤n≤N

‖f(·, tn)‖X , p = ∞.

We also introduce the following ε-weighted energy norms:

‖f‖Lε(0,T ;Hk(a,b)) := ‖f‖L∞(0,T ;Hk−1(a,b)) +
√
ε‖f‖L2(0,T ;Hk(a,b)),

‖f‖Lε(0,T ;H1
D(a,b)) := ‖f‖L∞(0,T ;L2(a,b)) +

√
ε‖D1/2fx‖L2(0,T ;L2(a,b)).

Let Sh(a, b) ⊂ H1
E(a, b) be the finite element space that consists of continuous

and piecewise-linear functions with respect to the spatial partition in [a, b]. We let
Πhv ∈ Sh(a, b) be the piecewise-linear interpolation of v for any v ∈ H1

E(a, b). The
following estimates hold [4, 5]:

‖Πhv − v‖Hk(a,b) ≤ C1h
2−k ‖v‖H2(a,b) ∀v ∈ H2(a, b), k = 0, 1,

‖vh‖H1(a,b) ≤ C2h
−1‖vh‖L2(a,b) ∀vh ∈ Sh(a, b),

‖vh‖L∞(a,b) ≤ C2h
−1/2‖vh‖L2(a,b) ∀vh ∈ Sh(a, b).

(2.3)

2.2. Besov spaces and interpolation of operators. The Besov spaces pro-
vide a finer scale and characterization of smoothness of functions than the Sobolev
spaces do. We cite the results used in this paper and refer readers to [2, 5] for details.

For α > 0, k := 	α
 + 1, and 0 < q ≤ ∞, the Besov space Bα
q (Lp(a, b)) consists

of functions f ∈ Lp(a, b) (for p < ∞) or f ∈ C[a, b], the space of continuous functions
on [a, b], (for p = ∞) such that

‖f‖Bα
q (Lp(a,b)) :=

⎧⎪⎨⎪⎩
‖f‖Lp(a,b) +

[∫ ∞

0

[θ−αωk(f, θ)p]
q dθ

θ

]1/q

, 0 < q < ∞,

‖f‖Lp(a,b) + sup
θ>0

θ−αωk(f, θ)p, q = ∞,

is finite. Here the kth modulus of smoothness of function f is defined as

ωk(f, θ)p := sup
|h|≤θ

‖Δk
hf‖Lp(a+k|h|,b−k|h|) with Δhf(x) := f(x + h) − f(x).

It is known that Bα
q1(L

p(a, b)) ↪→ Bα
q2(L

p(a, b)) for q1 < q2 and that Bα
2 (L2(a, b)) =

Hα(a, b) with equivalent norms.
Let X1 ↪→ X0 be Banach spaces. We define the K-functional for f ∈ X0 by

K(f, s) := K(f, s;X0, X1) := inf
g∈X1

{‖f − g‖X0 + s‖g‖X1}, s ≥ 0.

The interpolation space [X0, X1]s,q consists of all functions f ∈ X0 such that

‖f‖s,q :=

⎧⎪⎨⎪⎩
[∫ ∞

0

[θ−sK(f, θ)]q
dθ

θ

]1/q

, 0 < q < ∞,

sup
θ>0

θ−sK(f, θ), q = ∞.
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It is known that X1 ↪→ [X0, X1]s,q ↪→ X0. The following lemmas characterize
interpolation spaces.

Lemma 2.1 (interpolation of Sobolev spaces). Let m be a positive integer and
1 ≤ p ≤ ∞. For any 0 < s < 1 and 0 < q ≤ ∞, the following relations hold:

[L2(a, b), Hm(a, b)]s,q = Bsm
q (L2(a, b)).

Lemma 2.2 (interpolation of operators). Let X1 ↪→ X0 and Y be Banach spaces.
If T is a bounded linear operator from Xi to Y with norm Mi (i = 0, 1), then T is a
bounded linear operator from the interpolation space [X0, X1]s,q to Y with a norm not
exceeding M1−s

0 Ms
1 for any 0 < s < 1 and 0 < q ≤ ∞.

Lemma 2.3 (reiteration theorem). Let Yi = [X0, X1]si,qi (i = 0, 1), with 0 < s0 <
s1 < 1, 0 < q0, q1 ≤ ∞. For any 0 < β < 1, 0 < r ≤ ∞, we have

[Y0, Y1]β,r = [X0, X1]β′,r, β′ := (1 − β)s0 + βs1,

with equivalent norms.

3. Revisit of Eulerian–Lagrangian methods. The ELLAM, MMOC, and
MMOCAA schemes use a time-marching approach, so we need only to define these
methods at the current time interval [tn−1, tn].

3.1. The ELLAM. In the ELLAM formulation, the space-time test functions
w(x, t) are chosen to be continuous and piecewise smooth and to vanish outside the
space-time strip [a, b] × (tn−1, tn]. In particular, the test functions w(x, t) satisfy
w(x, tn) = limt→tn−0 w(x, t), but w(x, tn−1) 
= limt→tn−1+0 w(x, t) in general. In this
case, we use the notation w(x, t+n−1) = limt→tn−1+0 w(x, t) to account for the possible
discontinuity of w(x, t) in time at time tn−1.

We multiply (2.1) by test functions w and integrate the resulting equation on
[a, b] × (tn−1, tn] to obtain a weak formulation∫ b

a

u(x, tn)w(x, tn)dx +

∫ tn

tn−1

∫ b

a

εD(x, t)ux(x, t)wx(x, t)dxdt

−
∫ tn

tn−1

∫ b

a

u(x, t)
(
wt(x, t) + V (x, t)wx(x, t)

)
dxdt

=

∫ b

a

u(x, tn−1)w(x, t+n−1)dx +

∫ tn

tn−1

∫ b

a

f(x, t)w(x, t)dxdt.

(3.1)

In the ELLAM framework [3] the test functions w are chosen to satisfy the adjoint
equation of the hyperbolic part of (2.1) to define the temporal variation of w

wt + V wx = 0.(3.2)

This implies the test functions w to be constant along the characteristic curve r(t;x, tn).
Here r(t; x̄, t̄) refers to the characteristic curve passing x̄ at time t̄ defined by

dr

dt
= V (r, t), r(t; x̄, t̄)

∣∣∣
t=t̄

= x̄.(3.3)

Thus, once the test functions w(x, t) are specified in [a, b] at time step tn, they
are determined completely in the space-time strip [a, b] × (tn−1, tn].
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3.1.1. Evaluation of diffusion and source terms. Note that V (x, t) is a
periodic function with respect to x of the period b−a. Thus, the shifted characteristic
curve rS(t; b, tn) := r(t; b, tn) − (b− a) satisfies the initial-value problem

drS(t; b, tn)

dt
=

dr(t; b, tn)

dt
= V (r(t; b, tn), t) = V (rS(t; b, tn), t),

rS(t; b, tn)
∣∣∣
t=tn

= b− (b− a) = a.

Therefore, both rS(t; b, tn) and r(t; a, tn) are the solutions of the same initial-value
problem. The uniqueness of such a problem concludes that

r(t; b, tn) − r(t; a, tn) = b− a ∀t ∈ [tn−1, tn].(3.4)

For clarity of presentation, in the evaluation of source and diffusion terms we
reserve x for points in [a, b] at time tn representing the heads of characteristics. We
use the variable y to represent the spatial coordinate of an arbitrary point at time
t ∈ (tn−1, tn). We use the relation (3.4) and the periodicity of problem (2.1) to
evaluate the source term by the Euler quadrature as follows:∫ tn

tn−1

∫ b

a

f(y, t)w(y, t)dydt

=

∫ tn

tn−1

∫ r(t;b,tn)

r(t;a,tn)

f(y, t)w(y, t)dydt

=

∫ b

a

∫ tn

tn−1

f(r(t;x, tn), t)w(r(t;x, tn), t)rx(t;x, tn)dtdx

=

∫ b

a

[∫ tn

tn−1

f(r(t;x, tn), t)rx(t;x, tn)dt
]
w(x, tn)dx

= Δt

∫ b

a

f(x, tn)w(x, tn)dx + E1(w).

(3.5)

Here E1(w) is the local truncation error defined by

E1(w) :=

∫ b

a

∫ tn

tn−1

[
f(r(t;x, tn), t)rx(t;x, tn) − f(x, tn)

]
dt w(x, tn)dx.(3.6)

We evaluate the diffusion term similarly∫ tn

tn−1

∫ b

a

εD(y, t)uy(y, t)wy(y, t)dydt

=

∫ tn

tn−1

∫ r(t;b,tn)

r(t;a,tn)

εD(y, t)uy(y, t)wy(y, t)dydt

=

∫ b

a

∫ tn

tn−1

εD(r(t;x, tn), t)uy(r(t;x, tn), t)wy(x, tn)rx(t;x, tn)dtdx

=

∫ b

a

∫ tn

tn−1

εD(r(t;x, tn), t)uy(r(t;x, tn), t)wx(x, tn)dtdx

= εΔt

∫ b

a

D(x, tn)ux(x, tn)wx(x, tn)dx + εE2(u,w).

(3.7)

Here E2(u,w) is the local truncation error defined by

E2(u,w) :=

∫ b

a

∫ tn

tn−1

[
(Dux)(r(t;x, tn), t) − (Dux)(x, tn)

]
dt wx(x, tn)dx.(3.8)
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3.1.2. ELLAM formulation and numerical scheme. We substitute (3.5)
and (3.7) into (3.1) to obtain an ELLAM formulation for problem (2.1):∫ b

a

u(x, tn)w(x, tn)dx + εΔt

∫ b

a

D(x, tn)ux(x, tn)wx(x, tn)dx

=

∫ b

a

u(x∗, tn−1)w(x, tn)rx(tn−1;x, tn)dx

+Δt

∫ b

a

f(x, tn)w(x, tn)dx + E1(w) − εE2(u,w).

(3.9)

Here x∗ is the foot of the characteristic curve r(t;x, tn) backtracking from x at time
tn. We also let x̃ be the head of the characteristic curve r(t; x̃, tn) at time tn that
backtracks to x at time tn−1:

x∗ = r(tn−1;x, tn), x = r(tn−1; x̃, tn).(3.10)

In (3.9) we have used the periodicity of the problem, a relation similar to (3.4), and
the fact that w is constant along the characteristics to rewrite the first integral at
time tn−1 on the right-hand side of (3.1) as an integral at time tn in (3.9):∫ b

a

u(y, tn−1)w(y, t+n−1)dy =

∫ b̃

ã

u(x∗, tn−1)w(x, tn)rx(tn−1;x, tn)dx

=

∫ b

a

u(x∗, tn−1)w(x, tn)rx(tn−1;x, tn)dx.

(3.11)

The ELLAM scheme is derived based on (3.9). Note that the characteristics
r(t;x, tn) cannot be tracked exactly, in general, so the test functions wh in the ELLAM
scheme are defined to be constant along the approximate characteristics rh(t;x, tn).
Here rh(t; x̄, t̄) is defined by

rh(t; x̄, t̄) = x̄ + V (x̄, t̄)(t− t̄).(3.12)

Consequently, the ELLAM scheme states as follows: Find uh(x, tn) ∈ Sh(a, b) for
n = 1, . . . , N such that for any wh(x, tn) ∈ Sh(a, b)∫ b

a

uh(x, tn)wh(x, tn)dx + εΔt

∫ b

a

D(x, tn)uh,x(x, tn)wh,x(x, tn)dx

=

∫ b

a

uh(x∗
h, tn−1)wh(x, tn)rh,x(tn−1;x, tn)dx + Δt

∫ b

a

f(x, tn)wh(x, tn)dx.

(3.13)

Here x∗
h and x̃h are defined by

x∗
h = rh(tn−1;x, tn), x = rh(tn−1; x̃h, tn).(3.14)

The ELLAM, MMOC, MMOCAA, and virtually any other Eulerian–Lagrangian
method typically need to impose the following type of constraint on the time step
Δt:

‖V ‖L∞(0,T ;W 1
∞)Δt < 1.(3.15)

This constraint guarantees that the approximate characteristics defined in (3.12),
which are extended from different spatial points, do not intersect with each other
during the time period [tn−1, tn]. In other words, the traceback operator defined by
the approximate characteristic tracking is a diffeomorphism. This condition will be
used several times in the error estimates in the subsequent sections without being
explicitly stated. This constraint can be alleviated if a micro time step Δtf is used
in the characteristic tracking. In this case, the Δt in (3.15) will be replaced by Δtf .
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3.2. The MMOC and MMOCAA. The MMOC and MMOCAA directly ap-
ply to a nonconservative analogue of (2.1):

ut + V (x, t)ux − (εD(x, t)ux)x + Vx(x, t)u = f(x, t).(3.16)

3.2.1. The MMOC. In the MMOC the capacity and convection terms in
(3.16) are combined to form a material derivative at time step tn, which is ap-
proximated by a backward difference quotient along the approximate characteristic
rh(t;x, tn) in the time stepping procedure [8]

ut(x, tn) + V (x, tn)ux(x, tn)

=
√

1 + V (x, tn)2
du

dt
(x, tn) =

u(x, tn) − u(x∗, tn−1)

Δt

+
1

Δt

∫ tn

tn−1

√
(rh(t;x, tn) − x∗

h)2 + (t− tn−1)2
d2u

dt2
(rh(t;x, tn), t)dt.

(3.17)

We incorporate (3.17) into (3.16) and multiply the equation by any test function
w ∈ H1

E(a, b). We integrate the resulting equation on the interval (a, b), leading
to an MMOC reference equation for problem (3.16): Find u(x, tn) ∈ H1

E(a, b) for
n = 1, . . . , N such that for any w(x) ∈ H1

E(a, b)∫ b

a

u(x, tn) − u(x∗
h, tn−1)

Δt
w(x)dx +

∫ b

a

εD(x, tn)ux(x, tn)wx(x)dx

+

∫ b

a

Vx(x, tn)u(x, tn)w(x)dx =

∫ b

a

f(x, tn)w(x)dx− 1

Δt
E3(u,w).

(3.18)

Here E3(u,w) is the local truncation error of the MMOC reference equation

E3(u,w) =

∫ b

a

w(x)

∫ tn

tn−1

√
(rh(t;x, tn) − x∗

h)2 + (t− tn−1)2
d2u

dt2
(rh(t;x, tn), t)dtdx.

The MMOC scheme reads: Find uh(x, tn) ∈ Sh(a, b) for n = 1, . . . , N such that
for any wh(x) ∈ Sh(a, b)∫ b

a

uh(x, tn) − uh(x∗
h, tn−1)

Δt
wh(x)dx +

∫ b

a

εD(x, tn)uh,x(x, tn)wh,x(x)dx

+

∫ b

a

Vx(x, tn)uh(x, tn)wh(x)dx =

∫ b

a

f(x, tn)wh(x)dx.

(3.19)

3.2.2. The MMOCAA. The MMOCAA [6, 7] aims at eliminating the mass
balance error in the MMOC [8]. Summing the MMOC scheme (3.19) for all of the
test functions yields a mass balance satisfied by the MMOC solution uh(x, tn):∫ b

a

(1 + ΔtVx(x, tn))uh(x, tn)dx =

∫ b

a

uh(x∗
h, tn−1)dx + Δt

∫ b

a

f(x, tn)dx.(3.20)

If we integrate (3.16) with u(x, tn−1) = uh(x, tn−1) on (a, b)× [tn−1, tn] and apply
Euler quadrature at time tn to the source term, we obtain a mass balance equation
satisfied by the exact solution (up to the order of truncation error)∫ b

a

u(x, tn)dx =

∫ b

a

uh(x, tn−1)dx + Δt

∫ b

a

f(x, tn)dx.
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Let Qn−1 =
∫ b

a
uh(x, tn−1)dx and Q∗

n−1 =
∫ b

a
uh(x∗

h, tn−1)dx − Δt
∫ b

a
Vx(x, tn)

uh(x, tn)dx. The MMOC scheme conserves mass if and only if Qn−1 = Q∗
n−1. To

correct the mass balance error of the MMOC when Qn−1 
= Q∗
n−1, we set for some

fixed constant κ > 0

x∗
h,+ = x∗

h + κV (x, tn)(Δt)2, x∗
h,− = x∗

h − κV (x, tn)(Δt)2,

u#
h (x∗

h, tn−1) =

⎧⎪⎨⎪⎩
max{uh(x∗

h,+, tn−1), uh(x∗
h,−, tn−1)} if Q∗

n−1 ≤ Qn−1,

min{uh(x∗
h,+, tn−1), uh(x∗

h,−, tn−1)} if Q∗
n−1 > Qn−1,

Q#
n−1 =

∫ b

a

u#
h (x∗

h, tn−1)dx.

(3.21)

If Qn−1 can be expressed as a convex combination of Q∗
n−1 and Q#

n−1, then

ǔh(x∗
h, tn−1) defined by the same convex combination of uh(x∗

h, tn−1) and u#
h (x∗

h, tn−1)
will have mass Qn−1. The uh(x∗

h, tn−1) in the MMOC scheme (3.19) is replaced by
ǔh(x∗

h, tn−1) in the MMOCAA scheme with all other terms unchanged.

4. Error estimates for problem (2.1) with full regularity. We prove a
priori optimal-order error estimates for the ELLAM, MMOC, and MMOCAA schemes
for problem (2.1), which hold uniformly with respect to ε.

4.1. An optimal-order error estimate for the ELLAM scheme. Let the
Courant number Cr := max(x,t)∈[0,1]×[0,T ] |V (x, t)|Δt/h and λ = 1 if Cr < 1 or = 0
otherwise. The main result is given in the theorem below.

Theorem 4.1. Assume D,V ∈ L∞(0, T ;W 3+λ
∞ (a, b)), f ∈ L2(0, T ;H2+λ(a, b)),

and uo ∈ H2+λ(a, b). Then the following optimal-order error estimate of the ELLAM
scheme holds uniformly with respect to ε:

‖uh − u‖Lε(0,T ;H1
D)

≤ CΔt
(
‖uo‖H2

ε
+
∥∥∥df
dt

∥∥∥
L2(0,T ;L2)

+ ‖f‖L2(0,T ;H1)

)
+C(min{h,Δt} + h2)‖uo‖H2 + Cλh2(‖uo‖H3 + ‖f‖L2(0,T ;H3)).

(4.1)

Here the constant C is independent of u and the parameter ε.
Proof. We let e = uh − u and choose the test function w(·, tn) in (3.9) to be

wh(·, tn) ∈ Sh(a, b). We then subtract (3.13) from the ELLAM reference equation
(3.9) to obtain an ELLAM error equation for any wh(x, tn) ∈ Sh(a, b):∫ b

a

e(x, tn)wh(x, tn)dx + εΔt

∫ b

a

D(x, tn)ex(x, tn)wh,x(x, tn)dx

=

∫ b

a

(u(x∗
h, tn−1)rh,x(tn−1;x, tn) − u(x∗, tn−1)rx(tn−1;x, tn))wh(x, tn)dx

+

∫ b

a

e(x∗
h, tn−1)wh(x, tn)rh,x(tn−1;x, tn)dx− E1(wh) + εE2(u,wh).

(4.2)

Let Πhu ∈ Sh(a, b) be the interpolation of the true solution u, ξh = uh − Πhu ∈
Sh(a, b), and η = Πhu − u. The error estimates for η are given in (2.3), so we need
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only to estimate ξh. We choose wh(x, tn) = ξh(x, tn) in (4.2) and rewrite the error
equation in terms of ξh and η as follows:∫ b

a

ξ2
h(x, tn)dx + εΔt

∫ b

a

D(x, tn)ξ2
h,x(x, tn)dx

=

∫ b

a

ξh(x∗
h, tn−1)ξh(x, tn)rh,x(tn−1;x, tn)dx

+

∫ b

a

η(x∗
h, tn−1)ξh(x, tn)rh,x(tn−1;x, tn)dx−

∫ b

a

η(x, tn)ξh(x, tn)dx

−εΔt

∫ b

a

D(x, tn)ηx(x, tn)ξh,x(x, tn)dx− E1(ξh) + εE2(u, ξh)

+

∫ b

a

u(x∗, tn−1)(rh,x(tn−1;x, tn) − rx(tn−1;x, tn))ξh(x, tn)dx

+

∫ b

a

(u(x∗
h, tn−1) − u(x∗, tn−1))rh,x(tn−1;x, tn)ξh(x, tn)dx.

(4.3)

We bound the first term on the right-hand side of (4.3) by

∣∣∣∫ b

a

ξh(x∗
h, tn−1)ξh(x, tn)rh,x(tn−1;x, tn)dx

∣∣∣
≤ 1 + CΔt

2

∫ b

a

ξ2(x, tn)dx +
1 + CΔt

2

∫ b

a

ξ2(x∗
h, tn−1)dx

≤ 1 + CΔt

2

∫ b

a

ξ2(x, tn)dx +
1 + CΔt

2

∫ b∗h

a∗
h

ξ2(x∗
h, tn−1)

∣∣∣dx∗
h

dx

∣∣∣−1

dx∗
h

≤ 1 + CΔt

2
‖ξh(·, tn)‖2

L2 +
1 + CΔt

2
‖ξh(·, tn−1)‖2

L2 .

(4.4)

Here the constant C depends on ‖V ‖L∞(0,T ;W 1
∞). In the second term after the second

inequality, we used the substitution of variables from x to x∗
h given by the first equation

in (3.14) and changed the limits a and b of the integral to a∗h and b∗h, respectively. We
also utilized (3.12) and the periodicity of V to conclude that

rh,x(tn−1;x, tn) = 1 − Vx(x, tn)Δt,

r−1
h,x(tn−1;x, tn) = (1 − Vx(x, tn)Δt)−1 = 1 + O(Δt),

b∗h − a∗h = (b− a) − (V (b, tn) − V (a, tn))Δt = b− a.

(4.5)

The estimate of the second and third terms on the right-hand side of (4.3) presents
one of the major difficulties. Standard techniques yield∣∣∣∫ b

a

(η(x, tn−1) − η(x∗
h, tn−1))ξh(x, tn)dx

∣∣∣
=

∣∣∣∫ b

a

∫ x

x∗
h,

ηy(y, tn−1)dy ξh(x, tn)dx
∣∣∣

≤ CΔt‖ξh(·, tn)‖2
L2 + CΔt h2‖u‖2

L∞(0,T ;W 2
∞),

leading to a suboptimal-order error estimate of order O(h + Δt) for the ELLAM
scheme. This does not coincide with the optimal-order convergence rates observed
numerically. A delicate analysis shows an optimal-order error estimate of the second
and third terms on the right-hand side of (4.3). For clarity of exposition, the proof is
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presented in Lemma 6.2; there we obtain∣∣∣∫ b

a

η(x∗
h, tn−1)ξh(x, tn)rh,x(tn−1;x, tn)dx−

∫ b

a

η(x, tn)ξh(x, tn)dx
∣∣∣

≤ CΔt‖ξh(·, tn)‖2
L2 + CΔt(min{h2, (Δt)2} + h4)‖u‖2

L∞(0,T ;H2)

+C(Δt)3‖u‖2
L∞(0,T ;H1) + Cλh4(‖u‖2

H1(tn−1,tn;H2) + Δt‖u‖2
L∞(0,T ;H3)).

(4.6)

Let xi−1/2 be the middle point of the interval [xi−1, xi]. Note that ξh,x(x, tn) is
constant on each interval [xi−1, xi] and that η satisfies η(xi−1, tn) = η(xi, tn) = 0 for
i = 1, . . . , I. We bound the fourth term on the right-hand side of (4.3):∣∣∣εΔt

∫ b

a

D(x, tn)ηx(x, tn)ξh,x(x, tn)dx
∣∣∣

=
∣∣∣εΔt

I∑
i=1

ξh,x(xi−1/2, tn)

∫ xi

xi−1

(D(x, tn) −D(xi−1/2, tn))ηx(x, tn)dx
∣∣∣

≤ εΔt h ‖D‖L∞(0,T ;W 1
∞) ‖ξh,x(·, tn)‖L2 ‖ηx(·, tn)‖L2

≤ 1

4
εΔt‖ξh,x(·, tn)‖2

L2
D

+ CεΔt h4‖u‖2
L∞(0,T ;H2).

(4.7)

Here ‖ · ‖L2
D

= ‖D1/2 · ‖L2 .
We use the estimate (6.1) to bound the fifth term on the right side of (4.3):∣∣∣∫ b

a

∫ tn

tn−1

[
f(r(t;x, tn), t)rx(t;x, tn) − f(x, tn)

]
dt ξh(x, tn)dx

∣∣∣
≤

∫ b

a

∫ tn

tn−1

|f(x, tn) − f(r(t;x, tn), t)|dt |ξh(x, tn)|dx

+

∫ b

a

∫ tn

tn−1

|f(r(t;x, tn), t)| |1 − rx(t;x, tn)|dt |ξh(x, tn)|dx

≤ CΔt‖ξh(·, tn)‖2
L2 + C(Δt)2

(∥∥∥df
dt

∥∥∥2

L2(tn−1,tn;L2)
+ ‖f‖2

L2(tn−1,tn;L2)

)
.

(4.8)

We similarly bound the sixth term on the right-hand side of (4.3) by∣∣∣ε ∫ b

a

∫ tn

tn−1

[(D ux)(x, tn) − (D ux)(r(t;x, tn), t)]dt ξh,x(x, tn)dx
∣∣∣

=
∣∣∣ε ∫ b

a

ξh,x(x, tn)
[∫ tn

tn−1

∫ tn

t

d

dθ
(D ux)(r(θ;x, tn), θ)dθdt

]
dx

∣∣∣
≤ 1

4
εΔt‖ξh,x(·, tn)‖2

L2
D

+ Cε(Δt)2
(∥∥∥du

dt

∥∥∥2

L2(tn−1,tn;H1)
+ ‖u‖2

L2(tn−1,tn;H1)

)
.

(4.9)

We use the estimate (6.2) to bound the seventh term on the right side of (4.3) in
a similar way to the estimate (4.4) to get∣∣∣∫ b

a

u(x∗, tn−1)(rh,x(tn−1;x, tn) − rx(tn−1;x, tn))ξh(x, tn)dx
∣∣∣

≤ C(Δt)2‖ξh(·, tn)‖L2

(∫ b

a

u2(x∗, tn−1)dx
)1/2

≤ CΔt‖ξh(·, tn)‖2
L2 + C(Δt)3‖u‖2

L∞(0,T ;L2).

(4.10)

Let χ(α,β) be the indicator function of the interval (α, β), which is 1 on (α, β) or
0 elsewhere. We use the estimate (6.1) to bound the last term on the right-hand side
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of (4.3):

∣∣∣∫ b

a

(u(x∗
h, tn−1) − u(x∗, tn−1))rh,x(tn−1;x, tn)ξh(x, tn)dx

∣∣∣
≤ C

∫ b

a

∣∣∣∫ x∗
h

x∗
|uy(y, tn−1)|dy

∣∣∣ |ξh(x, tn)|dx

≤ CΔt‖ξh(·, tn)‖L2

(∫ b

a

∫ b

a

χ(y)(x∗−C(Δt)2,x∗+C(Δt)2)u
2
y(y, tn−1)dydx

)1/2

= CΔt‖ξh(·, tn)‖L2

(∫ b

a

∫ b

a

χ(x)(y−C(Δt)2,y+C(Δt)2)dx u2
y(y, tn−1)dy

)1/2

≤ CΔt‖ξh(·, tn)‖2
L2 + C(Δt)3‖u‖2

L∞(0,T ;H1).

(4.11)

We substitute estimates (4.4)–(4.11) for the corresponding terms in (4.3) to obtain
the following estimate:

‖ξh(·, tn)‖2
L2 + εΔt‖ξh,x(·, tn)‖2

L2
D

≤ 1 + CΔt

2

(
‖ξh(·, tn)‖2

L2 + ‖ξh(·, tn−1)‖2
L2

)
+

1

2
εΔt‖ξh,x(·, tn)‖2

L2
D

+C(Δt)2
(
ε
∥∥∥du
dt

∥∥∥2

L2(tn−1,tn;H1)
+ Δt‖u‖2

L∞(0,T ;H1) +
∥∥∥df
dt

∥∥∥2

L2(tn−1,tn;L2)

+‖f‖2
L2(tn−1,tn;L2)

)
+ CΔtmin{h2, (Δt)2}‖u‖2

L∞(0,T ;H2)

+Ch4
(
Δt‖u‖2

L∞(0,T ;H2) + λ(‖u‖2
H1(tn−1,tn;H2) + Δt‖u‖2

L∞(0,T ;H3))
)
.

We sum the estimate for n = 1, . . . , N1(≤ N) and cancel like terms to obtain

‖ξh(·, tN1)‖2
L2 + εΔt

N1∑
n=1

‖ξh,x(·, tn)‖2
L2

D

≤ CΔt

N1−1∑
n=0

‖ξh(·, tn)‖2
L2 + C(Δt)2

(
ε
∥∥∥du
dt

∥∥∥2

L2(0,T ;H1)
+ ‖u‖2

L∞(0,T ;H1)

+
∥∥∥df
dt

∥∥∥2

L2(0,T ;L2)
+ ‖f‖2

L2(0,T ;L2)

)
+ C(min{h2, (Δt)2} + h4)‖u‖2

L∞(0,T ;H2)

+Cλh4(‖u‖2
H1(0,T ;H2) + ‖u‖2

L∞(0,T ;H3)).

We then apply the Gronwall inequality to conclude

‖ξh‖Lε(0,T ;H1
D(a,b))

≤ CΔt
(√

ε
∥∥∥du
dt

∥∥∥
L2(0,T ;H1)

+ ‖u‖L∞(0,T ;H1) +
∥∥∥df
dt

∥∥∥
L2(0,T ;L2)

+ ‖f‖L2(0,T ;L2)

)
+C(min{h,Δt} + h2)‖u‖L∞(0,T ;H2) + Cλh2(‖u‖H1(0,T ;H2) + ‖u‖L∞(0,T ;H3)).

The general constant C depends exponentially on the final time T in problem (2.1),
due to the application of the Gronwall inequality, but does not depend on the pa-
rameter ε. We combine this estimate with (2.3) and the stability estimate of the true
solution in Theorem 7.2 to finish the proof.



1316 HONG WANG AND KAIXIN WANG

4.2. The optimal-order error estimate for the MMOC and MMOCAA
schemes. We prove an optimal-order error estimate for the MMOC scheme (3.19)
and outline a similar estimate for the MMOCAA scheme.

Theorem 4.2. Assume D,V ∈ L∞(0, T ;W 4
∞(a, b)), f ∈ L2(0, T ;H3(a, b)), and

uo ∈ H3(a, b). Then the following optimal-order error estimate of the MMOC scheme
holds uniformly with respect to ε:

‖uh − u‖Lε(0,T ;H1
D)

≤ CΔt
(
‖uo‖H2

ε
+ ε‖uo‖H3

ε
+
∥∥∥df
dt

∥∥∥
L2(0,T ;L2)

+ ‖f‖L2(0,T ;H2)

)
+C(min{h,Δt} + h2)‖uo‖H2 + Cλh2(‖uo‖H3 + ‖f‖L2(0,T ;H3)).

(4.12)

Here the constant C is independent of u and the parameter ε.
Proof. We let e(x, tn), ξh(x, tn), and η(x, tn) be defined as in section 4.1 and

choose wh(x) = ξh(x, tn) in the MMOC reference equation (3.18) and the MMOC
scheme (3.19). We subtract the latter from the former and rewrite the equation in
terms of ξ and η as follows:∫ b

a

ξ2
h(x, tn)dx + εΔt

∫ b

a

D(x, tn)ξ2
h,x(x, tn)dx + Δt

∫ b

a

Vx(x, tn)ξ2
h(x, tn)dx

=

∫ b

a

ξh(x∗
h, tn−1)ξh(x, tn)dx +

∫ b

a

η(x∗
h, tn−1)ξh(x, tn)dx

−
∫ b

a

η(x, tn)ξh(x, tn)dx− εΔt

∫ b

a

D(x, tn)ηx(x, tn)ξh,x(x, tn)dx

−Δt

∫ b

a

Vx(x, tn)η(x, tn)ξh(x, tn)dx + E3(u, ξh).

(4.13)

The first through fourth terms on the right-hand side of (4.13) were already
bounded in (4.4)–(4.7). We need only to bound the remaining two terms on the
right-hand side. The fifth term on the right-hand side is bounded by∣∣∣Δt

∫ b

a

Vx(x, tn)η(x, tn)ξh(x, tn)dx
∣∣∣ ≤ CΔt‖ξh(·, tn)‖L2 ‖η(·, tn)‖L2

≤ CΔt‖ξh(·, tn)‖2
L2 + CΔt h4‖u‖2

L∞(0,T ;H2).

We use the expression of E3(u, ξh) (below (3.18)) to bound this term by

E3(u, ξh) ≤ C(Δt)3/2‖ξh(·, tn)‖L2

∥∥∥d2u

dt2

∥∥∥
L2(tn−1,tn;L2)

≤ CΔt‖ξh(·, tn)‖2
L2 + C(Δt)2

∥∥∥d2u

dt2

∥∥∥2

L2(tn−1,tn;L2)
.

We combine these estimates and the estimates (4.4)–(4.7) to get

‖ξh(·, tn)‖2
L2 + εΔt‖ξh,x(·, tn)‖2

L2
D

≤ 1 + CΔt

2
(‖ξh(·, tn)‖2

L2 + ‖ξh(·, tn−1)‖2
L2) +

1

4
εΔt‖ξh,x(·, tn)‖2

L2
D

+C(Δt)2
∥∥∥d2u

dt2

∥∥∥2

L2(tn−1,tn;L2)
+ CΔtmin{h2, (Δt)2}‖u‖2

L∞(0,T ;H2)

+Ch4(Δt‖u‖2
L∞(0,T ;H2) + λ(‖u‖2

H1(tn−1,tn;H2) + Δt‖u‖2
L∞(0,T ;H3))).

The rest of the proof is the same as that in Theorem 4.1.
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The MMOCAA scheme corrects the MMOC scheme by replacing uh(x∗
h, tn−1)

by ǔh(x∗
h, tn−1) = uh(x∗∗

h , tn−1), where x∗∗
h is an order O((Δt)2) perturbation to x∗

h.
This does not affect the order of each term in the error analysis but introduces extra
differences of the same term at x∗

h and x∗∗
h and slightly complicates the analysis.

5. Error estimates for problem (2.1) with minimal or intermediate reg-
ularity. We prove a uniform stability estimate for the ELLAM, MMOC, and MMO-
CAA schemes, assuming minimal regularity of problem (2.1). We then use the theory
of interpolation of operators to derive a priori error estimates, which hold uniformly
with respect to ε, for problem (2.1) with minimal or intermediate regularity.

5.1. A uniform stability estimate. In this subsection we prove a uniform
stability estimate for the ELLAM, MMOC, and MMOCAA schemes.

Theorem 5.1. Assume V ∈ L∞(0, T ;W 1
∞(a, b)), D ∈ L∞(0, T ;L∞(a, b)), uo ∈

L2(a, b), and f ∈ L2(0, T ;L2(a, b)). Let uh(x, 0) in the ELLAM scheme (3.13), the
MMOC scheme (3.19), or the MMOCAA scheme be the L2 projection of uo(x). Then
an uniform stability estimate holds:

‖uh‖Lε(0,T ;H1
D) ≤ C(‖uo‖L2 + ‖f‖L2(0,T ;L2)).(5.1)

Proof. We choose wh(x, tn) in the ELLAM scheme (3.13) to be uh(x, tn) to get∫ b

a

u2
h(x, tn)dx + εΔt

∫ b

a

D(x, tn)u2
h,x(x, tn)dx

=

∫ b

a

uh(x∗
h, tn−1)uh(x, tn)rh,x(tn−1;x, tn)dx + Δt

∫ b

a

f(x, tn)uh(x, tn)dx.

(5.2)

We bound the first term on the right-hand side similarly to estimate (4.4) and incor-
porate the estimate into (5.2). We cancel like terms and sum the resulting inequalities
for n = 1, . . . , N1(≤ N) to get

‖uh(·, tN1)‖2
L2 + ε

N1∑
n=1

Δt‖uh,x(·, tn)‖2
L2

D

≤ CΔt

N1∑
n=0

(‖uh(·, tn)‖2
L2 + ‖f(·, tn)‖2

L2(0,T ;L2)) + ‖uo‖2
L2 .

We choose CΔt ≤ 1/2 and apply the Gronwall inequality to finish the proof of (5.1)
in the context of the ELLAM scheme.

We similarly choose wh(x) = uh(x, tn) in the MMOC scheme (3.19) to get∫ b

a

u2
h(x, tn)dx + εΔt

∫ b

a

D(x, tn)u2
h,x(x, tn)dx

=

∫ b

a

uh(x∗
h, tn−1)uh(x, tn)rh,x(tn−1;x, tn)dx

−Δt

∫ b

a

Vx(x, tn)u2
h(x, tn)dx + Δt

∫ b

a

f(x, tn)uh(x, tn)dx.

(5.3)

Compared with (5.2), the only extra term is the second term on the right-hand side
of (5.3) that can be bounded by∣∣∣Δt

∫ b

a

Vx(x, tn)u2
h(x, tn)dx

∣∣∣ ≤ CΔt‖uh(·, tn)‖2
L2 .
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Thus, we can prove the stability estimate (5.1) for the MMOC as we did for the
ELLAM. As for the MMOCAA, the only difference is the accumulation term at the
time step tn−1, in which the foot of the approximate characteristics is a perturba-
tion of order O((Δt)2) to the Euler tracking. Therefore, the estimate (5.1) is still
true.

5.2. Error estimates for problems with minimal or intermediate regu-
larity. We apply the theory of interpolation of spaces to derive a priori error estimates
for the ELLAM, MMOC, and MMOCAA schemes, which hold uniformly with respect
to ε, for problem (2.1) with minimal or intermediate regularity.

Theorem 5.2. Let u be the true solution to problem (2.1) and uh be the numer-
ical solution of the ELLAM scheme (3.13). Then the following error estimate holds
uniformly with respect to ε for 0 < s < 1:

‖uh − u‖Lε(0,T ;H1
D) ≤ C(Δt)s

(
‖uo‖Bs

q(L2) +
√
ε‖uo‖B2s

q (L2) +
∥∥∥df
dt

∥∥∥
L2(0,T ;L2)

+ ‖f‖L2(0,T ;Bs
q(L2))

)
+ C min{hs, (Δt)s}‖uo‖B2s

q (L2)

+Ch2s(‖uo‖B3s
q (L2) + λ‖f‖L2(0,T ;B3s

q (L2))).

(5.4)

Proof. We split uh − u = (u
(1)
h − u(1)) + (u

(2)
h − u(2)). Here u

(1)
h and u(1) are the

numerical and true solutions, respectively, to a homogeneous version of problem (2.1),

whereas u
(2)
h and u(2) are, respectively, the numerical and true solutions to problem

(2.1) with zero initial data.

We combine the stability of the numerical solution u
(1)
h and the true solution u(1),

which is proved in Theorem 7.1, to obtain

‖u(1)
h − u(1)‖Lε(0,T ;H1

D) ≤ C‖uo‖L2 .(5.5)

Theorem 4.1 gives an optimal-order error estimate assuming full regularity:

‖u(1)
h − u(1)‖Lε(0,T ;H1

D)

≤ CΔt‖uo‖H2
ε

+ C(min{h,Δt} + h2)‖uo‖H2 + Cλh2‖uo‖H3 .
(5.6)

We use Lemma 2.1 with m = 3 to interpolate L2(a, b) and the Sobolev space H3(a, b):

[L2(a, b), H3(a, b)]s,q = B3s
q (L2(a, b)), 0 < s < 1.

Note that [L2(a, b), H3(a, b)]k/3,1 ⊂ Hk(a, b) ⊂ [L2(a, b), H3(a, b)]k/3,∞ for k = 1, 2.
We apply Lemma 2.3 to reiterate the interpolation process on both ends to get

[L2(a, b), Hk(a, b)]s,q = [L2(a, b), H3(a, b)]ks/3,q = Bks
q (L2(a, b)), 0 < s < 1, k = 1, 2.

We apply Lemma 2.2 to the estimates (5.5) and (5.6) to conclude

‖u(1)
h − u(1)‖Lε(0,T ;H1

D)

≤ Cλh2s‖uo‖B3s
q (L2) + C(min{hs, (Δt)s} + h2s)‖uo‖B2s

q (L2)

+C(Δt)s(‖uo‖Bs
q(L2) +

√
ε‖uo‖B2s

q (L2)), 0 < s < 1.

(5.7)

We use (5.1), (7.2), and (4.1) to bound u
(2)
h − u(2) by

‖u(2)
h − u(2)‖Lε(0,T ;H1

D) ≤ C‖f‖L2(0,T ;L2)(5.8)
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and

‖u(2)
h − u(2)‖Lε(0,T ;H1

D) ≤ CΔt
(∥∥∥df

dt

∥∥∥
L2(0,T ;L2)

+ ‖f‖L2(0,T ;H1)

)
+Cλh2‖f‖L2(0,T ;H3).

(5.9)

We then use the interpolation to derive the following estimate:

‖u(2)
h − u(2)‖Lε(0,T ;H1

D) ≤ C(Δt)s
(∥∥∥df

dt

∥∥∥
L2(0,T ;L2)

+ ‖f‖L2(0,T ;Bs
q(L2))

)
+Cλh2s‖f‖L2(0,T ;B3s

q (L2)).
(5.10)

We combine the estimates (5.7) and (5.10) to finish the proof of (5.4).
In the theorem, the coefficients are required to be in the appropriate interpolation

spaces with proper fine tuning. An analogue can be proved for the MMOC and
MMOCAA schemes in a similar manner.

Theorem 5.3. Let u be the true solution to problem (2.1) and uh be the numerical
solution of the MMOC scheme (3.19) or the MMOCAA scheme. Then, for 0 < s < 1,
the following error estimate holds uniformly with respect to ε:

‖uh − u‖Lε(0,T ;H1
D)

≤ C(Δt)s
(
‖uo‖Bs

q(L2) +
√
ε‖uo‖B2s

q (L2) + ε3/2‖uo‖B3s
q (L2)

+
∥∥∥df
dt

∥∥∥
L2(0,T ;L2)

+ ‖f‖L2(0,T ;B2s
q (L2))

)
+ C min{hs, (Δt)s}‖uo‖B2s

q (L2)

+Ch2s(‖uo‖B3s
q (L2) + λ‖f‖L2(0,T ;B3s

q (L2))).

(5.11)

6. Auxiliary lemmas. We prove two auxiliary lemmas in this section. The
first lemma addresses error bounds on the approximate characteristics to the true
characteristics. The second lemma proves the optimal-order error bound in (4.6).

6.1. Estimates on approximations to characteristics. We prove several
bounds on the differences between the approximate and true characteristics.

Lemma 6.1. Let r(t;x, tn) and rh(t;x, tn) be the true and approximate character-
istics defined in (3.3) and (3.12), respectively. Assume that V, dV

dt ∈ L∞(0, T ;W 1
∞(a, b)).

Then the following estimates hold:

|x∗
h − x∗| ≤ (Δt)2

2

∥∥∥dV
dt

∥∥∥
L∞(0,T ;L∞)

= O((Δt)2),

|rx(t;x, tn) − 1| ≤
∫ tn

t

|Vx(r(θ;x, tn), θ)|dθe
∫ tn
t

|Vx(r(θ;x,tn),θ)|dθ = O(tn − t),

(6.1)

and

|rh,x(tn−1;x, tn) − rx(tn−1;x, tn)|

≤ (Δt)2

2

(∥∥∥dV
dt

∥∥∥
L∞(0,T ;W 1

∞)
+ ‖V ‖2

L∞(0,T ;W 1
∞)

)
e
∫ tn
tn−1

|Vx(r(θ;x,tn),θ)|dθ

= O((Δt)2).

(6.2)

Proof. The definition (3.3) directly yields

r(t;x, tn) = x−
∫ tn

t

V (r(θ;x, tn), θ)dθ.(6.3)
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We subtract this equation from (3.12) to get the following, which directly leads to the
first inequality in (6.1):

|x∗
h − x∗| =

∣∣∣∫ tn

tn−1

V (r(t;x, tn), t)dt− V (x, tn)Δt
∣∣∣

=
∣∣∣∫ tn

tn−1

[V (r(t;x, tn), t) − V (x, tn)]dt
∣∣∣

≤
∫ tn

tn−1

∫ tn

θ

∣∣∣dV (r(θ;x, tn), θ)

dθ

∣∣∣dθdt.
Differentiating (6.3) leads to

rx(t;x, tn) − 1 = −
∫ tn

t

Vx(r(θ;x, tn), θ)rx(θ;x, tn)dθ

= −
∫ tn

t

Vx(r(θ;x, tn), θ)dθ

−
∫ tn

t

Vx(r(θ;x, tn), θ) (rx(θ;x, tn) − 1)dθ.

(6.4)

Application of the Gronwall inequality leads to the second estimate in (6.1).
We differentiate (3.12) and use (6.4) to get

rh,x(tn−1;x, tn) − rx(tn−1;x, tn)

=

∫ tn

tn−1

[Vx(r(t;x, tn), t) − Vx(x, tn)]dt

−
∫ tn

tn−1

Vx(r(t;x, tn), t)[rh,x(t;x, tn) − rx(t;x, tn) + Vx(x, tn)(tn − t)]dt.

Application of the Gronwall inequality to the following proves (6.2):

|rh,x(tn−1;x, tn) − rx(tn−1;x, tn)|

≤ (Δt)2

2

(∥∥∥dV
dt

∥∥∥
L∞(0,T ;W 1

∞)
+ ‖V ‖2

L∞(0,T ;W 1
∞)

)
+

∫ tn

tn−1

|Vx(r(t;x, tn), t)| |rh,x(t;x, tn) − rx(t;x, tn)|dt.

6.2. A superconvergent estimate on interpolation. We prove the following
superconvergence estimate on the interpolation error.

Lemma 6.2. Assume u ∈ L∞(0, T ;H3(a, b)) ∩ H1(0, T ;H2(a, b)). Let Πhu ∈
Sh(a, b) be the interpolation of u and η = Πhu− u. Let λ be the parameter defined in
Theorem 4.1. Then the following superconvergence estimate holds:

∣∣∣∫ b

a

η(x∗
h, tn−1)ξh(x, tn)rh,x(tn−1;x, tn)dx−

∫ b

a

η(x, tn)ξh(x, tn)dx
∣∣∣

≤ CΔt‖ξh(·, tn)‖2
L2 + CΔt(min{h2, (Δt)2} + h4)‖u‖2

L∞(0,T ;H2)

+ C(Δt)3‖u‖2
L∞(0,T ;H1) + Cλ h4(‖u‖2

H1(tn−1,tn;H2) + Δt‖u‖2
L∞(0,T ;H3)).

(6.5)
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Proof. We rewrite the left-hand side of (6.5) as∫ b

a

η(x, tn)ξh(x, tn)dx−
∫ b

a

η(x∗
h, tn−1)ξh(x, tn)rh,x(tn−1;x, tn)dx

=

∫ b

a

(η(x, tn) − η(x∗
h, tn−1))ξh(x, tn)dx

+Δt

∫ b

a

η(x∗
h, tn−1)ξh(x, tn)Vx(x, tn)dx.

(6.6)

We bound the second term on the right-hand side in a similar way to (4.4):∣∣∣Δt

∫ b

a

η(x∗
h, tn−1)ξh(x, tn)Vx(x, tn)dx

∣∣∣
≤ CΔt‖ξh(·, tn)‖L2 ‖η(x∗

h, tn−1)‖L2(a,b)

≤ CΔt‖ξh(·, tn)‖L2 ‖η(·, tn−1)‖L2

≤ CΔt‖ξh(·, tn)‖2
L2 + CΔt h4‖u‖2

L∞(0,T ;H2).

(6.7)

When Cr ≥ 1 that implies h ≤ CΔt, we bound the first term in (6.6) by∣∣∣∫ b

a

(η(x, tn) − η(x∗
h, tn−1))ξh(x, tn)dx

∣∣∣
≤ C‖ξh(·, tn)‖L2(‖η(·, tn)‖L2 + ‖η(·, tn−1)‖L2)

≤ Ch2‖ξh(·, tn)‖L2 ‖u‖L∞(0,T ;H2)

≤ CΔt‖ξh(·, tn)‖2
L2 + CΔtmin{h2, (Δt)2}‖u‖2

L∞(0,T ;H2).

(6.8)

For Cr < 1, we decompose this term as follows:∫ b

a

(η(x, tn) − η(x∗
h, tn−1))ξh(x, tn)dx

=

∫ b

a

∫ tn

tn−1

ηt(x, t)dt ξh(x, tn)dx

+

∫ b

a

(η(x, tn−1) − η(x∗
h, tn−1))ξh(x, tn)dx.

(6.9)

The first term on the right-hand side is bounded by∣∣∣∫ b

a

∫ tn

tn−1

ηt(x, t)dt ξh(x, tn)dx
∣∣∣

≤ (Δt)1/2‖ξh(·, tn)‖L2 ‖η‖H1(tn−1,tn;L2)

≤ Δt‖ξh(·, tn)‖2
L2 + Ch4‖u‖2

H1(tn−1,tn;H2).

(6.10)

We use the following expressions in the second term on the right side of (6.9):

η(x, tn−1) − η(x∗
h, tn−1) =

∫ 1

0

d

dθ
η(x∗

h + θ(x− x∗
h), tn−1)dθ

=

∫ 1

0

ηx(x∗
h + θ(x− x∗

h), tn−1)(x− x∗
h)dθ,

∂

∂x

(
η(x∗

h + θ(x− x∗
h), tn−1)

)
= ηx(x∗

h + θ(x− x∗
h), tn−1)(x

∗
h,x + θ(1 − x∗

h,x))

= ηx(x∗
h + θ(x− x∗

h), tn−1)(1 − (1 − θ)Vx(x, tn)Δt)
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and then integrate the resulting term by parts to yield∫ b

a

(η(x, tn−1) − η(x∗
h, tn−1))ξh(x, tn)dx

=

∫ b

a

∫ 1

0

ηx(x∗
h + θ(x− x∗

h), tn−1)(x− x∗
h)dθ ξh(x, tn)dx

=

∫ b

a

∫ 1

0

∂

∂x

(
η(x∗

h + θ(x− x∗
h), tn−1)

)
(1 − (1 − θ)Vx(x, tn)Δt)−1(x− x∗

h)dθ ξh(x, tn)dx

=

∫ b

a

∫ 1

0

∂

∂x

(
η(x∗

h + θ(x− x∗
h), tn−1)

)
(x− x∗

h)dθ ξh(x, tn)dx

+

∫ b

a

∫ 1

0

∂

∂x

(
η(x∗

h + θ(x− x∗
h), tn−1)

)
O((Δt)2)dθ ξh(x, tn)dx

= −
∫ 1

0

∫ b

a

η(x∗
h + θ(x− x∗

h), tn−1)(x− x∗
h)xξh(x, tn)dxdθ

−
∫ 1

0

∫ b

a

η(x∗
h + θ(x− x∗

h), tn−1)(x− x∗
h)ξh,x(x, tn)dxdθ

+

∫ b

a

∫ 1

0

∂

∂x

(
η(x∗

h + θ(x− x∗
h), tn−1)

)
O((Δt)2)dθ ξh(x, tn)dx.

(6.11)

Let y = x∗
h + θ(x− x∗

h). We bound the first and third terms on the right side by∣∣∣∫ 1

0

∫ b

a

η(x∗
h + θ(x− x∗

h), tn−1)(x− x∗
h)xξh(x, tn)dxdθ

+

∫ b

a

∫ 1

0

∂

∂x

(
η(x∗

h + θ(x− x∗
h), tn−1)

)
O((Δt)2)dθ ξh(x, tn)dx

∣∣∣
≤ Δt

∫ 1

0

∫ b

a

|Vx(x, tn)||η(x∗
h + θ(x− x∗

h), tn−1)||ξh(x, tn)|dxdθ

+C(Δt)2
∫ 1

0

∫ b

a

|ηx(x∗
h + θ(x− x∗

h), tn−1)||ξh(x, tn)|dxdθ

≤ CΔt‖ξh(·, tn)‖L2

[(∫ 1

0

∫ b

a

η2(y, tn−1)(θ + (1 − θ)x∗
h,x)−1dydθ

)1/2

+Δt
(∫ 1

0

∫ b

a

η2
x(y, tn−1)(θ + (1 − θ)x∗

h,x)−1dydθ
)1/2]

≤ CΔt‖ξh(·, tn)‖2
L2 + CΔth4‖u‖2

L∞(0,T ;H2) + C(Δt)3‖u‖2
L∞(0,T ;H1).

(6.12)

We decompose the second term on the right-hand side of (6.11) as∫ 1

0

∫ b

a

η(x∗
h + θ(x− x∗

h), tn−1)(x− x∗
h)ξh,x(x, tn)dxdθ

= Δt

∫ b

a

V (x, tn)ξh,x(x, tn)
(
η(x, tn−1)

+

∫ 1

0

∫ 1

0

d

dγ
η(x + γ(1 − θ)(x∗

h − x), tn−1)dγdθ
)
dx

= Δt

∫ b

a

V (x, tn)ξh,x(x, tn)η(x, tn−1)dx

+Δt

∫ 1

0

∫ 1

0

∫ b

a

V (x, tn)ξh,x(x, tn)(1 − θ)(x∗
h − x)

×ηx(x + γ(1 − θ)(x∗
h − x), tn−1)dxdγdθ.

(6.13)
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We use the inverse inequality (2.3) to bound the second term by

∣∣∣Δt

∫ 1

0

∫ 1

0

∫ b

a

V (x, tn)ξh,x(x, tn)(1 − θ)(x∗
h − x)

×ηx(x + γ(1 − θ)(x∗
h − x), tn−1)dxdγdθ

∣∣∣
≤ C(Δt)2h‖ξh,x(·, tn)‖L2‖u(·, tn−1)‖H2

≤ CΔt ‖ξh(·, tn)‖2
L2 + C(Δt)3 ‖u‖2

L∞(0,T ;H2).

(6.14)

A standard estimate of the first term on the right-hand side of (6.13) yields

∣∣∣Δt

∫ b

a

V (x, tn)η(x, tn−1)ξh,x(x, tn)dx
∣∣∣ ≤ CΔt‖ξh,x(·, tn)‖L2‖η(·, tn−1)‖L2

≤ CΔt h2‖ξh,x(·, tn)‖L2‖u(·, tn−1)‖H2

≤ CΔt‖ξh(·, tn)‖2
L2 + CΔt h2‖u(·, tn−1)‖H2 .

This will result in a suboptimal-order estimate of order O(h + Δt) for the ELLAM
scheme. To derive an optimal-order estimate, we sum this term by parts to obtain

Δt

∫ b

a

V (x, tn)η(x, tn−1)ξh,x(x, tn)dx

= −Δt

h

I∑
i=1

∫ xi

xi−1

(V (x + h, tn) − V (x, tn))η(x, tn−1)ξh(xi, tn)dx

−Δt

h

I∑
i=1

∫ xi

xi−1

(η(x + h, tn−1) − η(x, tn−1))V (x + h, tn)ξh(xi, tn)dx.

(6.15)

We bound the first term on the right-hand side of (6.15) by

∣∣∣Δt

h

I∑
i=1

∫ xi

xi−1

(V (x + h, tn) − V (x, tn))η(x, tn−1)ξh(xi, tn)dx
∣∣∣

≤ CΔt ‖ξh(·, tn)‖L2 ‖η(·, tn−1)‖L2

≤ CΔt ‖ξh(·, tn)‖2
L2 + CΔt h4 ‖u‖2

L∞(0,T ;H2),

(6.16)

where we have used the equivalence between the discrete and continuous L2 norms.
However, if we similarly bound the second term on the right side of (6.15), we

can obtain only a suboptimal-order estimate. To derive an optimal-order estimate,
we introduce an auxiliary function ψ(x, t) by

ψ(x, t) = u(x + h, t) − u(x, t) =

∫ h

0

uα(α + x, t)dα.

Because η(x + h, tn−1) is a shift of η(x, tn−1) by one grid point, so the forward
difference operator and the shift operator are commutative:

η(x + h, tn−1) − η(x, tn−1) = (Πh − I)u(x + h, tn−1) − (Πh − I)u(x, tn−1)
= (Πh − I)(u(x + h, tn−1) − u(x, tn−1))
= (Πh − I)ψ(x, tn−1).
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Inserting this identity into the second term on the right-hand side of (6.15) gives

∣∣∣Δt

h

I∑
i=1

∫ xi

xi−1

(η(x + h, tn) − η(x, tn))V (x + h, tn)ξh(xi, tn)dx
∣∣∣

≤ CΔt

h
‖ξh(·, tn)‖L2 ‖(Πh − I)ψ(·, tn−1)‖L2 ≤ CΔt h‖ξh(·, tn)‖L2‖ψ(·, tn−1)‖H2

≤ CΔt‖ξh(·, tn)‖2
L2 + CΔt h4‖u‖2

L∞(0,T ;H3).

(6.17)
Combining all of these estimates, we have proved (6.5).

7. Uniform stability estimates of the exact solutions. The existence,
uniqueness, and stability estimates for problem (2.1) can be found, e.g., in [9]. We
derive a priori stability estimates for problem (2.1) in ε-weighted norms, which hold
uniformly with respect to ε, under different regularity assumptions.

7.1. A generic stability estimate with minimal regularity assumption.
We prove a priori stability estimates for a slightly more general initial-boundary value
problem than problem (2.1) with minimal regularity assumption:

zt + (V̄ (x, t)z − εD̄(x, t)zx)x + R̄(x, t)z = f̄(x, t), (x, t) ∈ (a, b) × (0, T ],

z(x, 0) = zo(x),
(7.1)

which is closed by a periodic boundary condition at x = a and x = b.
Theorem 7.1. Assume D̄ ∈ L∞(0, T ;L∞), R̄ ∈ L1(0, T ;L∞), V̄ ∈ L1(0, T ;W 1

∞),
zo ∈ L2(a, b), and f̄ ∈ L2(0, T ;L2). Then the following estimate holds:

‖z‖Lε(0,T ;H1
D) ≤ 2(‖zo‖L2 + ‖f̄‖L2(0,T ;L2))e

1
2‖(1−2R̄−V̄x)+‖L1(0,T ;L∞)

≤ C(‖zo‖L2 + ‖f̄‖L2(0,T ;L2)).
(7.2)

Here C depends on ‖(1−2R̄−V̄x)+‖L1(0,T ;L∞) but not on ε, g+(x, t) = max{g(x, t), 0}.
Proof. We combine zt + V̄ zx in (7.1) to form a material derivative dz

dt along the

characteristics x = r(t; x̄, t̄) defined by (3.3) with V being replaced by V̄ . We multiply
the equation by z(x, t) and integrate the resulting equation to get

∫ b

a

dz

dt
zdx + ε

∫ b

a

D̄(x, t)z2
xdx +

∫ b

a

(R̄(x, t) + V̄x(x, t))z2dx =

∫ b

a

f̄(x, t)zdx.

We apply the Reynolds transport theorem

d

dt

∫ r(t;b,t̄)

r(t;a,t̄)

gdx =

∫ r(t;b,t̄)

r(t;a,t̄)

(dg
dt

+ V̄xg
)
dx

to g = z2(x, t) at t = t̄ to rewrite the weak formulation as

1

2

d

dt

∫ b

a

z2dx + ε

∫ b

a

D̄z2
xdx +

∫ b

a

(
R̄ +

1

2
V̄x

)
z2dx =

∫ b

a

fzdx.
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Integrating this equation from t = 0 to t = t̄ yields

∫ b

a

z2(x, t̄)dx + 2ε

∫ t̄

0

∫ b

a

D̄(x, t)z2
x(x, t)dxdt

=

∫ b

a

z2(x, t̄)dx + 2ε

∫ t̄

0

∫ r(t;b,t̄)

r(t;a,t̄)

D̄(x, t)z2
x(x, t)dxdt

≤
∫ r(0;b,t̄)

r(0;a,t̄)

z2
o(x)dx +

∫ t̄

0

∫ r(t;b,t̄)

r(t;a,t̄)

f̄2(x, t)dxdt

+

∫ t̄

0

‖(1 − 2R̄− V̄x)+(·, t)‖L∞(a,b)

∫ r(t;b,t̄)

r(t;a,t̄)

z2(x, t)dxdt

= ‖zo‖2
L2 +

∫ t̄

0

‖f̄(·, t)‖2
L2dt +

∫ t̄

0

‖(1 − 2R̄− V̄x)+(·, t)‖L∞(a,b) ‖z(·, t)‖2
L2dt.

Here we have used the fact that
∫ r(t;b,t̄)

r(t;a,t̄)
g(x)dx =

∫ b

a
g(x)dx. Applying the Gronwall

inequality finishes the proof of (7.2).

7.2. Uniform stability estimates for problem (2.1). In this subsection we
prove a priori stability estimates for problem (2.1) in different Sobolev norms.

Theorem 7.2. Assume D,V ∈ L∞(0, T ;W k+1
∞ (a, b)), uo ∈ Hk(a, b), and f ∈

L2(0, T ;Hk(a, b)). Then the following stability estimate holds for problem (2.1):

‖u‖Lε(0,T ;Hk+1) ≤ C(‖uo‖Hk + ‖f‖L2(0,T ;Hk)),(7.3)

where C = C(‖D‖L∞(0,T ;Wk+1
∞ ), ‖V ‖L∞(0,T ;Wk+1

∞ )), but not on ε. Further, if D,V ∈
L∞(0, T ;W 4

∞(a, b)), uo ∈ H3(a, b), and f ∈ L2(0, T ;H3(a, b)), we have

‖u‖H1(0,T ;H2) ≤ C(‖uo‖H3 + ‖f‖L2(0,T ;H3))(7.4)

and ∥∥∥d2u

dt2

∥∥∥
L2(0,T ;L2)

≤ C
(
ε‖uo‖H3

ε
+ ‖uo‖H1

ε
+ ‖f‖L2(0,T ;H2) +

∥∥∥df
dt

∥∥∥
L2(0,T ;L2)

)
.(7.5)

Here C = C(‖D‖L∞(0,T ;W 4
∞), ‖V ‖L∞(0,T ;W 4

∞)), but not on ε. Finally, assume D,V ∈
L∞(0, T ;W l+1

∞ (a, b)), uo ∈ H l(a, b), and f ∈ L2(0, T ;H l(a, b)) for l = 0, 1. We have

∥∥∥du
dt

∥∥∥
L2(0,T ;Hl)

≤ C(‖uo‖Hl+1
ε

+ ‖f‖L2(0,T ;Hl)).(7.6)

Proof. (7.3) for k = 0 is a direct consequence of (7.2). To prove (7.3) for k = 1,
we differentiate problem (2.1) with respect to x. The resulting equation corresponds
to (7.1) with z = ux, D̄ = D, V̄ = V − εDx, R̄ = Vx, and f̄ = fx −Vxx. The estimate
(7.2) yields (7.3) with k = 1. We prove (7.3) for k ≥ 2 by induction.

To prove the estimate (7.4) we use the governing equation in (2.1) to express ut in
terms of spatial derivatives and bound these spatial derivatives by the estimate (7.3).
We similarly bound du

dt in terms of spatial derivatives as follows:

∥∥∥du
dt

∥∥∥
L2(0,T ;Hl)

≤ C(ε‖(Dux)x‖L2(0,T ;Hl) + ‖Vxu‖L2(0,T ;Hl) + ‖f‖L2(0,T ;Hl)).
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This together with (7.3) proves the estimate of du
dt . We similarly express d2u

dt2 as∥∥∥d2u

dt2

∥∥∥
L2(0,T ;L2)

=
∥∥∥ε[D(ε(Dux)x − Vxu + f)x]x + ε

(dD
dt

ux

)
x
− Vx

du

dt
− dVx

dt
u +

df

dt

∥∥∥
L2(0,T ;L2)

≤ ε2‖u‖L2(0,T ;H4) + ε‖u‖L2(0,T ;H2) + ‖u‖L2(0,T ;L2) + ‖f‖L2(0,T ;H2)

+
∥∥∥du
dt

∥∥∥
L2(0,T ;L2)

+
∥∥∥df
dt

∥∥∥
L2(0,T ;L2)

.

We combine this inequality with estimates (7.3) and (7.6) to finish the proof.

8. Concluding remarks. In this section we summarize the main results in this
paper and address several related issues. We also carry out numerical example runs
to verify the theoretical estimates numerically. We conclude the paper by briefly
discussing the directions of future work.

8.1. The ε-weighted energy norm and L∞ norm. In the context of sta-
tionary convection-diffusion equations, the location of internal and boundary layers is
known a priori. A piecewise-uniform mesh was proposed and analyzed by Shishkin to
resolve the boundary and internal layers. Moreover, an ε-uniform L∞ error estimate
was proved for numerical methods with Shishkin mesh [11, 14]. However, in the con-
text of transient convection-diffusion equations, the fronts are dynamic and do not
always coincide with the spatial mesh. Thus, although an ε-uniform error estimate in
the L∞ norm is ideal, it is generally impossible especially in the context of multiple
space dimensions and in the limiting case of ε = 0. This is why the L∞ norm is not
used in the numerical methods for hyperbolic conservation laws [13].

In this paper we derived ε-uniform error estimates in the ε-weighted energy norm
‖ · ‖H1

ε
. We now discuss the relation between the error estimates measured in ‖ · ‖L∞

and in ‖ · ‖H1
ε
. In the context of an exponential layer (say, located at x = 1), the

approximation error e is expected to be of the form [11, 14]

e = exp
(−(1 − x)

ε

)
, 0 ≤ x ≤ 1.(8.1)

‖e‖L∞ = O(1) and ‖e‖H1
ε (0,1) = ‖e‖L2(0,1)+

√
ε‖ex‖L2(0,1) =

√
ε+

√
ε ·(1/

√
ε) = O(1).

Thus, ‖e‖L∞ is comparable to ‖e‖H1
ε (0,1), and both norms recognize the exponential

layer. When problem (2.1) has a smooth solution, ‖e‖L∞ = O(h2) and ‖e‖H1
ε (0,1) =

‖e‖L2(0,1) +
√
ε‖ex‖L2(0,1) = O(h2 +

√
εh) = O(h2) for ε < h2. Thus, ‖e‖L∞ is still

comparable to ‖e‖H1
ε (0,1).

In the context of a parabolic layer (say, located at x = 1), the approximation
error e is expected to be of the form [11, 14]

e = exp
(−(1 − x)√

ε

)
, 0 ≤ x ≤ 1.(8.2)

For a parabolic layer, ‖e‖L∞ = O(1) and ‖e‖H1
ε (0,1) = ‖e‖L2(0,1) +

√
ε‖ex‖L2(0,1) =

ε1/4 +
√
ε · ε−1/4 = O(ε1/4). In this case, the L∞ norm still recognizes the parabolic

layer, but the ε-weighted norm does not recognize the layer.
In summary, the ε-weighted norm is comparable to the L∞ norm in the cases of a

smooth solution or an exponential layer. An exponential layer exhibits the strongest
layer behavior and is of the major concern from a numerical and analysis viewpoint.
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On the other hand, in the context of a parabolic layer, ‖ · ‖H1
ε

is somewhat weaker
than ‖ · ‖L∞ . Thus, the ε-weighted norm is the most feasible measure for transient
convection-diffusion equations and is closely related to the L∞ norm. The L∞ norm
is an ideal but impossible measure in this context.

8.2. Measurements in Besov spaces. In Theorems 5.2 and 5.3, we used the
interpolation theory and stability estimates to derive an ε-uniform estimate for prob-
lem (2.1) with minimal or intermediate regularity, where the initial and right-hand side
data were measured in Besov spaces that generate a refined scale of smoothness and
convergence rate. As an example, we consider an initial configuration that contains
interior layers. Note that the indicator function χ(0.4,0.8) (introduced before estimate

(4.11)) satisfies χ(0.4,0.8) ∈ H1/2−δ(0, 1) for any 0 < δ ≤ 1/2 but /∈ H1/2(0, 1). Direct
calculation shows that

‖χ(0.4,0.8)‖H1/2−δ(0,1) = O(δ−1/2) → ∞ as δ → 0.(8.3)

Consequently, the convergence rate in the estimates (5.4) and (5.11) will be s =
1/4 − δ/2 in the case of Cr ≥ 1, and the norm will blow up as δ → 0, if the initial
configuration is measured in the Sobolev spaces. On the other hand, it can be verified

that χ(0.4,0.8) ∈ B
1/2
∞ (L2(0, 1)) but /∈ B

1/2
q (L2(0, 1)) for q < ∞. With this measure of

the same initial data, the estimates (5.4) and (5.11) yield a sharp convergence rate of
order s = 1/4 in the case of Cr ≥ 1.

8.3. Numerical experiments. Various numerical experiments were reported in
the literature, which confirmed spatial and temporal convergence rates of Eulerian–
Lagrangian methods (see, e.g., [7, 15, 18]). In this section we conduct numerical
experiments to observe the convergence behavior of the truncation error uh − u and
its dependence on ε. We simulate the transport of a Gaussian pulse subject to (2.1)
with the initial configuration being given by

uo(x) = exp
(
− (x− xc)

2

2σ2

)
,(8.4)

where xc and σ are the centered and standard deviations, respectively, of the Gaussian
pulse. The analytical solution u(x, t) for a homogeneous equation (2.1) is given by

u(x, t) =

√
2σ√

2σ2 + 4εt
exp

(
− (x− xc − V t)2

2σ2 + 4εt

)
.(8.5)

In the numerical example runs, the spatial domain is (a, b) = (0, 3), and the time
interval is (0, T ) = (0, 1). We select V = 1 and D = 1 so the convection dominance is
controlled by the magnitude of ε, which is chosen to be 0.001, 0.0001, and 0. We also
choose xc = 0.5, and σ = 0.1. We fix a small time step Δt and use a linear regression
to fit the convergence rates and the associated constants in the weighted energy norm

‖uh − u‖ ≤ Cαh
α.(8.6)

The results are presented in Table 8.1, which shows that the ELLAM scheme
maintains second-order accuracy in space. Moreover, these convergence rates hold
uniformly as ε tends to zero, even in the limiting case of ε = 0, as predicted by the
theorems proved in this paper.
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Table 8.1

Spatial convergence rates in the ε-weighted energy norm with Δt = 1/100.

h ε = 0.001 ε = 0.0001 ε = 0

1/10 5.74 × 10−2 7.52 × 10−2 7.76 × 10−2

1/20 7.99 × 10−3 1.02 × 10−2 1.05 × 10−2

1/30 2.68 × 10−3 3.10 × 10−3 3.15 × 10−3

1/40 1.24 × 10−3 1.36 × 10−3 1.37 × 10−3

1/60 4.01 × 10−4 4.31 × 10−4 4.32 × 10−4

1/80 1.86 × 10−4 2.12 × 10−4 2.15 × 10−4

Cα = 32, α = 2.75 Cα = 51, α = 2.84 Cα = 54, α = 2.86

8.4. Summary and discussions. In this paper we proved ε-uniform error es-
timates in the ε-weighted energy norm for the ELLAM, MMOC, and MMOCAA
schemes for one-dimensional singularly perturbed, time-dependent convection-diffusion
equations with periodic boundary conditions. The estimates were derived on a uni-
form space-time partition with no upstream weighting or local grid refinement or
any other special arrangements of the grid, so these estimates justify the strength of
Eulerian–Lagrangian methods. The analysis fully utilizes the simplicity of the one
space dimension and the periodic boundary conditions.

However, a multidimensional analogue of problem (2.1) with general boundary
conditions presents much more severe challenges, due to the complication of multi-
ple space dimensions, the solution structures, and the appearance of boundary and
interior layers. These issues will be investigated in the near future.
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(2002), pp. 865–885], get lost. In this paper, instead of proving convergence results of the algorithm
for each technique, unified convergence results are obtained with a weaker stepsize assumption. An
abstract existence-convergence result is also established. It is independent of the algorithm and
explains why function values always converge faster than their gradients do. The weaker stepsize
assumption is then verified for several different cases. As an illustration to the new results, the
Banach space W 1,p

0 (Ω) is considered and the conditions posed in the new results are verified for a
quasi-linear elliptic PDE.
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1. Introduction. Let B be a Banach space, B∗ its topological dual, 〈, 〉 the
dual relation, and ‖ · ‖ the norm in B. Let J ∈ C1(B,R) and ∇J ∈ B∗ be its
(Fréchet) gradient. A point u∗ ∈ B is a critical point of J if u∗ solves the Euler–
Lagrange equation ∇J(u∗) = 0. The first candidates for a critical point are the local
extrema. Traditional numerical algorithms focus on finding such stable solutions.
Critical points that are not local extrema are unstable and called saddle points. In
physical systems, saddle points appear as unstable equilibria or transient excited states.
Multiple critical points exist in many nonlinear problems in applications (see, e.g.,
[3, 6, 7, 8, 10, 11]). Choi and McKenna [1] in 1993 and Ding, Costa, and Chen [2] in
1999 devised two algorithms for finding critical points of (the Morse index) MI = 1
and MI = 2, respectively. But no mathematical justification or convergence of the
algorithms is established. Based on a local minimax characterization of saddle points,
Li and Zhou [4] developed a local minimax algorithm (LMM) for finding critical
points of MI = 1, 2, . . . , n and proved its convergence in [5]. All those algorithms
are formulated in Hilbert spaces, where the gradient ∇J(u) played a key role in
constructing a search direction. In order to find multiple solutions in Banach spaces
[3, 10], Yao and Zhou successfully developed the first LMM in Banach spaces and
solved several quasi-linear elliptic PDEs for multiple solutions [12]. The method is
also modified to solve the nonlinear p-Laplacian operator for multiple eigenpairs [13].
The key to the success of Yao and Zhou’s algorithm is to replace the gradient with
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a projected pseudogradient (PPG). The purpose of this paper is to establish some
convergence results for the algorithm.

Compared to those results in Hilbert spaces [5], there are several significant dif-
ferences. When B is a Hilbert space, the gradient ∇J(u), which played the key role
in constructing a search direction in the LMM in [5], is uniquely determined in B
and naturally continuous if J is C1 and B = L ⊕ L⊥ holds for any closed subspace
L. When B is a Banach space, however, the gradient ∇J(u) is in B∗, not B, and
cannot be directly used as a search direction in B. Thus a PPG is introduced to
the LMM. Although theoretically a Lipschitz continuous PPG flow exists, for most
cases no explicit formula is available. On the other hand, there are many different
ways to select a PPG. When PPGs are numerically computed in an implementation,
they may belong to different PPG flows. We lost the uniform stepsize property and
the continuity of a search direction, two key conditions in proving the convergence
results in [5]. To make up the first loss, we design a weaker stepsize condition, called
Assumption (H), to replace the old uniform stepsize property; to make up the second
loss, we generalize the notion of a peak selection to that of an L-⊥ selection with
which its continuity or smoothness can be verified. Thus corresponding modifications
in the LMM [12] have to be made.

To simplify our approach, in this paper we assume B = L ⊕ L′. When L is
finite-dimensional, such an L′ always exists. In particular, for the commonly used
Banach space W 1,p

0 (Ω), we present an explicit formula for obtaining L′ and a practical
technique to compute a PPG.

Instead of proving convergence results of the algorithm for each of the techniques
used to compute a PPG, in this paper we establish some unified convergence re-
sults. To do so, in section 2 we generalize a peak selection to an L-⊥ selection and
prove the existence of a PPG at a value of an L-⊥ selection. A new LMM and its
mathematical foundation are also presented there. Section 3 is devoted to proving
unified convergence results. We introduce a new stepsize assumption, (H), and then
prove a subsequence convergence result, Theorem 3.4, under some very reasonable
assumptions. An abstract existence-convergence result, Theorem 3.5, is then estab-
lished. This result is actually independent of any algorithms. It also explains why
in our LMM, function values always converge faster than their gradients do. Based
on this abstract result, another convergence result, Corollary 3.6, is proved to show
that under certain conditions, a convergent subsequence implies a point-to-set con-
vergence. Assumption (H) is then verified for several different cases, in particular,
for the commonly used Banach space W 1,p

0 (Ω). In the last section, we discuss how to
check other conditions we posed in the convergence results. In particular, we present
a quasi-linear elliptic PDE and verify those conditions.

2. A min-⊥ method. Let L be a closed subspace of B. For a subspace A ⊆ B,
denote SA = {v ∈ A | ‖v‖ = 1}. For a point v ∈ SB , let [L, v] = {tv + w | w ∈ L,
t ∈ R}. Since ∇J(u) ∈ B∗, not B, it cannot be used as a search direction in B. Thus
a pseudogradient is used instead.

Definition 2.1. Let J : B → R be Fréchet differentiable at u ∈ B with
∇J(u) �= 0 and let 0 < θ ≤ 1 be given. A point Ψ(u) ∈ B is a pseudogradient
of J at u w.r.t. θ if

(2.1) ‖Ψ(u)‖ ≤ 1, 〈∇J(u),Ψ(u)〉 ≥ θ‖∇J(u)‖.

A pseudogradient flow of J w.r.t. θ is a continuous mapping F : B → B such that
∀u ∈ B with ∇J(u) �= 0, F(u) is a pseudogradient of J at u w.r.t. θ.
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In Definition 2.1, the condition ‖Ψ(u)‖ ≤ 1 is not essential. It can be replaced with
any bound M ≥ 1, since after a normalization, θ can always be replaced with θ

M . It is
known [9] that a C1 functional has a locally Lipschitz continuous pseudogradient flow.
Pseudogradients have been used in the literature to find a minimum of a functional
in Banach spaces. However, as saddle points are concerned, such pseudogradients do
not help much, since they lead to a local minimum point. Thus we introduce a new
notion, called a projected pseudogradient (PPG), which plays a key role in the success
of our LMM in Banach spaces.

Definition 2.2. An L′-PPG G(u) of J is a pseudogradient of J at u such that
G(u) ∈ L′.

The motivation for defining a PPG is twofold. First, as a pseudogradient, it
provides a proper searching termination criterion, i.e., with (2.1), G(u) = 0 implies
∇J(u) = 0. Second, the condition G(u) ∈ L′ is meant to prevent a pseudogradient
search from entering the subspace L, which is spanned by previously found critical
points. The existence of such an L′-PPG of J at u = P(v) is established by Lemma 2.1
in [12], where P is a peak selection defined below.

Definition 2.3 (see [12]). A set-valued mapping P : SL′ → 2B is called the peak
mapping of J w.r.t. L if

P (v) =
{
w = arg local- max

u∈[L,v]
J(u)

}
∀v ∈ SL′ .

A mapping P : SL′ → B is called a peak selection of J w.r.t. L if P(v) ∈ P (v)
∀v ∈ SL′ . If a peak selection P is locally defined near a point v ∈ SL′ , we say that J
has a local peak selection P at v.

By using a peak selection and a PPG, an LMM is successfully developed in [12] for
computing multiple saddle points in Banach spaces. However, as convergence analysis
is concerned, such an algorithm has an ill-condition; i.e., the graph defined by a peak
selection is not closed. In other words, a limit of a sequence of local maxima is not
necessarily a local maximum point. Consequently, we cannot talk about a limit, or
continuity, or do convergence analysis within the context of a peak selection. We
introduce a generalized notion.

Definition 2.4. A set-valued mapping P : SL′ → 2B is called the L-⊥ mapping
of J if

P (v) = {u ∈ [L, v] : 〈∇J(u), w〉 = 0 ∀w ∈ [L, v]} ∀v ∈ SL′ .

A mapping P : SL′ → B is called an L-⊥ selection of J if P(v) ∈ P (v) ∀v ∈ SL′ . If
an L-⊥ selection P is locally defined near a given v ∈ SL′ , we say that J has a local
L-⊥ selection P at v.

Lemma 2.5. If J is C1, then the graph Gr = {(u, v) : v ∈ SL′ , u ∈ P (v) �= ∅} is
closed.

Proof. Let (un, vn) ∈ Gr and (un, vn) → (u0, v0). We have un ∈ [L, vn],
∇J(un) ⊥ [L, vn]. Since vn → v0 ∈ SL′ , for each w ∈ [L, v0] there are wn ∈ [L, vn]
such that wn → w. Thus ∇J(un) ⊥ wn. But J is C1, un → u0 and wn → w
lead to ∇J(u0) ⊥ w, i.e., ∇J(u0) ⊥ [L, v0]. Thus v0 ∈ SL′ and u0 ∈ P (v0), i.e.,
(u0, v0) ∈ Gr.

It is clear that if P is a peak selection of J w.r.t. L, then P is an L-⊥ selection
of J . The generalization not only removes the ill-condition and makes it possible to
check the continuity of P but also exceeds the scope of a minimax principle, the most
popular approach in critical point theory. It enables us to treat nonminimax-type
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saddle points, such as the monkey saddles, or a problem without a mountain pass
structure; see Example 2.1 in [14]. By a similar argument as in Lemma 2.1 of [12] we
can prove the following existence of an L′-PPG.

Lemma 2.6. Assume B = L⊕L′ and let 0 < θ < 1 be given. For v0 ∈ SL′ , if P
is a local L-⊥ selection of J at v0 such that ∇J(P(v0)) �= 0 and Ψ(P(v0)) ∈ B is a
pseudogradient of J at P(v0) w.r.t. θ, then there exists an L′-PPG G(P(v0)) of J at
P(v0) w.r.t. θ s.t.

(a) G(P(v0)) ∈ L′, 0 < ‖G(P(v0))‖ ≤ M := ‖P‖, where P : B → L′ is the linear
projection.

(b) 〈∇J(P(v0)), G(P(v0))〉 = 〈∇J(P(v0)),Ψ(P(v0))〉.
(c) If Ψ(P(v0)) is the value of a pseudogradient flow Ψ(·) of J at P(v0), then

G(·) is continuous and G(P(v0)) is called the value of an L′-PPG flow of J
at P(v0).

We now establish some mathematical foundations for our new algorithm.
Lemma 2.7 (see [12]).∥∥∥∥v − v − w

‖v − w‖

∥∥∥∥ ≤ 2‖w‖
‖v − w‖ ∀v ∈ B, ‖v‖ = 1, ∀w ∈ B.

Lemma 2.8. For v0 ∈ SL′ , if J has a local L-⊥ selection P at v0 satisfying
(1) P is continuous at v0, (2) d(P(v0), L) > 0, and (3) ∇J(P(v0)) �= 0, then there
exists s0 > 0 such that for 0 < s < s0

(2.2) J(P(v0(s))) − J(P(v0)) < −θs

4
|t0|‖∇J(P(v0))‖,

where P(v0) = t0v0 + w0 for some

t0 ∈ R, w0 ∈ L, v0(s) =
v0 − sign(t0)sG(P(v0))

‖v0 − sign(t0)sG(P(v0))‖
,

and G(P(v0)) is an L′-PPG of J w.r.t. θ at P(v0).
The proof of Lemma 2.8 can follow a similar argument of Lemma 2.4 in [12]. The

inequality (2.2) will be used to define a stepsize rule for the algorithm and establish
convergence results. With Lemma 2.8, the following characterization of saddle points
is clear.

Theorem 2.9. Let v0 ∈ SL′ . Assume that J has a local L-⊥ selection P at
v0 such that (1) P is continuous at v0, (2) d(P(v0), L) > 0, and (3) v0 is a local
minimum point of J(P(v)). Then P(v0) is a critical point of J .

2.1. A min-orthogonal algorithm.
Definition 2.10. Let v0 ∈ SL′ and P be a local L-⊥ selection of J at v0 with

∇J(P(v0)) �= 0. A point w ∈ L′ is a descent direction of J(P(·)) at v0 if there is
s0 > 0 such that

J(P(v0(s))) < J(P(v0)) ∀ 0 < s < s0, where v0(s) =
v0 + sw

‖v0 + sw‖ .

By Theorem 2.9, a descent direction method to approximate a local minimum of
J(P(v)) leads to the following min-⊥ algorithm.

Assume that L = [u1, u2, . . . , un−1], where u1, u2, . . . , un−1 are n − 1 previously
found critical points of J and L′ is a subspace of B such that B = L⊕ L′. For given
positive numbers λ, θ ∈ (0, 1) and ε.
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Step 1: Let v1 ∈ SL′ be an ascent-descent direction at un−1.
Step 2: Set k = 1. Solve for uk ≡ P(vk) ≡ tk0vk + tk1u

1 + · · · + tkn−1u
n−1 such

that tk0 > 0,

〈∇J(P(vk)), vk〉 = 0 and 〈∇J(P(vk)), u
i〉 = 0, i = 1, 2, . . . , n− 1.

Step 3: Find a descent direction wk ∈ L′ of J(P(·)) at vk.
Step 4: If ‖∇J(uk)‖ ≤ ε, then output uk = P(vk), stop. Otherwise, do Step 5.
Step 5: For each s > 0, denote

vk(s) =
vk + swk

‖vk + swk‖

and set vk+1 = vk(sk), where

sk = max
m∈N

{
λ

2m

∣∣∣∣ 2m > ‖wk‖, J
(
P
(
vk

(
λ

2m

)))
− J(uk) < −θ|tk0 |

4

(
λ

2m

)
‖∇J(uk)‖

}
.

Step 6: Update k = k + 1 and go to Step 3.
Remark 2.1.

(1) The constant λ ∈ (0, 1) is used to prevent the stepsize from being too large
to lose search stability. From now on we always assume that λ is such a
constant.

(2) In Step 2, one way to solve the equations while satisfying the nondegenerate
condition tk0 > 0 is to find a local maximum point uk of J in the subspace
[L, vk], i.e., uk = P(vk) and P is a peak selection of J w.r.t. L.

(3) In Step 3, we may assume ‖wk‖ ≤ M for some M ≥ 1. There are many
different ways to select a descent direction wk. However, when a descent
direction is selected, a corresponding stepsize rule in Step 5 has to be designed
so that it can be achieved and lead to a convergence. For example, when a
negative L′-PPG flow, or a negative L′-PPG, is used as a descent direction,
we have vk ∈ SL′ , and a positive stepsize sk for the current stepsize rule in
Step 5 can always be obtained. In some cases, when −∇J(P(vk)) is used to
construct a descent direction, the stepsize rule in Step 5 has to be modified
as in Case 3 below.

3. Unified convergence results.
Definition 3.1. For each v ∈ SL′ with ‖∇J(P(v))‖ �= 0, write P(v) = tvv + vL

for some vL ∈ L and define the stepsize s(v) at v as

s(v) = max
m∈N

{
s =

λ

2m

∣∣∣∣ 2m > ‖w‖, J(P(v(s))) − J(P(v)) < −1

4
θ|tv|s‖∇J(P(v))‖

}
,

where w is a descent direction J at P(v) and

v(s) =
v + sw

‖v + sw‖ .

Let {uk} be the sequence generated by the algorithm, where uk = P(vk). Since a
PPG can be computed many different ways, we lost the uniform stepsize, one of the key
conditions in [5]. Here we design a new stepsize assumption, (H), to establish unified
convergence results. This condition is weaker than the uniform stepsize assumption
in [5] and will be verified for several different cases.
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Assumption (H). If v0 ∈ SL′ with ∇J(P(v0)) �= 0 and vk → v0, then there is
s0 > 0 such that sk = s(vk) ≥ s0 when k is large.

We need the following Palais–Smale (PS) condition and Ekeland’s variational
principle [10].

Definition 3.2. A function J ∈ C1(B,R) is said to satisfy the PS condition if
any sequence {ui} ⊂ B such that {J(ui)} is bounded and ∇J(ui) → 0 possesses a
convergent subsequence.

Lemma 3.3 (Ekeland’s variational principle). Let X be a complete metric space
and J : X → R ∪ {+∞} be a lower semicontinuous function bounded from below.
Then, for any ε > 0 and x0 ∈ X with J(x0) < +∞, there is x̄ ∈ X such that

J(x̄) + εd(x0, x̄) ≤ J(x0) and J(x) + εd(x, x̄) > J(x̄) ∀x ∈ X and x �= x̄.

First, we prove a subsequence convergence result, the conditions of which will be
verified with an application problem in section 4.

Theorem 3.4. Let J ∈ C1(B,R) satisfy the PS condition. If an L-⊥ selection
P of J satisfies that

(1) P is continuous on SL′ ,
(2) d(P(vk), L) ≥ α > 0 ∀k = 1, 2, . . . ,
(3) inf1≤k<∞ J(P(vk)) > −∞,
(4) Assumption (H) is satisfied,

then
(a) {vk} has a subsequence {vki} such that uki

= P(vki) converges to a critical
point of J ;

(b) if a subsequence vki → v0 as i → ∞, then u0 = P(v0) is a critical point of J .
Proof. (a) By the stepsize rule and Lemma 2.7, for k = 1, 2, . . . , we have

J(uk+1) − J(uk) ≤ −1

4
θαsk‖∇J(P(vk))‖

≤ −|1 − λ|
4M

θα‖vk+1 − vk‖‖∇J(P(vk))‖.(3.1)

Suppose there is δ > 0 such that ‖∇J(P(vk))‖ ≥ δ for any k. From (3.1), we have

(3.2) J(uk+1) − J(uk) ≤ −|1 − λ|
4M

θαδ‖vk+1 − vk‖ ∀k = 0, 1, 2, . . . .

Adding up the two sides of (3.2) gives

(3.3) lim
k→∞

J(uk) − J(u0) =

∞∑
k=0

[J(uk+1) − J(uk)] ≤ −|1 − λ|
4M

θαδ

∞∑
k=0

‖vk+1 − vk‖;

i.e., {vk} is a Cauchy sequence. Thus vk → v̂ ∈ SL′ . By the continuity of P,
‖∇J(P(v̂))‖ ≥ δ > 0. On the other hand, adding up the two sides of (3.1) gives

lim
k→∞

J(uk) − J(u0) ≤ −1

4
θα

∞∑
k=0

sk‖∇J(P(vk))‖ ≤ −1

4
θαδ

∞∑
k=0

sk,

or sk → 0 as k → ∞. It contradicts Assumption (H). Therefore, there is a subsequence
{vki} such that ‖∇J(P(vki))‖ → 0 as i → ∞ and {J(P(vki))} is convergent. By the
PS condition, {P(vki

)} has a subsequence that converges to a critical point u0.
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(b) Suppose u0 = P(v0) is not a critical point. Then there is δ > 0 such that
‖∇J(uki)‖ > δ, i = 1, 2, . . . . Similar to (3.1), we have

J(uki+1) − J(uki) ≤ −1

4
θαski‖∇J(uki)‖ < −1

4
θαδski .

Since
∑∞

k=0[J(uk+1)−J(uk)] = limk→∞ J(uk)−J(u0), it leads to limi→∞(J(uki+1)−
J(uki)) = 0. Hence limi→∞ ski

= 0. It contradicts Assumption (H). Thus u0 is a
critical point.

Next we prove an abstract existence-convergence result that is actually indepen-
dent of the algorithm and also explains why function values always converge faster
than the gradients do. Denote Kc = {u ∈ B | ∇J(u) = 0, J(u) = c}. By the PS
condition, Kc is compact.

Theorem 3.5. Let B = L⊕ L′, V ⊂ B be open, and U = V ∩ SL′ �= ∅. Assume
that J ∈ C1(B,R) satisfies the PS condition and

(1) P is a continuous L-⊥ selection of J in Ū , where Ū is the closure of U on SL′ .
(2) infv∈U d(P(v), L) > α > 0.
(3) infv∈∂Ū J(P(v)) > c = infv∈U J(P(v)) > −∞, where ∂Ū is the boundary of

Ū on SL′ .
Then Kp

c = P(U)∩Kc �= ∅, and for any {vk} ⊂ U with J(uk) → c, where uk = P(vk),
(a) ∀ε > 0, there is k̄ > 0 such that d(Kp

c , uk) < ε ∀k > k̄.
(b) if in addition, ∇J(P(·)) is Lipschitz continuous in U , then there is a constant

C such that ‖∇J(uk)‖ ≤ C(J(uk) − c)
1
2 .

Proof. Define

Ĵ(P(v)) =

{
J(P(v)), v ∈ Ū ,
+∞, v /∈ Ū .

Then, Ĵ(P(·)) is lower semicontinuous and bounded from below on the complete
metric space SL′ . Let {vk} ⊂ U be any sequence such that J(P(vk)) → c. By
our assumption (3), such a sequence always exists. Denote uk = P(vk). Applying

Ekeland’s variational principle to Ĵ(P(·)), for every vk ∈ U and δk = (J(uk) − c)
1
2

there is v̄k ∈ SL′ such that

Ĵ(P(v̄k)) − Ĵ(P(v)) ≤ δk‖v̄k − v‖ ∀v ∈ SL′ ,(3.4)

Ĵ(P(v̄k)) − Ĵ(P(vk)) ≤ −δk‖v̄k − vk‖.(3.5)

By the definition of Ĵ(P(·)) and assumptions on P, we have v̄k ∈ Ū ,

J(P(v̄k)) − J(P(v)) ≤ δk‖v̄k − v‖ ∀v ∈ U,(3.6)

J(P(v̄k)) − J(P(vk)) ≤ −δk‖v̄k − vk‖.(3.7)

It follows that c ≤ J(P(v̄k)) ≤ J(uk) − δk‖v̄k − vk‖, or

(3.8) ‖v̄k − vk‖ ≤ δk,

and d(L,P(v̄k)) > α when k is large. Then J(P(vk)) → c implies J(P(v̄k)) → c. By
assumption (3), we have v̄k ∈ U for large k. For those large k, if ∇J(P(v̄k)) �= 0, by
applying Lemma 2.8 and then Lemma 2.7, when s is small, we have

J(P(v̄k(s))) − J(P(v̄k)) ≤ −θs

4
|tk0 |‖∇J(P(v̄k))‖ ≤ − αθ

8M
‖∇J(P(v̄k))‖‖v̄k(s) − v̄k‖,
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where v̄k(s) = v̄k+sw̄k

‖v̄k+sw̄k‖ ∈ U , w̄k = − sign(tk0)G(P(v̄k)), P(v̄k) = tk0 v̄k + uk
L for some

uk
L ∈ L, G(P(v̄k)) is an L′-PPG of J at P(v̄k) with ‖G(P(v̄k))‖ ≤ M ; see Lemma 2.6

and |tk0 | > α by our assumption (2). Hence by (3.6), we get

(3.9) ‖∇J(P(v̄k))‖ ≤ 8M

αθ
δk,

which implies ∇J(P(v̄k)) → 0 and then ∇J(P(vk)) → 0 by (3.8). {J(P(vk))} is al-
ready bounded. By the PS condition, {uk} has a subsequence that converges to a crit-
ical point u∗. By assumptions (3) and (1), it is clear that u∗ ∈ Kp

c �= ∅. Let β be any
limit point of {d(Kp

c , uk)} and uki = P(vki
) ∈ {uk} such that limi→∞ d(Kp

c , uki
) = β.

By the PS condition, {P(vki)} has a subsequence that converges to a critical point ū.
Again ū ∈ Kp

c , i.e., β = 0. Thus conclusion (a) holds.

If in addition, ∇J(P(·)) is Lipschitz continuous in U with a Lipschitz constant
	1, then by (3.8) and (3.9), conclusion (b) follows from

‖∇J(P(vk))‖ ≤ ‖∇J(P(v̄k))‖ + ‖∇J(P(vk)) −∇J(P(v̄k))‖

≤ 16M

αθ
δk + 	1‖v̄k − vk‖ ≤

(
16M

αθ
+ 	1

)
(J(uk) − c)

1
2 .

Corollary 3.6. Let J ∈ C1(B,R) satisfy the PS condition, and let V1 and V2

be open in L′ with ∅ �= U2 ≡ V2 ∩ SL′ ⊂ V1 ∩ SL′ ≡ U1. If P is a continuous L-⊥
selection of J in U1 with

(1) infv∈U1 d(P(v), L) ≥ α > 0, c = infv∈U1 J(P(v)) > −∞, and Kp
c = P(U1) ∩

K ⊂ Kc,
(2) a d > 0 with infv∈U1{J(P(v)) | d(v, ∂U1) ≤ d} = a > b = supv∈U2

{J(P(v))},
(3) given {vk} such that v1 ∈ U2, ‖vk+1 − vk‖ < d, J(uk+1) < J(uk) and {uk}

has a subsequence that converges to a critical point u0, where uk = P(vk),

then

(a) ∀ε > 0, there is k̄ > 0 such that d(Kp
c , uk) < ε ∀k > k̄,

(b) if in addition, ∇J(P(·)) is Lipschitz continuous in U1, then there is a constant

C such that ‖∇J(uk)‖ ≤ C(J(uk) − c)
1
2 .

Proof. First, we prove that vk ∈ U1 and d(vk, ∂U1) > d, k = 1, 2, . . . . In fact,
if vk ∈ U1, d(vk, ∂U1) > d, and J(uk) ≤ b, then vk+1 ∈ U1 and J(uk+1) < b, i.e.,
vk+1 ∈ U1 and d(vk+1, ∂U1) > d. Thus, for v1 ∈ U2, vk ∈ U1 and d(vk, ∂U1) > d,
k = 1, 2, . . . . Since Kp

c = P(U1)∩K ⊂ Kc and {uk} has a subsequence that converges
to a critical point u0, we have u0 ∈ Kp

c �= ∅. Denote U = {v ∈ U1 | d(v, ∂U1) > d}.
Then by the monotonicity of {J(uk)}, we have J(uk) → c = infv∈U J(P(v)) as k → ∞,
and

inf
v∈∂Ū

J(P(v)) ≥ a > b ≥ J(P(v1)) ≥ c = inf
v∈U

J(P(v)).

Thus all the assumptions of Theorem 3.5 are satisfied and the conclusions follow.

Remark 3.1. There are two types of conditions posed in our convergence results.
One is used in the literature to guarantee the existence of multiple solutions. The
other is what we posed to ensure a convergence for the algorithm. We will focus on
verification of the latter.

(1) In Theorem 3.5, condition (3) can be simplified as c = infv∈SL′ J(P(v)) > −∞
if U = SL′ .
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(2) In Corollary 3.6, condition (2) is, or its variants are, frequently used in the
literature to form a topological linking for applying a deformation lemma
to prove an existence of multiple solutions. It is clear that condition (3)
in Theorem 3.5 is much weaker. It is used to trap a descending flow away
from critical points at other levels. Condition (3) in Corollary 3.6 is designed
for our algorithm to cover several different cases in Banach spaces and is
guaranteed by our Assumption (H) and Theorem 3.4.

(3) Note that when Kp
c contains only one point, Theorem 3.5 can be easily stated

as a point-to-point convergence result. Theorem 3.5, together with its Corol-
lary 3.6, improves a convergence result, Theorem 3.3 in [5], in Hilbert space
in several directions, which (a) cover several different cases in Banach spaces,
(b) do not require P to be a homeomorphism, and (c) contain a new re-
sult on relative convergence rate, i.e., inequality (2), which explains why in
our numerical computations, J(P(vkn)) always converges much faster than
‖∇J(P(vkn))‖ → 0.

Next we verify Assumption (H) for several different cases. This is done in Lemmas
3.8, 3.9, 3.11, and 3.12 below. Cases 1 and 2 are general, so we assume B = L⊕ L′,
where L′ is a closed subspace of B and P : B → L′ is the corresponding projection.
In Step 3 of the algorithm, we choose wk = − sign(t0)G(P(vk)), where G is either
an L′-PPG of J or the value of an L′-PPG flow of J . Then ‖wk‖ ≤ M = ‖P‖. By
Lemma 2.8 we obtain the following.

Lemma 3.7. If P is a local L-⊥ selection of J at v ∈ SL′ such that (1) P is
continuous at v, (2) d(P(v), L) > 0, and (3) ∇J(P(v)) �= 0, then s(v) > 0.

Case 1. Use the value of a negative PPG flow G as a descent direction.
Here G(P(vk)) is the value of an L′-PPG flow of J at P(vk) = tk0vk + vLk for some

vLk ∈ L.
Lemma 3.8. If P is a local L-⊥ selection of J at v0 ∈ SL′ such that (1) P is

continuous at v0, (2) d(P(v0), L) > 0, and (3) ∇J(P(v0)) �= 0, then there exist ε > 0
and s0 = λ

2m for some integer m such that for each v ∈ SL′ with ‖v − v0‖ < ε,
λ ≥ s0‖G(P(v))‖ and

J(P(v(s0))) − J(P(v)) < −s0θ|tv|
4

‖∇J(P(v))‖, v(s0) =
v + sign(tv)s0G(P(v))

‖v + sign(tv)s0G(P(v))‖ ,

P(v) = tvv + wv for some wv ∈ L, and G(P(v)) is the value of an L′-PPG flow of J
at P(v) w.r.t. the constant θ.

Proof. By Lemma 2.8, there is s̄ > 0 such that as 0 < s < s̄,

(3.10) J(P(v0(s))) − J(P(v0)) < −sθ|t0|
4

‖∇J(P(v0))‖,

where

v0(s) =
v0 − sign(t0)sG(P(v0))

‖v0 − sign(t0)sG(P(v0))‖
, P(v0) = t0v0 + w0

for some w0 ∈ L. Actually, for each fixed s, the two sides of (3.10) are continuous in
v0. Thus, there are ε > 0, s0 = λ

2m for some integer m such that λ ≥ s0‖G(P(v))‖
and

J(P(v(s0))) − J(P(v)) < −s0θ|tv|
4

‖∇J(P(v))‖
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∀v ∈ SL′ with ‖v − v0‖ ≤ ε.
Case 2. Use a negative PPG G as a descent direction.
Here G(P(vk)) is an L′-PPG of J at P(vk) = tk0vk + vLk for some vLk ∈ L. Since

an L′-PPG may be chosen from different L′-PPG flows, we lost the continuity. To
compensate for the loss, we assume that an L-⊥ selection P of J is locally Lipschitz
continuous.

Lemma 3.9. Let P be a local L-⊥ selection of J at v0 ∈ SL′ . If (1) P is Lipschitz
continuous in a neighborhood of v0, (2) d(P(v0), L) > 0, and (3) ∇J(P(v0)) �= 0, then
there are ε > 0 and s0 = λ

2m for some integer m such that λ ≥ s0‖G(P(v))‖ and

J(P(v(s0))) − J(P(v)) < −1

4
s0θ|tv|‖∇J(P(v))‖

∀v ∈ SL′ with ‖v − v0‖ < ε, where

v(s) =
v − sign(tv)sG(P(v))

‖v − sign(tv)sG(P(v))‖ , s > 0, P(v) = tvv + wv for some wv ∈ L,

and G(P(v)) is an L′-PPG of J at P(v) w.r.t. the constant θ.
Proof. First, denote P(v(s)) = tsvv(s) + wv(s) for some wv(s) ∈ L. We have

J(P(v(s))) − J(P(v))(3.11)

= 〈∇J(P(v)) + (∇J(ζ(v, s)) −∇J(P(v))), P(v(s)) − P(v)〉,

where ζ(v, s) = (1 − η)P(v) + ηP(v(s)) for some η ∈ [0, 1]. By assumption (1) and
Lemma 2.7, as s is small and for any v close to v0,

(3.12) ‖P(v(s)) − P(v)‖ ≤ 	‖v(s) − v‖ ≤ 2	s‖G(P(v))‖
‖v − sign(tv)sG(P(v))‖ ≤ 4	Ms.

On the other hand, by the definition of an L-⊥ selection of J , we have

〈∇J(P(v)),P(v(s)) − P(v)〉 = −sign(tv)t
s
vs〈∇J(P(v)), G(P(v))〉

‖v − sign(tv)sG(P(v))‖

= − |tsv|s〈∇J(P(v)),Ψ(P(v))〉
‖v − sign(tv)sG(P(v))‖ ≤ −sθ|tv|‖∇J(P(v))‖

2
< 0(3.13)

and

|〈∇J(ζ(v, s)) −∇J(P(v)), P(v(s)) − P(v)〉|

≤ ‖∇J(ζ(v, s)) −∇J(P(v))‖ ‖P(v(s)) − P(v)‖ ≤ sθ|tv|‖∇J(P(v))‖
4

,(3.14)

where in the last inequality, since J is C1 and by assumptions (2) and (3), we have

(3.15) ‖∇J(ζ(v, s)) −∇J(P(v))‖ ≤ θ|tv|‖∇J(P(v))‖
16	M

.

By (3.11) and the boundedness of L′-PPGs, there exist ε > 0 and s0 = λ
2m for some

integer m such that λ ≥ s0‖G(P(v))‖ and

J(P(v(s0))) − J(P(v)) ≤ −s0θ|tv|‖∇J(P(v))‖
4

∀v ∈ SL′ with ‖v − v0‖ < ε.
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Case 3. Use a practical technique for a descent direction in B = W 1,p
0 (Ω).

Let B = W 1,p
0 (Ω) where Ω ⊂ R

n is open and bounded, p > 1, B∗ = W−1,q(Ω)
with 1

p + 1
q = 1. The usual gradient δJ(u) ∈ B∗ = W−1,q(Ω) cannot be used as

a search direction. Thus d = Δ−1
p (δJ(u)) ∈ B has been used in the literature as a

descent direction to find a local minimum of J : B → R, where Δp is the p-Laplacian
operator defined in (4.1) and Δ−1

p is its inverse. It leads to solving a sequence of
quasi-linear elliptic equations Δpdk = δJ(uk). But such a d is not a PPG and does
not help much in finding a saddle point. A practical technique is used in [12] for
numerical implementation to compute a PPG. The results are very promising. Here
we wish to provide some mathematical justification. This technique is based on the
understanding that when a nice smooth initial guess v0 is used, we may expect that
“nice” functions are actually used to approximate a critical point. Let P be an
L-⊥ selection of J . For v ∈ SL′ , u = P(v), by the definition of P, δJ(u) ⊥ L.
But δJ(u) ∈ W−1,q(Ω), and its smoothness is poor. We first lift its smoothness by
computing d := ∇J(u) = Δ−1(−δJ(u)) ∈ W 1,q

0 (Ω), i.e., dk = ∇J(uk) is solved from

Δdk(x) = −δJ(uk)(x), x ∈ Ω, dk(x)|∂Ω = 0.

Observe that notationally for any w ∈ B,

〈d,w〉W 1,q
0 ×W 1,p

0
≡ 〈∇d,∇w〉Lq×Lp ≡

∫
Ω

∇d(x) · ∇w(x) dx

=

∫
Ω

−Δd(x)w(x) dx =

∫
Ω

δJ(u)(x)w(x) dx ≡ 〈δJ(u), w〉W−1,q×W 1,p
0

.

This suggests that d = ∇J(u) be used as a gradient of J at u. In particular when
u = P(v),

(3.16) 〈∇J(u), w〉W 1,q
0 ×W 1,p

0
= 〈δJ(u), w〉W−1,q×W 1,p

0
= 0 ∀w ∈ [L, v],

or ∇J(u) ⊥ [L, v]. This suggests a natural way to choose L′. We will discuss it later.
Since

‖δJ(u)‖W−1,q = sup
‖w‖

W
1,p
0

=1

〈δJ(u), w〉W−1,q×W 1,p
0

= sup
‖w‖

W
1,p
0

=1

〈d,w〉W 1,q
0 ×W 1,p

0
= sup

‖∇w‖Lp=1

|〈∇d,∇w〉Lq×Lp | ≤ ‖d‖W 1,q
0

,(3.17)

the PS condition of J in terms of δJ implies the PS condition of J in terms of ∇J .
In our convergence analysis of the algorithm, the first order approximation contains
a term

〈δJ(v0),∇J(v0)〉W−1,q×W 1,p
0

=

∫
Ω

δJ(v0)∇J(v0) dx

=

∫
Ω

−Δ(∇J(v0))∇J(v0) dx =

∫
Ω

∇(∇J(v0)) · ∇(∇J(v0)) dx = ‖∇J(v0)‖2
W 1,2 ,

which will be used to design a new stepsize rule. Next we let uk = P(vk) and check
the ratio

(3.18) 1 ≥ θk ≡ ‖∇J(uk)‖2
2

‖∇J(uk)‖q‖∇J(uk)‖p
≥ θ > 0 ∀k = 1, 2, . . . ,
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where ‖ · ‖r is the norm in W 1,r
0 (Ω) with r > 1. Let

G(uk) =
∇J(uk)

‖∇J(uk)‖p
.

We have ‖G(uk)‖p ≤ M = 1 and

〈δJ(uk), G(uk)〉 =
‖∇J(uk)‖2

2

‖∇J(uk)‖p
= θk‖∇J(uk)‖q

≥ θk‖δJ(uk)‖W−1,q ≥ θ‖δJ(uk)‖W−1,q ,

where the last inequality holds if (3.18) is satisfied, i.e., G(uk) is a pseudogradient
of J at uk. Then (3.16) suggests that G(uk) is also an L′-PPG of J at uk = P(vk)
if L′ = L⊥, where L⊥ is given in (3.19), L = [w1, . . . , wn−1], and w1, . . . , wn−1 are
linearly independent. To show B = L ⊕ L⊥, we need further assume that when
1 < p < 2, w1, . . . , wn−1 are n − 1 previously found nice critical points, or at least
they are nice approximations of some exact critical points such that L ⊂ W 1,q

0 (Ω).
Such an assumption holds automatically when 2 ≤ p. Thus

(3.19) L′ := L⊥ =

{
u ∈ B

∣∣∣∣ ∫
Ω

∇u(x) · ∇v(x) dx = 0 ∀v ∈ L

}
is well defined and L ∩ L′ = {0} holds. For any w ∈ B, we compute

wL :=

n−1∑
i=1

αiwi

from ∫
Ω

∇wL(x) · ∇wj(x) dx =

∫
Ω

∇w(x) · ∇wj(x) dx, j = 1, . . . , n− 1.

Thus wL ∈ L and w − wL ∈ L⊥, i.e., B = L⊕ L′.
But we cannot assume that such a G(uk) is the value of a PPG flow of J at

uk = P(vk), because we do not know the ratio at other points. In all our numerical
examples, (3.18) is satisfied. But we note that the ratio is stable for 1 < p ≤ 2
and gets closer to 0 as p → +∞. Thus we treat those two cases differently in our
convergence analysis. For 1 < p ≤ 2, we assume that (3.18) is satisfied. But for p > 2,
we only assume ‖∇J(uk)‖p ≤ M for some M > 0. Either one of the assumptions
implies ∇J(uk) ∈ L⊥ ⊂ B. By comparing G(uk) and ∇J(uk), Step 3 and the stepsize
rule in Step 5 need to be modified as below.

Step 3: Find a descent direction wk of J at uk = P(vk), wk = − sign(tk0)∇J(uk).
Compute the ratio

θk =
‖wk‖2

2

‖wk‖p‖wk‖q
> 0.

Since 〈δJ(uk),∇J(uk)〉 = ‖∇J(uk)‖2
2, the stepsize rule in Step 5 has to be changed

to

(3.20) sk = max
m∈N

{
s =

λ

2m

∣∣∣∣ 2m > ‖wk‖, J(P(vk(s))) − J(uk) ≤
|tk0 |s
−4

‖∇J(uk)‖2
2

}
,
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where 0 < λ < 1. Note that if θk > θ > 0, theoretically the term ‖∇J(uk)‖2
2 in the

above stepsize rule can be replaced with θ‖∇J(uk)‖q, i.e., we use

G(P(vk)) =
∇J(uk)

‖∇J(uk)‖p

as an L′-PPG of J at uk = P(vk). Then this case can be covered by Case 2. But in
implementation, the lower bound θ of the ratio is usually not known beforehand. In
particular, we do not known whether or not the ratio is satisfied at a limit point of
the sequence. Thus the current stepsize rule (3.20) has to be used in implementation.
First, we show that if 0 < ‖∇J(P(v0))‖p < +∞, then a positive stepsize can always
be attained.

Lemma 3.10. For v0 ∈ SL′ , if J has a local L-⊥ selection P at v0 satisfying
(1) P is continuous at v0, (2) d(P(v0), L) > 0, and (3) 0 < ‖∇J(P(v0))‖2 < +∞,
then there exists s0 > 0 such that as 0 < s < s0

(3.21) J(P(v0(s))) − J(P(v0)) < −|t0|s
4

‖∇J(P(v0))‖2
2,

where

v0(s) =
v0 − sign(t0)s∇J(P(v0))

‖v0 − sign(t0)s∇J(P(v0))‖

and P(v0) = t0v0 + w0 for some t0 ∈ R, w0 ∈ L.
Proof. Since ‖P(v0(s)) − P(v0)‖ → 0 as s → 0, we have

J(P(v0(s)) − J(P(v0))

= 〈δJ(P(v0)),P(v0(s)) − P(v0)〉 + o(‖P(v0(s)) − P(v0)‖)

= − sign(t0)t
s
0s‖∇J(P(v0))‖2

2

‖v0 − sign(t0)s∇J(P(v0))‖
+ o(‖P(v0(s)) − P(v0)‖) < −|t0|s

4
‖∇J(P(v0))‖2

2,

where P(v0(s)) = ts0v0(s) + ws
0 and ws

0 ∈ L, when s > 0 is very small.
Next we verify Assumption (H).
Subcase p < 2 (we assume (3.18) holds). We have ∇J(uk) ∈ W 1,q

0 (Ω) ⊂ B. The
conclusion in the next lemma is actually stronger than Assumption (H).

Lemma 3.11. Let J ∈ C1(B,R) and v0 ∈ SL⊥ . Let P be a local L-⊥ selection of
J at v0 such that P is continuous at v0 and d(P(v0), L) > 0. If δJ(P(v0)) �= 0, then
there are ε > 0 and s0 = λ

2m for some integer m such that λ ≥ s0‖∇J(P(v))‖p and

J(P(v(s0))) − J(P(v)) < −|tv|s0

4
‖∇J(P(v))‖2

2 ∀v ∈ SL′ , ‖v − v0‖ < ε,

where P(v) = tvv + w, w ∈ L, and

v(s0) =
v − sign(tv)s0∇J(P(v))

‖v − sign(tv)s0∇J(P(v))‖ .

Proof. By Lemma 3.10, we have

(3.22) J(P(v0(s))) − J(P(v0)) < −|t0|s
4

‖∇J(P(v0))‖2
2.
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When p < 2, we have q > 2. J is C1 implies that ∇J is continuous in the ‖ · ‖2-norm.
For fixed s, all the terms in (3.22) are continuous in v0. Thus there exist ε > 0 and
s0 = λ

2m for some integer m such that λ ≥ s0‖∇J(P(v))‖p since J is C1 and

J(P(v(s0))) − J(P(v)) < −|tv|s0

4
‖∇J(P(v))‖2

2 ∀v ∈ SL′ , ‖v − v0‖ < ε.

With the new stepsize rule and the uniform stepsize result, Lemma 3.11, if θk >
θ > 0 holds in Step 3. We can verify Theorem 3.4. The proof is similar. We need
only replace (3.1) with

J(uk+1) − J(uk) < −αsk
4

‖∇J(uk)‖2
2 (by (3.18))

< −αθsk
4

‖∇J(uk)‖p‖∇J(uk)‖q < −αθ|1 − λ|
4M

‖vk+1 − vk‖‖∇J(uk)‖q,(3.23)

where 0 < λ < 1 is given in (3.20), and then follow the proof.
Subcase p > 2 (we assume only ‖∇J(uk)‖p ≤ M for some M > 0). We have

B = W 1,p
0 (Ω) ⊂ W 1,2

0 (Ω). To verify Assumption (H) and prove the convergence of
the algorithm, we note that in this case, ∇J(uk) ∈ L′ = L⊥ still holds; i.e., −∇J(uk)
can be used as a search direction. But “J is C1” means that δJ is continuous in the
‖ · ‖(−1,q)-norm and ∇J is continuous in the ‖ · ‖q-norm, but not necessarily in the
‖ · ‖2-norm. Thus we need an L-⊥ selection P to be locally Lipschitz continuous.

Lemma 3.12. Let J ∈ C1(B,R) and v0 ∈ SL′ . Assume that P is a local L-⊥
selection of J at v0 such that (1) P is locally Lipschitz continuous, (2) d(P(v0), L) >
0, and (3) δJ(P(v0)) �= 0. Then for any vk ∈ SL′ with limk→∞ vk = v0 and
‖∇J(P(vk))‖p ≤ M , there are k̄, s0 = λ

2m for some integer m such that λ >
s0‖∇J(P(vk))‖p and

J(P(vk(s0))) − J(P(vk)) ≤ −s0|tk|‖∇J(P(vk))‖2
2

4
∀k > k̄,

where

vk(s) =
vk − sign(tk)s∇J(P(vk))

‖vk − sign(tk)s∇J(P(vk))‖
and P(vk) = tkvk + vLk , vLk ∈ L.

Proof. Denote P(vk(s)) = tskvk(s)+vLk (s) for some vLk (s) ∈ L. Then, by the mean
value theorem, we have

J(P(vk(s))) − J(P(vk))(3.24)

= 〈δJ(P(vk)) + (δJ(ζ(vk, s)) − δJ(P(vk))), P(vk(s)) − P(vk)〉,
where ζ(vk, s) = (1 − λk)P(vk) + λkP(vk(s)) for some λk ∈ [0, 1]. By assumption (1)
and Lemma 2.7,

‖P(vk(s)) − P(vk)‖ ≤ 	‖vk(s) − vk‖ ≤ 2	s‖∇J(P(vk))‖p
‖vk − sign(tk)s∇J(P(vk))‖

.

On the other hand, by the definition of an L-⊥ selection of J , as s > 0 is small and
k is large, we have

〈δJ(P(vk)),P(vk(s)) − P(vk)〉 = − sign(tk)t
s
ks‖∇J(P(vk))‖2

2

‖vk − sign(tk)s∇J(P(vk))‖

≤ −s|tk|
2

‖∇J(P(vk))‖2
2 < 0.(3.25)
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Since J is C1 and 1 < q < 2 in this case, by assumptions (2) and (3) and applying
inequality (3.17), there exists δ > 0 such that when s is small and k is large,

|tk|‖vk − sign(tk)s∇J(P(vk))‖‖∇J(P(vk))‖2
2

8	‖∇J(P(vk))‖p
> δ > 0.

Thus we can choose s > 0 small and k large such that

‖δJ(ζ(vk, s)) − δJ(P(vk))‖ ≤ |tk|‖vk − sign(tk)s∇J(P(vk))‖‖∇J(P(vk))‖2
2

8	‖∇J(P(vk))‖p
.

Hence

|〈δJ(ζ(vk, s)) − δJ(P(vk)), P(vk(s)) − P(vk)〉|

≤ ‖δJ(ζ(vk, s)) − δJ(P(vk))‖‖P(vk(s)) − P(vk)‖ ≤ s|tk|‖∇J(P(vk))‖2
2

4
.(3.26)

Applying inequalities (3.25) and (3.26) to (3.24), we see that there exist k̄, s0 = λ
2m

for some integer m such that λ > s0‖∇J(P(vk))‖p and

J(P(vk(s0))) − J(P(vk)) ≤ −s0|tk|‖∇J(P(vk))‖2
2

4
∀k > k̄.

With the new stepsize rule (3.20) and the assumption ‖∇J(uk)‖p < M , the
conclusion of Lemma 3.12 implies Assumption (H), i.e., s(vk) ≥ s0. Then the con-
vergence result, Theorem 3.4, can be verified. The proof is similar. Note that when
‖∇J(uk)‖q > δ0 for some δ0 > 0, ‖∇J(uk)‖2 > δ for some δ > 0. We need only
replace (3.1) and (3.2) with

J(uk+1) − J(uk) < −αsk
4

‖∇J(uk)‖2
2 ≤ −αsk

4
δ2

≤ −αskδ
2

4M
‖∇J(uk)‖p ≤ −αδ2|1 − λ|

4M
‖vk+1 − vk‖p,

where 0 < λ < 1 is given in (3.20) and the last inequality follows from Lemma 2.7.
Then following the proof, the unified convergence result, Theorem 3.4, is also obtained.

4. An application to the nonlinear p-Laplacian equation. As an applica-
tion, let us consider the following quasi-linear elliptic boundary-value problem on a
bounded smooth domain Ω ⊂ R

n:

(4.1)

{
Δpu(x) + f(x, u(x)) = 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω,
u ∈ B ≡ W 1,p(Ω), p > 1,

where Δp defined by Δpu(x) = div(|∇u(x)|p−2∇u(x)) is the p-Laplacian operator
which has a variety of applications in physical fields, such as in fluid dynamics when
the shear stress and the velocity gradient are related in a certain manner, where
p = 2, p < 2, p > 2 if the fluid is Newtonian, pseudoplastic, or dilatant, respectively.
The p-Laplacian operator also appears in the study of flow in porous media (p = 3

2 ),
nonlinear elasticity (p > 2), and glaciology (p ∈ (1, 4

3 )). Under certain standard

conditions on f , it can be shown that a point u∗ ∈ W 1,p
0 (Ω) is a weak solution of (4.1)

if and only if u∗ is a critical point of the functional

(4.2) J(u) =
1

p

∫
Ω

|∇u(x)|p dx−
∫

Ω

F (x, u(x)) dx, where F (x, t) =

∫ t

0

f(x, s) ds.
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Many multiple solutions to the above quasi-linear elliptic PDE have been numerically
computed in [12, 13] for p < 2 and p > 2. Convergence results obtained in section 3
can be applied; see Case 3. Since conditions (1), (2), and (3) in Theorem 3.4 are
basic assumptions in our results and new in the literature, we focus on verifying
them in this section. Other conditions, such as the PS condition, have been studied
in the literature and therefore will not be discussed here. Let us assume some of
the standard growth and regularity conditions in the literature. Denote the Sobolev
exponent p∗ = np

n−p for p < n and p∗ = ∞ for p ≥ n. Assume

(a) f ∈ C1(Ω̄ × R,R), f(x, 0) = 0, f(x,tξ)
|tξ|p−2tξ monotonically increases to +∞ in t.

(b) For each ε > 0, there is c1 = c1(ε) > 0 such that f(x, t)t < ε|t|p + c1|t|p
∗

∀t ∈ R, x ∈ Ω.
It is clear that u = 0 is a critical point of the least critical value of J and f(x, u) =
|u|q−2u for q > p satisfies condition (a). For each v ∈ B with ‖v‖ = 1 and t > 0, let
g(t) = J(tv). We have

g′(t) = 〈∇J(tv), v〉 =

∫
Ω

(
tp−1|∇v(x)|p − f(x, tv(x))v(x)

)
dx

= tp−1

(
1 −

∫
Ω

f(x, tv(x))|v(x)|p
|tv(x)|p−2tv(x)

)
dx.

Thus, by condition (a), there is a unique tv > 0 such that g′(tv) = 0; i.e., for L = {0}
and each v ∈ SB , the L-⊥ selection (actually a peak selection) P(v) = tvv is uniquely
determined with J(P(v)) > 0. By taking a derivative of condition (a) w.r.t. t, we
have

g′′(t) = (p− 1)t(p−2) −
∫

Ω

f ′
u(x, tv(x))v2(x) dx

< (p− 1)t(p−2) −
∫

Ω

(p− 1)

t
f(x, tv(x))v(x) dx =

p− 1

t
g′(t).(4.3)

Thus condition (3) in Theorem 3.4 is always satisfied for any L. Next let us recall
that when L = [u1, u2, . . . , un−1], by the definition of an L-⊥ selection, P(v) =
t0v + t1u

1 + · · · + tn−1u
n−1 is solved from

∂

∂t0
g(t0, . . . , tn−1) = 〈∇J(t0v + t1u

1 + · · · + tn−1u
n−1), v〉 = 0,

(4.4)

∂

∂ti
g(t0, . . . , tn−1) = 〈∇J(t0v + t1u

1 + · · · + tn−1u
n−1), ui〉 = 0, i = 1, . . . , n− 1,

where g(t0, . . . , tn−1) = J(t0v + t1u
1 + · · · + tn−1u

n−1). If u = P(v) = t0v + t1u
1 +

· · · + tn−1u
n−1 satisfies (4.4) and at u, the n× n matrix

Q =

[
∂2

∂ti∂tj
g(t0, . . . , tn−1)

]

=

⎡⎢⎢⎣
〈J ′′(u)v, v〉 〈J ′′(u)u1, v〉 · · · 〈J ′′(u)un−1, v〉
〈J ′′(u)v, u1〉 〈J ′′(u)u1, u1〉 · · · 〈J ′′(u)un−1, un−1〉

· · · · · ·
〈J ′′(u)v, un−1〉 〈J ′′(u)u1, un−1〉 · · · 〈J ′′(u)un−1, un−1〉

⎤⎥⎥⎦
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is invertible, i.e., |Q| �= 0, then by the implicit function theorem, around u, the L-⊥
selection P is well-defined and continuously differentiable. The condition |Q| �= 0 can
be easily and numerically checked. For the current case L = {0}, by (4.3), we have
Q = g′′(tv) < 0. Thus the L-⊥ selection P is C1. To show that d(P(v), L) > α > 0
for all v ∈ SB , by (b), for any ε > 0, there is c1 = c1(ε) such that f(x, v(x))v(x) <
ε|v(x)|p + c1|v(x)|p∗

. It follows that∫
Ω

f(x, v(x))v(x) dx < ε

∫
Ω

|v(x)|p dx + c1

∫
Ω

|v(x)|p∗
dx

(by the Poincaré and Sobolev inequalities)

≤ εc0(Ω)

∫
Ω

|∇v(x)|p dx + c1c2(Ω)

(∫
Ω

|∇v(x)|p dx
) p∗

p

=

⎡⎣εc0(Ω) + c1c2(Ω)

(∫
Ω

|∇v(x)|p dx
) p∗

p −1
⎤⎦∫

Ω

|∇v(x)|p dx.

Thus

〈∇J(v), v〉 ≥

⎡⎣1 − εc0(Ω) − c1c2(Ω)

(∫
Ω

|∇v(x)|p dx
) p∗

p −1
⎤⎦∫

Ω

|∇v(x)|p dx

=
[
1 − εc0(Ω) − c1c2(Ω)‖v‖p∗−p

]
‖v‖p.

It follows that for any small ε > 0, c1, c0(Ω), and c2(Ω), there is a t0 > 0 such that
when 0 < ‖v‖ = t < t0, we have 〈∇J(v), v〉 ≥

[
1 − εc0(Ω) − c1c2(Ω)tp

∗−p
]
tp > 0.

Therefore the L-⊥ selection P(v) satisfies ‖P(v)‖ > t0 or d(P(v), L) > t0 > 0 ∀v ∈ SB ,
where L = {0}.
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ERROR ANALYSIS OF A CONTINUOUS-DISCONTINUOUS
GALERKIN FINITE ELEMENT METHOD FOR GENERALIZED 2D

VORTICITY DYNAMICS∗

JAAP J. W. VAN DER VEGT† , FERENC IZSÁK‡ , AND ONNO BOKHOVE†

Abstract. A detailed a priori error estimate is provided for a continuous-discontinuous Galerkin
finite element method for the generalized two-dimensional vorticity dynamics equations. These equa-
tions describe several types of geophysical flows, including the Euler equations. The algorithm con-
sists of a continuous Galerkin finite element method for the stream function and a discontinuous
Galerkin finite element method for the (potential) vorticity. Since this algorithm satisfies a number
of invariants, such as energy and enstrophy conservation, it is possible to provide detailed error es-
timates for this nonlinear problem. The main result of the analysis is a reduction in the smoothness
requirements on the vorticity field from H2(Ω), obtained in a previous analysis, to W r

p (Ω) with r > 1
p

and p > 2. In addition, sharper estimates for the dependence of the error on time and numerical
examples on a model problem are provided.
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1. Introduction. The accurate numerical simulation of geophysical flows over
long periods of time frequently requires the preservation of invariants of the flow field,
such as energy and enstrophy conservation. These requirements are nontrivial and an
active area of research in numerical analysis. A promising new technique for geophys-
ical flows is provided by the recently developed continuous-discontinuous Galerkin
(CDG) finite element method [3, 9, 10], which is capable of preserving important in-
variants of the flow field also at the discrete level. The accuracy of the CDG finite
element method is discussed in [3, 9], but the a priori error analysis requires quite
strong smoothness assumptions, which often are not realistic. The main objective of
this paper is to analyze the CDG finite element method for geophysical flows under
only very weak smoothness assumptions. In addition, we aim at obtaining sharper
estimates for the dependence of the error on time than obtained in [3, 9]. These results
will significantly extend the range of applications covered by the error estimates.

The geophysical problems studied in this paper can be described by a hyperbolic
equation for the (potential) vorticity ξ and an elliptic equation for the stream function
ψ. The coupled set of equations in a simply connected bounded domain Ω× (t0, T ) ⊂
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R
2 × (t0, T ) is defined as

(1/A)∂tξ + ∇ · (ξU) = 0,(1.1a)

U = ∇⊥ψ,(1.1b)

∇ · (A∇ψ) −Bψ + D = (1/A) ξ,(1.1c)

with t representing time, where t0 and T denote the initial and final time, respectively,
and A,B,D : Ω → R given functions satisfying 0 ≤ B(x) and 0 < A0 ≤ A(x) ≤ A1 <
∞ for some finite A0, A1 ∈ R

+. The gradient operator is given by ∇ = (∂x, ∂y)
T and

the two-dimensional curl operator by ∇⊥ = (−∂y, ∂x)T . At the domain boundary
∂Ω, a slip flow condition is imposed at ∂ΩD ⊆ ∂Ω,

(1.2) U · n = 0,

with n = (nx, ny)
T the outward unit vector normal to the boundary ∂Ω, and periodic

boundary conditions at ∂Ω\∂ΩD. The slip flow boundary condition (1.2) is equivalent
with the condition ∂ψ

∂τ = 0 at ∂ΩD, with τ = (−ny, nx)T the tangential vector at the
domain boundary. This implies that ψ = cD(t) at ∂ΩD for a smooth ψ, with cD a
function which can depend only on time. The boundary conditions for ψ are completed
by setting cD = 0 when B = 0, almost everywhere. In case B �= 0 for all x ∈ Ω0 ⊆ Ω,
where Ω0 has a nonzero measure, then the circulation C around the boundary of the
domain is imposed as an additional boundary condition, which is defined as

(1.3) C =

∫
∂Ω

AU · τdΓ =

∫
∂Ω

A∇ψ · ndΓ.

Initial conditions are provided by specifying the initial vorticity field ξ0. The gen-
eralized system (1.1) serves as a model for several fluid flow problems by choosing
A, B, and D to yield the incompressible two-dimensional (2D) Euler equations [7],
the quasi-geostrophic equations [12], and the rigid-lid equations [8], often used in at-
mosphere and ocean dynamics. An overview of the specific values of the coefficients
A,B,D for these different problems can be found in [3]. In all these cases, ξ represents
the (potential) vorticity of the fluid, u = AU the velocity, and U the (mass transport)
velocity of the fluid.

The CDG finite element method was introduced in [9, 10] for the 2D Euler equa-
tions and extended in [3] to the generalized 2D vorticity dynamics equations (1.1) in
multiple connected domains. Apart from detailed numerical experiments, an a priori
error analysis was also given in [3] for the CDG finite element discretization of (1.1)
under slightly less restrictive assumptions than the analysis for the 2D Euler equa-
tions discussed in [9]. The analysis requires, however, that the vorticity field belongs
at least to H2(Ω), which is frequently not valid. Also, the analyses in [3, 9], which
both use Gronwall’s inequality, provide only an exponentially growing upper bound
for the error in time.

In order to alleviate these restrictions, we provide in this paper an error analysis
which imposes only weak smoothness requirements on the (generalized) vorticity field.
This analysis extends the work in [10], which proves convergence of the CDG finite
element algorithm for the 2D Euler equations when the initial vorticity field is in
L2(Ω), in two ways. In the first place, we consider the generalized 2D vorticity
dynamics equations (1.1) instead of the 2D Euler equations, and in the second place,
we provide detailed a priori error estimates in terms of the mesh size and initial
vorticity. This result shows that the CDG finite element method in [3] is applicable
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to a wide range of geophysical problems, with only weak smoothness requirements on
the vorticity.

The outline of the paper is as follows. After some preliminaries in section 2, we
briefly state in section 3 the CDG finite element method for (1.1). Next, we recall
in section 4 some important properties of the CDG finite element method regarding
energy conservation and enstrophy stability. These properties are essential in order
to prove the main result of this paper, an a priori error estimate for the CDG finite
element method with limited smoothness requirements, which we discuss in section
5. This analysis also requires an upper bound on the stream function and its trace
at the boundary, which we provide in a separate lemma. In section 6, we discuss
the evolution of a concentrated patch of vorticity as an example of a model problem
in geophysical flows where the vorticity field has limited smoothness. Finally, in
Appendix A, we analyze the smoothness of this vorticity field.

2. Preliminaries.

2.1. Function spaces. We denote with Ω a simply connected bounded domain
Ω ⊂ R

2 with Lipschitz boundary ∂Ω. For any nonnegative integer k, Ck(Ω) denotes
the space of all functions w which, together with all their partial derivatives Dαw
of order |α| ≤ k, are continuous in Ω. For 0 < λ ≤ 1, we define Ck,λ(Ω) to be the
subspace of Ck(Ω), with Ω the closure of Ω, consisting of those functions w for which
for 0 ≤ |α| ≤ k, Dαw satisfies in Ω a Hölder condition of exponent λ. That is, there
exists a constant C, such that

|Dαw(x) −Dαw(y)| ≤ C|x− y|λ ∀x, y ∈ Ω.

The Lebesgue measure is also denoted with |·|, while for the Lebesgue spaces we use the
notation Lp(Ω), for 1 ≤ p ≤ ∞. These spaces are equipped with the norm ‖w‖p,Ω =

(
∫
Ω
|w|pdΩ)

1
p for 1 ≤ p < ∞ and ‖w‖∞,Ω = ess supx∈Ω|w(x)|. In addition, we define

the Sobolev spaces W s
p (Ω), with the norm indicated as ‖w‖s,p,Ω. For s integer, s ≥ 0,

and 1 ≤ p < ∞, the Sobolev norm is defined as ‖w‖s,p,Ω = (
∑

|α|≤s ‖Dαw‖pp,Ω)
1
p

and the seminorm as |w|s,p,Ω = (
∑

|α|=s ‖Dαw‖pp,Ω)
1
p , whereas for s integer, s ≥ 0,

and p = ∞, we have ‖w‖s,∞,Ω = max|α|≤s ‖Dαw‖∞,Ω, with the usual modification
for the seminorm. For noninteger values s > 0, we use Banach space interpolation
to define the fractional order Sobolev spaces W s

p (Ω). For a detailed discussion, we
refer the reader to [4, Chapter 14.2]. For s = 0, we have W 0

p (Ω) = Lp(Ω). The
L2(Ω) and (L2(Ω))2 spaces are equipped with the inner product (u, v)Ω =

∫
Ω
uv dΩ

and (u, v)Ω =
∫
Ω
u · v dΩ, respectively, and we use the shorthand notation ‖w‖Ω for

the L2(Ω) norm ‖w‖0,2,Ω. We also use the notation Hs(Ω) for W s
2 (Ω), with s ∈ R.

For 1 < p < ∞ and s ∈ R, s ≥ 0, the Sobolev spaces with a negative index W−s
p (Ω)

are defined as the dual spaces of W s
p (Ω), see [1, p. 65], equipped with the norm

‖w‖−s,p,Ω = sup0 �=v∈W s
p′ (Ω)

(w,v)Ω
‖v‖s,p′,Ω

, where 1/p + 1/p′ = 1, and (w, v)Ω denotes the

duality pairing between w and v with L2(Ω) as pivot space. All the above definitions
also apply with the domain Ω replaced by the element K or its boundary ∂K. Finally,
we define the broken Sobolev spaces W s

p (Th) for all s ∈ R, with Th a tessellation
covering Ω, as the space of functions such that their restriction to each K ∈ Th
belongs to W s

p (K).

2.2. Interpolation operators. In the error analysis, we assume a quasi-uniform
mesh (see [4, section 4.4]) with tessellation Th. Since the vorticity field is not necessar-
ily continuous, we use the more general Clément-type interpolation operator defined
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in [2]. Let Th be a regular partition of Ω into triangles or quadrilaterals; then the
macroelement K̃, associated with element K ∈ Th, consists of those elements which
share at least one vertex with K, and hence K̃ = int

{
∪K ′,K ′ ∈ Th |K ′ ∩K �= ∅

}
,

where the overbar denotes the closure of a set and int the interior. The n elements
K ∈ Th constituting the macroelement K̃ are denoted K̃i, with 1 ≤ i ≤ n. With each

element K̃i we associate a reference element ̂̃Ki using the continuous and invertible

mapping FK̃i
: ̂̃Ki → K̃i. We denote with ̂̃K = ∪n

i=1
̂̃Ki the reference macroelement

associated with K̃. Both elements are connected with the mapping FK̃ : ̂̃K → K̃,
which consists of the individual mappings FK̃i

, with 1 ≤ i ≤ n. Next, we define the

local finite element spaces on the macroelement K̃ and its reference macroelement ̂̃K
as follows:

Θk
h

( ̂̃K) =
{
v̂ ∈ C0

( ̂̃K) | ∀ ̂̃Ki ⊂ ̂̃K, v̂
|̂̃Ki

∈ Pk

}
,

Θk
h(K̃) =

{
v ∈ C0(K̃) | ∀K̃i ⊂ K̃, v|K̃i

= v̂
|̂̃Ki

◦ F−1

K̃i
, v̂

|̂̃Ki

∈ Pk

}
,

with Pk polynomials of total degree less than or equal to k on triangles and of degree
less than or equal to k in each coordinate direction on quadrilaterals. For any function

û in L1( ̂̃K), we define the projection P̂̂̃K û in Θk
h( ̂̃K) by

(2.1)

∫
̂̃K
(
P̂̂̃K û− û

)
v̂dx̂ = 0 ∀v̂ ∈ Θk

h

( ̂̃K) ,
and for any function u in L1(K̃), we define the projection PK̃u on Θk

h(K̃) by

(2.2) PK̃u ◦ FK̃ = P̂̂̃K(u ◦ FK̃).

The following lemma on the interpolation error is proved in Theorem 2.2 and Remark
4 in [2] for triangles and Theorem 3.5 and Remark 5 in [2] for quadrilaterals.

Lemma 2.1. For any integers k ≥ 1 and any real number t, with 0 ≤ t ≤ 1,
provided the function u belongs to W s

p (K̃), there exists a constant C, depending only

on the regularity of Th, such that for any element K̃i ⊂ K̃

|u− PK̃u|t,p,K̃i
≤ Chs−t

K |u|s,p,K̃ , with t ≤ s ≤ k + 1, 1 ≤ p ≤ ∞,(2.3)

and

|u− PK̃u|t,p,∂K̃i
≤ Ch

s−t− 1
p

K |u|s,p,K̃ , with t +
1

p
< s ≤ k + 1, 1 ≤ p < ∞,(2.4)

with hK the diameter of elements K ∈ Th.

3. Finite element method. The potential vorticity equation (1.1a) and the
generalized stream function equation (1.1c) are discretized with a discontinuous and
a continuous Galerkin finite element method, respectively. The key benefit of this
approach is that we can ensure under certain conditions that the discretization satisfies
important constraints, such as energy conservation and enstrophy stability, which are
summarized in section 4. In this section, we summarize the CDG finite element
method for the system (1.1). More details can be found in [3].
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3.1. Continuous Galerkin discretization for generalized stream func-
tion. The definition of the weak formulation for (1.1c) requires the treatment of the
nonstandard boundary conditions for ψ given by (1.2)–(1.3), which are a mixture of
essential and natural boundary conditions. The slip flow boundary condition (1.2) is
equivalent with the condition ∂ψ

∂τ = 0 at ∂ΩD, which implies that γ(ψ)|∂ΩD
= cD(t),

with γ : H1(Ω) → H
1
2 (∂Ω) the trace operator. The value of cD, however, still depends

on time and is determined implicitly by the circulation condition (1.3), which arises
as a natural boundary condition in the weak formulation (3.3). Introduce now the
space

(3.1) H1
0,D(Ω) :=

{
w ∈ H1(Ω)

∣∣ γ(w)|∂ΩD
= 0

}
,

and split ψ into

(3.2) ψ = ψ0 + cD · 1,

where 1 : Ω → 1 is the constant function. The weak formulation for (1.1c) at time t
can then be straightforwardly derived and is equal to the following:

Find a ψ0 ∈ H1
0,D(Ω) such that for all w0 ∈ H1

0,D(Ω) the following relation is
satisfied:

(3.3) L(ψ0, w0) = Fξ(w0) − L(cD, w0),

with the operators L : H1(Ω) ×H1(Ω) → R and Fξ : H−1(Ω) → R defined as

L(ψ,w) :=
(√

A∇ψ,
√
A∇w

)
Ω

+
(√

Bψ,
√
Bw

)
Ω
,(3.4)

Fξ(w) := − (ξ/A,w)Ω + (D,w)Ω + γ(w)C,(3.5)

and C given by (1.3). Choosing w = 1 in (3.3), we obtain that

(3.6) cD =
Fξ(1) − (ψ0

√
B,

√
B)Ω

‖
√
B‖2

Ω

.

For the finite element discretization, we introduce the spaces

Xk
h :=

{
w ∈ C0(Ω) | w|K ∈ Pk(K)∀K ∈ Th

}
and Wk

h = H1
0,D(Ω)∩Xk

h . By restricting ψ and w to the finite-dimensional space Wk
h,

we obtain the following continuous finite element formulation:
Find a ψh ∈ Wk

h such that for all w ∈ Wk
h the following relation is satisfied:

(3.7) L(ψh, w) = Fξh(w) − L(cD, w),

with ξh the discrete vorticity field computed with the discontinuous Galerkin finite
element discretization specified in the next section.

3.2. Discontinuous Galerkin space discretization. The weak formulation
(in space) for the (potential) vorticity equation (1.1a), with U replaced by (1.1b), can
be defined straightforwardly as follows:

Find a ξ ∈ L1((t0, T ),W r
p (Ω)), with r > 1

p and p > 2, such that for all v ∈ H1(Ω)
the following relation is satisfied:

(3.8)
d

dt

( ξ

A
, v
)

Ω
=
(
ξ∇⊥ψ,∇v

)
Ω
−
(
ξ∇⊥ψ · n, v

)
∂Ω

,
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where the boundary contribution should be interpreted in the sense of traces and ψ
is given by (3.2). For the discontinuous Galerkin (DG) discretization, we define the
following space of discontinuous functions:

(3.9) Vk
h :=

{
vh ∈ L2(Ω)

∣∣ vh|K ∈ Pk(K) ∀K ∈ Th
}
.

Note that conservation of energy of the numerical solution requires Wk
h ⊂ Vk

h (see [3]).
The DG weak formulation is now equal to the following:

Find a ξh ∈ Vk
h such that for all v ∈ Vk

h the following relation holds:

(3.10)
∑

K∈Th

d

dt

(ξh
A
, v
)
K

=
∑

K∈Th

RK(ξh, ψh, v),

with the operator RK : Vk
h × Wk

h × Vk
h → R defined by

RK(ξh, ψh, v) =
(
ξh∇⊥ψh,∇v

)
K
−
∫
∂K

v−f̂(ξ+
h , ξ

−
h ,∇⊥ψh · n) dΓ,(3.11)

where the superscripts − and + denote the trace values at the boundary point ∂K
taken from the inside and outside of the element, respectively. Here, f̂ denotes the
numerical flux which is necessary to account for the discontinuity in the DG basis
functions at the element boundaries. The numerical flux is defined as

central f̂(ξ+, ξ−, Un) =
ξ+ + ξ−

2
Un,(3.12a)

upwind f̂(ξ+, ξ−, Un) =Un

{
ξ+ if Un < 0,
ξ− if Un ≥ 0,

(3.12b)

Lax–Friedrichs f̂(ξ+, ξ−, Un) =
1

2

(
Un(ξ+ + ξ−) − αLF (ξ+ − ξ−)

)
,(3.12c)

with Un = Uh · n = ∇⊥ψh · n and αLF ≥ 0. For ease of notation, we also write the
numerical flux as

ξ̂h = f̂(ξ+, ξ−, Un)/Un.

A common choice for αLF is αLF = max |Un| with a local or global maximum. For
αLF = 0 and αLF = |Un|, we obtain the central and upwind flux, respectively.

4. Conservation of energy and enstrophy. The equations for generalized 2D
vorticity dynamics (1.1) and the numerical discretization given by (3.7) and (3.10)
satisfy a number of important invariants and constraints, including energy and en-
strophy conservation. These invariants are essential for the error analysis discussed
in section 5, and we summarize them here for completeness. Define for A(x, y) > 0
and B(x, y) ≥ 0 the total energy E and enstrophy S of the flow field as

E(ψ, t) =
1

2
‖
√
A∇ψ(·, t)‖2

Ω +
1

2
‖
√
Bψ(·, t)‖2

Ω,(4.1)

S(ξ, t) =
1

2

∥∥∥∥ξ(·, t)√
A

∥∥∥∥2

Ω

.(4.2)

The system of equations for generalized 2D vorticity dynamics (1.1) satisfies the fol-
lowing invariants.
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Lemma 4.1. Assume that A,B ∈ L∞(Ω), with A > 0 and B ≥ 0; then the energy
E and enstrophy S of system (1.1) subject to slip flow boundary conditions (1.2) and
constant circulation (1.3) is conserved:

(4.3)
dE(ψ, t)

dt
= 0,

dS(ξ, t)

dt
= 0.

For a proof, see, e.g., [3]. The numerical solution of the generalized 2D vorticity
dynamics equations (1.1) obtained with the CDG method (partly) satisfies the same
invariants.

Lemma 4.2. Consider the solution of (3.7) and (3.10) subject to slip flow boundary
conditions (1.2). The energy E associated with this numerical solution is a conserved
quantity, and the enstrophy S is bounded:

dE(ψh, t)

dt
= 0,

dS(ξh, t)

dt
≤ 0.(4.4)

For the central flux (3.12a), the relation for the enstrophy becomes an equality.

For a proof, see [3].

5. Error analysis. In this section, we will prove an a priori error estimate for
the CDG finite element discretization (3.7) and (3.10) for the generalized 2D vorticity
dynamics equations (1.1). The key objective is to minimize the requirements imposed
on the smoothness of the vorticity field ξ in order to extend the validity of the analysis
and the numerical method to a much larger range of physically relevant problems. The
error estimate provides a significant extension of the error estimate Theorem 11 in
[3], which required the vorticity field ξ to belong to H2(Ω) and provided only an
exponentially growing upper bound for the growth of the error in time.

The main result of this paper is provided by the following error estimate for the
velocity field uh and the vorticity field ξh computed with the CDG method.

Theorem 5.1. Assume that Ω is a polyhedral simply connected bounded domain
and that the vorticity field satisfies the condition ξ ∈ L1((t0, T ),W r

p (Ω)), with r ∈ R,

r > 1
p , and p > 2. In addition, we assume that the coefficients in (1.1c) satisfy

A,B ∈ Cr,1(Ω), D ∈ L∞(Ω), with 0 ≤ B(x) and 0 < A0 ≤ A(x) ≤ A1 < ∞ for some
finite A0, A1 ∈ R

+; then the error in the CDG finite element discretization (3.7) and
(3.10) on a quasi-uniform mesh Th, with h < 1, can be estimated as

‖(u − uh)/A‖0,q,Ω + ‖(ξ − ξh)/A‖−1,q′,Th
≤ Chs‖ξ0‖Ω

∫ T

t0

‖ξ(·, t)‖r,p,Ωdt,

where ξ0 denotes the initial vorticity field, q = 2p
p−2 , q′ = q

q−1 , 1
p < s ≤ min(k− 1, r +

2
p − ε0), with k the order of the polynomial basis functions, ε0 > 0 an arbitrary small
constant, and C a positive constant, independent of h, u, and ξ.

The proof of Theorem 5.1 is split into several parts. Since the weak formulation
(3.3) has nonstandard boundary conditions, we first need to show that it has a unique
solution. Moreover, we need an upper bound for the stream function ψ and cD(t),
the trace of ψ at ∂ΩD, for the regularity estimate in the second part of the proof.

Lemma 5.2. The variational problem (3.3) is well posed in H1
0,D(Ω)⊕R, and the
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H1(Ω) norm of the stream function can be estimated as

‖ψ(·, t)‖1,2,Ω ≤
(
γ +

√
|Ω|

‖B‖1,Ω

(√
|Ω| + γ‖B‖Ω

))( 1√
A0

∥∥∥ ξ0√
A

∥∥∥
Ω

+ ‖D‖Ω

)
+

1

‖B‖1,Ω

(√
|Ω| + γ‖B‖Ω

)
|C|,(5.1)

with ξ0 the initial vorticity, γ = 1
α (1 +

√
|Ω|‖B‖Ω

‖B‖1,Ω
), and α = 1

2 min(A0/Cp, A0), with

Cp the Poincaré constant of Ω. For the case ‖B‖1,Ω = 0, this can be simplified into

(5.2) ‖ψ(·, t)‖1,2,Ω ≤ 1

α

(
1√
A0

‖ξ0/
√
A‖Ω + ‖D‖Ω

)
.

Proof. First, assume ‖B‖1,Ω > 0. If we introduce the relation for cD (3.6) into
(3.3), then we obtain the following weak formulation:

Find a ψ0 ∈ H1
0,D(Ω) such that for all w0 ∈ H1

0,D(Ω) the following relation is
satisfied:

(5.3) L̃(ψ0, w0) = F̃ξ(w0),

with the operators L̃ : H1(Ω) ×H1(Ω) → R and F̃ξ : H−1(Ω) → R defined as

L̃(ψ0, w0) :=(
√
A∇ψ0,

√
A∇w0)Ω + (

√
Bψ0,

√
Bw0)Ω

− 1

‖
√
B‖2

Ω

(
√
Bψ0,

√
B)Ω(

√
Bw0,

√
B)Ω,(5.4)

F̃ξ(w0) :=Fξ(w0) −
1

‖
√
B‖2

Ω

(
√
BFξ(1),

√
Bw0)Ω.(5.5)

Next, we consider the coercivity of L̃ in H1
0,D(Ω). Taking w0 = ψ0 in (5.4) and

using the Schwarz inequality (
√
Bψ0,

√
B)Ω ≤ ‖

√
Bψ0‖Ω‖

√
B‖Ω, we obtain for all

ψ0 ∈ H1
0,D(Ω)

L̃(ψ0, ψ0) = (
√
A∇ψ0,

√
A∇ψ0)Ω + (

√
Bψ0,

√
Bψ0)Ω − 1

‖
√
B‖2

Ω

(ψ0

√
B,

√
B)2Ω

≥ A0‖∇ψ0‖2
Ω.

Finally, using the Poincaré inequality ‖ψ0‖2
Ω ≤ Cp‖∇ψ0‖2

Ω for all ψ0 ∈ H1
0,D(Ω), we

obtain the coercivity estimate:

L̃(ψ0, ψ0) ≥ α‖ψ0‖2
1,2,Ω ∀ψ0 ∈ H1

0,D(Ω),

with α = 1
2 min(A0

Cp
, A0). The boundedness of L̃ in H1

0,D(Ω) follows from a straight-

forward application of the Schwarz inequality:

L̃(ψ0, w0) ≤ (A1 + 2‖
√
B‖2

∞,Ω)‖ψ0‖1,2,Ω‖w0‖1,2,Ω ∀ψ0, w0 ∈ H1
0,D(Ω).

Since L̃ is coercive and bounded on H1
0,D(Ω), the Lax–Milgram theorem (see, e.g.,

[4]) states that (5.3) has a unique solution ψ0 ∈ H1
0,D(Ω), provided F̃ξ ∈ H−1(Ω) and

we have the following upper bound for ψ0:

(5.6) ‖ψ0‖1,2,Ω ≤ 1

α
‖F̃ξ‖−1,2,Ω ∀ψ0 ∈ H1

0,D(Ω).
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The right-hand side of (5.6) can be estimated directly using (5.5) and the definition
of the dual norm

(5.7) ‖F̃ξ‖−1,2,Ω ≤ 1√
A0

∥∥∥∥ ξ√
A

∥∥∥∥
Ω

+ ‖D‖Ω +
‖B‖Ω|Fξ(1)|

‖B‖1,Ω
,

where we used the relations ‖
√
B‖2

Ω = ‖B‖1,Ω and ‖ξ/A‖Ω ≤ 1√
A0

‖ξ/
√
A‖Ω. The

contribution Fξ(1) can be estimated from (3.5):

(5.8) Fξ(1) ≤
√
|Ω|
(

1√
A0

∥∥∥∥ ξ√
A

∥∥∥∥
Ω

+ ‖D‖Ω

)
+ |C|.

Combining (5.6)–(5.8) yields the following upper bound for ψ0:

(5.9) ‖ψ0‖1,2,Ω ≤ γ

(
1√
A0

∥∥∥∥ ξ√
A

∥∥∥∥
Ω

+ ‖D‖Ω

)
+

‖B‖Ω

α‖B‖1,Ω
|C|.

The coefficient cD in (3.6) can be estimated using (5.8)–(5.9), yielding

‖cD · 1‖Ω ≤
√
|Ω|

‖B‖1,Ω

(√
|Ω| + γ‖B‖Ω

)( 1√
A0

∥∥∥∥ ξ√
A

∥∥∥∥
Ω

+ ‖D‖Ω

)
+

√
|Ω|

‖B‖1,Ω

(
1 +

‖B‖2
Ω

α‖B‖1,Ω

)
|C|.(5.10)

Combining the estimates for ψ0 and cD, given by (5.9)–(5.10), respectively, and using
the triangle inequality and the enstrophy conservation (4.3) gives after some algebraic
manipulations the estimate (5.1) for the stream function in the H1(Ω) norm.

Finally, for the case ‖B‖1,Ω = 0, a straightforward calculation gives (5.2).
As a direct consequence of (5.10), we have the following corollary.
Corollary 5.3. The trace γ(ψ)|∂ΩD

= cD(t) of ψ = ψ0 + cD, with ψ0 satisfying
(3.3), is bounded by

‖cD‖∞,(t0,T ) ≤
1

‖B‖1,Ω

(√
|Ω| + γ‖B‖Ω

)( 1√
A0

∥∥∥∥ ξ0√
A

∥∥∥∥
Ω

+ ‖D‖Ω

)
+

1

‖B‖1,Ω

(
1 +

‖B‖2
Ω

α‖B‖1,Ω

)
|C|.(5.11)

For the error analysis, we now introduce the errors ε = ξ − ξh and δ = ψ − ψh in
the vorticity field and stream function, respectively, and their PK̃ projection

εh = PK̃ε =PK̃ξ − ξh, δh = PK̃δ = PK̃ψ − ψh.(5.12)

Proof of Theorem 5.1. We start with an analysis of the error in the DG finite
element discretization for the vorticity equation, where we initially assume that ψ ∈
C0(Ω)∩H1(Ω), which will be confirmed in the second part of the proof by a regularity
estimate. This also implies that ∇⊥ψ ·n = −∂ψ

∂τ , with τ the tangential vector at ∂K,
has the same trace when taking the limit either from the inside or the outside of
element K.

First, we consider the error at a fixed time t. Subtracting the discretized weak
formulation (3.10) from (3.8), with Ω restricted to K and v to Vk

h, yields the error
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equation

d

dt

( ε

A
, v
)
K

=
(
ξ∇⊥ψ − ξh∇⊥ψh,∇v

)
K

−
(
ξ−∇⊥ψ · n − ξ̂h∇⊥ψh · n, v−

)
∂K

∀v ∈ Vk
h,∀K ∈ Th.(5.13)

Adding and subtracting the projections PK̃ψ and PK̃ξ yields the following relation
for the error in the vorticity field:

d

dt

( ε

A
, v
)
K

=
(
(ξ − PK̃ξ)∇⊥ψ + (PK̃ξ − ξh)∇⊥ψ

+ ξh∇⊥(ψ − PK̃ψ) + ξh∇⊥(PK̃ψ − ψh),∇v
)
K

−
(
(ξ− − PK̃ξ)∇⊥ψ · n + (PK̃ξ − ξ̂h)∇⊥ψ · n

+ ξ̂h∇⊥(ψ − PK̃ψ) · n + ξ̂h∇⊥(PK̃ψ − ψh) · n, v−
)
∂K

.(5.14)

Note that, since the projection PK̃ξ is continuous on the macroelement K̃ and K ⊂
int(K̃), we have PK̃ξ− = PK̃ξ+ = PK̃ξ at ∂K. Introducing the definitions for εh and
δh given by (5.12) results in the error equation

d

dt

( ε

A
, v
)
K

=
(
(ξ − PK̃ξ)∇⊥ψ + εh∇⊥ψ + ξh∇⊥(ψ − PK̃ψ)

+ξh∇⊥δh,∇v
)
K
−
(
(ξ− − PK̃ξ)∇⊥ψ · n

+(PK̃ξ − ξ̂h)∇⊥ψ · n + ξ̂h∇⊥(ψ − PK̃ψ) · n
+ξ̂h∇⊥δh · n, v−

)
∂K

.(5.15)

We can simplify (5.15) for the central flux ξ̂h = 1
2 (ξ−h + ξ+

h ) using the following
relations:

(εh∇⊥ψ,∇v)K − ((PK̃ξ − ξ̂h)∇⊥ψ · n, v−)∂K

= − (∇ · (εh∇⊥ψ), v)K + (ε−h∇
⊥ψ · n, v−)∂K

− ((ε−h + ξ−h − ξ̂h)∇⊥ψ · n, v−)∂K

= − (∇εh ·∇⊥ψ, v)K − 1

2
((ξ−h − ξ+

h )∇⊥ψ · n, v−)∂K ,(5.16)

where in the first step we integrated by parts and introduced PK̃ξ = ε−h + ξ−h and in

the second step we used ∇ · (εh∇⊥ψ) = ∇εh ·∇⊥ψ, since ∇ ·∇⊥ψ = 0. Similarly,
we obtain

(ξh∇⊥δh,∇v)K − (ξ̂h∇⊥δh · n, v−)∂K

= − (∇ · (ξh∇⊥δh), v)K + (ξ−h ∇⊥δh · n, v−)∂K

− (ξ̂h∇⊥δh · n, v−)∂K

= − (∇ξh ·∇⊥δh, v)K +
1

2
((ξ−h − ξ+

h )∇⊥δh · n, v−)∂K .(5.17)

For the upwind flux, we obtain a similar relation with 1
2 (ξ−h − ξ+

h ) replaced by 1
2 (ξ−h −

ξ+
h )
(
1 − sign(∇⊥ψh · n)

)
in (5.16) and (5.17), where sign is the sign function, with
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sign(x) = −1 if x < 0 and sign(x) = 1 if x ≥ 0. If we introduce (5.16) and (5.17) into
(5.15) and use the relation

− 1

2
(ξ−h − ξ+

h )∇⊥ψ · n +
1

2
(ξ−h − ξ+

h )∇⊥δh · n

= −1

2
(ξ−h − ξ+

h )∇⊥(ψ − PK̃ψ) · n − 1

2
(ξ−h − ξ+

h )∇⊥ψh · n,

then we obtain the following relation for ε for all v ∈ V k
h :

d

dt

( ε

A
, v
)
K

+ (∇εh ·∇⊥ψ, v)K + (∇ξh ·∇⊥δh, v)K

+
1

2
((ε+h − ε−h )∇⊥ψh · n, v−)∂K

=((ξ − PK̃ξ)∇⊥ψ + ξh∇⊥(ψ − PK̃ψ),∇v)K

−
(

(ξ− − PK̃ξ)∇⊥ψ · n

+

(
ξ̂h +

1

2
(ξ−h − ξ+

h )

)
∇⊥(ψ − PK̃ψ) · n, v−

)
∂K

= : QK(ξ, ξh, ψ; v),(5.18)

where we used for the fourth term on the left-hand side ξ−h − ξ+
h = PK̃ξ − ξ+

h −
(PK̃ξ− ξ−h ) = ε+h − ε−h . Note that the right-hand side depends only on ξh, ψ, and the
interpolation errors ξ −PK̃ξ and ψ−PK̃ψ but is independent of ε, εh, and δh. Using
the generalized Hölder inequality (see [1, Cor. 2.6, p. 25]), we can estimate QK as

QK(ξ, ξh, ψ; v) ≤‖ξ − PK̃ξ‖p,K‖∇⊥ψ‖K‖∇v‖q,K
+‖ξh‖K‖∇⊥(ψ − PK̃ψ)‖p,K‖∇v‖q,K
+‖ξ− − PK̃ξ‖p,∂K‖∇⊥ψ · n‖p′,∂K‖v−‖∞,∂K

+
∥∥∥ξ̂h +

1

2
(ξ−h − ξ+

h )
∥∥∥
∂K

‖∇⊥(ψ − PK̃ψ) · n‖∂K‖v−‖∞,∂K ,(5.19)

with p > 2, q = 2p
p−2 , and p′ = p

p−1 . Using the interpolation estimate (2.3) given by

Lemma 2.1, we can directly estimate the interpolation errors in (5.19):

‖ξ − PK̃ξ‖p,K = |ξ − PK̃ξ|0,p,K ≤ Chs
K |ξ|s,p,K̃ ,(5.20)

‖∇⊥(ψ − PK̃ψ)‖p,K = |ψ − PK̃ψ|1,p,K ≤ Cht
K |ψ|t+1,p,K̃ ,(5.21)

with 0 ≤ s ≤ k+1, 0 ≤ t ≤ k, and p > 2. Similarly, using (2.4), together with the fact
that the normal vector n has length one and the triangle inequality, we can estimate
the boundary contributions in (5.19):

‖ξ− − PK̃ξ‖p,∂K ≤ Ch
s− 1

p

K |ξ|s,p,K̃ ,(5.22)

‖∇⊥(ψ − PK̃ψ) · n‖∂K ≤ Cht
K |ψ|t+ 3

2 ,2,K̃
,(5.23)

with 0 < 1
p < s ≤ k+1 and 0 < t ≤ k− 1

2 . Since ξh ∈ Vk
h, which is a finite-dimensional

space, we can directly use the equivalence of norms in a finite-dimensional space to
obtain the inverse estimate (see, e.g., [5, p. 137])

‖ξh‖∂K ≤ C√
h
‖ξh‖K ,
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which, combined with the triangle inequality, gives for the central flux

(5.24)

∥∥∥∥ξ̂h +
1

2
(ξ−h − ξ+

h )

∥∥∥∥
∂K

≤ C√
h
‖ξh‖K̃ ,

and a similar relation in the case of the upwind flux. If we choose t = s+ 1
2 in (5.23)

and use (5.24), then we obtain

(5.25)

∥∥∥∥ξ̂h +
1

2
(ξ−h − ξ+

h )

∥∥∥∥
∂K

‖∇⊥(ψ − PK̃ψ) · n‖∂K ≤ Chs
K‖ξh‖K̃ |ψ|s+2,2,K̃ ,

with − 1
2 < s ≤ k−1. Next, we provide an upper bound for ‖∇⊥ψ ·n‖p′,∂K appearing

in the third term of (5.19). For this, in the first line of (5.26), we use the Hölder
inequality (see [1, Cor. 2.6, p. 25]) with 1

p′ = 1
2 + 1

w . In the second line, we

use ‖1‖w,∂K ≤ Ch
1
ω

K , with hK the element diameter, and the trace is estimated for
1
2 < t < 3

2 using Theorem 3.38 in [11]:

‖∇⊥ψ · n‖p′,∂K ≤ ‖∇⊥ψ‖p′,∂K ≤ ‖∇⊥ψ‖2,∂K‖1‖w,∂K

≤ Ch
1
w

K‖∇⊥ψ‖t− 1
2 ,2,∂K

≤ Ch
1
w

K‖∇⊥ψ‖t,2,K ≤ Ch
1
w

K‖ψ‖t+1,2,K .(5.26)

We can further sharpen this estimate by introducing ε = t − 1
2 , with 0 < ε ≤ 1

2 , in

the last term of (5.26) and using the imbedding W 2
4

3−2ε

(Ω) → W
3
2+ε
2 (Ω), with Ω a

Lipschitz domain (see [6, Theorem 1.4.4.1, p. 27]):

‖∇⊥ψ · n‖p′,∂K ≤ Ch
1
w

K‖ψ‖ 3
2+ε,2,K ≤ Ch

1
w

K‖ψ‖2, 4
3−2ε ,K

.

This relation can be further evaluated using again the Hölder inequality with 1
4

3−2ε

=

1
2 + 1−2ε

4 and the inequality (
∑m

i=1 a
β
i )

1
β ≤

∑m
i=1 ai for ai ≥ 0 and β ≥ 1, which give

‖∇⊥ψ · n‖p′,∂K ≤ Ch
1
w

K

⎛⎝∑
|α|≤2

‖Dαψ‖
4

3−2ε
4

3−2ε ,K

⎞⎠
3−2ε

4

≤ Ch
1
w

K

⎡⎣∑
|α|≤2

(‖Dαψ‖2,K‖1‖ 4
1−2ε ,K

)
4

3−2ε

⎤⎦
3−2ε

4

≤ Ch
1
w + 1−2ε

2

K

⎡⎣∑
|α|≤2

‖Dαψ‖
4

3−2ε

2,K

⎤⎦
3−2ε

4

≤ Ch
1
w + 1

2−ε

K ‖ψ‖2,2,K .(5.27)

If we introduce (5.20)–(5.22), (5.25), and (5.27) into (5.19) and choose 0 < ε ≤ 1
2 such

that the relation s− 1
p + 1

w + 1
2 − ε = s− 1

p + 1
p′ − ε = s+ p−2

p − ε ≥ s holds for p > 2,
then we obtain

QK(ξ, ξh, ψ; v) ≤ Chs
K

((
|ξ|s,p,K̃‖∇⊥ψ‖K + ‖ξh‖K |ψ|s+1,p,K̃

)
‖∇v‖q,K

+
(
|ξ|s,p,K̃‖ψ‖2,2,K + ‖ξh‖K̃ |ψ|s+2,2,K̃

)
‖v−‖∞,∂K

)
,(5.28)
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with q = 2p
p−2 and 1

p < s ≤ k − 1 determined by the smoothness of ξ and the order k

of the polynomial basis functions. Note that, due to the condition Wk
h ⊂ Vk

h, which
is necessary to ensure conservation of energy as stated in Lemma 4.2, we have to use
at least the same polynomial order for ξh as for ψh. This condition is, however, not
essential for the present proof, which requires only polynomials of order k− 2 for the
vorticity field ξh when polynomials of order k are used for the stream function ψh,
but then the discrete energy is no longer conserved.

Next, we further estimate the right-hand side of (5.28). Using Lemmas 4.1 and
4.2, we can also bound the L2 norm of the vorticity by the initial vorticity

‖ξ(·, t)/
√
A‖Ω = ‖ξ(·, 0)/

√
A‖Ω = ‖ξ0/

√
A‖Ω,(5.29)

‖ξh(·, t)/
√
A‖Ω ≤ ‖ξh(·, 0)/

√
A‖Ω = ‖ξ0/

√
A‖Ω,(5.30)

with ξ0 the initial vorticity. An upper bound for the norms of ψ is obtained by first
considering ψ0 defined in (3.2). As shown in the proof of Lemma 5.2, the operator
L̃ in (5.4) is coercive and bounded in H1

0,D(Ω), and together with the condition

A,B ∈ Cs,1(Ω), the regularity estimate Theorem 4.18(i) on pages 137–138 in [11]
implies that for ψ0 satisfying (5.3) we have the estimate

‖ψ0‖s+2,2,Ω1 ≤ C
(
‖ψ0‖1,2,Ω2 + ‖ξ‖s,2,Ω2

)
, s ≥ 0,(5.31)

where Ω1 = G1 ∩ Ω, Ω2 = G2 ∩ Ω, with G1 and G2 open subsets of R
2 such that

G1 is a compact subset of G2, and Γ2 = G2 ∩ ∂Ω with Γ2 a Cs+1,1 function. Here,
G1 intersects the boundary of Ω, and G2 has a smooth boundary not necessarily
completely contained in Ω. Note that the constant C in (5.31) does not depend on
ξ. An estimate for ‖ψ0‖1,2,Ω satisfying (5.3) is given by (5.9). Combining this result
with (5.31) and the estimate for ‖cD · 1‖Ω given by (5.10), we obtain

(5.32) ‖ψ‖s+2,2,Ω ≤ C‖ξ‖s,2,Ω, s ≥ 0,

where we used that Ω can be covered by a finite number of sets Ω1. Note that the
regularity estimate (5.32) also applies for K ∈ Th, which follows directly if we set
Ω1 = K. Since W s+2

2 (Ω), s ≥ 0, is embedded in C0(Ω) (see [1, Theorem 4.12, p. 85]),
this also confirms the assumption made at the start of the proof, namely, that ψ is
continuous.

In order to estimate ‖∇⊥ψ(·, t)‖K , we first use the Hölder inequality with 1
2 =

1
2+ε + ε

2(2+ε) (ε > 0), the imbedding Theorem 4.12, Case B in [1] with j = m = 1, p =

n = 2, q = 2(2+ε)
ε , and (5.32) together with (5.29) to obtain the estimate

‖∇⊥ψ(·, t)‖K ≤ ‖∇⊥ψ(·, t)‖2(2+ε)/ε,K‖1‖2+ε,K

≤ Ch
2

2+ε

K ‖ψ(·, t)‖1,2(2+ε)/ε,K ≤ Ch
2

2+ε

K ‖ψ(·, t)‖2,2,K

≤ Ch
2

2+ε

K ‖ξ(·, t)‖2,Ω ≤ Ch
2

2+ε

K ‖ξ0‖Ω.(5.33)

In a similar way, using the Hölder inequality with 1
p = 1

p+ε + ε
p(p+ε) (ε > 0) and the

imbedding W s+2
2 (Ω) → W s+1

p(p+ε)/ε(Ω) (see Theorem 1.4.4.1 in [6]), we obtain

|ψ(·, t)|s+1,p,K̃ ≤ |ψ(·, t)|s+1,p(p+ε)/ε,K̃‖1‖p+ε,K̃

≤ Ch
2

p+ε

K |ψ(·, t)|s+1,p(p+ε)/ε,K̃

≤ Ch
2

p+ε

K ‖ψ(·, t)‖s+2,2,Ω ≤ Ch
2

p+ε

K ‖ξ(·, t)‖s,2,Ω.(5.34)
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We also use the imbedding W 1
2+ε(K) → L∞(K) for all ε > 0, which is a consequence

of Theorem 4.12, Case A in [1]. Applying this for the partial derivatives of v together
with the Hölder inequality for 0 < ε < q − 2 with 1

2+ε = 1
q + q−2−ε

q(2+ε) , we obtain

‖v−‖∞,∂K ≤ C‖v‖∞,K ≤ C‖v‖1,2+ε,K ≤ C‖v‖1,q,K‖1‖ q(2+ε)
q−2−ε ,K

≤ Ch
2(q−2−ε)
q(2+ε)

K ‖v‖1,q,K .(5.35)

If we introduce (5.30) and (5.32)–(5.35) into (5.28) and use the relation

lim
ε→0

min

{
2(q − 2 − ε)

q(2 + ε)
,

2

p + ε

}
= min

{
q − 2

q
,
2

p

}
=

2

p
,

since q = 2p
p−2 , then we obtain, when hK ≤ 1 and for ε0 > 0 arbitrary, the following

estimate for QK only in terms of the vorticity field:

QK(ξ, ξh, ψ; v) ≤ Ch
s+ 2

p−ε0

K

(
|ξ|s,p,K̃‖ξ0‖Ω + ‖ξ0‖Ω‖ξ‖s,2,Ω + ‖ξ‖s,p,K̃‖ξ0‖Ω

+ ‖ξ0‖Ω‖ξ‖s,2,Ω
)
‖v‖1,q,K

≤ Ch
s+ 2

p−ε0

K ‖ξ0‖Ω‖ξ‖s,p,Ω‖v‖1,q,K ,(5.36)

with 1
p < s ≤ k − 1 and q > 2, which follows directly from the relation q = 2p

p−2 and
the condition p > 2.

We now introduce (5.36) into (5.18) and divide this expression by ‖v‖1,q,K . Fi-
nally, we take the supremum over all v ∈ W 1

q (K)\{0}, sum over all elements K ∈ Th,

integrate in time, and obtain an expression for ε in the norm of the W−1
q′ (Th) Sobolev

space with 1
q + 1

q′ = 1, which is dual to W 1
q (Th):

∥∥∥ ε

A

∥∥∥
−1,q′,Th

+

∫ T

t0

(
‖∇εh ·∇⊥ψ‖−1,q′,Th

+ ‖∇ξh ·∇⊥δh‖−1,q′,Th

+
1

2

∑
K∈Th

sup
0 �=v∈W 1

q (K)

((ε+h − ε−h )∇⊥ψh · n, v−)∂K
‖v‖1,q,K

)
dt

≤ Chs+ 2
p−ε0‖ξ0‖Ω

∫ T

t0

‖ξ(·, t)‖s,p,Ωdt,(5.37)

with h = maxK∈Th
hK , 1

q′ + 1
q = 1. Note that 1 < q′ < 2, since q > 2, and

1
p < s ≤ k − 1, with k the order of the polynomial basis functions. Since all terms

are positive on the left-hand side of (5.37), we obtain the following negative index
Sobolev norm estimate for ε/A:

‖ε/A‖−1,q′,Th
≤ Chs+ 2

p−ε0‖ξ0‖Ω

∫ T

t0

‖ξ(·, t)‖s,p,Ωdt.(5.38)

The error equation for ψ is obtained by subtracting (3.7) from (3.3) and restricting
w to Wk

h:

(5.39) L(δ, w) = (A∇δ,∇w)Ω + (Bδ,w)Ω = −
∑

K∈Th

(ε/A,w)K .
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Fig. 1. Domain used for model problem.

The operator L : W 1
q (Ω) × W 1

q (Ω) → R is coercive on W 1
q (Ω) with q > 2, which

follows directly from Theorem 5.3.3 in [4], which also applies to the case q �= 2 (see
the remark at the end of page 135 in [4], and the fact that (1.2)–(1.3) are equivalent to
a Dirichlet boundary condition on ψ. Using the coercivity of L in W 1

q (Ω) and (5.39),
we obtain the following relation:

‖δ‖1,q,Ω ≤ 1

αδ
sup

0 �=w∈W 1
q (Ω)

L(δ, w)

‖w‖1,q,Ω

≤ 1

αδ

∑
K∈Th

sup
0 �=w∈W 1

q (K)

(ε/A,w)K
‖w‖1,q,K

=
1

αδ

∥∥∥ ε

A

∥∥∥
−1,q′,Th

,(5.40)

with αδ the coercivity constant.

The proof is completed by combining (5.38) and (5.40) and using the relation
u = AU = A∇⊥ψ, and hence ‖u − uh‖0,q,Ω ≤ C‖ψ − ψh‖1,q,Ω = C‖δ‖1,q,Ω.

6. Application to a geophysical model problem. In this section, we con-
sider the flow field generated by a concentrated patch of vorticity in a 2D geophysical
flow. The flow field is described by (1.1) with A = 1, B = D = 0. The flow do-
main Ω and the subdomain Ω0 are shown in Figure 1. The domain Ω has an island
in the middle, and periodic boundary conditions are applied at x = 0 and x = 2π.
Solid walls are hatched and the slip flow boundary condition (1.2) is applied at these
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surfaces. We define in Ω the initial vorticity ξ0 as

ξ0 = χΩ0 ,

with χΩ0 the characteristic function of Ω0, which is one inside of Ω0 and zero else-

where. In Appendix A, we prove that ξ0 ∈ W
1
p−ε
p (Ω), with 1 ≤ p < ∞ and ε an

arbitrary positive number, but ξ0 �∈ H2(Ω), as is required to apply the error estimates
discussed in [3]. The present test case is thus an excellent example of a nonsmooth
flow which has the minimal amount of smoothness required by the theory developed
in this article.

At first sight, the initial vorticity field appears, however, to be just outside the
range of validity for Theorem 5.1, but using the continuity of the Clément interpo-

lation in Lemma 2.1, we can assume that the initial vorticity field ξ0 ∈ W
1
p−ε
p is

equivalent to a slightly smoother field ξ̃0 ∈ W
1
p+ε
p which has been taken such that for

all macroelements K̃

PK̃ ξ̃0 = PK̃ξ0 and lim
ε→0

‖ξ0‖ 1
p−2ε,p,K̃ = lim

ε→0
‖ξ̃0‖ 1

p+ε,p,K̃ .

Since in Theorem 5.1 we must have p > 2, we choose p = 2 + ε, r = 1
2+ε − ε, which

gives that q = 2(2+ε)
ε , q′ = 2(2+ε)

2(2+ε)−ε , and therefore s ≤ min{k − 1, 3
2+ε − ε}. Taking

the limits ε → 0, we should then investigate the L∞(Ω) norm for the error in the
velocity field and the W−1

1 (Th) norm for the vorticity field.
In the computations, we used second order polynomials (k = 2), and therefore

we expect based on Theorem 5.1 a first order convergence in the L∞ norm for the
velocity and in the W−1

1 (Th) norm for the vorticity. The time integration is conducted
with a third order Runge–Kutta method with such a small time step that it does not
influence the spatial accuracy. Since we do not know the exact solution, we use a
sequence of unstructured uniformly refined meshes, see Figure 2, to obtain an accurate
estimate for the norm of the error and the rate of convergence s. The finest mesh is
denoted as reference mesh, with mesh size href and solution uref . The meshes satisfy
href < h3 < h2 < h1, with the mesh size approximately doubling for each mesh; see
Table 1. Assuming the following asymptotic behavior of the error,

(6.1) ‖u− uh‖ ≤ ‖u− uref‖ + ‖uref − uh‖ ∼= Crh
s,

we can eliminate the unknown contribution ‖u − uref‖ by considering (6.1) for three
meshes with mesh sizes h1, h2, and h3, respectively. This results in the following
relation for the rate of convergence s:

(6.2)
hs

1 − hs
2

hs
2 − hs

3

=
‖uref − uh1

‖ − ‖uref − uh2
‖

‖uref − uh2
‖ − ‖uref − uh3

‖ ,

which is solved numerically. The constant Cr can be computed easily from

(6.3) Cr =
1

hs
2 − hs

3

(
‖uref − uh2

‖ − ‖uref − uh3
‖
)
,

and (6.1) then provides an estimate the norm of the error.
In Table 1, we present the estimated L2-error ‖ξ0−ξ0h‖Th

and convergence rate ŝξ
for the initial vorticity field for different numbers of elements and mesh sizes, obtained



ERROR ANALYSIS OF A CG-DG FINITE ELEMENT METHOD 1365

X

Y

0 1 2 3 4 5 6

-2

-1

0

1

2

Fig. 2. Unstructured mesh in the domain Ω.

Table 1

Estimated L2-error and rate of convergence in the initial vorticity field.

Number of elements h ‖ξ0 − ξ0h‖Th
ŝξ

782 0.0850288 0.5799913 -
3004 0.0434386 0.3982912 0.5596
11768 0.0219504 0.2886455 0.4717
46576 0.0110329 0.2029058 0.5124
185312 0.0055309 0.1433234 0.5034

from (6.1)–(6.3). For p = 2 + ε, with ε > 0 arbitrary small, the initial vorticity field

satisfies ξ0 ∈ W
1

2+ε−ε

2+ε , and we expect a convergence rate ŝξ ∼= 0.5, which is closely
confirmed by the results in Table 1.

In the time dependent computations, the initial vorticity field evolves into a com-
plex pattern of continuously thinner shear layers which wrap around each other, but
since there is no viscosity in the fluid, the smoothness of the vorticity field does not
increase. The vorticity field at several instances in time is shown in Figures 3–5. Note
that, since the element boundaries are not aligned with the jumps in vorticity, we see
a slight distortion in the plots near these discontinuities.

In Table 2, the estimated L∞-error in the velocity field ‖u − uh‖∞,Ω and the
estimated convergence rate ŝu as a function of the number of elements and mesh size
are presented. These results show that the convergence rate for the velocity field is
close to one, as was predicted by Theorem 5.1. For the vorticity, we would have to
compute the W−1

1 (Th) norm of the error, but unfortunately it was not possible to
obtain accurate numerical estimates for this norm, since this requires meshes beyond
our computational means.

Considering the results on the order of accuracy of the CDG scheme summarized
in Table 2, we can conclude that the analysis is sharp for this type of nonsmooth flow
and also that the CDG scheme behaves properly for this nonsmooth flow field. More
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Fig. 3. Vorticity field at t = 0.
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Fig. 4. Vorticity field at t = 0.3.

details on the accuracy of the CDG scheme for smooth flows can be found in [3].

Appendix A. Regularity of characteristic function χΩ0 in 2D domains.
In this section, we investigate which fractional order Sobolev spaces contain the char-
acteristic function χΩ0 .

Lemma A.1. Let Ω ⊂ R
2 denote a simply connected domain with boundary ∂Ω.

Let Ω0 ⊂ Ω denote a subdomain with Ω̄0 ⊂ Ω and Lipschitz boundary ∂Ω0. Then
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Fig. 5. Vorticity field at t = 0.6.

Table 2

Estimated L∞-error and rate of convergence for the velocity field.

Number of elements h ‖u − uh‖∞,Ω ŝu
782 0.0850288 0.0603981 -
3004 0.0434386 0.0286827 1.1085
11768 0.0219504 0.0157522 0.8780
46576 0.0110329 0.0080533 0.9753

the characteristic function of Ω0, χΩ0 : Ω → R (which is one inside of Ω0 and zero

elsewhere) belongs to the space W
1
p−ε
p (Ω), with 1 ≤ p < ∞ and ε > 0.

Proof. We use the definition of fractional order Sobolev spaces W s
p (Ω) in [4] (with

n = 2 and 1 ≤ p < ∞), and, accordingly, we have to determine s such that

(A.1)

∫
Ω

∫
Ω

|χΩ0
(x) − χΩ0

(y)|p
|x− y|2+ps

dx dy

is finite. In the consecutive estimates, dΩ denotes the diameter of Ω. The distance of
two sets S1, S2 ⊂ R

2 is denoted with d(S1, S2) = inf{|x1 − x2| : x1 ∈ S1, x2 ∈ S2},
while B(x, r) yields the open ball {y ∈ R

2 : |x− y| < r}. Using the definition of χΩ0 ,
it is clear that χΩ0

(x) − χΩ0
(y) = 0 whenever x, y ∈ Ω0 or x, y ∈ Ω \ Ω0. Therefore,

we can estimate the double integral in (A.1) as follows:∫
Ω

∫
Ω

|χΩ0
(x) − χΩ0

(y)|p
|x− y|2+ps

dx dy = 2

∫
Ω0

∫
Ω\Ω0

1

|x− y|2+ps
dx dy

≤ 2

∫
Ω0

∫
B(y,dΩ)\B(y,d(y,∂Ω0))

1

|x− y|2+ps
dx dy

= −4π

ps
d−ps
Ω |Ω0| +

4π

ps

∫
Ω0

d(y, ∂Ω0)
−ps dy,(A.2)
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with |Ω0| the Lebesgue measure of Ω0. For an upper bound of the integral in (A.2),
we use the definition of the Lipschitz domain as given in [11, Definition 3.28] and the
consecutive analysis. According to this, there is a finite cover ∪Wj of ∂Ω0 with open
sets Wj and a finite collection of open sets Ωj such that Wj ∩ Ω0 = Wj ∩ Ωj for all
indices j and Ωj can be considered as a Lipschitz hypograph (applying a measure
preserving transformation).

Since ∪Wj is an open set containing ∂Ω0, there is a positive number ε such that
for all y ∈ Ω0 \ ∪jWj the relation d(y, ∂Ω0) > ε holds. Accordingly, we split the
integral in (A.2) as∫

Ω0

d(y, ∂Ω0)
−ps dy =

∫
Ω0\∪jWj

d(y, ∂Ω0)
−ps dy +

∫
Ω0∩∪jWj

d(y, ∂Ω0)
−ps dy

≤
∫

Ω0\∪jWj

ε−ps dy +
∑
j

∫
Ωj∩Wj

d(y, ∂Ω0)
−ps dy.(A.3)

The first integral in (A.3) is obviously finite; therefore, in the consecutive analysis we
give an upper estimate for an individual term in the sum.

Since Ωj is a Lipschitz hypograph and Wj is bounded, we get the inclusion

(A.4) Ωj ∩Wj ⊂ {y = (y′, yn) ∈ R
n−1 × R

+ : y′ ∈ Ω∗
j , yn ≤ fj(y

′)}

in an appropriate coordinate system with the Lipschitz function fj , where Ω∗
j ⊂ R

n−1

such that diam Ω∗
j ≤ diam Ω0. For an arbitrary point z = (z′, fj(z

′)) = (z′, zn) on
∂Ωj ∩ ∂Ω0, we have

|fj(y′) − yn| = |zn − yn + fj(y
′) − fj(z

′)| ≤ |zn − yn| + Mj |z′ − y′|

≤ |zn − yn| + Mj |z′ − y′| ≤
√

1 + M2
j |z − y|,(A.5)

with the Lipschitz constant Mj of fj . In this way, for any j and any y ∈ Ωj ∩ Wj ,

taking the infimum over all z ∈ ∂Ωj ∩ ∂Ω0, the estimate d(y, ∂Ω0) ≥ fj(y
′)−yn√

1+M2 holds,

where M = maxj Mj . Accordingly, using (A.4) we obtain for all indices j that∫
Ωj∩Wj

d(y, ∂Ω0)
−ps dy ≤ (1 + M2)

ps
2

∫
Ωj∩Wj

(fj(y
′) − yn)−ps dy

= (1 + M2)
ps
2

∫
Ω∗

j

∫ fj(y
′)

0

(fj(y
′) − yn)−ps dyn dy′,

which is finite when ps < 1.
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AND HYPERBOLIC SYSTEMS∗
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Abstract. We develop the convergence analysis of discontinuous Galerkin finite element approx-
imations to symmetric second-order quasi-linear elliptic and hyperbolic systems of partial differential
equations in divergence form in a bounded spatial domain in R

d, subject to mixed Dirichlet–Neumann
boundary conditions. Optimal-order asymptotic bounds are derived on the discretization error in
each case without requiring the global Lipschitz continuity or uniform monotonicity of the stress
tensor. Instead, only local smoothness and a G̊arding inequality are used in the analysis.

Key words. nonlinear elliptic and hyperbolic systems of partial differential equations, discon-
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1. Introduction. Second-order nonlinear elliptic and hyperbolic systems of par-
tial differential equations arise in numerous applications, and a substantial body of
research has been devoted to their analytical and computational study. This paper
is concerned with the construction and convergence analysis of a class of numeri-
cal algorithms—discontinuous Galerkin finite element methods—for the approximate
solution of quasi-linear elliptic and hyperbolic systems. Nonlinear elasticity is a par-
ticularly fertile source of equations of this type, and our results are phrased with this
particular application area in mind, although the ideas and techniques developed are
valid generally, provided the structural hypotheses on the nonlinearity assumed herein
are satisfied.

In order to motivate the discussion that will follow, we begin by formulating a
static problem from nonlinear elasticity which results in a mixed Dirichlet–Neumann
boundary-value problem for a system of second-order quasi-linear elliptic partial dif-
ferential equations. We shall then state the corresponding dynamic problem, which
is a mixed initial-boundary-value problem for a second-order quasi-linear hyperbolic
system.

Suppose that Ω is a bounded open set in R
d, d ∈ {2, 3}, with Lipschitz continuous

boundary ∂Ω. We shall seek a displacement field u : Ω → R
d such that u is a

stationary point of the energy functional

(1.1) J : v �→ J(v) :=

∫
Ω

[W (∇v(x)) − f(x) · v(x)] dx−
∫

ΓN

gN(s) · v(s) ds,

defined over the set of all (sufficiently smooth) d-component vector functions v on Ω
satisfying the boundary condition v = gD on ΓD, where ΓD ⊂ Γ = ∂Ω has positive
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(d−1)-dimensional surface measure Hd−1(ΓD), ΓN = Γ\ΓD, W ∈ C4(Rd×d; R) is the
stored energy function, f ∈ L2(Ω)d is a given body force, and gN ∈ L2(ΓN)d. Let us
define the Piola–Kirchhoff stress tensor S as the gradient of W , that is,

Siα(η) :=
∂

∂ηiα
W (η), η ∈ R

d×d,

and let

Aiαjβ(η) :=
∂

∂ηjβ
Siα(η) =

∂2

∂ηiα∂ηjβ
W (η), η ∈ R

d×d.

Clearly, Aiαjβ(η) = Ajβiα(η) for all η ∈ R
d×d and i, α, j, β = 1, . . . , d.

Formal calculations show that sufficiently smooth stationary points u = u(x) of
the functional J satisfy the following Euler–Lagrange equation:

(1.2) −
d∑

α=1

∂xα
Siα(∇u(x)) = fi(x), i = 1, . . . , d, x ∈ Ω,

subject to the boundary conditions

(1.3) u = gD on ΓD and S(∇u)ν = gN on ΓN,

on the Dirichlet and Neumann parts ΓD and ΓN of the boundary Γ, respectively. Here
ν is the unit outward normal vector to Γ, and ∂xα = ∂/∂xα. We note that, except in
section 7, we do not use the fact that (1.2) is an Euler–Lagrange equation but only
require the symmetry of the tensor Aiαjβ .

The weak formulation of the boundary-value problem (1.2), (1.3) is posed as
follows: Find the function u ∈ H1

D,gD
(Ω)d = {v ∈ H1(Ω)d : v|ΓD = gD} such that∫

Ω

S(∇u) : ∇v dx =

∫
Ω

f · v dx +

∫
ΓN

gN · v ds ∀v ∈ H1
D,0(Ω)d.

We shall assume that this problem has a solution u ∈ Hm+1(Ω)d ∩ H1
D,gD

(Ω)d, with

m > d/2. By the Sobolev embedding theorem u is then, in fact, contained in C1,α̂(Ω)d

for some α̂ ∈ (0, 1).
For future reference we also define the bilinear form a(Φ; ·, ·), Φ ∈ L∞(Ω)d×d, by

(1.4) a(Φ; v, w) :=

d∑
i,α,j,β=1

∫
Ω

Aiαjβ(Φ)∂xαvi∂xβ
wj dx ∀v, w ∈ H1

D,0(Ω)d.

Formally at least, a(∇u; ·, ·) defines the hessian of J at u; more generally, we shall
consider a(Φ; ·, ·) for Φ in a certain neighborhood of ∇u which we shall now define.

For δ > 0, let

(1.5) Zδ :=
{
Φ ∈ Cpw(Ω)d×d : ‖Φ −∇u‖L∞(Ω) ≤ δ

}
,

where Cpw(Ω) denotes the set of bounded piecewise continuous functions defined on Ω.
The set Zδ will be required in the convergence analysis of the finite element method:
We will show that, for sufficiently small h, it contains the piecewise gradients (relative
to the finite element subdivision Th of the computational domain Ω) of discontinuous
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Galerkin finite element approximations to u. Their point values must therefore be
contained in the set

Mδ := conv
{
η ∈ R

d×d : inf
x∈Ω

|η −∇u(x)| ≤ δ
}
,

where | · | denotes the Frobenius norm on R
d×d defined, for η ∈ R

d×d, by |η| = (η :
η)1/2. Clearly, as it is the convex hull of a closed and bounded set, Mδ is itself closed,
bounded, and, of course, convex.

We note here that we do not require S to be globally Lipschitz continuous, but
we will use the local Lipschitz constant of S in Mδ, defined by

(1.6) Kδ := sup
η∈Mδ

(
d∑

i,α,j,β=1

|Aiαjβ(η)|2
)1/2

,

and the local Lipschitz constant of the fourth-order elasticity tensor A = ∇S, defined
by

(1.7) Lδ := sup
η,σ∈Mδ,η �=σ

|η − σ|−1

(
d∑

i,α,j,β=1

|Aiαjβ(η) −Aiαjβ(σ)|2
)1/2

.

Since, for every δ > 0, the set Mδ is compact in R
d×d and A ∈ C2(Mδ)

d×d×d×d, it
follows that Kδ and Lδ are finite.

We shall also consider the dynamic counterpart of the boundary-value problem
(1.2), (1.3)—the initial-boundary-value problem for the second-order nonlinear evo-
lution equation

(1.8) ∂2
t ui −

d∑
α=1

∂xαSiα(∇u) = fi(t, x), i = 1, . . . , d, x ∈ Ω, t ∈ (0, T ],

subject to the initial conditions u(0, x) = u0(x), ∂t(0, x) = u1(x), x ∈ Ω, and the same

boundary conditions as in the static problem above. Here ∂2
t u = ∂2u

∂t2 ; we shall also

write ü instead of ∂2
t u and u̇ instead of ∂tu = ∂u

∂t . For a detailed discussion concerning
the physical background to these equations in the field of nonlinear elasticity, we
refer to [11, 1], for example. Suitable generalizations of the sets Mδ and Zδ for the
hyperbolic case are given in section 6.

We now formulate our structual hypotheses on the stress tensor S. For most
constitutive laws in solid mechanics and many other applications, the mapping η �→
S(η) satisfies the axiom of frame indifference, that is,

(1.9) S(F − id) = S(QF − id) ∀Q ∈ SO(d), ∀F ∈ R
d×d,

where id is the d × d identity matrix and SO(d) is the group of special orthogonal
d × d matrices. Note that the form of (1.9) is slighly nonstandard, as our partial
differential equation is formulated in terms of displacement rather than deformation.
If S satisfies (1.9), then, except in trivial cases, S cannot be monotone; for a detailed
discussion of this point, we refer to pages 490–491 in the monograph of Antman [1].
Hence, the uniform monotonicity condition which hypothesizes the existence of a real
number M1 > 0 such that

(1.10) (S(F ) − S(G)) : (F −G) ≥ M1|F −G|2 ∀F,G ∈ R
d×d,
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which is commonly assumed in the analysis of finite element approximations to quasi-
linear elliptic problems, is inappropriate in the context of nonlinear elasticity and
needs to be relaxed in order to cover physically meaningful problems.

In fact, the condition (1.10) can be relaxed in several ways in order to capture
the physics while still recovering some of the theory available in the uniformly elliptic
setting which stems from the uniform monotonicity condition (1.10). It is reasonable,
for example, to assume that a metastable state of the elastic energy functional (1.1) is
not merely a critical point satisfying the Euler–Lagrange equation but that the hessian
of J is positive definite at this point. Thus, in the static case, we shall replace (1.10) by
the following condition, which requires the existence of a real number M1 = M1(u) > 0
such that

(1.11) a(∇u; v, v) ≥ M1‖∇v‖2
L2(Ω) ∀v ∈ H1

D,0(Ω)d.

Similarly, for the dynamic case, it was shown in [8] that, if S satisfies the strong
Legendre–Hadamard condition

(1.12)
d∑

i,α,j,β=1

Aiαjβ(η)ζiζjξαξβ ≥ M1|ζ|2|ξ|2 ∀ζ, ξ ∈ R
d, ∀η ∈ R

d×d,

for some constant M1 > 0, then a smooth solution to (1.8) is guaranteed to exist
locally in time, subject to given initial conditions and the same boundary conditions
as in the static case (at least when ΓN = ∅ and gD = 0). Condition (1.12) is satisfied
by most constitutive laws for elastic materials. In this case, the semilinear form a
defined in (1.4) satisfies the following G̊arding inequality: For any ϕ ∈ C1(Ω)d, there
exists M0 = M0(ϕ) ≥ 0 such that

(1.13) a(∇ϕ; v, v) ≥ 1
2M1‖∇v‖2

L2(Ω) −M0(ϕ)‖v‖2
L2(Ω) ∀v ∈ H1

0(Ω)d;

cf. Theorem 6.5.1 on p. 253 in [16]. Even this weaker inequality is, to the best of our
knowledge, known only for v ∈ H1

0(Ω)d. As we shall see, (1.13) is sufficient for the
convergence analysis in the dynamic case.

In the case of classical conforming finite element methods based on finite-dimen-
sional subspaces of H1

D,0(Ω)d or H1
0(Ω)d, as the case may be, consisting of continuous

piecewise polynomial functions of degree p ≥ 1 defined over a family of subdivisions
{Th}h>0 of the computational domain Ω, the inequalities (1.11) and (1.13) will au-
tomatically hold in such subspaces. Discontinuous Galerkin finite element methods
which are the focus of this paper are, however, built over finite-dimensional spaces
consisting of discontinuous piecewise polynomial functions defined on Ω, which are,
clearly, not contained in H1(Ω)d, let alone H1

D,0(Ω)d or H1
0(Ω)d. As a matter of fact,

both (1.11) and (1.13) are global conditions and, unlike uniform monotonicity (1.10),
do not automatically translate to the space Sp(Ω, Th,F), defined in section 2, of dis-
continuous piecewise polynomial functions of degree p on Th. Thus, in section 3, we
shall derive the “broken” versions of these inequalities which hold over Sp(Ω, Th,F).
To the best of our knowledge, the analysis of discontinuous Galerkin finite element
approximations to second-order quasi-linear systems of partial differential equations
has not been previously considered in the literature under such weak structural
assumptions.

In recent years there has been considerable interest in discontinuous Galerkin
finite element methods for the numerical solution of a wide range of partial differ-
ential equations which arise from continuum mechanics. We shall not attempt to
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give a detailed review of this area of research: The reader is referred to [7] for a
comprehensive historical survey of the field and [2, 13] for convergence analyses of
the method for second-order linear elliptic problems and partial differential equations
with nonnegative characteristic form. Discontinuous Galerkin finite element methods
were introduced in the early 1970s for the numerical solution of first-order hyperbolic
problems. Simultaneously, but quite independently, they were proposed as nonstan-
dard schemes for the approximation of second-order elliptic equations. The recent
upsurge of interest in this class of techniques has been stimulated by the compu-
tational convenience of discontinuous Galerkin methods due to their high degree of
locality and the presence of associated local conservation properties, as well as the
need to accommodate high-order hp and spectral element discretizations on irregular
finite element meshes. The present work has been stimulated by our ongoing research
on discontinuous Galerkin methods in the field of fracture mechanics.

The paper is structured as follows. The next section is devoted to the construc-
tion of the discontinuous Galerkin method for the nonlinear elliptic boundary-value
problem (1.2), (1.3). In section 3, we derive broken G̊arding inequalities to aid us in
our subsequent analysis. In section 4 we develop the linearization of the semilinear
form appearing in the definition of the finite element method. In section 5 we perform
the convergence analysis of the discontinuous Galerkin finite element approximation
of the elliptic boundary-value problem (1.2), (1.3) under hypothesis (1.11). We note,
in particular, that our analysis does not assume the global Lipschitz continuity of
the functions Siα, i, α = 1, . . . , d, with respect to ∇u, nor do we explicitly require
the uniform monotonicity condition (1.10). Building on the work of Makridakis [15]
for classical conforming methods, in section 6 we develop the convergence analysis of
semidiscrete discontinuous Galerkin finite element approximations of mixed Dirichlet–
Neumann initial-boundary-value problems for systems of second-order quasi-linear
hyperbolic equations of the form (1.8). This analysis requires a nonlinear projection
operator whose approximation properties are analyzed, closely following section 5, in
Appendix A. Extensions of our analysis to fully discrete approximations of the hyper-
bolic problem would proceed along the same lines as in [15] in the case of conforming
methods; thus, we do not consider these here. In section 7 we show how our frame-
work can be used to derive optimal error estimates for discontinuous Galerkin finite
element methods other than the formulation which we have adopted in this paper.

2. Finite element spaces. For h ∈ (0, 1], let Th be a subdivision of Ω into
disjoint open element domains (or, simply, elements) κ such that Ω = ∪κ∈Th

κ. Here
h = maxκ∈Th

hκ, where hκ = diam(κ). Each κ ∈ Th is assumed to be the image of the
open reference simplex under a bijective affine mapping or of the open unit hypercube
under a bilinear mapping, denoted by Fκ. We shall denote either master element by
κ̂.

For a nonnegative integer k, we denote by Pk(κ̂) the set of polynomials of total
degree k on κ̂. When κ̂ is the unit hypercube, we also consider Qk(κ̂), the set of all
tensor-product polynomials on κ̂ of degree k in each coordinate direction. We collect
the Fκ in the vector F = {Fκ : κ ∈ Th} and consider, for p ≥ 1, the finite element
space

Sp(Ω, Th,F) := {v ∈ L2(Ω)d : v|κ ◦ Fκ ∈ Rp(κ̂)d ∀κ ∈ Th},

where R is either P or Q.
Let us consider the set E of all (d−1)-dimensional open faces—or, simply, faces—

of all elements κ ∈ Th. Since hanging nodes are permitted (cf. Figure 2.1), Th may be



DGFE APPROXIMATION OF NONLINEAR SYSTEMS 1375

κ

e1

e2

κ1

κ2

Fig. 2.1. Hanging node × and faces e1, e2 ∈ Eint.

irregular, and therefore E will be understood to contain the smallest common (d− 1)-
dimensional open faces of neighboring elements. Further, we denote by Eint the set
of all e in E that are contained in Ω, we let Γint = {x ∈ Ω : x ∈ e for some e ∈ Eint},
and we introduce the set ED of (d − 1)-dimensional boundary faces contained in the
subset ΓD of Γ. Implicit in these definitions is the assumption that Th respects the
decomposition of Γ in the sense that each e ∈ E that lies on Γ belongs to the interior
of exactly one of ΓD or ΓN. Given e ∈ E , we define he := diam(e).

In the convergence analyses of the discontinuous Galerkin finite element approx-
imations to the partial differential equations considered here, we shall adopt the fol-
lowing hypotheses on the family {Th}h>0, the first of which controls the number of
hanging nodes which any one element may have, the second is the standard quasi-
uniformity assumption, while the third is a technical condition on the lowest polyno-
mial degree which our analysis admits. H2 and H3 are required in order to deduce,
by the use of inverse inequalities from bounds in a broken H1 norm, that the element-
wise gradient of the numerical solution lies in Zδ. Finally, the fourth hypothesis is
required for the definition of the continuous reconstruction operator in section 3. We
assume that the assumptions H1–H4 hold throughout the remainder of the article.

H1. The family of subdivisions {Th}h>0 is contact regular; i.e., there exist positive
constants cd and ce independent of h such that, for each κ ∈ Th,


{κ′ ∈ Th : κ′ �= κ, Hd−1(κ′∩κ) > 0} ≤ cd, and cehκ ≤ he for every face e of κ.

H2. The family of subdivisions {Th}h>0 is quasi-uniform; i.e., there exist positive
constants c0 and c1, independent of h, such that for each κ ∈ Th there exist open balls
B(x0, c0h) and B(x1, c1h) such that B(x0, c0h) ⊂ κ ⊂ B(x1, c1h).

H3. In the case of the elliptic problem (1.2) the polynomial degree p > d/2, and
in the case of the hyperbolic problem (1.8) the polynomial degree p > (d/2) + 1 (viz.
p ≥ 2 for d = 2, 3, and p ≥ 3 for d = 2, 3, respectively).

H4. The family of subdivisions {Th}h>0 is uniformly simplicially reducible; i.e.,
for each h > 0 there exists a regular (no hanging nodes) simplicial mesh T̃h such that
the closure of each element in Th is a union of closures of elements of T̃h and such that
there exist positive constants θ and C, independent of h, such that the smallest angle
between any two edges in T̃h is greater than or equal to θ and h/minκ∈T̃h

hκ ≤ C.
Suppose that e is a (d − 1)-dimensional open face of an element κ ∈ Th, and

recall the notation introduced above: hκ = diam(κ) and he = diam(e). The following
inverse inequalities hold: There exists a positive constant C3, independent of the
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discretization parameter h, such that

‖∇w‖L∞(κ) ≤
C3

h
d/2
κ

‖∇w‖L2(κ), ‖∇w‖2
L2(κ) ≤

C3

h2
κ

‖w‖2
L2(κ),

‖w‖2
L2(e) ≤

C3

he
‖w‖2

L2(κ), ‖∇w‖2
L2(e) ≤

C3

he
‖∇w‖2

L2(κ),

(2.1)

for all w ∈ Sp(Ω, Th,F). In the case of the first two inverse inequalities C3 depends
only on the shape-regularity parameters of Th, while in the case of the other two
inequalities it also depends on the contact-regularity parameter ce. In fact, he in the
last two inequalities can be replaced by hκ at the expense of possibly altering the
value of the constant C3.

In the discussion that follows, we shall frequently need to consider the elementwise
weak derivative (called the broken derivative) and the elementwise weak gradient
(called the broken gradient) of a function that belongs to a broken Sobolev space. In
order to simplify the presentation, our notation will not distinguish these from weak
derivatives and weak gradients; the implied meaning of the notation will always be
clear from the context. Thus, we adopt the following definition.

definition 1. Let the broken Sobolev space H1(Ω, Th) be defined by

H1(Ω, Th) :=
{
v ∈ L2(Ω) : v|κ ∈ H1(κ) ∀κ ∈ Th

}
.

For v ∈ H1(Ω, Th), we use ∇v to denote the piecewise weak gradient of v (relative to
Th), i.e.,

∇v(x) := ∇v|κ(x) ∀x ∈ κ, ∀κ ∈ Th,

where, on the right-hand side, ∇v|κ denotes the weak gradient of v|κ ∈ H1(κ). The
broken partial derivative ∂xjvi = ∂vi/∂xj of v ∈ H1(Ω, Th)d is the (i, j) component of
its broken gradient ∇v.

For each e ∈ Eint there exist indices i and j such that i > j and κi and κj share the
face e; we define the (element-numbering-dependent) jump of v ∈ H1(Ω, Th)d across e
and the mean value of v on e by

[[v]]e := v|∂κi∩e − v|∂κj∩e and 〈v〉e := 1
2

(
v|∂κi∩e + v|∂κj∩e

)
,

respectively. If e ∈ ED is a face on the Dirichlet boundary, contained in the boundary
∂κ of an element κ ∈ Th, it is also customary to define

[[v]]e := v|∂κ∩e and 〈v〉e := v|∂κ∩e.

These definitions will enable us to condense our notation. For the sake of simplicity,
the subscript e will be suppressed, and we shall simply write [[v]] and 〈v〉; the implied
choice of e will be clear from the context. In addition, we associate with the face e
the unit normal vector ν which points from κi to κj , i > j.

Suppose that σ is a positive, piecewise constant function defined on ΓD ∪Γint (to
be defined below). We equip the space H1(Ω, Th) with the broken Sobolev norm ‖·‖1,h

defined by

‖v‖1,h :=

(∫
Ω

|∇v|2 dx +

∫
Γint∪ΓD

σ|[[v]]|2 ds

)1/2

.
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For the definition of the discontinuous Galerkin method, we introduce the semi-
linear form

B(w, v) :=

∫
Ω

S(∇w) : ∇v dx−
∫

ΓD

S(∇w)ν · v ds−
∫

Γint

〈S(∇w)ν〉 · [[v]] ds

+

∫
Γint∪ΓD

σ[[w]] · [[v]] ds, w ∈ C1(Ω, Th)d, v ∈ H1(Ω, Th)d,(2.2)

and the linear functional

(2.3) �(v) :=

∫
Ω

f · v dx +

∫
ΓD

σgD · v ds +

∫
ΓN

gN · v ds, v ∈ H1(Ω, Th)d.

Here h−1|e = h−1
e for all e ⊂ Γint ∪ΓD. Let κ ∈ Th, and let e be a (d− 1)-dimensional

face of ∂κ. The function σ, referred to as the discontinuity penalization parameter,
featured in B(·, ·) and �(·) above, is defined by

(2.4) σ|e := σe =
α

he
for e ⊂ Γint ∪ ΓD.

Here α is a positive constant whose size will be fixed later.
The discontinuous Galerkin finite element approximation of problem (1.2), (1.3)

is posed as follows: Find uDG∈Sp(Ω, Th,F) such that

(2.5) B(uDG, v) = �(v) ∀v ∈ Sp(Ω, Th,F).

If the problem were linear, our discretization would correspond to the incomplete
interior penalty method (see, for example, [9, 18]).

3. Broken G̊arding inequality. The proofs of the broken versions of the
G̊arding inequalities (1.11) and (1.13) rely on the construction of a recovery operator,
which connects each discontinuous piecewise polynomial function from Sp(Ω, Th,F) to
a continuous relative. Such an operator has been used previously in similar contexts,
for example, by Karakashian and Pascal [14] for deriving residual-based a posteriori
error estimates and by Brenner [4] for the proof of broken Korn inequalities.

Here we follow the construction used by Karakashian and Pascal [14], though we
will slightly reformulate their result. By our hypothesis H4, the family of meshes
(Th)h>0 is uniformly simplicially reducible, meaning that, for each h there exists a
regular simplicial mesh T̃h which refines Th. For example, quasi-uniform families of 1-
irregular meshes in two dimensions satisfy this property (cf. Figure 3.1 and Proposition
2 in [17]). Another important class are quasiuniform quadrilateral meshes obtained
by hierarchical refinement (cf. Proposition 3 in [17]). For such families of meshes, we
have the following result. For a proof we refer to Theorems 2.2 and 2.3 in [14] or
section 7.1 in [17].

Lemma 3.1. There exists a constant Cr, independent of h, and a linear operator
R : Sp(Ω, Th,F) → H1

D,0(Ω)d such that, for all u ∈ Sp(Ω, Th,F) and k ∈ {0, 1},

‖∇k(u−Ru)‖L2(Ω) ≤ Cr

∫
Γint∪ΓD

h1−2k|[[u]]|2 ds,(3.1)

where ∇0 = id and ∇1 = ∇.
Lemma 3.1 provides a link between discontinuous piecewise polynomial functions

and functions in H1
D,0(Ω)d. Thus, to establish a broken G̊arding inequality, we re-

place the test function v by its continuous representative Rv and estimate the error
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(a)
B
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D
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A

(d) (e)(b) (c)

Fig. 3.1. Refinement of triangular elements in the presence of hanging nodes in order to obtain
the mesh T̃h featured in hypothesis H4.

committed in doing so in terms of the jumps of v. This procedure yields the following
result.

Lemma 3.2. Let u ∈ C1(Ω)d be such that the following G̊arding inequality holds:

(3.2) a(∇u; v, v) ≥ M1‖∇v‖2
L2(Ω) −M0‖v‖2

L2(Ω) ∀v ∈ H1
D,0(Ω)d,

where M1 > 0 and M0 ≥ 0. Assume furthermore that δ ≤ M1/(4Lδ). Then, for all
Φ ∈ Zδ and h ≤ 1, the following broken G̊arding inequality holds:

a(Φ; v, v) ≥ 1
2M1‖∇v‖2

L2(Ω) − 2M0‖v‖2
L2(Ω)

−C1

∫
Γint∪ΓD

h−1|[[v]]|2 ds ∀v ∈ Sp(Ω, Th,F),(3.3)

where C1 = C1(M0,M1,Kδ, Cr) is independent of h.
Proof. Note that the definition (1.6) of Kδ implies that

a(∇u; v, w) ≤ Kδ‖∇v‖L2(Ω)‖∇w‖L2(Ω) ∀v, w ∈ H1(Ω, Th)d.

Step 1. We begin by assuming that Φ = ∇u. In this case, we then have that

a(∇u; v, v) = a(∇u;Rv,Rv) + a(∇u; v −Rv, v −Rv) + 2a(∇u; v −Rv,Rv)

≥ M1‖∇Rv‖2
L2(Ω) −M0‖Rv‖2

L2(Ω) −Kδ‖∇v −∇Rv‖2
L2(Ω)

− 2Kδ‖∇v −∇Rv‖L2(Ω)‖∇Rv‖L2(Ω)

≥ M1‖∇v + (∇Rv −∇v)‖2
L2(Ω) − 2M0‖v‖2

L2(Ω) − 2M0‖Rv − v‖2
L2(Ω)

− 3Kδ‖∇v −∇Rv‖2
L2(Ω) − 2Kδ‖∇v −∇Rv‖L2(Ω)‖∇v‖L2(Ω).

Using the inverse triangle inequality in the first term on the right-hand side of the
last inequality gives

a(∇u; v, v) ≥ M1(‖∇v‖2
L2(Ω) − 2‖∇v‖L2(Ω)‖∇v −∇Rv‖L2(Ω) + ‖∇v −∇Rv‖2

L2(Ω))

−2M0‖v‖2
L2(Ω) − 2M0‖Rv − v‖2

L2(Ω)

−3Kδ‖∇v −∇Rv‖2
L2(Ω) − 2Kδ‖∇v −∇Rv‖L2(Ω)‖∇v‖L2(Ω).

We use the ε-inequality, ab ≤ ε
2a

2+ 1
2εb

2, ε > 0, twice, with ε = ε1 > 0 and ε = ε2 > 0,
to obtain

a(∇u; v, v) ≥ (M1 − ε1M1 − ε2Kδ)‖∇v‖2
L2(Ω) − 2M0‖v‖2

L2(Ω) − 2M0‖v −Rv‖2
L2(Ω)

−(3Kδ −M1 + ε−1
1 M1 + ε−1

2 Kδ)‖∇v −∇Rv‖2
L2(Ω).(3.4)
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Step 2. Next, for each Φ ∈ Z, and v ∈ Sp(Ω, Th,F), we can use the Lipschitz
condition (1.7), which immediately implies that

a(Φ; v, v) ≥ a(∇u; v, v) − Lδ‖∇u− Φ‖L∞(Ω)‖∇v‖2
L2(Ω).

As, by hypothesis, ‖∇u − Φ‖L∞(Ω) ≤ δ, with δ ≤ M1/(4Lδ), it is straightforward to
choose ε1 and ε2 in (3.4) and to apply (3.1) in order to obtain (3.3).

4. Linearization. Before embarking on the analysis of the discontinuous
Galerkin finite element method (2.5), we prove some auxiliary results about its lin-
earization. We begin by noting that for any η, ζ ∈ R

d×d we have that

Siα(η) − Siα(ζ) =

d∑
j,β=1

(ηjβ − ζjβ)

∫ 1

0

∂Siα

∂ηjβ
(τη + (1 − τ)ζ) dτ

=

d∑
j,β=1

(ηjβ − ζjβ)

∫ 1

0

Aiαjβ(τη + (1 − τ)ζ) dτ.(4.1)

Let C1(Ω, Th)d denote the space of all d-component piecewise C1 functions, relative to
the subdivision Th, defined on Ω. Taking (4.1) as a starting point, a straightforward
computation shows that for any wi ∈ C1(Ω, Th)d, i = 1, 2, we have that
(4.2)

B(w1, v) −B(w2, v) =

∫ 1

0

b̃(w2 + τ(w1 − w2);w1 − w2, v) dτ ∀v ∈ Sp(Ω, Th,F),

where, for ϕ ∈ C1(Ω, Th)d, b̃(ϕ; ·, ·) is the bilinear form defined by

b̃(ϕ; v, w) :=

∫
Ω

d∑
i,α,j,β=1

Aiαjβ(∇ϕ)
∂wi

∂xα

∂vj
∂xβ

dx−
∫

ΓD

d∑
i,α,j,β=1

Aiαjβ(∇ϕ)wiνα
∂vj
∂xβ

ds

−
∫

Γint

d∑
i,α,j,β=1

〈
Aiαjβ(∇ϕ)να

∂vj
∂xβ

〉
[[wi]] ds +

∫
Γint∪ΓD

σ[[v]] · [[w]] ds.

In the next section, we shall use b̃ to perform a convergence analysis of the method
(2.5), where the G̊arding inequality (3.2) and the local Lipschitz continuity of b̃ w.r.t.
its first argument are crucial. We prove these three results in the following three
lemmas.

Lemma 4.1. Suppose that u ∈ C1(Ω)d satisfies the G̊arding inequality (3.2).
Then there exists α0 > 0, independent of h, such that for all α ≥ α0, for all h ∈ (0, 1],
and for all ϕ ∈ C1(Ω, Th)d, with ∇ϕ ∈ Zδ,

(4.3) b̃(ϕ; v, v) ≥ M̃1‖v‖2
1,h − 2M0‖v‖2

L2(Ω) ∀v ∈ Sp(Ω, Th,F),

where M̃1 := 1
4 min(1,M1).

Proof. For ∇ϕ ∈ Zδ fixed and v ∈ Sp(Ω, Th,F) we consider

b̃(ϕ; v, v) =

∫
Ω

d∑
i,α,j,β=1

Aiαjβ(∇ϕ)
∂vi
∂xα

∂vj
∂xβ

dx−
∫

ΓD

d∑
i,α,j,β=1

Aiαjβ(∇ϕ)viνα
∂vj
∂xβ

ds

−
∫

Γint

d∑
i,α,j,β=1

〈
Aiαjβ(∇ϕ)να

∂vj
∂xβ

〉
[[vi]] ds+

∫
ΓD

σ|v|2 ds+

∫
Γint

σ|[[v]]|2 ds

≡ T1 + T2 + T3 + T4 + T5.
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Lemma 3.2 implies that

T1 ≥ 1
2M1‖∇v‖2

L2(Ω) − 2M0‖v‖2
L2(Ω) − C1

∫
Γint∪ΓD

h−1|[[v]]|2 ds,

where C1 is independent of h and ϕ.
Next, we bound T2. Since we assumed that ∇ϕ ∈ Zδ, it follows that ∇ϕ(x) ∈ Mδ

for a.e. x ∈ Ω. Hence,

|T2| ≤ Kδ

∫
ΓD

⎛⎝ d∑
i,α,j,β=1

|vi|2|να|2
∣∣∣∣ ∂vj∂xβ

∣∣∣∣2
⎞⎠1/2

ds

≤ Kδ

(∫
ΓD

σ−1|∇v|2 ds

)1/2 (∫
ΓD

σ|v|2 ds

)1/2

,

where Kδ is defined in (1.6). Using the third of the inverse inequalities (2.1) and
recalling the definition of the penalty parameter σe on e ⊂ ΓD, we have that

|T2| ≤ Kδ(C3α
−12d)1/2

(∫
Ω

|∇v|2 dx

)1/2 (∫
ΓD

σ|v|2 ds

)1/2

,

where 2d stands for the maximum number of faces any one element may have on ΓD.
Analogously,

|T3| ≤ Kδ

∫
Γint

〈|∇v|〉 |[[v]]|ds ≤ Kδ

(∫
Γint

σ−1〈|∇v|〉2 ds

)1/2 (∫
Γint

σ[[v]]2 ds

)1/2

.

Let us note that ∫
Γint

σ−1〈|∇v|〉2 ds =
∑

e∈Eint

σ−1
e

∫
e

〈|∇v|〉2 ds,

and, for e ∈ Eint, let κ and κ′ be the two elements that share e. Then∫
e

〈|∇v|〉2 ds ≤ 1

2

∫
e

|∇v|κ|2 ds +
1

2

∫
e

|∇v|κ′ |2 ds

≤ C3

2he

∫
κ

|∇v|2 dx +
C3

2he

∫
κ′
|∇v|2 dx

≤ C3

he
max

{∫
κ

|∇v|2 dx,

∫
κ′
|∇v|2 dx

}
.

On recalling from the definition of σ that σe = α/he for e ∈ Eint, we have that∑
e∈Eint

σ−1
e

∫
e

〈|∇v|〉2 ds ≤ C3α
−1

∑
e∈Eint

max
{κ : e⊂∂κ}

∫
κ

|∇v|2 dx.

Thanks to our assumption H1 of contact regularity, it follows that no element κ can
have more than cd faces, where cd is a finite number independent of h. We have that∑

e∈Eint

σ−1
e

∫
e

〈|∇v|〉2 ds ≤ C3α
−1cd

∑
κ∈Th

∫
κ

|∇v|2 dx,
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and therefore

(4.4) |T3| ≤ Kδ(C3α
−1cd)

1/2

(∫
Ω

|∇v|2 dx

)1/2 (∫
Γint

σ[[v]]2 ds

)1/2

.

Using the lower bound on T1 and the upper bounds on T2 and T3, we thus deduce
that∫ 1

0

b̃(ϕ; v, v) dτ ≥ 1
2M1‖∇v‖2

L2(Ω) − 2M0‖v‖2
L2(Ω) +

∫
ΓD

σ|v|2 ds +

∫
Γint

σ|[[v]]|2 ds

−Kδ(C3α
−12d)1/2

(∫
Ω

|∇v|2 dx

)1/2 (∫
ΓD

σ|v|2 ds

)1/2

−Kδ(C3α
−1cd)

1/2

(∫
Ω

|∇v|2 dx

)1/2 (∫
Γint

σ|[[v]]|2 ds

)1/2

.

Applying Cauchy’s inequality ab ≤ 1
2a

2 + 1
2b

2 to the last two terms on the right-hand
side and defining Cd = cd + 2d, we have that∫ 1

0

b̃(ϕ; v, v) dτ ≥ M1

2

(
1 − K2

δC3Cd

2M1α

)∫
κ

|∇v|2 dx +
1

2

∫
Γint∪ΓD

σ[[v]]2 ds− 2M0‖v‖2
L2 .

On selecting α such that α ≥ K2
δM

−1
1 C3Cd ≡ α0, we deduce that, for all h ∈ (0, 1],

(4.3) holds.
Lemma 4.2. For each δ > 0 there exists a constant K̃δ depending only on Kδ,

C3, and cd such that, for all ϕ ∈ C1(Ω, Th)d with ∇ϕ ∈ Zδ,∣∣b̃(ϕ; v, w)
∣∣ ≤ K̃δ‖v‖1,h‖w‖1,h ∀v, w ∈ Sp(Ω, Th,F).

Proof. By the definition of Kδ, for ∇ϕ ∈ Zδ, we have that

d∑
i,α,j,β=1

∫
Ω

|Aiαjβ(∇ϕ)||∂xαvi||∂xβ
wj |dx ≤ Kδ‖∇v‖L2(Ω)‖∇w‖L2(Ω),

and, using also the fourth inverse inequality from (2.1),

d∑
i,α,j,β=1

∫
ΓD

|Aiαjβ(∇ϕ)||wi||να||∂xβ
vj |ds ≤ Kδ

∫
ΓD

|w||∇v|ds

≤ Kδ

[∫
ΓD

σ|w|2 ds

]1/2 [∫
ΓD

σ−1|∇v|2 ds

]1/2

≤ KδC(C3, cd)‖∇v‖L2(Ω)‖σ1/2w‖L2(ΓD).

Using a similar argument, we can deduce that

d∑
i,α,j,β=1

∫
Γint

∣∣∣〈Aiαjβ(∇ϕ)να∂xβ
v
〉∣∣∣∣∣[[wi]]

∣∣ ds ≤ KδC(C3, cd)‖∇v‖L2(Ω)‖σ1/2[[w]]‖L2(Γint).

The result follows by inserting these three estimates into the definition of b̃.
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Lemma 4.3. For every δ > 0 there exists a constant L̃δ, depending only on Lδ,
C3, and cd such that, for all ϕ,ψ ∈ C1(Ω, Th)d with ∇ϕ,∇ψ ∈ Zδ,∣∣b̃(ϕ; v, w)− b̃(ψ; v, w)

∣∣ ≤ L̃δ‖∇ϕ−∇ψ‖L∞(Ω)‖∇v‖L2(Ω)‖w‖1,h ∀v, w ∈ Sp(Ω, Th,F).

Proof. The proof follows precisely that of Lemma 4.2. Using the fact that the
integrands in b̃ are linear in the tensor, we can replace Aiαjβ(∇ϕ) by (Aiαjβ(∇ϕ) −
Aiαjβ(∇ψ)) and use the Lipschitz condition (1.7) instead of the bound (1.6). Fur-
thermore, the penalty terms cancel each other out, which gives ‖∇v‖L2(Ω) instead of
‖v‖1,h; see [17] for additional details.

5. The elliptic case. Throughout this section, we assume that u ∈ Hm+1(Ω)d,
with m > d/2, is a solution of (1.2), (1.3), satisfying the G̊arding inequality (1.11);
in our analysis of the discontinuous Galerkin finite element approximation to the
corresponding hyperbolic problem (1.8), we shall suppose that the weaker inequality
(3.2) holds.

The convergence analysis will be based on Banach’s fixed point theorem. We begin
by constructing a nonlinear mapping whose unique fixed point in a neighborhood of
u is the numerical solution uDG. For this purpose, let Πhu denote the finite element
interpolant, from Sp(Ω, Th,F), of the analytical solution u, defined by (Πhu)|κ :=
Πκ̂

p(u|κ ◦ Fκ) ∈ Rp(κ̂), where Πκ̂
p(u|κ ◦ Fκ) is the classical finite element interpolant

of u|κ ◦ Fκ from Rp(κ̂). We can take w1 = uDG and w2 = Πhu in the identity (4.2)
above, which gives

B(uDG, v) −B(Πhu, v) =

∫ 1

0

b̃(Πhu + τ(uDG − Πhu);uDG − Πhu, v) dτ

∀v ∈ Sp(Ω, Th,F).

Let us write

u− uDG = (u− Πhu) − (uDG − Πhu) ≡ η − ξ.

Note that since u ∈ C1(Ω)d ∩ H2(Ω)d, we have that B(u, v) = �(v) for all v in
Sp(Ω, Th,F). Hence,

B(uDG, v)−B(Πhu, v) = �(v)−B(Πhu, v) = B(u, v)−B(Πhu, v) ∀v ∈ Sp(Ω, Th,F),

and therefore, for all v ∈ Sp(Ω, Th,F),

(5.1)∫ 1

0

b̃(Πhu+ τ(uDG−Πhu);uDG−Πhu, v) dτ =

∫ 1

0

b̃(Πhu+ τ(u−Πhu);u−Πhu, v) dτ.

Upon defining the bilinear form B̃(ϕ; ·, ·) by

B̃(ϕ; v, w) :=

∫ 1

0

b̃(Πhu + τ(ϕ− Πhu); v, w) dτ,

we may rewrite (5.1) as

(5.2) B̃(uDG;uDG − Πhu, v) = B̃(u;u− Πhu, v) ∀v ∈ Sp(Ω, Th,F).

Lemmas 4.1–4.3 immediately imply that

B̃(ϕ; v, v) ≥ M̃1‖v‖2
1,h,(5.3) ∣∣B̃(ϕ; v, w)

∣∣ ≤ K̃δ‖v‖1,h‖w‖1,h, and(5.4) ∣∣B̃(ϕ; v, w) − B̃(ψ; v, w)
∣∣ ≤ L̃δ‖∇v‖L2(Ω)‖w‖1,h(5.5)

for all v, w ∈ Sp(Ω, Th,F) and ϕ,ψ ∈ Sp(Ω, Th,F) such that ∇ϕ,∇ψ ∈ Zδ.
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Let us recall our hypotheses that u ∈ Hm+1(Ω)d, with m > d/2, and that the
polynomial degree p > d/2. Let d/2 < r ≤ min(m, p), and define the following subset
of the broken Sobolev space H1(Ω, Th)d:

J :=
{
ϕ ∈ Sp(Ω, Th,F) : ‖ϕ− Πhu‖1,h ≤ C∗h

r‖u‖Hr+1(Ω)

}
,

where C∗ is a fixed positive constant, independent of h, whose actual value will be
fixed below. We note that, since Πhu ∈ J , the set J is nonempty. Further, J is
a closed, convex subset of H1(Ω, Th)d in the topology induced by the norm ‖ · ‖1,h.
Finally, we note that for each v ∈ J , using the first inverse inequality in (2.1) and
the approximation properties of Πh (see, for example, [6]), we have that

‖∇v −∇u‖L∞(Ω) ≤ ‖∇v −∇Πhu‖L∞(Ω) + ‖∇Πhu−∇u‖L∞(Ω)

≤ C∗C3h
r−d/2‖u‖Hr+1(Ω) + ‖∇Πhu−∇u‖L∞(Ω)

≤ C∗C3h
r−d/2‖u‖Hr+1(Ω) + C5h

r−d/2‖u‖Hr+1(Ω).

Since r > d/2 by hypothesis, given δ > 0, there exists h0 ∈ (0, 1] such that, for all
h ∈ (0, h0],

(5.6) ϕ ∈ J ⇒ ∇ϕ ∈ Zδ.

Motivated by the form of (5.2), we define the fixed point mapping N on J as
follows. Given ϕ ∈ J , we denote by N (ϕ) ∈ Sp(Ω, Th,F) the solution to the following
linear variational problem: Find N (ϕ) ∈ Sp(Ω, Th,F) such that

(5.7) B̃(ϕ;N (ϕ) − Πhu, v) = B̃(u;u− Πhu, v) ∀v ∈ Sp(Ω, Th,F).

Equivalently, we can restate this as follows: Find N (ϕ) ∈ Sp(Ω, Th,F) such that

B̃(ϕ;N (ϕ), v) = B̃(u;u− Πhu, v) + B̃(ϕ; Πhu, v) ∀v ∈ Sp(Ω, Th,F).

Since Sp(Ω, Th,F) is a finite-dimensional linear space, the existence and uniqueness
of a solution N (ϕ) ∈ Sp(Ω, Th,F) to problem (5.7) follows immediately from (5.3).

To prove that N maps J into itself, we test (5.7) with v = N (ϕ) − Πhu and use
(5.3) and (5.4) to obtain

M̃1‖N (ϕ) − Πhu‖2
1,h ≤ B̃(ϕ;N (ϕ) − Πhu,N (ϕ) − Πhu)

= B̃(u;u− Πhu,N (ϕ) − Πhu)

≤ K̃δ‖u− Πhu‖1,h‖N (ϕ) − Πhu‖1,h.

Using the approximation properties of the projector Πhu, we deduce that

‖N (ϕ) − Πhu‖1,h ≤ M̃−1
1 K̃δC6h

r‖u‖Hr+1(Ω).

If we define C∗ = M̃−1
1 C̃δC6, then N indeed maps J into itself. Note that, while

h0 depends on C∗, the constant C∗ does not depend on h0, and hence this seemingly
implicit construction of C∗ is correct.

It remains to show that N is a contraction of J in the norm ‖ · ‖1,h. To do so,
let us suppose that ϕ and ψ belong to J . Then

B̃(ϕ;N (ϕ) − Πhu, v) = B̃(u;u− Πhu, v) ∀v ∈ Sp(Ω, Th,F) and

B̃(ψ;N (ψ) − Πhu, v) = B̃(u;u− Πhu, v) ∀v ∈ Sp(Ω, Th,F).
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Upon subtracting the second line from the first, choosing v = N (ϕ) − N (ψ), and
using (5.3) and (5.5), we deduce that

M̃1‖N (ϕ) −N (ψ)‖2
1,h ≤ B̃(ϕ;N (ϕ) −N (ψ),N (ϕ) −N (ψ))

= B̃(ψ;N (ψ) − Πhu,N (ϕ) −N (ψ)) − B̃(ϕ;N (ψ) − Πhu,N (ϕ) −N (ψ))

≤ L̃δ‖∇ψ −∇ϕ‖L∞(Ω)‖N (ψ) − Πhu‖1,h‖N (ϕ) −N (ψ)‖1,h.

Using the first inverse inequality in (2.1), and the fact that N (ψ) ∈ J , we have that

‖N (ϕ) −N (ψ)‖1,h ≤ M̃−1
1 L̃δC3C∗h

r−d/2‖∇ϕ−∇ψ‖L2(Ω) ≤ c(h)‖ϕ− ψ‖1,h,

where c(h) = M̃−1L̃δC3C∗h
r−d/2. Since r > d/2 by hypothesis H3, there exists a

positive constant h1 ∈ (0, 1] such that c(h) < 1. Thus, for h ∈ (0,min(h0, h1)], the
mapping N is a contraction in the norm ‖·‖1,h of the closed set J . By Banach’s fixed
point theorem, N has a unique fixed point uDG in J ; in particular, by the definition
of the set J , the finite element approximation uDG of u satisfies the bound

(5.8) ‖uDG − Πhu‖1,h ≤ C∗h
r‖u‖Hr+1(Ω), d/2 < r ≤ min(m, p);

furthermore, ∇uDG ∈ Zδ for all h ∈ (0,min(h0, h1)].
Let us write a � b to express the fact that, for real numbers a and b, there exists

a positive constant C, depending on the analytical solution u but independent of the
discretization parameter h, such that a ≤ Cb for all h in a closed subinterval of [0, 1]
containing 0. We shall write a ≈ b if and only if a � b and b � a. Since

(5.9) ‖u− Πhu‖1,h ≤ C6h
r‖u‖Hr+1(Ω), d/2 < r ≤ min(m, p),

we deduce from (5.8) and (5.9) via the triangle inequality that, for all h∈ (0,min(h0, h1)],

(5.10) ‖u− uDG‖1,h � hr‖u‖Hr+1(Ω), d/2 < r ≤ min(m, p),

which is the required optimal bound on the error in the discontinuous Galerkin finite
element method.

6. The hyperbolic problem. Now consider the hyperbolic problem

∂2
t ui −

d∑
α=1

∂xα(Siα(∇u)) = fi(t, x), i = 1, . . . , d, t ∈ (0, T ], x ∈ Ω,

subject to the pair of initial conditions u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ Ω,
where u0, u1 ∈ Hm+1(Ω)d, and analogous boundary conditions as in the case of the
static problem considered earlier; that is,

(6.1)
u(t, x) = gD(t, x) on (0, T ] × ΓD and S(∇u(t, x))ν = gN(t, x) on (0, T ] × ΓN.

Since gD and gN now depend on t, so does the linear functional, which we denote by
�(t, ·) and is otherwise defined as in (2.3).

We refer to [8, 5] for theoretical results concerning the existence of a unique local
(in time) solution to (6.1), subject to the given initial conditions, in the special case
of a homogeneous Dirichlet boundary condition on Γ.

It will be assumed throughout that

u ∈ C2([0, T ]; Hm+1(Ω)d), m > (d/2) + 1.
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For simplicity, when there is no danger of confusion, we shall suppress the x-dependence
in our notation and write u(t), v(t), etc., instead of u(t, x), v(t, x), etc.; we shall, on
occasion, suppress both the x- and the t-dependence and write u, v, and so on. We
shall further suppose that, for all t ∈ [0, T ], u(t, ·) satisfies the G̊arding inequality
(3.2) for some M0 ≥ 0 and M1 > 0, both independent of t. If one assumes the
uniform monotonicity condition (1.10), then this is always true with M0 = 0. If,
on the other hand, one adopts the (considerably weaker) strong Legendre–Hadamard
condition (1.12) and ΓD = Γ, then the G̊arding inequality (3.2) holds with M1 > 0
for some M0 ≥ 0 which may depend on u(t); however, since u ∈ C2([0, T ]×Ω) by the
Sobolev embedding theorem, M0 can be chosen independent of t; cf. Theorem 6.5.1
on p. 253 of Morrey [16].

As in the elliptic case, let Mδ be defined by

Mδ := conv
{
η ∈ R

d×d : inf
x∈Ω,t∈[0,T ]

|η −∇u(t, x)| ≤ δ},

and define the constants Kδ and Lδ by the formulas (1.6) and (1.7). The set Zδ is
now given by

Zδ :=
{
Φ ∈ Cpw(Ω)d×d : min

t∈[0,T ]
‖Φ −∇u(t)‖L∞(Ω) ≤ δ

}
.

Let us consider, for t ∈ [0, T ] and p > (d/2) + 1, the (semidiscrete) discontinuous
Galerkin finite element approximation uDG(t, ·) ∈ Sp(Ω, Th,F) to u(t, ·) such that

(6.2) (üDG, v) + B(uDG, v) +

∫
Γint∪ΓD

σ[[u̇DG]] · [[v]] ds = �(t, v) +

∫
ΓD

σġDG · v ds

for all for v ∈ Sp(Ω, Th,F) and all t ∈ (0, T ], and

uDG(0, x) = u0
DG(x), u̇DG(0, x) = u1

DG(x), x ∈ Ω,

with u0
DG and u1

DG in Sp(Ω, Th,F).
We highlight the presence of the last term on the left-hand side and the second

term on the right-hand side of (6.2) which did not feature in the definition of our
discontinuous Galerkin approximation of the elliptic problem considered in the earlier
sections. The inclusion of these terms does not affect the consistency of the method.
On the other hand, they play a crucial role in ensuring the validity of energy estimates
in sufficiently strong norms. In order to highlight this point further, note that, in
an energy analysis of the discontinuous Galerkin approximation (2.5) to the elliptic
problem (1.2), (1.3), the natural choice of test function is v = uDG, while in the case
of (6.2) it is v = u̇DG, which, in turn, motivates the inclusion of the additional terms
in (6.2) compared to the elliptic case.

Let M0 ≥ 0 be the constant from (3.2). We denote by W (t) ∈ Sp(Ω, Th,F) the
nonlinear projection of u(t) defined by

B(W (t), v) + 2M0(W (t), v) = B(u(t), v) + 2M0(u(t), v)

∀v ∈ Sp(Ω, Th,F), 0 ≤ t ≤ T,

and we select u0
DG and u1

DG in Sp(Ω, Th,F) such that

‖u0
DG −W (0)‖1,h + ‖u1

DG − Ẇ (0)‖L2(Ω) � hr, (d/2) + 1 < r ≤ min(m, p).
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The existence, uniqueness, approximation properties, and differentiability with re-
spect to t of W (t) are established in Appendix A, in Lemma A.1. For the sake of
simplicity of presentation, we choose u0

DG = W (0) and u1
DG = Ẇ (0) here. By using an

argument based on Banach’s fixed point theorem, similar to the one presented in the
previous section, and stimulated by the ideas in [15], we will show the existence and
uniqueness of uDG. We shall also show that uDG converges to the analytical solution
u with optimal order as the spatial discretization parameter h converges to 0.

6.1. Definition of the fixed point map. We decompose

u− uDG = (u−W ) − (uDG −W ) ≡ η − ξ.

Then, with our choice of the numerical initial conditions u0
DG and u1

DG, we have

ξ(0) = 0 and ξ̇(0) = 0. Hence,

(ξ̈, v) + B(uDG, v) −B(W, v) +

∫
Γint∪ΓD

σ[[ξ̇]] · [[v]] ds

= (η̈, v) − 2M0(η, v) +

∫
Γint∪ΓD

σ[[η̇]] · [[v]] ds ∀v ∈ Sp(Ω, Th,F).

Upon linearization of the term B(uDG, v)−B(W, v), in terms of our earlier notation,
we have that

(ξ̈, v) +

∫ 1

0

b̃(W + τ(uDG −W );uDG −W, v) dτ +

∫
Γint∪ΓD

σ[[ξ̇]] · [[v]] ds

= (η̈, v) − 2M0(η, v) +

∫
Γint∪ΓD

σ[[η̇]] · [[v]] ds ∀v ∈ Sp(Ω, Th,F).(6.3)

As in the case of the elliptic problem, we can simplify the notation considerably
by defining the bilinear form B̃(t, ϕ; ·, ·) by

B̃(t, ϕ; v, w) :=

∫ 1

0

b̃(W (t) + τ(ϕ−W (t)); v, w) dt

and the linear functional ρ(t; ·) by

ρ(t; v) := (η̈, v) − 2M0(η, v) +

∫
Γint∪ΓD

σ[[η̇]] · [[v]] ds,

which allows us to rewrite (6.3) as

(6.4) (ξ̈, v)+ B̃(t, uDG(t); ξ, v)+

∫
Γint∪ΓD

σ[[ξ̇]] · [[v]] ds = ρ(t; v) ∀v ∈ Sp(Ω, Th,F).

We consider the set J ⊂ C1([0, T ];Sp(Ω, Th,F)) ≡ Y defined by

J :=
{
ψ ∈ Y : ‖ψ −W‖Y

:= max
t∈[0,T ]

(
‖ψ(t) −W (t)‖1,h + ‖ψ̇(t) − Ẇ (t)‖L2(Ω)

)
≤ C∗(u)hr

}
,

where C∗(u) is a positive constant and (d/2) + 1 < r ≤ min(m, p). As in the elliptic
case, by the first inverse inequality in (2.1), there exists h0 > 0 such that, for all
h ∈ (0, h0],

(6.5) ψ ∈ J ⇒ ∇ψ(t) ∈ Zδ ∀ t ∈ [0, T ].

In addition, J is a closed, convex subset of Y .
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Now, motivated by the form of (6.4) and the definition of ξ, similarly as in the
case of the elliptic problem, we are led to the following definition of the fixed point
map N on J : If ϕ ∈ J , the image uϕ = N (ϕ) ∈ C2([0, T ];Sp(Ω, Th,F)) is defined as
the solution to the following linear problem:

(6.6)
(üϕ − Ẅ , v) + B̃(t, ϕ(t);uϕ −W, v) +

∫
Γint∪ΓD

σ[[u̇ϕ − Ẇ ]] · [[v]] ds = ρ(t; v)

∀v ∈ Sp(Ω, Th,F),

with uϕ(0) = u0
DG, u̇ϕ(0) = u1

DG. Clearly, this variational form can be rewritten as
an explicit linear ordinary differential equation for uϕ, and hence N is well-defined.
Our objective now is to show, via Banach’s fixed point theorem, that the nonlinear
mapping ϕ ∈ J �→ N (ϕ) has a unique fixed point uDG ∈ J .

6.2. Auxiliary results. In the analysis of the linear problem (6.6), it will be
crucial to replace a term of the form

B̃(t, ϕ(t); ξ(t), ξ̇(t))

by a total derivative. Since B̃(t, ϕ(t); ·, ·) is not symmetric in its last two arguments,
we split B̃ into a symmetric term and a remainder which can be controlled:

(6.7) B̃(t, ϕ(t); v, w) = B̃(S)(t, ϕ(t); v, w) + B̃(A)(t, ϕ(t); v, w),

where

B̃(S)(t, ϕ(t); v, w) :=

∫ 1

0

∫
Ω

d∑
i,α,j,β=1

Aτ
iαjβ∂xαwi∂xβ

vj dx dτ +

∫
Γint∪ΓD

σ[[v]] · [[w]] ds,

and

B̃(A)(t, ϕ(t); v, w) := −
∫ 1

0

d∑
i,α,j,β=1

[∫
Γint

〈
Aτ

iαjβνα∂xβ
vj

〉
[[wi]] ds

+

∫
ΓD

Aτ
iαjβναwi∂xβ

vj ds

]
dτ,

where Aτ
iαjβ := Aiαjβ(∇W (t) + τ(∇ϕ(t) − ∇W (t))). Note that B̃(A)(t, ϕ; ·, ·) is not

skew-symmetric but asymmetric, i.e., simply, not symmetric.
Following the proof of Lemma 4.1 closely, we obtain for all ϕ ∈ J and for all

α ≥ α0, where α0 is as in Lemma 4.1,

(6.8) B̃(S)(t, ϕ(t); v, v) ≥ 1
2M1‖v‖2

1,h − 2M0‖v‖2
L2(Ω) ∀v ∈ Sp(Ω, Th,F),

and

(6.9)∣∣B̃(A)(t, ϕ(t); v, w)
∣∣ � ‖∇v‖L2(Ω)

(∫
Γint∪ΓD

σ|[[w]]|2 ds

)1/2

∀v, w ∈ Sp(Ω, Th,F).

In addition, we shall require an estimate on the expression

B̃
(S)
t (t, ϕ(t); v, w) :=

∫ 1

0

∫
Ω

d∑
i,α,j,β=1

[ d

dt
Aτ

iαjβ

]
∂xα

wi∂xβ
vj dx dτ,

v, w ∈ Sp(Ω, Th,F),
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where Aτ
iαjβ is as defined above. Upon setting

K ′
δ := ess.sup

x∈Ω,τ∈[0,1]

⎛⎝ d∑
i,α,j,β=1

∣∣∣∣ d

dt
Aτ

iαjβ

∣∣∣∣2
⎞⎠1/2

,

we deduce that ∣∣B̃(S)
t (t, ϕ(t); v, w)

∣∣ ≤ K ′
δ‖∇v‖L2(Ω)‖∇w‖L2(Ω).

To estimate K ′
δ, consider

K ′
δ = ess.sup

x∈Ω,τ∈[0,1]

⎛⎝ d∑
i,α,j,β=1

∣∣∇Aiαjβ(∇ψ(t, x))
∣∣2 |∇Ẇ (t) + τ(∇ϕ̇(t) −∇Ẇ (t))|2

⎞⎠1/2

≤Lδ

(
‖∇Ẇ (t)‖L∞(Ω) + ‖∇ϕ̇(t) −∇Ẇ (t)‖L∞(Ω)

)
.

As ϕ ∈ J , the first of the inverse inequalities (2.1), the bound (A.2), and the definition
of the set J yield

K ′
δ � ‖∇Ẇ (t)‖L∞(Ω) + h−d/2‖∇ϕ̇(t) −∇Ẇ (t)‖L2(Ω) � 1 + hr−d/2.

Combining these estimates and recalling that, by hypothesis r > (d/2) + 1 and, a
fortiori, r > d/2, we obtain for all ϕ ∈ J , for all t ∈ [0, T ], and for all h ∈ (0, 1]

(6.10)
∣∣B̃(S)

t (t, ϕ(t); v, w)
∣∣ � ‖∇v‖L2(Ω)‖∇w‖L2(Ω) ∀v, w ∈ Sp(Ω, Th,F).

Finally, we shall require an estimate on the right-hand side ρ(t; v) in (6.4). A
straightforward computation gives

|ρ(t, v)| ≤
(

2‖η̈‖2
L2(Ω) + 8M2

0 ‖η‖2
L2(Ω) +

∫
Γint∪ΓD

σ|[[η̇]]|2 ds

)1/2

(
‖v‖2

L2(Ω) +

∫
Γint∪ΓD

σ|[[v]]|2 ds
)1/2

� hr
(
‖v‖2

L2(Ω) +

∫
Γint∪ΓD

σ|[[v]]|2 ds
)1/2

,(6.11)

where we used (A.2) and (A.7) to bound the different norms of η.

6.3. Convergence analysis. For the sake of notational simplicity, we define

ξϕ = uϕ −W.

Testing (6.6) with v = ξ̇ϕ, and using the decomposition (6.7), we deduce that

(ξ̈ϕ, ξ̇ϕ) + B̃(S)(t, ϕ(t); ξϕ, ξ̇ϕ) +

∫
Γint∪ΓD

σ|[[ξ̇ϕ]]|2 ds = ρ(t; ξ̇ϕ) − B̃(A)(t, ϕ(t); ξϕ, ξ̇ϕ),

which can be rewritten as

1

2

d

dt

[
‖ξ̇ϕ‖2

L2(Ω) + B̃(S)(t, ϕ(t); ξϕ, ξϕ)
]

+

∫
Γint∪ΓD

σ|[[ξ̇ϕ]]|2 ds

= ρ(t; ξ̇ϕ) − B̃(A)(t, ϕ(t); ξϕ, ξ̇ϕ) − 1

2
B̃

(S)
t (t, ϕ; ξϕ, ξϕ).(6.12)
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On noting that ξϕ(0) = 0 and ξ̇ϕ(0) = 0, integrating the above identity in t, and
multiplying by 2, we deduce from (6.8) that, for α ≥ α0 and h ∈ (0, h0],

‖ξ̇ϕ(t)‖2
L2(Ω)+

1
2M1‖ξϕ(t)‖2

1,h − 2M0‖ξϕ(t)‖2
L2(Ω) + 2

∫ t

0

∫
Γint∪ΓD

σ|[[ξ̇ϕ(τ)]]|2 dsdτ

≤
∫ t

0

[
2|ρ(τ ; ξ̇ϕ(τ))|+2

∣∣B̃(A)(τ, ϕ(τ); ξϕ(τ), ξ̇ϕ(τ))
∣∣+ ∣∣B̃(S)

t (τ ;ϕ(τ); ξϕ, ξϕ)
∣∣] dτ.(6.13)

Next we estimate the terms on the right-hand side, using (6.11), (6.9), and (6.10).
Transferring the term 2M0‖ξϕ(t)‖2

L2(Ω) to the right-hand side, we obtain

‖ξ̇ϕ(t)‖2
L2(Ω) + 1

2M1‖ξϕ(t)‖2
1,h + 2

∫ t

0

∫
Γint∪ΓD

σ|[[ξ̇ϕ(τ)]]|2 dsdτ

� ‖ξϕ(t)‖2
L2(Ω) + hr

∫ t

0

[
‖ξ̇ϕ(τ)‖2

L2(Ω) +

∫
Γint∪ΓD

σ|[[ξ̇ϕ(τ)]]|2 ds
]1/2

dτ

+

∫ t

0

‖∇ξϕ(τ)‖L2(Ω)

[ ∫
Γint∪ΓD

σ|[[ξ̇ϕ(τ)]]|2 ds
]1/2

dτ +

∫ t

0

‖∇ξϕ(τ)‖2
L2(Ω) dτ.(6.14)

Using ξϕ(0) = 0, the first term on the right-hand side can be estimated by

‖ξϕ(t)‖2
L2(Ω) =

∥∥∥∥∫ t

0

ξ̇ϕ(τ) dτ

∥∥∥∥2

L2(Ω)

≤ T

∫ t

0

‖ξ̇ϕ(τ)‖2
L2(Ω) dτ.

Terms containing integrals over [0, t]× (Γint ∪ ΓD) in (6.14) can be absorbed into the
third term on the left-hand side of (6.14) by apply the ε-inequality with sufficiently
small ε (but independent of h). After normalization, we obtain

‖ξ̇ϕ(t)‖2
L2(Ω) + ‖ξϕ(t)‖2

1,h +

∫ t

0

∫
Γint∪ΓD

σ|[[ξ̇ϕ(τ)]]|2 dsdτ

� h2r +

∫ t

0

[
‖ξ̇ϕ(τ)‖2

L2(Ω) + ‖∇ξϕ(τ)‖2
L2(Ω)

]
dτ.(6.15)

Hence, an application of Gronwall’s lemma gives

max
t∈[0,T ]

‖N (ϕ)(t) −W (t)‖Y � hr,

which allows us to deduce the existence of a constant C∗ = C∗(u), independent of h,
such that, for h ≤ h0, N maps J into itself.

Remark 1. Since our strategy for proving that N maps J into itself was very
similar to the one presented for the case of the quasi-linear elliptic problem considered
earlier, we were more concise here than in the corresponding discussion for the elliptic
problem. In particular, unlike our detailed analysis in the case of the elliptic problem
where we made a deliberate effort to carefully track the constants in the bounds so as
to be able to explicitly specify the value of the constant C∗ featured in the definition
of the set J , here, for the sake of brevity, we refrained from doing so. As a matter
of fact, the corresponding constant C∗ can be found in an identical manner as in the
case of the elliptic problem.
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Next we prove that N is a contraction of J in the norm ‖ · ‖Y . For this purpose,
consider uϕ = N (ϕ) ∈ J and uψ = N (ψ) ∈ J defined analogously. Setting ξϕ =
uϕ −W and ξψ = uψ −W , we have that

(ξ̈ϕ, v) + B̃(t, ϕ; ξϕ, v) +

∫
Γint∪ΓD

σ[[ξ̇ϕ]] · [[v]] ds = ρ(t; v), and

(ξ̈ψ, v) + B̃(t, ψ; ξψ, v) +

∫
Γint∪ΓD

σ[[ξ̇ψ]] · [[v]] ds = ρ(t; v) ∀v ∈ Sp(Ω, Th,F),

subject to ξϕ(0) = ξψ(0) = 0 and ξ̇ϕ(0) = ξ̇ψ(0) = 0. By subtracting the second line
from the first line, and testing with

v = ξ̇ϕ − ξ̇ψ = u̇ϕ − u̇ψ ≡ ė,

where e = uϕ − uψ, we obtain

(ë, ė) + B̃(t, ϕ; e, ė) +

∫
Γint∪ΓD

σ|[[ė]]|2 ds = B̃(t, ψ; ξψ, ė) − B̃(t, ϕ; ξψ, ė).

By virtue of Lemma 4.3,∣∣B̃(t, ψ; ξψ, ė) − B̃(t, ϕ; ξψ, ė)
∣∣ � ‖∇ϕ−∇ψ‖L∞(Ω)‖ξψ‖1,h‖ė‖1,h.

Thus, by using the same procedure as in the proof of the inclusion N (J ) ⊂ J , we
obtain

‖ė(t)‖2
L2(Ω) + ‖e(t)‖2

1,h +

∫ t

0

∫
Γint∪ΓD

σ|[[ė(τ)]]|2 dsdτ

�
∫ t

0

[
‖ė(τ)‖2

L2(Ω) + ‖∇e(τ)‖2
L2(Ω)

]
dτ

+

∫ t

0

‖∇ϕ(τ) −∇ψ(τ)‖L∞(Ω)‖ξψ(τ)‖1,h‖ė(τ)‖1,h dτ.(6.16)

As uψ ∈ J , we have maxt∈[0,T ] ‖ξψ(t)‖1,h ≤ C∗h
r, and, by the first inequality in (2.1),

we also have that

‖∇ϕ(τ) −∇ψ(τ)‖L∞(Ω) � h−d/2‖∇ϕ(τ) −∇ψ(τ)‖L2(Ω).

The only term on the right-hand side of (6.16) which cannot be directly controlled by
any of the terms featured on the left-hand side of (6.16) is ‖ė(τ)‖1,h. Employing the
second inverse inequality in (2.1), we handle this term as follows:

‖ė(τ)‖2
1,h = ‖∇ė(τ)‖2

L2(Ω) +

∫
Γint∪ΓD

σ|[[ė(τ)]]|2 ds

� h−2‖ė(τ)‖2
L2(Ω) +

∫
Γint∪ΓD

σ|[[ė(τ)]]|2 ds.

Inserting these bounds into (6.16), we obtain

‖ė(t)‖2
L2(Ω) + ‖e(t)‖2

1,h +

∫ t

0

∫
Γint∪ΓD

σ|[[ė(τ)]]|2 dsdτ

�
∫ t

0

[
‖ė(τ)‖2

L2(Ω) + ‖e(τ)‖2
1,h

]
dτ + hr−d/2−1

∫ t

0

‖∇ϕ(τ) −∇ψ(τ)‖L2(Ω)

×
[
‖ė(τ)‖2

L2(Ω) + h

∫
Γint∪ΓD

σ|[[ė(τ)]]|2 ds

]1/2

dτ.
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Thus, by applying to the two last terms on the right-hand side of the ε-inequality
ab ≤ ε

2a
2 + 1

2εb
2, with ε > 0 sufficiently small, we deduce from Gronwall’s lemma that

‖u̇ϕ(t) − u̇ψ(t)‖2
L2(Ω) + ‖uϕ(t) − uψ(t)‖2

1,h � h2(r−d/2−1)

∫ t

0

‖∇ϕ(τ) −∇ψ(τ)‖2
L2(Ω) dτ

� h2(r−d/2−1)‖ϕ− ψ‖2
Y ,

and thereby

‖N (ϕ) −N (ψ)‖Y � hr−d/2−1‖ϕ− ψ‖Y ∀ϕ,ψ ∈ J ,

which, in turn, implies that, for h sufficiently small, N is a contraction of J into
itself in the norm ‖ ·‖Y . Therefore, by Banach’s fixed point theorem, for h sufficiently
small, N has a unique fixed point, uDG ∈ J , the semidiscrete discontinuous Galerkin
finite element approximation to u defined by (6.2). In other words, for h sufficiently
small,

max
t∈[0,T ]

(
‖u̇DG(t) − Ẇ (t)‖L2(Ω) + ‖uDG(t) −W (t)‖1,h

)
≤ C∗(u)hr,

(d/2) + 1 < r ≤ min(m, p).

Combining the last bound with (A.1) and (A.7) we then deduce, for h sufficiently
small, that

max
t∈[0,T ]

(
‖u̇(t) − u̇DG(t)‖L2(Ω) + ‖u(t) − uDG(t)‖1,h

) � hr,

(d/2) + 1 < r ≤ min(m, p),

which is the desired optimal convergence estimate.

7. Extensions to other methods. It is straightforward to extend our error
analysis to different discontinuous finite element methods. Note, for example, that in
the elliptic case only Lemmas 4.1–4.3 are method-dependent. Once they are estab-
lished, the remaining analysis is independent of the particular form of discretization
used. We shall demonstrate this through the example of the discontinuous Galerkin
finite element method (DGFEM) of Eyck and Lew [10], which is a particularly at-
tractive candidate for variational problems since it is defined via a discrete energy
principle.

The idea is to use the lifting operator introduced in [2] to find a gradient repre-
sentation for the jumps across element interfaces to define a discontinuous Galerkin
(DG) gradient operator. More precisely, for v ∈ Sp(Ω, Th,F), let

∇DGv = ∇v + R(v),

where R : Sp(Ω, Th,F) → Cpw(Ω)d×d is defined by∫
Ω

R(v) : F dx = −
∫

Γint

[[v]] · 〈F νint〉 ds ∀F ∈ Sp(Ω, Th,F)
d
.

We shall also use ∇iα
DG to denote the (i, α) component of ∇DG. It is straightforward to

show that R is a bounded operator; more precisely,

(7.1) ‖R(v)‖L2(Ω) ≤ CL

(∫
Γint

σ|[[v]]|2 dx

)1/2

∀v ∈ Sp(Ω, Th,F),
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where CL is independent of h. Using the definition of the DG gradient, we define the
discrete functional Jh : Sp(Ω, Th,F) → R by

Jh(v) =

∫
Ω

[
W (∇DGv)− f · v

]
dx−

∫
ΓN

gN · v ds+

∫
Γint

σ|[[v]]|2 ds+

∫
ΓD

σ|v− gD|2 ds,

as an approximation to the functional J defined in (1.1). The resulting DGFEM
for (1.2) is simply the Euler–Lagrange equation δJh(uDG) = 0, where δJh, the first
variation of Jh, is given by

δJh(ϕ; v) =

∫
Ω

d∑
i,α=1

Siα(∇DGϕ)∇i,α
DG v dx +

∫
Γint∪ΓD

σ[[ϕ]] · [[v]] ds− �(v),

where �(v) is defined as in (2.3). Since R(u) = 0 if u is continuous on Ω, the method
is consistent. Similarly, the second variation of Jh is defined by

δ2Jh(ϕ; v, w) =

∫
Ω

d∑
i,α,j,β=1

Aiαjβ(∇DGϕ)∇i,α
DG v ∇j,β

DG w dx +

∫
Γint∪ΓD

σ[[v]] · [[w]] ds.

Suppose that u ∈ C1(Ω) satisfies (3.2). While Lemma 3.2 cannot be applied directly,
it is nevertheless straightforward to modify its proof to obtain for h ≤ 1, α ≥ α0 =
α0(Cr,Kδ,M1,M0), and for all ϕ ∈ Sp(Ω, Th,F) such that ‖∇DGϕ−∇u‖L∞(Ω) ≤ δ ≤
M1/(4Lδ)

(7.2) δ2Jh(ϕ; v, v) ≥ 1
2M1‖v‖2

1,h − 2M0‖v‖2
L2(Ω) ∀v ∈ Sp(Ω, Th,F).

The boundedness and Lipschitz continuity of ϕ �→ δ2Jh(ϕ; ·, ·) over the set of all ϕ
such that ∇DGϕ ∈ Mδ can be obtained precisely as in Lemma 4.2 and 4.3. Using (7.1)
we can again deduce that for h ≤ h0

ϕ ∈ J ⇒ ‖∇DGϕ−∇u‖L∞(Ω) ≤ δ,

and thus, the convergence analysis of section 5 can be repeated verbatim to obtain
the existence of a solution uDG to δJh(uDG; v) = 0 for all v ∈ Sp(Ω, Th,F), satisfying
the optimal-order error estimate (5.10).

The analysis in the hyperbolic case can be generalized just as easily. The DGFEM
based on the energy principle outlined above reads: For t ∈ (0, T ] find uDG(t, ·) ∈
Sp(Ω, Th,F) such that

(7.3)

(üDG, v)+δJh(uDG; v)+

∫
Γint∪ΓD

σ[[u̇DG]]·[[v]] ds =

∫
ΓD

σġD·v ds ∀v ∈ Sp(Ω, Th,F).

Upon defining

B̃(t, ϕ(t); v, w) =

∫ 1

0

δ2Jh(W (t) + τ(ϕ(t) −W (t)); v, w) dτ,

the analysis proceeds almost exactly as in section 6. The only difference now is that,
since B̃(t, ϕ(t); ·, ·) is symmetric, we do not have to split it into a symmetric and an
asymmetric part. Instead of (6.12), we will obtain

1

2

d

dt

[
‖ξ̇ϕ‖2

L2 +B̃(t, ϕ(t); ξϕ, ξϕ)
]
+

∫
Γint∪ΓD

σ|[[ξ̇ϕ]]|2 ds = ρ(t; ξ̇ϕ)− 1

2
B̃t(t, ϕ(t); ξϕ, ξϕ).



DGFE APPROXIMATION OF NONLINEAR SYSTEMS 1393

From the Lipschitz continuity of ϕ �→ δ2Jh(ϕ; ·, ·) on J , we immediately obtain the
bound on B̃t equivalent to (6.10), and we can thus proceed as in section 6.3 to prove
the existence of a solution to (7.3) and an optimal error bound, identical to the one
we had previously established.

8. Conclusions. We derived optimal-order convergence estimates in the broken
H1 norm for discontinuous Galerkin finite element approximations to second-order
quasi-linear elliptic and hyperbolic systems of partial differential equations, using
piecewise polynomials of degree p > d/2 in the elliptic case and of degree p > d/2 + 1
in the (spatially semidiscrete) hyperbolic case, where d is the spatial dimension of
the problem. In the physically relevant cases of d = 2 and d = 3, these correspond
to assuming that p ≥ 2 and p ≥ 3, respectively. These technical restrictions were
also present in the work of Makridakis [15], whose techniques we have employed
here. They occur, since we have used the inverse estimate (2.1) in order to obtain
L∞ bounds for elements of the set J defined, respectively, in sections 5 and 6.1,
which in turn are required to obtain the uniform G̊arding inequality of Lemma 3.2.
However, we have reason to believe that the methods considered remain optimally
convergent in the energy norm in these excluded cases as well; certainly, this is true
for the nonlinear elliptic problem in the special case when the nonlinearity η �→ S(η)
is globally Lipschitz continuous and uniformly monotone (see [12]). The same state-
ment would also follow immediately if one could prove directly, without involving
the first inverse inequality in (2.1), that ∇uDG is sufficiently close to ∇u in the
L∞-norm.

The main contribution of the paper is that these optimal-order, O(hp), conver-
gence rates have been proved without assuming that the nonlinear coefficient S(∇u)
appearing in the principal part of the operator is globally Lipschitz continuous or
uniformly monotone (cf. (1.10)); instead, we assumed only local Lipschitz continuity
of S and the G̊arding inequality (3.2).

The main body of the paper was devoted to an analysis of the incomplete interior
penalty method [9, 18]. However, we have demonstrated in section 7, where we showed
how to extend all results to the variational DGFEM of Eyck and Lew [10], that
the framework which we had developed should apply to virtually any discontinuous
Galerkin discretization of the quasi-linear elliptic and hyperbolic equations considered.
The crucial step is a proof of the coercivity estimate (5.3), using (a variation of) the
broken G̊arding inequality, stated in Lemma 3.2.

We note that all of our results can be straightforwardly extended to quasi-linear el-
liptic and hyperbolic partial differential equations where S(∇u) is replaced by S(u,∇u)
under the same hypotheses; the presence of the lower-order nonlinearity causes no ad-
ditional technical difficulties.

As our key objective here was to understand the analysis of discontinuous Galerkin
approximations of locally Lipschitz spatial nonlinearities in quasi-linear elliptic and
hyperbolic systems, we did not discuss fully discrete discontinuous Galerkin finite
element approximations of quasi-linear hyperbolic problems. The convergence analysis
of fully discrete schemes can be carried out using very similar theoretical tools to those
presented here. We refer to [15], for example, for the corresponding analysis in the
case of spatially H1

0-conforming finite element methods which may serve as a starting
point for further analytical considerations in that direction.

Appendix A. Bounds on the nonlinear projection error. The purpose of
this section is to derive the required bounds on the error between a function u and
its nonlinear elliptic projection W .
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Lemma A.1. Let u ∈ C2([0, T ]; Hm+1(Ω)d), m > d/2 + 1, satisfy (3.2) with
constants M1 > 0 and M0 ≥ 0 which are independent of t. Suppose also that the
family {Th}h>0 satisfies H1–H4 of section 2. Then there exists h0 > 0 such that for
h ≤ h0 there exists a solution W (t) ∈ Sp(Ω, Th,F) to the nonlinear equation

B(W (t); v) + 2M0(W (t), v) = B(u(t); v) + 2M0(u(t), v) ∀v ∈ Sp(Ω, Th,F).

Furthermore, t �→ W (t) is twice differentiable in [0, T ] and satisfies

‖u(t) −W (t)‖1,h ≤ Cph
r,(A.1)

‖u̇(t) − Ẇ (t)‖1,h ≤ C ′′
ph

r, and(A.2)

‖ü(t) − Ẅ (t)‖1,h ≤ C ′′
ph

r,(A.3)

where Cp, C
′
p, and C ′′

p are constants independent of h and t.
We skip the proof of existence of W (t) and of the bound (A.1) which can be

established by identical arguments to those in section 5 (see [17] for details). The
proofs of (A.2) and (A.3) are given in the following two sections.

A.1. Bounds on u̇ − Ẇ . Having established the existence of the nonlinear
projection W (t) of u(t) for t ∈ [0, T ], we next prove the differentiability of the mapping
t �→ W (t). Suppose that U ∈ Sp(Ω, Th,F) and t ∈ [0, T ]. The mapping V �→
B(U, V )−B(u(t), V )+2M0(U−u(t), V ) is a bounded linear functional on Sp(Ω, Th,F);
hence, by the Riesz representation theorem, there exists a unique (Riesz representer)
B(t, U) ∈ Sp(Ω, Th,F) such that

(B(t, U), V ) = B(U, V ) −B(u(t), V ) + 2M0(U − u(t), V ) ∀V ∈ Sp(Ω, Th,F).

This defines the (nonlinear) mapping

B : (t, U) ∈ [0, T ] × Sp(Ω, Th,F) �→ B(t, U) ∈ Sp(Ω, Th,F).

It follows from the linearization process in section 4 and from Lemma 4.1 that the
derivative of (t, U) �→ B(t, U) with respect to U , evaluated at U = W (t), exists and is
invertible for any t ∈ [0, T ]. Note, furthermore, that B(t,W (t)) = 0. Since t �→ u(t)
is differentiable, it follows that (t, U) �→ B(t, U) is differentiable in a neighborhood of
(t0,W (t0)) for any t0 ∈ (0, T ). We then deduce from the implicit function theorem
that t �→ W (t) is differentiable in (0, T ).

Set

u(t) −W (t) = (u(t) − Πhu(t)) − (W (t) − Πhu(t)) ≡ η − ξ.

We begin by noting that, according to the definition of W (t),

B̃(t,W (t); ξ, v) + 2M0(ξ, v) = B̃(t, u(t); η, v) + 2M0(η, v) ∀v ∈ Sp(Ω, Th,F),

where

B̃(t, ϕ; v, w) =

∫ t

0

b̃(Πhu(t) + τ(ϕ− Πhu(t)); v, w) dτ.

After differentiation with respect to t, we obtain

(A.4)
B̃(t,W (t); ξ̇(t), v) + 2M0(ξ̇(t), v) = B̃(t, u(t); η̇(t), v) − B̃t(t,W (t); ξ(t), v)

+ B̃t(t, u(t); η(t), v),
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where

B̃t(t, ϕ(t); v, w) =
d

dt
B̃(t, ϕ(t); v, w) =

∫ 1

0

∫
Ω

d∑
i,α,j,β=1

[ d

dt
Aτ

iαjβ

]
∂xα

wi∂xβ
vj dx dτ

for v, w ∈ Sp(Ω, Th,F), and Aτ
iαjβ is as before.

Arguing as in the proof of the bound (6.10), we obtain

(A.5)∣∣B̃t(t, ϕ(t); v, w)
∣∣ � (

‖∇Πhu̇(t)‖L∞(Ω) + ‖∇ϕ̇(t) −∇Πhu̇(t)‖L∞(Ω)

)
‖v‖1,h‖w‖1,h

for all ϕ ∈ Zδ. We note that

‖∇Πhu̇(t)‖L∞(Ω) ≤ ‖∇u̇(t)‖L∞(Ω) + C5h
r−d/2‖u̇‖Hr+1(Ω) � 1,

where, in the last inequality, we made use of hypothesis H3 whereby r > (d/2) + 1,
and, a fortiori, r > d/2.

In order to bound the last two terms in (A.4) we shall need to consider two specific
choices of ϕ in (A.5): ϕ = W and ϕ = u. For the case of ϕ = W in (A.5), we shall use
the following bound, which results on applying the first inverse inequality in (2.1):

‖∇Ẇ (t) −∇Πhu̇(t)‖L∞(Ω) �h−d/2‖∇Ẇ (t) −∇Πhu̇(t)‖L2(Ω)

�h−d/2‖Ẇ (t) − Πhu̇(t)‖1,h≈h−d/2‖ξ̇‖1,h.

On the other hand, for the case of ϕ = u, we shall use the bound

‖∇u̇(t) −∇Πhu̇(t)‖L∞(Ω) � C5h
r−d/2‖u̇(t)‖H1(Ω).

Thus, we obtain∣∣B̃t(t,W (t); ξ, v)
∣∣ � (

1 + h−d/2‖ξ̇‖1,h

)
‖ξ‖1,h‖v‖1,h and∣∣B̃t(t, u(t); η, v)

∣∣ � ‖η‖1,h‖v‖1,h.

Upon testing (A.4) with v = ξ̇(t) and using (5.4) on the first term on its right-hand
side, we obtain

‖ξ̇(t)‖2
1,h � ‖η̇‖1,h‖ξ̇‖1,h + ‖η‖1,h‖ξ̇‖1,h + ‖ξ‖1,h‖ξ̇‖1,h + h−d/2‖ξ‖1,h‖ξ̇‖2

1,h

� hr‖ξ̇‖1,h + hr−d/2‖ξ̇‖2
1,h,

where we also used the approximation properties of Πh and estimate (A.1). Since
r > d/2, there exists h2 ∈ (0,min(h0, h1)] such that for h ∈ (0, h2] the coefficient of
‖ξ̇‖2

1,h on the right-hand side is less than or equal to 1
2 . We can therefore bring this

term to the left-hand side and divide by 1
2‖ξ̇‖1,h to finally obtain

‖ξ̇‖1,h = ‖Ẇ (t) − Πhu̇(t)‖1,h � hr

for (d/2) + 1 < r ≤ min(m, p), from which (A.2) follows immediately on invoking the
approximation properties of Πh.
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A.2. Bounds on η̈ = ü− Ẅ . By proceeding in an identical manner as in the
previous section we find that the mapping t �→ Ẇ (t) is differentiable on (0, T ), and
we get, for (d/2) + 1 < r ≤ min(m, p), that

‖Ẅ (t)−Πhü(t)‖1,h � hr
(
‖u(t)‖Hr+1(Ω) + ‖u̇(t)‖Hr+1(Ω) + ‖ü(t)‖Hr+1(Ω)

)
, h ∈ (0, h2].

Invoking, once again, the approximation properties of Πh, we deduce from the triangle
inequality that, for (d/2) + 1 < r ≤ min(m, p), (A.3) holds.

Technically, the only additional step in this argument in comparison with that in
the previous section is to establish a bound, similar to (A.5), on the term

B̃tt(t, ϕ(t); v, w) =
d2

dt2
B̃(t, ϕ(t); v, w)

for ϕ ∈ Zδ. Here we require a uniform bound on the fourth derivative of W , i.e., on
the second derivatives

∂2

∂ηγk∂ηιm
Aiαjβ(η)

for η ∈ Mδ and can otherwise argue similarly as in the proof of (6.10); hence our
assumption W ∈ C4(Rd×d; R) on the regularity of the stored energy function W was
adopted in the introductory section of the paper.

A.3. L2-bounds. Since, by hypothesis H4, the family {Th}h>0 is uniformly
simplicially reducible (cf. also section 3), the broken Friedrichs inequality (cf. [3])
implies the existence of a positive constant C, independent of h, such that

(A.6) ‖v‖2
L2(Ω) ≤ C‖v‖2

1,h ∀v ∈ Sp(Ω, Th,F).

Here the constant C depends only on certain shape-regularity properties of the family
{Th}h>0, the penalty parameter α, and the Friedrichs constant for H1

D,0(Ω).
In fact, (A.6) can also be obtained from Lemma 3.1, in which case the correspond-

ing constant C would depend on the constant Cr, the penalty parameter α, and the
Friedrichs constant for H1

D,0(Ω).
Either way, on applying (A.6) to (A.1)–(A.3), we obtain

(A.7) ‖W (t) − u(t)‖L2(Ω) + ‖Ẇ (t) − u(t)‖L2(Ω) + ‖Ẅ (t) − ü(t)‖L2(Ω) � hr.

While this bound is not optimal (the optimal rate would be r + 1 rather than r), it
is entirely adequate for the purposes of deriving an optimal bound on u− uDG in the
energy norm ‖ · ‖Y .
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Abstract. One of the most efficient methods for determining the equilibria of a continuous
parameterized family of differential equations is to use predictor-corrector continuation techniques.
In the case of partial differential equations this procedure must be applied to some finite-dimensional
approximation, which of course raises the question of the validity of the output. We introduce a
new technique that combines the information obtained from the predictor-corrector steps with ideas
from rigorous computations and verifies that the numerically produced equilibrium for the finite-
dimensional system can be used to explicitly define a set which contains a unique equilibrium for
the infinite-dimensional partial differential equation. Using the Cahn–Hilliard and Swift–Hohenberg
equations as models we demonstrate that the cost of this new validated continuation is less than
twice the cost of the standard continuation method alone.
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1. Introduction. The first step in understanding the dynamics of a nonlinear
system of differential equations

(1.1) ut = f(u, ν)

on a Hilbert space is to identify the set of equilibria E := {(u, ν) | f(u, ν) = 0}. For
many applications this can only be done using numerical methods. In particular,
continuation provides an efficient technique for determining elements on branches of
E . Recall that this method involves a predictor and corrector step: given, within a
prescribed tolerance, an equilibrium u0 at parameter value ν0, the predictor step pro-
duces an approximate equilibrium ũ1 at nearby parameter value ν1, and the corrector
step, often based on a Newton-like operator, takes ũ1 as its input and produces, once
again within the prescribed tolerance, an equilibrium u1 at ν1.

With any numerical method there is the question of validity of the output as
compared with the cost of computation. The goal of this paper is to argue that for
a large and important class of partial differential equations (PDEs) the cost of vali-
dating the existence and uniqueness of equilibria is small when compared to the cost
of identifying potential equilibria by means of a continuation method. Our interest
in this question was motivated by the increasing development of computer-assisted
proofs in the dynamics of infinite-dimensional systems (see [3], [10] and the references
therein). As mathematicians we are willing to argue forcefully for the importance
of rigorous verification and thus marginalize the cost. However, in reality for many
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applications, researchers are often interested in investigating a variety of model PDEs
at a multitude of parameter values to gain scientific insight rather than an answer
to a particular question. This places a premium on minimizing computational cost,
often leading to acceptance of the validity of numerical results simply based upon the
reproducibility of the result at different levels of refinement. As we shall argue, the
results of this paper suggest that this dichotomy need not exist, and we provide ex-
amples wherein it is demonstrated that by judicious use of the computations involved
in the continuation method it is cheaper to validate the results than to reperform the
continuation computation. We refer to the method we propose as validated continua-
tion. As is made clear towards the end of the introduction, validated continuation is
slightly weaker and computationally cheaper than rigorous continuation.

To the best of our knowledge this is the first attempt to integrate the techniques
of rigorous computations with a continuation method; thus we focus on a clear pre-
sentation of the ideas as opposed to presenting the results in the most general possible
setting. We make use of spectral methods, as they provide us with considerable control
on truncation errors. To be more precise, assume that (1.1) takes the form

(1.2) ut = L(u, ν) +

d∑
p=0

cp(ν)up,

where L(·, ν) is a linear operator at parameter value ν and d is the degree of the
polynomial nonlinearity. Typically, c1(ν) = 0 since linear terms are grouped under
L(·, ν). Expanding (1.2) using an orthogonal basis chosen appropriately in terms
of the eigenfunctions of the linear operator L(·, ν), the particular domain, and the
boundary conditions results in a countable system of differential equations on the
coefficients of the expanded solution.

To simplify the exposition, let us assume the expansion takes the form

(1.3) u̇k = fk(u, ν) := μkuk +

d∑
p=0

∑
∑

ni=k

(cp)n0un1 · · ·unp , k = 0, 1, 2, . . . ,

where μk = μk(ν) are the parameter-dependent eigenvalues of L(·, ν), and {un} and
{(cp)n} are the coefficients of the corresponding expansions of the functions u and
cp(ν), respectively, with un = u−n and (cp)n = (cp)−n for all n. In order to simplify
the notation, for a fixed parameter ν, we use f(u) to denote f(u, ν). The continua-
tion method is applied to the m-dimensional system of ordinary differenial equations
(ODEs) of the form

(1.4) u̇k = μkuk +

d∑
p=0

∑
∑

ni=k
|ni|<m

(cp)n0un1 · · ·unp , k = 0, 1, . . . ,m− 1,

obtained by performing a Galerkin projection on (1.3). It is this truncation that intro-
duces the most substantial concern for the validity of the results of the continuation
method. In section 3 we present estimates that provide us with bounds on the errors.
We obtain these bounds under the assumption of power decay rates in the coefficients
{un}. Of course, such decay rates are directly related to the spatial smoothness of the
equilibria, which in turn is governed, at least in part, by the linear operator L(·, ν).

The theoretical justification for our proof of existence and uniqueness of equi-
libria is based on a componentwise version of the Banach fixed point theorem (see
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Theorem 2.1), which itself represents a minor modification of a result of Yamamoto
[9, Theorem 2.1]. A similar formulation can also be found in [4]. Recall that to apply
the Banach fixed point theorem one must have a contraction mapping T : X → X.
With this in mind, we can state that it is appropriate to view our approach as a
method by which the Newton-like iteration of the corrector step in the continuation
process is used to construct a set X and the above estimates are used to verify that an
appropriate generalization of the Newton-like operator is in fact a contraction. More
precisely, let ū be a numerical zero obtained from (1.4). In the orthogonal basis used
to obtain (1.3) consider the set X = ū + W (r) of ū, where W (r) is of the form

W (r) =
m−1∏
k=0

[−r, r] ×
∞∏

k=m

[
−As

ks
,
As

ks

]
.

Observe that s indicates the decay rate of the coefficients and r is referred to as
the validation radius. Our strategy, described in detail in section 3, is to produce
a set of radii polynomials, {Pk(r)}k=0,1,..., whose coefficients are given explicitly in
terms of the constants As, s, and (1.3). Theorem 3.4 guarantees that if there exists
a validation radius r > 0 such that Pk(r) < 0 for all k, then there exists a unique
equilibrium solution to (1.2) in the set X = ū + W (r) built around the numerical
equilibrium ū produced by the continuation procedure. It is important to note that
the conditions of Theorem 3.4 can be checked with a finite number of calculations.

As is indicated above the focus of this paper is on the computational efficacy of
validated continuation and hence the following organization of the material. Section 2
contains the statement and proof of the aforementioned componentwise version of the
Banach fixed point theorem, Theorem 2.1, without any indication of how this result
can be used in practice. Section 3 provides the opposite extreme, an explicit set
of formulas and steps and the assertion that their successful implementation leads,
via Theorem 3.4, to the existence of a unique equilibrium in a specified set. The
justification of this assertion and the relationship between Theorems 2.1 and 3.4 is
presented in section 6. However, presenting the formulae in this fashion has two
advantages. First, they contain all the necessary information should the reader wish
to independently code and test the techniques suggested in this paper. Second, it
allows for the presentation in section 4 of the comparison of the computational costs
between traditional and validated continuation.

It should be emphasized that how one should best compare the costs between
the two methods of continuation is not completely clear. In the standard approach
m, the dimension of the system on which continuation is performed, is fixed. Thus
traditionally a particular Galerkin projection dimension is chosen and continuation
is performed. The results are checked by choosing a higher-dimensional projection,
reperforming the continuation, and then deciding if the two calculations agree within
a certain level of numerical tolerance. In validated continuation, m becomes a vari-
able. In particular, if validation fails, then one has the option of choosing a higher-
dimensional Galerkin projection. Equally important, failure of validation may be an
indication that a higher-dimensional projection is necessary. In summary, validated
continuation provides an internal check of consistency on the dimension of truncation
from the infinite- to finite-dimensional problem, a feature which is not present in the
traditional application of continuation methods.

With this in mind we have chosen to compare the computational costs as follows.
First we restrict our attention to cubic nonlinearities. As is made clear by the formu-
lae of section 3, in this case the cost of evaluating the nonlinearities and performing
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Newton’s method are both of order m3. Thus, we can obtain a rough bound on the
ratio of the cost of traditional versus validated continuation by counting the number
of m3 operations which need to be performed. These calculations suggest that for
fixed m the cost of validated continuation is less than twice the cost of traditional
continuation, that is, it appears that it is cheaper to perform validated continuation
than to perform traditional continuation and then check it against continuation per-
formed on a higher-dimensional projection. In section 5 this estimate is tested against
actual computations for the Swift–Hohenberg equation and the Cahn–Hilliard equa-
tion. To ensure that these comparisons are fair, we employ standard floating point
computations in both cases.

This last point raises an important distinction: validated continuation versus
rigorous continuation. Using floating point calculations at all steps of the validated
continuation does not allow one to control for roundoff errors, and hence one cannot
rigorously conclude the existence of an equilibrium. Because the current computer
technology treats floating point and interval arithmetic differently we chose not to
make and present timed comparisons between the two for this paper. However, if
specific steps in the validation argument are performed using interval arithmetic,
then one obtains rigorous results on the existence of equilibria. Results of this type
are presented in section 5 for a branch of equilibria of the Swift–Hohenberg equation.

We see the results of this paper as a first step in the direction of combining
continuation methods with rigorous computations. With this in mind we conclude
the paper in section 7 with a discussion of open questions and ongoing work. In
particular, we return to the issue of the necessity of interval arithmetic computations.

2. Computational proofs for equilibria. Assume that following the expan-
sion of a PDE into an appropriate orthogonal basis, we have a system of the form
(1.3). Our goal is to prove that there is a unique equilibrium for (1.3) which lies in
a small set containing a computed numerical equilibrium. Suppose ūF is a numerical
equilibrium computed using an m-dimensional continuation procedure (as described in
section 3) and ū := (ūF , 0, . . . ) is the corresponding point in the infinite-dimensional
space. We will consider a set of the form ū + W , where W = Πkw̃k,

(2.1) w̃k =

{
[−r, r], 0 ≤ k < m,[
−As

ks ,
As

ks

]
, k ≥ m,

for some constants r,As > 0 and s ≥ 2.
A particularly nice norm to use for this set (similar to the one used by Yamamoto

in [9]) is the normalized sup norm

‖u‖W := sup
k

{
|uk|
|w̃k|

}
,

where |w̃k| := max {|x| | x ∈ w̃k}. In this norm, W = B(0, 1) is the unit ball around 0,
and ū + W = B(ū, 1) is the unit ball around ū.

We will now reformulate our problem of studying equilibria for (1.3) by establish-
ing an equivalent fixed point problem on ū+W . Suppose J is an invertible operator.
Then u is an equilibrium solution of (1.3) if and only if u is a fixed point of

(2.2) T (u) = u− Jf(u),

where f is given by (1.3). In practice, T is constructed to be a contraction (Newton-
like) operator with J ≈ (Df(ū))−1 so that we may use Banach’s fixed point theorem.
We now frame this fixed point theorem in a more computational setting.
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In the process of showing that T is a contraction, we first consider the following
Lipschitz condition on ū + W :

(2.3) ‖T (x) − T (y)‖W ≤ K‖x− y‖W for x, y ∈ ū + W.

The question now becomes whether we can compute a contraction constant K < 1
satisfying (2.3). We begin by computing Lipschitz constants, Kn, for the component
functions Tn on ū + W satisfying

(2.4) |Tn(x) − Tn(y)| ≤ Kn‖x− y‖W for x, y ∈ ū + W.

If T is C1, we may take Kn to be a bound on the derivative of Tn over ū+W . More
explicitly,

Kn ≥ sup |DTn(ū + W ) ·W |
:= sup

b,c∈W
|DTn(ū + b) · c| .

A constant Kn computed in this manner satisfies (2.4) by the following argument.
For x, y ∈ ū + W , let gn(s) := Tn[sx + (1 − s)y]. Applying the mean value theorem
to gn, we get the existence of sn ∈ [0, 1] such that gn(1) − gn(0) = g′(sn). Since the
set ū+W is convex, we get the existence of zn := snx+ (1− sn)y ∈ ū+W such that

|Tn(x) − Tn(y)| = |DTn(zn)(x− y)|

=

∣∣∣∣DTn(zn)
x− y

‖x− y‖W

∣∣∣∣ ‖x− y‖W .

By construction of ‖ · ‖W , x−y
‖x−y‖W

∈ W . Now if K := supn
Kn

|w̃n| < ∞, then, as the

following argument shows, it satisfies (2.3):

‖T (x) − T (y)‖W = sup
n

|Tn(x) − Tn(y)|
|w̃n|

= sup
n

∣∣∣DTn(zn) x−y
‖x−y‖W

∣∣∣ ‖x− y‖W
|w̃n|

≤ sup
n

Kn

|w̃n|
‖x− y‖W

= K‖x− y‖W .

Theorem 2.1 (existence and uniqueness). If for all n there exist bounds Yn ≥
|Tn(ū) − ūn| and Kn satisfying (2.4) such that

(2.5) Yn + Kn − |w̃n| < 0

and

(2.6) K := sup
n

Kn

|w̃n|
< 1,

then there exists a unique fixed point of T in ū + W .
Proof. The first inequality ensures that T (ū + W ) ⊂ ū + W . This is true if and

only if for every u ∈ ū + W , ‖T (u) − ū‖W ≤ 1 or, equivalently, |Tn(u)−ūn|
|w̃n| < 1 for all

n.
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Let u ∈ ū + W . Then ‖u− ū‖W ≤ 1 and for each n,

|Tn(u) − ūn| = |Tn(u) − Tn(ū) + Tn(ū) − ūn|
≤ |Tn(u) − Tn(ū)| + |Tn(ū) − ūn|
≤ Kn‖u− ū‖W + Yn

≤ Yn + Kn

< |w̃n|

by assumption (2.5). Therefore, T (ū+W ) ⊂ ū+W . The second inequality guarantees
that T is also a contraction. Thus, the result follows from Banach’s fixed point
theorem.

Let us make the comment here that sufficient regularity of the equilibrium solu-
tions will effectively reduce the infinite set of conditions listed in Theorem 2.1 to a
finite list. In essence, the strong decay in the higher modes may be used to verify
(2.5) simultaneously for all n > N for some N . (In our case N is determined by
the dimension used for continuation and the degree of the nonlinearity.) Further-

more, regularity of the equilibria may also be used to show that Kn|w̃n|−1
becomes a

decreasing sequence. Therefore, (2.6) follows automatically from (2.5).
Perhaps an even more important point to make for our intended algorithmic

approach in this paper is that Yn + Kn − |w̃n| will be given as a polynomial in the
validation radius r, the width of the set W in the low modes. Therefore, validating
the existence of a unique equilibrium near ū will amount to showing that it is possible
to simultaneously solve a (finite) list of polynomial inequalities in r.

3. Validated continuation. The ideas outlined in section 2 for proving the
existence of unique equilibria fit naturally with traditional continuation techniques
for following branches of numerical equilibria. In particular, an approximation of a
projection of the Newton operator given in (2.2) onto the appropriate m-dimensional
subspace is an intrinsic element of the continuation algorithm. In this section, we dis-
cuss exploiting this relationship to automatically produce a validation of the existence
of unique equilibria at each step of the continuation procedure.

Recall that following the expansion of the system in the appropriate basis, we
have

(3.1) u̇ = f(u, ν),

where for k = 0, 1, 2, . . . , μk = μk(ν), (cp)n = (cp(ν))n, and

(3.2) u̇k = fk(u) = μkuk +

d∑
p=0

∑
∑

ni=k

(cp)n0un1 · · ·unp .

A first step for implementing a continuation algorithm for studying a PDE is
to perform a Galerkin projection. Let m be a fixed projection dimension and con-
sider the following truncated version of our original expansion of the PDE given in
(3.2). For uF := (u0, . . . , um−1) ∈ R

m, define f (m) : R
m → R

m by f (m)(uF ) =

(f
(m)
0 (uF ), . . . , f

(m)
m−1(uF )), where for k = 0, . . . ,m− 1,

f
(m)
k (uF ) = μkuk +

d∑
p=0

∑
∑

ni=k
|ni|<m

(cp)n0un1 · · ·unp .
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The corresponding Galerkin projection of the original system (3.1) is then

(3.3) u̇F = f (m)(uF , ν).

This is the m-dimensional system to be studied numerically. Intuitively, we expect
that if m is sufficiently large, (3.3) will capture the essential dynamics for the original
system (3.1). In particular, given an equilibrium ūF for (3.3) we expect that there is
a small set around ū := (ūF , 0, . . . ) which contains a unique equilibrium solution for
(3.1). Our approach is to study this relationship via the tools outlined in section 2.

3.1. Continuation for ODEs and Newton-like operator. A traditional con-
tinuation procedure involves iteration of predictor and corrector steps to trace out
branches of equilibria. Under the assumption that at some parameter ν = ν0 we have
an equilibrium solution for (3.3), we want to continue the equilibrium as we vary ν.

(1) Euler predictor: Given an approximate equilibrium x0 at ν0, the predictor at

ν1 = ν0 + Δν is x
(0)
1 = x0 + ẋ0Δν, where

(3.4) ẋ0 = −f (m)
x (x0, ν0)

−1
f (m)
ν (x0, ν0).

(2) Quasi-Newton corrector: We now use the following quasi-Newton iterative
scheme to improve our approximation at ν1:

(3.5) x
(n+1)
1 = x

(n)
1 − f (m)

x (x1
(0), ν1)

−1
f (m)(x

(n)
1 , ν1).

If k is the total number of iterations of (3.5), then ūF := x
(k)
1 and f (m)(ūF , ν1) ≈ 0.

As before, define the corresponding point ū = (ūF , 0, . . . ) in the infinite-dimen-
sional space. We now use the information required for the next predictor step, the

numerical inverse of f
(m)
x (ūF , ν1), to construct a Newton-like operator near ū at the

parameter value ν1. Let JF×F be the numerical inverse of f
(m)
x (ūF , ν1) and define the

Newton-like operator T by

(3.6) T (u) = u− Jf(u),

where

J :=

⎡⎢⎢⎢⎣
JF×F 0

0

μ−1
m

μ−1
m+1

. . .

⎤⎥⎥⎥⎦
is the block diagonal matrix which we expect to be close to (Df(ū, ν1))

−1. Note that
T , J , and f all depend on the parameter ν. As in section 2, we will attempt to show
that T is a contraction on a set of the form ū + W , where W has the form (2.1). We
now emphasize the dependence of this set W = W (r) on the validation radius r since
this approach relies on finding an appropriate r > 0 to satisfy a set of conditions. The
constants As and s may be determined by regularity arguments or otherwise set prior
to the computations. As seen in the definition of W (r), these constants determine
the size of the region in which we are attempting to show the unique existence of an
equilibrium solution.
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3.2. Radii polynomials. We now present the formulae for radii polynomials.
In order to focus on the applicability of validated continuation, the justification that
these polynomials do, in fact, encode the required bounds Yn and Kn in (2.5) for the
Newton-like operator constructed in (3.6) is delayed to section 6.

Since the formulae for the polynomials are rather ungainly, let us begin by ex-
plicitly stating the information that is used to construct the coefficients.

• d is the degree of the nonlinearity of (1.2).
• m is the number of modes used in the Galerkin projection.
• M ≥ m is a computational parameter that allows for the use of explicit

values for coefficients of M − m additional modes to decrease truncation
error bounds.

• m+ ≥ m is a computational parameter that allows for the use of an additional
structure in the model to get tighter truncation error bounds.

• ūF ∈ R
m is the numerical zero produced by the predictor-corrector step.

• JF×F is the numerical inverse obtained from the predictor-corrector step.
• (cp)n, |n| < m, are the coefficients from the expansion (1.3).
• μk, k ≥ 0, are the eigenvalues for the linear operator L as expressed in (1.3)

and

μ̄ := inf
n≥m+

{|μn|}.

Note that if |μn| is monotonically increasing for n ≥ m+, then μ̄ = |μm+
|.

• s and As are positive constants that are related to the regularity of the
equilibria.

Observe that given this information we can evaluate the vector

fF (ū) :=

⎡⎢⎣ f0(ū)
...

fm−1(ū)

⎤⎥⎦ ,

where

fn(ū) = μnūn +

d∑
p=0

∑
n0+···+np=n

|n1|,...,|np|<m

(cp)n0 ūn1 · · · ūnp .

We can also set

(3.7) Yk ≥
{

|JF×F fF (ū)|k if 0 ≤ k < m,
|
∑d

p=2(cpū
p)k|

|μk| if k ≥ m,

where

(cpū
p)k =

∑
∑

ni=k

(cp)n0 ūn1 · · · ūnp .

The following constants are all related to asymptotic bounds on the expansions
of the numerical equilibrium ū and the set ū + W . As such they are related to the
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regularity of the equilibrium and the coefficients of (1.2). Define

α :=
2

s− 1
+ 2 + 3.5 · 2s,

Cp := max
k

{|(cp)0|, |(cp)k||k|s},

Ā := max
1≤k<m

{|ū0|, |ūk||k|s},

A = A(r) := max{As, r(m− 1)s},

C(Ā, A) :=

d∑
l=1

d∑
p=max{2,l}

l

(
p

l

)
αpCpĀ

p−lA(r)l,

C+(Ā, A) :=

⎧⎨⎩
∑d

l=1

∑d
p=2 l

(
p
l

)
αpCpĀ

p−lAl if Yk, Rk = 0 for all k ≥ m+,∑d
p=0 α

pCpĀ
p +

∑d
l=1

∑d
p=max{2,l} l

(
p
l

)
αpCpĀ

p−lAl otherwise ,

V
(0)
F := |JF×F |RF , V

(1)
F :=

∣∣∣IF×F − JF×F ·Df (m)(ūF )
∣∣∣
⎛⎜⎜⎜⎝

1
1
...
1

⎞⎟⎟⎟⎠ ,

where | · | denotes the entrywise absolute value and for k ∈ {0, . . . ,m− 1},

Rk :=

∞∑
n̄=−∞

|k−n̄|≥m

∣∣∣∣∣∣
d∑

p=1

p
∑

∑
ni=n̄

(cp)n0 ūn1 . . . ūnp−1

∣∣∣∣∣∣ As

|k − n̄|s .

Note that if all cp have finite expansions, then V
(0)
F requires only a finite computation.

Observe also that the above implies that ūk ∈ Ā
ks [−1, 1] and w̃k ⊂ A

ks [−1, 1] for all k.

The validation procedure also requires bounds on the errors due to truncating
modes k ≥ m. These bounds come in the following form:

(3.8) εn :=

d∑
l=1

d∑
p=l

l

(
p

l

)
εn(p, l,M),

where

εn(p, l,M)(3.9)

:= min

{
pαp−1CpĀ

p−lAl

(M − 1)s−1(s− 1)

[
1

(M − n)s
+

1

(M + n)s

]
,
αpCpĀ

p−lAl

ns

}
and

Cn(p, j, l,M)(3.10)

:=
∑

|n̄|<(p−l)(m−1)+M

∣∣∣∣∣∣∣∣∣∣
∑

∑
ni=n̄

|n0|<M
|n1|,...,|np−l|<m

(cp)n0 ūn1 · · · ūnp−l

∣∣∣∣∣∣∣∣∣∣
⎛⎜⎝ ∑

∑
ni+n̄=n

m≤|n1|,...,|nj |<M

Aj
s

|n1|s · · · |nj |s

⎞⎟⎠ .
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For notational purposes, we also define m-vectors containing these bounds for modes
n = 0, . . . ,m− 1 as follows:

εF :=

⎡⎢⎣ ε0
...

εm−1

⎤⎥⎦ and CF (p, j, l,M) :=

⎡⎢⎣ C0(p, j, l,M)
...

Cm−1(p, j, l,M)

⎤⎥⎦ .

Note that these bounds are computable in that they require only a finite number
of computations. In addition, increasing the computational parameter M has the
effect of increasing the computational work in order to decrease the bounds.

We now use bounds (3.9) and (3.10) to define radii polynomials, Pn(r). These
polynomials are designed to encode the bounds required by Theorem 2.1. More
specifically, as is demonstrated in section 6, the polynomials are constructed so that
Pn(r) < 0 implies that Yn + Kn − |w̃n| < 0 on the set

(3.11) ū + W (r) = ū +

(
m−1∏
k=0

[−r, r] ×
∞∏

k=m

[
−As

ks
,
As

ks

])
.

Definition 3.1. To simplify notation, the finite radii polynomials, P0, . . . , Pm−1,
are given as an m-vector PF (r) = (P0(r), . . . , Pm−1(r))

t. Define

(3.12) PF (r) :=

d∑
n=0

CF (n)rn,

where the coefficients are

CF (n) :=

⎧⎪⎨⎪⎩
CY

F + CK
F (0), n = 0,

CK
F (1) − 1, n = 1,

CK
F (n), n = 2, . . . , d.

The right-hand terms are defined as follows. The individual terms of the vectors CK
F (i)

are chosen to satisfy

CK
k (i) ≥

⎛⎜⎝ d∑
l=max{2,i}

d∑
p=l

l

(
p

l

)(
l

i

)
|JF×F |CF (p, l − i, l,M)

+

⎧⎪⎨⎪⎩
|JF×F |εF + V

(0)
F , i = 0,

V
(1)
F , i = 1,

0, otherwise

⎞⎟⎠
k

(3.13)

and similarly

(3.14) CY
F = YF ,

where | · | and the bounds are computed componentwise.

Observe, again, that determining these bounds requires only a finite number of
computations.
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Definition 3.2. For k ≥ m, the tail radii polynomial is

Pk(r) =

⎧⎨⎩
|
∑d

p=0(cpū
p)k|

|μk| + C(Ā,A(r))
|μk|ks − As

ks , m ≤ k < m+,

C+(Ā,A)
|μk|ks − As

ks , k ≥ m+,

where, again,

(cpū
p)k =

∑
∑

ni=k

(cp)n0 ūn1 · · · ūnp .

Definition 3.3. Consider the radii polynomials consisting of the finite radii
polynomials Pk, k = 0, . . . ,m − 1, and the tail radii polynomials, Pk, k ≥ m. A
positive real number r is a validation radius if Pk(r) < 0 for all k ≥ 0.

The proof of the following theorem is presented in section 6.
Theorem 3.4. If there exists a validation radius r > 0 and the eigenvalues μk

satisfy |μk| → ∞, then there exists a unique equilibrium solution of (3.1) in ū+W (r).
We now present a procedure for computing a validation radius that satisfies the

hypotheses of Theorem 3.4. In particular, this procedure describes a natural order for
defining the decay constants As, s, and A. The constants As and s reflect regularity
properties of the equation and should be chosen either from numerical simulations or
analysis. In this approach, we choose to treat A = A(r) as a constant. The rationale
for this choice is that from a computational perspective, we would like to find r > 0
solving simple constructions of the finite radii inequalities P0(r) < 0, . . . , Pm−1(r) < 0
without having to simultaneously control the more complicated effects from A on the
coefficients of these polynomials as well as on the tail polynomials Pk, k ≥ m. A
practical way to achieve this goal is to set A = As at the beginning of the procedure
and then check in the end that a solution r > 0 to P0(r) < 0, . . . , Pm−1(r) < 0 also
satisfies r(m− 1)s ≤ As.

Here, for the sake of simplicity, we set M = m. If the truncation error bounds
prove too large for the computations, then M should be increased as described in
Remark 6.3 in section 6. Finally, we add a condition which reduces the check of the
tail polynomials Pk(r) < 0, k > m, to a finite number of computations. The following
procedure outlines this approach.

Procedure 3.5. Suppose that the eigenvalues μk are such that |μk| → ∞.
Suppose further that we may choose m,m+, m̄ ∈ N, m̄ ≥ m+ ≥ m, and μ̄ > 0 such
that

1. m is the Galerkin projection dimension used for numerical continuation;
2. m+ is the parameter used in the computation of C+(Ā, A); and
3. m̄ measures where the tail terms are bounded from below by μ̄ as follows: for

all k ≥ m̄, |μk| ≥ |μ̄|.
Set M = m.

Remark: m should be chosen to give the expected nonzero modes along the bi-
furcation branch under study, and m̄ = m+ = (2d + 1)(m − 1) + 1 if (cp)n = 0 for
all n 
= 0 and the eigenvalues μk are monotonically increasing in magnitude after
k = (2d + 1)(m− 1).

Fix the decay constants

(3.15) s ≥ 2 and As > 0.

Remark: In practice, As and s should be determined by regularity properties of the
equation.
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Set A := As. Using the finite radii polynomials given in Definition 3.1, for
k = 0, . . . ,m− 1, numerically compute Ik := {r > 0 | Pk(r) < 0} and

(3.16) I :=

m−1⋂
k=0

Ik .

Check that I 
= ∅.
Remark: If I = ∅, begin the procedure again either by choosing m larger or by

choosing s larger and/or As smaller in (3.15).
Check that there exists r̄ ∈ I such that

(3.17) r̄ ≤ As

(m− 1)s
.

Remark: If such an r̄ exists, then A = As = max{As, r̄(m − 1)s}. This in turn
implies that componentwise PF (r̄) < 0. If r̄ does not exist, then begin the procedure
again either by choosing m larger or by choosing s larger and/or As smaller in (3.15).

Check the inequalities

Pm(r̄) < 0, . . . , Pm̄−1(r̄) < 0 and
C(Ā, A)

|μ̄| −As < 0.

Remark: If any of these inequalities fails, begin the procedure again either by choosing
m larger or by choosing s larger and/or As smaller in (3.15).

Observe that if Procedure 3.5 is successful, the hypotheses of Theorem 3.4 are
satisfied with validation radius r̄.

4. Computational cost. We now provide a rough comparison of the cost of
continuation with the cost of validated continuation for PDEs of the form

(4.1) ut = L(u, ν) − u3 .

Since the degree of the polynomial nonlinearity in (4.1) is cubic and we use a Newton-
like operator in the continuation procedure, the most expensive terms of the compu-
tation involve m3 operations, where m is the number of modes used in the Galerkin
projection

(4.2) f
(m)
k (uF , ν) = μk(ν)uk −

∑
n1+n2+n3=k

|ni|<m

un1
un2

un3
, k = 0, . . . ,m− 1.

With this in mind we count the number of m3 operations for both approaches to
obtain an estimate for the asymptotic costs and conclude with statistics obtained
from calculations for the Swift–Hohenberg and Cahn–Hilliard equations.

4.1. Cost of continuation. We decompose the analysis of the cost of continu-
ation into four steps, assuming that we begin with an approximate zero x0 at ν0.

Step 1. In order to get the Euler predictor (3.4), we need to evaluate the

vector −f
(m)
x (x0, ν0)

−1f
(m)
ν (x0, ν0). This requires computing the m by m matrix

f
(m)
x (x

(0)
0 , ν0), where for 0 ≤ i, j < m,[

f (m)
x (x

(0)
0 , ν0)

]
i+1,j+1

= δi,jμi − 3

( ∑
n1+n2+j=i

|ni|<m

[x
(0)
0 ]|n1|[x

(0)
0 ]|n2|

+
∑

n1+n2−j=i
|ni|<m

[x
(0)
0 ]|n1|[x

(0)
0 ]|n2|

)
.
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This involves the evaluation of 2m2 sums demanding 2m − 1 multiplications and

2m−2 additions each. Therefore, determining f
(m)
x (x

(0)
0 , ν0) requires 8m3 operations.

Next, we compute the LU decomposition of f
(m)
x (x

(0)
0 , ν0) in order to compute the

action of its inverse on f
(m)
ν (x0, ν0). This involves 2

3m
3 operations. In our case,

f
(m)
ν (x0, ν0) = x0, requiring no additional cost. The predictor is then{

x
(0)
1 = x0 − Δνf

(m)
x (x0, ν0)

−1x0,
ν1 = ν0 + Δν.

Step 2. We now start the corrector. To construct the quasi-Newton operator

(3.5), we need the action of the inverse of f
(m)
x at the predictor (x

(0)
1 , ν1). As seen

before, it costs 8m3 to evaluate f
(m)
x (x

(0)
1 , ν1) and 2

3m
3 to compute its inverse using

LU decomposition. Note that we need to compute the LU decomposition only at the
first step.

Step 3. At the jth iteration of (3.5), we need to evaluate f (m)(x
(j−1)
1 , ν1). Its ith

component is

[f (m)(x
(j−1)
1 , ν1)]i = μi(ν1)[x

(j−1)
1 ]i −

∑
n1+n2+n3=i

|ni|<m

[x
(j−1)
1 ]|n1|[x

(j−1)
1 ]|n2|[x

(j−1)
1 ]|n3|,

which requires at least 3m2 operations to evaluate. Since f (m) has m components,
we get a total of 3m3. If k is the total number of iterations of the corrector, then this
step requires 3km3 operations.

Step 4. The corrector ends when ||f (m)(x
(k)
1 , ν1)|| < tolerance. Let āF :=

x
(k)
1 . Evaluating the function at (ūF , ν1) is another 3m3. Now, note that we have to

compute the action of the inverse of f
(m)
x (ūF , ν1) to get the predictor for the next step.

Recall JF×F is the numerical inverse of f
(m)
x (ūF , ν1) computed as before using an LU

decomposition. Explicitly computing all the coefficients in f
(m)
x (ūF , ν1) requires an

extra 2m3 operations. We do not count the m3 involved to get the next predictor,
since that is part of the next predictor-corrector step.

Combining the costs of the four above-mentioned steps suggests that the cost of
one application of the predictor-corrector algorithm is on the order of (20 + 3k)m3,
where k is the number of iterations in the quasi-Newton corrector.

4.2. Cost of validation. We now show that the extra cost of performing vali-
dation for a cubic function (d = 3) with constant function coefficients is of the order
of 6m3 operations, where m is the projection dimension used for continuation. The
additional cost comes primarily from computing the coefficients of the radii polyno-
mials. In the following, we construct m+ = d(m − 1) + 1 = 3m − 2 polynomials
P0, . . . , P3m−3 using Procedure 3.5 and calculate the associated computational cost.
Both to simplify the presentation and because this is what is used to perform the
computations presented in section 5, we set m̄ = m+ = d(m−1)+1, with |μk| ≥ |μm̄|
for all k ≥ m̄, and M = m. As described in Procedure 3.5, A = As and we consider
fixed s > 2 and As > 0.

The only nonlinear term of (4.1) is a monomial of degree 3. Thus, if p 
= 3,
then Ck(p, j, l,M) = 0. In addition, we have set M = m. Hence, if j 
= 0, then
Ck(p, j, l,M) = 0 (see Remark 6.3). Therefore, the only nonzero terms of this form
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are

(4.3) Ck(3, 0, l,m) =

∣∣∣∣∣∣∣
∑

n1+n2+n3=k
|n1|,|n2|,|n3|<m

ūn1
· · · ūn3−l

∣∣∣∣∣∣∣ .
Hence, by (3.13) we set

(4.4) CK
k (0) ≥ (|JF×F |εF )k + V

(0)
k

for 0 ≤ k < m, and | · | denotes the componentwise absolute value. Note that it
is possible to get an analytic upper bound on V

(0)
k using Lemma 6.2, in which case

computing V
(0)
k doesn’t require any m3 operations. Hence, all necessary computations

for CK
F (0) are of order less than m3. Using (3.13),

CK
k (1) ≥ V

(1)
k

for 0 ≤ k < m and evaluating V
(1)
F does not require any m3 operations.

Finally, combining (3.13) and (4.3),

CK
F (2) ≥ 6|JF×F |CF (3, 0, 2,m),

where Cn(3, 0, 2,m) = |ūn|, and

CK
F (3) ≥ 3|JF×F |CF (3, 0, 3,m),

where Cn(3, 0, 3,m) = 1.
The last coefficient to compute to get all the finite radii polynomials (3.14) is

CY
F ≥ |JF×F fF (ū)|,

where again | · | denotes the componentwise absolute value. This comes with no extra
m3 cost since fF (ū) = f (m)(ūF , ν1) was computed in Step 4 of the predictor-corrector
algorithm.

The next step in Procedure 3.5 is checking for the existence of a validation radius
r > 0. This requires finding the numerical zeros of each of the cubic polynomials
P0, . . . , Pm−1, constructing I0, . . . , Im−1, where Ik are closed intervals such that Ik �

{r > 0|Pk(r) < 0}, and finally checking for a nonempty intersection I = ∩m−1
k=0 Ik. All

of these steps are of order less than m3.
Assuming there exists a positive r̄ ∈ I such that r̄(m−1)s ≤ As, we construct and

evaluate the tail radii polynomials Pm, . . . , P3m−1 at r̄. We compute Yk using (3.7),
which requires 6m3 operations since we need to evaluate fk(ū) for k = m, . . . , 3m−3.

Using Definition 3.2 and the assumption that A = As, we compute

C(Ā, A) =

3∑
l=1

l

(
3

l

)
α3Ā3−lAl = 3α3As(Ā + As)

2.

This latter step and the remaining computations for Procedure 3.5 are all of order
less than m3.

In summary, the m3 cost of computing the coefficients of the radii polynomials is
6m3. Thus the additional cost of validation is on the order of 6m3 operations.
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4.3. Relative cost. Combining the results of sections 4.1 and 4.2 suggests that
asymptotically the ratio of the cost of validated continuation to the cost of traditional
continuation is

26 + 3k

20 + 3k
,

where k is the number of iterations performed in the corrector step. We tested this hy-
pothesis again on two fourth order PDEs with cubic nonlinearities, Swift–Hohenberg
and Cahn–Hilliard. The results are discussed in greater detail in section 5. For the
moment we are interested only in the relative times of computation.

We performed validated continuation for 46 predictor-corrector steps involving
a total of 90 quasi-Newton iterations for the cubic Swift–Hohenberg equation. We
repeated the computations without validation. The ratio of elapsed time for validated
continuation to the time used for continuation alone was ≈ 1.156. Given that we had
an average of 90/46 iterations per predictor-corrector step, this is close to the rough

estimate of 26+3·90/46
20+3·90/46 ≈ 1.232 given by the above arguments.

Similarly, we performed validated continuation for 15 predictor-corrector steps
involving a total of 37 quasi-Newton iterations for Cahn–Hilliard. Again, we repeated
the computations without validation. The ratio of elapsed time for validated con-
tinuation to the time used for continuation alone was ≈ 1.173. Given that we had
an average of 37/15 iterations per predictor-corrector step, the asymptotic ratio is
26+3·37/15
20+3·37/15 ≈ 1.219.

The results of these computations are summarized in Table 4.1.

Table 4.1

Comparison of the asymptotic ratios.

PDE m # iterations
# steps

Experimental ratio Estimated ratio 26+3k
20+2k

Swift–Hohenberg 27 1.96 1.156 1.232
Cahn–Hilliard 60 1.65 1.173 1.219

5. Sample results. To demonstrate the practical applicability of validated con-
tinuation we turn to two model problems, Cahn–Hilliard and Swift–Hohenberg. In
both cases we follow a branch of equilibria and validate at each parameter value of
the continuation. In the case of Swift–Hohenberg we also use interval arithmetic to
evaluate the radii polynomials, thus allowing us to rigorously verify the existence and
uniqueness of the equilibria.

5.1. Cahn–Hilliard. The Cahn–Hilliard equation was introduced in [1] as a
model for the process of phase separation of a binary alloy at a fixed temperature.
On a one-dimensional domain it takes the form

ut = −
(

1

ν
uxx + u− u3

)
xx

, x ∈ [0, 1],

ux = uxxx = 0 at x = 0, 1.(5.1)

The assumption of an equal concentration of both alloys is formulated as∫ 1

0

u(x, ·) dx = 0.
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Fig. 5.1. Validated continuation in ν for the Cahn–Hilliard equation on [0, 1].

Note that when looking for the equilibrium solutions of (5.1), it is sufficient to work
with the Allen–Cahn equation

1

ν
uxx + u− u3 = 0,(5.2)

ux = 0 at x = 0, 1.

Rewriting (5.2) in the form of (1.2), the linear operator is L(·, ν) = 1
ν

∂2

∂x2 + 1 and
the polynomial nonlinearity is of degree d = 3 with coefficient functions

(cp)n =

{
−1, p = 3 and n = 0,
0, otherwise.

Applying Procedure 3.5 with M = m = 60, s = 3, and As = 0.01 results in the
branch of equilibria indicated in Figure 5.1, where each point represents the center
of the infinite-dimensional validation set of the form ū + W (r̄), containing a unique
equilibrium of (5.1). These are the points used to obtain the cost estimates presented
in Table 4.1. To avoid drowning the reader in large lists of numbers, we only provide
the detailed numerical output at one parameter value.

Validated Result 5.1. Let ν = 43.57415358799057. Then

r̄ = 4.846104201261526 × 10−8

is a validation radius for the numerical zero ūF given in Table 5.1. Thus, there exists
a unique equilibrium for (5.1) in the validation set

(ūF , 0) +

59∏
k=0

[−r̄, r̄] ×
∞∏

k=60

[
−0.01

k3
,
0.01

k3

]
.

5.2. Swift–Hohenberg. The Swift–Hohenberg equation

ut = f(u, ν) =

{
ν −

(
1 +

∂2

∂x2

)2
}
u− u3, u(·, t) ∈ L2

(
0,

2π

L0

)
,

u(x, t) = u

(
x +

2π

L0
, t

)
, u(−x, t) = u(x, t), ν > 0,(5.3)
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Table 5.1

The numerical zero ūF obtained by continuation for the Cahn–Hilliard equation at ν =
43.57415358799057. Note that all even coefficients are 0.

k ūk

1 1.773844149032812 × 10−1

3 −7.601617928785714 × 10−4

5 3.271672072176762 × 10−6

7 −1.408100160017936 × 10−8

9 6.060344382471457 × 10−11

11 −2.608320515803233 × 10−13

13 1.122598345048980 × 10−15

15 −4.831561184682242 × 10−18

17 2.079457485469691 × 10−20

19 −8.949770271275235 × 10−23

21 3.851880360024139 × 10−25

23 −1.657801422354123 × 10−27

25 7.134947464114615 × 10−30

27 −3.070770234245256 × 10−32

29 1.321605495419571 × 10−34

31 −5.687926883858248 × 10−37

33 2.447955395983479 × 10−39

35 −1.053537452697732 × 10−41

37 4.534120813401209 × 10−44

39 −1.951337823193323 × 10−46

41 8.397842606319005 × 10−49

43 −3.614086242431264 × 10−51

45 1.555336697148314 × 10−53

47 −6.693373497802139 × 10−56

49 2.880447985844179 × 10−58

51 −1.239563989182517 × 10−60

53 5.334225825486573 × 10−63

55 −2.295445428599939 × 10−65

57 9.877687199770852 × 10−68

59 −4.250458946966345 × 10−70

≥60 0

was originally introduced to describe the onset of Rayleigh–Bénard heat convection [8],
where L0 is a fundamental wave number for the system size 2π/L0. The parameter ν
corresponds to the Rayleigh number, and its increase is associated with the appear-
ance of multiple solutions that exhibit complicated patterns. For the computations
presented here we fixed L0 = 0.65.

Rewriting (5.3) in the form of (1.2), the linear operator is L(·, ν) = ν− (1+ ∂2

∂x2 )2

and the polynomial nonlinearity is of degree d = 3 with coefficient functions

(cp)n =

{
−1, p = 3 and n = 0,
0, otherwise.

Applying Procedure 3.5 with M = m = 27, s = 4, and As = 0.002 results in the
branch of equilibria indicated in Figure 5.2, where each point represents the center
of the infinite-dimensional validation set of the form ū + W (r̄), containing a unique
equilibrium of (5.3). Again, these are the points used to obtain the cost estimates
presented in Table 4.1.

As in the case of the Cahn–Hilliard equation, we only include the output at one
point on the branch of Figure 5.2.
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Fig. 5.2. Validated continuation in ν for the Swift–Hohenberg equation at L0 = 0.65.

Table 5.2

The numerical zero ūF obtained by continuation for the Swift–Hohenberg equation at ν =
0.6674701641462312 and L0 = 0.65. All even coefficients are 0.

k ūk

1 −3.359998711939212 × 10−1

3 4.824376413178060 × 10−3

5 −1.761066797314072 × 10−5

7 7.535865329757206 × 10−8

9 −2.790895103063484 × 10−10

11 9.411109491227775 × 10−13

13 −3.113936321690645 × 10−15

15 1.007016979585499 × 10−17

17 −3.200410295859874 × 10−20

19 1.003878817132397 × 10−22

21 −3.114244522738206 × 10−25

23 9.573156964813860 × 10−28

25 −2.920394630491221 × 10−30

≥26 0

Validated Result 5.2. Let ν = 0.6674701641462312. Then

r̄ = 1.998167170445973 × 10−9

is a validation radius for the numerical zero ūF whose coefficient values are indi-
cated in Table 5.2. Thus, there exists a unique equilibrium solution for (5.3) in the
validation set

(ūF , 0) +

26∏
k=0

[−r̄, r̄] ×
∞∏

k=27

[
−0.002

k4
,
0.002

k4

]
.

Observe that in all the above-mentioned calculations, floating point roundoff er-
rors have not been controlled; thus at this point one cannot claim that the validation
results presented above are rigorous. However, with additional computational effort a
computer-assisted proof can be obtained. To be more precise, our technique relies on
the existence of a validation radius r̄ making all radii polynomials strictly negative.
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Hence, rigorous validation follows if the inequalities are satisfied when one includes
bounds to control the possibility of floating point errors. The first step in check-
ing these inequalities on this level is to obtain floating point outer bounds for the
coefficients of the polynomials. This can be done by defining each entry of

ūF , f (m)(ūF , ν), JF×F , f (m)
x (ūF , ν), μk(ν), As, and s

to be an interval and then computing (3.13), (3.14), and the quantities in Definition 3.2
using interval arithmetic. The resulting radii polynomials, which we denote by P̃k,
have interval coefficients. Let r̄ be the smallest representable number such that using
interval arithmetic, the corresponding finite radii polynomials may be shown to be
strictly contained in (−∞, 0). Assume such an r̄ exists. If, again using interval
arithmetic, r̄(m− 1) − As ⊂ (−∞, 0) and the intervals obtained from evaluating tail
radii polynomials at r̄ are strictly contained in (−∞, 0), i.e., P̃k(r̄) ⊂ (−∞, 0) for all
k ≥ m, then the hypotheses of Theorem 3.4 are satisfied and we obtain a proof.

The above-mentioned computations were performed using the interval arithmetic
package in MATLAB. Thus, we can state the following theorem.

Theorem 5.3. Each point in Figure 5.2 represents the center of an infinite-
dimensional set of the form

ūF +

26∏
k=0

[−r̄, r̄] ×
∞∏

k=27

[
−0.002

k4
,
0.002

k4

]
containing a unique equilibrium to (5.3).

The actual values for the various numerical zeros and validation radii are of limited
interest and thus not presented. Of greater interest is understanding how large the
errors induced by the floating point computations are as opposed to the magnitudes
of the floating point computations of Pk(r̄), k ≥ 0, where r̄ is the validation radius.

Let us restrict our attention to the equilibrium described by Validated Result 5.2.
Following Procedure 3.5 at this parameter value, beginning using radii polynomials
with interval coefficients, and performing the computations with interval arithmetic
leads to an interval of potential validation radii

I = [3.373873850437414 × 10−9, 9.003755731999980 × 10−4].

Hence, we choose r̄ = 3.373873850437415 × 10−9. There are 53 inclusions that need
to be satisfied, those arising from the 2m−2 = 52 tail radii polynomials with interval
coefficients and the one associated with inequality (3.17). The fact that the inclusions
are satisfied leads to the conclusion of Theorem 5.3 at this parameter value. Again,
rather than listing all 53 inclusions, let us focus on the two extremes, the interval
closest to 0,

P̃27(r̄) = −3.191484496597115 × 10−11 ± 7.037497555236307 × 10−24,

and the interval the farthest from 0,

−1.973098298147102 × 10−3 ± 8.673617379884037 × 10−19,

corresponding to inequality (3.17). Observe that in both cases, the width of the
interval induced by the floating point errors is more than ten orders of magnitude
smaller than the value of the center. Furthermore, this behavior is typical for all the
validation computations that were performed. This suggests that it is reasonably safe
to assume that a validated equilibrium is a true equilibrium.
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6. Justification of radii polynomials. In this section, we describe the con-
struction of the radii polynomials that were defined in section 3.2 and encode the
bounds required for Theorem 2.1. We begin by computing the required bounds Yn

and Kn in (2.5) for the Newton-like operator constructed in (3.6).
Using a Taylor expansion of the Newton-like operator T (u) = u− Jf(u) around

the numerical equilibrium ū = (ūF , 0, 0, . . . ) leads to

DT (ū + w′)w = [I − J ·Df(ū + w′)]w

=

(
I − J

(
Df(ū) + D2f(ū)(w′) + · · · + Dlf(ū)

(l − 1)!
(w′)l−1 + · · · + Ddf(ū)

(d− 1)!
(w′)d−1

))
w

= [I − J ·Df(ū)]w − J

(
d∑

l=2

Dlf(ū)

(l − 1)!
(w′)l−1

)
w

= [I − J ·Df(ū)]w − J

⎛⎝ d∑
l=2

d∑
p=l

p!cpū
p−l(w′)l−1

(l − 1)!(p− l)!

⎞⎠w

= [I − J ·Df(ū)]w − J

⎛⎝ d∑
l=2

d∑
p=l

l

(
p

l

)
cpū

p−l(w′)l−1

⎞⎠w .

In the rest of the section, we will make use of the discrete convolution of bi-infinite
vectors, i.e., considering two bi-infinite vectors (aj)j∈Z, (bj)j∈Z, we define their con-
volution by

(a ∗ b)k =

∞∑
n=−∞

anbk−n =
∑

k1+k2=k
ki∈Z

ak1bk2 , k ∈ Z .

Expanding into Fourier modes, we can write the nonlinear part in terms of con-
volution:

DT (ū + w′)w = [I − J ·Df(ū)]w − J

⎛⎝ d∑
l=2

d∑
p=l

l

(
p

l

)
cpū

p−l(w′)l−1

⎞⎠ ∗ w

= [I − J ·Df(ū)]w − J

⎛⎝ d∑
l=2

d∑
p=l

l

(
p

l

)
(cpū

p−l) ∗ (w′)l−1 ∗ w

⎞⎠ .(6.1)

Thus,

(cpū
p−l)∗((w′)l−1)∗w =

⎡⎣∑
n̄

⎛⎝ ∑
∑

ni=n̄

(cp)n0 ūn1 · · · ūnp−l

⎞⎠⎛⎝ ∑
∑

ni=n−n̄

w′
n1
· · ·w′

nl−1
wnl

⎞⎠⎤⎦
n

.

Here, [·]n denotes the bi-infinite vector indexed by n ∈ Z and (·)k denotes the entry
at index k.

We use this expansion to compute the bounds

Kk ≥ max |(DT (ū + W )W )k|

≥ max

∣∣∣∣∣∣[I − J ·Df(ū)]w̃ − J

⎛⎝ d∑
l=2

d∑
p=l

l

(
p

l

)
(cpū

p−l) ∗ w̃l

⎞⎠∣∣∣∣∣∣ ,
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where, as in section 2, W has the form (2.1).
The block diagonal structure of J allows us to decompose (6.1) into a finite, m-

dimensional piece and the infinite-dimensional tail terms. For the following, we adopt
the notation [·]F to denote the m-vector whose nth entry is computed at index value
n − 1 for 1 ≤ n ≤ m, the subscript F̃ to denote the bi-infinite vector in which the
kth entries for |k| ≥ m are set equal to 0, and the subscript Ĩ to denote the bi-infinite
vector in which the kth entries for |k| < m are set equal to 0. We begin with the
following decomposition of the finite part of the linear term:

{[I − J ·Df(ū)]w}F = wF − [J ·Df(ū)w]F
= wF − JF×F [Df(ū)w]F
= wF − JF×F ·DfF (ū)w

= wF − JF×F ·
[
Df (m)(ūF )wF + RF (ū, w)

]
=
[
IF×F − JF×F ·Df (m)(ūF )

]
wF − JF×F ·RF (ū, w) ,(6.2)

where for k ∈ {0, . . . ,m− 1},

Rk(ū, w) :=

∞∑
i=m

∂fk
∂ui

(ū)wi

=

∞∑
n̄=−∞

|k−n̄|≥m

∣∣∣∣∣∣
d∑

p=1

p
∑

∑
ni=n̄

(cp)n0
ūn1

. . . ūnp−1

∣∣∣∣∣∣ As

|k − n̄|s .(6.3)

It follows that

[DT (ū + W )W ]F ⊆
[
IF×F − JF×F ·Df (m)(ūF )

]
w̃F − JF×F ·RF (ū, w)

−

⎛⎝JF×F

d∑
l=2

d∑
p=l

l

(
p

l

)
[(cpū

p−l) ∗ w̃l]F

⎞⎠ .(6.4)

For k ≥ m,

(6.5) (DT (ū + W )W )k ⊆ −J(k, k)

d∑
l=1

d∑
p=l

l

(
p

l

)
((cpū

p−l) ∗ w̃l)k.

We now focus on finding bounds on the terms given in (6.4) and (6.5). First consider

(6.6) ((cpū
p−l) ∗ w̃l)k =

∑
n̄

⎛⎝ ∑
∑

ni=n̄

(cp)n0
ūn1

· · · ūnp−l

⎞⎠⎛⎝ ∑
∑

ni+n̄=k

w̃n1
· · · w̃nl

⎞⎠ ,

where p is the degree of the original monomial term of f and l ∈ {1, . . . , p} is the
order of the derivative being taken. One upper bound for (6.6) is given in the following
lemma, which uses asymptotic bounds first listed in section 3.2.

Lemma 6.1. Let α = 2
s−1 + 2 + 3.5 · 2s, ūk ∈ Ā

ks [−1, 1], (cp)k ∈ Cp

ks [−1, 1], and

w̃k ⊂ A
ks [−1, 1] for all k. Then

((cpū
p−l) ∗ w̃l)k ⊆

⎧⎪⎨⎪⎩
αpCpĀ

p−lAl

|k|s [−1, 1], k 
= 0,

αpCpĀ
p−lAl[−1, 1], k = 0.
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Proof. Note that

∑
n̄

⎛⎝ ∑
∑

ni=n̄

(cp)n0 ūn1 · · · ūnp−l

⎞⎠⎛⎝ ∑
∑

ni+n̄=k

w̃n1 · · · w̃nl

⎞⎠
⊆

∑
∑

ni=k

(cp)n0
ūn1

· · · ūnp−l
w̃np−l+1

· · · w̃np

⊆
∑

∑
ni=k

Cp

|n0|s
Ā

|n1|s
· · · Ā

|np−l|s
A

|np−l+1|s
· · · A

|np|s
[−1, 1].

The remainder of the proof is a modification of [2, Lemma 5.8].
In most cases, especially when l is small relative to p, this bound will be too large

to use for the low modes. In particular, ū may be far from zero, resulting in a large
constant Ā. By taking k sufficiently large, the contraction given by J(k, k) ≈ μk

−1

will overcome the large bound. A more practical approach for obtaining bounds for
the low modes is given by the following lemma. For flexibility in balancing numer-
ical computations (requiring a finite number of operations) with analysis (to obtain
truncation bounds), we choose M ≥ m to be the dimension used to split these sums.

Lemma 6.2. For M ≥ m,

((cpū
p−l) ∗ w̃l)k ⊆

⎛⎝ l∑
j=0

(
l

j

)
Ck(p, j, l,M)rl−j + εk(p, l,M)

⎞⎠ [−1, 1].

Proof. This lemma is a modification of [2, Lemma 5.10] combined with Lemma 6.1.
In [2, Lemma 5.10], the bound is split into finite sums and the tail term, bounded by

pαp−1CpĀ
p−lAl

(M − 1)s−1(s− 1)

[
1

(M − k)s
+

1

(M + k)s

]
[−1, 1].

We obtain a polynomial in r by rewriting the finite sums as follows:

∑
n̄

⎛⎜⎝ ∑
∑

ni=n̄
|ni|<M

(cp)n0 ūn1 · · · ūnp−l

⎞⎟⎠
⎛⎜⎝ ∑

∑
ni+n̄=k
|ni|<M

w̃n1
· · · w̃nl

⎞⎟⎠

=
∑
n̄

⎛⎜⎜⎜⎜⎝
∑

∑
ni=n̄

|n1|,...,|np−l|<m

|n0|<M

(cp)n0 ūn1 · · · ūnp−l

⎞⎟⎟⎟⎟⎠
⎛⎜⎝ ∑

∑
ni+n̄=k
|ni|<M

w̃n1 · · · w̃nl

⎞⎟⎠

=
∑
n̄

⎛⎜⎜⎜⎜⎝
∑

∑
ni=n̄

|n1|,...,|np−l|<m

|n0|<M

(cp)n0 ūn1 · · · ūnp−l

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

l∑
j=0

(
l

j

) ∑
∑

ni+n̄=k

m≤|n1|,...,|nj |<M

|nj+1|,...,|nl|<m

w̃n1 · · · w̃nl

⎞⎟⎟⎟⎟⎠

=
∑
n̄

⎛⎜⎜⎜⎜⎝
∑

∑
ni=n̄

|n1|,...,|np−l|<m

|n0|<M

(cp)n0 ūn1 · · · ūnp−l

⎞⎟⎟⎟⎟⎠
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×

⎛⎜⎜⎜⎜⎝
l∑

j=0

(
l

j

)
rl−j [−1, 1]

∑
∑

ni+n̄=k

m≤|n1|,...,|nj |<M

|nj+1|,...,|nl|<m

Aj
s

|n1|s · · · |nj |s

⎞⎟⎟⎟⎟⎠

=
l∑

j=0

(
l

j

)
rl−j

∑
|n̄|<(p−l)(m−1)+M

[−1, 1]

∣∣∣∣∣∣∣∣∣
∑

∑
ni=n̄

|n1|,...,|np−l|<m

|n0|<M

(cp)n0 ūn1 · · · ūnp−l

∣∣∣∣∣∣∣∣∣
×

⎛⎜⎜⎜⎜⎝
∑

∑
ni+n̄=k

m≤|n1|,...,|nj |<M

|nj+1|,...,|nl|<m

Aj
s

|n1|s · · · |nj |s

⎞⎟⎟⎟⎟⎠ .

Remark 6.3. Note that in Lemma 6.2, Ck(p, j, l,M) captures the contribution to
the (l − j)th polynomial coefficient from the lth derivative of the pth monomial term
of f in the Taylor expansion. If M = m, then Ck(p, j, l,M) = 0 for all j > 0 and

Ck(p, 0, l,m) =

∣∣∣∣∣∣∣∣
∑

n0+···+np−l=k

|n0|,...,|np−l|<m

(cp)n0 ūn1 · · · ūnp−l

∣∣∣∣∣∣∣∣ .

For M > m there is also a (small) contribution to the coefficients of higher degrees
of r in the polynomials, while simultaneously decreasing the εk term. This offers a
method for using additional computations to decrease the bound εk if this bound proves
to be too large for the validation procedure.

For notational purposes, set εF , CF (p, j, l,M), V
(0)
F , and V

(1)
F , to be the m-vectors

as defined in section 3.2. For 0 ≤ k < m, we substitute the bounds from Lemma 6.2
into (6.4),

(DT (ū + W )W )k ⊆ rV
(1)
k [−1, 1] + V

(0)
k [−1, 1]

+

⎛⎝−JF×F

d∑
l=2

d∑
p=l

l

(
p

l

)⎛⎝ l∑
j=0

(
l

j

)
(CF (p, j, l,M)rl−j + εF (p, l,M))

⎞⎠ [−1, 1]

⎞⎠
k

= (|JF×F |εF )k [−1, 1] + rV
(1)
k [−1, 1] + V

(0)
k [−1, 1]

+

⎛⎝ d∑
l=2

d∑
p=l

l∑
j=0

rl−j l

(
p

l

)(
l

j

)
|JF×F |CF (p, j, l,M)

⎞⎠
k

[−1, 1]

=
(
|JF×F |εF + V

(0)
F

)
k
[−1, 1] + rV

(1)
k [−1, 1]

+

⎛⎝ d∑
i=0

ri
d∑

l=max{2,i}

d∑
p=l

l

(
p

l

)(
l

i

)
|JF×F |CF (p, l − i, l,M)

⎞⎠
k

[−1, 1],

where | · | denotes entrywise absolute value. For 0 ≤ k < m, set Kk to be

Kk :=

d∑
i=0

CK
k (i)ri ≥ |(DT (ū + W )W )k|,
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where CK
k (i) satisfies (3.13).

Recall that our goal is to find a polynomial bound for Yk + Kk − |w̃k| for The-
orem 2.1. This requires also computing the bounds for Yk satisfying the following
equation:

Yk ≥ |(T (ū) − ū)k|
= |[−Jf(ū)]k|

=

∣∣∣∣∣∣∣∣
⎛⎜⎝−J

⎡⎢⎣μnūn +

d∑
p=0

∑
n0+···+np=n

|n1|,...,|np|<m

(cp)n0 ūn1 · · · ūnp

⎤⎥⎦
n

⎞⎟⎠
k

∣∣∣∣∣∣∣∣ .(6.7)

Therefore, for k < m, set Yk = CY
k , where CY

F is given by (3.14). Note that these
terms involve the Galerkin projection of f at ū onto the first m modes and, therefore,
are expected to be small.

For 0 ≤ k < m, we now combine our bounds for Yk with the bounds for Kk

to compute the coefficients of the polynomials Pk(r) giving the bounds Yk + Kk −
|w̃k|. This leads us to the definition of the finite radii polynomials presented in
Definition 3.1.

In modes k ≥ m, we use Lemma 6.1 and (6.5) to obtain

(DT (ū + W )W )k ⊆ −J(k, k)

d∑
l=1

d∑
p=max{2,l}

l

(
p

l

)
((cpū

p−l) ∗ w̃l)k(6.8)

⊆ 1

|μk|ks
d∑

l=1

d∑
p=max{2,l}

l

(
p

l

)
αpCpĀ

p−lAl[−1, 1].

Therefore, set Kk, k ≥ m, such that

(6.9) Kk ≥ C(Ā, A)

|μk|ks
.

Recall (6.7). For k ≥ m, choose Yk (compare with (3.7)) such that

Yk ≥ |(T (ū) − ū)k|
= |−J(k, k)(fk(ū))|

=
|
∑d

p=2(cpū
p)k|

|μk|
.(6.10)

Using Lemma 6.1,

(6.11)
|
∑d

p=2(cpū
p)k|

|μk|
⊆

d∑
p=2

αCpĀ
p

|μk||k|s
[−1, 1].

These bounds are overestimates and should only be used for large k. In fact, if the
coefficient functions cp have finite Fourier expansions (as in the examples we consider
in section 5), then Yk = 0 for k sufficiently large.

We may now define the polynomial bounds for Yk +Kk − |w̃k| in the tail modes.
Suppose the bounds Yk are numerically or analytically computed for m ≤ k < m+.
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Then for k ≥ m, the tail radii polynomial (see Definition 3.2) satisfies

Pk(r) = Yk + Kk(r) −
As

ks

=

⎧⎨⎩
|
∑d

p=2(cpū
p)k|

|μk| + C(Ā,A)
|μk|ks − As

ks , m ≤ k < m+,

C+(Ā,A)
|μk|ks − As

ks , k ≥ m+,

Checking that Pk < 0 for k ≥ m reduces to checking the inequalities Pm <
0, . . . , Pm+−1 < 0 and, by rearranging terms,

(6.12) C+(Ā, A) < |μk|As.

Therefore, the assumption that |μk| is growing in k ensures that (6.12) may be verified
for all k ≥ m with only a finite number of checks. More explicitly, computing a lower
bound on |μk|, k ≥ m+, would allow us to verify all inequalities of type (6.12),

k ≥ m+, in one step. Indeed, since C+(Ā,A)
|μ̄| − As < 0, and fk(ū) = 0 and |μk| ≥ |μ̄|

for all k ≥ m̄ ≥ m+,

Pk(r̄) = Yk + Kk − As

ks

=
C+(Ā, A)

|μk|ks
− As

ks

≤ C+(Ā, A)

|μ̄|ks − As

ks

< 0.

We have now constructed the radii polynomials to give the bounds required for The-
orem 2.1.

Recall that r > 0 is a validation radius if Pk(r) < 0 for all radii polynomials Pk as
defined in Definitions 3.1 and 3.2. We may now prove Theorem 3.4 from section 3.2.

Proof of Theorem 3.4. The radii polynomials have been constructed so that
Pk(r) < 0 for all k ensures that the first condition of Theorem 2.1 is satisfied. Since
the first condition is satisfied, we also have that Kk

|w̃k| < 1 for all k. Finally, since
|μk| → ∞,

Kk

|w̃k|
=

C+(Ā,A)
|μk|ks

As

ks

=
C+(Ā, A)

As|μk|
→ 0.

Therefore, K := sup
{

Kk

|w̃k|
}
< 1 and the second and final hypothesis in Theorem 2.1

is also satisfied.

7. Concluding remarks. As is indicated in the introduction, the purpose of
this paper is to communicate the essential ideas of our proposed validation method.
As such we have presented it in a somewhat limited setting. Thus, we conclude with
a range of comments, beginning with obvious generalizations describing ongoing work
and ending with some open questions.

The particular choice of the abstract expression for the expansion of the PDE
(1.3) was chosen because it was appropriate for the application to Cahn–Hilliard (5.1)
and Swift–Hohenberg (5.3). Hopefully it is clear that a different choice of bound-
ary conditions or symmetries does not affect the essential estimates. It is expected,
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but remains to be checked, that the form of the estimates can be lifted to parabolic
PDEs on rectangular domains (see [6], where similar estimates were used to study the
equilibria of the Cahn–Hilliard equation on the unit square) and to systems of such
PDEs. We also believe that generalizing this technique to pseudoarclength continu-
ation should be fairly straightforward. Furthermore, treating the parameter ν as an
interval allows us to prove the existence and uniqueness of a branch of solutions over
the interval ν̃. By adapting the predictor step length, this approach may be used to
prove existence and uniqueness along continuous, finite branches of equilibria.

While there are numerous directions in which our validation technique can be
expanded or improved, we focus on the following four.

• Observe that if (1.2) has a polynomial nonlinearity of order d, then straight-
forward evaluation of the nonlinear term in (1.4) involves on the order of md

operations. In a forthcoming work [5], this computational cost is reduced by
the use of the fast Fourier transform.

• For the computations presented in this paper, we fixed M = m. This was
done for the sake of simplicity of presentation. Clearly, the success of valida-
tion strongly depends on upper bounds presented in Lemma 6.2. In general,
for fixed m, choosing M > m increases the computational cost but provides
a smaller bound for the truncation error εk. Improved bounds should facil-
itate validated continuation with a smaller projection dimension m, which
decreases the computational cost. The exact tradeoff is currently being ex-
plored.

• The computational strategy adopted for this work is to fix As and s through-
out the continuation procedure. In particular, in the Swift–Hohenberg exam-
ple we obtained 40 successful predictor-corrector steps with As = 0.002 and
s = 4 held constant over a parameter range of length 0.4. We were able to do
this because we chose a projection dimension m = 27, which is unnecessarily
large. For example, with m = 11, As = 0.002, and s = 4.52 we were able to
perform a validated continuation over a parameter range of length 0.01. In
this case, we obtained s = 4.52 by fixing As and seeking a successful s by
trial and error. This suggests that it is worthwhile to develop a method for
choosing As and s adaptively during the validated continuation procedure.

• As pointed out in section 5, the floating point errors are many orders of
magnitude smaller than the magnitude of the radii polynomials evaluated at
the validation radius. This suggests that it might be possible to compute
a priori bounds on the floating point errors from which one could conclude
that the validation computations are in fact rigorous computations. The
techniques in [7] might prove useful for this purpose.

Acknowledgments. The authors would like to thank L. Dieci for numerous
helpful conversations concerning continuation methods and M. Gameiro, R. Beard-
more, and the referees for helpful comments on the layout of the paper.
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CONVERGENCE OF A NUMERICAL METHOD FOR SOLVING
DISCONTINUOUS FOKKER–PLANCK EQUATIONS∗

HONGYUN WANG†

Abstract. In studies of molecular motors, the stochastic motion is modeled using the Langevin
equation. If we consider an ensemble of motors, the probability density is governed by the corre-
sponding Fokker–Planck equation. Average quantities, such as average velocity, effective diffusion
coefficient, and randomness parameter, can be calculated from the probability density. A numerical
method was previously developed to solve Fokker–Planck equations [H. Wang, C. Peskin, and T.
Elston, J. Theoret. Biol., 221 (2003), pp. 491–511]. It preserves detailed balance, which ensures that
if the system is forced to an equilibrium, the numerical solution will be the same as the Boltzmann
distribution. Here we study the convergence of this numerical method when the potential has a fi-
nite number of discontinuities at half numerical grid points. We prove that this numerical method is
stable and is consistent with the differential equation. Based on the consistency analysis, we propose
a modified version of this numerical method to eliminate the first order error term caused by the
discontinuity. We also show that in the presence of discontinuities, detailed balance is a necessary
condition for converging to the correct solution. This explains why the central difference method
converges to a wrong solution.

Key words. Fokker–Planck equation, detailed balance, consistency, stability, convergence

AMS subject classification. 65M

DOI. 10.1137/050639442

1. Introduction. Molecular motors operate in an environment dominated by
thermal fluctuations [1]. In general, a molecular motor has many internal and external
degrees of freedom. Of these degrees of freedom, there is one associated with the main
function of the motor, its unidirectional motion. For example, the γ shaft of an F1

ATPase rotates with respect to the hexamer formed by three pairs of α and β subunits
[2, 3, 4], and a kinesin dimer walks along a microtubule [5, 6]. In studies of molecular
motors, it is natural to follow the motor along the dimension of its unidirectional
motion [7, 8, 9]. The effects of the other degrees of freedom are modeled in the mean
field potential affecting the unidirectional motion.

To introduce the governing equations for molecular motors, we start with the one-
dimensional motion of a small particle in a fluid environment subject to a potential,
V (x), where x is the coordinate along the dimension of motion. The particle is subject
to the viscous drag force, the force derived from the potential, and the Brownian
force. Both the drag force and the Brownian force are the results of bombardments
by surrounding fluid molecules. The drag force is the mean, and the Brownian force
is the fluctuation part of the random force caused by bombardments. The particle is
governed by Newton’s second law:

(1.1) m
dv

dt
= −ζv − V ′(x) +

√
2kBTζ

dW (t)

dt
,

where m is the mass and v the velocity of the particle. In (1.1), W (t) is the Weiner
process. The drag force on the particle, ζv, is proportional to the velocity, and ζ is
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called the drag coefficient. The magnitude of the Brownian force is related to the drag
coefficient and is given by

√
2kBTζ, which is a result of the fluctuation-dissipation

theorem [11, 13]. Here kB is the Boltzmann constant and T the absolute temperature.
For a bead of radius a, the drag coefficient and the mass, respectively, are [1]

(1.2) ζ = 6πηa, m =
4

3
πρa3,

where ρ is the density and η the viscosity of the surrounding fluid. Equation (1.1)
can be written as

(1.3)
dv

dt
= − ζ

m

(
v −

[
−1

ζ
V ′(x) +

√
2D

dW (t)

dt

])
,

where D = kBT
ζ is the diffusion constant [1]. It is important to notice that the ratio

ζ
m is inversely proportional to the square of the radius of particle

(1.4)
ζ

m
=

9η

2ρa2
= O

(
1

a2

)
.

Thus, for a small particle, ζ
m is very large. In this case, (1.3) is well approximated by

(1.5) v =

[
−1

ζ
V ′(x) +

√
2D

dW (t)

dt

]
.

The reduction from (1.3) to (1.5) in the limit of large ζ
m is called the Kramers–

Smoluchowski approximation. Writing (1.5) as a stochastic differential equation for
x, we have

(1.6)
dx

dt
= −1

ζ
V ′(x) +

√
2D

dW (t)

dt
.

This is the Langevin equation without the inertia term, governing the stochastic
motion of a small particle subject to potential V (x) [12].

In molecular motors, the mechanical motion is coupled to the chemical reaction.
The general mathematical framework used in modeling molecular motors is a system
of coupled Langevin equations. Each Langevin equation in the coupled system has the
form of (1.6) with a periodic potential VS(x), where S represents the current chemical
state of the motor system [7, 9, 4]:

(1.7)
dx

dt
= −1

ζ
V ′
S(x) +

√
2D

dW (t)

dt
.

Here 1 ≤ S ≤ N , and N is the number of possible chemical states of the motor system.
The period of these potentials is usually determined by the step size of the motor. For
example, a kinesin dimer walks on a microtubule with 8-nm steps [6]. The chemical
reaction of the motor system (the stochastic jumping of the motor system among the
chemical states) is governed by a discrete Markov process (a jump process).

The motor behavior (such as the average velocity) can be calculated by following
the stochastic evolution (mechanical motion and chemical reaction) of the motor in
Monte Carlo simulations. However, results obtained with Monte Carlo simulations
have statistical errors and converge very slowly. If we calculate the ensemble average
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by following a large number of motors, then the statistical error is inversely propor-
tional to the square root of the number of motors in the ensemble. Furthermore, when
the potential ψ(x) is not smooth, there are numerical difficulties in Monte Carlo simu-
lations. Fortunately, average quantities can be calculated more efficiently by following
the probability density of the motor.

Let us consider an ensemble of motors, each evolving in time independently and
stochastically according to Langevin equation (1.7). Let ρS(x, t) be the probability
density that the motor is at position x and in chemical state S at time t. The time
evolution of ρS(x, t) is governed by the Fokker–Planck equation corresponding to
Langevin equation (1.7) [12]:

(1.8)
∂ρS
∂t

= D
∂

∂x

[
V ′
S(x)

kBT
ρS +

∂ρS
∂x

]
+

N∑
j=1

kj→S(x)ρj , S = 1, 2, . . . , N,

where, for j �= S, kj→S(x) is the chemical transition rate from state j to state S.
kS→S(x) is the total rate of jumping out of state S and is given by

(1.9) kS→S(x) ≡ −
∑
j �=S

kS→j(x).

A simple way to model molecular motors is to average V ′
S(x) over all chemical

states weighted by the steady state probability density functions of these states [10].
Let ψ′(x) be the weighted average of V ′

S(x) over all chemical states:

(1.10) ψ′(x) ≡ 1∑N
S=1 ρS(x)

N∑
S=1

ρS(x)V ′
S(x).

ψ(x) can be viewed as the motor’s mean field free energy landscape. The mechanical
motion of the motor can be modeled using Langevin equation (1.6) with potential
ψ(x). Let L denote the period of VS(x). We immediately see that ψ′(x) is also
periodic with period L. However, ψ(x) may not be periodic. As a matter of fact, for
a molecular motor undergoing a unidirectional motion powered by a chemical reaction,
ψ(x) must not be periodic. If ψ(x) is periodic, then there is no energy available to
drive the motor forward because there is no free energy change going from one period
to the next. For the motor to go forward, there must be a free energy drop going
from one period to the next. Since ψ′(x) is periodic, the energy landscape ψ(x) is a
tilted periodic potential:

(1.11) ψ(x + L) = ψ(x) − Δψ,

where Δψ > 0 is the energy made available from the chemical reaction to drive the
motor forward in one period. An example of tilted periodic potential is shown in
Figure 1.1. This is also the potential we will use in numerical simulations in section 7.
If the energy landscape ψ(x) is simply a constant slope downhill, then the energy Δψ
is utilized uniformly in one period to generate a constant motor force. If the slope of
ψ(x) is not a constant, then the motor force varies with the motor position within one
period. As shown in Figure 1.1, the energy landscape ψ(x) may not be monotonic.
In that case, the motor depends on the Brownian fluctuations from the surrounding
fluid to get over the free energy barrier. Of course, the energy source for driving
the motor forward eventually comes from the free energy drop Δψ, which rectifies
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Fig. 1.1. Graph of the tilted periodic potential used in numerical simulations in section 7.

the forward fluctuations. This mechanism of driving the motor forward by rectifying
thermal fluctuations is called ratchet [22].

If we use the mean field potential (1.10), then the mechanical motion of the motor
is governed by the Langevin equation:

(1.12)
dx

dt
= −1

ζ
ψ′(x) +

√
2D

dW (t)

dt
.

Equation (1.12) has been used in studies of motors [14, 15]. In addition to its math-
ematical simplicity, another advantage of using (1.12) is that the energy landscape
ψ(x) can be extracted from single molecule experimental data [10]. The Fokker–
Planck equation corresponding to Langevin equation (1.12) is [12]

(1.13)
∂ρ

∂t
= D

∂

∂x

[
ψ′(x)

kBT
ρ +

∂ρ

∂x

]
.

In [16], a robust numerical method (hereafter referred to as Method 1) was de-
signed for solving Fokker–Planck equations (1.8) and (1.13). When the potential
is smooth, the proof of convergence of Method 1 is straightforward [16]. But that
does not provide an accurate theoretical explanation for the robust performance of
Method 1. The strength of Method 1 is that it works fairly well even if the potential
is discontinuous. In this paper, we are going to prove the convergence of Method 1
for the model equation (1.13) when the potential is piecewise smooth and has a finite
number of discontinuities at half numerical grid points. First, we nondimensionalize
(1.13). The dimensionless independent variables and functions are defined as

x̃ = x
1

L
, t̃ = t

D

L2
,

ψ̃(x̃) = ψ(x)
1

kBT
, ρ̃(x̃) = ρ(x)L, Δψ̃ = Δψ

1

kBT
.

Since we are going to work with the dimensionless variables and functions, let us drop
∼ from the notations. The dimensionless version of (1.13) is

(1.14)
∂ρ

∂t
=

∂

∂x

[
ψ′(x)ρ +

∂ρ

∂x

]
,
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where ψ(x) satisfies

ψ(x + 1) = ψ(x) − Δψ, Δψ > 0.

Equation (1.14) can be viewed as a special case of (1.13) with L = 1, D = 1, and
kBT = 1.

The rest of the paper is organized as follows. In section 2, we discuss the two
conditions that the exact solution of a discontinuous Fokker–Planck equation must
satisfy at a discontinuity. We derive the two conditions for the exact solution at
a discontinuity by rewriting the Fokker–Planck equation as a heat equation with
discontinuous heat conductivity and discontinuous specific heat capacity. The first
condition is the continuity of the “heat flux,” which corresponds to the conservation
of heat. The second condition is the continuity of the “temperature,” which follows
from the regularizing properties of the heat equation. In section 3, we describe the
construction and properties of Method 1 developed in [16]. The most important
property of Method 1 is that it preserves detailed balance. In section 4, we prove that
Method 1 is stable with respect to a norm that is equivalent to the 2-norm. We start
by showing that the steady state solution of the half discrete method is unique and all
positive. This allows us to define a weighted 2-norm using the steady state solution
as the weight function. We proceed to show that the steady state solution is bounded
away from 0 and from infinity, independent of the numerical grid size. It follows that
the weighted 2-norm is equivalent to the standard 2-norm. We then show that with
respect to the weighted 2-norm, Method 1 is unconditionally stable. In section 5, we
analyze the consistency of Method 1 when the potential is discontinuous. We show
that away from the discontinuity, the local truncation error of Method 1 on the exact
solution is O(k(k2 +h2)). At the discontinuity, the local truncation error on the exact
solution is O(1). However, if we perturb the exact solution by a term of the order O(h),
then the local truncation error on the perturbed solution is O(k(k2 + h)). Once we
have both the stability and consistency, the Lax equivalence theorem [17] implies that
Method 1 converges to the correct solution of the differential equation. In section 6, we
propose a modified version of Method 1 to eliminate the first order error term caused
by the discontinuity (hereafter referred to as Method 2). As a result, the modified
method (Method 2) is second order accurate even in the presence of discontinuities.
In section 7, we carry out numerical simulations using a discontinuous potential to
compare the performance of the central difference method, Method 1, and Method 2.
The central difference method converges to a wrong solution. Both Method 1 and
Method 2 converge to the correct solution. We also show that in the presence of
discontinuities, detailed balance is a necessary condition for converging to the correct
solution. This explains the defect of the central difference method.

2. Exact solution of a discontinuous Fokker–Planck equation and con-
ditions at the discontinuity. In this section, we discuss the two conditions that the
exact solution of a discontinuous Fokker–Planck equation must satisfy at a discontinu-
ity. We derive the two conditions for the exact solution at a discontinuity by rewriting
the Fokker–Planck equation as a heat equation with discontinuous heat conductivity
and discontinuous specific heat capacity. The first condition is the continuity of the
“heat flux.” The second condition is the continuity of the “temperature.”

We study the case where potential ψ(x) is piecewise smooth and has a finite
number of discontinuities in one period. Without loss of generality, we assume that
there is only one discontinuity at xd in [0, 1]. More specifically, we assume that ψ(x)
is two smooth functions connected by the discontinuity. That is, ψ(x) is smooth in
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[0, xd] if ψ(xd) is redefined as ψ(xd) = limx→x−
d
ψ(x), and ψ(x) is smooth in [xd, 1] if

ψ(xd) is redefined as ψ(xd) = limx→x+
d
ψ(x). For simplicity, in this paper a smooth

function means it is infinitely differentiable, and so we can use as many terms of its
Taylor expansion as we want.

When ψ(x) is discontinuous at xd, ψ
′(x) is not a regular function. If the system

is brought to an equilibrium, the equilibrium solution is given by the Boltzmann
distribution:

ρ(x) =
1

Z
e−ψ(x), Z =

∫ 1

0

e−ψ(x)dx,

which is discontinuous at xd. Thus, we should expect ρ(x, t) to be discontinuous as
a function of x at xd. In modeling molecular motors, a discontinuous potential is
simply a mathematical abstraction. In reality, the discontinuity represents a very
narrow transition region in which the potential is smooth but changes dramatically.
When the potential is smooth, we can rewrite Fokker–Planck equation (1.14) as

(2.1)
∂ρ

∂t
=

∂

∂x

(
e−ψ(x) ∂e

ψ(x)ρ

∂x

)
.

Let us introduce u(x, t) ≡ eψ(x)ρ(x, t). The equation above can be written in the form

(2.2)
∂e−ψ(x)u

∂t
=

∂

∂x

(
e−ψ(x) ∂u

∂x

)
.

Equation (2.2) has the form of a heat equation. In (2.2), u(x, t) can be viewed as the
“temperature,” e−ψ(x) on the right-hand side as the heat conductivity, e−ψ(x) on the
left-hand side as the specific heat capacity, and e−ψ(x)u(x, t) = ρ(x, t) as the heat.
Equation (2.2) is equivalent to Fokker–Planck equation (1.14) when the potential is
smooth. So it is natural for us to use the exact solution of (2.2) to define the exact
solution of Fokker–Planck equation (1.14) when the potential is discontinuous. The
biggest advantage of using (2.2) is that we can avoid the nonconservative product
ψ′(x)ρ(x, t) in Fokker–Planck equation (1.14). When both ψ(x) and ρ(x, t) are dis-
continuous, it is highly nontrivial to interpret the nonconservative product ψ′(x)ρ(x, t)
in Fokker–Planck equation (1.14) (for example, in [23], nonconservative product of the
form dw

dx g(w) is defined as a Borel measure).
In (2.2), when ψ(x) is discontinuous, both the heat conductivity and the specific

heat capacity are discontinuous. Away from the discontinuity, the exact solution of
(2.2) satisfies differential equation (2.2) in the classical sense. At the discontinuity, the
exact solution of (2.2) is constrained by two conditions. The first condition is the con-
tinuity of the “heat flux,” which corresponds to the conservation of heat. The second
condition is the continuity of the “temperature,” which follows from the regularizing
properties of the heat equation. The continuity of the “temperature” also reflects the
physical nature of the heat conduction process: temperature gradient is relaxed by
the heat flow that is induced by the temperature gradient. In particular, any isolated
discontinuity in temperature will be removed immediately by heat conduction.

Now we write the two conditions in terms of ρ(x, t) and ψ(x). The first condition
(continuity of “heat flux”) is

(2.3)

(
ψ′(x)ρ +

∂ρ

∂x

)∣∣∣∣
x=x−

d

=

(
ψ′(x)ρ +

∂ρ

∂x

)∣∣∣∣
x=x+

d

.
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For Fokker–Planck equation (1.14), condition (2.3) means that the probability flux
into the discontinuity is the same as the probability flux out of the discontinuity (i.e.,
the conservation of probability at the discontinuity), which corresponds to the well-
known Rankine–Hugoniot condition for weak solutions of hyperbolic equations [24].
The second condition (continuity of “temperature”) is

(2.4)
(
eψ(x)ρ(x, t)

)∣∣∣
x=x−

d

=
(
eψ(x)ρ(x, t)

)∣∣∣
x=x+

d

.

Equations (2.3) and (2.4) are the two conditions that the exact solution of a discontin-
uous Fokker–Planck equation must satisfy at the discontinuity. If a numerical method
is based on conservation of probability, then the numerical solution will automatically
satisfy condition (2.3). As we will see in section 7, condition (2.4) is related to de-
tailed balance. If a numerical method does not preserve detailed balance, then the
numerical solution may converge to a wrong solution that does not satisfy condition
(2.4).

3. The numerical method. In this section, we summarize Method 1 proposed
in [16]. In the spatial discretization of (1.14), we divide the period [0, 1] into M
subintervals of size h = 1/M . Each subinterval is represented by its center (a site),
and the numerical grid is formed as

h =
1

M
, xj =

h

2
+ jh, xj−1/2 =

h

2
+

(
j − 1

2

)
h.

Since the underlying stochastic evolution (1.12) is a continuous Markov process, we
discretize it as a jump process (discrete Markov process). The idea of using a jump
process on discrete sites to approximate a continuous Markov process was originated
in [18] and in an unpublished result by C. Peskin. As shown in Figure 3.1, in the
spatial discretization, subinterval j is

[
xj−1/2, xj+1/2

]
and its center is xj . The motor

system can reside only on a set of discrete sites {xj}. In a single jump, it can jump
only to one of the two adjacent sites. Let h · pj(t) be the probability that the motor
system is at site xj at time t in the jump process. pj(t) can be viewed as

(3.1) pj(t) ≈
1

h

∫ xj+1/2

xj−1/2

ρ(x, t)dx ≈ ρ(xj , t).

Let Fj+1/2 be the rate of jumping from xj to xj+1 (forward jump) and Bj+1/2 the
rate of jumping from xj+1 to xj (backward jump). The numerical probability flux
through xj+1/2 is

(3.2) Jj+1/2 = h
(
Fj+1/2 pj −Bj+1/2 pj+1

)
.

The time evolution of pj(t) is governed by the conservation of probability:

dpj
dt

=
1

h

(
Jj−1/2 − Jj+1/2

)
= (Fj−1/2 pj−1 −Bj−1/2 pj) − (Fj+1/2 pj −Bj+1/2 pj+1).(3.3)

Before we describe how the jump rates Fj+1/2 and Bj+1/2 are calculated in Method 1,
we would like to point out that (3.3) is a very general framework. It can even accom-
modate the central difference method, which can be cast into the form of (3.3) with
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xxjxj-1 xj+1

xj-1/2 xj+1/2xj-3/2 xj+3/2

Bj-1/2 Bj+1/2

Fj-1/2 Fj+1/2

Fig. 3.1. Spatial discretization of (1.14). The motor system is restricted to a set of discrete
sites {xj} and can jump only to adjacent sites.

jump rates

F
(CD)
j+1/2 =

1

h2

(
1 −

δψj+1/2

2

)
,

B
(CD)
j+1/2 =

1

h2

(
1 +

δψj+1/2

2

)
,(3.4)

where

(3.5) δψj+1/2 = ψ(xj+1) − ψ(xj).

Notice, however, that the jump rates (3.4) associated with the central difference
method may be negative. Even in the limit of h → 0, the jump rates (3.4) may
be negative when the potential ψ(x) is discontinuous. This explains why the central
difference method converges to a wrong solution (as we will see in section 7).

In Method 1 [16], the jump rates are calculated based on local approximate solu-
tions. In calculating Fj+1/2 and Bj+1/2, we make two assumptions:

1. In [xj−1/2, xj+3/2], potential ψ(x) is linear with slope δψj+1/2/h. This as-
sumption is to make the method simple and easy to implement. Under this
assumption, the potential in [xj−1/2, xj+3/2] is given by

(3.6) ψ(x) = C +
δψj+1/2

h
· x,

where δψj+1/2 is defined in (3.5).
2. Let ρj+1/2(x) be the steady state solution of (1.14) in [xj−1/2, xj+3/2] with

linear potential (3.6) and subject to the condition

1

h

∫ xj+1/2

xj−1/2

ρj+1/2(x)dx = pj ,

1

h

∫ xj+3/2

xj+1/2

ρj+1/2(x)dx = pj+1.(3.7)

In the jump process, the probability flux through xj+1/2 is given by that
of ρj+1/2(x). This assumption is a key component of Method 1 [16]. In-
stead of using the Taylor expansion, the numerical approximation is based
on local approximate solutions. The consequence of this approach is that
detailed balance is preserved, and Method 1 works well even if the potential
is discontinuous.
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The probability flux of ρj+1/2(x) is derived in [16] and is given by

(3.8) J =
1

h
·

δψj+1/2

eδψj+1/2 − 1

(
pj − eδψj+1/2 pj+1

)
.

Comparing the theoretical flux (3.8) with the numerical flux (3.2), we immediately
obtain

Fj+1/2 =
1

h2

δψj+1/2

eδψj+1/2 − 1
,

Bj+1/2 =
1

h2

δψj+1/2 eδψj+1/2

eδψj+1/2 − 1
,(3.9)

where δψj+1/2 = ψ(xj+1) − ψ(xj), as defined in (3.5). It is important to notice that
the jump rates (3.9) are always positive. It is straightforward to verify that Fj+1/2

and Bj+1/2 are both positive when δψj+1/2 �= 0. When ψj+1/2 = 0, we have

Fj+1/2 = lim
δψ→0

1

h2

δψ

eδψ − 1
=

1

h2
,

Bj+1/2 = lim
δψ→0

1

h2

δψ eδψ

eδψ − 1
=

1

h2
.

The property that the jump rates given in (3.9) are always positive will be used
in the stability analysis below. The jump rates given in (3.9) also satisfy detailed
balance [16]:

(3.10)
Fj+1/2

Bj+1/2
= eψ(xj)−ψ(xj+1).

In the time dimension, (3.3) is discretized using a Crank–Nicolson-type method
[19]. Let pnj be the numerical approximation for pj(nk), where k is the time step. The
fully discrete method is

pn+1
j = pnj + k

{(
Fj−1/2

pnj−1 + pn+1
j−1

2
−Bj−1/2

pnj + pn+1
j

2

)

−
(
Fj+1/2

pnj + pn+1
j

2
−Bj+1/2

pnj+1 + pn+1
j+1

2

)}
.(3.11)

In the calculation of average velocity and/or effective diffusion coefficient, (1.14) is
solved with the periodic boundary condition [16]. In the analysis of subsequent sec-
tions, we always assume the periodic boundary condition:

pnj = pnj+M , ψ(x + 1) = ψ(x) − Δψ.

We will prove the stability and consistency of (3.11) when potential ψ(x) is piecewise
smooth and has a finite number of discontinuities at half numerical grid points.

4. Stability of the numerical method. In this section, we prove the stability
of Method 1 [16]. We first show that the steady state solution of the half discrete
method (3.3) is unique and is all positive. Furthermore, we show that the maximum
of the steady state solution is bounded by the minimum multiplied by a constant that



1434 HONGYUN WANG

is determined by the underlying physical problem but is independent of the numerical
grid size. Thus, we can define a weighted 2-norm using the steady state solution as the
weighting function, and the weighted 2-norm so defined is equivalent to the 2-norm.
Then we prove that the fully discrete method (3.11) is unconditionally stable with
respect to the weighted 2-norm.

For the convenience of mathematical discussion, we introduce vector notations
for numerical solutions in one period:

�p n ≡ (pn1 , p
n
2 , . . . , p

n
M ) ,

�q ≡ (q1, q2, . . . , qM ) ,

�r ≡ (r1, r2, . . . , rM ) .

Here the superscript n denotes the time level. Remember all solutions are periodic.
Let �q be the steady state solution of (3.3). �q satisfies the equation

(Fj−1/2 qj−1 −Bj−1/2 qj) − (Fj+1/2 qj −Bj+1/2 qj+1) = 0,(4.1)

j = 1, 2, . . . ,M,

and satisfies the constraint

(4.2) h
M∑
j=1

qj = 1.

Condition (4.2) corresponds to
∫ 1

0
ρ(x)dx = 1. We now show that �q is unique, is all

positive, and is bounded away from 0 and from infinity, independent of the numerical
grid size.

Theorem 4.1. Suppose �q satisfies (4.1). Then �q is either all zeros or all positive
or all negative.

Proof. Suppose �q is not all zeros. Otherwise, there is no need to continue. Without
loss of generality, we assume that there is an index j0 such that qj0 > 0. Otherwise,
we simply consider −�q, which also satisfies (4.1). Starting at j0, we first search to the
left for a nonpositive element. If we cannot find a nonpositive element over a distance
of M grid points, then all elements are positive because the solution is periodic.

x

xj1
xj2

Positive element

Non-positive element

xj0

Fig. 4.1. Starting from a positive element, qj0 > 0, we either find that all elements are positive
or find a positive region bounded by nonpositive elements. The latter leads to a contradiction.

Suppose qj1 is the first nonpositive element found in the search to the left and
qj2 is the first nonpositive element found in the search to the right. As shown in
Figure 4.1, we have a positive region bounded by nonpositive elements:

qj1 ≤ 0, qj2 ≤ 0, and qj > 0 for j1 < j < j2.
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We are going to show that this leads to a contradiction. Summing (4.1) from j = j1+1
to j = j2 − 1, we obtain

(4.3)
(
Bj1+1/2 qj1+1 − Fj1+1/2 qj1

)
+
(
Fj2−1/2 qj2−1 −Bj2−1/2 qj2

)
= 0.

The two terms on the left-hand side of (4.3) are the net probability fluxes to the
outside of the region. Recall that the jump rates in Method 1 are always positive.
Because qj1+1 > 0 and qj1 ≤ 0, the first term is positive. Similarly, the second term
is also positive. Thus, the total net probability flux to the outside of the region is
positive. This contradicts that �q is a steady state. Mathematically, the contradiction
arises in (4.3), where the two positive terms sum to zero. Therefore, if one element is
positive, then all elements must be positive.

Remark. The proof presented here can be extended to Fokker–Planck equations
of higher dimensions, in which the positive region is bounded by a combination of
nonpositive elements and a periodic boundary. The total net probability flux to the
outside of the region is positive, which contradicts the steady state assumption.

Theorem 4.2. Suppose �q satisfies (4.1) and (4.2). Then �q is unique and all
positive.

Proof. Suppose both �q and �p satisfy (4.1) and (4.2). Let �r = �q−�p. Then �r satisfies
(4.1). Applying Theorem 4.1 to �r yields that �r is either all zeros or all positive or

all negative. Since �r also satisfies h
∑M

j=1 rj = 0, �r must be all zeros. Consequently,
�q is unique. Applying Theorem 4.1 to �q and using (4.2), we obtain that �q is all
positive.

Remark. This theorem shows that the solution of (4.1) with condition (4.2) is
unique and all positive. In other words, Method 1 yields a unique steady state solution
and preserves the positivity of probability. As pointed above, this result can be
extended to Fokker–Planck equations of higher dimensions.

Now we consider the 2-norm and the weighted 2-norm defined as

‖ �p ‖2 ≡

⎛⎝h

M∑
j=1

(pj)
2

⎞⎠
1
2

,

‖ �p ‖ψ ≡

⎛⎝h

M∑
j=1

1

qj
(pj)

2

⎞⎠
1
2

, h =
1

M
,(4.4)

where �q = (q1, q2, . . . , qM ) is the solution of (4.1) with condition (4.2). In the
analysis below, �q = (q1, q2, . . . , qM ) is reserved to denote this steady state solution.
The 2-norm is denoted by ‖ • ‖2. The weighted 2-norm is denoted by ‖ • ‖ψ because
the weighting function �q depends on potential ψ(x).

Theorem 4.3. Suppose the free energy drop satisfies Δψ = ψ(x)−ψ(x+1) > 0.
Then the steady state probability flux of (4.1), J̃ = h

(
Fj+1/2 qj −Bj+1/2 qj+1

)
, must

be positive.
Proof. We use proof by contradiction. Suppose J̃ ≤ 0. Recall that Method 1

satisfies detailed balance (3.10). It follows that

qj+1 ≥
Fj+1/2

Bj+1/2
qj = eψ(xj)−ψ(xj+1) qj .

Applying the inequality for j, j + 1, . . . , we obtain

qj+M ≥ eψ(xj)−ψ(xj+M ) qj = eΔψ qj > qj ,
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which contradicts the periodic condition qj+M = qj . In the above, we have used the

condition Δψ > 0. Therefore, when Δψ is positive, J̃ must be positive.
Remark. The key component in the proof of this theorem is detailed balance

(3.10). A method preserving detailed balance has the advantage that the direction
of chemical reaction and mechanical motion is preserved in numerical results. That
is, the method will not produce a numerical result in which the motor system goes
upward along the free energy landscape. This property is very important in studies
of molecular motors.

Theorem 4.4. Suppose Δψ > 0, and �q satisfies (4.1) and (4.2). Then we have

(4.5) max
j

qj ≤ eCψ , min
j

qj ≥ e−Cψ ,

where Cψ depends on potential ψ(x) but is independent of the numerical grid size.
Proof. Equation (4.1) implies that

(4.6)
(
Fj+1/2 qj −Bj+1/2 qj+1

)
=

J̃

h
, independent of j,

where J̃ is the steady state probability flux. Applying Theorem 4.3, we have J̃ > 0,
and (4.6) becomes (

Fj+1/2 qj −Bj+1/2 qj+1

)
≥ 0.

Recall that Method 1 satisfies detailed balance (3.10). It follows that

(4.7) qj+1 ≤
Fj+1/2

Bj+1/2
qj = eψ(xj)−ψ(xj+1) qj .

Let ql = minj qj . Applying inequality (4.7) for j = l, j = l + 1, . . . , we get

(4.8) qj ≤ eψ(xl)−ψ(xj) ql for j ≥ l.

Let Cψ = maxx maxx≤y≤x+1 (ψ(x) − ψ(y)). Cψ is a constant independent of the
numerical grid size. Taking the maximum of both sides of (4.8) over l ≤ j ≤ l + M ,
and noticing that �q is periodic, we obtain

(4.9) max
j

qj ≤ eCψ ql = eCψ min
j

qj .

Since �q also satisfies (4.2), we have

(4.10) min
j

qj ≤ h

M∑
j=1

qj = 1, max
j

qj ≥ h

M∑
j=1

qj = 1.

Equations (4.9) and (4.10) lead immediately to (4.5).
Remark. This theorem shows that the weighted 2-norm is equivalent to the 2-norm

(4.11) e−Cψ‖�p‖2 ≤ ‖�p‖ψ ≤ eCψ‖�p‖2.

The extension of this theorem to Fokker–Planck equations of higher dimensions is
still an open problem (we believe the theorem is valid for Fokker–Planck equations of
higher dimensions, but the proof is still an open problem). We are going to use the
weighted 2-norm to study the stability of the fully discrete method (3.11).
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Theorem 4.5. Let �p n = (pn1 , pn2 , . . . , pnM ) denote the solution of the fully discrete
method (3.11) at time level n. Then we have

(4.12) ‖�p n+1‖ψ ≤ ‖�p n‖ψ.

Proof. First, we write (3.11) as

(4.13) pn+1
j − pnj =

k

h

(
J

n+1/2
j−1/2 − J

n+1/2
j+1/2

)
,

where

J
n+1/2
j+1/2 = h

(
Fj+1/2 p

n+1/2
j −Bj+1/2 p

n+1/2
j+1

)
,(4.14)

p
n+1/2
j =

pn+1
j + pnj

2
.

Multiplying both sides of (4.13) by 2h p
n+1/2
j , dividing by qj , and summing over j

yields

h
M∑
j=1

1

qj
(pn+1

j )2 − h

M∑
j=1

1

qj
(pnj )2 = 2k

M∑
j=1

1

qj
p
n+1/2
j

(
J

n+1/2
j−1/2 − J

n+1/2
j+1/2

)
.

Applying summation by parts and using the periodic condition, we get

(4.15) ‖�p n+1‖2
ψ − ‖�p n‖2

ψ = −2k

M∑
j=1

(
1

qj
p
n+1/2
j − 1

qj+1
p
n+1/2
j+1

)
J

n+1/2
j+1/2 .

Let rj =
p
n+1/2
j

qj
. Here, for simplicity and without causing confusion, we have dropped

the superscript (n + 1/2) from rj . We write the probability flux J
n+1/2
j+1/2 as

J
n+1/2
j+1/2 = h

(
Fj+1/2 p

n+1/2
j −Bj+1/2 p

n+1/2
j+1

)
= h

(
Fj+1/2 qj rj −Bj+1/2 qj+1 rj+1

)
= h

(
Fj+1/2 qj + Bj+1/2 qj+1

2

)
(rj − rj+1) + J̃ · rj + rj+1

2
.

Here J̃ = h
(
Fj+1/2 qj − Bj+1/2 qj+1

)
is the steady state probability flux, which is a

constant independent of j. Substituting J
n+1/2
j+1/2 into (4.15), we have

‖�p n+1‖2
ψ − ‖�p n‖2

ψ = −kh

M∑
j=1

(
Fj+1/2 qj + Bj+1/2 qj+1

)
(rj − rj+1)

2

− k

M∑
j=1

J̃
(
(rj)

2 − (rj+1)
2
)
.(4.16)

Recall that in Method 1, the steady state solution �q is all positive and jump rates are
all positive. Consequently, the first term on the right-hand side of (4.16) is nonpositive.
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Applying summation by parts and using the periodic condition, we obtain that the
second term on the right-hand side of (4.16) is zero. Thus, we conclude that

(4.17) ‖�p n+1‖2
ψ − ‖�p n‖2

ψ ≤ 0,

which immediately leads to (4.12).
Remark 1. This theorem shows that the fully discrete method (3.11) is uncondi-

tionally stable with respect to the weighted 2-norm ‖ • ‖ψ even if potential ψ(x) is
discontinuous.

Remark 2. This theorem can be extended to Fokker–Planck equations of higher
dimensions.

5. Consistency and convergence of the numerical method. We study the
consistency of Method 1 when potential ψ(x) is piecewise smooth and has a finite
number of discontinuities in one period at half numerical grid points. Without loss
of generality, we assume that there is only one discontinuity at xd in [0, 1], where
xd = xl+1/2 is a half numerical grid point (that is, xd is at the boundary between
two numerical subintervals). Below we will show that away from the discontinuity,
the local truncation error of Method 1 on the exact solution is O

(
k(k2 + h2)

)
. At

the discontinuity, the local truncation error on the exact solution is O(1). However, if
we perturb the exact solution by a term of the order O(h), then the local truncation
error on the perturbed solution (instead of the exact solution) is O

(
k(k2 + h)

)
.

5.1. Local truncation error away from the discontinuity. We rewrite the
fully discrete method (3.11) in the flux form

(5.1) pn+1
j = pnj +

k

h

(
J n
j−1/2 + J n+1

j−1/2

2
−

J n
j+1/2 + J n+1

j+1/2

2

)
,

where the numerical probability flux is

(5.2) J n
j+1/2 = h

(
Fj+1/2 p

n
j −Bj+1/2 p

n
j+1

)
.

Let ρ(x, t) be the exact solution of (1.14) subject to conditions (2.3) and (2.4). Let
ρnj denote the exact solution on the numerical grid:

ρnj = ρ(xj , tn).

The local truncation error is defined as the residual term when the numerical method
is applied to the exact solution ρnj . Integrating the differential equation (1.14) over
[xj−1/2, xj+1/2] × [tn, tn+1], we have∫ xj+1/2

xj−1/2

ρ(x, tn+1)dx−
∫ xj+1/2

xj−1/2

ρ(x, tn)dx

=

∫ tn+1

tn

J(xj−1/2, t)dt−
∫ tn+1

tn

J(xj+1/2, t)dt,(5.3)

where J(x, t) = −
(
ψ′ρ+ ∂ρ

∂x

)
is the exact probability flux in (1.14). Using the trape-

zoidal rule to approximate the integrals on the right-hand side yields∫ tn+1

tn

J(xj+1/2, t)dt = k

(
J(xj+1/2, tn) + J(xj+1/2, tn+1)

2

)
− k3

12

∂2

∂t2
J(xj+1/2, tn+1/2) + O(k5).
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Since the probability flux, J(x, t), is continuous across the discontinuity, the time
derivatives of J(x, t) are also continuous across the discontinuity. Suppose xj+1/2 is
the location of discontinuity. Then we have

∂2

∂t2
J(x+

j+1/2, tn+1/2) =
∂2

∂t2
J(x−

j+1/2, tn+1/2).

Using the assumption that everything is smooth on both sides of the discontinuity,
we obtain

∂2

∂t2
J(x−

j+1/2, tn+1/2) −
∂2

∂t2
J(xj−1/2, tn+1/2)

= h
∂3

∂t2∂x
J(ξ, tn+1/2) = O(h),

where xj−1/2 < ξ < xj+1/2. Expanding the integrals on the left-hand side of (5.3),
using the results we just derived for the integrals on the right-hand side of (5.3), and
then dividing (5.3) by h, we arrive at

ρn+1
j − ρnj =

k

h

(
J(xj−1/2, tn) + J(xj−1/2, tn+1)

2

−
J(xj+1/2, tn) + J(xj+1/2, tn+1)

2

)
+ O

(
k(k2 + h2)

)
.(5.4)

Let J n
j+1/2{ρ} denote the numerical probability flux on the exact solution ρ(x, t):

(5.5) J n
j+1/2{ρ} = h

(
Fj+1/2 ρ

n
j −Bj+1/2 ρ

n
j+1

)
.

We expand Fj+1/2, Bj+1/2, ρ
n
j , and ρn+1

j around x = xj+1/2 to obtain the following
expansion for J n

j+1/2{ρ} away from the discontinuity:

(5.6) J n
j+1/2{ρ} = J(xj+1/2, tn) − h2 u(xj+1/2, tn) + O

(
h3
)
,

where u(x, t) is a function consisting of various derivatives of ψ(x) and ρ(x, t). The
derivation of (5.6) is presented in Appendix A. Notice that u(x, t) is smooth in
the region where ψ(x) and ρ(x, t) are smooth. Away from the discontinuity, u(x, t)
satisfies

u(xj+1/2, tn) − u(xj−1/2, tn) = O(h).

Substituting (5.6) into (5.4), we obtain that, away from the discontinuity, ρnj satisfies

ρn+1
j = ρnj +

k

h

(
J n
j−1/2{ρ} + J n+1

j−1/2{ρ}
2

−
J n
j+1/2{ρ} + J n+1

j+1/2{ρ}
2

)
+ O

(
k(k2 + h2)

)
.(5.7)

That is, away from the discontinuity, the local truncation error on the exact solution
ρ(x, t) is O

(
k(k2 + h2)

)
.
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Fig. 5.1. Schematic diagram of the discontinuity at xd = xl+1/2.

5.2. Local truncation error on the perturbed solution. Now let us look
at the numerical probability flux at the discontinuity. As shown in Figure 5.1, the
discontinuity is at xd = xl+1/2. We introduce several shorthand notations:

ρnL = ρ(x, tn)|x=x−
d
, ρnR = ρ(x, tn)|x=x+

d
,

ψL = ψ(x)|x=x−
d
, ψR = ψ(x)|x=x+

d
.

The numerical probability flux on the exact solution ρ(x, t) is

J n
l+1/2{ρ} = h

(
Fl+1/2ρ

n
l −Bl+1/2ρ

n
l+1

)
=

1

h

ψl+1 − ψl

eψl+1 − eψl

(
eψlρnl − eψl+1ρnl+1

)
=

1

h

ψl+1 − ψl

eψl+1 − eψl

(
eψlρnl − eψLρnL + eψRρnR − eψl+1ρnl+1

)
.(5.8)

Here we have used condition (2.4): eψLρnL = eψRρnR. Expanding eψlρnl around x = x−
d

and eψl+1ρnl+1 around x = x+
d , we get

eψlρnl − eψLρnL

= −h

2
eψL

(
ψ′(x)ρ +

∂ρ

∂x

)∣∣∣∣
x=x−

d

+ h2 vL(tn) + h3 wL(tn) + O(h4)

=
h

2
eψLJ(xl+1/2, tn) + h2 vL(tn) + h3 wL(tn) + O(h4),

eψRρnR − eψl+1ρnl+1

=
h

2
eψRJ(xl+1/2, tn) + h2 vR(tn) + h3 wR(tn) + O(h4),

where vL(t), vR(t), wL(t), and wR(t) are smooth functions of t. Substituting these
two expansions into (5.8), we have

(5.9) J n
l+1/2{ρ} = J(xl+1/2, tn) + v0(tn) + h v1(tn) + h2 v2(tn) + O(h3),
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where

(5.10) v0(t) =

[
ψR − ψL

eψR − eψL

(
eψL + eψR

2

)
− 1

]
J(xl+1/2, tn).

Again, v0(t), v1(t), and v2(t) are smooth functions of t. Combining (5.9), which
gives numerical flux at the discontinuity, and (5.6), which is valid away from the
discontinuity, we obtain

J n
j−1/2{ρ} − J n

j+1/2{ρ} =
(
J(xj−1/2, tn) − J(xj+1/2, tn)

)
+ O(h3)

+ h2
(
u(x+

d , tn) − u(x−
d , tn)

)
aj + h

(
v0(tn) + h v1(tn) + h2ṽ2(tn)

)
bj ,(5.11)

where

aj =

⎧⎨⎩
1
2 , j = l,
1
2 , j = l + 1,
−h M

M−2 otherwise,

(5.12)

bj =

⎧⎨⎩
− 1

h , j = l,

+ 1
h , j = l + 1,

0 otherwise,

(5.13)

and

(5.14) ṽ2(t) = v2(t) +
u(x+

d , t) + u(x−
d , t)

2
.

In (5.11), the first term on the right-hand side is the desired result; the second term
is of the order O(h3); the third term is of the order O(h2) at the discontinuity and of
the order O(h3) elsewhere; the fourth term is of the order O(1), which is the term we
need to deal with.

Terms in (5.11) contribute to the local truncation error. In general, the global
error is one order lower than the local truncation error. However, the O(1) term in
(5.11) does not necessarily imply that the error in the numerical solution is O(1/h)
or is O(1). As we will see below, the O(1) term in (5.11) actually leads to an O(h)
term in the global error. The key is that the O(1) term in (5.11) can be eliminated
by perturbing the exact solution by an O(h) term. So if we use the perturbed exact
solution to calculate the local truncation error, then the O(1) term in (5.11) disap-
pears. In other words, the numerical method is consistent with the perturbed exact
solution and the perturbed exact solution converges to the exact solution. The suc-
cessful elimination of the O(1) term in (5.11) by perturbing the exact solution by an
O(h) term depends on the special structure of vector {bj} given in (5.13). For that
purpose, we have the theorem below.

Theorem 5.1. Suppose �r is periodic, satisfies the equation

(5.15) h
(
Fj−1/2 rj−1 −Bj−1/2 rj

)
− h

(
Fj+1/2 rj −Bj+1/2 rj+1

)
= bj ,

and satisfies the condition

(5.16)

M∑
j=1

rj = 0,
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where bj is defined in (5.13). Then there exists a constant Cb, independent of the
numerical grid size, such that

max
j

|rj | ≤ Cb.

Proof. The proof of Theorem 5.1 is presented in Appendix B.
Now we use the result of Theorem 5.1 to eliminate the O(1) error term in (5.11),

and we consider the perturbed solution given below:

(5.17) ρ̃nj ≡ ρnj − h
(
v0(tn) + h v1(tn) + h2 ṽ2(tn)

)
rj = ρnj + O(h),

where rj is the solution of (5.15) and (5.16) in Theorem 5.1. It is straightforward to
verify that the perturbed solution ρ̃nj satisfies

J n
j−1/2{ρ̃} − J n

j+1/2{ρ̃} =
(
J(xj−1/2, tn) − J(xj+1/2, tn)

)
+ O(h2),(5.18)

ρ̃n+1
j − ρ̃nj = ρn+1

j − ρnj + O(kh).(5.19)

Substituting (5.18) and (5.19) into (5.4), we obtain

ρ̃n+1
j = ρ̃nj +

k

h

(
J n
j−1/2{ρ̃} + J n+1

j−1/2{ρ̃}
2

−
J n
j+1/2{ρ̃} + J n+1

j+1/2{ρ̃}
2

)
+ O

(
k(k2 + h)

)
.(5.20)

That is, the local truncation error on the perturbed solution ρ̃nj is O
(
k(k2 + h)

)
.

5.3. Convergence of the numerical method. Once we have both the stabil-
ity and the consistency, the convergence follows, in principle, from the Lax equivalence
theorem [17]. More specifically, we write the numerical method (3.11) in the vector-
operator form

(5.21) �p n+1 = L �p n,

where L is the linear operator representing the numerical method. Stability (4.12)
implies

(5.22) ‖L‖ψ ≤ 1,

where ‖L‖ψ is the induced operator norm defined by

‖L‖ψ ≡ max
‖�p‖ψ=1

‖L�p‖ψ.

Consistency (5.20) on the perturbed solution implies

(5.23) �̃ρ n+1 = L �̃ρ n + O
(
k(k2 + h)

)
,

where �̃ρ n is the perturbed solution given in (5.17). Subtracting (5.23) from (5.21)
yields

(5.24) �p n+1 − �̃ρ n+1 = L
[
�p n − �̃ρ n

]
+ O

(
k(k2 + h)

)
.



CONVERGENCE OF A NUMERICAL METHOD 1443

Taking ‖ • ‖ψ norm of the both sides, using the stability, and summing over n, we
have

(5.25) ‖�p n − �̃ρ n‖ψ ≤ T ·O(k2 + h), nk ≤ T.

Using the fact that �̃ρ n − �ρ n = O(h), we obtain

(5.26) ‖�p n − �ρ n‖ψ ≤ T ·O(k2 + h).

Using Theorem 4.4, we see that (5.26) implies the convergence in the 2-norm:

(5.27) ‖�p n − �ρ n‖2 ≤ eCψ‖�p n − �ρ n‖ψ ≤ eCψ T ·O(k2 + h).

If k ≤ O(h), then (5.26) also implies the pointwise convergence

(5.28) ‖�p n − �ρ n‖∞ ≤ 1√
h
‖�p n − �ρ n‖2 ≤ eCψ T ·O(

√
h).

6. The modified numerical method. In the consistency analysis of the pre-
vious section, we see the connection between the leading term in the local truncation
error and the jump rates. Based on the lessons we learned in the consistency analysis,
we will design a new set of jump rates to eliminate the first order error term caused by
the discontinuity. The modified numerical method (hereafter referred to as Method 2)
is as simple as Method 1. We will show that Method 2 is second order accurate even
if the potential is discontinuous.

In the local truncation error in (5.20), the leading term O(kh) comes from the
term v0(tn) in (5.9). At the discontinuity, if we use Method 1 defined in (3.9), then
we have

v0(tn) =

[
ψR − ψL

eψR − eψL

(
eψL + eψR

2

)
− 1

]
J(xl+1/2, tn) �= 0.

This suggests a way of improving the performance of Method 1. We need to design
the jump rates such that v0(tn) = 0 at the discontinuity. For that purpose, we propose
Method 2:

Fj+1/2 =
1

h2

2eψj

eψj + eψj+1
,

Bj+1/2 =
1

h2

2eψj+1

eψj + eψj+1
.(6.1)

If we use Method 2 defined in (6.1), then we have

v0(tn) =

[
2

eψL + eψR

(
eψL + eψR

2

)
− 1

]
J(xl+1/2, tn) = 0.

It can be shown that expansion (5.6) is still valid for Method 2. Consequently, ex-
pansion (5.11) is valid for Method 2 where v0(tn) = 0. Recall that for Method 1,
the O(1) term in (5.11) leads to an O(h) error term in the numerical solution. For
Method 2, v0(tn) = 0 kills the O(1) term in (5.11). The third term in (5.11) is O(h2),
and the remaining part of the fourth term in (5.11) is O(h). Because of the special
structures of vector {bj} in (5.13) and vector {aj} in (5.12), both the third term and
the remaining part of the fourth term in (5.11) can be eliminated by perturbing the
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exact solution by an O(h2) term. The elimination of these two terms by a perturba-
tion of O(h2) makes Method 2 a second order method. For eliminating the third term
in (5.11), we have the theorem below.

Theorem 6.1. Suppose �σ is periodic, satisfies the equation

(6.2) h
(
Fj−1/2 σj−1 −Bj−1/2 σj

)
− h

(
Fj+1/2 σj −Bj+1/2 σj+1

)
= aj ,

and satisfies the condition

(6.3)
M∑
j=1

σj = 0,

where aj is defined in (5.12). Then there exists a constant Ca, independent of the
numerical grid size, such that

max
j

|σj | ≤ Ca.

Proof. The proof of Theorem 6.1 is similar to that of Theorem 5.1 and is
skipped.

Now we use the results of Theorems 5.1 and 6.1 to eliminate the third and fourth
terms in (5.11). For Method 2, we consider the perturbed solution:

ρ̂nj ≡ ρnj − h2 (v1(tn) + h ṽ2(tn)) rj − h2
(
u(x+

d , tn) − u(x−
d , tn)

)
σj

= ρnj + O(h2),(6.4)

where rj is the solution of (5.15) and (5.16), and σj is the solution of (6.2) and (6.3).
Theorems 5.1 and 6.1 guarantee that both rj and σj are bounded by a constant,
independent of the numerical grid size. The perturbed solution ρ̂nj satisfies

J n
j−1/2{ρ̂} − J n

j+1/2{ρ̂} =
(
J(xj−1/2, tn) − J(xj+1/2, tn)

)
+ O(h3),(6.5)

ρ̂n+1
j − ρ̂nj = ρn+1

j − ρnj + O(kh2).(6.6)

Thus, the local truncation error on the perturbed solution ρ̂nj is O
(
k(k2 + h2)

)
.

Repeating the derivation from (5.21) to (5.28), we obtain

‖�p n − �ρ n‖2 ≤ eCψ T ·O(k2 + h2),(6.7)

‖�p n − �ρ n‖∞ ≤ eCψ T ·O(h
3
2 ).(6.8)

The error bound for the ∞-norm (6.8) is derived assuming the worst case scenario.
As we will see in the numerical example below, the ∞-norm of the error is usually of
the same order as the 2-norm of the error.

Method 2 defined in (6.1) can be viewed as constructed by using the standard
finite difference on (2.1) with a special approximation for the heat conductivity:

e−ψ(xj+1/2) ≈ 2

eψ(xj) + eψ(xj+1)
.

This special approximation is essential for Method 2 to achieve second order accuracy
at discontinuities. Method 1 developed in [16] can be viewed as constructed by using
the standard finite difference on (2.1) with approximation

e−ψ(xj+1/2) ≈ ψ(xj+1) − ψ(xj)

eψ(xj+1) − eψ(xj)
.
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The numerical method previously developed by Elston and Doering in [18] can be
viewed as constructed by using the standard finite difference on (2.1) with approxi-
mation

e−ψ(xj+1/2) ≈ e
−
(

ψ(xj)+ψ(xj+1)

2

)
.

7. Numerical results and discussions. Now we compare the performance of
three numerical methods on a model problem with discontinuous potential. For the
model problem, we select the potential

(7.1) ψ(x) =

{
6 − 6 sin

(
π
2 (x + 0.5)

)
, 0 < x < 0.5,

3 − 6 sin
(
π
2 (x− 0.5)

)
, 0.5 < x < 1.

The graph of this discontinuous potential is shown in Figure 1.1. It has a discontinuity
of amplitude 3 at x = 0.5. We use the initial condition

(7.2) ρ(x, 0) = 1 + cos(2πx).

We run simulations to t = 1 with a wide range of values for spatial step h, and we
use time step k = h. We compare the performance of the central difference method
(3.4), Method 1 (3.9), and Method 2 (6.1). We define the error as the difference
between the numerical solution obtained with a finite value of h and the converged
target (the converged target is not necessarily the correct solution of the differential
equation). The behavior of the error so defined tells us whether or not a method
converges. However, it does not tell us whether or not the converged target is the
correct solution. We estimate the error as follows. Suppose �p n(h) is the numerical
solution obtained with spatial step h and time step k = h. The error of �p n(h) is
estimated as

(7.3) error(h) ≈ Cp

∥∥∥∥�p n(h) − �p n

(
h

2

)∥∥∥∥ ,
where Cp is a constant depending on the order of the method. For methods of first
order or higher, Cp is between 1 and 2. Here we simply use Cp = 1 (in the worst
case scenario, we underestimate the error by a factor of 2). The order of a method is
estimated as

(7.4) order(h) ≈ log2

(
error(h)

error
(
h
2

)) .

Figure 7.1 shows the estimated errors and estimated orders for the three methods.
We follow the behavior of both the 2-norm and the ∞-norm of the estimated error.
Here we are solving a nondimensionalized Fokker–Planck equation. Both the time
step and the spatial step are dimensionless. So k = h is just a convenient choice.
Strictly speaking, the error shown in Figure 7.1 is the total error in time and space
estimated by comparing the numerical solution obtained using (h, k) to that of (h2 ,

k
2 ).

However, we find that the difference in numerical solution between (h, k) and (h, k
2 ) is

much smaller than that between (h, k) and (h2 ,
k
2 ) (results not shown), which indicates

that the error shown in Figure 7.1 is mainly due to the spatial discretization.
For Method 1 (the second row in Figure 7.1), the estimated error decreases as

k = h is reduced. From the convergence analysis in the previous sections, we know that
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Fig. 7.1. Estimated errors (first column) and estimated orders (second column) for the central
difference method (first row), Method 1 (second row), and Method 2 (third row).

the converged target must be the correct solution of the Fokker–Planck equation. In
the presence of a discontinuity, the estimated order of accuracy of Method 1 developed
in [16] is 1 for both the 2-norm and the ∞-norm. This result is consistent with the
error bounds (5.27) and (5.28) derived in the previous sections. Notice that the
2-norm and the ∞-norm of the estimated error are of the same order. This tells us
that although the first order error is caused by the discontinuity, it is spread to the
whole region by diffusion.

For Method 2 (the third row in Figure 7.1), the estimated error decreases more
rapidly as k = h is reduced. The convergence analysis in the previous sections guaran-
tees that Method 2 converges to the correct solution of the Fokker–Planck equation.
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Fig. 7.2. Numerical probability densities at t = 1 obtained with spatial and time steps h = k =
1

4096
using, respectively, the central difference method, Method 1, and Method 2.

Even in the presence of a discontinuity, the estimated order of accuracy for Method 2
is 2 for both the 2-norm and the ∞-norm. This result is consistent with the error
bounds (6.7) and (6.8) derived in the previous section.

For the central difference method (the first row in Figure 7.1), it appears that
the estimated error converges to zero as k = h goes to zero. The convergence to the
target is very slow. Even with k = h = 1

4096 , both the 2-norm and the ∞-norm of
the error are still above 10−2. But this is not the only defect of the central difference
method. The fatal defect of the central difference method is that it converges to a
wrong solution that does not satisfies condition (2.4) at the discontinuity. Figure 7.2
shows the numerical probability densities at t = 1 for the three methods. Notice that
the probability density obtained using the central difference method is negative for
x > 0.5. This is definitely wrong because the probability can never be negative. This
defect of the central difference method is caused by the fact that the jump rates (3.4)
may be negative at the discontinuity. Suppose the discontinuity is at xl+1/2. The
numerical probability flux at xl+1/2 is

Jl+1/2 = h
(
Fl+1/2 pl −Bl+1/2 pl+1

)
= h Bl+1/2 pl

[
Fl+1/2

Bl+1/2
− pl+1

pl

]
.(7.5)

A necessary condition for converging to the correct solution is

lim
h→0

pl = ρ(x−
d , t),

lim
h→0

pl+1 = ρ(x+
d , t),

lim
h→0

Jl+1/2 = finite.

Applying condition (2.4) yields

lim
h→0

pl+1

pl
=

ρ(x+
d , t)

ρ(x−
d , t)

= eψ(x−
d )−ψ(x+

d ).
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Multiplying (7.5) by h, using h2Bl+1/2 = O(1), and taking the limit as h → 0, we
obtain

lim
h→0

Fl+1/2

Bl+1/2
= eψ(x−

d )−ψ(x+
d ),

which reduces to detailed balance (3.10). Therefore, in the presence of discontinuities,
detailed balance is a necessary condition for converging to the correct solution of the
differential equation. Both Method 1 developed in [16] and Method 2 proposed in
this paper satisfy detailed balance. The central difference method does not. For the
model problem (7.1), we have

eψ(x−
d )−ψ(x+

d ) = e−3,

lim
h→0

F
(CD)
l+1/2

B
(CD)
l+1/2

=
1 − ψ(x+

d )−ψ(x−
d )

2

1 +
ψ(x+

d )−ψ(x−
d )

2

=
−1

5
< 0.

The negative value of
Fl+1/2

Bl+1/2
will force the ratio pl+1

pl
to be negative, which leads to

negative probability in the numerical solution of the central difference method.
In conclusion, we have proved that Method 1 developed in [16] is stable and

is consistent with the Fokker–Planck equation. Method 1 converges to the correct
solution of the Fokker–Planck equation, and the 2-norm of the error behaves like
O(k2 + h) when the potential is discontinuous. Numerical results indicate that the
∞-norm of the error is of the same order. Based on the consistency analysis, we
proposed a modified version of Method 1 to eliminate the first order error caused
by the discontinuity. The modified numerical method (Method 2) is guaranteed to
converge to the correct solution, and the 2-norm of the error behaves like O(k2 + h2)
even in the presence of discontinuities. Again, numerical results indicate that the
∞-norm of the error is of the same order.

In stochastic ratchets with discontinuous force [20], also known as sharp stochas-
tic ratchets [21], the potential is continuous, but the derivative of the potential is
discontinuous. Originally in [20] and subsequently in [21], the transport in stochas-
tic ratchets was studied where a particle is driven by a continuous piecewise linear
potential, the Brownian noise (white noise), and an additional colored noise. They
derived analytic expressions for the steady state particle current for various asymp-
totic limits. Now we look at the convergence of numerical methods in the case of
sharp stochastic ratchets. When the potential is continuous and piecewise smooth,
both Method 1 and Method 2 (the modified numerical method) converge, and the
error behaves like O(k2 + h2). This can be seen by going back to section 5. In the
local truncation error in (5.20), the leading term O(kh) comes from the term v0(tn)
in (5.9). v0(tn) is nonzero only at discontinuities. For Method 1, v0(tn) is given in
(5.10). At a discontinuity on the derivative of a continuous function, we have ψL = ψR

and consequently v0(tn) = 0. Thus, Method 1 is second order when the potential is
continuous. Method 2 (the modified numerical method) is already second order even
when the potential is discontinuous.

All of the conclusions above for Method 1 are also true for the numerical method
previously developed by Elston and Doering [18]. More specifically, the numerical
stability proved in section 4 depends on two main features of the numerical method,
(i) all jump rates being positive and (ii) detailed balance being preserved, which are
satisfied in the method of [18]. The numerical consistence away from the discontinu-
ities is obtained by doing Taylor expansion. The key feature we utilized in section 5
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to derive the numerical consistence at the discontinuities is again detailed balance.
Therefore, all the analysis in sections 4 and 5 for Method 1 can be extended to the
method in [18].

In the numerical simulations above, we also examined the behavior of the central
difference method. We found that in the presence of discontinuities, the central dif-
ference method converges to a wrong solution that does not satisfy condition (2.4).
We showed that in the presence of discontinuities, detailed balance is a necessary
condition for converging to the correct solution. Both Method 1 and Method 2 satisfy
detailed balance. The central difference method does not, which explains the fatal
defect of the central difference method.

Appendix A. In this appendix, we derive (5.6). We start by expanding function
x

ex−1 around x = 0:

(A.1)
x

ex − 1
= 1 − 1

2
x +

1

12
x2 + 0 × x3 + O

(
x4
)
.

Using (A.1) to expand jump rates Fj+1/2 and Bj+1/2 in terms of δψj+1/2, we get

Fj+1/2 =
1

h2

δψj+1/2

eδψj+1/2 − 1

=
1

h2

[
1 − 1

2
δψj+1/2 +

1

12
(δψj+1/2)

2 + O
(
(δψj+1/2)

4
)]

,(A.2)

Bj+1/2 =
1

h2

δψj+1/2 eδψj+1/2

eδψj+1/2 − 1

=
1

h2

(−δψj+1/2)

e−δψj+1/2 − 1

=
1

h2

[
1 +

1

2
δψj+1/2 +

1

12
(δψj+1/2)

2 + O
(
(δψj+1/2)

4
)]

.(A.3)

Substituting Fj+1/2, Bj+1/2, ρ
n
j , and ρnj+1 into (5.2) yields

J n
j+1/2 = h

(
Fj+1/2 ρ

n
j −Bj+1/2 ρ

n
j+1

)
=

1

h

[(
ρnj − ρnj+1

)
− 1

2
δψj+1/2

(
ρnj + ρnj+1

)
+

1

12
(δψj+1/2)

2
(
ρnj − ρnj+1

)
+ O

(
(δψj+1/2)

4
)]

.(A.4)

Expanding δψj+1/2, ρ
n
j , and ρnj+1 around x = xj+1/2, we have

δψj+1/2 = hψ′
j+1/2 +

h3

24
ψ′′′
j+1/2 + O

(
h5
)
,

ρnj − ρnj+1 = −h

(
∂ρ

∂x

)n

j+1/2

− h3

24

(
∂3ρ

∂x3

)n

j+1/2

+ O
(
h5
)
,

ρnj + ρnj+1 = 2 (ρ(x, t))
n
j+1/2 +

h2

4

(
∂2ρ

∂x2

)n

j+1/2

+ O
(
h4
)
.
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Here we used the shorthand notation (g(x, t))nj = g(xj , tn). Substituting these expan-
sions into (A.4), we obtain the expansion for the probability flux

J n
j+1/2 = −

(
ψ′ρ +

∂ρ

∂x

)n

j+1/2

− h2

(
1

24

∂3ρ

∂x3
+

1

8
ψ′ ∂

2ρ

∂x2
+

1

12
(ψ′)2

∂ρ

∂x
+

1

24
ψ′′′ρ

)n

j+1/2

+ O
(
h3
)
,

which corresponds to (5.6).

Appendix B. In this appendix, we prove Theorem 5.1. We first rewrite the
numerical probability flux as

Jj+1/2 = h
(
Fj+1/2 rj −Bj+1/2 rj+1

)
=

1

h

ψj+1 − ψj

eψj+1 − eψj
eψj rj −

1

h

ψj+1 − ψj

eψj+1 − eψj
eψj+1 rj+1

=
1

h

ψj+1 − ψj

eψj+1 − eψj

(
eψj rj − eψj+1 rj+1

)
.(B.1)

Suppose rj is the solution of (5.15) and (5.16). Let r̃j = eψj rj . r̃j satisfies the
equation

(B.2)
1

h

ψj − ψj−1

eψj − eψj−1
(r̃j−1 − r̃j) −

1

h

ψj+1 − ψj

eψj+1 − eψj
(r̃j − r̃j+1) = bj

and the condition

(B.3)
M∑
j=1

e−ψj r̃j = 0.

We construct r̃j starting at j = l + 1 with

r̃l+1 = −c1 and
1

h

ψl+2 − ψl+1

eψl+2 − eψl+1
(r̃l+1 − r̃l+2) = −c2,

where c1 and c2 are two coefficients to be determined. Because bj , as defined in (5.13),
satisfies bj = 0 for j = l + 2, . . . ,M + l − 1, we immediately obtain that

1

h

ψj+1 − ψj

eψj+1 − eψj
(r̃j − r̃j+1) = −c2 for j = l + 2, . . . ,M + l − 1.

This allows us to write r̃j+1 in terms of r̃j :

r̃j+1 = r̃j + c2

(
h
eψj+1 − eψj

ψj+1 − ψj

)
.

Summing over j, we get

(B.4) r̃i = −c1 + c2

i−1∑
j=l+1

(
h
eψj+1 − eψj

ψj+1 − ψj

)
for i = l + 2, . . . ,M + l.

For r̃j to solve (B.2), it needs to satisfy

(B.5)
1

h

ψl+1 − ψl

eψl+1 − eψl
(r̃l − r̃l+1) =

1

h
− c2.
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Using the fact that r̃j is periodic and substituting (B.4) into (B.5) yields an equation
for c2:

(B.6) c2
ψl+1 − ψl

eψl+1 − eψl

M+l−1∑
j=l+1

(
h
eψj+1 − eψj

ψj+1 − ψj

)
= 1 − c2h.

It follows that

(B.7) c2 =

⎡⎣h +
ψl+1 − ψl

eψl+1 − eψl

M+l−1∑
j=l+1

(
h
eψj+1 − eψj

ψj+1 − ψj

)⎤⎦−1

.

The sum in (B.7) is approximately an integral

M+l−1∑
j=l+1

(
h
eψj+1 − eψj

ψj+1 − ψj

)
=

∫ 1

0

eψ(x)dx + O(h).

Substituting this result into (B.7), we have

(B.8) c2 =
eψR − eψL

ψR − ψL

[∫ 1

0

eψ(x)dx

]−1

+ O(h).

Thus, for h small enough, c2 is positive and bounded.
c1 is determined by condition (B.3). Notice that r̃j , as given in (B.4), is mono-

tonically increasing for j = l + 1, . . . ,M + l. If c1 = 0, then we have r̃l+1 = 0 and

r̃j > 0 for j = l + 2, . . . ,M + l. Consequently, we have
∑M

j=1 e
−ψj r̃j > 0. Now we

select c1 to make r̃M+l = 0:

ĉ1 = c2

M+l−1∑
j=l+1

(
h
eψj+1 − eψj

ψj+1 − ψj

)
=

eψR − eψL

ψR − ψL
+ O(h).

In this case, we have r̃M+l = 0 and r̃j < 0 for j = l+ 1, . . . ,M + l− 1. Consequently,

we have
∑M

j=1 e
−ψj r̃j < 0. The value of c1 that satisfies condition (B.3) is between

0 and ĉ1. Thus, for h small enough, c1 is positive and bounded:

(B.9) 0 < c1 <
eψR − eψL

ψR − ψL
+ O(h).

Substituting (B.8) and (B.9) into (B.4), we conclude that

(B.10) max
j

|r̃j | ≤
eψR − eψL

ψR − ψL
+ O(h),

which leads directly to the conclusion of Theorem 5.1.
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Abstract. In this paper, we prove convergence of a domain decomposition method for one-
dimensional scalar conservation laws by dealing carefully with nonconservative terms at the interface
of subdomains. The method consists of an explicit scheme in some subdomains and an implicit
scheme in other subdomains with a numerical flux being the same as the one used in the explicit
scheme. Although such a multidomain algorithm is not strictly conservative, the conservation error
CE(0, NΔt) is equal to O(Δt) regardless of the smoothness of the solution. Finally, two test examples
are given to validate convergence and the computational efficiency of the present method.
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1. Introduction. This paper is devoted to the study of convergence of a domain
decomposition method (DDM) or multidomain algorithm for scalar conservation laws

(1.1)
∂u

∂t
+

∂f(u)

∂x
= 0,

with initial data

(1.2) u(x, 0) = u0(x),

where x ∈ R, t ≥ 0, and we assume that u0 has compact support. We are considering
admissible weak solutions to this initial value problem that satisfy entropy conditions
such as the Kružkov entropy inequalities [20].

Hyperbolic conservation laws are of great practical importance since they arise in
fluid flows, for example, reactive flows, groundwater flows, non-Newtonian flows, traf-
fic flows, and two-phase flows in oil reservoirs. They also govern a variety of physical
phenomena that appear in aeronautics, astrophysics, meteorology, semiconductors,
financial modeling, front propagation, and other areas.

During the past few decades there has been a considerable amount of activity
related to the construction of finite difference schemes for equations of type (1.1)
and applications; see, for instance, [10, 13, 17, 19, 21, 22, 28, 29, 35] and the refer-
ences therein. Explicit methods have been proved to be very efficient in capturing
moving discontinuities or fronts, such as shock waves, detonation waves, and contact
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discontinuities. However, they need a small time step size satisfying a Courant–
Friedrichs–Lewy (CFL) condition to guarantee stability. For an implicit scheme, the
time step size is also often constrained by convergence. An implicit scheme usually
requires solving a nonlinear equation by some iteration method, and thus it is very
time-consuming. Even for the same time step size as used in the explicit case, un-
steady solutions of the implicit schemes are less accurate; see [19]. However, the
implicit scheme is very attractive in simulating steady state solutions. The spatial
step sizes and the “signal” speeds are the two main elements that limit a choice of the
time step size. Hence, when solving numerically some initial boundary value problems
(IBVP) for nonlinear partial differential equations (PDEs), it may occur that in some
spatial regions there is the need for a smaller time step than in other regions. Typical
examples are numerical simulations of viscous fluid flows on nonuniform meshes and
other computations of solutions to PDEs on an adaptive mesh [2, 25]. Due to the
above reason, the large time step schemes [23, 36, 37] and the local time step schemes
[2, 7, 25, 32, 33] become attractive. The large time step schemes satisfy the CFL
condition by automatically increasing the stencil with the size of the time step. They
can correctly give the location of shocks with virtually no smearing, but they seem to
be inconvenient in practical applications, especially in treating boundary conditions.

The local time step schemes are restricted only by a local stability condition
rather than the traditional global stability condition dominated by the smallest cells.
The schemes studied in [2, 25] are conservative, but they suffer a loss of consistency
near a time grid interface in terms of truncation errors. The schemes proposed in [32]
are consistent but slightly nonconservative. Recently, Berger, Helzel, and LeVeque [3]
presented an h-box method approximating hyperbolic conservation laws on irregular
grids that had a time step restriction based on a reference grid cell length that could
be orders of magnitude larger than the smallest grid cell arising in the discretization.

The discrete conservation of a numerical algorithm for (1.1) is important in order
to keep the correct location of the discontinuities. Hou and LeFloch [16] showed
that if a nonconservative scheme for (1.1) converges, it converges to a solution of
∂tu+ ∂xf(u) = μ, where μ is a Borel measure source term that is expected to be zero
in the region where the solution u is smooth and concentrated where u is not smooth.
Tang and Zhou [30] analyzed the conservation error of a numerical solution caused
by a nonconservative interface matching for grid interfaces and showed that the error
had an upper bound when the solution itself was bounded. Even so, nonconservative
schemes are also valuable in some practical applications and have been implemented
successfully, for example, in computations of compressible multifluids [1] and fluid
flows on an overlapping grid [26].

The DDM has been widely used in solving elliptic or parabolic equations and
parallel computation of some large-scale problems. There also exist some works on
applications in solving hyperbolic conservation laws. For example, Quarteroni [27]
used DDMs for systems of conservation laws in connection with a spectral approxi-
mation. Grott, Chernigovskij, and Glatzel [14] applied an implicit scheme with vastly
different time scales to the numerical simulation of stellar instabilities by using a
DDM. However, due to a possible loss of conservation, there seems to be no theoreti-
cal analysis of a DDM for hyperbolic conservation laws.

This paper attempts to conduct a study of convergence of a DDM for hyperbolic
conservation laws. The DDM we consider consists of an explicit scheme in some
subdomains and an implicit scheme in other subdomains. Due to the local implicit
character, such a multidomain algorithm can be used to reduce the CFL restriction
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on the time step size and improve efficiency of simulating numerically some problems
with multitime scale phenomena. The DDM is not strictly conservative, but we can
prove that under a local stability condition for the explicit schemes, the approximate
solutions constructed by the DDM will converge to the unique entropy solution to
the scalar conservation laws. The main technical point in our convergence proof is to
treat nonconservative terms suitably.

This paper is organized as follows. In section 2, we introduce the DDM. We
consider only one space dimension. Section 3 is devoted to a study of nonlinear
stability of the algorithm introduced in section 2, including the maximum principle,
total variation (TV) stability, and L1-continuity in time. In section 4 we give a
proof of a cell entropy inequality. In section 5 we focus on a study of convergence
of the approximate solutions constructed by the DDM. Section 6 presents numerical
experiments to validate the theoretical results derived in sections 3–5.

2. A domain decomposition method. We define the domains Ω1 = {x|x ≤
a or x ≥ b} and Ω2 = {x|a ≤ x ≤ b}, where a and b are two given constants,
−∞ < a < b < ∞. Each of them is equipped with an individual mesh with a varying
space step size Δxj+ 1

2
= xj+1 − xj , where xj denotes the coordinate of the jth grid

point. We also discretize in time. Define Δtn = tn+1 − tn > 0, n ≥ 0. As a measure
of refinement we introduce δ = maxj∈Z,n≥0{Δxj+ 1

2
,Δtn}. Moreover, throughout this

paper, we will also use the following notation: xj+ 1
2

= 1
2 (xj+1 + xj), Ω1

δ = {j|j <

j1 or j ≥ j2, j ∈ Z}, and Ω2
δ = {j|j1 ≤ j < j2, j ∈ Z}, where j1 = j1(δ), j2 = j2(δ),

xj1 = a, and xj2 = b. We also assume that Δxj+ 1
2
/Δxj− 1

2
= 1 + O(δα) for all j ∈ Z,

or Δtn−1/Δtn = 1 + O(δα) for all n ∈ N, where α is a positive number.
The initial condition in (1.2) is projected onto the space of piecewise constant

functions as

u0
j+ 1

2
=

1

Δxj+ 1
2

∫ xj+1

xj

u0(x) dx, j ∈ Z.(2.1)

Our DDM is described as follows. A three-point explicit conservative scheme,

un+1
j+ 1

2

= un
j+ 1

2
− λn

j+ 1
2

(
h(un

j+ 1
2
, un

j+ 3
2
) − h(un

j− 1
2
, un

j+ 1
2
)
)
,(2.2)

is used in the subdomain Ω1, while a three-point implicit conservative scheme,

un+1
j+ 1

2

= un
j+ 1

2
− λn

j+ 1
2

(
h(un+1

j+ 1
2

, un+1
j+ 3

2

) − h(un+1
j− 1

2

, un+1
j+ 1

2

)
)
,(2.3)

is adopted in the subdomain Ω2, where λn
j+ 1

2

= Δtn/Δxj+ 1
2
. The numerical flux

h(u, v) is assumed to be C1(R2) and satisfy |h1(u, v)|, |h2(u, v)| ≤ L < ∞ for all
u, v ∈ R, where h1(·, ·) and h2(·, ·) denote the partial derivatives of h(·, ·) with respect
to its first and second arguments, respectively. Moreover, we also assume that the
numerical flux h(u, v) is monotone; that is to say, h(u, v) is nondecreasing in the first
variable and nonincreasing in the second variable. The numerical flux h(u, v) satisfies
the consistency condition

h(u, u) = f(u).(2.4)

Obviously, conservation of the total mass cannot be preserved exactly; for ex-
ample, if we assume that u approaches the same constant when j → ±∞, then we
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have∑
j∈R

un+1
j+ 1

2

Δxj+ 1
2
≡

∑
j<j1

un+1
j+ 1

2

Δxj+ 1
2

+
∑
j≥j2

un+1
j+ 1

2

Δxj+ 1
2

+
∑

j1≤j<j2

un+1
j+ 1

2

Δxj+ 1
2

=
∑
j∈R

un
j+ 1

2
Δxj+ 1

2
+ CE(tn, tn+1),(2.5)

where the additional term CE(tn, tn+1) is defined by

CE(tn, tn+1) := Δtn

(
h(un+1

j1− 1
2

, un+1
j1+

1
2

) − h(un
j1− 1

2
, un

j1+
1
2
) + h(un

j2− 1
2
, un

j2+
1
2
)

− h(un+1
j2− 1

2

, un+1
j2+

1
2

)
)
≤ LΔtn

(
|un

j1− 1
2
− un+1

j1− 1
2

| + |un
j1+

1
2
− un+1

j1+
1
2

|

+ |un
j2− 1

2
− un+1

j2− 1
2

| + |un
j2+

1
2
− un+1

j2+
1
2

|
)
,

which is generated by the DDM algorithm at the interfaces of two subdomains. It
can be considered as a measure of conservation error. It is obvious that the term
CE(tn, tn+1) will be O(Δt2n) in the smooth regions of the solution, but it is only
O(Δtn) if a discontinuity is interacting with the corresponding interface {x = xj1 , tn ≤
t ≤ tn+1} or {x = xj2 , tn ≤ t ≤ tn+1}. If we assume that the time step size is a
constant, i.e., Δtn = Δt, then the conservation error CE(0, NΔt) is equal to

CE(0, NΔt) =

N−1∑
n=0

CE
(
(n− 1)Δt, nΔt

)
= Δt

(
h(uN

j1− 1
2
, uN

j1+
1
2
)

− h(u0
j1− 1

2
, u0

j1+
1
2
)
)

+ Δt
(
h(u0

j2− 1
2
, u0

j2+
1
2
) − h(uN

j2− 1
2
, uN

j2+
1
2
)
)

≤ LΔtn

(
|uN

j1− 1
2
− u0

j1− 1
2
| + |uN

j1+
1
2
− u0

j1+
1
2
|

+ |uN
j2− 1

2
− u0

j2− 1
2
| + |uN

j2+
1
2
− u0

j2+
1
2
|
)
.(2.6)

From (2.6), we may conclude that the conservative error CE(0, NΔt) is generally
O(Δt) if the solution is smooth, or a discontinuity with a finite strength is interact-
ing with the interface x = xj1 or xj2 . It means that the above DDM is not a bad
approximation to (1.1). It is worth noting that the conservation error CE(0, NΔt) of
a general nonconservative scheme is usually equal to O(Δt) in the smooth regions of
the solution and to O(1) when the solution is discontinuous. In practical applications,
we can generally avoid the interaction of discontinuities with the interface of subdo-
mains by decomposing the domains appropriately at the different times. In test cases
where the shock position is known, for instance, one can avoid decomposing there. In
applications where this is not the case an approximate estimate of shock positions,
e.g., by a numerical shock indicator, would have to be used. Nevertheless, it seems to
be difficult to improve the total nonconservation error CE(0, NΔt) in theory because

CE(0, NΔt) =

N−1∑
n=0

CE
(
(n− 1)Δt, nΔt

)
= NO(Δt2) = O(Δt).

Remark 2.1. The two numerical fluxes adopted in (2.2) and (2.3) have been
assumed to be the same. This will be crucial to get convergence of the approximate
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solutions constructed by the present algorithm. However, we may use a θ-scheme to
replace the above fully implicit scheme (2.3), for example,

un+1
j+ 1

2

= un
j+ 1

2
+ λn

j+ 1
2
Δ+

(
θh(un+1

j− 1
2

, un+1
j+ 1

2

) + (1 − θ)h(un
j− 1

2
, un

j+ 1
2
)
)
,(2.7)

where θ is a given constant, 0 ≤ θ ≤ 1, and Δ+ denotes the forward difference
operator in space. When θ = 0, we have a trivial case: the explicit scheme (2.2) is
exploited in the whole computational domain. For this trivial case, the time step size
is constrained by the global CFL condition; convergence of the nonoverlapping DDM
can be obtained by following the proof of convergence of a single domain method.

The motivation of using different schemes within different subdomains is to relax
the CFL restriction and improve the efficiency of simulating numerically some prob-
lems with multitime scale phenomena. Moreover, the results derived in the following
are also analogously valid if the number of subdomains is any finite number m. Fur-
ther, they hold for any multipoint monotone scheme when the fluxes are interpreted
accordingly.

3. The main properties. In this section we shall analyze mainly the nonlinear
stability of the DDM (2.2) and (2.3) introduced in the last section. Before doing this,
we first show existence of a solution of (2.3) with given boundary conditions at xj1 and
xj2 . A similar question has been discussed by several authors; see, e.g., [9, 11, 24]. By
using the inverse positivity property and Brouwer’s fixed point theorem, Fuhrmann
[11] gave a proof of existence and uniqueness of solutions of certain systems of algebraic
equations with off-diagonal nonlinearity, which arise, e.g., from stable finite volume
discretizations of viscous conservation laws; see [12]. Lucier [24], as well as Evje
and Karlsen [9], used the theory of accretive operators introduced in [4, 18] and the
Crandall–Liggett theorem [5] to prove the existence and uniqueness of solutions of
their system of algebraic equations, too.

Lemma 3.1. Assume that the initial data {u0
j+ 1

2

|j ∈ Z} are given by (2.1), that

{un+1
j+ 1

2

|j ∈ Ω1
δ} is the explicit solution of (2.2) at t = tn+1, and that {un+1

j+ 1
2

|j ∈ Ω2
δ}

is defined by the implicit equation (2.3). Then the solution {un+1
j+ 1

2

|j ∈ Ω2
δ} exists

uniquely; that is, the boundary value problem of (2.3) with boundary conditions at xj1

and xj2 computed by the explicit scheme (2.2) admits a unique solution. Moreover, if
we assume that the initial data {u0

j+ 1
2

|j ∈ Z} are bounded, a bound for un+1
j+ 1

2

for all j ∈
Ω2

δ exists for fixed δ and independent of n.
Proof. We consider the boundary value problem of the implicit scheme (2.3),

where the boundary values are obtained from the computed values of the explicit
scheme (2.2) at xj1 and xj2 . It can be written in a matrix form as follows:{

un+1 + ΔtnA(un+1) = un,

un+1
j1− 1

2

and un+1
j2+

1
2

are given by the explicit scheme (2.2),
(3.1)

where u = (uj1+
1
2
, . . . , uj2− 1

2
)T , A(u) =

(
1

Δx
j1+ 1

2

aj1+ 1
2
(u), . . . , 1

Δx
j2− 1

2

aj2− 1
2
(u)

)T
,

and

aj+ 1
2
(u) = h(uj+ 1

2
, uj+ 3

2
) − h(uj− 1

2
, uj+ 1

2
), j ∈ Ω2

δ .

It remains to show the existence of a solution of the scheme (3.1) following [9] which
is based on [24]. The existence needed here is on a finite dimensional space. If the
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domain is semi-infinite or infinite by switching the two domains, we have to consider
a suitable version of �1 as our solution space. It suffices to show that the operator
A : �1 −→ �1 is accretive; i.e., the operator A satisfies

I :=
∑
j∈Ω2

δ

sign(wj+ 1
2
)
(
aj+ 1

2
(u) − aj+ 1

2
(v)

)
≥ 0

for all u and v under consideration, e.g., satisfying uj1− 1
2

= vj1− 1
2

and uj2+
1
2

= vj2+ 1
2
,

where wj+ 1
2

= uj+ 1
2
− vj+ 1

2
. In fact, because for each j ∈ Ω2

δ and a positive constant
c ≥ 2L, the inequality∣∣∣cwj+ 1

2
−
(
aj+ 1

2
(u) − aj+ 1

2
(v)

)∣∣∣ ≡ ∣∣∣c|wj+ 1
2
| − sign(wj+ 1

2
)
(
aj+ 1

2
(u) − aj+ 1

2
(v)

)∣∣∣
≥ c|wj+ 1

2
| − sign(wj+ 1

2
)
(
aj+ 1

2
(u) − aj+ 1

2
(v)

)
holds, we have

I ≥ −
∑
j∈Ω2

δ

∣∣∣cwj+ 1
2
−
(
aj+ 1

2
(u) − aj+ 1

2
(v)

)∣∣∣ + c
∑
j∈Ω2

δ

|wj+ 1
2
|.

Define

aj =

⎧⎨⎩
h(u

j− 1
2
,u

j+ 1
2
)−h(v

j− 1
2
,u

j+ 1
2
)

u
j− 1

2
−v

j− 1
2

if uj− 1
2
�= vj− 1

2
,

h1(uj− 1
2
, uj+ 1

2
) otherwise,

bj =

⎧⎨⎩
h(v

j− 1
2
,u

j+ 1
2
)−h(v

j− 1
2
,v

j+ 1
2
)

u
j+ 1

2
−v

j+ 1
2

if uj+ 1
2
�= vj+ 1

2
,

h2(vj− 1
2
, vj+ 1

2
) otherwise.

Obviously, we have aj ≥ 0 and bj ≤ 0, because the numerical flux h(·, ·) is monotone.
Moreover, we can rewrite aj+ 1

2
(u) − aj+ 1

2
(v) as follows:

aj+ 1
2
(u) − aj+ 1

2
(v) = h(uj+ 1

2
, uj+ 3

2
) − h(uj− 1

2
, uj+ 1

2
) − h(vj+ 1

2
, vj+ 3

2
) + h(vj− 1

2
, vj+ 1

2
)

= (aj+1 − bj)wj+ 1
2

+ bj+1wj+ 3
2
− ajwj− 1

2
.

Because of c ≥ (aj+1 − bj) ≥ 0 and wj1− 1
2

= wj2+
1
2

= 0, we have

I ≥ c
∑
j∈Ω2

δ

|wj+ 1
2
| −

∑
j∈Ω2

δ

(c− aj+1 + bj) |wj+ 1
2
| +

∑
j∈Ω2

δ

bj+1|wj+ 3
2
| −

∑
j∈Ω2

δ

aj |wj− 1
2
|

= aj1+1|wj1+
1
2
| − bj2−1|wj2− 1

2
| ≥ 0.

Therefore, the operator A is accretive.
On the other hand, because the numerical flux h(u, v) ∈ C1(R2), the operator A

is not only accretive but also m-accretive; i.e., for all positive numbers λ, I + λA is
a surjection, where I denotes the identity operator. Therefore, in view of the well-
known results of Lucier [24] as well as Crandall and Liggett [5], we can conclude the
existence of a unique solution of (3.1).

Since for fixed δ there is only a finite number of real terms in (3.1), un+1
j+ 1

2

, j1 ≤
j < j2, can be computed if un

j+ 1
2

∈ R. Moreover, if we assume that the initial data
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{u0
j+ 1

2

|j ∈ Z} are bounded, a bound for un+1
j+ 1

2

for all j ∈ Ω2
δ exists for fixed δ and

independent of n, which will be proved later.
Mimicking the proof of Lemma 3.1, the following result is easily proved.
Lemma 3.2. Assuming that {un+1

j1− 1
2

, un+1
j2+

1
2

, un
j+ 1

2

, j = j1, . . . , j2 − 1} and {vn+1
j1− 1

2

,

vn+1
j2+

1
2

, vn
j+ 1

2

, j = j1, . . . , j2 − 1} are two arbitrarily given initial data and boundary

conditions, then the two corresponding solutions of (3.1), un+1 and vn+1, satisfy

j2−1∑
j=j1

|un+1
j+ 1

2

− vn+1
j+ 1

2

|Δxj+ 1
2
≤

j2−1∑
j=j1

|un
j+ 1

2
− vnj+ 1

2
|Δxj+ 1

2

+ ΔtnL
(
|un+1

j1− 1
2

− vn+1
j1− 1

2

| + |un+1
j2+

1
2

− vn+1
j2+

1
2

|
)
.(3.2)

Moreover, if un+1
j1− 1

2

, un+1
j2+

1
2

, and un
j+ 1

2

, j = j1, . . . , j2−1, are bounded, so is un+1
j+ 1

2

for all

j ∈Ω2
δ .

Remark 3.1. If we assume that the time step sizes satisfy a suitable restriction,
then we may also present a proof of Lemma 3.1 by using the uniform monotonicity
theorem of Dekker and Verwer; see page 147 of the book [8].

3.1. Maximum principle. In this subsection we show the existence of a max-
imum principle satisfied by the solutions of the DDM (2.2) and (2.3).

Lemma 3.3. If the initial data {u0
j+ 1

2

}j∈Z satisfy

m ≤ u0
j+ 1

2
≤ M ∀j ∈ Z,(3.3)

then under the local CFL condition

λn
j+ 1

2
max

u,v,w,z∈A
{|h1(u, v)| + |h2(w, z)|} ≤ 1(3.4)

for all j ∈ Ω1
δ, where A = {w ∈ L∞(R)

∣∣||w||L∞(R) ≤ ||u0||L∞(R)}, we have

m ≤ un+1
j+ 1

2

≤ M ∀j ∈ Z, n ≥ 0.(3.5)

Proof. Assume that m ≤ un
j+ 1

2

≤ M for all j ∈ Z. First, we consider the solutions

in the domain Ω1
δ . We obtain the estimate

un+1
j+ 1

2

−m = un
j+ 1

2
−m− λn

j+ 1
2

(
h(un

j+ 1
2
, un

j+ 3
2
) − h(m,un

j+ 3
2
) + h(m,m) − h(m,un

j+ 1
2
)
)

− λn
j+ 1

2

(
h(m,un

j+ 3
2
) − h(m,m) + h(m,un

j+ 1
2
) − h(un

j− 1
2
, un

j+ 1
2
)
)
≥ 0

for all j ∈ Ω1
δ by applying the CFL condition (3.4) to the right-hand side (RHS) of

the first line and by using the monotonicity property of the flux h in the second line.
Similarly, we can also get that un+1

j+ 1
2

≤ M for all j ∈ Ω1
δ under the hypotheses of the

lemma.
Next, we show m ≤ un+1

j+ 1
2

≤ M for all j ∈ Ω2
δ . To do this, we introduce a small

positive constant, 0 < β 
 1, and rewrite (2.3) in the following form:

(1 + β)un+1
j+ 1

2

= βun
j+ 1

2
+ ũn+1

j+ 1
2

,(3.6)
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where

ũn+1
j+ 1

2

= un+1
j+ 1

2

− βλn
j+ 1

2

(
h(un+1

j+ 1
2

, un+1
j+ 3

2

) − h(un+1
j− 1

2

, un+1
j+ 1

2

)
)
.(3.7)

Define M̃ = maxj∈Ω2
δ
{un+1

j+ 1
2

} and m̃ = minj∈Ω2
δ
{un+1

j+ 1
2

}. They are all finite, due to

Lemma 3.2. Following the analysis for j ∈ Ω1
δ , we may prove

min{m̃,m} ≤ ũn+1
j+ 1

2

≤ max{M̃,M} ∀j ∈ Ω2
δ

under the CFL-type condition

βλn
j+ 1

2
max

u,v,w,z∈Ã
{|h1(u, v)| + |h2(w, z)|} ≤ 1(3.8)

for all j ∈ Ω2
δ , where Ã := [min{m̃,m},max{M̃,M}]. Note that (3.8) is slightly more

general than (3.4), but since β may be arbitrarily small there is essentially no further
restriction to the time step. From (3.6), we get

βm + min{m̃,m} ≤ (1 + β)un+1
j+ 1

2

≤ βM + max{M̃,M}, j ∈ Ω2
δ .(3.9)

If M̃ > M , then we have from (3.9)

(1 + β)M̃ ≤ βM + M̃, M̃ = max
j∈Ω2

δ

{un+1
j+ 1

2

}.

This leads to a contradiction. Therefore, un+1
j+ 1

2

≤ M, j ∈ Z. Similarly, we can also get

un+1
j+ 1

2

≥ m for all j ∈ Z. The proof is completed.

Lemma 3.4. Under the local CFL condition

λn
j max

u,v,w,z∈A
{|h1(u, v)| + |h2(w, z)|} ≤ 1(3.10)

for all j ∈ Ω1
δ, where λn

j = max{λn
j+ 1

2

, λn
j− 1

2

}, the DDM (2.2) and (2.3) is total

variation diminishing; i.e.,

TV (un+1) ≤ TV (un) ≡
∑
j∈Z

|Δ+u
n
j− 1

2
|, n ≥ 0,(3.11)

where Δ+ denotes the forward difference operator in space.
Proof. First, we rewrite (2.2) and (2.3) in an incremental form as follows:

un+1
j+ 1

2

= un
j+ 1

2
+ Cn

j+1Δ+u
n
j+ 1

2
−Dn

j Δ+u
n
j− 1

2
, j ∈ Ω1

δ ,(3.12)

un+1
j+ 1

2

= un
j+ 1

2
+ Cn+1

j+1 Δ+u
n+1
j+ 1

2

−Dn+1
j Δ+u

n+1
j− 1

2

, j ∈ Ω2
δ ,(3.13)

where the incremental coefficients are defined by

Cν
j+1 = λn

j+ 1
2

⎧⎪⎨⎪⎩
f(uν

j+ 1
2
)−h(uν

j+ 1
2
,uν

j+ 3
2
)

Δ+uν

j+ 1
2

, Δ+u
ν
j+ 1

2

�= 0,

h2(u
ν
j+ 1

2

, uν
j+1/2) otherwise,

Dν
j = λn

j+ 1
2

⎧⎪⎨⎪⎩
f(uν

j+ 1
2
)−h(uν

j− 1
2
,uν

j+ 1
2
)

Δ+uν

j− 1
2

, Δ+u
ν
j− 1

2

�= 0,

h1(u
ν
j− 1

2

, uν
j+ 1

2

) otherwise,
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where ν = n or n + 1. Subtracting (3.12) (or (3.13)) at j − 1
2 from (3.12) (or (3.13))

at j + 1
2 for j < j1 and j > j2 (or j2 > j > j1) gives

Δ+u
n+1
j− 1

2

= (1 − Cn
j −Dn

j )Δ+u
n
j− 1

2
+ Cn

j+1Δ+u
n
j+ 1

2
+ Dn

j−1Δ+u
n
j− 3

2
,(3.14)

(1 + Cn+1
j + Dn+1

j )Δ+u
n+1
j− 1

2

= Δ+u
n
j− 1

2
+ Cn+1

j+1 Δ+u
n+1
j+ 1

2

+ Dn+1
j−1 Δ+u

n+1
j− 3

2

.(3.15)

We also subtract (3.12) at j1 − 1
2 from (3.13) at j1 + 1

2 , and have

(1 + Dn+1
j1

)Δ+u
n+1
j1− 1

2

= (1 − Cn
j1)Δ+u

n
j1− 1

2
+ Cn+1

j1+1Δ+u
n+1
j1+

1
2

+ Dn
j1−1Δ+u

n
j1− 3

2
.

(3.16)

Similarly, near the interface x = xj2 , we have

(1 + Cn+1
j2

)Δ+u
n+1
j2− 1

2

= (1 −Dn
j2)Δ+u

n
j2− 1

2
+ Cn

j2+1Δ+u
n
j2+

1
2

+ Dn+1
j2−1Δ+u

n+1
j2− 3

2

.

(3.17)

Under (3.10) and the monotonicity property of the numerical flux h(u, v), the coeffi-
cients Cν

j and Dν
j in (3.14)–(3.17) are all nonnegative; i.e.,

Cν
j ≥ 0, Dν

j ≥ 0 for all j ∈ Z and ν = n or n + 1,

Cn
j + Dn

j ≤λn
j max{|h1| + |h2|} ≤ 1.

Thus, taking the absolute value of (3.14)–(3.17) and using the triangle inequality, we
get

|Δ+u
n+1
j− 1

2

| ≤
(
1 − (Cn

j + Dn
j )
)
|Δ+u

n
j− 1

2
| + Cn

j+1|Δ+u
n
j+ 1

2
|(3.18)

+ Dn
j−1|Δ+u

n
j− 3

2
|, j < j1 or j > j2,

(1 + Cn+1
j + Dn+1

j )|Δ+u
n+1
j− 1

2

| ≤ |Δ+u
n
j− 1

2
| + Cn+1

j+1 |Δ+u
n+1
j+ 1

2

|(3.19)

+ Dn+1
j−1 |Δ+u

n+1
j− 3

2

|, j1 < j < j2,

(1 + Dn+1
j1

)|Δ+u
n+1
j1− 1

2

| ≤ (1 − Cn
j1)|Δ+u

n
j1− 1

2
|(3.20)

+ Cn+1
j1+1|Δ+u

n+1
j1+

1
2

| + Dn
j1−1|Δ+u

n
j1− 3

2
|,

(1 + Cn+1
j2

)|Δ+u
n+1
j2− 1

2

| ≤ (1 −Dn
j2)|Δ+u

n
j2− 1

2
| + Cn

j2+1|Δ+u
n
j2+

1
2
|(3.21)

+ Dn+1
j2−1|Δ+u

n+1
j2− 3

2

|.

Summing (3.18) from j = −∞ to j1 − 1 and from j = j2 + 1 to ∞, (3.19) from j1 + 1
to j2 − 1, (3.20), and (3.21), we get by shifting indices

TV (un+1) ≤ TV (un).

This completes the proof.
Remark 3.2. Let us take the following numerical flux [32]:

h(uj− 1
2
, uj+ 1

2
) =

Δxj+ 1
2
f(uj− 1

2
) + Δxj− 1

2
f(uj+ 1

2
)

Δxj+ 1
2

+ Δxj− 1
2

−Qj

uj+ 1
2
− uj− 1

2

Δxj+ 1
2

+ Δxj− 1
2

,(3.22)
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where the numerical viscosity coefficient Qj = Q(uj+ 1
2
, uj− 1

2
; Δxj+ 1

2
,Δxj− 1

2
) is cho-

sen such that h(uj− 1
2
, uj+ 1

2
) is monotone. As an example, we define Qj by

Qj = max
u

{|f ′(u)|}max{Δxj+ 1
2
,Δxj− 1

2
}.(3.23)

For this special numerical flux h(uj− 1
2
, uj+ 1

2
) given by (3.22) and (3.23), we have

Cj + Dj =
Δtn

Δxj− 1
2
Δxj+ 1

2

Qj =
Δtn

min{Δxj− 1
2
,Δxj+ 1

2
} max

u
{|f ′(u)|}.

Thus, the TV-stability condition now becomes

Δtn
min{Δxj− 1

2
,Δxj+ 1

2
} max

u
{|f ′(u)|} ≤ 1 ∀j ∈ Ω1

δ .

3.2. L1-continuity in time.
Lemma 3.5. Let μ > 1 and assume Cn+1

j + Dn+1
j ≤ μ for all j ∈ Ωδ

2, n ∈ Z.
Under the hypothesis of Lemma 3.4, we have

||um − un||L1(R) ≡
∑
j∈Z

|um
j+ 1

2
− un

j+ 1
2
|Δxj+ 1

2
≤ 1 + μ

λ
(tm − tn)TV (u0),(3.24)

where 1
λ = maxj,n{ 1

λn

j+ 1
2

}.

Note that due to the larger time step in a part of the domain, i.e., Ω2
δ , the term

Cn+1
j + Dn+1

j is not necessarily bounded by 1. For this purpose we introduce the
constant μ ≥ 1 as in the formulation of the lemma. This constant is assumed to be
chosen independently of spatial and time step sizes.

Proof. From (3.12)–(3.13), we have

(un+1
j+ 1

2

− un
j+ 1

2
)Δxj+ 1

2
=

Δtn
λn
j+ 1

2

(Cn
j+1Δ+u

n
j+ 1

2
−Dn

j Δ+u
n
j− 1

2
), j ∈ Ω1

δ ,(3.25)

(un+1
j+ 1

2

− un
j+ 1

2
)Δxj+ 1

2
=

Δtn
λn
j+ 1

2

(Cn+1
j+1 Δ+u

n+1
j+ 1

2

−Dn+1
j Δ+u

n+1
j− 1

2

), j ∈ Ω2
δ .(3.26)

Taking the absolute value of these equations and using the triangle inequality, we get

|un+1
j+ 1

2

− un
j+ 1

2
|Δxj+ 1

2
≤ Δtn

λn
j+ 1

2

(Cn
j+1|Δ+u

n
j+ 1

2
| + Dn

j |Δ+u
n
j− 1

2
|), j ∈ Ω1

δ ,(3.27)

|un+1
j+ 1

2

− un
j+ 1

2
|Δxj+ 1

2
≤ Δtn

λn
j+ 1

2

(Cn+1
j+1 |Δ+u

n+1
j+ 1

2

| + Dn+1
j |Δ+u

n+1
j− 1

2

|), j ∈ Ω2
δ .(3.28)

Summing (3.27) from j = −∞ to j1 − 1 and from j2 to ∞, and (3.28) from j1 to
j2 − 1, we get by shifting indices

∞∑
j=−∞

|un+1
j+ 1

2

− un
j+ 1

2
|Δxj+ 1

2
≤ Δtn

λ

(
TV (un) + μTV (un+1)

)
≤ (1 + μ)Δtn

λ
TV (un).

(3.29)

Here the conclusion of Lemma 3.4 has been used. From this inequality, we may
complete the proof.
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4. A cell entropy inequality. This section concerns the study of a cell entropy
inequality satisfied by the solutions of the DDM (2.2) and (2.3). In our analysis we
will make use of the Kruzkov entropy pairs (U,F ): U(u; k) = |u − k|, F (u; k) =
sign(u− k)

(
f(u) − f(k)

)
for any k ∈ R, and the notation “∨” and “∧” defined by

a ∨ b = max{a, b}, and a ∧ b = min{a, b}.
Lemma 4.1. The solutions of the scheme (2.2) satisfy the cell entropy inequality

U(un+1
j+ 1

2

; k) − U(un
j+ 1

2
; k) + λn

j+ 1
2
Δ+H(un

j− 1
2
, un

j+ 1
2
; k) ≤ 0, j ∈ Ω1

δ ,(4.1)

under the CFL condition (3.4), while the solutions of the scheme (2.3) satisfy

U(un+1
j+ 1

2

; k) − U(un
j+ 1

2
; k) + λn

j+ 1
2
Δ+H(un+1

j− 1
2

, un+1
j+ 1

2

; k) ≤ 0, j ∈ Ω2
δ ,(4.2)

where the numerical entropy flux is defined by H(uν
j− 1

2

, uν
j+ 1

2

; k) = h(uν
j− 1

2

∨k, uν
j+ 1

2

∨
k) − h(uν

j− 1
2

∧ k, uν
j+ 1

2

∧ k), which satisfies the consistency condition

H(u, u; k) = F (u; k).

Proof. Mimicking the proof of Crandall and Majda given in [6], we can deduce
the cell entropy inequality (4.1). Rewrite the difference equation (2.2) as

un+1
j+ 1

2

= G(un
j− 1

2
, un

j+ 1
2
, un

j+ 3
2
).

Because G(u, v, w) satisfies k = G(k, k, k) and is monotonously increasing with respect
to its arguments, under the CFL condition (3.4), we find that

un+1
j+ 1

2

∨ k = G(un
j− 1

2
, un

j+ 1
2
, un

j+ 3
2
) ∨G(k, k, k) ≤ G(k ∨ un

j− 1
2
, k ∨ un

j+ 1
2
, k ∨ un

j+ 3
2
),

−un+1
j+ 1

2

∧ k = −G(un
j− 1

2
, un

j+ 1
2
, un

j+ 3
2
) ∧G(k, k, k) ≤ −G(k ∧ un

j− 1
2
, k ∧ un

j+ 1
2
, k ∧ un

j+ 3
2
).

Adding these two inequalities gives (4.1), i.e.,

|un+1
j+ 1

2

− k| ≤ G(k ∨ un
j− 1

2
, k ∨ un

j+ 1
2
, k ∨ un

j+ 3
2
) −G(k ∧ un

j− 1
2
, k ∧ un

j+ 1
2
, k ∧ un

j+ 3
2
)

= |un
j+ 1

2
− k| − βλn

j+ 1
2
Δ+H(un

j− 1
2
, un

j+ 1
2
; k).

If using the CFL-type condition (3.8), we can get the inequality (4.2) from the
difference equations (3.7) and (3.6) in a similar way. In the following we begin to
prove the inequality (4.2) by a case-by-case procedure, without using the condition
(3.8).

Case 1. un+1
j+ 1

2

, un+1
j− 1

2

, un+1
j+ 3

2

≥ k. From the scheme (2.3), we have

|un+1
j+ 1

2

− k| − (un
j+ 1

2
− k) + λn

j+ 1
2
Δ+

(
h(un+1

j− 1
2

, un+1
j+ 1

2

) − h(k, k)
)

= 0

and get (4.2); i.e.,

|un+1
j+ 1

2

− k| − |un
j+ 1

2
− k| + λn

j+ 1
2
Δ+

(
h(un+1

j− 1
2

, un+1
j+ 1

2

) − h(k, k)
)
≤ 0.

Case 2. un+1
j+ 1

2

, un+1
j− 1

2

, un+1
j+ 3

2

≤ k. From the scheme (2.3), we have

|k − un+1
j+ 1

2

| − (k − un
j+ 1

2
) + λn

j+ 1
2
Δ+

(
h(k, k) − h(un+1

j− 1
2

, un+1
j+ 1

2

)
)

= 0
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and get (4.2); i.e.,

|un+1
j+ 1

2

− k| − |un
j+ 1

2
− k| + λn

j+ 1
2
Δ+

(
h(k, k) − h(un+1

j− 1
2

, un+1
j+ 1

2

)
)
≤ 0.

Case 3. un+1
j+ 1

2

, un+1
j+ 3

2

≥ k ≥ un+1
j− 1

2

. Substituting (2.3) into the left-hand side (LHS)

of (4.2), we have

LHS(4.2) = (un
j+ 1

2
− k) − |un

j+ 1
2
− k| − λn

j+ 1
2
Δ+h(un+1

j− 1
2

, un+1
j+ 1

2

)

+ λn
j+ 1

2

(
h(un+1

j+ 1
2

, un+1
j+ 3

2

) − h(k, k) − h(k, un+1
j+ 1

2

) + h(un+1
j− 1

2

, k)
)

= (un
j+ 1

2
− k) − |un

j+ 1
2
− k| + λn

j+ 1
2

(
h(un+1

j− 1
2

, un+1
j+ 1

2

) − h(k, un+1
j+ 1

2

)

+ h(un+1
j− 1

2

, k) − h(k, k)
)
≤ 0,

where we have used the monotonicity property of the numerical flux h(u, v).

Case 4. un+1
j+ 1

2

, un+1
j− 1

2

≥ k ≥ un+1
j+ 3

2

. This case is similar to Case 3. We have

LHS(4.2) = (un
j+ 1

2
− k) − |un

j+ 1
2
− k| − λn

j+ 1
2
Δ+h(un+1

j− 1
2

, un+1
j+ 1

2

)

+ λn
j+ 1

2

(
h(un+1

j+ 1
2

, k) − h(k, un+1
j+ 3

2

) − h(un+1
j− 1

2

, un+1
j+ 1

2

) + h(k, k)
)

= (un
j+ 1

2
− k) − |un

j+ 1
2
− k| + λn

j+ 1
2

(
h(un+1

j+ 1
2

, k) − h(un+1
j+ 1

2

, un+1
j+ 3

2

)

+ h(k, k) − h(k, un+1
j+ 3

2

)
)
≤ 0.

Case 5. un+1
j+ 3

2

, un+1
j− 1

2

≥ k ≥ un+1
j+ 1

2

. Similarly, we have

LHS(4.2) = (k − un
j+ 1

2
) − |un

j+ 1
2
− k| + λn

j+ 1
2
Δ+h(un+1

j− 1
2

, un+1
j+ 1

2

)

+ λn
j+ 1

2

(
h(k, un+1

j+ 3
2

) − h(un+1
j+ 1

2

, k) − h(un+1
j− 1

2

, k) + h(k, un+1
j+ 1

2

)
)

= (k − un
j+ 1

2
) − |un

j+ 1
2
− k| + λn

j+ 1
2

(
h(un+1

j+ 1
2

, un+1
j+ 3

2

) − h(un+1
j+ 1

2

, k)

+ h(k, un+1
j+ 1

2

) − h(un+1
j− 1

2

, un+1
j+ 1

2

) + h(k, un+1
j+ 3

2

) − h(k, k)

+ h(k, k) − h(un+1
j− 1

2

, k)
)
≤ 0.

Case 6. un+1
j+ 1

2

≥ k ≥ un+1
j+ 3

2

, un+1
j− 1

2

. This case is similar to Case 5. We have

LHS(4.2) = (un
j+ 1

2
− k) − |un

j+ 1
2
− k| − λn

j+ 1
2
Δ+h(un+1

j− 1
2

, un+1
j+ 1

2

)

+ λn
j+ 1

2

(
h(un+1

j+ 1
2

, k) − h(k, un+1
j+ 3

2

) − h(k, un+1
j+ 1

2

) + h(un+1
j− 1

2

, k)
)

= (un
j+ 1

2
− k) − |un

j+ 1
2
− k| + λn

j+ 1
2

(
h(un+1

j+ 1
2

, k) − h(un+1
j+ 1

2

, un+1
j+ 3

2

)

+ h(un+1
j− 1

2

, un+1
j+ 1

2

) − h(k, un+1
j+ 1

2

) + h(un+1
j− 1

2

, k) − h(k, k)

+ h(k, k) − h(k, un+1
j+ 3

2

)
)
≤ 0.
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Case 7. un+1
j− 1

2

≥ k ≥ un+1
j+ 3

2

, un+1
j+ 1

2

. We have

LHS(4.2) = (k − un
j+ 1

2
) − |un

j+ 1
2
− k| + λn

j+ 1
2
Δ+h(un+1

j− 1
2

, un+1
j+ 1

2

)

+ λn
j+ 1

2

(
h(k, k) − h(un+1

j+ 1
2

, un+1
j+ 3

2

) − h(un+1
j− 1

2

, k) + h(k, un+1
j+ 1

2

)
)

= (k − un
j+ 1

2
) − |un

j+ 1
2
− k| + λn

j+ 1
2

(
h(k, un+1

j+ 1
2

) − h(un+1
j− 1

2

, un+1
j+ 1

2

)

+ h(k, k) − h(un+1
j− 1

2

, k)
)
≤ 0.

Case 8. un+1
j+ 3

2

≥ k ≥ un+1
j− 1

2

, un+1
j+ 1

2

. It is similar to Case 7. We have

LHS(4.2) = (k − un
j+ 1

2
) − |un

j+ 1
2
− k| + λn

j+ 1
2
Δ+h(un+1

j− 1
2

, un+1
j+ 1

2

)

+ λn
j+ 1

2

(
h(k, un+1

j+ 3
2

) − h(un+1
j+ 1

2

, k) − h(k, k) + h(un+1
j− 1

2

, un+1
j+ 1

2

)
)

= (k − un
j+ 1

2
) − |un

j+ 1
2
− k| + λn

j+ 1
2

(
h(un+1

j+ 1
2

, un+1
j+ 3

2

) − h(un+1
j+ 1

2

, k)

h(k, un+1
j+ 3

2

) − h(k, k)
)
≤ 0.

The proof is completed.

5. Convergence of the algorithm. We focus in this section on the study of
the convergence of the DDM (2.2) and (2.3) introduced in section 2. Treating the
nonconservative terms carefully is the key.

Let L1
loc(Ω) denote the space of all functions u that are integrable on compact

subsets of Ω, and define the step function uδ as follows:

uδ(x, t) = un
j+ 1

2
for (x, t) ∈ (xj , xj+1) × [tn, tn+1)(5.1)

if j ∈ Ω1
δ ∪ Ω2

δ .
Using Lemmas 3.3–3.5, we can prove the following theorem.
Theorem 5.1. If u0(x) ∈ L∞(R)∩L1(R)∩BV (R), then the approximate family

of solutions uδ constructed by the DDM algorithm converges as δ tends to zero. The
limit is a function u in L1

loc(R × R
+) which is a weak solution of (1.1) with initial

data (1.2).
Proof. From Lemmas 3.3–3.5, the sequence {uδ} is bounded in L∞(R)∩L1(R)∩

BV (R). Then by Helly’s compactness theorem, we can extract a subsequence still
labeled {uδ} which converges towards a function u in L1

loc(R×R
+). In the following we

shall prove that the function u is a weak solution of (1.1) and (1.2). We mimic the proof
of the Lax–Wendroff theorem. For the sake of clarity throughout the proof, we still use
uν
j+ 1

2

to denote uδ(xj+ 1
2
, tν), and hν

j to denote h
(
uδ(xj− 1

2
, tν), uδ(xj+ 1

2
, tν)

)
, where

ν = n or n + 1. Multiplying (2.2) and (2.3) by a smooth test function φ(xj+ 1
2
, tn) ∈

C∞
0 (R2) and summing it with respect to n and j gives

∞∑
j=−∞

{ ∞∑
n=0

(
un+1
j+ 1

2

− un
j+ 1

2

)
φ(xj+ 1

2
, tn)

}
Δxj+ 1

2
+

∞∑
n=0

⎧⎨⎩
j1−1∑
j=−∞

(hn
j+1 − hn

j )φ(xj+ 1
2
, tn)

+

j2−1∑
j=j1

(hn+1
j+1 − hn+1

j )φ(xj+ 1
2
, tn) +

∞∑
j=j2

(hn
j+1 − hn

j )φ(xj+ 1
2
, tn)

⎫⎬⎭Δtn = 0.

(5.2)
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Now, we use I0 to denote the first term at the LHS of (5.2), and Ii, i = 1, 2, 3, to
denote the ith term in braces in the second term at the LHS of (5.2). If we use
“summation by parts,” then the term I0 becomes

I0 =

∞∑
j=−∞

{
−u0

j+ 1
2
φ(xj+ 1

2
, t0) −

∞∑
n=1

un
j+ 1

2
Δt

+φ(xj+ 1
2
, tn−1)

}
Δxj+ 1

2
,(5.3)

where Δt
+ denotes the forward difference operator in time. Similarly, we also have

I1 = hn
j1φ(xj1− 1

2
, tn) −

j1−1∑
j=−∞

hn
j Δ+φ(xj− 1

2
, tn),(5.4)

I2 =
{
hn+1
j2

φ(xj2− 1
2
, tn) − hn+1

j1
φ(xj1− 1

2
, tn)

}
−

j2−1∑
j=j1

hn+1
j Δ+φ(xj− 1

2
, tn),(5.5)

where the term hn+1
j1

φ(xj1− 1
2
, tn) has been added and subtracted above, and

I3 = − hn
j2φ(xj2− 1

2
, tn) −

∞∑
j=j2

hn
j Δ+φ(xj− 1

2
, tn).(5.6)

Here we have similarly added and subtracted the term hn
j2
φ(xj2− 1

2
, tn). Hence, (5.2)

becomes, after using summation by parts as above,

0 =
∞∑

j=−∞

{
−u0

j+ 1
2
φ(xj+ 1

2
, t0) −

∞∑
n=1

un
j+ 1

2
Δt

+φ(xj+ 1
2
, tn−1)

}
Δxj+ 1

2

−
∞∑

n=0

⎧⎨⎩
j1−1∑
j=−∞

hn
j Δ+φ(xj− 1

2
, tn) +

j2−1∑
j=j1

hn+1
j Δ+φ(xj− 1

2
, tn) +

∞∑
j=j2

hn
j Δ+φ(xj− 1

2
, tn)

⎫⎬⎭
(5.7)

+

∞∑
n=0

{
φ(xj2− 1

2
, tn)ΔtnΔt

+h
n
j2 − φ(xj1− 1

2
, tn)ΔtnΔt

+h
n
j1

}
.

Again using summation by parts, we can rewrite the third term at the RHS of (5.7)
as follows:

I4 := φ(xj1− 1
2
, t0)Δt0 − φ(xj2− 1

2
, t0)Δt0 −

∞∑
n=1

{
hn
j2Δ

t
+(φ(xj2− 1

2
, tn−1)Δtn−1)

−hn
j1Δ

t
+(φ(xj1− 1

2
, tn−1)Δtn−1)

}
.(5.8)

Under the assumption that Δtn = Δtn−1 + O(δ1+α), we have

∞∑
n=1

hn
ĵ
Δt

+

(
φ(xĵ− 1

2
, tn−1)Δtn−1

)
=

∞∑
n=1

hn
ĵ

{
φ(xĵ− 1

2
, tn)

(
Δtn−1 + O(δ1+α)

)
− φ(xĵ− 1

2
, tn−1)Δtn−1

}
=

∞∑
n=1

hn
ĵ

{
Δt2n−1φt(xĵ− 1

2
, ηn−1) + φ(xĵ− 1

2
, t)O(δ1+α)

}
−→ 0(5.9)
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as δ −→ 0, where ĵ = j2 or j1, and ηn−1 ∈ [tn−1, tn]. Therefore, it follows that the
term limδ→0 I4 = 0 uniformly.

Taking into account the above results, we prove that (5.7) gives

−
∫

R

u0(x)φ(x, 0) dx =

∫
R×R+

(
u
∂φ

∂t
+ f(u)

∂φ

∂x

)
dxdt,(5.10)

as δ tends to zero. The proof is completed.
Theorem 5.2. Let u be a weak solution to the initial value problem (1.1) and

(1.2). Further, let uδ be a sequence of approximate solutions constructed by (2.2) and
(2.3). Suppose that u is the limit in L1

loc(R × R
+) of the sequence of the approximate

solutions uδ for δ → 0. Then u is the unique entropy solution to (1.1) and (1.2)
satisfying the entropy condition

(5.11) −
∫

R×R+

(
|u− k|∂φ

∂t
+ sign(u− k)(f(u) − f(k))

∂φ

∂x

)
dxdt ≤ 0

for all nonnegative test function φ ∈ C∞
0 (R × R

+) and all real numbers k.
The proof of this theorem is analogous to that of the previous procedure in the

proof of the last theorem and will be omitted here.

6. Numerical experiments. In this section we present two numerical experi-
ments to validate the previous results of the domain decomposition method given in
section 2.

Example 1. We use our algorithm (2.2) and (2.3) to solve the following initial
value problem of the inviscid Burgers equation:

∂u

∂t
+

∂
(

1
2u

2
)

∂x
= 0,(6.1)

u(x, 0) =

{
1 if −1 ≤ x ≤ 0,

0.1 otherwise.
(6.2)

The numerical flux is taken as h(uj− 1
2
, uj+ 1

2
) = 1

2 (uj− 1
2
)2, because u(x, t) is

nonnegative for all x ∈ R and t ≥ 0. The computational domain [−2, 2] is divided
into two subdomains: Ω1 = {x|x < −1} ∪ {x|x > 1} and Ω2 = {x| − 1 ≤ x ≤ 1}.
Each subdomain is again partitioned into small cells with length Δx = 0.01. It
means that the global domain is divided into 400 cells. In Figure 1, we show the
numerical solutions at t = 1 obtained by two single domain algorithms: the fully
explicit upwind scheme and the fully implicit upwind scheme, respectively. The time
step size Δt = 9.5× 10−3 has been used. The solid line is the exact solution obtained
by the method of characteristics and the jump condition.

Figure 2 gives the numerical solutions at t = 1 calculated by our multidomain
algorithm (2.2) and (2.3) with two different time step sizes Δt = 9.5×10−3 and Δt =
9.5 × 10−2, respectively. The results show that the correct location of discontinuities
has been obtained; it is in accordance with the exact solution. The numerical solutions
at t = 1 and 2 shown in Figure 3 are calculated by our multidomain algorithm (2.2) and
(2.3) with the time step sizes Δt = 9.5×10−3 as well as Ω1 = {x|x < −1}∪{x|x > 0}
and Ω2 = {x| − 1 ≤ x ≤ 0}. The discontinuities have also been resolved correctly. In
this case, the shock wave is passing through the interface of Ω1 and Ω2.

However, from Figures 1 and 2, we observe that the solutions calculated by using
the fully implicit upwind scheme are more dissipative than those of the explicit upwind
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Fig. 1. Example 1: Comparison of the single-domain solutions (“circle”) with the exact solu-
tions. Left: explicit upwind scheme; right: implicit upwind scheme.
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Fig. 2. Example 1: Comparison of multidomain solutions (“circle”) with the exact solutions.
Left: Δt = 9.5 × 10−3; right: Δt = 9.5 × 10−2.
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Fig. 4. Example 2: the computed solutions. Left: the fully explicit upwind scheme; right: the
DDM.

scheme. If the time step size is taken larger, resolution of numerical solutions will
be decreased; see, e.g., Figure 2. Therefore, it will be meaningful to develop high
resolution DDMs for hyperbolic conservation laws.

Even though the numerical solutions obtained by using the DDM (2.2) and (2.3)
are less accurate in the above example, this DDM is still very attractive in relaxing
the restriction of the time step size and improving the computational efficiency of the
DDM algorithm when we solve the steady state problem. In the following, we give a
simple example to demonstrate this.

Example 2. This example is to solve the following IBVP of the Burgers equation
subject to the periodic data [19]:

(6.3) u(x, 0) = sin(π(x + 1)), x ∈ [−1, 1).

The numerical flux h(u, v) is taken as the traditional upwind flux, but an entropy
fix should be used to avoid the sonic point glitch [31]. The computational domain
[−1, 1] is first divided into two subdomains: Ω1 = {x|x < −0.5} ∪ {x|x > 0.5} and
Ω2 = {x| − 0.5 ≤ x ≤ 0.5}. The domain Ω2 is chosen in the region where f ′(u) = u is
largest and leads to the most severe time step restriction. On the other hand, there
the shock appears, and we expect to need a fine spatial resolution for accuracy. The
subdomain Ω1 is then partitioned into 20 large cells, and Ω2 is divided into 2000 small
cells. We now give a comparison of our partitioning method on the two domains with
an explicit computation using an explicit method.

The computed solutions at t = 3 are shown in Figure 4. We see that the steady
state solution of the DDM is slightly more accurate than the explicit upwind scheme.
Here we used a fine mesh as in Ω2 on the whole domain for the explicit scheme with
the usual CFL condition. The CFL number used was 0.9. It spent the CPU time of
1.06s. When we use the DDM, the time step size is determined only by the explicit
part, and a CPU time of 0.06s is needed.

7. Concluding remarks. The use of DDMs for conservation laws is an emerg-
ing field. The potential payoff will lie in a reduction of computing time possibly in
conjunction with parallelization and the use of different solvers in different regions
of the computational domain. The second author is pursuing the latter approach for
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advection-diffusion equations and reaction-diffusion systems in parallel work, e.g., in
[15].

A sound analytical foundation of the DDMs is needed. For conservation laws it
is currently very difficult to obtain numerical analysis for systems of equations, even
impossible for real multidimensional systems and for methods that are higher than
first order. The entropy consistency in conjunction with the need to use limiters is
the key problem for higher order methods. For conservation laws the most impor-
tant issue is conservativity. This and other essential properties need careful study
in the scalar case, as was done in this paper. The method described in this paper
is already an improvement over previous approaches. An important further step is
to find a practical solution for the multidimensional systems appearing in practical
applications. This development must be guided by the type of analysis we presented
in our paper, especially concerning the issue of conservativity.

The analysis and the computational results in this paper suggest that the ap-
proach of mixing implicit and explicit methods should be considered further from a
computational point of view. Next to considering variants of the computations in
this paper, methods of at least second order are needed for practical purposes, even
if their analytical basis is still incomplete.

Acknowledgment. The authors would like to thank the referees for many help-
ful suggestions during the revision of the paper.
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Abstract. Although the asymptotic complexity of direct methods for the solution of large sparse
finite element systems arising from second-order elliptic partial differential operators is far from being
optimal, these methods are often preferred over modern iterative methods. This is mainly due to
their robustness. In this article it is shown that an approximate LU decomposition exists which
can be computed in the algebra of hierarchical matrices with almost linear complexity and with
the same robustness as the classical LU decomposition. Low-precision approximations may be used
for preconditioning iterative solvers. As a byproduct we prove that Schur complements of stiffness
matrices can be approximated with almost linear complexity.
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1. Introduction. The finite element discretization of Dirichlet boundary value
problems

Du = f in Ω,

u = g on ∂Ω

with general second-order elliptic partial differential operators

(1) Du = −div [C∇u + c′u] + c′′ · ∇u + c0u

and possibly rough coefficients cij , c
′
i, c

′′
j , c0 ∈ L∞(Ω), i, j = 1, . . . , d, on a bounded

Lipschitz domain Ω ⊂ R
d leads to large sparse linear systems

(2) Ax = b, A ∈ R
n×n.

In this article we assume that for the discretization of (1) quasi-uniform finite elements
are used.

The numerical solution of linear systems (2) is usually done iteratively by Krylov
subspace methods. The sparse coefficient matrix A enters these solvers only through
the matrix-vector product. Iterative methods are particularly efficient if an approxi-
mate solution of relatively low accuracy is sought. However, the number of iterations
may be large depending on the distribution of the eigenvalues of A. For instance,
the spectral condition number of finite element discretizations of the second-order
operator D from (1) grows like n2/d for large n but also depends significantly on the
coefficients of D. Hence, an appropriate preconditioner has to be employed in order to
improve the convergence properties. This usually requires tailoring the preconditioner
to the respective application.
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The lack of robustness of iterative methods is the reason for the fact that direct
solvers are still in use even for large-scale problems. The latter are based on factor-
izations of the coefficient matrix A into easily invertible matrices. The disadvantage
of direct methods is that these factors suffer from so-called fill-in; i.e., compared with
the sparsity of A considerably more entries of the factors will be nonzero. This usually
happens to all entries within the bandwidth of the original matrix, which for Galerkin
matrices of operators (1) scales like n1−1/d even if the bandwidth has been reduced,
for instance, by the reverse Cuthill–McKee (RCM) algorithm [9]. Hence, the fill-in
will lead to a computational complexity of order n3−2/d. Instead of reducing the
bandwidth, the aim of the minimum degree algorithm [26, 15] and nested dissection
[13] is to reduce fill-in. When d = 2, the fill-in for nested dissection is of the order
n log n, and the complexity is n3/2; see [14]. For d > 2 the complexity scales like
n3−3/d; cf. [23]. Constants, however, are attractively small, making direct methods
the methods of choice if n is not too large or if we are to solve problems in two spatial
dimensions. Here, recent multifrontal solvers (see [1] and the references therein) can
be used.

In the last decade many fast algorithms for the direct solution of boundary value
problems have been proposed. If Ω is an interval, then the Green function G of
ordinary differential operators has the property that

G(x, y) =

{
u1(x)v1(y), x ≥ y,

u2(x)v2(y), x ≤ y,

with appropriately chosen functions u1, v1, u2, and v2. This fact is, for instance,
exploited by the algorithm in [30]. The algebraic analogue of the above property are
semiseparable matrices, which can be factored with linear complexity; cf. [11, 12, 8,
32]. The presence of such structures, which allow an exact factorization, is, however,
restricted to one-dimensional problems. For higher dimensions, fast algorithms require
approximation; see, for instance, [21] in which the inverse is generated in compressed
form.

The aim of this article is to present a new approach that merges the advantages
of direct and iterative methods. This will be achieved by generalizing the classical
LU decomposition to an approximate LU decomposition, which on one side inher-
its the robustness of the classical LU decomposition, while on the other side has
logarithmic-linear complexity independently of the spatial dimension. The efficiency
of this approximate LU decomposition will, however, depend on the accuracy ε al-
though the dependence is only logarithmic. In the limiting case ε = 0, the proposed
hierarchical LU decomposition is nothing but a partitioned LU decomposition of a
matrix thereby inheriting its n3−2/d asymptotic complexity. Hence, the proposed
method aims at applications which admit an approximation of low accuracy. Since
the discretization of (1) introduces an approximation error which cannot be removed
no matter how accurately the linear system (2) is solved, it is sufficient to compute
an LU decomposition with a precision which is of the same order of magnitude as
the discretization error. Another application is approximate inverse preconditioning.
The results of [4] on approximate preconditioners also hold for approximate inverses
obtained by approximate LU decomposition.

Since fill-in will also occur during an approximate LU decomposition, we make
use of the structure of hierarchical matrices, by which appropriate dense matrices can
be treated with almost linear complexity. Consequently, the bandwidths of the factors
L and U will not be an issue. In recent years fast methods for the treatment of large
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dense matrices M ∈ R
n×n have considerably spread. After the introduction of the

fast multipole method [25] and the panel-clustering method [19], numerous methods
have been developed based on low-rank approximations

Mts ≈ VWT

of appropriate subblocks Mts in the rows and columns t, s ⊂ {1, . . . , n} of M , where
V ∈ R

t×k, W ∈ R
s×k, and k is small compared with |t| and |s|. While the fast

multipole method was aiming at an efficient approximate evaluation of matrix-vector
products, by the structure of hierarchical matrices (H-matrices) (see [17, 18]), one ef-
ficiently approximates the matrix entries. Basically, H-matrices are matrices that are
of low rank on each block of a certain partition resulting from a recursive subdivision
of the set of matrix indices. In addition to the efficient matrix-vector multiplication
(also with the transposed matrix) this structure provides approximate operations such
as matrix addition, matrix-matrix multiplication, and matrix inversion of fully popu-
lated matrices with almost linear complexity. Furthermore, H-matrices can be stored
in an almost linear amount of units of memory. In the case of matrices arising from
the discretization of integral equations, H-matrices can be efficiently constructed from
few of the original matrix entries; see [5, 6]. The existence of H-matrix approximants
of almost linear complexity is not self-evident. Recently [7, 2] it was shown that the
inverse of finite element discretizations of operators of type (1) can be approximated
by H-matrices with a blockwise rank that depends logarithmically on both the number
of unknowns n and the accuracy ε. Interestingly, this approximation is very robust
with respect to nonsmooth coefficients. The aim of this article is to extend the exis-
tence theory to the factors of the LU decomposition. Compared with the H-inverse,
the presented H-LU decomposition can be computed in significantly less time while
keeping the same robustness with respect to the coefficients of D.

The hierarchical LU decomposition differs conceptually from the so-called incom-
plete LU factorization (ILU); see [27]. The ILU overcomes the problem of fill-in by
setting to zero entries in the factors L and U outside of the sparsity pattern of A. Al-
though the ILU can be equipped with a thresholding parameter, it will always result
in more or less sparse factors, while the hierarchical LU decomposition is a data-sparse
representation of fully (up to the bandwidth) populated matrix approximants.

The structure of this article is as follows: In section 2 a brief review of the
structure of H-matrices will be given. The existence of H-matrix approximants, which
was proved in [7, 2], will be used to show existence of H-matrix approximants to the
factors L and U in section 3. In contrast to the inverse of a finite element Galerkin
matrix A, its LU decomposition has no analytic equivalent. It is thus surprising that
the matrix partition which has proved useful for elliptic problems can also be used
for the approximation of the factors L and U . For the proof of this main result of
the article, we first show that each Schur complement in A can be approximated
by H-matrices. It will be seen that this knowledge will be sufficient to show that
the factors L and U have H-matrix approximants. The complexity estimates show
the same dependence on the coefficients of operator (1) as the estimates for the H-
inverse. Hence, the asymptotic complexity and the robustness of the hierarchical
inverse are inherited by the H-LU decomposition. The ideas of nested dissection can
also be used to improve the efficiency of H-matrices; cf. [24]. As for the classical
LU decomposition, the H-LU decomposition preserves zero blocks introduced by this
special kind of ordering. We remark that the approximation results of this article are
obviously valid for the induced matrix partition although we will confine ourselves to
standard partitions.
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In section 4 the existence result for the factors L and U is used to lay theoretical
ground to an algorithm for the approximate factorization. This algorithm uses the
H-matrix arithmetic and is related to the partitioned LU decomposition procedure.
As a consequence of the partitioned approach, only a limited version of pivoting is
possible. Once the matrix partition has been generated from the mesh information, an
approximate LU decomposition can be obtained from any Galerkin matrix in a purely
algebraic way. Finally, in section 5 numerical results for elliptic partial differential
operators with nonsmooth coefficients will confirm our analysis. It will be seen that the
proposed approximate LU decomposition can be computed, stored, and used during
forward/backward substitution with almost linear complexity. The comparison with
MUMPS (see [1]) shows that the exact and the approximate LU decompositions scale
similarly for two-dimensional problems. The reduced asymptotic complexity of the
H-LU decomposition will be observable in three spatial dimensions.

2. Hierarchical matrices. In this section we will briefly review the structure of
H-matrices originally introduced by Hackbusch [17] and Hackbusch and Khoromskij
[18]. We will describe the two principles on which the efficiency of H-matrices is
based. These are the hierarchical partitioning of the matrix into blocks and the
blockwise restriction to low-rank matrices. These principles were also used in the
mosaic-skeleton method [31].

In this article we will consider matrices A ∈ R
n×n with entries

(3) aij = a(ϕj , ϕi), i, j = 1, . . . , n,

where a is a bilinear form and ϕi are basis functions with supports Xi := supp ϕi,
i ∈ I := {1, . . . , n}. Here, it is crucial that the basis functions ϕi are locally supported.
Matrices of type (3) arise, for instance, from the Galerkin method, which is frequently
used to discretize operators of type (1). If a arises from the variational formulation of
differential operators, then A is a sparse matrix. A will, however, be fully populated
in general if a incorporates a nonlocal operator.

In order to be able to approximate each block t× s, t, s ⊂ I, of A by a matrix of
low rank, i.e.,

Ats ≈ VWT , V ∈ R
t×k, W ∈ R

s×k,

where k is small compared with |t| and |s|, t×s has to satisfy a certain condition which
is caused by the operator D hidden in a. In the field of elliptic partial differential
operators the corresponding Green function G(x, y) has an algebraic singularity for
x = y. Hence, the following condition on t× s has proved useful:

(4) min{diamXt, diamXs} < η dist(Xt, Xs),

where η > 0 is a given real number which typically is chosen from the interval [0.5, 1.5].
Blocks t× s satisfying (4) will be called admissible. The support Xt of a cluster t is
the union of the supports of the basis functions corresponding to the indices contained
in t:

Xt :=
⋃
i∈t

Xi.

The far-field Fη(t) of t ⊂ I is defined as

Fη(t) := {i ∈ I : η dist(Xi, Xt) > diamXt},
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and by Nη(t) := I \ Fη(t) we denote the near-field of t. As usual we set

diamX = sup
x,y∈X

|x− y| and dist(X,Y ) = inf
x∈X, y∈Y

|x− y|

for two bounded sets X,Y ⊂ R
d. Hence, (4) is equivalent to the condition s ⊂ Fη(t)

or t ⊂ Fη(s). Note that (4) implies that the partition we are looking for has to be
refined towards the diagonal of A, since the diagonal entries arise from the interaction
of the same basis functions; i.e., dist(Xt, Xs) = 0 for all blocks t × s containing the
diagonal.

The construction of a partition P of the matrix indices I × I consisting of admis-
sible blocks or blocks which are small enough is usually based on cluster trees. A tree
TI satisfying the following conditions is called a cluster tree for I:

(i) I is the root of TI ;
(ii) if t ∈ TI is not a leaf, then t has sons t1, t2 ∈ TI , so that t = t1∪̇t2.1

The set of sons of t ∈ TI is denoted by S(t), while L(TI) stands for the set of leaves
of the tree TI .

A cluster tree is usually generated by recursive subdivision of I. For practical
purposes the recursion should be stopped if a certain cardinality nmin of the clusters
is reached, rather than subdividing the clusters until only one index is left. The depth
of TI , i.e., the maximum distance of a vertex to the root of the tree increased by one,
will be denoted by p, which for quasi-uniform grids can be guaranteed to be of the
order logn.

Note that by moving the indices of the first son t1 to the beginning of t we can
always obtain contiguous clusters; i.e., for t ∈ TI there are tmin, tmax ∈ N such that

t = {i ∈ I : tmin ≤ i ≤ tmax}.

This rearrangement induces a reordering of the index set I.
Remark 2.1. Since for each subdivision we have only two possibilities for arrang-

ing the indices, i.e., t = [t1, t2] or t = [t2, t1], the above construction leaves room for
only 2pnmin! permutations of I (the size of the leaves in TI is assumed to be exactly
nmin). Hence, building the cluster tree determines the numbering of the indices in I
up to O(n) permutations.

Using a cluster tree, which contains a hierarchy of partitions of I, a block cluster
tree TI×I is constructed by recursively subdividing each block t× s into four disjoint
subblocks t1 × s1, t1 × s2, t2 × s1 and t2 × s2, t1, t2 ∈ S(t), s1, s2 ∈ S(s), starting from
the set of matrix indices I × I. This recursion stops in blocks which satisfy (4) or are
small enough. The resulting set of leaves P := L(TI×I) is a partition with the desired
properties. For a detailed description of the partitioning of a matrix into admissible
subblocks the reader is referred to [4]. An important property of P is that a constant
csp > 0 exists such that for each set of indices t ⊂ I there are at most csp blocks
t× s ∈ P and at most csp blocks s× t ∈ P with some set of indices s ⊂ I; cf. [16].

On P we define the set of H-matrices (see Figure 1) with blockwise rank k by

H(TI×I , k) := {M ∈ R
I×I : rankMb ≤ k for all b ∈ L(TI×I)}.

Note that H(TI×I , k) is not a linear space since the sum of two rank-k matrices exceeds
rank k in general.

1In the case of nested dissection a subdivision into three sons is required.
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Remark 2.2. For a block B ∈ R
t×s the low-rank representation B = VWT ,

V ∈ R
t×k, W ∈ R

s×k, is advantageous compared with the entrywise representation
only if k(|t| + |s|) ≤ |t| |s|. For the sake of simplicity in this article we will, however,
assume that each block has the low-rank representation. Employing the entrywise
representation for appropriate blocks will accelerate the algorithms.

Exploiting the hierarchical structure of M ∈ H(TI×I , k), it can be shown that the
storage requirement for M ∈ H(TI×I , k) is of the order kn log n. Multiplying M by a
vector can be done with O(kn log n) arithmetical operations. Two H-matrices from
H(TI×I , k) can be added with complexity O(k2n log n) provided that the sum can be
approximated with the desired accuracy by a matrix having blockwise rank at most k.
The complexity of computing a rounded product of two H-matrices is O(k2n(log n)2);
see [17, 18, 16]. It was already mentioned in [17] that LU decompositions can be
computed in the algebra of H-matrices with complexity k2n(log n)2 assuming that
arising blocks are approximated by rank-k matrices. In order to be able to deduce
almost linear complexity from these complexity estimates it is crucial to know how
the blockwise rank k depends on the accuracy ε of the approximation or, conversely,
which accuracy is associated with a given k. In the extreme case k ∼ n the H-
matrix operations would be as expensive as the usual ones. Analyzing the relation
between k and ε is the main purpose of this article. It will turn out that k depends
logarithmically on both ε and n.

2.1. Bandwidth and H-matrices. Although H-matrices are primarily aiming
at dense matrices, the stiffness matrix A of the differential operator D from (1) is
in H(TI×I , nmin) and can be stored in this format with complexity O(n). This can
be seen by the following arguments. If b ∈ P is admissible, then the supports of the
basis functions are pairwise disjoint. Hence, the matrix entries in this block vanish.
In the remaining case, b does not satisfy (4). Then the size of one of the clusters is
less than or equal to nmin. In either case, the rank of Ab does not exceed nmin. The
last observation is of particular importance since it will allow us to compute an LU
decomposition using approximate arithmetical operations on the set of H-matrices;
see section 4.
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Fig. 1. A sparse H-matrix with its rank distribution.

The efficiency of the usual LU decomposition is determined by the bandwidth of
A unless special reordering techniques such as nested dissection are employed. The
reason for this is that although A is sparse, the factors L and U will in general be fully
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populated up to the bandwidth. Since H-matrices are able to handle dense matrices
with almost linear complexity, the bandwidth of A is not an issue when using this
structure. Due to the reordering of indices required when building the cluster tree, we
even obtain a bandwidth which is of order n. This will result in an enormous fill-in
and is unavoidable as can be seen by the following example.

A matrix entry aij in the Galerkin matrix A will in general be nonzero if the
supports of the associated basis functions ϕi and ϕj have a nonempty intersection.
For simplicity we investigate the situation which occurs for a regular triangulation of
the unit square in R

2. Assume that after two subdivision steps this square has been
subdivided into four smaller squares of the same size each containing n/4 supports.
During the subdivision, the indices are reordered so that the kth square contains the
indices (k − 1)n/4 + 1 to kn/4, k = 1, . . . , 4. Hence, the first and the last square
contain indices which differ by at least n/2. These squares intersect in the center of
the original square. Therefore, at this point the supports of two basis functions ϕi

and ϕj with |i − j| ≥ n/2 intersect. This situation persists when the subdivision is
continued since the indices are rearranged only within each subsquare.

2.2. Where can H-matrices be applied?. One of the first applications of
the structure of H-matrices was the acceleration of both the building process and the
matrix-vector multiplication of discrete integral operators with smooth kernels having
an algebraic singularity at x = y. This kind of integral operator arises, for instance,
from the boundary element method. For such operators the adaptive cross approx-
imation (ACA) algorithm [5, 6] can be used to generate the low-rank approximants
from few of the original matrix entries.

In addition to discretizations of integral operators with smooth kernel functions,
in [7, 2] it was shown that inverses of discrete elliptic differential operators with
measurable coefficients can be approximated on partitions satisfying (4). Since the
analysis of this article will be based on approximations of the inverse, we state the
main result of [2]. Let the operator D from (1) be uniformly elliptic; i.e., for the
coefficient C(x) ∈ R

d×d of D it holds that C is symmetric with cij ∈ L∞(Ω) and

0 < λ ≤ λ(x) ≤ Λ

for all eigenvalues λ(x) of C(x) and almost all x ∈ Ω. Furthermore, let eh(u) :=
‖u − Phu‖L2(Ω) be the finite element error, where Ph : H1

0 (Ω) → Vh is the Ritz
projector mapping u ∈ H1

0 (Ω) to its finite element solution uh; i.e., the solution of
a(uh, vh) = �(vh) for all vh ∈ Vh with a linear form �. We assume that the finite
element method converges in the following sense:

(5) eh(u) ≤ εh‖f‖L2(Ω) for all u = D−1f, f ∈ L2(Ω),

where εh → 0 as h → 0. Note that due to a possible lack of regularity of D one cannot
guarantee a specific rate of convergence.

Theorem 2.3. Let p be the depth of the cluster tree TI defined in the beginning
of section 2. Then there is CH ∈ H(TI×I , k) with k := p2 logd+1(p/εh) such that

‖A−1 − CH‖2 < c εh‖A−1‖2,

where c = c(D,Ω, η) > 0 depends on the size of coefficients of D, the diameter of Ω,
and the cluster parameter η. If εh = O(hβ) for some β > 0, then k = O(logd+3 n)
holds.
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Remark 2.4. Since the proof of Theorem 2.3 is based on the finite element error
estimate (5), we were only able to show existence of approximants with an accuracy
which is of the order of the finite element error εh. This is not a restriction since a
higher accuracy in the approximation of the inverse would be superposed by the finite
element error in the solution anyhow. However, numerical experiments show that the
above result is true for any accuracy. Therefore, in this article we assume that for
any ε > 0 there is CH ∈ H(TI×I , k) with k := | log ε|d+1(log n)2 such that

‖A−1 − CH‖2 < c ε‖A−1‖2,

where c > 0 depends on the size of the coefficients of D, the diameter of Ω, and η.

2.3. Schur complements. Among other applications, the efficient treatment
of Schur complements is of particular importance for domain decomposition methods
(see, for instance, [29]). In this section it will be shown that Schur complements
of subblocks of A can be approximated by H-matrices. This result will lay ground
to our main aim, the approximation of the factors L and U arising from the LU
decomposition of A.

Assume that the Galerkin stiffness matrix A ∈ R
n×n is partitioned in the following

way:

(6) A =

[
Arr Arr′

Ar′r Ar′r′

]
,

where r ⊂ I and r′ := I \ r. We will show that the Schur complement

S := Ar′r′ −Ar′rA
−1
rr Arr′

of Arr in A can be approximated by an H-matrix with blockwise rank k, where k
depends only logarithmically on both the approximation accuracy ε and n. For this
purpose it is crucial to notice that Arr in (6) is nothing but the Galerkin matrix of
D if we replace Ω by the subdomain Xr. Hence, Theorem 2.3 guarantees that an H-
matrix approximant for A−1

rr exists. Additionally, we assume that there is a constant
c > 0 such that

(7) ‖A−1
rr ‖2 ≤ c‖A−1‖2.

The previous estimate holds, for instance, if D is self-adjoint and its associated bilinear
form a is Vh-coercive in the sense that there is α > 0 satisfying

α = inf
vh∈Vh

a(vh, vh)

‖vh‖2
H1

.

Then

‖A−1
rr ‖2 = sup

x∈RI

‖Rx‖2
2

a(JRx, JRx)
≤ 1

c1hd
sup
x∈RI

‖JRx‖2
H1

a(JRx, JRx)
≤ 1

αc1hd
(8a)

=
1

c1hd
sup

u∈H1(Ω)

‖Jx‖2
H1

a(Jx, Jx)
≤ c′

c2
c1

sup
x∈RI

‖x‖2
2

a(Jx, Jx)
= c′

c2
c1

‖A−1‖2,(8b)

where R denotes the restriction of R
I to R

r and Jx :=
∑

i∈I xiϕi with the finite
element basis functions ϕi. In (8) we have used that for quasi-uniform discretizations
it holds that

c1‖x‖2
2 ≤ h−d‖Jx‖2

L2 ≤ c2‖x‖2
2 for all x ∈ R

I
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and that ‖ · ‖H1 ≤ c′‖ · ‖L2 on H1
0 (Ω).

Let t ∈ TI be a cluster. By

(9) N(t) = {i ∈ I : dist(Xi, Xt) = 0}

we denote a neighborhood of t. Furthermore, we define the ratios

q :=
maxi∈I diamXi

mint∈TI
diamXt

and q̄ := max
t∈TI

diamXN(t)

diamXt
≤ 1 + 2q.

Since the minimal cluster size nmin is usually chosen larger than 20, one can expect
that realistic values for q̄ are close to 1. The size of q depends on the uniformity of
{Xi}i∈I . We need the following basic lemma, which states that the neighborhood of
t is in the far-field of the neighborhood of s if t is in the far-field of s.

Lemma 2.5. Let 0 < η < (q + q̄)−1. If t ⊂ Fη(s), then

N(t) ⊂ Fη̃(N(s)), where η̃ =
q̄η

1 − (q + q̄)η
.

Proof. Since maxi∈I diamXi ≤ q diamXs, we obtain for x ∈ XN(t) and y ∈ XN(s)

that

|x− y| ≥ dist(Xt, Xs) − max
i∈I

diamXi − diamXN(s)

>

(
1

η
− q

)
diamXs − diamXN(s)

≥
[
1

q̄

(
1

η
− q

)
− 1

]
diamXN(s),

which proves the assertion.
Approximation results for H-matrices are usually derived for each block of the

partition. By the following estimates it is possible to relate the blockwise norms of
an H-matrix to its global norm. If we are interested in the Frobenius norm, estimates
for each block Eb, b ∈ P , immediately lead to an estimate for E ∈ R

I×I due to

‖E‖2
F =

∑
b∈P

‖Eb‖2
F .

For the spectral norm the situation is a bit more difficult. We can, however, use the
following lemma together with the structure of P .

Lemma 2.6. We consider the ν × ν block matrix

(10) E =

⎡⎢⎣E11 . . . E1ν

...
...

Eν1 . . . Eνν

⎤⎥⎦
with Eij ∈ R

mi×nj , i, j = 1, . . . , ν. Then it holds that

(11) max
i,j=1,...,ν

‖Eij‖2 ≤ ‖E‖2 ≤

⎛⎝ max
i=1,...,ν

ν∑
j=1

‖Eij‖2

⎞⎠1/2 (
max

j=1,...,ν

ν∑
i=1

‖Eij‖2

)1/2

.
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Proof. Let u = [u1, . . . , uν ]
T ∈ R

n, where n =
∑ν

j=1 nj . Observe that

‖Eu‖2
2 =

ν∑
i=1

∥∥∥∥∥∥
ν∑

j=1

Eijuj

∥∥∥∥∥∥
2

2

≤
ν∑

i=1

⎛⎝ ν∑
j=1

‖Eij‖2‖uj‖2

⎞⎠2

= ‖Êû‖2
2,

where Ê ∈ R
ν×ν has the entries Êij = ‖Eij‖2 and û ∈ R

ν is the vector with compo-

nents ûj = ‖uj‖2, j = 1, . . . , ν. It is well known that ‖Ê‖2
2 ≤ ‖Ê‖1‖Ê‖∞. Hence,

‖Êû‖2
2 ≤ ‖Ê‖1‖Ê‖∞‖û‖2

2 = ‖Ê‖1‖Ê‖∞‖u‖2
2

gives the first part of the assertion. The lower bound follows from the fact that the
spectral norm of any subblock of E is bounded by the spectral norm of E.

An important consequence of (11) is that for matrices (10) vanishing in all but μ
blocks in each row and each column it follows that

max
i,j=1,...,ν

‖Eij‖2 ≤ ‖E‖2 ≤ μ max
i,j=1,...,ν

‖Eij‖2.

The previous estimate was also proved in [16] with a different technique. This equiva-
lence of the global and the blockwise spectral norm is useful in translating a blockwise
error to a global one. When relative error estimates are to be derived, we will addi-
tionally need to estimate how a blockwise norm relation is carried over to the whole
matrix.

Lemma 2.7. Let P be the leaves of a block cluster tree TI×I . Then for E,F ∈
H(TI×I , k) it holds that

(i) maxb∈P ‖Eb‖2 ≤ ‖E‖2 ≤ csppmaxb∈P ‖Eb‖2;
(ii) ‖E‖2 ≤ cspp‖F‖2 provided maxb∈P ‖Eb‖2 ≤ maxb∈P ‖Fb‖2.
Proof. Let E� denote the part of E which corresponds to the blocks of P from

the �th level T
(�)
I×I of TI×I ; i.e.,

(E�)b =

{
Eb, b ∈ T

(�)
I×I ∩ P,

0, else.

Since E� has tensor structure with at most csp blocks per row or block column,
Lemma 2.6 gives ‖E�‖2 ≤ csp max

b∈T
(�)
I×I∩P

‖Eb‖2 such that

‖E‖2 ≤
p−1∑
�=0

‖E�‖2 ≤ csp

p−1∑
�=0

max
b∈T

(�)
I×I∩P

‖Eb‖ ≤ csppmax
b∈P

‖Eb‖2.

The estimate

max
b∈P

‖Eb‖2 ≤ max
b∈P

‖Fb‖2 ≤ ‖F‖2

gives the second part of the assertion.
Using the last three lemmas, we can now prove that the Schur complement S of

finite element Galerkin matrices A can be approximated with almost linear complexity.
Theorem 2.8. Let the finite element Galerkin matrix A ∈ R

n×n be partitioned
as in (6). Then for the Schur complement

S = Ar′r′ −Ar′rA
−1
rr Arr′
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of Arr, r 
= ∅, in A and all ε > 0 there is SH ∈ H(Tr′×r′ , kS), where kS ∼
| log ε|d+1(log |r|)2, such that

(12) ‖S − SH‖2 < κpε‖A‖2,

where κ := ‖A‖2‖A−1‖2 denotes the spectral condition number of A.
Proof. We have to show that for each admissible subblock t× s ∈ P of r′× r′ and

any prescribed accuracy ε > 0 we can find a low-rank matrix which approximates Sts

with accuracy ε. Since t× s is admissible, (Ar′r′)ts = 0 holds. Hence,

Sts = −AtrA
−1
rr Ars = −

∑
i,j∈r

Ati(A
−1
rr )ijAjs.

If i 
∈ N(t), where N(t) is defined in (9), then Ati = 0. If, on the other hand, j 
∈ N(s),
then Ajs = 0. With the notation N ′(t) := N(t) ∩ r, we have

Sts = −
∑

i∈N ′(t), j∈N ′(s)

Ati(A
−1
rr )ijAjs.

Since t × s is admissible, t ⊂ Fη(s) or s ⊂ Fη(t) holds. According to Lemma 2.5,
it follows that N(t) ⊂ Fη̃(N(s)) or N(s) ⊂ Fη̃(N(t)) is valid. Following Theo-

rem 2.3 (with η replaced by η̃), there are X ∈ R
N ′(t)×k and Y ∈ R

N ′(s)×k with
k ∼ | log ε|d+1(log |r|)2 such that

‖(A−1
rr )N ′(t)N ′(s) −XY T ‖2 < ε‖A−1

rr ‖2.

Let X and Y be extended to X̂ ∈ R
r×k and Ŷ ∈ R

r×k by adding zero rows. Observe
that

AtrX̂Ŷ TArs =
∑

i∈N ′(t), j∈N ′(s)

k∑
�=1

AtiXi�Yj�Ajs

=

k∑
�=1

⎛⎝ ∑
i∈N ′(t)

AtiXi�

⎞⎠⎛⎝ ∑
j∈N ′(s)

Yj�Ajs

⎞⎠ =: VWT ,

where V ∈ R
t×k, W ∈ R

s×k have the entries

Vt� :=
∑

i∈N ′(t)

AtiXi� and Ws� :=
∑

j∈N ′(s)

Yj�Ajs, � = 1, . . . , k.

Define B ∈ R
r×r with entries

bij =

{
(A−1

rr )ij if i ∈ N ′(t) and j ∈ N ′(s),

0 else;

then using (7) it follows that

‖Sts − VWT ‖2 = ‖Atr(B − X̂Ŷ T )Ars‖2 ≤ ‖Atr‖2‖(A−1
rr )N ′(t)N ′(s) −XY T ‖2‖Ars‖2

≤ ε‖Atr‖2‖A−1
rr ‖‖Ars‖2 < cκε‖A‖2.

The assertion follows from Lemma 2.7.
Since the spectral condition number κ grows polynomially with n and since the

accuracy ε enters the complexity estimate only through the logarithm, we can get rid
of the factor κ in (12) if the rank kS is increased by adding a logarithmic factor.
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3. Hierarchical LU decomposition. Assume that all minors of A are non-
zero. Then A can be factored as

A = LU,

where L is a unit lower triangular and U is an upper triangular matrix. In this section
it will be shown that the factors L and U can be approximated by H-matrices LH
and UH if any Schur complement in A has this property. Note that the following
proof consists of algebraic arguments only. Hence, the LU decompositions can be
accelerated also for problems that do not stem from finite element applications as
long as the Schur complements are known to have an approximant in the set of H-
matrices.

When computing pointwise LU decompositions, usually pivoting is performed in
order to avoid zero or almost zero pivots. For block versions of the LU algorithm the
possibilities of pivoting are limited if the blocking is given. In our case we can choose
from only two possible pivots, block t1 × t1 or block t2 × t2, if the LU decomposition
of a block t × t, t = t1 ∪ t2, is to be computed. Hence, the accuracy analysis cannot
rely on the advantages of pivoting.

In order to show that L and U can be approximated by H-matrices it seems
natural to define the approximants

L̃ =

[
L̃11

L̃21 L̃22

]
and Ũ =

[
Ũ11 Ũ12

Ũ22

]
recursively as

L̃11Ũ11 = A11 + E11,(13a)

L̃11Ũ12 = A12 + E12,(13b)

L̃21Ũ11 = A21 + E21,(13c)

L̃22Ũ22 = A22 − L̃21Ũ12 + E22,(13d)

replacing appropriate subblocks of the arising Schur complements with low-rank ma-
trices thereby introducing the error terms E12 and E21. The errors E11 and E22 could
then be estimated by the error analysis of the block LU decomposition; see [10]. The
problem with this approach is that the arising Schur complements (see (13d)) are not
the original complements but complements that contain the perturbations from all
previous approximation steps. Since it cannot be guaranteed that these perturbed
complements can be approximated by H-matrices and since their distance to the ex-
act complements leads to unattractive estimates, we have to go a different way for
the proof. In the following subsection we first find a recursive relation between the
Schur complement of a block b and the complements of its subblocks.

3.1. A hierarchy of Schur complements. Let A ∈ R
n×n and t, s ⊂ I. With

the notations t̂ = {i ∈ I : i ≤ max t} and ŝ = {j ∈ I : j ≤ max s} the Schur
complement for the block t× s in At̂ŝ is defined as

(14) S(t, s) = Ats −AtrA
−1
rr Ars,

where r = {i ∈ I : i < min t ∪ s}; see Figure 2. Note that in the case r = ∅ this
definition is meant to result in S(t, s) = Ats. For t = s the expression S(t, s) is the
usual Schur complement of Arr in At̂t̂. Note that if t1, t2 are the sons of t, then
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Fig. 2. Schur complement of a block t× s.

S(t2, t2) does not coincide with the subblock in the rows t2 and columns t2 of S(t, t)
in general. The following lemma will show the right relation between the complement
of a block and the complements of its subblocks. For the ease of notation we first
consider the case of blocks on the diagonal.

Lemma 3.1. Let t ∈ TI and let t1, t2 be its sons. Then

S(t, t) =

[
S(t1, t1) S(t1, t2)
S(t2, t1) S(t2, t2) + S(t2, t1)S(t1, t1)

−1S(t1, t2)

]
.

Proof. Let S(t, t) be decomposed in the following way:

S(t, t) =

[
S11 S12

S21 S22

]
.

For the blocks (t1, t1), (t1, t2), and (t2, t1) the definition of r from (14) results in
r = {i ∈ I : i < min t}. Hence, we obtain

S(t1, t2) = At1t2 −At1rA
−1
rr Art2 = S12.

Similarly, one sees that S(t1, t1) = S11 and S(t2, t1) = S21. It remains to show that

S22 = S(t2, t2) + S21S
−1
11 S12.

Let r̄ = {i ∈ I : i < min t}. Then from the definition of S(t, t) it follows that

S(t2, t2) = At2t2 −
[
At2r̄ At2t1

] [Ar̄r̄ Ar̄t1

At1r̄ At1t1

]−1 [
Ar̄t2

At1t2

]
.

Since [
Ar̄r̄ Ar̄t1

At1r̄ At1t1

]−1

=

[
A−1

r̄r̄ −A−1
r̄r̄ Ar̄t1S

−1
11

0 S−1
11

] [
I 0

−At1r̄A
−1
r̄r̄ I

]
,

we have

S(t2, t2) = At2t2 −
[
At2r̄ At2t1

] [A−1
r̄r̄ −A−1

r̄r̄ Ar̄t1S
−1
11

0 S−1
11

] [
I 0

−At1r̄A
−1
r̄r̄ I

] [
Ar̄t2

At1t2

]
= At2t2 −

[
At2r̄ At2t1

] [A−1
r̄r̄ −A−1

r̄r̄ Ar̄t1S
−1
11

0 S−1
11

] [
Ar̄t2

S12

]
= At2t2 −

[
At2r̄A

−1
r̄r̄ S21S

−1
11

] [Ar̄t2

S12

]
= S22 − S21S

−1
11 S12,
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which proves the assertion.
Since each block t × s in the upper triangular part, i.e., max t ≤ min s, can be

embedded into the block r × r, r = {i ∈ I : min t ≤ i ≤ max s}, Lemma 3.1 gives

(15) S(t, s) =

[
S(t1, s)

S(t2, s1) + S(t2, t1)S(t1, t1)
−1S(t1, s)

]
.

Similarly, for each block t× s in the lower triangular part, i.e., max s ≤ min t, it holds
that

S(t, s) =
[
S(t, s1) S(t, s2) + S(t1, s1)S(s1, s1)

−1S(s1, s2)
]
.

3.2. Constructing the factors LH and UH. We assume that the correspond-
ing Schur complement S(t, s) for each admissible block t × s ∈ L(TI×I) can be ap-
proximated by a matrix of low rank with arbitrary accuracy; i.e, for all ε > 0 there is
S̃(t, s) ∈ R

t×s of rank kS ∼ (log n)α| log ε|β with some α, β > 0 such that

(16) ‖S(t, s) − S̃(t, s)‖2 ≤ ε‖A‖2.

According to Theorem 2.8, this assumption is fulfilled, for instance, in the case of
finite element stiffness matrices.

In order to define the factors L(t) and U(t) of S(t, t) = L(t)U(t), t ∈ TI \ L(TI),
we set

(17) L(t) :=

[
L(t1) 0

S(t2, t1)U(t1)
−1 L(t2)

]
and U(t) :=

[
U(t1) L(t1)

−1S(t1, t2)
0 U(t2)

]
,

where

L(t1)U(t1) = S(t1, t1), L(t2)U(t2) = S(t2, t2),

and t1, t2 are the sons of t. If t ∈ L(TI), then L(t) and U(t) are defined by the
pointwise LU decomposition. Note that since

L(t)U(t) =

[
L(t1)U(t1) S(t1, t2)
S(t2, t1) L(t2)U(t2) + S(t2, t1)S(t1, t1)

−1S(t1, t2)

]
,

we obtain L(t)U(t) = S(t, t) due to Lemma 3.1. The following lemma shows that
the off-diagonal blocks in (17) can be approximated by hierarchical matrices. For its
proof we will make use of

(18) ‖S(t, t)−1‖2 ≤ ‖A−1
t̂t̂

‖2 ≤ c‖A−1‖2,

where t̂ := {i ∈ I : i ≤ max t}. Estimate (18) follows from (7) and the fact that
S(t, t)−1 is the t× t subblock of A−1

t̂t̂
.

Lemma 3.2. Let X,Y solve L(t)X = S(t, s) and Y U(t) = S(s, t), where max t ≤
min s. Then X and Y can be approximated by X̃ ∈ H(Tt×s, kS) and Ỹ ∈ H(Ts×t, kS)
such that

‖X − X̃‖2 ≤ cκpε‖U(t)‖2 and ‖Y − Ỹ ‖2 ≤ cκpε‖L(t)‖2.

The bound kS on the blockwise rank was defined in (16).
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Proof. We first prove by induction that X can be approximated by a matrix
X̃ ∈ H(Tt×s, kS) such that on each admissible subblock t′ × s′ of t× s it holds that

(19) ‖Xt′s′ − X̃t′s′‖2 ≤ cκε‖U(t′)‖2.

If t × s is an admissible leaf in TI , then we have assumed (see (16)) that S(t, s) can
be approximated by a matrix S̃(t, s) ∈ R

t×s of rank at most kS . Hence, the rank of
X̃ := L(t)−1S̃(t, s) cannot exceed kS , and we have that

‖X − X̃‖2 = ‖L(t)−1[S(t, s) − S̃(t, s)]‖2 = ‖U(t)S(t, t)−1[S(t, s) − S̃(t, s)]‖2

≤ ε‖S(t, t)−1‖2‖A‖2‖U(t)‖2 ≤ cκε‖U(t)‖2

due to (18). If t× s is not a leaf, then t has sons t1, t2 and s has sons s1, s2. Define
X11 ∈ R

t1×s1 , X12 ∈ R
t1×s2 , X21 ∈ R

t2×s1 , and X22 ∈ R
t2×s2 by

L(t1)X11 = S(t1, s1), L(t1)X12 = S(t1, s2)

and

L(t2)X21 = S(t2, s1), L(t2)X22 = S(t2, s2),

respectively. By induction we know that X11, X12, X21, and X22 can be approximated
by H-matrices X̃11, X̃12, X̃21, and X̃22 to the subtrees of TI×I with roots t1 × s1,
t1 × s2, t2 × s1, and t2 × s2, respectively. Hence,

X =

[
X11 X12

X21 X22

]
satisfies

L(t)X =

[
L(t1) 0

S(t2, t1)U(t1)
−1 L(t2)

] [
X11 X12

X21 X22

]
=

[
S(t1, s)

S(t2, s) + S(t2, t1)S(t1, t1)
−1S(t1, s)

]
= S(t, s)

due to the definition (17) of L(t) and (15) and can be approximated by

X̃ :=

[
X̃11 X̃12

X̃21 X̃22

]
∈ H(Tt×s, kS)

satisfying (19). The assertion follows from Lemma 2.7, because

‖X−X̃‖2 ≤ cspp max
t′×s′∈Tt×s

‖Xt′s′ −X̃t′s′‖2 ≤ ccspκpεmax
t′∈Tt

‖U(t′)‖2 ≤ ccspκpε‖U(t)‖2.

The proof for Y can be done analogously.
The following theorem is the main result of this article. Although the proved

error estimates have a Wilkinson style, these theorems are not meant as estimates on
the backward stability of an algorithm for the approximation by H-matrices. How-
ever, they show that H-matrix approximants exist and that their complexity depends
logarithmically on the accuracy ε → 0. A similar estimate obviously holds for the
Cholesky decomposition.
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Theorem 3.3. Assume that (16) holds and let L and U be the unique unit lower
and upper triangular factors of A. Then there are unit lower and upper triangular
matrices LH, UH ∈ H(TI×I , kS) such that

‖A− LHUH‖2 ≤ cκpε‖L‖2‖U‖2 + O(ε2).

Proof. Since A = S(I, I) = L(I)U(I), it follows from the uniqueness of the LU
decomposition that L = L(I) and U = U(I). According to Lemma 3.2, there are
H-matrices LH, UH ∈ H(TI×I , kS) satisfying

‖L− LH‖2 ≤ cκpε‖L‖2 and ‖U − UH‖2 ≤ cκpε‖U‖2.

As a consequence we have

‖A− LHUH‖2 ≤ ‖(L− LH)U‖2 + ‖L(U − UH)‖2 + ‖(L− LH)(U − UH)‖2

≤ ‖L− LH‖2‖U‖2 + ‖L‖2‖U − UH‖2 + ‖L− LH‖2‖U − UH‖2

≤ [2cκpε + c2κ2p2ε2]‖L‖2‖U‖2,

which proves the assertion.
Since the complexity depends logarithmically on the accuracy ε, the blockwise

rank of the factors LH and UH compared with the rank of the inverse bears an
additional logarithmic factor. However, from the following numerical experiments it
will be seen that the complexity of the H-LU decomposition is much smaller than the
complexity of the H-inverse in practice.

4. Computing the hierarchical LU decomposition. In the last section we
have seen that the factors L and U from an LU decomposition of A can be approxi-
mated by H-matrices LH and UH whenever the Schur complements in A possess this
property. Although the construction used for the proof could in principle be used to
compute LH and UH, for an improved efficiency, we prefer to use another method
which is based on the partitioned LU decomposition.

On the set H(TI×I , k) of hierarchical matrices approximate versions of the usual
matrix operations such as addition, matrix-matrix multiplication, and inversion can
be defined; cf. [17, 18, 16]. The rounding precision these operations are performed
with will be denoted by εH. The hierarchical LU decomposition can then be computed
using these operations during the block LU decomposition instead of the usual ones.
The LU decomposition of H-matrices in a format that does not account for general
H-matrices has already been used in [22]. The first algorithm for the factorization
of general H-matrices was published in [3]; the ideas of nested dissection were first
applied to H-matrices in [24].

In order to define the H-LU decomposition we exploit the hierarchical block
structure of a block Att, t ∈ TI \ L(TI):

Att =

[
At1t1 At1t2

At2t1 At2t2

]
=

[
Lt1t1

Lt2t1 Lt2t2

] [
Ut1t1 Ut1t2

Ut2t2

]
,

where t1, t2 ∈ TI denote the sons of t in TI . Hence, the LU decomposition of a block
Att is reduced to the following four problems on the sons of t× t:

(i) Compute Lt1t1 and Ut1t1 from the LU decomposition Lt1t1Ut1t1 = At1t1 .
(ii) Compute Ut1t2 from Lt1t1Ut1t2 = At1t2 .
(iii) Compute Lt2t1 from Lt2t1Ut1t1 = At2t1 .
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(iv) Compute Lt2t2 and Ut2t2 from the LU decomposition Lt2t2Ut2t2 = At2t2 −
Lt2t1Ut1t2 .

If a block t× t ∈ L(TI×I) is a leaf, the usual pivoted LU decomposition is employed.
For (i) and (iv) two LU decompositions of half the size have to be computed. In
order to solve (ii), i.e., solve a problem of the structure LttBts = Ats for Bts, where
Ltt is a lower triangular matrix and t × s ∈ TI×I , we use a recursive block forward
substitution: If the block t × s is not a leaf in TI×I , from the decompositions of the
blocks Ats, Bts, and Ltt into their subblocks (t1, t2 and s1, s2 are again the sons of t
and s, respectively)[

Lt1t1

Lt2t1 Lt2t2

] [
Bt1s1 Bt1s2

Bt2s1 Bt2s2

]
=

[
At1s1 At1s2

At2s1 At2s2

]
,

one observes that Bts can be found from the equations

Lt1t1Bt1s1 = At1s1 ,

Lt1t1Bt1s2 = At1s2 ,

Lt2t2Bt2s1 = At2s1 − Lt2t1Bt1s1 ,

Lt2t2Bt2s2 = At2s2 − Lt2t1Bt1s2 ,

which are again of type (ii). If, on the other hand, t × s is a leaf, the usual forward
substitution is applied. Similarly, one can solve (iii) by recursive block backward
substitution.

The complexity of the above recursions is mainly determined by the complexity of
the hierarchical matrix-matrix multiplication, which can be estimated as O(k2n(log n)2)
for two matrices from H(TI×I , k); cf. [16]. Each operation is carried out with precision
εH. A result [10] on the stability analysis of the block LU decomposition states that
the product LU is backward stable in the following sense:

‖A− LU‖2 < c(n)εH(‖A‖2 + ‖L‖2‖U‖2).

Provided that ‖L‖2‖U‖2 ≈ ‖A‖2, the relative accuracy of LU will hence be of or-
der εH. Employing the H-matrix arithmetic, it is therefore possible to generate an
approximate LU decomposition of an H-matrix A ∈ H(TI×I , k) to any prescribed
accuracy with almost linear complexity.

Remark 4.1. Although the intermediate results of the presented algorithm (i)–
(iv) are guaranteed to be H-matrices, the blockwise rank k is not known. Note that
our theory cannot be applied to this construction of the LU decomposition since the
computed Schur complements in (iv) are approximate ones. Nevertheless, it will be
seen from the numerical experiments that k still depends logarithmically on both the
accuracy ε and the number of unknowns n.

In the case of positive definite matrices A it is possible to define an H-version of
the Cholesky decomposition of a block Att, t ∈ TI \ L(TI):

Att =

[
At1t1 At1t2

AT
t1t2 At2t2

]
=

[
Lt1t1

Lt2t1 Lt2t2

] [
Lt1t1

Lt2t1 Lt2t2

]T
.

This factorization is recursively computed by

Lt1t1L
T
t1t1 = At1t1 ,

Lt1t1L
T
t2t1 = At1t2 ,

Lt2t2L
T
t2t2 = At2t2 − Lt2t1L

T
t2t1 ,
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using the usual Cholesky decomposition on the leaves of TI×I . The second equation
Lt1t1L

T
t2t1 = At1t2 is solved for Lt2t1 in a way similar to how Ut1t2 was previously

obtained in the LU decomposition.

Once A has been decomposed, the solution of Ax = b can be found by for-
ward/backward substitution: LHy = b and UHx = y. Since LH and UH are H-
matrices, yt, t ∈ TI \ L(TI), can be computed recursively by solving the following
systems for yt1 and yt2 :

Lt1t1yt1 = bt1 and Lt2t2yt2 = bt2 − Lt2t1yt1 .

If t ∈ L(TI) is a leaf, a usual triangular solver is used. The backward substitution
can be done analogously. The complexity of this forward/backward substitution is
determined by the complexity of the hierarchical matrix-vector multiplication, which
is O(kn log n) if a matrix from H(TI×I , k) is multiplied by a vector.

5. Numerical results. In this section we make use of the above algorithms
for the computation of approximate LU decompositions of finite element stiffness
matrices in two and three spatial dimensions. The emphasis in these tests is laid on
robustness with respect to varying coefficients of the underlying operator.

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0

0
15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0
0

0 0
0 0

0 0

0 0 0 0

0 0
0

0 0

0 0

0 0 0

0 0
0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0
0

0
0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

0 0

0
0 0

0 0

0 0 0

0 0

0
0

0 0

0 0

0 0

0 0

0
0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0

0
15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
0 0

15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0
0

0 0
0 0

0 0
0 0

0 0 0 0 0

0 0
0

0 0
0 0

0 0 0

0 0 0

0 0
0 0

15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0
0

0
0

15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

0 0

0
0 0

0
0 0

0 0

0 0 0

0 0

0
0

0
0 0

0 0

0 0

0 0

0 0

0
0

15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0

0
15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0
0

0 0
0 0

0 0

0 0 0 0

0 0
0

0 0

0 0

0 0 0

0 0
0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0
0

0
0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

0 0

0
0 0

0 0

0 0 0

0 0

0
0

0 0

0 0

0 0

0 0

0
0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0
15 0

0 15 0

0 0
0 0

0 0 0

0 0
0 0

0 0 0

0 0
15 0

0 15 0

0
15 0

0 15

0 0

0
0 0

0 0

0 0

0
0 0

0 0

0 0

0
15 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

0 0

15 0

0 0

0 0

0 0

0 0

0 0

15 0

0 15

0 0

0 0

0 0

0 0

0 0

0 15

0 0

15

15

15 0

0 15

15 0

0 15

15

15

=

15

15 6

0 15 18

0 15

0 0

3 6

0 0

0 0

0 0

0 15

0 0

15

18 6

0 15 18

0
15 6

0 15

0 0

4
3 2

6 4

0 0

0
0 0

0 0

0 0

0
15 7

0 15

0 0

18

15 6

0 15 18

3 18

2 3

4 7

2 2

0 0

0 0

0 15

0 0

18

18 7

0 15 18

0
0 15

0 0

3 6

0 0

0 0

0 0

0 15

0 0

0 0

3
4 3

3 6

0 0 4

0 0

0
0

0 0

0 0

0 0

0 0

0
0 15

0 0

4 6

0 0

0 0

0 0

0 15

0 0

0 0

15

18 6

0 15 18

0 15

0 0

3 6

0 0

0 0

0 0

0 15

0 0

15

18 6

0 15 18

3
18 7

0 15

2 3

4
4 3

6 4

2 2

0
0 0

0 0

0 0

0
15 7

0 15

0 0

18

18 7

0 15 18

3 18

2 3

4 7

2 2

0 0

0 0

0 15

0 0

18

18 7

0 15 18

0
0

15 6

0 15

0 0

4
4 3

6 4

0 0

0
0 0

0 0

0 0

0
15 7

0 15

0 0

0 0

4
3 2

4
4 3

7 4

0 0 4

0 0

0
0

0
0 0

0 0

0 0

0 0

0 0

0
0

15 7

0 15

0 0

4
4 3

7 4

0 0

0
0 0

0 0

0 0

0
15 7

0 15

0 0

0 0

18

15 6

0 15 18

3 18

2 3

4 7

2 2

0 0

0 0

0 15

0 0

18

18 7

0 15 18

0
15 6

0 15

0 0

4
4 3

6 4

0 0

0
0 0

0 0

0 0

0
15 7

0 15

0 0

18

15 6

0 15 18

3 18

2 3

4 7

2 2

0 0

0 0

0 15

0 0

18

18 7

0 15 18

3
3 18

2 3

4 7

2 2

0 0

0 0

0 15

0 0

2 3

4
5 4

4 7

0 0 4

2 2

0
0

0 0

0 0

0 0

0 0

0
0 15

0 0

4 6

0 0

0 0

0 0

0 15

0 0

0 0

18

18 7

0 15 18

3 18

2 3

4 7

2 2

0 0

0 0

0 15

0 0

18

18 7

0 15 18

3
18 7

0 15

2 3

5
4 3

7 4

2 2

0
0 0

0 0

0 0

0
15 7

0 15

0 0

18

18 7

0 15 18

3 18

2 3

4 7

2 2

0 0

0 0

0 15

0 0

18

18 7

0 15 18

*

15 15 0

6 15

18

0 0

15 0

0 0

0 0

3 0

6 0

0 0

15 0

15 18 0

6 15

18

0 0
15 0

6 15 0

0 0
0 0

0 0 0

4 0
3 6

2 4 0

0 0
15 0

7 15 0
18 15 0

6 15

18

3 2

18 3

0 0

0 0

4 2

7 2

0 0

15 0

18 18 0

7 15

18

0 0
0 0

15 0

0 0

0 0

3 0

6 0

0 0

15 0
0

0 0
0 0

0 0

0 0 0 0

3 0
4

3 0

6 0

3 4 0

0 0
0 0

15 0

0 0

0 0

4 0

6 0

0 0

15 0
0

15 18 0

6 15

18

0 0

15 0

0 0

0 0

3 0

6 0

0 0

15 0

15 18 0

6 15

18

3 2
18 0

7 15 3

0 0
0 0

0 0 0

4 2
4 6

3 4 2

0 0
15 0

7 15 0
18 18 0

7 15

18

3 2

18 3

0 0

0 0

4 2

7 2

0 0

15 0

18 18 0

7 15

18

0 0
0 0

15 0

6 15 0

0 0
0 0

0 0 0

4 0
4 6

3 4 0

0 0
15 0

7 15 0
0

0 0
0 0

0 0
0 0

0 0 0 0 0

4 0
3

4 0
4 7

3 4 0

2 4 0

0 0
0 0

15 0

7 15 0

0 0
0 0

0 0 0

4 0
4 7

3 4 0

0 0
15 0

7 15 0
0

18 15 0

6 15

18

3 2

18 3

0 0

0 0

4 2

7 2

0 0

15 0

18 18 0

7 15

18

0 0
15 0

6 15 0

0 0
0 0

0 0 0

4 0
4 6

3 4 0

0 0
15 0

7 15 0
18 15 0

6 15

18

3 2

18 3

0 0

0 0

4 2

7 2

0 0

15 0

18 18 0

7 15

18

3 2
3 2

18 3

0 0

0 0

4 2

7 2

0 0

15 0
3

0 0
0 0

0 0

0 0 0 0

4 2
5

4 0

7 0

4 4 2

0 0
0 0

15 0

0 0

0 0

4 0

6 0

0 0

15 0
0

18 18 0

7 15

18

3 2

18 3

0 0

0 0

4 2

7 2

0 0

15 0

18 18 0

7 15

18

3 2
18 0

7 15 3

0 0
0 0

0 0 0

5 2
4 7

3 4 2

0 0
15 0

7 15 0
18 18 0

7 15

18

3 2

18 3

0 0

0 0

4 2

7 2

0 0

15 0

18 18 0

7 15

18

All computations were carried out on an Athlon64 PC (2 GHz) with 4 GB of core
memory. For compiling the H-matrix library,2 the Intel compiler version 9.0 was used.

5.1. Two-dimensional diffusion. As a first set of tests we consider the Dirich-
let boundary value problem

−divα(x)∇u = f in Ω,

u = 0 on ∂Ω,

where Ω := (0, 1)2 is the unit square in R
2 and α(x) is a random number from the

interval [0, a] for each x = (x1, x2) ∈ Ω satisfying x1 > x2. In the remaining part of
Ω the coefficient α is set to 1. The amplitude a will be used to demonstrate that the
presented method is not sensitive to nonsmooth coefficients.

The main aim of these two-dimensional tests is to show that the computational
complexity of the presented hierarchical LU decomposition is almost linear, thereby
confirming our estimates. In the following tables we compare for different problem
sizes n and for different amplitudes a the computational effort to decompose the stiff-
ness matrix of the problem from above. Since the discrete operator is symmetric
positive definite, we actually compute the Cholesky decomposition LLT . Table 1

2A C++ implementation of the H-matrix structure can be obtained from the following web site:
http://www.mathematik.uni-leipzig.de/∼bebendorf/AHMED.html.
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Table 1

H-LU for two-dimensional diffusion with a = 1.

εH = 110−2 εH = 110−4 εH = 110−6
n TLLT MB k EA TLLT MB k EA TLLT MB k EA

39 061 1.4 32 14 1.210−3 1.9 39 15 2.910−5 2.5 46 17 2.510−7
78 961 3.4 68 10 1.510−3 4.9 85 12 3.010−5 6.5 100 13 1.410−7

159 201 8.0 147 14 1.910−3 11.5 185 16 3.210−5 15.2 221 17 3.110−7
318 096 19.3 307 11 1.510−3 28.9 399 12 2.910−5 38.9 480 14 2.310−7
638 401 45.0 657 14 1.910−3 66.5 857 16 3.210−5 92.3 1046 17 4.210−7

1 276 900 109.3 1358 11 1.110−3 167.8 1827 12 2.910−5 241.9 2237 14 2.310−7
2 556 801 258.5 2858 14 1.910−3 387.8 3902 16 3.210−5 566.6 4857 17 3.610−7

shows the time TLLT for computing the hierarchical Cholesky decomposition in sec-
onds, its memory consumption (MB), the maximum rank k among the blocks, and
the backward error

EA :=
‖A− LHLT

H‖2

‖A‖2
.

The minimal block size (see section 2) was chosen to be nmin = 50. Apparently, the
computational effort grows almost linearly with n, while the backward error seems to
be independent of n. Increasing the rounding precision εH directly results in a smaller
backward error. Table 2 shows the same values for a = 109 with only slight changes
of the results. The dependence of the computational effort and of the backward
error on the amplitude a is surprisingly weak, demonstrating the robustness of this
approximate LU decomposition.

Table 2

H-LU for two-dimensional diffusion with a = 109.

εH = 110−2 εH = 110−4 εH = 110−6
n TLLT MB k EA TLLT MB k EA TLLT MB k EA

39 061 1.4 32 14 1.210−3 1.9 39 15 2.910−5 2.4 45 17 2.810−7
78 961 3.3 68 10 1.510−3 4.8 85 12 3.010−5 6.5 100 13 1.410−7

159 201 8.1 147 14 1.910−3 11.3 185 16 3.210−5 15.3 221 17 3.110−7
318 096 19.2 307 11 1.510−3 28.7 399 12 2.910−5 38.8 480 14 2.510−7
638 401 45.1 657 14 1.910−3 66.6 857 16 3.210−5 92.2 1046 17 4.210−7

1 276 900 109.4 1358 11 1.110−3 167.6 1827 12 2.910−5 241.5 2237 14 2.310−7
2 556 801 258.3 2858 14 1.910−3 387.5 3878 16 3.210−5 567.0 4857 17 3.810−7

5.2. Convection-diffusion problems. In the next tests operators of type

D = −Δ + c · ∇

are considered. The convection coefficient c is randomly chosen, i.e., c(x) ∈ [−a, a]2

for each x ∈ Ω = (0, 1)2. Since the standard finite element method becomes unstable
for large a (i.e., the stiffness matrix may become singular), we have restricted ourselves
to the cases a = 10, 100. In the convection dominant case the streamline diffusion
finite element method (cf. [20]) has to be used. Note that the limiting case a → ∞ is
not covered by the present theory but will be treated in a forthcoming article.

Tables 3 and 4 show the same quantities as Tables 1 and 2. Note that in this case
symmetry of the stiffness matrix could not be exploited.

Due to memory limitations the example with n = 1 276 900 and εH = 110−6
failed to compute. Although the computational effort has increased compared with
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Table 3

H-LU for convection-diffusion problems with a = 10.

εH = 110−2 εH = 110−4 εH = 110−6
n TLU MB k EA TLU MB k EA TLU MB k EA

39 061 4.5 65 14 1.110−3 5.8 79 15 2.910−5 7.1 92 17 2.610−7
78 961 10.5 136 10 1.510−3 14.3 171 12 3.010−5 17.8 201 13 1.410−7

159 201 25.7 269 14 1.710−3 33.8 374 16 3.210−5 43.8 447 17 3.910−7
318 096 61.2 618 10 1.510−3 83.0 804 12 2.910−5 112.8 969 13 2.310−7
638 401 152.3 1319 14 1.710−3 219.4 1726 16 3.210−5 318.5 2110 17 4.110−7

1 276 900 356.9 2728 10 2.510−2 551.6 3671 12 3.010−5 – – – –

Table 4

H-LU for convection-diffusion problems with a = 100.

εH = 110−2 εH = 110−4 εH = 110−6
n TLU MB k EA TLU MB k EA TLU MB k EA

39 061 4.5 65 14 1.310−3 5.8 79 16 3.210−5 7.1 92 17 3.510−7
78 961 10.4 136 10 1.610−3 14.0 171 12 3.510−5 18.0 201 13 2.610−7

159 201 25.6 296 14 1.710−3 33.6 374 16 3.210−5 43.0 447 17 3.610−7
318 096 59.3 618 10 1.510−3 84.0 803 12 3.810−5 112.3 969 13 2.610−7
638 401 152.3 1318 14 1.810−3 218.8 1726 16 3.210−5 315.4 2109 17 3.910−7

1 276 900 357.4 2726 10 1.610−3 550.2 3671 12 3.410−5 – – – –

the diffusion problem, it still scales almost linearly. A dependence on the coefficient
c can hardly be observed.

Table 5 shows the time TLU and the amount of memory needed to compute the
exact LU decomposition using MUMPS version 4.6.3; cf. [1]. Both methods seem
to scale in a similar way with n while MUMPS is 5 times faster than the H-LU
factorization.

Table 5

Results of MUMPS for convection-diffusion problems.

n TLU MB
39 061 0.9 31
78 961 2.2 69

159 201 5.1 151
318 096 11.5 329
638 401 29.2 712

1 276 900 72.1 1564

5.3. Three-dimensional diffusion. As we have mentioned in section 2, the
structure of H-matrices can be equally applied to any quasi-uniform finite element
discretization of Ω given by just the grid information. In order to demonstrate that
the H-LU decomposition is also efficient for three-dimensional problems, we test the
proposed method on three tetrahedral discretizations (n = 25 011, n = 217 225, and
n = 1 848 951 of unknowns) of the volume shown in Figure 3. The meshes were
generated using NETGEN [28].

We consider the Dirichlet boundary value problem

−divC(x)∇u = f in Ω,

u = 0 on ∂Ω,

where C(x) ∈ R
3×3 is a symmetric positive definite matrix for all x ∈ Ω. The
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Fig. 3. The computational domain.

coefficients cij , i, j = 1, 2, 3, are set to one in the left half-space and to a random
number from the interval [0, 1] in each point of the right half-space.

In Table 6 we compare the numerical effort for generating a hierarchical Cholesky
decomposition. The minimal cluster size was chosen to be nmin = 50. In the second
column the time that was needed to compute the approximate Cholesky decomposi-
tion is shown for different rounding precisions εH. The memory consumption can be
found in the third column. Columns four and five contain the maximum rank among
the blocks and the backward error. Compared with the two-dimensional problems
from section 5.1, the CPU time for decomposing the matrix has increased. However,
a behavior similar to that in the two-dimensional tests can be observed: The com-
putational complexity scales almost linearly, and the backward error does not seem
to depend on n. Again, the proposed method is able to adapt itself to the varying
coefficients.

Table 6

Decompositions for three-dimensional diffusion.

n = 25 011 n = 217 225 n = 1 848 951
εH TLLT MB k EA TLLT MB k EA TLLT MB k EA

110−1 1.7s 14 35 3.010−2 39.4s 173 35 3.310−2 869.9s 2029 187 4.710−2
110−2 2.6s 18 41 3.310−3 65.7s 261 47 5.310−3 1662.1s 3323 206 5.910−3
110−3 3.4s 21 46 3.310−4 97.2s 344 58 5.710−4 – – – –
110−4 4.2s 25 47 3.410−5 137.4s 434 82 4.510−5 – – – –

MUMPS 1.8s 26 85.6s 547 – –

The comparison with MUMPS shows that the H-LU decomposition is as fast as
this direct solver for the smallest problem. The situation changes, however, for larger
problems. The H-LU factorization becomes more efficient. MUMPS was not able to
compute the problem with n = 1 848 951 unknowns on our system. Here, the higher
asymptotic complexity of direct solvers is revealed. The proposed approximate LU
decomposition still scales linearly and hence becomes more efficient. This is especially
true for low-precision approximations which are sufficient if the LU decomposition is
used for preconditioning.

Table 7 contains the time TS required to solve a linear system by forward/backward
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Table 7

Time for solving and solution error.

n = 25 011 n = 217 225 n = 1 848 951
εH TS Ex TS Ex TS Ex

110−1 0.01s 1.110−1 0.20s 4.010−1 2.79s 6.710−1
110−2 0.02s 1.510−2 0.37s 9.810−2 3.95s 3.210−1
110−3 0.02s 9.210−4 0.49s 7.710−3 – –
110−4 0.02s 5.710−5 0.51s 4.910−4 – –

MUMPS 0.04s 3.410−15 0.61s 3.610−14 –

substitution. The third column contains the error

Ex :=
‖x̃− x‖2

‖x‖2

of the solution vector x̃ compared with the exact solution x.

6. Conclusion. We have laid theoretical ground for the approximation of the
factors L and U of the LU decomposition of discrete elliptic operators by H-matrices.
Furthermore, an algorithm for the computation of an approximate LU decomposition
with almost linear complexity was presented. The comparison with MUMPS shows
that an improved asymptotic complexity of the approximate LU decomposition can
be observed for problems posed in three spatial dimensions. The hierarchical LU
decomposition is robust with respect to varying coefficients of the differential operator
and is especially efficient for low-precision applications. Hence, it is well suited, for
instance, for computing black-box preconditioners at least for the class of second-order
elliptic operators.
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Abstract. The subject of the paper is the mesh independent convergence of the preconditioned
conjugate gradient (PCG) method for nonsymmetric elliptic problems. The approach of equivalent
operators is involved, in which one uses the discretization of another suitable elliptic operator as
preconditioning matrix. By introducing the notion of compact-equivalent operators, it is proved that
for a wide class of elliptic problems the superlinear convergence of the obtained PCG method is mesh
independent under finite element discretizations; that is, the rate of superlinear convergence is given
in the form of a sequence which is mesh independent and is determined only by the elliptic operators.
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1. Introduction. The conjugate gradient (CG) method is a widespread way of
solving large linear algebraic systems, such as those arising from discretized elliptic
problems, in particular when combined with a suitable preconditioning. For nonsym-
metric systems several CG algorithms exist [2, 4], including the common CGN method
based on normal equations. Since its first presentation in [21] the convergence of the
CG method has been well established, as summarized in [4]. The convergence theory
of the CG method often involves linear operators in Hilbert space; see both classical
and recent results [14, 15, 20, 27, 31, 32] and the authors’ papers [6, 7, 8, 22, 24].
A basic reason to use Hilbert space theory is to derive mesh independence of the
convergence estimates, by which it can be shown that the preconditioned CG (PCG)
method can be competitive with multigrid methods [14].

The theory of equivalent operators in Hilbert space has proved to provide an
efficient clear framework for the convergence study of the PCG method for elliptic
problems [14, 18, 26]. Thereby one uses the discretization of a suitable linear elliptic
operator as preconditioning matrix; see also [10, 12, 32]. As a main result, mesh
independence of linear convergence rates is rigorously characterized in [14, 26]. We
note that in [18], for proper boundary conditions, when the preconditioned operator
is a compact perturbation of the identity, then convergence is expected to be faster
than any linear rate.

Our goal is to complete the above results on the preconditioned CGN (PCGN)
method by showing that for a class of elliptic problems, the superlinear convergence
of the iteration is mesh independent under finite element method (FEM) discretiza-
tions. This means that a bound on the rate of superlinear convergence is given in
the form of a sequence which is mesh independent and is determined only by the
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elliptic operators. To describe the suitable class of problems, we introduce the notion
of compact-equivalent operators, which expresses that preconditioning one with the
other yields a compact perturbation of the identity. This notion and the convergence
result give a refinement of the case of equivalent operators: roughly speaking, if the
two operators (the original and preconditioner) are equivalent, then the correspond-
ing PCG method provides mesh independent linear convergence, whereas if the two
operators are compact-equivalent, then the PCG method provides mesh independent
superlinear convergence.

Our present results are extensions of the earlier ones [8, 24], where such mesh
independence was proved for the generalized conjugate gradient-least squares (GCG-
LS) method for elliptic Dirichlet problems, but with severe restrictions: except for
some special cases, both the original and preconditioning operators had to contain
constant coefficients. Now we show that two elliptic operators, with homogeneous
Dirichlet conditions on the same portion of the boundary, are compact-equivalent if
and only if their principal parts coincide up to a constant factor. Within this class, the
proof of the mesh independence result then contains no restrictions except standard
smoothness and coercivity assumptions on the operators.

Our characterization of compact-equivalence provides, in fact, a limitation on the
scope of the mesh independent superlinear convergence property. Since the principal
parts of compact-equivalent operators must coincide (up to a constant), precondi-
tioning methods like replacing rough diffusion coefficients by simpler, e.g., constant,
ones are not covered by this setting except, of course, the case when the variable
coefficient problem can be easily rewritten by suitable scaling to a constant coefficient
problem, as for scalar coefficients. In fact, one cannot expect superlinear convergence
for such non–compact-equivalent operators since, as shown in [15], convergence of the
CG method may be only linear if an operator is not a compact perturbation of a
constant times the identity.

The paper is organized as follows: the required background is given in section 2,
compact-equivalent operators are introduced and characterized in section 3, and the
mesh independence result is proved in section 4. Some closing remarks are found in
section 5.

2. Background.

2.1. Conjugate gradient algorithms. Let us consider a linear system

Bu = f(1)

with a given nonsingular matrix B ∈ Rn×n, f ∈ Rn and solution u. Let 〈., .〉 be a
given inner product on Rn and, denoting by B∗ the adjoint of B w.r.t. this inner
product, assume that B + B∗ > 0, i.e., is positive definite.

If B is self-adjoint, then the standard CG method reads as follows [4, 31]: let
u0 ∈ Rn be arbitrary, d0 := Bu0 − f ; for given uk and dk, with r̂k := Buk − f , we let

uk+1 = uk−αkdk, where αk =
〈r̂k, dk〉
〈Bdk, dk〉

; dk+1 = r̂k+1+βkdk, where βk =
‖r̂k+1‖2

‖r̂k‖2
.

(2)
Then, using the error vector ek = uk − u and its energy norm ‖ek‖B = 〈Bek, ek〉1/2,
respectively, and with the decomposition B = I+C (where I is the identity matrix),
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the following celebrated estimate holds [4, 31]:(
‖ek‖B
‖e0‖B

)1/k

≤ 2

k
‖B−1‖

k∑
j=1

∣∣λj(C)
∣∣ (k = 1, 2, . . . , n),(3)

which shows superlinear convergence if the eigenvalues |λ1(C)| ≥ |λ2(C)| ≥ · · · ap-
proach zero.

Since this result is basic for the whole paper, and for completeness, we present a
derivation of (3) following [4]. The optimality of the CG method implies

‖ek‖B
‖e0‖B

≤ min
Pk∈π1

k

max
λ∈σ(B)}

|Pk(λ)|,

where π1
k denotes the set of polynomials Pk of degree k with Pk(0) = 1. Let λj :=

λj(B) and μj := λj(C) (= λj − 1). Then the polynomials Pk(λ) :=
∏k

j=1(1 − λ
λj

)

satisfy Pk(λi) = 0 (i = 1, . . . , k) and

max
λ∈σ(B)}

|Pk(λ)| = max
i≥k+1

k∏
j=1

∣∣∣∣1 − λi

λj

∣∣∣∣ = max
i≥k+1

k∏
j=1

|μj − μi|
|1 + μj |

≤ max
i≥k+1

k∏
j=1

2|μj |
|1 + μj |

;

hence, using the arithmetic-geometric inequality,

max
λ∈σ(B)}

|Pk(λ)|1/k ≤ 2

k

k∑
j=1

|μj |
|1 + μj |

≤ 2

k

(
sup

1

|λj |

) k∑
j=1

|μj |,

which yields (3).
For nonsymmetric B, several CG algorithms exist (see, e.g., [2, 4, 13]). The GCG-

LS method [3, 4] is defined directly for (1) and produces an estimate similar to that
of (3) if B is normal. Mesh independent bounds in [8, 24] for (3) for some elliptic
problems have been given using the GCG-LS method. Alternatively, one can consider
the normal equation and apply a symmetric CG algorithm, which we will do in this
paper. For clearness, let us hereby consider a nonsymmetric linear system

Au = b(4)

with a given nonsingular matrix A ∈ Rn×n and vector b ∈ Rn. Let us apply the
iteration (2) for the equation A∗Au = A∗b, i.e., with B = A∗A and f = A∗b. Then,
with notations sk = r̂k and rk = A−∗r̂k, we obtain the following algorithmic form,
often called the CGN method: let u0 ∈ Rn be arbitrary, r0 := Au0 − b, s0 := d0 :=
A∗r0; for given dk, uk, rk, and sk, we let⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zk = Adk,

αk =
〈rk, zk〉
‖zk‖2

, uk+1 = uk − αkdk , rk+1 = rk − αkzk ;

sk+1 = A∗rk+1,

βk =
‖sk+1‖2

‖sk‖2
, dk+1 = sk+1 + βkdk.

(5)
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Let us consider the decomposition

A = I + K.

Then, using the relations B = I + (K∗ + K + K∗K), ‖ek‖B = ‖Aek‖ = ‖rk‖, and

‖B−1‖ ≤ ν−1, where ν := minx∈Rn
‖Ax‖2

‖x‖2 , estimate (3) can be reformulated as

(
‖rk‖
‖r0‖

)1/k

≤ 2

kν

k∑
i=1

(∣∣λi(K
∗ + K)

∣∣ + λi(K
∗K)

)
(k = 1, 2, . . . , n).(6)

The goal of this paper is to derive a mesh independent bound for (6) when (4)
comes from a preconditioned discretized elliptic PDE using suitable equivalent oper-
ators.

2.2. Singular values of compact operators. Let H be a real Hilbert space.
We shall consider compact operators, i.e., operators C such that the image (Cvi) of
any bounded sequence (vi) contains a convergent subsequence.

Definition 2.1. (i) We call λi(F ) (i = 1, 2, . . .) the ordered eigenvalues of a
compact self-adjoint linear operator F in H if each of them is repeated as many times
as its multiplicity and |λ1(F )| ≥ |λ2(F )| ≥ · · · .

(ii) The singular values of a compact operator C in H are

si(C) := λi(C
∗C)1/2 (i = 1, 2, . . .),

where λi(C
∗C) are the ordered eigenvalues of C∗C. In particular, if C is self-adjoint,

then si(C) = |λi(C)|.
Some useful properties of compact operators are listed below.

Proposition 2.2. Let C be a compact operator in H. Then the following prop-
erties hold.

(a) For any k ∈ N+ and any orthonormal vectors u1, . . . , uk ∈ H,

k∑
i=1

∣∣〈Cui, ui〉
∣∣ ≤ k∑

i=1

si(C) .

(b) If B is a bounded linear operator in H, then

si(BC) ≤ ‖B‖ si(C) (i = 1, 2, . . .).

(c) (Variational characterization of the eigenvalues.) If C is also self-adjoint,
then

∣∣λi(C)
∣∣ = min

Hi−1⊂H
max

u⊥Hi−1
u�=0

∣∣〈Cu, u〉
∣∣

‖u‖2
,

where Hi−1 stands for an arbitrary (i− 1)-dimensional subspace.
(d) If a sequence (ui) ⊂ H satisfies 〈ui, uj〉 = 〈Cui, uj〉 = 0 (i 	= j), then

inf
i

|〈Cui, ui〉|/‖ui‖2 = 0.
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Proof. Statements (a) and (b) are the consequences of [16, Chap. VI, Corollary 3.3
and Proposition 1.3, resp.]; for statement (c), see [17, Theorem III.9.1]. To prove (d),
assume the contrary that the infimum equals δ > 0. We may assume that 〈Cui, ui〉
has constant sign (otherwise we can consider a subsequence that has constant sign).
Then the orthonormal sequence vi := ui/‖ui‖ satisfies for all i 	= j

2δ ≤ |〈Cvi, vi〉 + 〈Cvj , vj〉| = |〈C(vi − vj), vi − vj〉|
≤ ‖C(vi − vj)‖ ‖vi − vj‖ =

√
2‖C(vi − vj)‖;

hence the image (Cvi) of the bounded sequence (vi) contains no convergent subse-
quence (i.e., C is not compact).

3. Compact-equivalent operators in Hilbert space. In this section we
introduce and characterize compact-equivalent operators. Roughly speaking, the
compact-equivalence of the unbounded operators N and L expresses that N−1L is
a compact perturbation of a constant times the identity. To avoid difficulties with do-
mains and ranges, our definition will use a weak form of the operators in a suitable en-
ergy space HS . In particular, no regularity is required in the case of elliptic operators.

The fact that a compact perturbation of a constant times identity is a bounded
operator implies that compact-equivalent operators are equivalent in the sense of [14].
Hence, when we characterize compact-equivalent elliptic operators (under standard
smoothness and coercivity assumptions), we can a priori assume that they have ho-
mogeneous Dirichlet conditions on the same portion of the boundary [26]. Within this
class, compact-equivalence will hold if and only if the principal parts of the operators
coincide up to some constant.

3.1. Basic definitions. In what follows, let H be a real Hilbert space. Let S be
a (generally unbounded) linear symmetric operator in H which is coercive; i.e., there
exists p > 0 such that 〈Su, u〉 ≥ p‖u‖2 (u ∈ D(S)). Then the energy space HS is
the completion of D(S) under the inner product 〈u, v〉S = 〈Su, v〉, and the coercivity
implies HS ⊂ H. The corresponding S-norm is denoted by ‖u‖S , and the space of
bounded linear operators on HS by B(HS).

Definition 3.1. Let S be a linear symmetric coercive operator in H. We say
that a linear operator L in H is S-bounded and S-coercive, and write L ∈ BCS(H) if
the following properties hold:

(i) D(L) ⊂ HS and D(L) is dense in HS in the S-norm;
(ii) there exists M > 0 such that

|〈Lu, v〉| ≤ M‖u‖S‖v‖S (u, v ∈ D(L));

(iii) there exists m > 0 such that

〈Lu, u〉 ≥ m‖u‖2
S (u ∈ D(L)).

Definition 3.2. For any L ∈ BCS(H), let LS ∈ B(HS) be defined by

〈LSu, v〉S = 〈Lu, v〉 (u, v ∈ D(L)).

Remark 1.

(a) The above definition makes sense since LS is the bounded linear operator
on HS that represents the unique extension to HS of the densely defined
S-bounded bilinear form u, v �→ 〈Lu, v〉.
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(b) LS is coercive on HS .
(c) If in particular R(L) ⊂ R(S) (where R(. ) denotes the range), then LS

∣∣
D(L)

=

S−1L.
Remark 2. Definition 3.2 uses the idea of weak form of operators from [26].

Namely, if HS is a subspace of H1(Ω) consisting of functions vanishing on a fixed
portion of the boundary, then LS coincides with the weak operator Lw using (2.15)
in [26].

Now let us consider an operator equation

Lu = g,(7)

where L ∈ BCS(H) and g ∈ H.
Definition 3.3. We call u ∈ HS the weak solution of equation (7) if

〈LSu, v〉S = 〈g, v〉 (v ∈ HS).(8)

Remark 3.

(a) For all g ∈ H the weak solution of (7) exists and is unique. This follows in
the usual way from the Lax–Milgram theorem, since v �→ 〈g, v〉 is a bounded
linear functional on HS by the coercivity of S.

(b) If u ∈ D(L), then u satisfies (7) (i.e., it is a strong solution) if and only if u
is a weak solution.

3.2. Compact-equivalent operators. We can introduce the notion of compact-
equivalence within the previously described setting as follows.

Definition 3.4. Let L and N be S-bounded and S-coercive operators in H. We
call L and N compact-equivalent in HS if

LS = μNS + QS(9)

for some constant μ > 0 and compact operator QS ∈ B(HS).
Remark 4. (i) It follows in a straightforward way that the property compact-

equivalence is an equivalence relation.
(ii) In the special case R(L) ⊂ R(N), compact-equivalence of L and N means

that N−1L is a compact perturbation of a constant times the identity in the space
HS . Indeed, it is easy to see that here N−1L = N−1

S LS

∣∣
D(L), and by definition the

latter is the perturbation of μI with the operator N−1
S QS

∣∣
D(L), which is compact

since N−1
S is bounded. (In the general case the “weakly preconditioned” form N−1

S LS

is also a compact perturbation.)
Now we characterize compact-equivalence for elliptic operators. Let H = L2(Ω)

and let us define the operators

N1u ≡ −div (A1 ∇u) + b1 · ∇u + c1u for u|ΓD
= 0, ∂u

∂νA1
+ α1u|ΓN

= 0,

N2u ≡ −div (A2 ∇u) + b2 · ∇u + c2u for u|ΓD
= 0, ∂u

∂νA2
+ α2u|ΓN

= 0,

where ∂u
∂νAi

= Ai ν · ∇u denotes the weighted normal derivative. (The formal domain

of Ni to be used in Definition 3.2 consists of those u ∈ H2(Ω) that satisfy the above
boundary conditions; however, this is used nowhere else.) The following properties
hold, where i = 1, 2.



MESH INDEPENDENT SUPERLINEAR PCG RATES 1501

Assumptions 3.2.
(i) Ω ⊂ Rd is a bounded piecewise C1 domain; ΓD,ΓN are disjoint open mea-

surable subparts of ∂Ω such that ∂Ω = ΓD ∪ ΓN .

(ii) Ai ∈ C1(Ω,Rd×d) and for all x ∈ Ω the matrix Ai(x) is symmetric; bi ∈
C1(Ω)d, ci ∈ L∞(Ω), αi ∈ L∞(ΓN ).

(iii) We have the coercivity properties minλ∈σ(Ai(x)) λ ≥ p > 0 with p independent

of x, ĉi := ci − 1
2 div bi ≥ 0 in Ω and α̂i := αi + 1

2 (bi · ν) ≥ 0 on ΓN .
(iv) Either ΓD 	= ∅, or ĉi or α̂i has a positive lower bound.

For the study of such operators we define the space

H1
D(Ω) := {u ∈ H1(Ω) : u|ΓD

= 0} with 〈u, v〉S :=

∫
Ω

(G∇u·∇v+huv)+

∫
ΓN

βuv dσ,

(10)
where G has the same properties as Ai above in (ii)–(iii), and h ∈ L∞(Ω), h ≥ 0,
if ΓD 	= ∅ and h ≥ δ0 > 0 if ΓD = ∅, and further, β ∈ L∞(ΓN ) and β ≥ 0.
Then H1

D(Ω) is the energy space HS of the operator Su := −div (G∇u) + hu on
D(S) := {u ∈ H2(Ω) : u|ΓD

= 0, ∂u
∂νG+βu |ΓN

= 0}. It is easy to check the properties in

Definition 3.1 from the above assumptions, which means that N1, N2 ∈ BCS(L2(Ω)).
Proposition 3.5. The elliptic operators N1 and N2 are compact-equivalent in

H1
D(Ω) if and only if their principal parts coincide up to some constant μ > 0, i.e.,

A1 = μA2.
Proof. We have for all u, v ∈ H1

D(Ω)

〈(Ni)Su, v〉S =

∫
Ω

(
Ai ∇u · ∇v + (bi · ∇u)v + ciuv

)
dx +

∫
ΓN

αiuv dσ .

Hence

(N1)S − μ(N2)S = JS + QS ,

where, using notations b := b1 − μb2, c := c1 − μc2, and α := α1 − μα2, we have

〈JSu, v〉S =

∫
Ω

(A1 − μA2) ∇u · ∇v dx ,

〈QSu, v〉S =

∫
Ω

(
(b · ∇u)v + cuv

)
dx +

∫
ΓN

αuv dσ .

(11)

Here QS is compact, which is known [18] when N1 and N2 have the same boundary
conditions. Otherwise we use the equality∫

Ω

(b · ∇u)v dx = −
∫

Ω

u(b · ∇v) dx−
∫

Ω

(div b)uv dx

+

∫
ΓN

(b · ν)uv dσ (u, v ∈ H1
D(Ω))(12)

whence, using notations c̃ := c− div b and α̃ := α + b · ν,

‖QSu‖S = sup
v∈H1

D
(Ω)

‖v‖S=1

|〈QSu, v〉S | = sup
v∈H1

D
(Ω)

‖v‖S=1

∣∣∣∣−∫
Ω

u(b · ∇v) dx +

∫
Ω

c̃uv dx +

∫
ΓN

α̃ uv dσ

∣∣∣∣ .



1502 OWE AXELSSON AND JÁNOS KARÁTSON

Using the embedding estimates

‖v‖L2(Ω) ≤ CΩ‖v‖S , ‖v‖L2(ΓN ) ≤ CΓN
‖v‖S (v ∈ H1

D(Ω))(13)

(where CΩ, CΓN
> 0) and ‖∇v‖L2(Ω) ≤ p−1/2‖v‖S , and letting K1 := p−1/2‖b‖L∞(Ω)+

CΩ‖c̃‖L∞(Ω), K2 := CΓN
‖α̃‖L∞(ΓN ), we obtain

‖QSu‖S ≤ K1‖u‖L2(Ω) + K2‖u‖L2(ΓN )(14)

whence QS is compact.
It remains to prove that if A1 	= μA2, then JS is not compact. Using Proposition

2.2(d), it suffices to find a sequence (ui) ⊂ H1
0 (Ω) ⊂ H1

D(Ω) satisfying

〈ui, uj〉S = 〈JSui, uj〉S = 0 (i 	= j),(15)

inf
i

|〈JSui, ui〉S |/‖ui‖2
S = δ > 0.(16)

Let A := A1 − μA2. Since A is not identically zero, there is x0 ∈ Ω such that
A0 := A(x0) 	= 0. Here A0 is symmetric; hence there is u0 ∈ H1

0 (Ω) such that∫
Ω
A0 ∇u0 · ∇u0 	= 0. Let

ε :=

∣∣∣∣∫
Ω

A0 ∇u0 · ∇u0

∣∣∣∣ /(∫
Ω

|∇u0|2
)
, Ωε/2 := {x ∈ Ω : ‖A(x) −A0‖ < ε/2},

which is an open set since A is continuous. Fix z′ ∈ Ω, and for any z ∈ Ω and R > 0
let Ωz,R := {x ∈ Rd : z′ + R(x − z) ∈ Ω}. Let zi ∈ Ω, Ri > 0 (i ∈ N+) such
that Ωi := Ωzi,Ri ⊂ Ωε/2 and Ωi are pairwise disjoint sets. We define ui ∈ H1

0 (Ω)

by ui(x) := u0

(
z′ + Ri(x − zi)

)
for x ∈ Ωi and ui(x) := 0 for x ∈ Ω \ Ωi. Since

suppui = Ωi are disjoint, (15) is satisfied. Further, using the fact Ωi ⊂ Ωε/2 and a
linear transformation Ωi → Ω in the integral, we obtain

|〈JSui, ui〉S |∫
Ωi

|∇ui|2
=

∣∣∣∫Ωi
A ∇ui · ∇ui

∣∣∣∫
Ωi

|∇ui|2
≥

∣∣∣∫Ωi
A0 ∇ui · ∇ui

∣∣∣∫
Ωi

|∇ui|2
− ε

2

=

∣∣∣∫Ω
A0 ∇u0 · ∇u0

∣∣∣∫
Ω
|∇u0|2

− ε

2
=

ε

2
.

Since for u ∈ H1
0 (Ω) we have ‖u‖2

S ≤ C ·
∫
Ω
|∇u|2, the above estimate yields (16) with

δ = ε
2C > 0.

4. Compact-equivalent preconditioning and mesh independent super-
linear convergence rates. We prove the mesh independent convergence results for
the PCG method in four stages. First we consider symmetric preconditioning op-
erators, which are more straightforward to handle. Then, by suitable modifications
of the proof, we turn to arbitrary preconditioning operators (in the studied coercive
framework) where the general result is obtained. In both the symmetric and non-
symmetric cases we first consider an abstract Hilbert space level and then derive the
corresponding estimates for elliptic problems.

For simplicity we will consider compact-equivalence with μ = 1 in (9), which is
clearly no restriction, since if a preconditioner NS satisfies LS = μNS + QS , then we
can consider the preconditioner μNS instead.
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4.1. The abstract operator equation and its discretization. Let us con-
sider the operator equation

Lu = g,(17)

where L ∈ BCS(H) and g ∈ H, and let u ∈ HS be the weak solution as in Definition
3.3. Equation (17) will be solved numerically using a Galerkin discretization: let

Vh = span{ϕ1, . . . , ϕn} ⊂ HS ,

where ϕi are linearly independent, be a given finite-dimensional subspace and let

Lh :=
{
〈LSϕi, ϕj〉S

}n

i,j=1
.

Finding the discrete solution uh ∈ Vh requires solving the n× n system

Lh c = b(18)

with b = {〈g, ϕj〉}nj=1. Since L ∈ BCS(H), the symmetric part of Lh is positive
definite; hence system (18) has a unique solution. Moreover, if a sequence of such
subspaces Vh satisfies infv∈Vh

‖u− v‖S → 0 for all u ∈ HS , then the coercivity of LS

implies in the standard way [9] that uh converges to the exact weak solution in the
HS-norm.

4.2. Symmetric preconditioning in Hilbert space. We introduce the stiff-
ness matrix of S,

Sh =
{
〈ϕi, ϕj〉S

}n

i,j=1
,(19)

as preconditioner for system (18), and wish to solve

S−1
h Lh c = b̃(20)

(with b̃ = S−1
h b) using the CG method . Let us endow Rn with the Sh-inner product

〈c,d〉Sh
:= Sh c ·d. Then the Sh-adjoint of S−1

h Lh is S−1
h LT

h ; hence we apply the CG

algorithm (5) with A = S−1
h Lh and A∗ = S−1

h LT
h .

Let us now assume that L and S are compact-equivalent with μ = 1. In this
special case (9) holds with NS = I:

LS = I + QS .(21)

Hence, letting

Qh =
{
〈QSϕi, ϕj〉S

}n

i,j=1
,

system (20) takes the form

(Ih + S−1
h Qh) c = b̃,(22)

where Ih is the n× n identity matrix. Using (6), the CG algorithm (5) thus provides
the estimate(

‖rk‖Sh

‖r0‖Sh

)1/k

≤ 2

kνh

k∑
i=1

(∣∣λi(S
−1
h QT

h + S−1
h Qh)

∣∣ + λi(S
−1
h QT

hS−1
h Qh)

)
(23)
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(k = 1, 2, . . . , n), where

νh = min
c∈Rn

c�=0

‖S−1
h Lhc‖2

Sh

‖c‖2
Sh

.(24)

Our goal is to give a bound on (23) that is independent of the subspace Vh.
Proposition 4.1. Let L be S-bounded and S-coercive. Let Sh, Qh be defined as

above and let si(QS) and λi(Q
∗
S +QS) (i = 1, 2, . . .) denote the corresponding singular

values, respectively, ordered eigenvalues where QS, defined in (21), is compact on HS.
Then the following relations hold:

(a)

k∑
i=1

λi(S
−1
h QT

h S−1
h Qh) ≤

k∑
i=1

si(QS)2 (k = 1, . . . , n),

(b)

k∑
i=1

∣∣λi(S
−1
h QT

h + S−1
h Qh)

∣∣ ≤ k∑
i=1

∣∣λi(Q
∗
S + QS)

∣∣ (k = 1, . . . , n),

(c) νh ≥ m2 for νh in (24), where m := inf
u∈D(L)

u�=0

〈Lu, u〉
‖u‖2

S

.

Proof. (a) Let λi := λi(S
−1
h QT

h S−1
h Qh) (i = 1, . . . , n) and let ci = (ci1, . . . , c

i
n) ∈

Rn be corresponding eigenvectors such that

Sh ci · cl = δil (i, l = 1, . . . , n),(25)

where · denotes the ordinary inner product on Rn. Then

S−1
h Qh ci · Qh ci = λi (i = 1, . . . , n).(26)

Let di := S−1
h Qh ci for all i; that is,

Sh di = Qh ci,(27)

which turns (26) into

Shd
i · di = λi .(28)

Now let ui =
∑n

j=1 c
i
jϕj ∈ Vh and zi =

∑n
j=1 d

i
jϕj ∈ Vh (i = 1, . . . , n). Then (28)

yields

‖zi‖2
S = λi .(29)

Further, for all v =
∑n

j=1 pjϕj ∈ Vh, with notation p = (p1, . . . , pn) ∈ Rn, (27) yields

Sh di · p = Qh ci · p, which implies

〈zi, v〉S = 〈QSui, v〉S (v ∈ Vh);

i.e., zi is the orthogonal projection of QSui ∈ HS into Vh. Therefore ‖zi‖S ≤ ‖QSui‖S ,
and (29) provides

k∑
i=1

λi ≤
k∑

i=1

‖QSui‖2
S =

k∑
i=1

〈Q∗
SQSui, ui〉S .(30)
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Here 〈ui, ul〉S = Sh ci · cl for all i, l = 1, . . . , n; hence by (25) the vectors ui are
orthonormal in HS . Therefore Proposition 2.2(a) for the operator C = Q∗

SQS in the
space HS yields the desired estimate.

(b) The proof is similar to that of (a). Now let λi := λi(S
−1
h QT

h + S−1
h Qh) and

let ci = (ci1, . . . , c
i
n) ∈ Rn be corresponding eigenvectors with property (25). Then

(QT
h + Qh) ci = λi Sh ci (i = 1, . . . , n),

and (25) yields

λi = (QT
h + Qh) ci · ci = 2Qh ci · ci.

For ui =
∑n

j=1 c
i
jϕj ∈ Vh we thus obtain

k∑
i=1

∣∣λi

∣∣ = 2

k∑
i=1

∣∣〈QSui, ui〉S
∣∣ =

k∑
i=1

∣∣〈(Q∗
S + QS)ui, ui〉S

∣∣ ,(31)

and Proposition 2.2(a) for the operator C = Q∗
S + QS in the space HS yields the

desired estimate.

(c) We have

min
c∈Rn

c�=0

‖S−1
h Lhc‖Sh

‖c‖Sh

= min
c∈Rn

c�=0

‖S−1
h Lhc‖Sh

‖c‖Sh

‖c‖2
Sh

≥ min
c∈Rn

c�=0

〈S−1
h Lhc, c〉Sh

‖c‖2
Sh

= min
c∈Rn

c�=0

Lh c · c
Sh c · c = min

u∈Vh
u�=0

〈LSu, u〉S
‖u‖2

S

≥ inf
u∈HS
u�=0

〈LSu, u〉S
‖u‖2

S

= inf
u∈D(L)

u�=0

〈LSu, u〉S
‖u‖2

S

= inf
u∈D(L)

u�=0

〈Lu, u〉
‖u‖2

S

= m,

where the density of D(L) in HS has been used.

In virtue of (23) and Proposition 4.1, we have proved the following theorem.

Theorem 4.2. Let L be S-bounded and S-coercive, and let L and S be compact-
equivalent with μ = 1. Let the compact operator QS be as in (21). Then for any
subspace Vh = span{ϕ1, . . . , ϕn} ⊂ HS, the CG algorithm (5) with Sh-inner product,
applied for the n× n preconditioned system (20), yields(

‖rk‖Sh

‖r0‖Sh

)1/k

≤ εk (k = 1, 2, . . . , n),(32)

where εk =
2

km2

k∑
i=1

(∣∣λi(Q
∗
S + QS)

∣∣ + si(QS)2
)

→ 0 (as k → ∞)(33)

and (εk)k∈N+ is a sequence independent of n and Vh.
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4.3. Symmetric preconditioning for discretized elliptic problems.

4.3.1. General elliptic equations. Let us consider an elliptic problem{
Lu ≡ −div (A∇u) + b · ∇u + cu = g,

u|ΓD
= 0, ∂u

∂νA
+ αu|ΓN

= 0,
(34)

where L satisfies Assumptions 3.2 and g ∈ L2(Ω). We define H1
D(Ω) = {u ∈ H1(Ω) :

u|ΓD
= 0}; then Assumptions 3.2 ensure that problem (34) has a unique weak solution

u ∈ H1
D(Ω). Now let Vh = span{ϕ1, . . . , ϕn} ⊂ H1

D(Ω) be a given FEM subspace.
We seek the FEM solution uh ∈ Vh, which requires solving the n× n system

Lh c = b,(35)

where (
Lh

)
i,j

=

∫
Ω

(
A∇ϕi · ∇ϕj + (b · ∇ϕi)ϕj + cϕiϕj

)
+

∫
ΓN

αϕiϕj dσ

and bj =
∫
Ω
gϕj (j = 1, . . . , n). Following subsection 4.2, we define a preconditioner

for system (35) as the discretization of a suitable symmetric elliptic operator. Let

Su := −div (A∇u) + hu for u ∈ H2(Ω) : u|ΓD
= 0, ∂u

∂νA
+ βu|ΓN

= 0,(36)

where h ∈ L∞(Ω) and h ≥ 0 if ΓD 	= ∅ and h ≥ δ0 > 0 if ΓD = ∅, and, further,
β ∈ L∞(ΓN ) and β ≥ 0. The corresponding inner product on H1

D(Ω) is

〈u, v〉S :=

∫
Ω

(A ∇u · ∇v + huv) +

∫
ΓN

βuv dσ .(37)

We introduce the matrix

Sh =
{
〈ϕi, ϕj〉S

}n

i,j=1
(38)

as preconditioner for system (35), and then solve system (20) using the CG algorithm
(5) with the Sh-inner product and with A = S−1

h Lh and A∗ = S−1
h LT

h .
Theorem 4.3. Let Vh ⊂ H1

D(Ω) be an arbitrary FEM subspace and consider the
FEM discretization (35) of problem (34), using the stiffness matrix Sh as precondi-
tioner. Then the superlinear convergence of the preconditioned CG method is mesh
independent in the sense of Theorem 4.2; i.e., we have(

‖rk‖Sh

‖r0‖Sh

)1/k

≤ εk (k = 1, 2, . . . , n)(39)

for the mesh independent sequence εk → 0 from (33).
Proof. The coercivity and boundedness assumptions on the coefficients of L and

S imply in a standard way that L is S-bounded and S-coercive. Proposition 3.5 yields
that L and S are compact-equivalent in H1

D(Ω) if the latter is endowed with the inner
product (37). Therefore Theorem 4.2 is valid with the compact operator QS defined
via

〈QSu, v〉S =

∫
Ω

(
(b·∇u)v+(c−h)uv

)
+

∫
ΓN

(α−β)uv dσ (u, v ∈ H1
D(Ω)),(40)
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which satisfies (21).
We note that the above result is an extension of [8], where the mesh independence

property has been proved for Dirichlet boundary conditions when either S is the
symmetric part of L, or both L and S have constant coefficients.

Remark 5. Finding the correction terms in algorithm (5) with the present choice
A = S−1

h Lh and A∗ = S−1
h LT

h is equivalent to the auxiliary problems

find zk ∈ Vh : 〈zk, v〉S = 〈LSdk, v〉S (v ∈ Vh),

find sk+1 ∈ Vh : 〈sk+1, v〉S = 〈L∗
Srk+1, v〉S (v ∈ Vh);

i.e., zk and sk+1 are the FEM solutions in Vh of the symmetric elliptic problems of
the form Szk = Ldk and Ssk+1 = L∗rk+1 with the boundary conditions of (36).

Proposition 4.4. Under the conditions of Theorem 4.3, the sequence εk in (39)
satisfies

εk ≤ 4s

k

k∑
i=1

1

μi
,(41)

where μi (i ∈ N+) are the solutions of the eigenvalue problem

Su = μu, u|ΓD
= 0, r

(
∂u

∂νA
+ βu

)
|ΓN

= μu(42)

and s, r > 0 are constants defined below. When the asymptotics μi = O(i2/d) holds
(in particular, for Dirichlet boundary conditions),

εk ≤ O

(
log k

k

)
if d = 2 and εk ≤ O

(
1

k2/d

)
if d ≥ 3.(43)

Proof. From (40) and (12) for v = u, letting d = c− h and γ = α− β, we obtain

〈QSu, u〉S =

∫
Ω

(
d− 1

2
(div b)

)
u2 +

∫
ΓN

(
γ +

1

2
(b · ν)

)
u2 dσ

≤ C1‖u‖2
L2(Ω) + C2‖u‖2

L2(ΓN ).

We have
∣∣〈(Q∗

S +QS)u, u〉S
∣∣ = 2

∣∣〈QSu, u〉S
∣∣; hence the variational characterization of

the eigenvalues yields

∣∣λi(Q
∗
S + QS)

∣∣ = min
Hi−1⊂HS

max
u⊥Hi−1

u�=0

∣∣〈(Q∗
S + QS)u, u〉S

∣∣
‖u‖2

S

≤ 2 min
Hi−1⊂HS

max
u⊥Hi−1

u�=0

C1‖u‖2
L2(Ω) + C2‖u‖2

L2(ΓN )

‖u‖2
S

,

where Hi−1 stands for an arbitrary (i− 1)-dimensional subspace. On the other hand,
here QS falls into the type (11), and hence (14) implies

‖QSu‖2
S ≤ 2K2

1‖u‖2
L2(Ω) + 2K2

2‖u‖2
L2(ΓN ) .
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Since si(QS)2 = λi(Q
∗
SQS) and 〈Q∗

SQSu, u〉S = ‖QSu‖2
S , we obtain as above that

si(QS)2 = min
Hi−1⊂HS

max
u⊥Hi−1

u�=0

〈Q∗
SQSu, u〉S
‖u‖2

S

≤ min
Hi−1⊂HS

max
u⊥Hi−1

u�=0

2K2
1‖u‖2

L2(Ω) + 2K2
2‖u‖2

L2(ΓN )

‖u‖2
S

.

Altogether, letting s :=
C1+K2

1

m2 , r :=
C1+K2

1

C2+K2
2
, formula (33) implies

εk ≤ 4s

k

k∑
i=1

μ̂i, where μ̂i = min
Hi−1⊂HS

max
u⊥Hi−1

u�=0

‖u‖2
L2(Ω) + 1

r‖u‖2
L2(ΓN )

‖u‖2
S

,

in which the fraction equals 1/μ for (42); hence the equality μ̂i = 1
μi

follows from the
variational characterization of the eigenvalues.

Estimate (43) follows from the asymptotics μi = O(i2/d) by an elementary calcu-
lation. For Dirichlet boundary conditions, this asymptotic behavior can be found in
[11].

Remark 6. To the authors’ knowledge the asymptotic behavior μi = O(i2/d)
is not known for general (other than Dirichlet) boundary conditions. However, for
the simple special case −Δu = μu, ∂u

∂ν

∣∣
∂Ω

= μu, where Ω is a disc in R2, one can
easily verify via the sign properties of the Bessel functions that μi are asymptotic to
the Dirichlet eigenvalues and hence also satisfy μi = O(i2/d). This suggests a wider
validity of this asymptotic rate.

Remark 7. It is of interest to compare the estimates (43), obtained in the context
of the CGN method, to those valid for the GCG-LS method. In [8] we have proved
εk ≤ O

(
k−1/2

)
in two dimensions on the unit square for the GCG-LS method un-

der the same preconditioning (for Dirichlet boundary conditions, and using explicit
formulae for the eigenvalues). Using the same technique, one can similarly derive
εk ≤ O

(
k−1/d

)
in d dimensions (on the unit cube). That is, comparing with (43),

we see that the decay rate of εk for the CGN method is almost or exactly (in two
or more dimensions, respectively) the square of the decay rate for the GCG method,
which compensates for the extra work of solving two auxiliary problems in the pre-
conditioned CGN iteration.

4.3.2. An example: Convection-diffusion equations with Helmholtz pre-
conditioners. As a special case of the preceding subsection, let us consider the case
of a convection-diffusion operator L in (34) and a preconditioning operator S with
constant coefficients. Namely, if A ≡ I in (34), then we have the problem{

Lu ≡ −Δu + b(x) · ∇u + c(x)u = g(x),

u|ΓD
= 0, ∂u

∂ν + α(x)u|ΓN
= 0,

(44)

where for clearness, the dependence of the coefficients on x has now been indicated
unlike before. Let us define the preconditioning operator

Su := −Δu + hu for u ∈ H2(Ω) : u|ΓD
= 0,

∂u

∂ν
+ βu|ΓN

= 0,(45)
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where h, β ∈ R are constants such that h ≥ 0 if ΓD 	= ∅ and h > 0 if ΓD = ∅, and
further, β ≥ 0. (For constant b and Dirichlet boundary conditions, the analysis of
linear convergence in [25] proposes h = O(|b|2) as an efficient choice.)

Then the auxiliary problems with this preconditioning are discrete Helmholtz
problems with constant coefficients. For such problems various fast solvers are avail-
able (like fast Fourier transform, cyclic reduction, or multigrid; see, e.g., [19, 28, 30]),
which, together with the mesh independence result of Theorem 4.3, turns Sh into an
efficient preconditioner. We point out that this is an extension of [8], where the mesh
independence property has been proved for Dirichlet boundary conditions under the
strong restriction that the operator L itself has constant coefficients.

4.3.3. Elliptic systems. Analogously to subsection 4.3.1, we can consider el-
liptic systems

Liu ≡ −div (Ai ∇ui) + bi · ∇ui +
l∑

j=1

Vijuj = gi,

ui |ΓD
= 0, ∂ui

∂νA
+ αiui |ΓN

= 0

⎫⎪⎬⎪⎭ (i = 1, . . . , l),(46)

where Ω, Ai, and αi are as in Assumptions 3.2, bi ∈ C1(Ω)N , gi ∈ L2(Ω), Vij ∈
L∞(Ω). We assume that bi and the matrix V =

{
Vij

}l

i,j=1
satisfy the coercivity

property

λmin(V + V T ) − max
i

div bi ≥ 0

pointwise on Ω, where λmin denotes the smallest eigenvalue; then system (46) has
a unique weak solution u ∈ H1

D(Ω)l. Such systems arise, e.g., from suitable time
discretization and Newton linearization of transport systems, which often consist of a
huge number of equations [33]. Now we choose an FEM subspace Vh ⊂ H1

D(Ω)l and
look for the solution of the corresponding algebraic system Lh c = b. We define the
preconditioning operator S = (S1, . . . , Sl) as the l-tuple of independent operators

(47)

Siui := −div (Ai ∇u) + hiu for ui ∈ H2(Ω) : ui |ΓD
= 0,

∂ui

∂νA
+ βiui |ΓN

= 0

(i = 1, . . . , l) with the conditions of (36), and let Sh be the stiffness matrix of S in
H1

D(Ω)l.
Then, similarly to subsection 4.3.1, one can verify that the superlinear convergence

of the preconditioned CG method is mesh independent in the sense of Theorem 4.2;
i.e., (32)–(33) hold.

This result is an extension of [24] where the above preconditioning has been intro-
duced and its efficient parallelizability has been demonstrated; on the other hand, the
mesh independence property was proved there for Dirichlet boundary conditions un-
der strong restrictions on the matrix V (antisymmetric, or normal when the operator
L itself has constant coefficients).

4.4. Nonsymmetric preconditioning in Hilbert space. Now let N be a gen-
eral (possibly nonsymmetric) S-bounded and S-coercive operator which is compact-
equivalent to L with μ = 1; i.e., (9) becomes

LS = NS + QS .(48)
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We introduce the stiffness matrix of NS ,

Nh =
{
〈NSϕi, ϕj〉S

}n

i,j=1
,

as preconditioner for system (18), and wish to solve

N−1
h Lh c = b̂(49)

(with b̂ = N−1
h b) using the CG method . Since N is nonsymmetric, in order to define

an inner product on Rn we preserve the stiffness matrix of S on Vh; i.e., using (19)
we endow Rn with the Sh-inner product 〈c,d〉Sh

:= Sh c · d as earlier. Then the
Sh-adjoint of N−1

h Lh is S−1
h LT

h N−T
h Sh; hence we apply the CG algorithm (5) with

A = N−1
h Lh and A∗ = S−1

h LT
hN−T

h Sh.
Letting

Qh =
{
〈QSϕi, ϕj〉S

}n

i,j=1
,

system (20) takes the form

(Ih + N−1
h Qh) c = b̂,(50)

where Ih is the n× n identity matrix. Using (6), the CG algorithm (5) thus provides(
‖rk‖Sh

‖r0‖Sh

)1/k

≤ 2

kνh

k∑
i=1

(
λi(S

−1
h QT

h N−T
h Sh+N−1

h Qh)+λi(S
−1
h QT

h N−T
h ShN

−1
h Qh)

)
(51)

(k = 1, 2, . . . , n), where

νh = min
c∈Rn

‖N−1
h Lhc‖2

Sh

‖c‖2
Sh

.(52)

Again, our goal is to give a bound on (51) that is independent of Vh.
Proposition 4.5. Let L and N be S-bounded and S-coercive operators, in par-

ticular,

m := inf
u∈D(L)

u�=0

〈Lu, u〉
‖u‖2

S

> 0, m̂ := inf
u∈D(N)

u�=0

〈Nu, u〉
‖u‖2

S

> 0,

M̂ := sup
u∈D(N)

u�=0

|〈Nu, v〉|
‖u‖S‖v‖S

> 0,

and let QS be a compact operator on HS. Let Sh, Nh, and Qh be defined as above,
and let si(QS) (i = 1, 2, . . .) denote the singular values of QS. Then the following
relations hold:

(a)

k∑
i=1

λi(S
−1
h QT

h N−T
h ShN

−1
h Qh) ≤ 1

m̂2

k∑
i=1

si(QS)2 (k = 1, . . . , n),

(b)
k∑

i=1

∣∣λi(S
−1
h QT

h N−T
h Sh + N−1

h Qh)
∣∣ ≤ 2

m̂

k∑
i=1

si(QS) (k = 1, . . . , n),
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(c) νh ≥ m2

M̂2
.

Proof. (a) We proceed in a manner similar to that of Proposition 4.1. Let
λi := λi(S

−1
h QT

h N−T
h ShN

−1
h Qh) (i = 1, . . . , n) and let ci = (ci1, . . . , c

i
n) ∈ Rn be

corresponding eigenvectors with property (25). Then

ShN
−1
h Qh ci · N−1

h Qh ci = λi (i = 1, . . . , n).(53)

Let di := N−1
h Qh ci for all i; that is,

Nh di = Qh ci .(54)

For this di and λi, similarly to Proposition 4.1, we have (28) and, letting ui =∑n
j=1 c

i
jϕj ∈ Vh and zi =

∑n
j=1 d

i
jϕj ∈ Vh, we obtain (29). Further, for all v =∑n

j=1 pjϕj ∈ Vh, with notation p = (p1, . . . , pn) ∈ Rn, (54) yields Nh di · p =

Qh ci · p, which means

〈NSzi, v〉S = 〈QSui, v〉S (v ∈ Vh).

From this we have

‖zi‖2
S ≤ 1

m̂
〈NSzi, zi〉S =

1

m̂
〈QSui, zi〉S ≤ 1

m̂
‖QSui‖S‖zi‖S ;

hence ‖zi‖S ≤ 1
m̂ ‖QSui‖S . Then from (29)

k∑
i=1

λi ≤
1

m̂2

k∑
i=1

‖QSui‖2
S =

1

m̂2

k∑
i=1

〈Q∗
SQSui, ui〉S ,(55)

whence the desired estimate follows in the same way as from (30) in Proposition 4.1.

(b) Now let λi := λi(S
−1
h QT

h N−T
h Sh +N−1

h Qh) and let ci = (ci1, . . . , c
i
n) ∈ Rn be

corresponding eigenvectors with property (25). Then

λi = λi Sh ci·ci = QT
h N−T

h Sh ci·ci+ShN
−1
h Qh ci·ci = 2 ShN

−1
h Qh ci·ci = 2Qh ci·ei,

where ei := N−T
h Sh ci for all i. Here for all v =

∑n
j=1 pjϕj ∈ Vh, with notation p =

(p1, . . . , pn) ∈ Rn, we obtain ei ·Nh p = Sh ci ·p, which means 〈wi, NSv〉S = 〈ui, v〉S
for all v ∈ Vh, where wi =

∑n
j=1 e

i
jϕj and ui =

∑n
j=1 c

i
jϕj , or

〈N∗
Swi, v〉S = 〈ui, v〉S (v ∈ Vh).(56)

Denote by P the orthogonal projection of HS onto Vh. Then (56) yields ui = PN∗
Swi.

Here the linear mapping (PN∗
S)|Vh

: Vh → Vh is one-to-one, since for all v ∈ Vh

〈PN∗
Sv, v〉S = 〈N∗

Sv, v〉S = 〈NSv, v〉S ≥ m̂‖v‖2
S .(57)

Therefore

Qh ci · ei = 〈QSui, wi〉S = 〈QSui, (PN∗
S)−1

|Vh
ui〉S = 〈ui, Q

∗
S(PN∗

S)−1
|Vh

ui〉S .
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Here the operator (PN∗
S)−1

|Vh
has a norm-preserving extension N̂ from Vh onto HS

(namely, with N̂
∣∣
(Vh)⊥ := 0), and from (57) we have ‖N̂‖ ≤ 1

m̂ . Altogether, we obtain

k∑
i=1

|λi| = 2

k∑
i=1

∣∣〈Q∗
S(PN∗

S)−1
|Vh

ui, ui〉S
∣∣ = 2

k∑
i=1

∣∣〈Q∗
SN̂ui, ui〉S

∣∣ ≤ 2

k∑
i=1

si
(
Q∗

SN̂
)

≤ 2

m̂

k∑
i=1

si
(
Q∗

S

)
=

2

m̂

k∑
i=1

si
(
QS

)
(where, in the inequalities, statements (a) and (b) of Proposition 2.2 have been used,
respectively).

(c) Let c ∈ Rn be arbitrary, d := N−1
h Lhc. Let u =

∑n
j=1 cjϕj ∈ Vh and

z =
∑n

j=1 djϕj ∈ Vh. Then m‖u‖2
S ≤ 〈LSu, u〉S = Lh c · c = Nh d · c = 〈NSz, u〉S ≤

‖NSz‖S‖u‖S ; hence

m‖u‖S ≤ ‖NSz‖S

and

‖N−1
h Lhc‖2

Sh

‖c‖2
Sh

=
Sh d · d
Sh c · c =

‖z‖2
S

‖u‖2
S

≥ m2 ‖z‖2
S

‖NSz‖2
S

≥ m2

M̂2
.

By virtue of (51) and Proposition 4.5, we have proved the following theorem.
Theorem 4.6. Let L and N be S-bounded and S-coercive operators that are

compact-equivalent in HS with μ = 1. Let the compact operator QS be as in (48).
Then for any subspace Vh = span{ϕ1, . . . , ϕn} ⊂ HS, the CG algorithm (5) with
Sh-inner product, applied for the n× n preconditioned system (49), yields(

‖rk‖Sh

‖r0‖Sh

)1/k

≤ εk (k = 1, 2, . . . , n),(58)

where εk =
2M̂2

km2

k∑
i=1

(
2

m̂
si(QS) +

1

m̂2
si(QS)2

)
→ 0 (as k → ∞)(59)

and (εk)k∈N+ is a sequence independent of n and Vh.
Remark 8. When one preconditions L with N , a useful choice for the operator

S is the symmetric part of N : i.e., if D(N) = D(N∗), then S = (N + N∗)/2, and
if D(N) 	= D(N∗), then S is an operator that generates the inner product satisfying
〈u, v〉S := 1

2 (〈Nu, v〉+ 〈u,Nv〉) for u, v ∈ D(N); see [23]. Then in Proposition 4.5 we
have 〈Nu, u〉 = ‖u‖2

S (u ∈ D(N)), and hence m̂ = 1.

4.5. Nonsymmetric preconditioning for discretized elliptic problems.
This section contains our most general result for elliptic operators: in the studied
coercive framework, preconditioning with an arbitrary operator N that is compact-
equivalent with L provides mesh independent superlinear convergence. Besides its
theoretical aspect, the importance of this property will be shown below by some
practical examples as well. Let us first consider the elliptic problem (34){

Lu ≡ −div (A∇u) + b · ∇u + cu = g,

u|ΓD
= 0, ∂u

∂νA
+ αu|ΓN

= 0,
(60)
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and let us define the nonsymmetric preconditioning operator

(61)

Nu := −div (A∇u) + w · ∇u + zu for u ∈ H2(Ω) : u|ΓD
= 0,

∂u

∂νA
+ ηu|ΓN

= 0

for some properly chosen functions w, z, η, where L and N satisfy Assumptions 3.2
in the obvious sense, and further, g ∈ L2(Ω). Accordingly, the preconditioner for the
discretized problem (35) is the nonsymmetric stiffness matrix

(
Nh

)
i,j

=

∫
Ω

(
A∇ϕi · ∇ϕj + (w · ∇ϕi)ϕj + zϕiϕj

)
+

∫
ΓN

ηϕiϕj dσ .

We use the same energy space as in the symmetric case, i.e., HS = H1
D(Ω) with inner

product (37). We then solve the preconditioned system using the CG algorithm (5)
with the Sh-inner product and with A = N−1

h Lh and A∗ = S−1
h LT

hN−T
h Sh.

Theorem 4.7. Let Vh ⊂ H1
D(Ω) be an arbitrary FEM subspace and consider the

FEM discretization (35) of problem (34), using the stiffness matrix Nh as precondi-
tioner. Then the superlinear convergence of the preconditioned CG method is mesh
independent in the sense of Theorem 4.6; i.e., (58)–(59) hold.

Proof. The proof is similar to that of Theorem 4.3, but now Theorem 4.6 is
applied in H1

D(Ω).
Examples. Let us consider problem (44); i.e., when in (60) we have

Lu = −Δu + b(x) · ∇u + c(x)u,

where for clarity, the dependence of the coefficients on x has now been indicated. For
convection-dominated problems (i.e., when |b| is large), the inclusion of nonsymmetric
terms in N may turn it into a much better approximation of L than a symmetric pre-
conditioner like (45). Although the preconditioner N thus becomes nonsymmetric as
is L itself, the solution of the auxiliary problems can still remain considerably simpler
than the original one. We illustrate this with two examples.

1. One can propose a preconditioning operator with constant coefficients:

Nu = −Δu + w · ∇u + zu for u ∈ H2(Ω) : u|ΓD
= 0,

∂u

∂ν
+ ηu|ΓN

= 0,

(62)

where w ∈ Rd, z, η ∈ R are constants such that z ≥ 0 if ΓD 	= ∅ and z > 0 if
ΓD = ∅, and further, η ≥ 0. Owing to the fact that N has constant coefficients,
one can rely on efficient solution methods for the auxiliary problems. Here one can
use either multigrid or multilevel methods, or (if Ω is rectangular or the boundary
conditions allow the problem to be easily embedded into a rectangular domain) fast
direct solvers for separable equations are available; see, e.g., [29].

2. The preconditioning operator (62) can be further simplified if one convection
coefficient is dominating. Assume that, say, b1(x) has considerably larger values than
bj(x) (j ≥ 2). Then one can include only one nonsymmetric coefficient, i.e., propose
the preconditioning operator

Nu = −Δu + w1
∂u

∂x1
+ zu for u ∈ H2(Ω) : u|ΓD

= 0,
∂u

∂ν
+ ηu|ΓN

= 0,

(63)
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where w1, z, η ∈ R are constants with the same properties as those required for (62).
In this case (above all, if b1(x) are large), the presence of the term w1

∂u
∂x1

itself
may turn N into a much better approximation of L. Nevertheless, since this term is
one-dimensional, the solution of the auxiliary problems remains considerably simpler
than the original one, e.g., via local one-dimensional Green’s functions [5]. (The
above operator N has been proposed in [8], where the mesh independence result of
the PCG method has been proved for Dirichlet boundary conditions under the strong
restriction that the operator L itself has constant coefficients.)

Analogously to the symmetric case in subsection 4.3.3, the above results can be
extended to systems in a straightforward way. Namely, let us consider system (46)
and introduce the preconditioning operator N as an l-tuple of decoupled operators Ni,
where each Ni is of the type (61). Then the superlinear convergence of the precondi-
tioned CG method is mesh independent in the sense of Theorem 4.6; i.e., (58)–(59)
hold. Since Ni are decoupled, the resulting algorithm is parallelizable. This turns
it into an efficient method if, for instance, each Ni is like (62), or the problem itself
is in one dimension, which may occur, e.g., after using some method of splitting in
meteorological models with several components; see [33].

5. Some closing remarks.

5.1. Conclusions and notes on numerical realization. The main results
of this paper can be summarized as follows. If two elliptic operators are compact-
equivalent (which requires that their principal parts coincide up to a constant factor
and they have homogeneous Dirichlet conditions on the same portion of the bound-
ary), then the PCGN method provides mesh independent superlinear convergence;
i.e., a bound on the rate of superlinear convergence is given in the form of a sequence
which is mesh independent and is determined only by the elliptic operators. The anal-
ogous result holds for suitable elliptic systems where, as an additional advantage, the
preconditioning operator can be chosen to be decoupled. Various further examples
have been shown on the efficient choice of compact-equivalent preconditioners.

For the GCG-LS method we have obtained similar earlier results in [8, 24], but
with severe restrictions: except for some special cases, both the original and pre-
conditioning operators had to contain constant coefficients, and further, only Dirichlet
boundary conditions have been considered. On the other hand, numerical experiments
in [24] suggest that the restrictions are probably mostly technical, since a similar su-
perlinear behavior has been observed for test problems with or without these condi-
tions. Remark 7 suggests that the PCGN and GCG-LS methods require the same
order of operations for prescribed accuracy; hence there is no a priori preference for
one over the other. In any case, a favorable property for the PCGN iteration is the
generality of the underlying theory, clarified in the present paper.

The PCGN algorithm has been applied in the setting of subsection 4.3.3 as an
inner iterative solver for Newton’s method for nonlinear nonsymmetric elliptic sys-
tems in [1]. As in the above-mentioned experiments in [24], an efficient performance
of the compact-equivalent preconditioning has been observed. Further numerical ex-
periments are beyond the scope and length of this paper.

When realizing the equivalent operator preconditioning for a problem with a
second order operator with variable coefficients, one can use an inner-outer iteration
method, i.e., precondition in the outer iterations with the given second order operator
and use inner iterations to solve this equation. For the superlinear rate to remain,
the inner iteration errors must not be of an order greater than that for the first order
part of the operator. For optimal complexity of the overall computations to hold, one
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should then solve the arising inner systems with an optimal order of computational
complexity, i.e., proportional to the degrees of freedom used in the discretization of
the differential equation.

5.2. On singular perturbation problems. For singular perturbation prob-
lems such as

Lεu ≡ −εΔu + b · ∇u + cu = f

(plus boundary conditions), where ε > 0 but ε � ‖b‖, one cannot neglect the first
order term when forming an efficient preconditioner. Such problems are characterized
by thin boundary and/or interior layers, and the diffusion term plays a noticeable
role only in the layer. This property is not exploited in preconditioners like (62). A
possible approach for handling such problems therefore is to use the following defect-
correction method:

Lδ(x)(uk+1 − uk) = f − Lεu (k ∈ N+),

where u0 is given and in practice only one or two steps need to be performed. Here

Lδ(x)u := −δ(x)Δu + b · ∇u + cu,

where δ(x) = 0 outside the layers and increases continuously along each characteristic
line (defined by the velocity vector b) from zero to ε in the layers. The widths of the
layers are typically chosen as ε log(1/ε). To solve the correction equation by iteration,
one can form a preconditioner S by using the operator b · ∇u+ hu outside the layers
and −δ(x)Δu + b · ∇u + hu in the layers for some properly chosen function h ≥ 0.
The analysis of the problem will not be considered further in the present paper.
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A FINITE ELEMENT METHOD FOR 3D EXTERIOR OSEEN
FLOWS: ERROR ESTIMATES∗
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Abstract. Stationary Oseen flows in a 3D exterior domain are discretized by applying a P1-
P1 stabilized finite element method to the Oseen system in a truncated exterior domain, with an
implicit pointwise artificial boundary condition on the truncating boundary. Error estimates are
proved for this discretization. The paper extends an approach which was introduced by Guirguis
and Gunzburger [RAIRO Modél. Math. Anal. Numér., 21 (1987), pp. 445–464] for exterior Stokes
flows. The stabilized P1-P1 method in question was introduced by Rebollo [Numer. Math., 79
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1. Introduction. We consider the following Oseen system in an exterior domain
Ω, with a Dirichlet boundary condition on ∂Ω and with zero velocity at infinity:

−Δu + τ · ∂1u + ∇π = f, divu = 0 in Ω,(1.1)

u | ∂Ω = (−1, 0, 0), |u(x)| → 0 for |x| → ∞,

where Ω = R
3\P for some open bounded polyhedron P ⊂ R

3 with Lipschitz boundary.
Problem (1.1) arises as a linearization of a mathematical model for the steady motion
without rotation of a rigid body in a viscous incompressible fluid. We refer to [6] for
more details; here we mention only that τ ∈ (0,∞) is the Reynolds number of the
fluid, and the vector (−1, 0, 0) appearing in the boundary condition on ∂Ω corresponds
to the normalized steady velocity of the rigid body. Under suitable assumptions on
f , problem (1.1) admits a unique solution (u, π) with ∇u ∈ L2(Ω)9 and π ∈ L2(Ω).
In the following, this solution will be called “exterior flow.” We will study a finite
element method for computing this exterior flow in a region ΩS around ∂Ω, for some
fixed S > 0 with R

3\Ω ⊂ BS . (For any r > 0, we denote by Br the open ball with
center at the origin and with radius r, and we set Ωr := Ω ∩ Br.) As computational
domains, we consider polyhedrons Ph,R, which are larger than ΩS and have parameters
h ∈ (0, S) and R ∈ (S,∞) that may be interpreted as follows: The number R indicates
that Ph,R approximates the truncated exterior domain ΩR in a suitable sense. As for
the parameter h, it refers to the way we decompose Ph,R into tetrahedrons. These
tetrahedrons are assumed to have a diameter of order h when situated near ∂Ω, and
of order h ·R when located near ∂BR. The transition of the mesh size from values of
order h near ∂Ω to about h ·R near ∂BR is performed in such a way that the aspect
ratio of our tetrahedrons remains bounded as a function of h and R. We refer to
assumptions (A1)–(A8) in section 2 for more details.

On each polyhedron Ph,R, we define a pair (Vh,R,Mh,R) of P1 finite element
spaces. Then, in (2.11)–(2.13) below we introduce a variational problem, which is
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based on these spaces and is a variant of the P1-P1 stabilized finite element method
proposed by Rebollo [17] for the Navier–Stokes system in a fixed bounded domain.
We show that a solution (uh,R, πh,R) of (2.11)–(2.13) approximates (u, π) in the sense
that an error estimate is valid with essential features that may be stated as follows:

‖∇(u− uh,R)‖2 + ‖(π − πh,R) |ΩS‖2 ≤ C · (ht + h · ln(R/S) + R−1)(1.2)

for h ∈ (0, h0), R ∈ (R0,∞), where h0 ∈ (0, S/2), R0 ∈ (S,∞) are constants
depending on Ω, S and on certain mesh parameters. Inequality (1.2) is valid under
the assumption that the quantity h·R is bounded by some arbitrary but fixed constant.
The exponent t ∈ (0, 1] in (1.2) describes the regularity of u and π near the Lipschitz
boundary ∂Ω. We may take t = 1 if u is H2 and if π is H1 in a neighborhood of ∂Ω,
but this case will not arise in general because Ω is a nonconvex Lipschitz domain. The
constant C in (1.2) depends on Ω, S, t, τ , on an upper bound for h ·R, on some mesh
parameters, on certain quantities related to the exterior flow (u, π) (see (2.1)–(2.5)),
and on a bilinear form used to stabilize P1-P1 finite elements (see (2.6)). A more
detailed version of (1.2) may be found in Theorem 2.1 below.

Our discrete variational problem (2.11)–(2.13) may be considered as a discretiza-
tion of a boundary value problem in ΩR consisting of the Oseen system

−ΔuR + τ · ∂1uR + ∇πR = f |ΩR, div uR = 0 in ΩR,(1.3)

with the same boundary condition on ∂Ω as in (1.1):

uR | ∂Ω = (−1, 0, 0),(1.4)

and with the ensuing pointwise “artificial” boundary condition on the sphere ∂BR:

3∑
j=1

(
∂jvk(x) − δjk · �(x)

)
· (xj/R)(1.5)

+
(
R−1 + (τ/2) · (1 − x1/R)

)
· vk(x) = 0

for x ∈ ∂BR, 1 ≤ k ≤ 3. This boundary value problem can be written as a variational
problem which admits a unique solution (uR, πR) in H1(ΩR)3×L2(ΩR). As was shown
in [7, Theorem 7.1 with τ̃ = 0 (linear case)], this solution satisfies the relation

‖∇(uR − u)‖2 = O(R−1) for R → ∞.(1.6)

This result motivated the choice of the discrete equations (2.11)–(2.13), and it explains
the term R−1 on the right-hand side of (1.2): this term corresponds to the truncation
error exhibited in [7]. It should be remarked, however, that relation (1.6) will not
be used in the work at hand. Instead the solution (uh,R, πh,R) of our finite element
variational problem (2.11)–(2.13) will be compared directly with the exterior flow
(u, π), and no continuous intermediate problem on ΩR or Ph,R will be considered.
In this way, we will be better able to exploit the asymptotics of u and π. A crucial
feature of this asymptotics is the existence of a “wake region,” which means that
in the downstream direction, the velocity u converges more slowly than elsewhere
to its boundary value at infinity (see [9, p. 374]). This wake region will be taken
into consideration in two ways. First, an asymmetric surface integral on the outer
boundary of Ph,R enters into the definition of the bilinear form a appearing in our
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discrete variational problem (2.11)–(2.13). Second, our error estimates involve bounds
of u and ∇u with respect to pointwise norms with inhomogeneous weights. We remark
that our error bounds additionally depend on homogeneously weighted L2-norms of
the second derivatives of u and of the gradient of π, with the weights being defined in
an implicit way: we take the standard L2-norm over annular domains BR\BR/2 for
R ∈ (2 · S,∞) and then multiply by powers of R. A complete list of the quantities
related to u and π and entering into our error bounds may be found in (2.1)–(2.4).

Of course, the finite element approximation we consider gives rise not only to a
truncation error but also to a discretization error. Concerning that latter component
of the total error, we indicate that the velocity part u of the exterior flow is assumed to
be an H1+t-function near ∂Ω, and an H2-function far from ∂Ω. Analogous conditions
are imposed on the pressure (Ht near ∂Ω, H1 far from Ω). As a consequence, if the
error is measured by the L2-norm of the gradient of the velocity, we expect our P1-P1
finite element method to give rise to a discretization error of order ht related to the
approximation of u and π near ∂Ω, and to an error of order h which may be ascribed
to the discretization of velocity and pressure far from ∂Ω. This explains the terms ht

and h · ln(R/S) on the right-hand side of (1.2) and indicates that these terms describe
the discretization error in an optimal way, except for the factor ln(R/S). However,
we cannot see how to remove this factor.

It might be asked why we have chosen Rebollo’s finite element method for our
discretization of (1.3)–(1.5). There are essentially two reasons for this choice. First,
Rebollo [17] uses P1-P1 elements and circumvents the LBB condition by introducing
a stabilization term (“pressure stabilization”) which does not involve any parame-
ter. Thus, implementing Rebollo’s method is relatively simple. Second, due to [17],
optimal error estimates are available when this method is applied to the stationary
Navier–Stokes system in a fixed bounded domain. The theory in [17] even covers a
streamlined upwind Petrov–Galerkin (SUPG)-type stabilization related to the convec-
tive term (“velocity stabilization”). Thus Rebollo’s article presents a coherent theory
for several aspects of finite element discretizations of stationary Navier–Stokes flows.
Such a theory seemed to be a good starting point for attempting to discretize problem
(1.3)–(1.5). As it turns out, the principal results from [17] may be generalized to our
situation. This generalization takes the form of estimate (1.2), which we establish
here for our approximate Oseen flows, but which remains valid when the stationary
Navier–Stokes system with Oseen term and with small Reynolds number is considered,
and when Rebollo’s version of SUPG is included in the discrete problem. These two
points—nonlinearity and SUPG—will be the subject of a separate paper. However,
the main difficulties of our theory are discussed in the work at hand because they
already arise with the discrete Oseen problem (2.11)–(2.13) without velocity stabi-
lization. These difficulties are essentially due to four features: the Oseen term τ ·∂1u,
the graded mesh, a nonvanishing mean value of the pressure, and the parameter R,
which must be controlled in all our estimates, in addition to the quantity h. Since
none of these features appear in [17], it is not astonishing that the proofs in that
reference do not carry over to our situation. In fact, the present article represents a
considerable extension of the theory in [17].

The argument we present here might also work for mixed finite element methods
without stabilization, under one condition: the mixed method in question must satisfy
the LBB condition on the type of grid considered here, with a constant independent
of h and R. This condition is fulfilled by P1-P1 finite elements augmented by bubble
functions (the “mini element”), as was shown in [3] and is stated in Theorem 3.1 below.
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However, it seems to be an open question whether an analogue of Theorem 3.1 is valid
for other kinds of LBB-stable finite elements.

Our approach to the discretization of exterior domains was inspired by Guirguis
and Gunzburger [14], who approximated exterior Stokes flows by solutions of finite
element variational problems in truncated exterior domains; also see [15, sections 16.3
and 16.4]. Guirguis and Gunzburger were led to these finite element problems by
discretizing the Stokes system in a truncated exterior domain with a suitable pointwise
artificial boundary condition on the truncating surface. This boundary condition
determines the quality of the approximation. The error bounds considered in [14]
depend on the given exterior Stokes flow via weighted L2-norms involving second
order or higher derivatives of the velocity, as well as the gradient or higher derivatives
of the pressure [14, Theorem 5.2].

We further remark that Goldstein [11] introduced the type of graded meshes we
consider in the work at hand. Due to these meshes, the complexity of our finite element
method (2.11)–(2.13) on Ph,R is proportional to h−3 · ln(R/S), and thus exhibits only
a logarithmic dependence on R; see [11], [12] in this respect.

Further articles related to the computation of exterior Stokes, Oseen, or Navier–
Stokes flows, but not closely linked to the work at hand, are listed in [6]. To our
knowledge, there are no previous articles presenting error estimates for discretizations
of 3D exterior Oseen or Navier–Stokes flows.

2. Notation. Statement of our finite element variational problem.
Main results. For U ⊂ R

3, put U c := R
3\U . If r ∈ (0,∞), x ∈ R

3, put
Br(x) := {y ∈ R

3 : |y − x| < r}, Br := Br(0). If U is (Lebesgue) measurable,
we denote the Lebesgue measure of U by |U |. Let V ⊂ R

3 be open. For func-
tions v : V 
→ R, w, w̃ : V 
→ R

3 with appropriate regularity, the notation ∂lv for
1 ≤ l ≤ 3, ∂av for a ∈ N

3
0, ∇v, Δv, divw, (w̃ · ∇)w stands for partial derivatives,

with obvious meanings. If p ∈ [1,∞), the standard Lp-norm of functions on V is
denoted by ‖ ‖p,V . Let m ∈ N. We write Hm(V ) for the usual Sobolev space of
order m and exponent 2. The usual norm of that space is denoted by ‖ ‖m,2,V . The
subspace H1

0 (V ) of H1(V ) is defined in the standard way. We write H−1(V )3 for the
dual space of H1

0 (V )3. If s ∈ (0, 2) with s �= 1, the symbol Hs(V ) stands for the usual
fractional-order Sobolev space, with its intrinsic norm denoted by ‖ ‖s,2,V (see [1,
7.48]). We will also use the seminorm | |m,2,V defined by

|v|m,2,V :=

⎛⎝ ∑
a∈N3

0, |a|=m

‖∂av‖2
2,V

⎞⎠1/2

for v ∈ Wm,p(V ),

where |a| := a1 + a2 + a3 for a ∈ N
3
0. We write Hm

loc(V ) for the space of all functions
v : V 
→ R such that v |K ∈ Hm(K) for any K ⊂ R

3 open with K ⊂ V. If (H, ‖ ‖) is
a normed space consisting of functions from V into R, we use the symbol ‖ ‖ also for

the norm (
∑3

i=1 ‖vi‖2)1/2 of fields v : V 
→ R
3 with vi ∈ H (1 ≤ i ≤ 3). Moreover,

if W ⊂ R
3 with V ⊂ W , and if w : W 
→ R is a function with w |V ∈ H, we write

‖w‖ instead of ‖w |V ‖. This convention will not give rise to ambiguities because the
notation for our norms is chosen in such a way that the domain of reference is always
indicated.

For R ∈ (0,∞), put ΩR := BR∩Ω. We fix some number S ∈ (0,∞) with Ωc ⊂ BS .
As we already remarked in section 1, the domain ΩS should be considered as the region
where we want to compute the flow (u, π). Denote U0 := ΩS , Uj := B2j ·S\B2j−1·S
for j ∈ N. It will be convenient to use the notation U−1 := ∅.
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In the rest of this section, we will always assume that the parameter h belongs to
(0, S/2), and R to (S,∞), except when indicated otherwise.

For such h and R, we choose an open polyhedron Ph,R ⊂ R
3 and closed tetra-

hedrons K
(h,R)
1 , . . . , K

(h,R)
k(h,R) ⊂ Ph,R, with k(h,R) ∈ N, such that the following as-

sumptions (A1)–(A8) are valid. (In order to simplify notation, we will always write k

instead of k(h,R), and Kl instead of K
(h,R)
l , for 1 ≤ l ≤ k.):

(A1) Ph,R =
⋃k

l=1 Kl.
(A2) Kl ⊂ ΩR; Kl ∩Km is either empty or a common vertex or a common side or

a common face of Kl and Km, for l,m ∈ {1, . . . , k} with l �= m.
(A3) There is σ1 > 0, independent of h and R, such that

σ1 · 2j · h ≤ sup
{
r ∈ (0,∞) : Br(x) ⊂ Kl for some x ∈ Kl

}
,

for l ∈ {1, . . . , k}, j ∈ N0 with Kl ∩ Uj �= ∅. Moreover, diamKl ≤ 2j · h for
such l and j.

(A4) BS ∩ Ph,R = ΩS ; if l ∈ {1, . . . , k} and if x ∈ ∂Ph,R\∂Ω is a vertex of Kl, then
x ∈ ∂BR.

(A5) The domain Ph,R ∪ Ωc is convex.
(A6) There is σ2 ∈ (0,∞), independent of h and R, such that for l ∈ {1, . . . , k},

the macroelement (Kl)Δ := ∪
{
Km : m ∈ {1, . . . , k} with Km ∩Kl �= ∅

}
is

star-shaped with respect to the ball Bσ2·diamKl
(x), for some x ∈ (Kl)Δ. (See

[2, (4.2.2)] for the notion “star-shaped with respect to a ball.”)
(A7) For any l ∈ {1, . . . , k}, at least one vertex of Kl is located in the (open) set

Ph,R.
(A8) There is ϕ1 ∈ (0, π/2), independent of h and R, such that the relation

x +
{
z ∈ R

3\{0} : |x|−1 · |z|−1 · (x · z) ≥ cosϕ1

}
⊂ R

3\(P ′
h,R ∪ Ωc)

holds for any x ∈ ∂P ′
h,R\∂Ω, where P ′

h,R denotes the interior of the union of
the tetrahedrons Kl with Kl ⊂ Ω2·S .

Assumptions (A1) and (A2) specify that Ph,R is a subset of ΩR, and T h,R is a trian-
gulation of Ph,R without hanging nodes. By assumption (A3), we specify Goldstein’s
mesh-grading process and require the aspect ratio of our mesh cells to stay away from
zero. Condition (A6) is necessary for constructing interpolation operators of Clément
type; see [2, section 4.8], where (A6) is used implicitly. As concerns (A5), (A7),
and (A8), these assumptions are needed so that Theorem 3.1 is valid. Moreover, the
convexity of Ph,R ∪ Ωc required in (A5) and our assumptions on Ω imply that Ph,R

is Lipschitz bounded (see [13, Corollary 1.2.2.3]). This means in particular that the
outward unit normal to Ph,R is well defined [16, pp. 88–89]. We will denote it by n.
It will be convenient to use the abbreviation ∂h,R := ∂Ph,R\∂Ω. Thus ∂h,R is the
“outer part” of the boundary of Ph,R, that is, the surface which cuts off the exterior
domain Ω. We put

Wh,R :=
{
v ∈ H1(Ph,R)3 : v | ∂Ω = 0

}
,

‖v‖(h,R) :=
(
‖∇v‖2

2,Ph,R
+ R−1 · ‖v‖2

2,∂h,R

)1/2
for v ∈ Wh,R.

It follows from [6, Theorem 3.4] that the mapping ‖ ‖(h,R) is a norm on Wh,R which is
equivalent to the norm ‖ ‖1,2,Ph,R

, but this equivalence involves constants depending
on R.
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Turning to problem (1.1), we fix τ ∈ (0,∞) and a function f : Ω 
→ R
3 such that

f |ΩS ∈ L2(ΩS)3 and sup
{
|f(x)| · |x|σ : x ∈ Bc

S

}
< ∞ for some σ ∈ (4,∞). By

[9, Theorems VII.2.1, VII.1.1; Lemma VII.1.1], [7, Theorem 4.13], there are unique
functions u ∈ H2

loc(Ω)3, π ∈ H1
loc(Ω) ∩ L2(Ω) such that ∇u ∈ L2(Ω)9 and such that

the pair (u, π) verifies (1.1). This pair (u, π) is the exterior flow we will consider in
the following. Since ∂Ω is only Lipschitz bounded, we cannot expect H2-regularity of
u or H1-regularity of π near ∂Ω. Instead we have only

A1 := ‖u‖1+t,2,Ω4·S + ‖π‖t,2,Ω4·S < ∞ for some t ∈ (0, 1],(2.1)

with t < 1 in general. This parameter t will be kept fixed throughout. Of course,
the radius 4 · S may be replaced by any number R ∈ (0,∞) with Ωc ⊂ BR, but the
choice R = 4 ·S will be convenient in the following. To our knowledge, no direct proof
is available for relation (2.1), which, however, follows from regularity results for the
Stokes system in Lipschitz domains (see [8]). By [7, Theorem 5.6], we further have

(2.2)

A2 := sup
{
|u(x)| · |x| · (1 + τ · (|x| − x1)) : x ∈ Bc

S

}
+ sup

{
|π(x)| · |x|2 : x ∈ Bc

S

}
+ sup

{
|∇u(x)| ·

[
|x|−2 + τ1/2 · |x|−3/2 · (1 + τ · (|x| − x1))

−3/2
]−1

: x ∈ Bc
S

}
< ∞.

Moreover, by [9, Theorem VII.1.1], [5, Theorem 5.2; Theorem 7.1 with τ̃ = 0], the
following relations are valid:

(2.3)

A3 := sup
{
‖ ∂l∂mu‖2, BR\Bδ·R ·

(
(1 − δ)1/2 ·R−1 + R−3/2

)−1
:

R ∈ [2 · S, ∞), δ ∈ [1/2, 1], 1 ≤ l,m ≤ 3
}

+ sup
{
‖∇π‖2, BR\BR/2

·R + ‖∂1u‖2, BR\BR/2
·R : R ∈ [2 · S, ∞)

}
< ∞,

(2.4)

A4 := sup
{ (

‖∇u‖2, ∂h,R
+ τ · ‖ (1 − n1) · u‖2, ∂h,R

+ ‖π‖2, ∂h,R

)
/(h + R−1) + ‖u‖2, ∂h,R

: R ∈ [4 · S, ∞), h ∈ (0, S0)
}

< ∞,

with a constant S0 ∈ (0, S/4). Put

A := max
{
A1, . . . , A4

}
.(2.5)

This quantity A characterizes the regularity and the asymptotic behavior near infinity
of the exterior flow (u, π) and contains all the information on (u, π) that we will need in
the following. Next we introduce the finite element variational problem with solution
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assumed to approximate our exterior flow. To this end, we define the following finite
element spaces:

Vh,R :=
{
v ∈ C0(Ph,R)3 : v |Kl ∈ P1(Kl)

3 for 1 ≤ l ≤ k
}
,

Yh,R :=
{
v ∈ Vh,R : v|∂Ω = 0

}
,

Mh,R :=
{
� ∈ C0(Ph,R) : � |Kl ∈ P1(Kl) for 1 ≤ l ≤ k

}
,

where P1(Kl) denotes the space of all polynomials over Kl of degree at most 1 (l ∈
{1, . . . , k}). We write Bh,R for the space of all functions v : Ph,R 
→ R such that for
l ∈ {1, . . . , k}, we have v |Kl = αl · bKl

for some αl ∈ R, where bKl
is the standard

bubble function on Kl (that is, the polynomial of order 4 on Kl vanishing on ∂Kl as
defined in [17, p. 287]). For v, w ∈ H1(Ph,R)3, q ∈ L2(Ph,R), we set

a(v, w) := ah,R,τ (v, w) :=

∫
Ph,R

(
3∑

k= 1

∂kv · ∂kw + τ · ∂1v · w
)

dx

+

∫
∂h,R

(
R−1 + (τ/2) · (1 − n1)

)
· (v · w) dox,

c(v, q) := ch,R(v, q) := −
∫
Ph,R

div v · q dx.

Next, following [17], we want to introduce a stabilization term which allows us to
circumvent the LBB condition. To this end, we consider a bilinear symmetric form
A := Ah,R : H1

0 (Ph,R)3 ×H1
0 (Ph,R)3 
→ R with

A(V, V ) ≥ α · ‖∇V ‖2
2,Ph,R

, |A(V,W ) | ≤ α−1 · ‖∇V ‖2,Ph,R
· ‖∇W‖2,Ph,R

(2.6)

for V,W ∈ B3
h,R, where the constant α ∈ (0,∞) is to be independent of h and R. Let

H1
0 (Ph,R)3 be equipped with the gradient norm, and denote the corresponding norm

of H−1(Ph,R)3 by ‖ ‖−1,2,Ph,R
. Then by (2.6) and the Lax–Milgram theorem, there is

a unique operator R := RA : H−1(Ph,R)3 
→ B3
h,R such that

A
(
R(F ), W ) = F (W ) for F ∈ H−1(Ph,R)3, W ∈ B3

h,R,(2.7)

and this operator verifies the following inequality:

α · ‖∇R(F )‖2
2,Ph,R

≤ A
(
R(F ),R(F )

)
= F

(
R(F )

)
≤ ‖F‖−1,2,Ph,R

· ‖∇R(F )‖2,Ph,R
.

Hence

‖∇R(F )‖2,Ph,R
≤ α−1 · ‖F‖−1,2,Ph,R

for F ∈ H−1(Ph,R)3;(2.8)

compare [17, p. 288]. In particular, R is continuous. It is easy to see that R|B3
h,R is

one-to-one if a function W ∈ B3
h,R is identified with the element FW of H−1(Ph,R)3

given by FW (v) :=
∫
Ph,R

W · v dx for v ∈ H1
0 (Ph,R)3. Thus we may think of R as a

kind of interpolation operator from H−1(Ph,R)3 into B3
h,R.

For q ∈ L2(Ph,R), we may define a functional ∇q ∈ H−1(Ph,R)3 by setting

∇q(w) := −
∫
Ph,R

q · divw dx for w ∈ H1
0 (Ph,R)3.
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Then

‖∇q‖−1,2,Ph,R
≤ 3 · ‖q‖2,Ph,R

for q ∈ L2(Ph,R)3.(2.9)

When we write R(∇q) in the following, for some q in L2(Ph,R)3 (in particular for
q ∈ Mh,R), then the term ∇q is to be understood as a functional in the preceding
sense. Observe that by (2.7),

A
(
R(∇q), W

)
= −

∫
Ph,R

q · divW dx for q ∈ Mh,R, W ∈ B3
h,R.(2.10)

Now we may formulate our finite element problem. It reads as follows: For F ∈ Y ′
h,R,

find uh,R = uh,R,τ,A,F ∈ Vh,R, πh,R = πh,R,τ,A,F ∈ Mh,R such that

a(uh,R, w) + c(w, πh,R) = F (w) for w ∈ Yh,R,(2.11)

c(uh,R, q) = A
(
R(∇πh,R), R(∇q)

)
for q ∈ Mh,R,(2.12)

uh,R | ∂Ω = (−1, 0, 0).(2.13)

In [6], it was shown that a solution (uh,R, πh,R) to (2.11)–(2.13) exists and is unique.
The term A

(
R(∇πh,R), R(∇q)

)
serves to circumvent the LBB condition (“pressure

stabilization”) and may be considered as a generalization of the static condensation
operator used to eliminate the bubble functions of the mini element. In fact, if we
make the most obvious choice for A, that is, A(v, w) :=

∫
Ω
∇v · ∇w dx (v, w ∈

H1
0 (Ph,R)3), then the term A

(
R(∇πh,R), R(∇q)

)
corresponds to just that operator

(see [17, p. 304]). But instead of restricting ourselves to this special case, we chose the
more abstract framework based on the bilinear symmetric form A with (2.6) because
such a framework covers at least one more interesting example, namely, the Brezzi–
Pitkäranta pressure stabilization (see [17, p. 304]) and may have other applications
as well.

Our error estimates may now be stated in the form of the following theorem.
Recall that the quantities σ1, σ2, ϕ1, α, and A were introduced in (A3), (A6), (A8),
(2.6), and (2.5), respectively.

Theorem 2.1. Let h ∈ (0, h0), R ∈ (R0,∞), where h0 ∈ (0, S/8] and R0 ∈
[8 ·S, ∞) are constants depending only on Ω, S, σ1, σ2, and ϕ1. Further suppose that
F (w) =

∫
Ph,R

f ·w dx for w ∈ Yh,R, and that (uh,R, πh,R) ∈ Vh,R×Mh,R is a solution

of (2.11)–(2.13). Then(
(‖u− uh,R‖(h,R))2 + τ · ‖u− uh,R‖2

2,∂Ph,R
(2.14)

+ ‖∇R(∇(π − πh,R)) ‖2
2,Ph,R

+ ‖π − πh,R‖2
2,Ω2·S

)1/2

≤ C1(τ, h ·R) · max{1, τ−1/2} · A · (ht + h · ln(R/S) + R−1).

The constant C1(τ, h · R) depends on Ω, S, σ1, σ2, ϕ1, and α and is an increasing
function of τ and h ·R.

A remark is perhaps in order with respect to our estimate of the pressure error
π−πh,R in (2.14). In that inequality, the restriction of this error to Ω2·S is evaluated
in the L2-norm, and an interpolation of this error in B3

h,R is estimated with respect
to the H1-norm. It remains an open problem whether the L2-norm of π − πh,R in
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Ph,R—instead of Ω2·S—decays in the same way for h+R−1 → 0, as does the left-hand
side of (2.14), or whether it decays at all.

We remark that the notation ∂h,R, A, R, uh,R, πh,R, Γh,R will be used frequently
in the following.

3. Auxiliary results. We will apply the following version of the LBB condition
for the mini element.

Theorem 3.1. There are constants C0 ∈ (0,∞), γ0 ∈ (0, S/4], R0 ∈ [8 · S, ∞)
such that for h ∈ (0, γ0), R ∈ (R0,∞), � ∈ Mh,R,

‖�‖2,Ph,R
≤ C0 · sup

{∫
Ph,R

� · div (w + W ) dx/‖w + W‖(h,R) :

w ∈ Yh,R, W ∈ B3
h,R, w + W �= 0

}
.

The constants C0, γ0, R0 depend on the parameters σ1, σ2, and ϕ1 (see (A3), (A6),
(A8), respectively) and on Ω and S.

Note that the constant C0 does not depend on either h or R. Theorem 3.1 is a
slightly simplified form of [3, Theorem 4.1]. (The spherical boundary ∂BR in [3] is
replaced here by the polyhedral boundary ∂h,R.) By [4, eqs. (2.3), (2.7); Corollary 2.2],
there is a constant S1 ∈ (0, S/8] such that∫

∂h,R

do ≤ 2 ·
∫
∂BR

do for h ∈ (0, S1) and for R ∈ (8 · S, ∞).(3.1)

We put h0 := min{γ0, S0, S1}, with S0 from (2.4) and γ0 from Theorem 3.1 above.
This means in particular that h0 < S/8. In the following, we write C for con-
stants which depend only on Ω, S, and the parameters σ1, σ2, ϕ1, and α from (A3),
(A6), (A8), and (2.6), respectively. By C(τ) we denote constants which depend on
Ω, S, σ1, σ2, ϕ1, α and which are increasing functions of τ . We write C(τ, h · R) for
constants which, in addition, are increasing functions of h · R. In the following, the
quantities h and R are always assumed to belong to (0, h0) and (R0,∞), respectively.
We set

J := JR := min
{
j ∈ N : 2j · S ≥ R

}
,(3.2)

Ah,R := ∪
{
Kl : l ∈ {1, . . . , k} with Kl ∩ ∂BR �= ∅

}
.

In the next lemma, we introduce functions from Mh,R with support in a single layer
of mesh cells near ∂h,R; compare [6, Lemma 3.1] and the remarks on its proof given
in [6].

Lemma 3.1. Let m ∈ Mh,R. Denote by m the uniquely determined element
from Mh,R such that for any l ∈ {1, . . . , k} and for any vertex x of Kl, the relation
m(x) = m(x) holds if x ∈ ∂BR, and m(x) = 0 otherwise. Then

m | ∂h,R = m | ∂h,R, supp(m) ⊂ Ah,R, ‖m‖2 ≤ C · ‖m‖2,Ah,R
.

We further note the following consequences of (A3) and (A4). These consequences
should be obvious, except perhaps relation (3.5), which may be proved in the same
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way as [3, Lemma 4.2]:

diamKl ≤ 2J · h ≤ 2 · h ·R/S for 1 ≤ l ≤ k; Ah,R ⊂ Ph,R\BR·(1−2·h/S);(3.3)

(Kl)Δ ⊂ Ph,R\BR·(1−4·h/S) for l ∈ {1, . . . , k} with Kl ∩ ∂BR �= ∅;(3.4)

ΩR·(1−h2/S2)1/2 ⊂ Ph,R ⊂ ΩR, so BR\(Ph,R ∪ Ωc) ⊂ BR\BR·(1−h2/S2)1/2 ;(3.5)

k∑
l= 1

∫
(Kl)Δ

v dx ≤ C ·
∫
Ph,R

v dx for any v ∈ L1(Ph,R) with v ≥ 0;(3.6)

k∑
l= 1, Kl∩Uj �=∅

∫
(Kl)Δ

v dx ≤ C ·
∫

(Uj−1∪Uj∪Uj+1)∩Ph,R

v dx(3.7)

for v as in (3.6) and for 0 ≤ j ≤ J ;

k∑
l=1, Kl∩∂BR �=∅

∫
(Kl)Δ

v dx ≤ C ·
∫
Ph,R\BR·(1−4·h/S)

v dx for v as in (3.6);(3.8)

∫
Ph,R

v dx =

J∑
j = 0

∫
Uj∩Ph,R

v dx for v ∈ L1(Ph,R).(3.9)

Next we introduce two Clément-type interpolation operators. By [2, section 4.8], (A3),

and (A6), there are linear operators Πh,R : H1(Ph,R)3 
→ Vh,R, Π̃h,R : L2(Ph,R) 
→
Mh,R with Πh,R(w) | ∂Ω = 0 for w ∈ Wh,R; Πh,R(v) = v for v ∈ Vh,R; Π̃h,R(�) = �
for � ∈ Mh,R,

|Πh,R(w) − w|r,2,Kl
≤ C̃ · (diamKl)

ν−r · |w|ν,2,(Kl)Δ(3.10)

for r ∈ {0, 1}, ν ∈ {1, 2}, w ∈ H1(Ph,R)3, 1 ≤ l ≤ k with w | (Kl)Δ ∈ Hν
(
(Kl)Δ

)3
;

and

|Π̃h,R(�) − �|r,2,Kl
≤ C̃ · (diamKl)

1−r · |�|1,2,(Kl)Δ(3.11)

for r ∈ {0, 1}, � ∈ L2(Ph,R), l ∈ {1, . . . , k} with � | (Kl)Δ ∈ H1
(
(Kl)Δ

)
, where the

constant C̃ depends only on σ1 and σ2. For simplicity, we have written Kl and (Kl)Δ
instead of the interior of Kl and (Kl)Δ, respectively. Note that since Πh,R(v) | ∂Ω = 0
for v ∈ Wh,R, Πh,R(v) = v for v ∈ Vh,R, and because u | ∂Ω = (−1, 0, 0) on ∂Ω, we
have Πh,R(u) | ∂Ω = (−1, 0, 0). Let us draw some conclusions from these relations.

Corollary 3.1. The ensuing estimates are valid:

‖Πh,R(w) − w‖2,∂h,R
≤ C · (h ·R)ν−1/2 · |w|ν,2, Ph,R\BR·(1−4·h/S)

(3.12)

for ν ∈ {1, 2}, w ∈ Wh,R with w |Ph,R\BR·(1−4·h/S) ∈ Hν(Ph,R\BR·(1−4·h/S))
3;

|Πh,R(w) − w |r,2,Ph,R
≤ C · (h ·R)1−r · ‖∇w‖2,Ph,R

(3.13)

for w ∈ H1(Ph,R)3, r ∈ {0, 1},

‖Πh,R(w) − w‖6,Kl
≤ C · (diamKl) · |w|2,2,(Kl)Δ(3.14)

for l ∈ {1, . . . , k}, w ∈ H1(Ph,R)3 with w | (Kl)Δ ∈ H2((Kl)Δ)3.
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Proof. For the first inequality, we refer to (3.8) and to the proof of [4, Theo-
rem 3.1]. The second is a consequence of (3.10), (3.6), and (3.3). The third may be
proved by transforming its left-hand side into an integral over a standard tetrahedron,
then using the Sobolev imbedding of H1 into L6 on this tetrahedron, returning to the
domain of integration Kl, and finally applying (3.10). Also see [10, (I.A.14)].

Corollary 3.2. For r ∈ {0, 1}, l ∈ {1, . . . , k} with Kl ∩ Ω2·S �= ∅, we have

|Πh,R(u) − u|r,2,Kl
≤ C · h1+t−r · ‖u‖1+t, 2, (Kl)Δ ,

‖Π̃h,R(π) − π‖2,Kl
≤ C · ht · ‖π‖t,2, (Kl)Δ .

Proof. The corollary follows by interpolation from (3.10), (3.11), and (A3).
Corollary 3.3. Put w := Π(u)h,R − u. Then, with A from (2.5),

h−1−t · ‖w‖2,Ω2·S + h−1/2−t · ‖w‖3,Ω2·S + h−t · ‖∇w‖2,Ω2·S ≤ C · A;(3.15)

(h2 · 2j)−1 · ‖w‖2, Uj∩Ph,R
+ (h3/2 · 2j/2)−1 · ‖w‖3, Uj∩Ph,R

(3.16)

+ h−1 ·
(
‖w‖6, Uj∩Ph,R

+ ‖∇w‖2, Uj∩Ph,R

)
≤ C · A for j ∈ {2, . . . , J};

(3.17)

‖w‖6,Ph,R
+ ‖∇w‖2,Ph,R

+ ‖Π̃h,R(π) − π‖2,Ph,R
≤ C · A ·

(
ht + h · ln(R/S)

)
;

(3.18)

‖w‖3,Ph,R
≤ C(h ·R) · A · (h3/2 ·R1/2 + ht+1/2); ‖w‖2,Ph,R

≤ C · A · (h2 ·R + ht+1);

‖w‖2,∂h,R
≤ C · A · h3/2.(3.19)

Proof. Denote I0 :=
{
l ∈ {1, . . . , k} : Kl ∩ Ω2·S �= ∅

}
. Then

‖w‖2,Ω2·S ≤

⎛⎝∑
l∈I0

‖w‖2
2,Kl

⎞⎠1/2

≤ C · h1+t ·

⎛⎝∑
l∈I0

‖u‖2
1+t, 2, (Kl)Δ

⎞⎠1/2

(3.20)

≤ C · h1+t · ‖u‖1+t, 2,Ω4·S ≤ C · A · h1+t,

where we used Corollary 3.2, (3.7), (2.1), and (2.5). The term ‖∇w‖2,Ω2·S may be
evaluated in the same way. Noting that ‖w‖6,Ω2·S ≤ C · ‖w‖1,2,Ω2·S according to a
Sobolev inequality, we obtain an estimate of ‖w‖3,Ω2·S by interpolation between an
L6- and an L2-estimate. A similar computation as in (3.20) yields, in view of (3.10),
(A3), and (3.7):

‖w‖2, Uj∩Ph,R
≤ C · 22·j · h2 · |u|2, 2, Uj−1∪Uj∪Uj+1 for j ∈ {2, . . . , J}.

It follows by (2.3) and (2.5) that ‖w‖2, Uj∩Ph,R
≤ C · A · h2 · 2j . This explains the

estimate of (h2 · 2j)−1 · ‖w‖2, Uj∩Ph,R
in (3.16). The other terms on the left-hand side

of that inequality may be dealt with in a similar way. (Use (3.14) for the L6-estimate,
and use interpolation for the estimate of the L3-norm.) The estimates of w and ∇w in
(3.17) and (3.18) follow from (3.16), (3.15), (3.9), and the inequality J ≤ C · ln(R/S)
(see (3.2)). Estimate (3.12) yields ‖w‖2,∂h,R

≤ C · (h · R)3/2 · |u|2, 2, BR\BR·(1−4·h/S)
.

This observation, (2.3) with δ = 1−4·h/S, and (2.5) yield inequality (3.19). The term
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‖Π̃h,R(π)− π‖2,Ph,R
may be evaluated by using Corollary 3.2, (3.11), an argument as

in (3.20), as well as (3.7), (2.1), (2.3), and (2.5).
Lemma 3.2. Let W ∈ B3

h,R. Then

‖∇W‖2,Kl
≤ C · (diamKl)

−5/2 ·
∣∣∣∫

Kl

W dx
∣∣∣ for l ∈ {1, . . . , k};(3.21)

‖W‖2, Uj∩Ph,R
≤ C · 2j · h · ‖∇W‖2, (Uj−1∩Uj∩Uj+1)∩Ph,R

for 1 ≤ j ≤ J ;(3.22)

‖W‖2,Ph,R
≤ C · h ·R · ‖∇W‖2,Ph,R

.(3.23)

Proof. The lemma may be proved via transformations to a reference tetrahedron;
compare [17, Lemma 4.1b].

4. Estimate of the velocity error by the pressure error. In this section, the
velocity error u−uh,R and an interpolation in B3

h,R of the gradient of the pressure error

π−πh,R are estimated by a quantity depending on πh,R− Π̃h,R(π) (see Theorem 4.1).
Since the latter term differs from the pressure error only by the interpolation error
π − Π̃h,R(π), our result may thus be considered as an estimate of the velocity error
by the pressure error.

In the following lemma, the velocity error and the interpolation via R of ∇(π −
πh,R) in B3

h,R are estimated by a sum of seven terms |N 1| to |N 7|; these terms will
be evaluated in the proof of Theorem 4.1. The main difficulty consists in dealing with
the term N 4, because we were not able to prove that ‖πh,R−Π̃h,R(π)‖2,Ph,R

decreases
for h+1/R → 0 (section 5). Therefore we had to estimate |N 4| in such a way that we

obtained an upper bound in which the critical quantity πh,R − Π̃h,R(π) is multiplied
by negative powers of R and/or positive powers of h.

Lemma 4.1. Put

N 1 :=
(
‖u− Πh,R(u)‖(h,R)

)2
+ τ · ‖u− Πh,R(u)‖2

2,∂h,R
,

N 2 := a
(
Πh,R(u) − u, Πh,R(u) − uh,R

)
, N 3 := c

(
Πh,R(u) − uh,R, Π̃h,R(π) − π

)
,

N 4 := c
(
Πh,R(u) − u, πh,R − Π̃h,R(π)

)
,

N 5 :=
∣∣ ‖∇R

(
∇(π − πh,R)

)
‖2
2,Ph,R

− ‖∇R
(
∇(Π̃h,R(π) − πh,R)

)
‖2
2,Ph,R

∣∣,
N 6 := A

(
R
(
∇Π̃h,R(π)

)
, R

(
∇(Π̃h,R(π) − πh,R)

) )
,

N 7 :=

∫
∂h,R

3∑
k=1

⎛⎝ 3∑
j=1

(∂juk − δjk · π) · nj +
(
R−1 + (τ/2) · (1 − n1)

)
· uk

⎞⎠
·(Πh,R(u) − uh,R)k do.

Then

(‖u− uh,R‖(h,R))2 + τ · ‖u− uh,R‖2
2,∂Ph,R

+ ‖∇R
(
∇(π − πh,R)

)
‖2
2,Ph,R

≤ C ·
7∑

i=1

|N i|.
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Proof. Denote

z := Πh,R(u) − uh,R, I :=
(
‖u− uh,R‖(h,R)

)2
+ τ · ‖u− uh,R‖2

2,∂h,R
.

Then

I ≤ 2 ·
(
N 1 + (‖z‖(h,R))2 + τ · ‖z‖2

2,∂h,R

)
≤ C ·

(
N 1 + N 2 + a(u− uh,R, z)

)
= C ·

[
N 1 + N 2 + N 7 +

∫
Ph,R

(−Δu + τ · ∂1u + ∇π) · z dx− c(z, π) − a(uh,R, z)

]
.

Lemma 4.1 follows from this estimate, (2.6) , (1.1), and (2.11)–(2.13).
Next we establish three auxiliary results which will be needed in order to evaluate

N 4 and N 6.
Lemma 4.2. Define a function W (u) := Wh,R(u) ∈ B3

h,R by setting

W (u)i(x) :=

(∫
Kl

bKl
dy

)−1

·
∫
Kl

(Πh,R(u) − u)i dy · bKl
(x)

for x ∈ Kl, l ∈ {1, . . . , k}, i ∈ {1, 2, 3}, where bKl
is as introduced in section 2.

Then we have for m ∈ Mh,R, with m defined in Lemma 3.1,

|c(Πh,R(u) − u, m)| + |c(W (u), m )| ≤ C(h ·R) · A · h ·R−1/2 · ‖m‖2,Ph,R
.

Proof. Abbreviate I(h,R) :=
{
l ∈ {1, . . . , k} : Kl∩∂BR �= ∅

}
. Applying (3.10),

(3.3), (3.8), (2.3) with δ = 1 − 4 · h/S, and (2.5), we get

|c(Πh,R(u) − u, m)| ≤ C ·
( ∑

l∈I(h,R)

‖∇(Πh,R(u) − u)‖2
2,Kl

)1/2

· ‖m‖2,Ph,R

≤ C · h ·R · |u|2,2, Ph,R\BR·(1−4·h/S)
· ‖m‖2,Ph,R

≤ C(h ·R) · A · h ·R−1/2 · ‖m‖2,Ph,R
.

We further observe that |c
(
W (u), m

)
| ≤ C · ‖∇W (u)‖2,Ah,R

· ‖m‖2,Ph,R
, with Ah,R

as defined in (3.2). Moreover, by (3.21), the definition of W (u), (3.10), (3.3), (3.8),
(2.3) with δ = 1 − 4 · h/S, and (2.5), we find

‖∇W (u)‖2
2,Ah,R

=
∑

l∈I(h,R)

‖∇W (u)‖2
2,Kl

≤ C ·
∑

l∈I(h,R)

(diamKl)
−5 ·

∣∣∣∫
Kl

W (u) dx
∣∣∣2

= C ·
∑

l∈I(h,R)

(diamKl)
−5 ·

∣∣∣∫
Kl

(Πh,R(u) − u) dx
∣∣∣2

≤ C ·
∑

l∈I(h,R)

(diamKl)
−2 · ‖Πh,R(u) − u‖2

2,Kl

≤ C · h2 ·R2 · |u|22, 2, Ph,R\BR·(1−4·h/S)
≤ C(h ·R) · A2 · h2 ·R−1.

The lemma follows from the preceding inequalities.
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Lemma 4.3. Define the function W (u) as in Lemma 4.2. Then

|c
(
W (u), πh,R − Π̃h,R(π)

)
|

≤ C · A ·
(
ht + h · ln(R/S)

)
· ‖∇R

(
∇(πh,R − Π̃h,R(π))

)
‖2,Ph,R

.

Proof. With the abbreviation T := πh,R − Π̃h,R(π), we find by (2.10) and (2.6)
that

(4.1)∣∣ c(W (u), T
)∣∣ = |A

(
R(∇T ), W (u)

)
| ≤ C · ‖∇R(∇T )‖2,Ph,R

· ‖∇W (u)‖2,Ph,R
.

By the same reasoning as in the proof of Lemma 4.2, we get

‖∇W (u)‖2,Ph,R
≤ C ·

(
k∑

l=1

(diamKl)
−2 · ‖Πh,R(u) − u‖2

2,Kl

)1/2

.(4.2)

Abbreviate Z :=
{
l ∈ {1, . . . , k} : Kl ⊂ B2·S

}
. We have diamKl ≥ C · h for l ∈ Z

by (A3), so with (3.15) we get∑
l∈Z

(diamKl)
−2 · ‖Πh,R(u) − u‖2

2,Kl
≤ C · h−2 · ‖Πh,R(u) − u‖2

2,Ω2·S ≤ C · A2 · h2·t.

On the other hand, using (3.10), (A3), and (3.7), we find

k∑
l=1, l �∈Z

(diamKl)
−2 · ‖Πh,R(u) − u‖2

2,Kl
≤

k∑
l=1, l �∈Z

(diamKl)
2 · |u|22, 2, (Kl)Δ

≤
J∑

j=2

(2j · h)2 ·
k∑

l=1, Kl∩Uj �=∅

∣∣u∣∣2
2, 2, (Kl)Δ

≤
J∑

j=2

(2j · h)2 ·
∣∣u∣∣2

2, 2, Uj−1∪Uj∪Uj+1
.

But for j ∈ {2, . . . , J}, we have
∣∣u∣∣

2, 2, Uj−1∪Uj∪Uj+1
≤ C ·A·2−j by (2.3) and (2.5).

Combining the preceding estimates beginning with (4.2), we obtain

‖∇W (u)‖2,Ph,R
≤ C · A · (ht + J · h) ≤ C · A ·

(
ht + h · ln(R/S)

)
.

Lemma 4.3 now follows with (4.1).
Lemma 4.4. Let W ∈ B3

h,R. Then∣∣∣∫
Ph,R

π · divW dx
∣∣∣ ≤ C · A ·

(
ht + h · ln(R/S)

)
· ‖∇W‖2,Ph,R

.

Proof. Let B denote the interior of the set ∪
{
Kl : 1 ≤ l ≤ k, Kl∩ΩS �= ∅

}
. Note

that B ⊂ U0∪U1 = Ω2·S by (A3). Define operators T1 : L2(B) 
→ R, T2 : H1(B) 
→ R

by Ti(z) :=
∫
B
z ·divW dx, with z ∈ L2(B) in the case i = 1, and z ∈ H1(B) if i = 2.

Observe that

T1 |H1(B) = T2, |T1(z)| ≤ C · ‖z‖2,B · ‖∇W‖2,Ph,R
for z ∈ L2(B),

|T2(z)| =
∣∣∣ ∫

B

∇z ·W dx
∣∣∣ ≤ C · ‖∇z‖2,B · ‖W‖2,B ≤ C · ‖∇z‖2,B · ‖∇W‖2,Ph,R

· h
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for z ∈ H1(B), where we refer to (3.22) for the last inequality. It follows by interpo-
lation (see [2, Theorem 14.2.3, Proposition 14.1.5], for example) that

(4.3)∣∣∣ ∫
B

π · divW dx
∣∣∣ ≤ C · ‖π‖t,2,B · ‖∇W‖2,Ph,R

· ht ≤ C · A · ‖∇W‖2,Ph,R
· ht,

where we used the relation ‖π‖t,2,B ≤ ‖π‖t,2,Ω2·S ≤ A (see (2.1), (2.5)) in the last
inequality. On the other hand, since Ph,R\B ⊂ Ph,R\ΩS = Ph,R\U0, with a partial
integration and by (2.3), (2.5) we get

∣∣∣ ∫
Ph,R\B

π · divW dx
∣∣∣ ≤ J∑

j=1

∫
Uj∩Ph,R

|∇π| · |W | dx(4.4)

≤ C · A ·
J∑

j=1

2−j · ‖W‖2, Uj∩Ph,R
.

Combining (4.3), (4.4), and (3.22) yields the lemma.
Now we are in a position to prove the main result of this section.
Theorem 4.1. Let Dh,R be an abbreviation of the term(
(‖u− uh,R‖(h,R))2 + τ · ‖u− uh,R‖2

2,∂Ph,R
+ ‖∇R(∇(π − πh,R)) ‖2

2,Ph,R

)1/2

.

Then

D2
h,R ≤ C(τ, h ·R) · max{1, τ−1/2} · A · (ht + h · ln(R/S) + R−1)

·
(
Dh,R + A · (ht + h · ln(R/S))

)
+ C(h ·R) · A · h ·R−1 · ‖πh,R − Π̃h,R(π)‖2

+ C(h ·R) · A · h ·R−1/2 · ‖πh,R − Π̃h,R(π) −mh,R‖2,

with mh,R := |Ph,R|−1 ·
∫
Ph,R

(πh,R − Π̃h,R(π) ) dx (mean value of πh,R − Π̃h,R(π)).

Moreover,

‖∇R
(
∇
(
Π̃h,R(π) − πh,R

) )
‖2,Ph,R

≤ C ·
(
Dh,R + A · (ht + h · ln(R/S))

)
.(4.5)

Proof. Abbreviate H := ht + h · ln(R/S). Let us estimate the terms N 1 to N 7

introduced in Lemma 4.1. We begin by observing that as a direct consequence of
(3.17) and (3.19),

|N 1| ≤ C(τ) · (A · H)2.

In view of finding an upper bound for |N 2|, we remark that ‖Πh,R(u) − u‖(h,R) ≤
C · A · H by (3.17) and (3.19). Hence

‖Πh,R(u) − uh,R‖(h,R) ≤ ‖u− uh,R‖(h,R) + C · A · H ≤ Dh,R + C · A · H.(4.6)
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On the other hand, after a partial integration of the Oseen term, we get

|N 2| ≤ C ·
(
‖∇

(
Πh,R(u) − u

)
‖2,Ph,R

· ‖∇
(
Πh,R(u) − uh,R

)
‖2,Ph,R

+ (R−1 + τ) · ‖Πh,R(u) − u‖2,∂h,R
· ‖Πh,R(u) − uh,R‖2,∂h,R

+ τ · ‖Πh,R(u) − u‖2,Ph,R
· ‖∇

(
Πh,R(u) − uh,R

)
‖2,Ph,R

)
.

This estimate, (3.17)–(3.19), and (4.6) imply

|N 2| ≤ C(τ, h ·R) · A · H · (Dh,R + A · H).

As an immediate consequence of (3.17) and (4.6), we get

|N 3| ≤ C · A · H · (Dh,R + A · H).

In order to deal with N 5 and N 6, denote

R(1) := R
(
∇(Π̃h,R(π) − πh,R)

)
, R(2) := R

(
∇(π − πh,R)

)
,

R(3) := R
(
∇(Π̃h,R(π) − π)

)
,

and observe that ‖∇R(2)‖2,Ph,R
≤ Dh,R. We find

|N 5| =
(
‖∇R(1)‖2,Ph,R

+ ‖∇R(2)‖2,Ph,R

)
· ‖∇R(3)‖2,Ph,R

≤
(
2 · ‖∇R(2)‖2,Ph,R

+ ‖∇R(3)‖2,Ph,R

)
· ‖∇R(3)‖2,Ph,R

.

On the other hand, by (2.8), (2.9), and (3.17),

‖∇R(3)‖2,Ph,R
≤ C · ‖ Π̃h,R(π) − π‖2,Ph,R

≤ C · A · H.

Thus we get

|N 5| ≤ C · (Dh,R + A · H) · A · H; ‖∇R(1)‖2,Ph,R
≤ C · (Dh,R + A · H).

In particular we have shown (4.5). By (2.10), the relation

|N 6| =
∣∣∣ ∫

Ph,R

Π̃h,R(π) · divR(1) dx
∣∣∣ ≤ |I1| + |I2|(4.7)

holds, with

I1 :=

∫
Ph,R

(
Π̃h,R(π) − π

)
· divR(1) dx, I2 :=

∫
Ph,R

π · divR(1) dx.

Due to (3.17), we find

|I1| ≤ C · ‖Π̃h,R(π) − π‖2,Ph,R
· ‖∇R(1)‖2,Ph,R

≤ C · A · H · ‖∇R(1)‖2,Ph,R
.

By combining this inequality with the estimate of I2 in Lemma 4.4 and then applying
(4.5), we obtain

|N 6| ≤ C · A · H · ‖∇R(1)‖2,Ph,R
≤ C · A · H · (A · H + Dh,R).
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Now we turn to the term N 4. For q ∈ Mh,R, put m(q) := |Ph,R|−1 ·
∫
Ph,R

q dx (mean

value of q). This means that mh,R = m(πh,R−Π̃h,R(π) ), where mh,R is as introduced
in Theorem 4.1. Since R ≥ R0 ≥ 8 · S (see Theorem 3.1) and Ωc ⊂ BS , and because
of (3.5), we have |Ph,R| ≥ C ·R3. Hence with Hölder’s inequality,

|mh,R| ≤ |Ph,R|−1/2 · ‖πh,R − Π̃h,R(π)‖2,Ph,R
(4.8)

≤ C ·R−3/2 · ‖πh,R − Π̃h,R(π)‖2,Ph,R
.

Now by a partial integration we obtain

|c
(
Πh,R(u) − u, mh,R

)
| =

∣∣∣∫
∂h,R

(
(Πh,R(u) − u) · n

)
·mh,R do

∣∣∣(4.9)

≤ C · |mh,R| · ‖Πh,R(u) − u‖2,∂h,R
·
(∫

∂h,R

do

)1/2

≤ C · ‖πh,R − Π̃h,R(π)‖2,Ph,R
· ‖Πh,R(u) − u‖2,∂h,R

·R−1/2.

The last inequality follows from (4.8) and (3.1). Inequalities (4.9) and (3.19) imply

|c(Πh,R(u) − u, mh,R)| ≤ C · A · ‖πh,R − Π̃h,R(π)‖2,Ph,R
· h3/2 ·R−1/2(4.10)

≤ C(h ·R) · A · ‖πh,R − Π̃h,R(π)‖2,Ph,R
· h/R.

Next define W (u) as in Lemma 4.2, and abbreviate p := πh,R − Π̃h,R(π) − mh,R.

Recall that R(1) is an abbreviation for R(∇(Π̃h,R(π) − πh,R)). Then

|N 4| ≤ |c
(
Πh,R(u) − u, p− p

)
| + |c

(
Πh,R(u) − u, p

)
|(4.11)

+ |c
(
Πh,R(u) − u, mh,R

)
|,

with p defined as in Lemma 3.1. Using the main trick from the proof of the stability
of the mini element, and recalling that (p− p) | ∂h,R = 0 and (Πh,R(u) − u) | ∂Ω = 0,
by a partial integration and by the definition of the function W (u) ∈ B3

h,R, we get

|c
(
Πh,R(u) − u, p− p

)
| =

∣∣∣∣∣
k∑

l=1

∇(p− p) ·
∫
Kl

W (u) dx

∣∣∣∣∣ = |c
(
W (u), p− p

)
|.

It follows that

|c
(
Πh,R(u) − u, p− p

)
| ≤ |c

(
W (u), p

)
| + |c

(
W (u), p

)
|

= |c
(
W (u), πh,R − Π̃h,R(π)

)
| + |c

(
W (u), p

)
|,

where the last equation holds since W (u) ∈ B3
h,R. Now apply Lemmas 4.3 and 4.2 to

obtain

|c
(
Πh,R(u) − u, p− p

)
|(4.12)

≤ C(h ·R) · A ·
(
H · ‖∇R(1)‖2,Ph,R

+ ‖p‖2,Ph,R
· h ·R−1/2

)
.
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But the terms |c
(
Πh,R(u)−u, p

)
| and |c

(
Πh,R(u)−u, mh,R

)
| were already estimated

in Lemma 4.2 and (4.10), respectively. We further take into account that ‖p‖2,Ph,R
≤

‖p‖2,Ph,R
by Lemma 3.1. Combining these estimates with (4.5), (4.11), and (4.12),

we get

|N 4| ≤ C(h ·R) · A ·
(
H · (A · H + Dh,r) + h ·R−1 · ‖πh,R − Π̃h,R(π)‖2,Ph,R

+ h ·R−1/2 · ‖πh,R − Π̃h,R(π) −mh,R‖2,Ph,R

)
.

We further observe that by (2.4) and (2.5),

|N 7| ≤ C(h ·R) · A ·R−1 · ‖Πh,R(u) − uh,R)‖2,∂h,R
.

On the other hand, by referring to (3.19) we find

‖Πh,R(u) − uh,R‖2,∂h,R
≤ ‖Πh,R(u) − u‖2,∂h,R

+ ‖u− uh,R‖2,∂h,R

≤ C · A · h3/2 + τ−1/2 · Dh,R.

Thus we have

|N 7| ≤ C(h ·R) · max{1, τ−1/2} · A ·R−1 · (Dh,R + A · H).

The preceding estimates of |N 1| to |N 7| yield the upper bound of D2
h,R given in

Theorem 4.1.

5. A bound for the pressure error. Theorem 4.1 leaves the problem of how
to deal with the terms ‖πh,R − Π̃h,R(π)‖2,Ph,R

and ‖πh,R − Π̃h,R(π) − mh,R‖2,Ph,R
.

This is the subject of the present section, where these terms will be majorized by
bounds containing a factor of R or h−1/2 (Corollary 5.1), which seems to pollute
our error estimates. However, in view of the factor h · R−1 or h · R−1/2 with which
these critical terms are multiplied in Theorem 4.1, such bounds are just sufficient to
obtain the desired decay rate ht +h · ln(R/S)+R−1 of the velocity error. Concerning
the proof of our estimate of the critical terms, we will reduce this estimate to an
evaluation of c(w, Π̃h,R(π)−πh,R), for w ∈ Yh,R. In the ensuing lemma, we introduce

a decomposition of c(w, Π̃h,R(π) − πh,R) which will be the starting point of this
argument.

Lemma 5.1. For w ∈ Wh,R, set

M1(w) := −a(u− uh,R, w), M2(w) := c(w, Π̃h,R(π) − π),

M3(w) :=

∫
∂h,R

3∑
k=1

⎛⎝ 3∑
j=1

(Djuk − δjk · π) · nj + (R−1 + (τ/2) · (1 − n1)) · uk

⎞⎠ · wk do.

Then

c(w, Π̃h,R(π) − πh,R) =

3∑
i=1

Mi(w) for w ∈ Wh,R.

Proof. The lemma follows from (1.1) and (2.11)–(2.13).
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Lemma 5.2. Let q ∈ Mh,R, and put ψ := G(q−m(q)), with the operator G intro-
duced in Theorem A.2, and with m(q) := |Ph,R|−1 ·

∫
Ph,R

q dx. Set Z := Πh,R(ψ), Z :=

(Zi)1≤i≤3, with Zi defined as in Lemma 3.1. Then

‖∇Z‖2,Ph,R
+ ‖Z‖2,ΩS

≤ C · ‖q −m(q)‖2,Ph,R
,

‖Z‖2,∂h,R
= ‖Z‖2,∂h,R

≤ C ·R1/2 · ‖q −m(q)‖2,Ph,R
,

‖∇Z‖2,Ph,R
≤ C · h−1/2 · ‖q −m(q)‖2,Ph,R

.

Proof. The first inequality in the lemma follows from (3.13) and Theorem A.2
(estimate of ∇Z), and from (3.10), (3.7), and Theorem A.2 (estimate of Z |Ω2·S).
Concerning the second, we observe that ‖Z‖2,∂h,R

= ‖Z‖2,∂h,R
by Lemma 3.1, and

‖Z‖2,∂h,R
≤ ‖Z − ψ‖2,∂h,R

+ ‖ψ‖2,∂h,R
≤ C · (h ·R)1/2 · ‖∇ψ‖2,Ph,R

+ R1/2 · ‖ψ‖(h,R)

by (3.12). Now the second inequality stated in the lemma follows with Theorem A.2.
Let us finally consider the term ‖∇Z‖2,Ph,R

. The usual technique (transformation to a

reference tetrahedron) yields the inverse estimate ‖∇Z‖2,Kl
≤ C·(diamKl)

−1 ·‖Z‖2,Kl

for 1 ≤ l ≤ k. Since Kl∩∂BR �= ∅ for any l ∈ {1, . . . , k} with Z |Kl �= 0, by referring
to (A3), (3.2), and Lemma 3.1, we thus obtain

‖∇Z‖2,Ph,R
≤ C · (h ·R)−1 · ‖Z‖2,Ah,R

≤ C · (h ·R)−1 · ‖Z‖2,Ah,R
.

But the relations in (3.3) and (A.3) yield

‖Z‖2,Ah,R
≤ C ·

(
h ·R · ‖∇Z‖2,Ph,R

+ (h ·R)1/2 · ‖Z‖2,∂h,R

)
.

The last inequality in the lemma follows from the two preceding estimates and from
the first and second estimates in the lemma.

Lemma 5.3. In the situation of Lemma 5.2, we have

‖q −m(q)‖2
2,Ph,R

≤ |c(Z − Z, q)| + C · h−1/2 · ‖∇R(∇q)‖2,Ph,R
· ‖q −m(q)‖2,Ph,R

.

Proof. We define a function W ∈ B3
h,R by

Wi(x) :=

(∫
Kl

bKl
dy

)−1

·
∫
Kl

(
ψ − (Z − Z)

)
i
dy · bKl

(x)

for x ∈ Kl, 1 ≤ l ≤ k, 1 ≤ i ≤ 3. By Theorem A.2, the function ψ introduced in the
preceding lemma verifies the equations

divψ = q −m(q), ψ | ∂Ω = 0, ψ · n = 0 on ∂h,R.

Therefore after a partial integration of the integral of the product m(q) · divψ, we
obtain

‖q −m(q)‖2
2,Ph,R

(5.1)

=

∫
Ph,R

q · divψ dx = −c(Z − Z, q) +

∫
Ph,R

q · div
(
ψ − (Z − Z)

)
dx.
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On the other hand, recalling the properties of ψ and the equation (Z − Z) | ∂h,R = 0
(Lemma 3.1), and applying the trick from the proof of LBB stability of the mini
element in a similar way as in the proof of (4.12), we obtain∫

Ph,R

q · div
(
ψ − (Z − Z)

)
dx =

∫
Ph,R

q · divW dx = −A
(
R(∇q), W ).

The last equation is valid due to (2.10). With (2.6) it follows that∣∣∣ ∫
Ph,R

q · div
(
ψ − (Z − Z)) dx

∣∣∣ ≤ C · ‖∇R(∇q)‖2,Ph,R
· ‖∇W‖2,Ph,R

.(5.2)

But with (3.21) and the definition of W ,

‖∇W‖2,Ph,R
≤ C ·

(
k∑

l=1

(diamKl)
−2 · ‖ψ − (Z − Z)‖2

2,Kl

)1/2

;(5.3)

compare the proof of Lemma 4.2 and (4.2). Put I(h,R) := {l ∈ {1, . . . , k} : Kl ∩
∂BR �= ∅}. Then, referring to Lemma 3.1, (A3), and notation from (3.2), we obtain

k∑
l=1

(diamKl)
−2 · ‖Z‖2

2,Kl
≤ C ·

∑
l∈I(h,R)

(diamKl)
−2 · ‖Z‖2

2,Kl
(5.4)

≤ C ·

⎛⎝(h ·R)−2 · ‖ψ‖2
2,Ah,R

+
∑

l∈I(h,R)

(diamKl)
−2 · ‖ψ − Z‖2

2,Kl

⎞⎠
≤ C ·

(
(h ·R)−2 · ‖ψ‖2

2,Ah,R
+ ‖∇ψ‖2

2,Ph,R

)
≤ C ·

(
(h ·R)−1 · ‖ψ‖2,Ah,R

+ ‖q −m(q)‖2,Ph,R

)2

,

where the last two inequalities are a consequence of (3.10), (3.8), and Theorem A.2.
Moreover, by (3.3) and (A.3) we find

‖ψ‖2,Ah,R
≤ ‖ψ‖2, Ph,R\BR·(1−2·h/S)

≤ C ·
(
h ·R · ‖∇ψ‖2,Ph,R

+ (h ·R)1/2 · ‖ψ‖2,∂h,R

)
.

Hence (h ·R)−1 · ‖ψ‖2,Ah,R
≤ C ·h−1/2 · ‖q−m(q)‖2,Ph,R

by Theorem A.2. From this
estimate, (5.3), (3.10), and (3.6), we may conclude that

‖∇W‖2,Ph,R
≤ C · h−1/2 · ‖q −m(q)‖2,Ph,R

.

This inequality, (5.1), and (5.2) imply the lemma.
Theorem 5.1. In the situation of Lemma 5.2, and with the abbreviation Dh,R

defined in Theorem 4.1, we have

|a(u− uh,R, Z)|(5.5)

≤ C(τ, h ·R) ·
(
Dh,R + A ·

(
ht + h · ln(R/S)

) )
· ‖q −m(q)‖2,Ph,R

·R1/2;

|a(u− uh,R, Z)| ≤ C(τ, h ·R) · Dh,R · ‖q −m(q)‖2,Ph,R
· h−1/2;(5.6)

|a(u− uh,R, w)| ≤ C(τ) · Dh,R · ‖w‖(h,R) ·R for w ∈ Wh,R.(5.7)
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Proof. For brevity, we put eh,R := u− uh,R. We have

|a(eh,R, Z)| ≤
3∑

i=1

|Ii| with I1 :=

∫
Ph,R

∇eh,R · ∇Z dx,(5.8)

I2 := τ ·
∫
Ph,R

∂1eh,R · Z dx, I3 :=

∫
∂h,R

(
R−1 + (τ/2) · (1 − n1)

)
·
(
eh,R · Z

)
do.

The main difficulty consists in estimating the term I2. In order to obtain such an esti-
mate, we begin by observing that the function ψ from Lemma 5.2 fulfills the relation
ψ |Ph,R\BS = ∇v |Ph,R\BS for some function v ∈ H2(Ph,R ∪ Ωc); see Theorem A.2.
This means that ∂1ψ(x) = ∇ψ1(x) for x ∈ Ph,R\BS . As a consequence, after some

partial integrations, we obtain the decomposition I2 = τ ·
∑7

i=1 Ji, where

J1 :=

∫
ΩS

∂1eh,R · Z dx, J2 :=

∫
∂BS

eh,R(x) · S−1 · (−x1 · ψ(x) + ψ1(x) · x) dox,

J3 :=

∫
Ph,R\BS

∂1eh,R · (Z − ψ) dx, J4 :=

∫
∂h,R

eh,R · (n1 · ψ − ψ1 · n) do,

J5 := −
∫

ΩS

div eh,R · ψ1 dx, J6 :=

∫
Ph,R

div eh,R · (ψ − Z)1 dx,

J7 :=

∫
Ph,R

divuh,R · Z1 dx.

By (3.13) and Theorem A.2,

|J3| + |J6| ≤ C · ‖∇eh,R‖2,Ph,R
· ‖Z − ψ‖2,Ph,R

(5.9)

≤ C(h ·R) · ‖eh,R‖(h,R) · ‖q −m(q)‖2,Ph,R
.

A standard trace theorem and Theorems A.1 and A.2 yield

|J2| ≤ C · ‖eh,R‖1,2,ΩS
· ‖ψ‖1,2,ΩS

≤ C · ‖eh,R‖(h,R) · ‖q −m(q)‖2,Ph,R
.(5.10)

By Theorem A.2 and Lemma 5.2,

|J1| + |J5| ≤ C · ‖∇eh,R‖2,Ph,R
· (‖Z‖2,ΩS

+ ‖ψ‖2,ΩS
)(5.11)

≤ C · ‖eh,R‖(h,R) · ‖q −m(q)‖2,Ph,R
.

By Theorem A.2, we further get

(5.12)

|J4| ≤ C · ‖eh,R‖2,∂h,R
· ‖ψ‖2,∂h,R

≤ C ·R1/2 · τ−1/2 · Dh,R · ‖q −m(q)‖2,Ph,R
.

This leaves us to deal with the term J7. To this end, we observe that |J7| is bounded
by C · ‖∇Z‖2,Ph,R

· ‖R(∇πh,R)‖2,Ph,R
, as follows from (2.12) and (2.10). We may

conclude with Lemma 5.2 and (3.23) that

|J7| ≤ C(h ·R) · ‖∇R(∇πh,R)‖2,Ph,R
· ‖q −m(q)‖2,Ph,R

.
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This estimate, the inequality ‖eh,R‖(h,R) ≤ Dh,R, and (5.9)–(5.12) imply

|I2| ≤ C(τ, h ·R) ·R1/2 · (Dh,R + ‖∇R(∇πh,R)‖2,Ph,R
) · ‖q −m(q)‖2,Ph,R

.(5.13)

As for I3, we have

|I3| ≤ C(τ) · (‖eh,R‖(h,R) + τ1/2 · ‖eh,R‖2,∂h,R
) · ‖Z‖2,∂h,R

.

Hence

|I3| ≤ C(τ) · Dh,R · ‖Z‖2,∂h,R
(5.14)

≤ C(τ, h ·R) ·R1/2 · Dh,R · ‖q −m(q)‖2,Ph,R
,

where we used Lemma 5.2. Observe in addition that by (2.6) and (2.10),

‖∇R(∇π)‖2
2,Ph,R

≤ α−1 ·A
(
R(∇π), R(∇π)

)
= −α−1 ·

∫
Ph,R

π · divR(∇π) dx.

Hence with Lemma 4.4 and the definition of Dh,R,

‖∇R(∇πh,R)‖2,Ph,R
≤ Dh,R + C · A ·

(
ht + h · ln(R/S)

)
.(5.15)

We finally note that |I1| is bounded by C · Dh,R · ‖q −m(q)‖2,Ph,R
, where we applied

Lemma 5.2 again. This inequality and estimates (5.13)–(5.15) imply (5.5). Turning
to the proof of (5.6), we have to estimate the terms I1, I2, and I3 with Z replaced by

Z. Denoting these terms by Ĩi, for i ∈ {1, 2, 3}, we use Lemma 3.1, (3.3), (A.3), and
Lemma 5.2 to obtain

|Ĩ2| ≤ C(τ) · ‖∇eh,R‖2,Ph,R
· ‖Z‖2,Ah,R

≤ C(τ, h ·R) ·R1/2 · ‖∇eh,R‖2,Ph,R
· ‖q −m(q)‖2,Ph,R

.

Taking account of this inequality, and estimating the terms Ĩ1 and Ĩ3 in a straightfor-
ward way (Hölder’s inequality, Lemma 5.2; note that R−1/2 · ‖eh,R‖2,∂h,R

≤ Dh,R and

τ1/2 · ‖eh,R‖2,∂h,R
≤ Dh,R), we arrive at (5.6). Inequality (5.7) may be established

by combining Hölder’s inequality, the preceding estimates of ‖eh,R‖2,∂h,R
, and the

inequalities

‖w‖2,Ph,R
≤ C ·R · ‖w‖6,Ph,R

≤ C ·R · ‖w‖(h,R) for w ∈ Wh,R

(Theorem A.1).

Now we are in a position to estimate the terms ‖πh,R − Π̃h,R(π) − mh,R‖2,Ph,R

and ‖πh,R − Π̃h,R(π)‖2,Ph,R
.

Corollary 5.1. Let Dh,R and mh,R be defined as in Theorem 4.1. Then

‖πh,R − Π̃h,R(π) −mh,R‖2,Ph,R
(5.16)

≤ C(τ, h ·R) ·
(
Dh,R + A · (ht + h · ln(R/S) + R−1)

)
· h−1/2;

‖πh,R − Π̃h,R(π)‖2,Ph,R
(5.17)

≤ C(τ, h ·R) ·
(
Dh,R + A · (ht + h · ln(R/S) + R−1)

)
·R.
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Proof. We use the notation introduced in Lemma 5.2, but suppose that q =
πh,R − Π̃h,R(π). Hence m(q) = mh,R. Then, by (4.5) and Lemma 5.3,

‖q −m(q)‖2
2,Ph,R

≤ |c(Z − Z, q)|(5.18)

+ C · h−1/2 ·
(
Dh,R + A ·

(
ht + h · ln(R/S)

) )
· ‖q −m(q)‖2,Ph,R

.

But by Lemma 5.1, |c(Z − Z, q)| ≤
∑3

i=1

(
|Mi(Z)| + |Mi(Z)|

)
, with the terms

Mi(Z) and Mi(Z) (i ∈ {1, 2, 3}) defined as in that lemma. As a consequence of
(2.4), (2.5), and Lemma 5.2, we get

|M3(Z)| + |M3(Z)| ≤ C · A · (h + R−1) ·R1/2 · ‖q −m(q)‖2,Ph,R
(5.19)

≤ C(h ·R) · A · (h + R−1) · ‖q −m(q)‖2,Ph,R
· h−1/2.

By (3.17) and Lemma 5.2, we have

|M2(Z)| + |M2(Z)| ≤ C · A ·
(
ht + h · ln(R/S)

)
(5.20)

· ‖q −m(q)‖2,Ph,R
· h−1/2.

The terms M1(Z) and M1(Z) were estimated in Theorem 5.1. By combining this
observation, inequalities (5.19) and (5.20), the splitting of |c(Z − Z, q)| provided by
Lemma 5.1 and indicated above, and estimate (5.18), we obtain (5.16).

The starting point of our proof of (5.17) is the estimate in Theorem 3.1, applied
with � = q. Due to this inequality, and in view of Lemma 5.1, the problem reduces to
estimating the terms |Mi(w)| for w ∈ Wh,R, i ∈ {1, 2, 3}, and the term |c(W, q)| for
W ∈ B3

h,R. First take w ∈ Wh,R. The relations in (2.4) and (2.5) and the estimate

‖w‖2,∂h,R
≤ R1/2 · ‖w‖(h,R) yield

|M3(w)| ≤ C · A · (h + R−1) · ‖w‖(h,R) ·R1/2.

Moreover, inequality (3.17) implies

|M2(w)| ≤ C · ‖∇w‖2 · A ·
(
ht + h · ln(R/S)

)
.

The term M1(w) was estimated in (5.7). Next take W ∈ B3
h,R. With (2.10), (2.6),

and (4.5), we get

|c(W, q)| = |A
(
R(∇q), W

)
| ≤ C · ‖∇R(∇q)‖2,Ph,R

· ‖∇W‖2,Ph,R

≤ C ·
(
Dh,R + A ·

(
ht + h · ln(R/S)

))
· ‖∇W‖2,Ph,R

.

We note in addition that ‖w‖(h,R)+‖∇W‖2,Ph,R
≤ C·‖w+W‖(h,R) for w ∈ Wh,R, W ∈

B3
h,R (see [17, p. 291]). These results taken together yield (5.17).

6. Proof of Theorem 2.1. Let us again use the notation Dh,R introduced in
Theorem 4.1. Put H := ht + h · ln(R/S). Theorem 4.1 and Corollary 5.1 imply

D2
h,R ≤ C(τ, h ·R) · max{1, τ−1/2} · A · (H + R−1) ·

(
Dh,R + A · (H + R−1)

)
.

Hence

Dh,R ≤ C(τ, h ·R) · max{1, τ−1/2} · A · (H + R−1).(6.1)
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Thus, in order to complete the proof of (2.14), we still have to evaluate ‖π−πh,R‖2,Ω2·S .

Denote q := πh,R − Π̃h,R(π). By [6, Theorem 3.5], there is a function w ∈ H1(Ph,R)3

with w | ∂Ω = 0, divw(x) = q(x) for x ∈ Ω2·S , divw(x) = 0 for x ∈ Ph,R\B2·S , and
such that Πh,R(w) verifies the estimates stated in [6, Lemma 3.4], with g replaced by
q |Ω2·S . For brevity, put v := Πh,R(w). By [6, Lemma 4.3], we have

‖q‖2
2,Ω2·S ≤ |c(v, q)| + C ·

(
‖∇R(∇q)‖2,Ph,R

+ ‖q‖2,Ph,R
· h1/2 ·R−3/2

)2
.(6.2)

On the other hand, we know by (5.17) that

‖q‖2,Ph,R
· h1/2 ·R−3/2 ≤ C(τ, h ·R) ·

(
Dh,R + A · (H + R−1)

)
.(6.3)

Recall the terms Mi(v) (1 ≤ i ≤ 3) defined in Lemma 5.1. The reference [6, Lemma
3.4] and the definitions in (2.4), (2.5) imply

|M3(v)| ≤ C · A · (h + R−1) · ‖v‖2,∂h,R
≤ C · A · (h + R−1) · ‖q‖2,Ω2·S .(6.4)

Using (3.17) and [6, Lemma 3.4], we get

|M2(v)| ≤ C · ‖∇v‖2,Ph,R
· A · H ≤ C · A · H · ‖q‖2,Ω2·S .(6.5)

Again referring to [6, Lemma 3.4], we obtain

(6.6)

|M1(v)| ≤ C(τ) ·
(
‖u− uh,R‖(h,R) + τ1/2 · ‖u− uh,R‖2,∂h,R

)
·
(
‖∇v‖2,Ph,R

+ ‖v‖2,∂h,R
+ ‖v‖2,Ph,R

)
≤ C(τ) · Dh,R · ‖q‖2,Ω2·S .

As a consequence of (6.4)–(6.6) and Lemma 5.1, we find

|c(v, q)| ≤ C(τ) ·
(
Dh,R + A · (H + R−1)

)
· ‖q‖2,Ω2·S .

Now we combine the preceding inequality with (6.2), (6.3), and (4.5) to obtain, by a
simple shoestring argument,

‖q‖2,Ω2·S ≤ C(τ, h ·R) ·
(
Dh,R + A · (H + R−1)

)
.(6.7)

From (6.7) and (3.17) we may conclude that

‖π − πh,R‖2,Ω2·S ≤ C(τ, h ·R) · (Dh,R + A · (H + R−1)
)
,

so (2.14) follows with (6.1).

Appendix. In this appendix, we prove some results from analysis we applied
above. We begin by considering two inequalities already used in [6].

Theorem A.1. The following inequalities are valid:

‖v‖2,Ω2·S + ‖v‖6,Ph,R
≤ C · ‖v‖(h,R) for v ∈ Wh,R,

‖v‖2,Ω2·S ≤ C ·
(
‖v‖2,Ph,R∪Ωc + R−1/2 · ‖v‖2,∂h,R

)
for v ∈ H1(Ph,R ∪ Ωc)3.

Proof. For the estimate of ‖v‖2,Ω2·S in both cases v ∈ Wh,R and v ∈ H1(Ph,R ∪
Ωc)3, we refer to [4, Theorem 3.4] and [6, Theorem 3.3]. Concerning the term
‖v‖6,Ph,R

, it may be evaluated by applying [6, Theorem 3.4].
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In the first three inequalities of the ensuing lemma, functions with domain Ph,R

are estimated near or on ∂h,R. The lemma indicates how the constants in these
inequalities depend on h and R.

Lemma A.1. Denote R̃ := R · (1 − h2/S2)1/2. Then, for v ∈ H1(Ph,R)3,

‖v‖2, Ph,R\B
R̃

≤ C ·
(
h2 ·R · ‖∇v‖2,Ph,R

+ h ·R1/2 · ‖v‖2, ∂B
R̃

)
,(A.1)

‖v‖2,∂h,R
≤ C ·

(
h · R̃1/2 · ‖∇v‖2,Ph,R

+ ‖v‖2, ∂B
R̃

)
,(A.2)

‖v‖2, Ph,R\BR·(1−4·h/S)
≤ C ·

(
h ·R · ‖∇v‖2,Ph,R

+ (h ·R)1/2 · ‖v‖2,∂h,R

)
.(A.3)

(Note that ΩR̃ ⊂ Ph,R by (3.5).) Moreover,

‖v‖2, R̃−1·(Ph,R\B
R̃

) ≤ C · (‖∇v‖2, R̃−1·Ph,R
+ ‖v‖2, ∂B1)(A.4)

for v ∈ H1(R̃−1 · Ph,R),

‖v‖2, ∂B
R̃

≤ C ·
(
R̃1/2 · ‖∇v‖2,B

R̃
+ R̃−1/2 · ‖v‖2,B

R̃

)
for v ∈ H1(BR̃)3.(A.5)

Proof. Inequalities (A.1)–(A.3) may be proved in the same way as [5, Lemma 7.1]
or [4, Theorems 3.2 and 3.3]. We leave the details to the reader. The relation (A.4)
may be obtained from (A.1) by a scaling argument, whereas estimate (A.5) may
be reduced by a scaling argument to a standard trace estimate for functions from
H1(B1)

3.
Finally, we consider the divergence equation on Ph,R, which we solve by using the

L2-theory for the Laplace operator with Neumann boundary conditions on convex
domains.

Theorem A.2. Let g ∈ L2(Ph,R) with
∫
Ph,R

g dx = 0. Then there is a function

G(g) ∈ H1(Ph,R)3 with

divG(g) = g, G(g) | ∂Ω = 0, G(g) · n = 0 on ∂h,R,

G(g) |Ph,R\BS = ∇v(g) |Ph,R\BS for some function v(g) ∈ H2(Ph,R ∪ Ωc),

‖G(g)‖(h,R) + ‖G(g)‖2,Ω2·S ≤ C · ‖g‖2,Ph,R
.

Proof. Denote R̃ := R · (1 − h2/S2)1/2, U := R̃−1 ·
(
Ph,R ∪ Ωc), and let n(U)

denote the outward unit normal to U . Note that B1 ⊂ U (see (3.5)). Put

P :=
{
v ∈ H2(U) : ∂u/∂n(U) = 0 on ∂U,

∫
B1

v dx = 0
}
.

Since U is convex (see (A5)), by [13, Theorem 3.1.2.3, Lemma 3.2.1.1], we have

‖v‖2,2,U ≤ C · (‖Δv‖2,U + ‖v‖2,U ) for v ∈ H2(U) with ∂v/∂n(U) = 0.(A.6)

This inequality is valid with the same constant for any convex domain in R
3. In

particular, it is valid with the same constant for all domains U = R̃−1 · (Ph,R ∪ Ωc)
with h ∈ (0, h0), R ∈ (R0,∞). Let us show that

‖v‖2,2,U ≤ C · ‖Δv‖2,U for any v ∈ P.(A.7)
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By first using (A.4) and then estimating ‖v‖2,∂B1
by a standard trace theorem, we

get ‖v‖2, U\B1
≤ C · (‖∇v‖2,U + ‖v‖2,B1) for v ∈ H1(U). By Poincaré’s inequality for

functions with mean value zero on B1 (see [9, Theorem II.4.3], for example), we may
deduce from the previous estimate that ‖v‖2,U ≤ C · ‖∇v‖2,U for v ∈ P. By partial
integration and due to the relation ∂v/∂n(U) = 0 for v ∈ P, the inequality

‖∇v‖2
2,U ≤ C · ‖Δv‖2,U · ‖v‖2,U ≤ (C/ε) · ‖Δv‖2

2,U + ε · ‖v‖2
2,U

holds for ε ∈ (0,∞), v ∈ P. By choosing ε sufficiently small, we may deduce (A.7)
from the two preceding estimates and from (A.6).

Now we return to the function g given in the theorem. Let g̃ be the zero extension
of g to Ph,R ∪ Ωc. Recall that Ph,R ∪ Ωc is convex (see (A5)) and

∫
Ph,R

g dx = 0.

Thus, according to [10, Theorem I.1.9], [13, Theorem 3.2.1.3], there is a function
v(g) ∈ H2

(
Ph,R ∪ Ωc) with Δv(g) = g̃, ∂v(g)/∂n = 0 on ∂h,R. Without loss of

generality, we may suppose that
∫
B

R̃
v(g) dx = 0. Put ṽ(x) := v(g)(R̃ · x) for x ∈ U .

Then ṽ ∈ P, and hence inequality (A.7) holds with v replaced by ṽ. It follows by a
scaling argument that

|v(g)|2,2, Ph,R∪Ωc + R−1 · ‖∇v(g)‖2, Ph,R∪Ωc ≤ C · ‖g‖2,Ph,R
.(A.8)

On the other hand, using (A.2) and (A.5) with v replaced by ∇v(g), and using (A.8)
as well, we see that

R−1/2 · ‖∇v(g)‖2,∂h,R
≤ C · ‖g‖2,Ph,R

.(A.9)

Since g̃ |Ω = 0, we get
∫
∂Ω

∇v(g)·n(Ω) do = 0, where we write n(Ω) for the exterior unit

normal to Ω. Thus, according to [9, Exercise III.3.4], there is a function F ∈ H1(ΩS)3

with divF = 0 and

F | ∂Ω = −∇v(g) | ∂Ω, F | ∂BS = 0, ‖F‖1,2,ΩS
≤ C · ‖∇v(g) | ∂Ω‖1/2, 2,∂Ω,

where ‖ ‖1/2, 2,∂Ω denotes an arbitrary but fixed norm of the usual fractional order

Sobolev space H1/2(∂Ω)3 on the Lipschitz boundary ∂Ω. The last inequality and a
standard trace theorem imply

‖F‖1,2,ΩS
≤ C · ‖∇v(g)‖1,2,ΩS

.(A.10)

Let F̃ denote the zero extension of F to Ph,R, and put G(g) := F̃ + ∇v(g) |Ph,R.
Then the functions G(g) and v(g) verify the properties stated in Theorem A.2. In
particular, the inequality at the end of that theorem follows from (A.8)–(A.10) and
from the first inequality in Theorem A.1 with v replaced by ∇v(g).
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Abstract. We consider the hp-version discontinuous Galerkin finite element method (hp-
DGFEM) with interior penalty for semilinear parabolic equations with locally Lipschitz continu-
ous nonlinearity, subject to mixed nonhomogeneous Dirichlet–nonhomogeneous Neumann boundary
conditions. Our main concern is the error analysis of the (spatially) semidiscrete hp-DGFEM on
shape-regular spatial meshes. We derive error bounds under various hypotheses on the regularity of
the solution, for both the symmetric and nonsymmetric versions of DGFEM.
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1. Introduction. Let Ω be a bounded open polyhedral domain in R
d, d ≥ 2,

with a Lipschitz-continuous boundary. We consider the semilinear parabolic partial
differential equation (PDE)

(1.1) u′ − Δu = f(x, t, u) in Ω × (0, T ],

where u′ := ∂u/∂t and T > 0. It will be assumed throughout that f is a real-valued
function defined on Ω × (0, T ] × R which satisfies the following assumption:

(A) f( · , · , v) : (x, t) ∈ Ω × (0, T ] �→ f(x, t, v) ∈ R is measurable in (x, t) ∈
Ω × (0, T ] for all v ∈ R, with f(x, t, 0) = 0 for all (x, t) ∈ Ω × (0, T ], and the
mapping f(x, t, · ) : v ∈ R �→ f(x, t, v) ∈ R is locally Lipschitz continuous for a.e.
(x, t) ∈ Ω × (0, T ], in the sense that there exist real numbers Gf > 0 and γ ≥ 0 such
that

(1.2) |f(x, t, w) − f(x, t, v)| ≤ Gf (1+|w|+|v|)γ |w − v|
{

∀w, v ∈ R,

a.e. (x, t) ∈ Ω × (0, T ].

We shall suppose that 0 ≤ γ < ∞ when d = 2, and 0 ≤ γ ≤ 2/(d − 2) when d ≥ 3.
The trivial case of γ = 0 corresponds to assuming that the function f is globally
Lipschitz continuous in its third argument.

Let ∂Ω denote the union of all (d−1)-dimensional open faces of the polyhedron Ω.
Upon decomposing ∂Ω into two parts, ΓD and ΓN, so that Γ̄D ∪ Γ̄N = ∂Ω and ΓD has
positive (d − 1)-dimensional Hausdorff measure, and denoting by ν = (ν1, . . . , νd)

�
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the unit outward normal vector to ∂Ω, we impose Dirichlet and Neumann boundary
conditions on ΓD and ΓN, respectively:

(1.3)
u = gD on ΓD × (0, T ],

∇u · ν = gN on ΓN × (0, T ],

with gD ∈ H1/2(ΓD) and gN ∈ L2(ΓN). Given a function u0 ∈ L2(Ω), we supplement
(1.1) and (1.3) with the initial condition

(1.4) u = u0 on Ω × {0} .

As the solution to the problem (1.1)–(1.4) may exhibit blowup in finite time, we
shall assume that, for the potential blowup time T � ∈ (0,∞], the time interval [0, T ]
on which the problem is considered excludes the blowup time, i.e., T < T �.

Discontinuous Galerkin finite element methods (DGFEMs) were introduced in
the early 1970s for the numerical solution of first-order hyperbolic problems (see
[33, 28, 26, 25, 10, 11, 12, 15, 34, 35]). Simultaneously, but independently, they were
proposed as nonstandard schemes for the numerical approximation of second-order el-
liptic equations [32, 16, 1]. In recent years there has been renewed interest in this class
of methods due to their favorable properties, which include a high degree of locality,
stability in the absence of streamline-diffusion stabilization for convection-dominated
diffusion problems [22], and the flexibility of locally varying the polynomial degree in
adaptive hp-version approximations, since no pointwise continuity requirements are
imposed at the element interfaces [23]. Much attention has been devoted to the anal-
ysis of DG methods applied to scalar nonlinear hyperbolic equations and hyperbolic
systems [21, 7, 8], as well as to several other types of nonlinear equations, includ-
ing the Hamilton–Jacobi equations [24], the nonlinear Schrödinger equation [27], and
various other nonlinear problems [9]. The analysis of the spatial discretization of
nonlinear parabolic problems by the interior penalty DGFEM (see [1]) was pursued
by Rivière and Wheeler in [36], where the nonlinearity was assumed to be globally
Lipschitz continuous with respect to the unknown solution.

In this work we shall be concerned with the error analysis of the hp-version interior
penalty discontinuous Galerkin finite element method (hp-DGFEM) on shape-regular
meshes, for the initial-boundary value problem (1.1)–(1.4). In particular, we focus on
the spatial semidiscretization of the problem; however, unlike [1] and [36], we shall
suppose that the nonlinearity satisfies only the local Lipschitz condition (1.2). As we
shall see, this relaxation of the hypothesis on f leads to technical difficulties which
are not present in the case when f(x, t, · ) is globally Lipschitz continuous.

The paper is structured as follows. In section 2 we state the broken weak formula-
tion of the problem. The error analysis of the hp-DGFEM approximation is discussed
in section 3. We begin by establishing the local Lipschitz continuity of the mapping
w �→ f( · , t, w( · )) : L2(γ+1)(Ω) → L2(Ω); we then show the continuity and coercivity
of the bilinear form B( · , · ) appearing in the broken weak formulation of the initial-
boundary value problem under consideration. Finally, we define the broken elliptic
projector induced by B( · , · ) and state its approximation properties in the L2 and
broken H1 norms. Section 3.2 contains the error analysis of the nonsymmetric version
of the interior penalty hp-DGFEM: we prove an a priori error bound in the broken
L2(0, T ; H1(Ω)) norm that is h-optimal and p-suboptimal (by half an order of p). Full
hp-optimality of the error bound in the broken L2(0, T ; H1(Ω)) norm can be easily
restored by hypothesizing piecewise regularity of the solution in augmented Sobolev
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spaces instead of classical Sobolev spaces, as was done in [17] in the elliptic case; for
the sake of brevity we shall not pursue this line of study here since the necessary mod-
ifications are quite straightforward. Section 3.3 is concerned with the error analysis
of the symmetric version of the interior penalty hp-DGFEM, where we derive a priori
error bounds in the broken L∞(0, T ; H1(Ω)) norm (which is stronger than the broken
L2(0, T ; H1(Ω)) norm, in which the error bound for the nonsymmetric version of the
method was derived) as well as in the L∞(0, T ; L2(Ω)) norm. Unlike the case when the
nonlinearity is globally Lipschitz continuous, corresponding to the particular choice of
γ = 0 in (1.2), for γ > 0 a broken counterpart of the Sobolev–Poincaré inequality has
to be used to complete the error analyses of the symmetric and nonsymmetric ver-
sions of hp-DGFEM. The variant of the Sobolev–Poincaré inequality considered here
is inspired by the work of Brenner [5]. A further ingredient of our error analysis is
an adaptation to DG methods of a continuity argument due to Thomée and Wahlbin
(cf. pages 382–384 in [38]). Section 4 contains some final comments on our results in
this work. We remark that the analysis of the fully discrete counterpart of the method
considered here, with DGFEM time discretization, proceeds in much the same manner
as our analysis of the spatially semidiscrete method and is therefore omitted (cf. [29]
for details and exhaustive numerical experiments). We also note that the extension
of our arguments to more general second-order semilinear parabolic equations, where
the Laplace operator is replaced by a general linear second-order elliptic operator in
divergence form, is also straightforward (e.g., by combining the analysis presented
here with that in [22]). For an extension of the analysis in this paper to a class of
quasi-linear parabolic problems we refer to [29].

2. Broken weak formulation. Throughout the paper, Ws,q(Ω) will signify
the usual Sobolev space on Ω, of differentiability-index s and integrability index q,
equipped with the Sobolev norm ‖ · ‖s,q,Ω and seminorm | · |s,q,Ω. In the case when

q = 2, we shall write Hs(Ω) := Ws,2(Ω) and suppress the index q in the notation
of the norm and seminorm, writing ‖ · ‖s,Ω and | · |s,Ω, respectively. For a Banach
space X equipped with a norm ‖ · ‖, the space Lq(0, T ;X) consists of all strongly
measurable functions u : (0, T ) → X with the norm

‖u‖Lq(0,T ;X) :=

(∫ T

0

‖u(t)‖q dt

)1/q

< ∞ for 1 ≤ q < ∞,

and with

‖u‖L∞(0,T ;X) := ess. sup
0≤t≤T

‖u(t)‖ < ∞ for q = ∞.

The Sobolev space W1,q(0, T ;X) consists of all functions u ∈ Lq(0, T ;X) such that
u′ exists in the weak sense and belongs to Lq(0, T ;X), with the associated norm

‖u‖W1,q(0,T ;X) :=

(∫ T

0

{‖u(t)‖q + ‖u′(t)‖q} dt

)1/q

< ∞ for 1 ≤ q < ∞,

and with

‖u‖W1,∞(0,T ;X) := ess. sup
0<t<T

(‖u(t)‖ + ‖u′(t)‖).
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In the context of the initial-boundary value problem under consideration, u(t) =
u( · , t); with a slight abuse of notation, we shall simply write u in place of u. Also,
for the sake of brevity, we shall write H1(0, T ;X) := W1,2(0, T ;X).

Let Th be a subdivision of Ω into disjoint open elements κ such that Ω̄ = ∪κ∈Th
κ̄,

where Th is regular or 1-irregular; i.e., each face of κ has at most one hanging node.
We let hκ := diam(κ̄) and h := maxκ∈Th

hκ; it will be assumed throughout that h ≤ 1.
We assume that the family of subdivisions {Th} is shape regular (see pages 61, 113,
and Remark 2.2 on page 114, in [4]), and require each κ ∈ Th to be an affine image
Fκ(κ̂) of a fixed master element κ̂ for all κ ∈ Th, where κ̂ is the open unit simplex or
the open unit hypercube in R

d. For a nonnegative integer p, we denote by Pp(κ̂) the
set of all polynomials of degree p or less on κ̂; if κ̂ is the open unit hypercube in R

d

we also consider Qp(κ̂), the set of all tensor-product polynomials on κ̂ of degree p or
less in each coordinate direction. To each κ ∈ Th we assign a nonnegative integer pκ
(the local polynomial degree) and a nonnegative integer sκ (the local Sobolev index),
collect the pκ, sκ, and Fκ into vectors p = {pκ : κ ∈ Th}, s = {sκ : κ ∈ Th}, and
F = {Fκ : κ ∈ Th}, respectively, and consider the finite element space

(2.1) Sp(Ω, Th,F) :=
{
v ∈ L2(Ω) : v|κ ◦ Fκ ∈ Rpκ

(κ̂), κ ∈ Th
}
,

where R is either P or Q if κ̂ is the open unit hypercube in R
d, and R is P if κ̂ is the

open unit simplex in R
d.

We shall assume that the polynomial degree vector p, with pκ ≥ 1 for each κ ∈ Th,
has bounded local variation; i.e., there exists a constant ρ ≥ 1, independent of h, such
that, for any pair of elements κ and κ′ in Th which share a (d− 1)-dimensional face,

(2.2) ρ−1 ≤ pκ/pκ′ ≤ ρ.

For q ∈ [1,∞), we assign to the subdivision Th the broken Sobolev space of composite
order s,

Ws,q(Ω, Th) := {u ∈ Lq(Ω) : u|κ ∈ Wsκ,q(κ) ∀ κ ∈ Th} ,

equipped with the broken Sobolev norm and seminorm, respectively,

‖u‖s,q,Th
:=

(∑
κ∈Th

‖u‖qsκ,q,κ

)1/q

, |u|s,q,Th
:=

(∑
κ∈Th

|u|qsκ,q,κ

)1/q

.

When sκ = s for all κ ∈ Th, we write Ws,q(Ω, Th), ‖u‖s,q,Th
, |u|s,q,Th

, and for q = 2

we let Hs := Ws,2 and omit the index q in the notation of the norm and seminorm.
Let E denote the set of all open (d − 1)-dimensional faces of the subdivision

Th, containing the smallest common (d − 1)-dimensional interfaces e of neighboring
elements. We denote by Eint the set of all faces in E that are contained in Ω, and we
let Γint := {x ∈ Ω : x ∈ e for some e ∈ Eint}. Further, we denote by E∂ the set of
all (d− 1)-dimensional boundary faces. Assuming that each e ∈ E∂ is a subset of the
interior of exactly one of ΓD and ΓN, we label the associated sets of faces by ED and
EN. Given that e ∈ Eint, there exist positive integers i, j such that i > j and that κi

and κj share the face e; we define the jump of v ∈ Ws,q(Ω, Th), sκ > 1/q, κ ∈ Th,
across e and the mean value of v on e by

[[v]]e := v|∂κi∩e − v|∂κj∩e and {{v}}e := 1
2

(
v|∂κi∩e + v|∂κj∩e

)
,
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respectively, with ∂κ denoting the union of all open faces of the element κ. With each
face e we associate the unit normal vector ν pointing from the element κi to κj when
i > j; when the face belongs to E∂ , we choose ν to be the unit outward normal vector.

With this notation, we introduce the bilinear form

(2.3)

B(w, v) :=
∑
κ∈Th

∫
κ

∇w · ∇v dx +

∫
ΓD

{θ(∇v · ν)w − (∇w · ν)v}ds +

∫
ΓD

σwv ds

+

∫
Γint

{θ{{∇v · ν}} [[w]] − {{∇w · ν}} [[v]]}ds +

∫
Γint

σ [[w]] [[v]] ds

and the linear functional

(2.4) 	(v) :=

∫
ΓN

gNv ds + θ

∫
ΓD

(∇v · ν)gD ds +

∫
ΓD

σgDv ds.

Here σ is called the discontinuity-penalization parameter and is defined by

σ|e = σe for e ∈ Eint ∪ E∂ ,

where σe is a positive constant on the face e. The precise choice of σe will be discussed
in section 3. The subscript e in these definitions will be suppressed when no confusion
is likely to occur. The parameter θ takes its values in the interval [−1, 1]. Since for
θ 
= ±1 the analysis of the method is similar to that in the case of θ = ±1, for
the sake of brevity we shall suppose throughout that θ ∈ {−1, 1}. The choice of
θ = −1 leads to a symmetric bilinear form B( · , · ); we call the associated method
the symmetric interior penalty, or SIP, method. On the other hand, for θ = 1 the
bilinear form B( · , · ) is nonsymmetric, but it is coercive for any σ > 0; we call the
corresponding method the nonsymmetric interior penalty, or NSIP, method. In order
to distinguish between the two methods, we shall label the bilinear form (2.3) and
the linear functional (2.4) with indices S and NS in the symmetric and nonsymmetric
cases, corresponding to θ = −1 and θ = 1, respectively.

Then, the broken weak formulation of the problem (1.1)–(1.4) reads as follows:

(2.5) Find u ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; A) such that∫
Ω

u′v dx + B(u, v) −
∫

Ω

f(x, t, u)v dx = 	(v) ∀v ∈ H2(Ω, Th),

u(0) = u0,

where by A we denote the function space

A =
{
w ∈ H2(Ω, Th) : w, ∇w · ν are continuous across each e ∈ Eint

}
.

Note that if u ∈ H1(0, T ; L2(Ω)) ∩ L2(0, T ; H1(Ω)) is a weak solution of (1.1)–(1.4)
and u ∈ L2(0, T ; A), then u also solves (2.5); in what follows we shall always assume
that such a u exists.
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The hp-DGFEM approximation of problem (1.1)–(1.4) is as follows:

(2.6) Find uDG ∈ H1(0, T ;Sp(Ω, Th,F)) such that

∫
Ω

u′
DGv dx + B(uDG, v) −

∫
Ω

f(x, t, uDG)v dx = 	(v) ∀v ∈ Sp(Ω, Th,F),

uDG(0) = uDG
0 ,

where uDG
0 denotes an approximation of the function u0 from the finite element space

Sp(Ω, Th,F). The purpose of this paper is to quantify the size of the error between
the solution u to (2.5) and its hp-DGFEM approximation uDG in various norms.

Equation (2.6) can be interpreted as a system of ordinary differential equations
(ODEs) for the coefficients in the expansion of uDG( · , t) in terms of basis functions
of the finite-dimensional space Sp(Ω, Th,F). Thus, (2.6) represents a nonautonomous
system of ODEs with locally Lipschitz continuous right-hand side, given that f(x, t, · )
is locally Lipschitz continuous, uniformly in (x, t) ∈ Ω × (0, T ], and the other terms
are linear. By Carathéodory’s theorem (see Theorems II.4.1 and II.4.5 in [39]) this,
in turn, implies the existence of a unique local solution to (2.6) on a certain maximal
subinterval [0, t��) of [0, T ]. In fact, we shall show below that uDG exists on the whole
of [0, T ].

3. Error analysis. Before embarking on the analysis of (2.6), we state and
prove some preliminary results.

3.1. Preliminary results. We begin by establishing the local Lipschitz-continuity
of w �→ f( · , t, w( · )) as a mapping from L2(γ+1)(Ω) to L2(Ω).

Lemma 3.1. Suppose that f satisfies (A). Then, there exists a positive constant
Cf = Cf (γ,Gf , |Ω|) such that

(3.1) ‖f( · , t, w) − f( · , t, v)‖0,Ω ≤ Cf‖w − v‖0,2(γ+1),Ω

×
(
1 + ‖w‖γ0,2(γ+1),Ω + ‖v‖γ0,2(γ+1),Ω

)
for all w, v ∈ L2(γ+1)(Ω) and a.e. t ∈ (0, T ].

Proof. Let q = 2(γ + 1). Note that if d = 2, 0 ≤ γ < ∞, then 2 ≤ q < ∞,
and if d ≥ 3, 0 ≤ γ ≤ 2/(d − 2), then 2 ≤ q ≤ 2d/(d − 2). Let us suppose that
γ > 0 and therefore q > 2; for γ = 0, (3.1) trivially holds with Cf = Gf/3. Let
w, v ∈ L2(γ+1)(Ω); from (1.2), by Hölder’s inequality, for a.e. t ∈ (0, T ] we have

‖f( · , t, w) − f( · , t, v)‖2
0,Ω ≤ G2

f

∫
Ω

(w − v)2(1 + |w| + |v|)2γ dx

≤ G2
f

(∫
Ω

|w − v|2·q/2 dx

)2/q (∫
Ω

(1 + |w| + |v|)2γ·(1−2/q)−1

dx

)1−2/q

.
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As 1 − 2/q = (q − 2)/q = 2γ/q and q > 2, we have

‖f( · , t, w) − f( · , t, v)‖2
0,Ω ≤ G2

f‖w − v‖2
0,q,Ω

(∫
Ω

(1 + |w| + |v|)q dx

)2γ/q

≤ G2
f‖w − v‖2

0,q,Ω

(
|Ω|1/q + ‖w‖0,q,Ω + ‖v‖0,q,Ω

)2γ

≤ C2
f‖w − v‖2

0,q,Ω

(
1 + ‖w‖γ0,q,Ω + ‖v‖γ0,q,Ω

)2

,

and hence (3.1) for a.e. t ∈ (0, T ] and all w, v ∈ Lq(Ω), q = 2(γ + 1).
We equip H1(Ω, Th) with the norm ‖ · ‖1,h defined by

(3.2) ‖w‖1,h :=

(∑
κ∈Th

‖∇w‖2
0,κ +

∫
ΓD

σw2 ds +

∫
Γint

σ [[w]]
2

ds

)1/2

,

where σ is the positive discontinuity-penalization parameter which was introduced
after (2.4). In addition, we define the norm |‖ · |‖1,h by

(3.3) |‖w|‖1,h :=

(∑
κ∈Th

‖∇w‖2
0,κ + |ΓD|−1

∫
ΓD

w2 ds +
∑

e∈Eint

h−1
e

∫
e

[[w]]
2

ds

)1/2

.

The parameter σ will be chosen so that σ|e = σe on each face e ∈ E and σe ≥ Cσ/he,
where Cσ is a positive constant whose value will be fixed later on; here he denotes the
diameter of the face e. With this choice of σ, by noting that 1 ≤ h−1

e ≤ σe/Cσ (since

h ≤ 1) and that |ΓD|−1 ∫
ΓD

w2 ds = |ΓD|−1 ∑
e∈ED

1 ·
∫
e
w2 ds, we have that

(3.4) |‖w|‖1,h ≤ C‖w‖1,h ∀w ∈ H1(Ω, Th),

where C is a constant independent of h and w. The next lemma will play a key role.
Lemma 3.2 (broken Sobolev–Poincaré inequality). There exists a positive con-

stant C, independent of h, such that for any q ∈ [1,∞) when d = 2 and any
q ∈ [1, 2d/(d− 2)] when d ≥ 3,

(3.5) ‖w‖0,q,Ω ≤ C|‖w|‖1,h ∀w ∈ H1(Ω, Th).

Proof. From [30, Theorem 3.7], using the notation therein, we define Ψ as in
Example 3.6 of that paper, with ψ ∈ L2(∂Ω), ψ ≡ 0 on ΓN, to obtain (3.5).

Lemma 3.3. Suppose that f satisfies (A). Then, there exists a positive constant
Cf = Cf (γ,Gf , d, |Ω|) such that

(3.6) |(f( · , t, u) − f( · , t, v), w)| ≤ Cf‖u− v‖0,Ω

(
1 + |‖u|‖γ1,h + |‖v|‖γ1,h

)
‖w‖1,h

for all u, v, w ∈ H1(Ω, Th) and a.e. t ∈ (0, T ].
Proof. Let u, v, w ∈ H1(Ω, Th). Let p > 1 and 1/p + 1/q = 1. By applying
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Hölder’s inequality, we obtain that, for a.e. t ∈ (0, T ],

|(f( · , t, u) − f( · , t, v), w)| ≤ Gf

∫
Ω

|u− v| (1 + |u| + |v|)γ |w| dx

≤ Gf

(∫
Ω

|u− v|2 dx

)1/2 (∫
Ω

(1 + |u| + |v|)2γ |w|2 dx

)1/2

≤ Gf

(∫
Ω

|u− v|2 dx

)1/2 (∫
Ω

(1 + |u| + |v|)2γp dx

)1/2p (∫
Ω

|w|2q dx

)1/2q

.

When d ≥ 3 we take p = d/2, q = d/(d − 2); while if d = 2, we take any p > 1
and put q = p/(p − 1). The desired inequality then follows by using the broken
Sobolev–Poincaré inequality (3.5), with q thus defined, and by applying (3.4).

We recall the following approximation result for the space Sp(Ω, Th,F).
Lemma 3.4. Suppose that κ ∈ Th with hκ = diam(κ̄) and u|κ ∈ Hkκ(κ) for some

kκ ≥ 0; then there exists a sequence of algebraic polynomials zhκ
pκ

(u) ∈ Rpκ
(κ), pκ ≥ 1,

such that for any l, with 0 ≤ l ≤ sκ,

(3.7) ‖u− zhκ
pκ

(u)‖l,κ ≤ C
hsκ−l
κ

pkκ−l
κ

‖u‖kκ,κ,

and when kκ > 1/2, then

(3.8) ‖u− zhκ
pκ

(u)‖0,eκ ≤ C
h
sκ−1/2
κ

p
kκ−1/2
κ

‖u‖kκ,κ;

further, if kκ > 3/2, then

(3.9) ‖∇(u− zhκ
pκ

(u))‖0,eκ ≤ C
h
sκ−3/2
κ

p
kκ−3/2
κ

‖u‖kκ,κ,

where eκ is any face eκ ⊂ ∂κ, sκ = min {pκ + 1, kκ}, and C is a constant independent
of u, hκ, and pκ but dependent on k = maxκ∈Th

kκ.
Proof. For the proof of (3.7), see [3, Lemma 4.5] for d = 2 (the argument being

analogous when d > 2). By using the multiplicative trace inequality

‖u‖0,∂κ ≤ C(d)
(
h−1/2
κ ‖u‖0,κ + ‖u‖1/2

0,κ ‖∇u‖1/2
0,κ

)
,

we obtain (3.8) and (3.9) from (3.7).
Remark 3.5. If the reference element κ̂ is the d-dimensional hypercube, instead

of the Babuška–Suri projector zhκ
pκ

we can use the Jackson-type quasi-interpolation

operator Jkκ
pκ

(for its definition see [14, Chapter 7]; the error bounds are presented in
[31, Theorem A.3]).

We require the following bound on the bilinear form B( · , · ) (see [22] for a proof),
a key ingredient of which is the inverse inequality

(3.10) ‖∇w‖2
0,∂κ∩ΓD

≤ Cinv
p2
κ

hκ
‖∇w‖2

0,κ,

where the constant Cinv depends only on the shape-regularity constant of the family
{Th} (see Schwab [37, Theorem 4.76, inequality (4.6.4)]).
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Lemma 3.6. There exists a positive constant C, independent of the discretization
parameters, such that the following inequality holds for all v ∈ H1(Ω, Th) and all
w ∈ Sp(Ω, Th,F):

|B(v, w)| ≤ C ‖w‖1,h

∫
ΓD

σ |v|2 ds +

∫
Γint

σ [[v]]
2

ds +
∑
κ∈Th

‖∇v‖2
0,κ(3.11)

+
∑
κ∈Th

(
‖
√
τv‖2

0,∂κ∩ΓD
+ ‖σ−1/2∇v‖2

0,∂κ∩ΓD

)

+
∑
κ∈Th

(
‖
√
τ [[v]] ‖2

0,∂κ∩Γint
+ ‖σ−1/2∇v‖2

0,∂κ∩Γint

)1/2

,

where τe = {{p 2}}e/he and he is the diameter of a face e ⊂ Eint ∪ ED; when e ∈ ED the
contribution from outside Ω in the definition of τe is set to 0.

Next, we shall investigate the coercivity of the bilinear form B : Sp(Ω, Th,F) ×
Sp(Ω, Th,F) → R defined by (2.3). In the nonsymmetric case (with θ = 1) coercivity
follows directly as, for any w ∈ Sp(Ω, Th,F), we have BNS(w,w) = ‖w‖2

1,h.
Consider now the symmetric bilinear form (2.3) (with θ = −1). We have, for any

w ∈ Sp(Ω, Th,F),

BS(w,w) =
∑
κ∈Th

‖∇w‖2
0,κ +

∫
ΓD

(
σw2 − 2w(∇w · ν)

)
ds

+

∫
Γint

(
σ [[w]]

2 − 2 [[w]] {{∇w · ν}}
)

ds.

Clearly, the integrands in the last two terms need not be positive for w 
= 0 unless σ
is chosen sufficiently large: the purpose of the analysis that now follows is to assess
just how large σ needs to be to ensure coercivity of BS( · , · ) over Sp(Ω, Th,F) ×
Sp(Ω, Th,F).

For any positive number τe we have

−2

∫
ΓD

w(∇w · ν) ds ≥ −
∑
e∈ED

(∫
e

τew
2 ds +

∫
e

τ−1
e (∇w · ν)2 ds

)
.

Omitting the summation sign but retaining the minus sign in front of it, we see that
the second term on the right-hand side can be further bounded below by using the
inverse inequality (3.10), the shape-regularity condition (to relate hκ to he, where κ
is the element whose face e ∈ ED is) and letting pe = pκ for e ⊂ ∂κ∩ΓD; by absorbing
all constants into Cτ , we thus obtain

−
∫
e

τ−1
e (∇w · ν)2 ds ≥ −

∫
e

τ−1
e |∇w|2 |ν|2 ds ≥ −τ−1

e Cτ
p2
e

he
‖∇w‖2

0,κ,

and hence

−2

∫
ΓD

w(∇w · ν) ds ≥ −
∑
e∈ED

(∫
e

τew
2 ds + τ−1

e Cτ
p2
e

he
‖∇w‖2

0,κ

)
.
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Similarly, for the term involving faces e ∈ Eint, we have, using the bounded local
variation condition (to relate p2

κ to {{p2}}e),

− 2

∫
Γint

[[w]] {{∇w · ν}}ds

≥ −
∑

e∈Eint

(∫
e

τe [[w]]
2

ds + τ−1
e Cτ

{{p2}}e
2he

(
‖∇w‖2

0,κ′ + ‖∇w‖2
0,κ′′

))
;

here κ′ and κ′′ are the two elements that have e as their common face.
Thanks to our assumption that no face e of any element κ ∈ Th contains more than

one hanging node, it follows that no element κ can have more than 2d·2d−1 = 2dd faces
if κ̂ is the d-dimensional hypercube, or more than (d+1)d faces if κ̂ is the d-dimensional
simplex. On writing cd = max

{
2dd, (d + 1)d

}
= 2dd, we then let τe := cdCτ{{p2}}e/he

for e ∈ ED ∪ Eint (with the convention that, for e ∈ ED, {{p2}}e = p2
e/2 = p2

κ/2 where κ
is the element in Th with face e); hence,

BS(w,w) ≥ 1

2

∑
κ∈Th

‖∇w‖2
0,κ +

∫
ΓD

(σ − τ)w2 ds +

∫
Γint

(σ − τ) [[w]]
2

ds.

Choosing σe appropriately, i.e., letting σe = Cσ{{p2}}e/he with the penalty constant
Cσ > 0 large enough (that is, with Cσ > cdCτ ), will ensure that σe > τe for all
e ∈ Eint ∪ ED, and hence that the symmetric bilinear form BS(·, ·) is coercive. When
e ∈ ED the contribution from outside Ω in the definition of σe is set to 0. Thus, we
adopt the following hypothesis concerning the choice of the penalty constant Cσ:

(B) In the nonsymmetric case (when θ = 1) we take any Cσ > 0. In the symmetric
case (when θ = −1) we take Cσ > cdCτ .

We summarize our findings about the bilinear forms BNS( · , · ) and BS( · , · ) in
the next lemma.

Lemma 3.7. The nonsymmetric bilinear form BNS( · , · ) is coercive in the norm
‖ · ‖1,h over the space H1(Ω, Th) × H1(Ω, Th); more precisely,

BNS(w,w) = ‖w‖2
1,h ∀w ∈ H1(Ω, Th).

With the constant Cσ chosen as in (B), the symmetric bilinear form BS( · , · ) induces
a norm ‖ · ‖B on the finite element space Sp(Ω, Th,F); moreover, there exists a
positive constant c0 such that

BS(w,w) = ‖w‖2
B ≥ c0‖w‖2

1,h ∀w ∈ Sp(Ω, Th,F),

i.e., BS( · , · ) is coercive in ‖ · ‖1,h over the space Sp(Ω, Th,F) × Sp(Ω, Th,F).
Let us consider the projection operator Π from H2(Ω, Th) onto the finite element

space Sp(Ω, Th,F) defined (for u ∈ H2(Ω, Th)) by

(3.12) B(u− Πu, v) = 0 ∀v ∈ Sp(Ω, Th,F).

As Sp(Ω, Th,F) is a finite-dimensional linear space, the existence of a unique Πu in
Sp(Ω, Th,F) for each u ∈ H2(Ω, Th) follows from the coercivity of the bilinear form
B( · , · ) over Sp(Ω, Th,F)× Sp(Ω, Th,F); Πu will be referred to as the broken elliptic
projection of u, and Π : H2(Ω, Th) → Sp(Ω, Th,F) as the broken elliptic projector.

Next, we establish bounds on the approximation error u− Πu, in the H1 and L2

norms, for the broken elliptic projector Π.
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Suppose that Ω ⊂ R
d, d ≥ 2, is a bounded open polyhedral domain with Lipschitz-

continuous boundary. We shall say that Ω is H2-regular if, for any u ∈ H1
0(Ω) with

Δu ∈ L2(Ω), u belongs to H2(Ω)∩H1
0(Ω) and there exists a constant c∗ = c∗(Ω, d) > 0,

independent of u, such that ‖u‖H2(Ω) ≤ c∗‖Δu‖L2(Ω).

Lemma 3.8. Suppose that u|κ ∈ Hkκ(κ) for some Sobolev index kκ ≥ 2 and each
κ ∈ Th. Let Πu be the projection of u ∈ H2(Ω, Th) onto Sp(Ω, Th,F), defined by
(3.12), with pκ ≥ 1 for each κ ∈ Th, and

σe = Cσ{{p2}}|e/he,

where Cσ is as in (B), and he is the diameter of a face e ∈ Eint ∪ ED; when e ∈ ED,
the contribution from outside Ω in the definition of σe is set to 0. Then, the following
error bound holds:

(3.13) ‖u− Πu‖2
1,h ≤ C

∑
κ∈Th

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
kκ,κ,

where sκ = min {pκ + 1, kκ}, and the constant C is independent of u, pκ, and hκ but
depends on k = maxκ∈Th

kκ, the parameter ρ in (2.2), and Cσ.
Moreover, if θ = −1, ΓN is empty (i.e., ΓD = ∂Ω) and Ω is an H2-regular

polyhedral domain, we have

(3.14) ‖u− Πu‖2
0,Ω ≤ C

(
max
κ∈Th

h2
κ

pκ

) ∑
κ∈Th

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
kκ,κ,

where sκ = min {pκ + 1, kκ}, and the constant C is independent of u, pκ, and hκ but
depends on k = maxκ∈Th

kκ, the parameter ρ in (2.2), the constant Cσ, and Ω.
Proof. By recalling the definition of the norm (3.2) and applying Lemma 3.7,

we have that B(w,w) ≥ c0‖w‖2
1,h for all w ∈ Sp(Ω, Th,F). On writing u − Πu =

(u − zhκ
pκ

(u)) + (zhκ
pκ

(u) − Πu) =: η + ξ, with the projection operator u �→ zhκ
pκ

(u)
defined as in Lemma 3.4, and taking v = ξ in the definition of the broken elliptic
projector (3.12), we then deduce that

c0‖ξ‖2
1,h ≤ B(ξ, ξ) = B((u− Πu) − η, ξ) = −B(η, ξ) ≤ |B(η, ξ)| .

By Lemma 3.6 with v = η, w = ξ, and the above inequality, noting that σe =
Cσ{{p2}}|e/he > τe, with he the diameter of a face e ∈ Eint ∪ ED and with the contri-
bution from outside Ω in {{p2}}|e set to 0 for e ∈ ED, we have that

‖ξ‖2
1,h ≤ C

∑
κ∈Th

(
‖
√
ση‖2

0,∂κ∩ΓD
+ ‖

√
σ [[η]] ‖2

0,∂κ∩Γint
+ ‖∇η‖2

0,κ

+ ‖σ−1/2∇η‖2
0,∂κ∩ΓD

+ ‖σ−1/2∇η‖2
0,∂κ∩Γint

)
.

Using the triangle inequality ‖u−Πu‖1,h ≤ ‖η‖1,h+‖ξ‖1,h and recalling the definition
of the norm ‖ · ‖1,h, we then obtain the bound

(3.15) ‖u− Πu‖2
1,h ≤ C

∑
κ∈Th

(
‖
√
ση‖2

0,∂κ∩ΓD
+ ‖

√
σ [[η]] ‖2

0,∂κ∩Γint
+ ‖∇η‖2

0,κ

+ ‖σ−1/2∇η‖2
0,∂κ∩ΓD

+ ‖σ−1/2∇η‖2
0,∂κ∩Γint

)
.
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From Lemma 3.4, inequalities (3.7)–(3.9), we deduce that

‖η‖2
0,∂κ ≤ C

h2sκ−1
κ

p2kκ−1
κ

‖u‖2
kκ,κ, ‖∇η‖2

0,∂κ ≤ C
h2sκ−3
κ

p2kκ−3
κ

‖u‖2
kκ,κ, ‖η‖

2
1,κ ≤ C

h2sκ−2
κ

p2kκ−2
κ

‖u‖2
kκ,κ.

Applying these bounds to the right-hand side of (3.15), choosing σe as assumed in
the statement of the lemma, and noting the bounded local variation condition (2.2)
and the shape-regularity of Th to relate he to hκ, we obtain the bound

‖u− Πu‖2
1,h ≤ C

∑
κ∈Th

(
h2sκ−2
κ

p2kκ−2
κ

+
p2
κ

hκ

h2sκ−1
κ

p2kκ−1
κ

)
‖u‖2

kκ,κ,

and hence (3.13).
To estimate ‖u − Πu‖0,Ω in the case of θ = −1 and ΓD = ∂Ω, when Ω is H2-

regular, we shall use the Aubin–Nitsche duality argument (see [6]). Let ( · , · ) signify
the L2 inner product over Ω. Then,

(3.16) ‖u− Πu‖0,Ω = sup
g∈L2(Ω)

g 
=0

(u− Πu, g)

‖g‖0,Ω
.

For g ∈ L2(Ω) fixed, g 
= 0, let w = wg ∈ H1
0(Ω) be the weak solution of the problem

(3.17)
−Δw = g in Ω,

w = 0 on ∂Ω.

Since Ω is H2-regular, we have that w ∈ H2(Ω) ∩ H1
0(Ω), and there exists a positive

constant c∗, independent of g and w, such that

(3.18) ‖w‖2,Ω ≤ c∗‖g‖0,Ω.

Moreover, w ∈ C1(Ω) by [18, Corollary 8.36]. The SIP DGFEM approximation of the
problem (3.17) is as follows:

Find wDG ∈ Sp(Ω, Th,F) such that BS(wDG, v) = 	g(v) ∀v ∈ Sp(Ω, Th,F),

where BS(w, v) is defined by (2.3) with θ = −1, and 	g(v) = (g, v) + 	S(v), where
	S(v) is defined by (2.4) with θ = −1 and gD = 0 on ΓD = ∂Ω (also, as ΓN = ∅, the
integral over ΓN in (2.4) vanishes); clearly, then, 	S(v) = 0 for all v in H2(Ω, Th).

Using the fact that w ∈ H2(Ω)∩H1
0(Ω)∩C1(Ω), we deduce that BS(w, v) = 	g(v)

for all v ∈ H2(Ω, Th). Moreover, by the definition of the broken elliptic projector
(3.12), BS(u− Πu, v) = 0 for all v ∈ Sp(Ω, Th,F), and hence

(u− Πu, g) = (g, u− Πu) = 	g(u− Πu) = BS(w, u− Πu)

= BS(u− Πu,w) = BS(u− Πu,w − zhκ
pκ

(w)).

Further, on denoting ηw := w−zhκ
pκ

(w), by (3.11), and noting that σe = Cσ{{p2}}|e/he >
τe, with he the diameter of a face e ∈ Eint∪ED and with the contribution from outside
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Ω in {{p2}}|e set to 0 for e ∈ ED, we have that

(3.19)

(u− Πu, g) = BS(u− Πu, ηw) ≤ C ‖u− Πu‖1,h

{∫
ΓD

σ |ηw|2 ds +

∫
Γint

σ [[ηw]]
2

ds

+
∑
κ∈Th

(
‖∇ηw‖2

0,κ + ‖σ−1/2∇ηw‖2
0,∂κ∩ΓD

+ ‖σ−1/2∇ηw‖2
0,∂κ∩Γint

)}1/2

.

Applying (3.13) and inequalities (3.7)–(3.9) from Lemma 3.4 to the right-hand
side of (3.19), choosing σe as described in the statement of Lemma 3.8 above, and
noting the bounded local variation condition (2.2) and the shape-regularity of Th to
relate he to hκ, we obtain

(u− Πu, g) ≤ C

(∑
κ∈Th

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
kκ,κ ×

∑
κ∈Th

h2
κ

pκ
‖w‖2

2,κ

)1/2

.

By observing that∑
κ∈Th

h2
κ

pκ
‖w‖2

2,κ ≤
(

max
κ∈Th

h2
κ

pκ

) ∑
κ∈Th

‖w‖2
2,κ =

(
max
κ∈Th

h2
κ

pκ

)
‖w‖2

2,Ω

and noting (3.18), we obtain

(u− Πu, g) ≤ C

((
max
κ∈Th

h2
κ

pκ

) ∑
κ∈Th

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
kκ,κ

)1/2

‖g‖0,Ω,

and therefore, for any g ∈ L2(Ω), g 
= 0,

(u− Πu, g)

‖g‖0,Ω
≤ C

((
max
κ∈Th

h2
κ

pκ

) ∑
κ∈Th

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
kκ,κ

)1/2

.

Recalling (3.16), taking the supremum over g ∈ L2(Ω), g 
= 0, and squaring the
resulting expression yields (3.14).

Remark 3.9. When d ∈ {2, 3}, any convex bounded open polyhedral domain
Ω ⊂ R

d is H2-regular in the sense defined above (see Theorem 3.1.2.1 on page 139
of [19]). A similar result holds for mixed homogeneous Dirichlet–homogeneous Neu-
mann boundary conditions, provided that the internal angles of the polyhedron are
sufficiently small (cf. [13, Chapter 8]), with the definition of H2-regularity suitably
adjusted. The error bound (3.14) still holds then in this, more general, case. For
simplicity, though, we have confined ourselves to the case when ΓN = ∅.

3.2. Error analysis of the nonsymmetric version of DGFEM. Let the
bilinear form B be as in (2.3). In this section we shall be concerned with the nonsym-
metric version of DGFEM corresponding to θ = 1 in (2.3), so we write BNS( · , · ) in
place of B( · , · ). Our aim is to derive a bound on the H1 norm of the error u− uDG.
Here uDG is the NSIP DGFEM approximation of the analytical solution u. We de-
compose the error as u− uDG = η + ξ, where η := u− Πu and ξ := Πu− uDG, with
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Π denoting the broken elliptic projector defined in (3.12) with θ = 1. We assume for
simplicity that the initial value is chosen as uDG

0 = Πu0, and thus ξ(0) = 0.
As in (B), we shall suppose throughout this section that σe = Cσ{{p2}}e/he, where

Cσ > 0 is an arbitrary positive constant, and he is the diameter of a face e ∈ Eint∪ED;
when e ∈ ED, the contribution from outside Ω in the definition of σe is set to 0.

Lemma 3.10. Let f satisfy (A) and assume that u ∈ L∞(0, T ; H1(Ω)). Suppose
further that

(a) pκ ≥ 2 and u|κ ∈ H1(0, T ; Hkκ(κ)) with kκ ≥ 3 1
2 on each κ ∈ Th;

(b) the hp-mesh is quasi-uniform in the sense that there exists a positive constant
C0 such that

(3.20) max
κ∈Th

hκ

p2
κ

≤ C0 min
κ∈Th

hκ

p2
κ

.

Then, there exists h0 ∈ (0, 1] and a positive constant C independent of the discretiza-
tion parameters, such that for all h ∈ (0, h0], h = maxκ∈Th

hκ, and for all t ∈ [0, T ]
we have

(3.21)

∫ t

0

‖(u− uDG)(s)‖2
1,h ds ≤ C

∫ t

0

{
‖η(s)‖2

1,h + ‖η′(s)‖2
0,Ω

}
ds.

Proof. Let t�� ∈ (0, T ] be such that uDG(t) ∈ Sp(Ω, Th,F) exists for all t ∈ [0, t��).
The existence of such a t�� is ensured by Carathéodory’s theorem (see [39, Theo-
rems II.4.1 and II.4.5]). Thus, either t�� = T , or t�� < T and lim supt→t��‖uDG(t)‖1,h =
+∞. In fact, we shall show below that, for h sufficiently small, t�� = T .

From the formulation of the hp-DGFEM (2.6), for all v ∈ Sp(Ω, Th,F), we have

(3.22)

∫
Ω

u′
DGv dx + BNS(uDG, v) =

∫
Ω

f(x, t, uDG)v dx + 	NS(v)

for all t ∈ (0, t��). On the other hand, the broken weak formulation (2.5) implies that∫
Ω

(Πu′)v dx + BNS(Πu, v) =

∫
Ω

f(x, t, u)v dx + 	NS(v)

+

∫
Ω

(Πu′ − u′)v dx + BNS(Πu− u, v)

(3.23)

for all v ∈ H2(Ω, Th) and all t ∈ (0, T ]. Upon subtracting (3.22) from (3.23) and
taking v = ξ = Πu− uDG, we obtain∫

Ω

ξ′ξ dx + BNS(ξ, ξ) =

∫
Ω

{f(x, t, u) − f(x, t, uDG)} ξ dx−
∫

Ω

η′ξ dx−BNS(η, ξ)

for all t ∈ (0, t��). By virtue of (3.12) we have BNS(η, ξ) = 0. Hence, by noting that
‖ξ‖2

1,h = BNS(ξ, ξ), we deduce from the above identity that

(3.24)
1

2

d

dt
‖ξ‖2

0,Ω + ‖ξ‖2
1,h ≤

∣∣∣∣∫
Ω

{f(x, t, u) − f(x, t,Πu)} ξ dx

∣∣∣∣
+

∣∣∣∣∫
Ω

{f(x, t,Πu) − f(x, t, uDG)} ξ dx

∣∣∣∣ +

∣∣∣∣∫
Ω

η′ξ dx

∣∣∣∣
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for all t ∈ (0, t��). By the Cauchy–Schwarz inequality and Cauchy’s inequality, with
ε1 > 0, we have ∣∣∣∣∫

Ω

η′ξ dx

∣∣∣∣ ≤ ‖η′‖0,Ω‖ξ‖0,Ω ≤ ε1

2
‖η′‖2

0,Ω +
1

2ε1
‖ξ‖2

0,Ω.

By the same argument, with ε2, ε3 > 0, we have∣∣∣∣∫
Ω

{f(x, t, u) − f(x, t,Πu)} ξ dx

∣∣∣∣ ≤ ε2

2
‖f( · , t, u) − f( · , t,Πu)‖2

0,Ω +
1

2ε2
‖ξ‖2

0,Ω,

∣∣∣∣∫
Ω

{f(x, t,Πu) −f(x, t, uDG)} ξ dx

∣∣∣∣≤ ε3

2
‖f( · , t,Πu) − f( · , t, uDG)‖2

0,Ω +
1

2ε3
‖ξ‖2

0,Ω.

Further, by Lemma 3.1, upon absorbing all constants into C and using the broken
Sobolev–Poincaré inequality and (3.4), for a.e. t ∈ (0, T ] we have that

‖f( · , t, u) − f( · , t,Πu)‖2
0,Ω

≤ C2
f‖η‖2

0,2(γ+1),Ω

(
1 + ‖u‖γ0,2(γ+1),Ω + ‖Πu‖γ0,2(γ+1),Ω

)2

≤ C‖η‖2
0,2(γ+1),Ω

(
1 + ‖u‖2γ

0,2(γ+1),Ω + ‖Πu− u‖2γ
0,2(γ+1),Ω

)
= C‖η‖2

0,2(γ+1),Ω

(
1 + ‖u‖2γ

0,2(γ+1),Ω + ‖η‖2γ
0,2(γ+1),Ω

)
≤ C‖η‖0,2(γ+1),Ω

(
1 + ‖u‖2γ

0,2(γ+1),Ω + ‖η‖2γ
1,h

)
≤ C‖η‖2

0,2(γ+1),Ω,

where the constant C > 0 depends only on the domain Ω, the exponent γ in the
growth condition for the function f , and the Lebesgue and Sobolev norms of u over
the time interval (0, T ). For ease of writing, the dependence of the norms of u, η, and
Πu on t in the last chain of inequalities has been suppressed.

Applying these bounds on the right-hand side of (3.24) with ε1 = ε2 = 1 (the
value of ε3 will be fixed below) and absorbing all constants into C1 and C2 = C2(ε3),
we obtain

(3.25)
d

dt
‖ξ(t)‖2

0,Ω + 2‖ξ(t)‖2
1,h ≤ C1(‖η(t)‖2

0,2(γ+1),Ω + ‖η′(t)‖2
0,Ω) + C2‖ξ(t)‖2

0,Ω

+ ε3‖f( · , t,Πu) − f( · , t, uDG)‖2
0,Ω

for a.e. t ∈ (0, t��).
To bound ‖f( · , t,Πu) − f( · , t, uDG)‖2

0,Ω, we first note that, by a very similar
argument to the one above, we have, for a.e. t ∈ (0, t��),

(3.26) ‖f( · , t,Πu) − f( · , t, uDG)‖2
0,Ω ≤ C‖ξ(t)‖2

0,2(γ+1),Ω

(
1 + ‖ξ(t)‖2γ

0,2(γ+1),Ω

)
,

where the constant C > 0 depends only on the domain Ω, the exponent γ in the
growth condition for the function f , and the Lebesgue and Sobolev norms of u over
the time interval (0, T ).
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For Th and the polynomial degree vector p fixed, let t� = t�(Th,p) ∈ (0, t��] be the
largest time such that uDG exists for all t ∈ [0, t�] and ‖ξ(t)‖2

1,h ≤ 1 for all t ∈ [0, t�];
the existence of such a t� follows from the definition of t��, together with the fact that
t �→ ‖ξ(t)‖2

1,h is continuous in the neighborhood of t = 0 and ‖ξ(0)‖2
1,h = 0. Our aim

is to show that t� = T for all h, sufficiently small; thereby, we will have also shown
that t�� = T . We have that

‖ξ(t)‖2
0,2(γ+1),Ω ≤ Const.‖ξ(t)‖2

1,h ∀t ∈ [0, t�]

by the broken Sobolev–Poincaré inequality (see Lemma 3.2) and (3.4); here Const.
is a constant that is independent of the discretization parameters and t. This and
(3.26), together with the fact that ‖ξ(t)‖2

1,h ≤ 1 for all t ∈ [0, t�], imply that, for a.e.
t ∈ (0, t�],

‖f( · , t,Πu) − f( · , t, uDG)‖2
0,Ω ≤ C̃‖ξ(t)‖2

1,h,

where the constant C̃ > 0 depends only on the domain Ω, the exponent γ in the
growth condition for the function f , and the Lebesgue and Sobolev norms of u over
the time interval (0, t�).

On choosing ε3C̃ ≤ 1, after integration from 0 to t ≤ t� and noting that ξ(0) = 0,
the inequality (3.25) yields that

‖ξ(t)‖2
0,Ω +

∫ t

0

‖ξ(s)‖2
1,h ds ≤C1

∫ t

0

{
‖η(s)‖2

0,2(γ+1),Ω + ‖η′(s)‖2
0,Ω

}
ds

+ C2

∫ t

0

‖ξ(s)‖2
0,Ω ds ∀t ∈ [0, t�],

(3.27)

with the constant C1 > 0 depending only on the domain Ω, the exponent γ in the
growth condition for the function f , and the Lebesgue and Sobolev norms of u over
the time interval (0, T ).

We can make the first integral on the right-hand side of (3.27) as small as we like
(for example, by fixing the local polynomial degree pκ on each element κ ∈ Th and
reducing h = maxκ∈Th

hκ). In particular, let us take h0 ∈ (0, 1] so small that, for all
h ≤ h0 and t ∈ [0, T ], the following inequality holds:

C1

∫ t

0

{
‖η(s)‖2

0,2(γ+1),Ω + ‖η′(s)‖2
0,Ω

}
ds <

1

1 + T
e−C2T × C−1

invC
−2
0

(
max
κ∈Th

hκ

p2
κ

)2

,

where Cinv is the constant from the inverse inequality

(3.28) ‖ξ(t)‖2
1,h ≤ Cinv

(
max
κ∈Th

p2
κ

hκ

)2

‖ξ(t)‖2
0,Ω ∀t ∈ [0, t�].

We note in passing that in order to be able to extract the factor (maxκ∈Th
(hκ/p

2
κ))2

above from ‖η(s)‖2
0,2(γ+1),Ω + ‖η′(s)‖2

0,Ω with strict inequality (by using (3.5), (3.4),

and (3.13)), we require hypothesis (a) of the lemma; in particular, the desired strict
inequality cannot be achieved when pκ = 1, and hence we have our assumption that
pκ ≥ 2 for all κ ∈ Th.

Thereby, (3.27) yields

‖ξ(t)‖2
0,Ω +

∫ t

0

‖ξ(s)‖2
1,h ds <

e−C2T

1 + T
× C−1

invC
−2
0

(
max
κ∈Th

hκ

p2
κ

)2

+ C2

∫ t

0

‖ξ(s)‖2
0,Ω ds
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for all t ∈ [0, t�]. The Gronwall–Bellman inequality then implies that

‖ξ(t)‖2
0,Ω < C−1

invC
−2
0

(
max
κ∈Th

hκ

p2
κ

)2

∀t ∈ [0, t�].

By the inverse inequality (3.28) we have that,

‖ξ(t)‖2
1,h < C−2

0

(
max
κ∈Th

hκ

p2
κ

)2 (
max
κ∈Th

p2
κ

hκ

)2

= C−2
0

(
max
κ∈Th

hκ

p2
κ

)2 (
min
κ∈Th

hκ

p2
κ

)−2

for all t ∈ [0, t�], which, by the quasi-uniformity hypothesis (b) above, is ≤ 1.
Thus, for h ≤ h0, we have that ‖ξ(t)‖2

1,h < 1 for all t ∈ [0, t�]. By continu-

ity of the mapping t �→ ‖ξ(t)‖2
1,h on [0, t�] it follows that t� = t��, provided that

h ∈ (0, h0] (otherwise t� would not be the largest real number in (0, t��] such that
‖ξ(t)‖2

1,h ≤ 1 for all t ∈ [0, t�]). Now, since ‖ξ(t)‖2
1,h < 1 for all t ∈ [0, t��], and hence

lim supt→t��‖ξ(t)‖1,h ≤ 1, it follows by the definition of ξ and the triangle inequality
that

lim supt→t��‖uDG(t)‖1,h ≤ 1 + lim supt→t��‖Πu(t)‖1,h ≤ Const.

Therefore t�� cannot be strictly smaller than T (if it were, then we would have that
lim supt→t��‖uDG‖1,h = +∞). To summarize, we have shown that, for h ≤ h0, uDG

exists on the whole of the interval [0, T ] and ‖ξ(t)‖1,h ≤ 1 for all t ∈ [0, T ].
From (3.27), by the Gronwall–Bellman inequality, we then obtain

‖ξ(t)‖2
0,Ω +

∫ t

0

‖ξ(s)‖2
1,h ds ≤ C

∫ t

0

{
‖η(s)‖2

0,2(γ+1),Ω + ‖η′(s)‖2
0,Ω

}
ds ∀t ∈ [0, T ],

and hence, in particular,∫ t

0

‖ξ(s)‖2
1,h ds ≤ C

∫ t

0

{
‖η(s)‖2

0,2(γ+1),Ω + ‖η′(s)‖2
0,Ω

}
ds ∀t ∈ [0, T ],

with the constant C > 0 depending only on the domain Ω, the quasi-uniformity
constant C0, the final time T , the exponent γ in the growth condition for the function
f , and the Lebesgue and Sobolev norms of u over the time interval (0, T ).

Employing the triangle inequality and applying the broken Sobolev–Poincaré in-
equality and (3.4), we deduce that∫ t

0

‖(u− uDG)(s)‖2
1,h ds ≤ C

∫ t

0

{
‖η(s)‖2

1,h + ‖η′(s)‖2
0,Ω

}
ds ∀t ∈ [0, T ].

Lemma 3.10 yields the following error bound for the NSIP DGFEM (2.6).
Theorem 3.11. Let Ω ⊂ R

d, d ≥ 2, be a bounded polyhedral domain with
Lipschitz-continuous boundary, let {Th} be a family of shape-regular and hp-quasi-
uniform subdivisions of Ω (cf. (b) in Lemma 3.10), and suppose that p is a polynomial
degree vector of bounded local variation. Let each face e ∈ Eint ∪ ED be assigned a
positive real number

(3.29) σe = {{p2}}e/he,

where he is the diameter of e, with the convention that for e ∈ ED the contributions
from outside Ω in the definition of σe are set to 0. Suppose that f satisfies (A) and
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u ∈ L∞(0, T ; H1(Ω)). Then, if pκ ≥ 2 and u|κ ∈ H1(0, T ; Hkκ(κ)) with kκ ≥ 3 1
2 on

each κ ∈ Th, there exists h0 ∈ (0, 1] such that for all h ∈ (0, h0], h = maxκ∈Th
hκ,

and all t ∈ [0, T ], the solution uDG( · , t) ∈ Sp(Ω, Th,F) of the NSIP DGFEM (2.6)
satisfies the following error bound:

(3.30) ‖u− uDG‖2
L2(0,T ;H1(Ω,Th)) ≤ C

∑
κ∈Th

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
H1(0,T ;Hkκ (κ)),

with 1 ≤ sκ ≤ min {pκ + 1, kκ}, pκ ≥ 2 on each κ ∈ Th, where C is a positive constant
depending only on the domain Ω, the shape-regularity and quasi-uniformity constants
of Th, the final time T , the exponent γ in the growth condition for the function f , the
parameter ρ in (2.2), k = maxκ∈Th

kκ, and the Lebesgue and Sobolev norms of u over
the time interval (0, T ).

Proof. As before, let us choose the projector Π to be the broken elliptic projector
defined by (3.12), with θ = 1. From Lemma 3.8 we have the bound

‖η(s)‖2
1,h ≤ C

∑
κ∈Th

h2sκ−2
κ

p2kκ−3
κ

‖u(s)‖2
kκ,κ ∀s ∈ [0, T ],

with 1 ≤ sκ ≤ min {pκ + 1, kκ}, pκ ≥ 1, on each κ ∈ Th.
By differentiating (3.12) with respect to t we deduce that B(u′ − Πu′, v) = 0 for

all v ∈ Sp(Ω, Th,F). Hence, by applying Lemma 3.8 to u′, we obtain that

‖η′(s)‖2
1,h ≤ C

∑
κ∈Th

h2sκ−2
κ

p2kκ−3
κ

‖u′(s)‖2
kκ,κ ∀s ∈ [0, T ],

and with 1 ≤ sκ ≤ min {pκ + 1, kκ}, pκ ≥ 1, on each κ ∈ Th. Therefore, by the broken
Sobolev–Poincaré inequality (3.5) and (3.4), an identical bound holds for the norm
‖η′(s)‖0,Ω, for all s ∈ [0, T ].

Applying these bounds in the right-hand side of (3.21) for t ∈ [0, T ], we obtain the
desired bound, with 1 ≤ sκ ≤ min {pκ + 1, kκ} and pκ ≥ 2 on each κ ∈ Th, where C is
a positive constant depending only on the domain Ω, the shape-regularity and quasi-
uniformity constants of Th, the final time T , the exponent γ in the growth condition
for the function f , the parameter ρ in (2.2), k = maxκ∈Th

kκ, and the Lebesgue and
Sobolev norms of u over the time interval (0, T ).

When f is globally Lipschitz continuous the hypotheses (a) and (b) stated in
Lemma 3.10 are redundant, as (3.27) holds automatically for all t ∈ [0, T ], and it
is not necessary to separately prove that ‖ξ(t)‖1,h ≤ 1 for all t ∈ [0, T ] and all h
sufficiently small. As we shall now see, (a) and (b) also are redundant in the case of
the SIP DGFEM.

3.3. Error analysis of the symmetric version of the DGFEM. The sym-
metric version of the interior penalty DGFEM appeared in the literature much earlier
than the nonsymmetric formulation; see Wheeler [16]. It was not widely accepted as
an effective numerical method until very recently, due to the additional condition on
the minimum size of the penalty parameter which is required to ensure the coercivity
of the bilinear form of the method. The renewed interest in the symmetric formulation
of the interior penalty DGFEM for second-order elliptic problems can be attributed to
the optimality of its convergence rate in the L2 norm as well as for linear functionals
of the solution. Indeed, the nonsymmetric formulation of the interior penalty method
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for second-order elliptic problems suffers from a lack of adjoint consistency (see [2]),
and, in general, it results in suboptimal a priori error bounds in the L2 norm and in
linear functionals of the solution unless the polynomial degree pκ = p, κ ∈ Th, where
p is odd (see [20]). Thanks to its adjoint consistency, the symmetric version of the
interior penalty DGFEM does not suffer from these drawbacks.

We state our first result about the accuracy of the symmetric version of the hp-
DGFEM. We shall assume below that uDG is the SIP DGFEM approximation to the
analytical solution u and uDG

0 = Πu0, where Π is the broken elliptic projector defined
by (3.12) with θ = −1.

Theorem 3.12. Let Ω ⊂ R
d, d ≥ 2, be a bounded polyhedral domain with a

Lipschitz-continuous boundary. Suppose that {Th} is a family of shape-regular subdi-
visions of Ω and p is a polynomial degree vector of bounded local variation. Let each
face e ∈ Eint ∪ ED be assigned the positive real number

(3.31) σe = Cσ{{p2}}e/he,

where he is the diameter of e, with the convention that for e ∈ ED the contributions
from outside Ω in the definition of σe are set to 0, and let Cσ be as in (B). Suppose
that the function f satisfies (A). Then, if u|κ ∈ H1(0, T ; Hkκ(κ)), kκ ≥ 2, κ ∈ Th,
and u ∈ L∞(0, T ; H1(Ω)), there exists h0 ∈ (0, 1] such that, for all h ∈ (0, h0], h =
maxκ∈Th

hκ, and t ∈ [0, T ], the solution uDG(·, t) ∈ Sp(Ω, Th,F) of the SIP DGFEM
(2.6) satisfies the following error bound:

(3.32) ess. sup
0≤t≤T

‖u(t) − uDG(t)‖2
1,h ≤ C

∑
κ∈Th

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
H1(0,T ;Hkκ (κ)),

with 1 ≤ sκ ≤ min {pκ + 1, kκ}, pκ ≥ 1, for κ ∈ Th, where C is a positive constant
depending only on the domain Ω, the shape-regularity constant of Th, the final time T ,
the exponent γ in the growth condition for the function f , the parameter ρ in (2.2),
the Lebesgue and Sobolev norms of u over the interval (0, T ), and k = maxκ∈Th

kκ.
Proof. Let t�� ∈ (0, T ] be such that uDG(t) ∈ Sp(Ω, Th,F) exists for all t ∈

[0, t��). Again, the existence of such a t�� is ensured by Carathéodory’s theorem
(see [39, Theorems II.4.1 and II.4.5]). Thus, either t�� = T , or t�� < T and
lim supt→t��‖uDG(t)‖1,h = +∞. In fact, we shall show below that, for h sufficiently
small, t�� = T . Let us write u − uDG = (u − Πu) + (Πu − uDG) =: η + ξ. By the
same argument as in the proof of Lemma 3.10, upon subtracting (3.22) from (3.23)
and choosing v = ξ′, we obtain for a.e. t ∈ (0, t��) that

‖ξ′‖2
0,Ω + BS(ξ, ξ′) =

∫
Ω

{f(x, t, u) − f(x, t, uDG)} ξ′ dx−
∫

Ω

η′ξ′ dx−BS(η, ξ′).

By virtue of (3.12), BS(η, ξ′) = 0. With the constant Cσ in (3.31) chosen large enough,
the symmetric bilinear form BS( · , · ) is coercive and therefore defines an inner product
on H1(Ω, Th), which induces the norm ‖ · ‖B on this space (cf. Lemma 3.7). Hence
we deduce that BS(ξ, ξ′) = 1

2
d
dt‖ξ‖2

B . We thereby infer from the above equality that

(3.33) ‖ξ′‖2
0,Ω +

1

2

d

dt
‖ξ‖2

B ≤
∣∣∣∣∫

Ω

η′ξ′ dx

∣∣∣∣ +

∣∣∣∣∫
Ω

{f(x, t, u) − f(x, t,Πu)} ξ′ dx
∣∣∣∣

+

∣∣∣∣∫
Ω

{f(x, t,Πu) − f(x, t, uDG)} ξ′ dx
∣∣∣∣
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for a.e. t ∈ (0, t��). By the Cauchy–Schwarz inequality and Cauchy’s inequality, we
have ∣∣∣∣∫

Ω

η′ξ′ dx

∣∣∣∣ ≤ ‖η′‖0,Ω‖ξ′‖0,Ω ≤ ε1

2
‖η′‖2

0,Ω +
1

2ε1
‖ξ′‖2

0,Ω,

and, similarly,∣∣∣∣∫
Ω

{f(x, t, u) − f(x, t,Πu)} ξ′ dx
∣∣∣∣ ≤ ε2

2
‖f( · , t, u) − f( · , t,Πu)‖2

0,Ω +
1

2ε2
‖ξ′‖2

0,Ω,

∣∣∣∣∫
Ω

{f(x, t,Πu)−f(x, t, uDG)} ξ′ dx
∣∣∣∣≤ε3

2
‖f( · , t,Πu) − f( · , t, uDG)‖2

0,Ω +
1

2ε3
‖ξ′‖2

0,Ω,

with ε1, ε2, ε3 > 0. Also, by the same argument as in the proof of Lemma 3.10, we
have, for a.e. t ∈ [0, T ], that

‖f( · , t, u) − f( · , t,Πu)‖2
0,Ω ≤ C‖η(t)‖2

0,2(γ+1),Ω,

where the constant C > 0 depends only on the domain Ω, the exponent γ in the
growth condition for the function f , and the Lebesgue and Sobolev norms of u over
the time interval (0, T ). Choosing ε1, ε2, ε3 such that ε−1

1 + ε−1
2 + ε−1

3 ≤ 2, and
inserting the above bounds into (3.33), we obtain

(3.34)
d

dt
‖ξ‖2

B ≤ C1

(
‖η‖2

0,2(γ+1),Ω + ‖η′‖2
0,Ω

)
+ C̃2‖f( ·, t,Πu) − f( · , t, uDG)‖2

0,Ω

for all t ∈ (0, t��). To bound ‖f( · , t,Πu)−f( · , t, uDG)‖2
0,Ω we note that, by the same

argument as in (3.26) above, for a.e. t ∈ (0, t��), we have

‖f( · , t,Πu) − f( · , t, uDG)‖2
0,Ω ≤ C‖ξ(t)‖2

0,2(γ+1),Ω

(
1 + ‖ξ(t)‖2γ

0,2(γ+1),Ω

)
,

where the constant C > 0 depends only on the domain Ω, the exponent γ in the
growth condition for the function f , and the Lebesgue and Sobolev norms of u over
the time interval (0, T ).

For Th and the polynomial degree vector p fixed, let t� = t�(Th,p) denote the
largest time t ∈ (0, t��] such that uDG(t) exists for all t ∈ [0, t�] and ‖ξ(t)‖1,h ≤ 1
for all t ∈ [0, t�]; the existence of such a t� is guaranteed by the definition of t��,
together with the fact that t �→ ‖ξ(t)‖1,h is continuous in the neighborhood of t = 0
and ‖ξ(0)‖1,h = 0. By the broken Sobolev–Poincaré inequality (3.5) and (3.4), for
a.e. t ∈ (0, t�], we have that

‖f( · , t,Πu) − f( · , t, uDG)‖2
0,Ω ≤ C‖ξ(t)‖2

1,h.

Inserting this bound into (3.34), integrating from 0 to t ≤ t�, using Lemma 3.7 to
deduce that c0‖ξ(t)‖2

1,h ≤ ‖ξ(t)‖2
B , and noting that ξ(0) = 0, we deduce that

(3.35) c0‖ξ(t)‖2
1,h ≤ C1

∫ t

0

{
‖η(s)‖2

0,2(γ+1),Ω + ‖η′(s)‖2
0,Ω

}
ds + C2

∫ t

0

‖ξ(s)‖2
1,h ds

for all t ∈ [0, t�]. By Lemma 3.8, the first integral on the right-hand side can be
bounded in terms of hκ and pκ. We define h = maxκ∈Th

hκ, C3 = C2/c0, and let
h0 ∈ (0, 1] be small enough so that for all h ≤ h0 and t ∈ [0, t�] we have

C1

∫ t

0

{
‖η(s)‖2

0,2(γ+1),Ω + ‖η′(s)‖2
0,Ω

}
ds <

c0
1 + T

e−C3T .
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Thus, for h ≤ h0 and all t ∈ [0, t�], from (3.35) we have that

‖ξ(t)‖2
1,h <

1

1 + T
e−C3T + C3

∫ t

0

‖ξ(s)‖2
1,h ds;

using the Gronwall–Bellman inequality, we deduce that ‖ξ(t)‖2
1,h < 1 for all t ∈

[0, t�] with h ≤ h0. Therefore, by the same continuity argument as in the proof of
Lemma 3.10 applied to the mapping t �→ ‖ξ(t)‖2

1,h, we deduce that t� = t�� = T for
all h ∈ (0, h0]. Taking this into account, assuming that h ≤ h0, and applying the
Gronwall–Bellman inequality to (3.35) gives us the following bound:

(3.36) ‖ξ(t)‖2
1,h ≤ C

∫ t

0

{
‖η(s)‖2

0,2(γ+1),Ω + ‖η′(s)‖2
0,Ω

}
ds ∀t ∈ [0, T ],

where the constant C > 0 depends only on the domain Ω, the exponent γ in the
growth condition for the function f , the final time T , and the Lebesgue and Sobolev
norms of u over the time interval (0, T ).

Further, by the broken Sobolev–Poincaré inequality (3.5) and (3.4), we have that
‖η‖2

0,2(γ+1),Ω ≤ C‖η‖2
1,h; employing the triangle inequality, we thus obtain

‖(u− uDG)(t)‖2
1,h ≤ C

(
‖η(t)‖2

1,h +

∫ t

0

{
‖η(s)‖2

1,h + ‖η′(s)‖2
0,Ω

}
ds

)
∀t ∈ [0, T ].

Arguing in the same way as in the proof of Theorem 3.11 to bound ‖η′(s)‖2
0,Ω and

noting that the embedding H1(0, T ; Hkκ(κ)) ↪→ L∞(0, T ; Hkκ(κ)) yields (3.32), with
1 ≤ sκ ≤ min {pκ + 1, kκ}, pκ ≥ 1, for κ ∈ Th, where the constant C > 0 depends only
on the domain Ω, the shape-regularity constant of Th, the final time T , the parameter
ρ in (2.2), the exponent γ in the growth condition for the function f , k = maxκ∈Th

kκ,
and the Lebesgue and Sobolev norms of u over the time interval (0, T ).

Let us now prove an error bound in the L2 norm for the SIP DGFEM.
Theorem 3.13. Let Ω ⊂ R

d, d ≥ 2, be an H2-regular polyhedral domain. Suppose
that ΓN is empty, {Th} is a family of shape-regular subdivisions of Ω, and p is a
polynomial degree vector of bounded local variation. Let each face e ∈ Eint ∪ ED be
assigned the positive real number

σe = Cσ{{p2}}e/he,

where he is the diameter of e, with the convention that for e ∈ ED the contributions
from outside Ω in the definition of σe are set to 0, and Cσ is as in (B). Suppose
that the function f satisfies (A). Then, if u|κ ∈ H1(0, T ; Hkκ(κ)), kκ ≥ 2, κ ∈ Th
and u ∈ L∞(0, T ; H1(Ω) ∩ C(Ω̄)), there exists h0 ∈ (0, 1] such that for all h ∈ (0, h0],
h = maxκ∈Th

hκ, and t ∈ (0, T ], the solution uDG( · , t) ∈ Sp(Ω, Th,F) of the SIP
DGFEM (2.6) satisfies the following error bound:

(3.37) ‖u− uDG‖2
L∞(0,T ;L2(Ω)) ≤ C

(
max
κ∈Th

h2
κ

pκ

) ∑
κ∈Th

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
H1(0,T ;Hkκ (κ)),

with 1 ≤ sκ ≤ min {pκ + 1, kκ}, pκ ≥ 1, for κ ∈ Th, where C is a positive constant
depending only on the domain Ω, the shape-regularity constant of Th, the final time T ,
the exponent γ in the growth condition for the function f , the parameter ρ in (2.2), the
Lebesgue and Sobolev norms of u over the time interval (0, T ), and k = maxκ∈Th

kκ.
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Proof. By the same argument as in the proof of Lemma 3.10, and with ξ and η
defined as in the proof of Theorem 3.12, we have

1

2

d

dt
‖ξ‖2

0,Ω + ‖ξ‖2
B ≤

∣∣∣∣∫
Ω

{f(x, t, u) − f(x, t,Πu)} ξ dx

∣∣∣∣
+

∣∣∣∣∫
Ω

{f(x, t,Πu) − f(x, t, uDG)} ξ dx

∣∣∣∣ +

∣∣∣∣∫
Ω

η′ξ dx

∣∣∣∣
for a.e. t ∈ [0, T ]. Applying (3.6) and the Cauchy–Schwarz inequality to the right-hand
side of the above inequality gives, for a.e. t ∈ [0, T ],

1

2

d

dt
‖ξ‖2

0,Ω + ‖ξ‖2
B ≤ C‖η‖0,Ω(1 + |‖u|‖γ1,h + |‖Πu|‖γ1,h)‖ξ‖1,h

+ C‖ξ‖0,Ω(1 + |‖Πu|‖γ1,h + |‖uDG|‖γ1,h)‖ξ‖1,h + ‖η′‖0,Ω‖ξ‖0,Ω.

Let us show that ess. sup0≤t≤T |‖Πu(t)|‖1,h and ess. sup0≤t≤T |‖uDG(t)|‖1,h are bounded
uniformly with respect to h ∈ (0, h0]. We have that

|‖Πu(t)|‖1,h ≤ |‖(Πu− u)(t)|‖1,h + |‖u(t)|‖1,h = |‖η(t)|‖1,h + |‖u(t)|‖1,h

≤ ‖η(t)‖1,h + |‖u(t)|‖1,h ≤ Const. ∀t ∈ [0, T ],

where Const. is a positive constant, independent of the discretization parameters
and of t ∈ [0, T ]. Here, the last inequality follows from (3.13) on observing that
H1(0, T ; Hkκ(κ)) ↪→ L∞(0, T ; Hkκ(κ)), recalling the definition of the norm |‖ · |‖1,h,
and noting that u ∈ L∞(0, T ; H1(Ω) ∩ C(Ω̄)).

By the above and the fact that ess. sup0≤t≤T ‖ξ(t)‖2
1,h ≤ 1 uniformly in h ≤ h0

(see the proof of Theorem 3.12), we have that

|‖uDG(t)|‖1,h ≤ |‖(uDG − Πu)(t)|‖1,h + |‖Πu(t)|‖1,h = |‖ξ(t)|‖1,h + |‖Πu(t)|‖1,h

≤ ‖ξ(t)‖1,h + |‖Πu(t)|‖1,h

≤ ‖ξ(t)‖1,h + ‖η(t)‖1,h + |‖u(t)|‖1,h ≤ Const.

for all t ∈ [0, T ] and uniformly in h ∈ (0, h0]—again by (3.13) on observing that
H1(0, T ; Hkκ(κ)) ↪→ L∞(0, T ; Hkκ(κ)), the definition of the norm |‖ · |‖1,h and the fact
that u ∈ L∞(0, T ; H1(Ω) ∩ C(Ω̄)); once again, Const. denotes a positive constant,
independent of the discretization parameters and of t ∈ [0, T ]. Hence we deduce that

ess. sup
0≤t≤T

(
1 + |‖u(t)|‖γ1,h + |‖Πu(t)|‖γ1,h

)
≤ Const.,

ess. sup
0≤t≤T

(
1 + |‖Πu(t)|‖γ1,h + |‖uDG(t)|‖γ1,h

)
≤ Const.,

uniformly in h ∈ (0, h0]. Therefore, by Cauchy’s inequality,

1

2

d

dt
‖ξ‖2

0,Ω + ‖ξ‖2
1,h ≤ C (‖η‖0,Ω‖ξ‖1,h + ‖ξ‖0,Ω‖ξ‖1,h + ‖η′‖0,Ω‖ξ‖0,Ω)

≤ 1

2
‖ξ‖2

1,h +
1

2
C2

(
‖η‖2

0,Ω + ‖η′‖2
0,Ω + ‖ξ‖2

0,Ω

)
,
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which yields

d

dt
‖ξ‖2

0,Ω + ‖ξ‖2
1,h ≤ C2

(
‖η‖2

0,Ω + ‖η′‖2
0,Ω + ‖ξ‖2

0,Ω

)
.

Upon integrating from 0 to t ∈ (0, T ] and applying the Gronwall–Bellman inequality,
we have

(3.38) ‖ξ(t)‖2
0,Ω +

∫ t

0

‖ξ(s)‖2
1,h ds ≤ C

∫ T

0

{
‖η(s)‖2

0,Ω + ‖η′(s)‖2
0,Ω

}
ds.

Applying (3.14) to the right-hand side of (3.38), we deduce that

‖ξ(t)‖2
0,Ω ≤ C

(
max
κ∈Th

h2
k

pκ

) ∑
κ∈Th

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
H1(0,T ;Hkκ (κ)) ∀t ∈ [0, T ].

Employing the triangle inequality ‖u(t) − uDG(t)‖0,Ω ≤ ‖η(t)‖0,Ω + ‖ξ(t)‖0,Ω and
applying (3.14) to ‖η(t)‖0,Ω once again, we obtain (3.37).

Remark 3.14. Suppose, for example, that u ∈ H1(0, T ; Hk(Ω)), k ≥ 2, and that
pκ = p for all κ ∈ Th, and let h = maxκ∈Th

hκ. Then, (3.32) and (3.37) take the form

h

p3/2
‖u− uDG‖L∞(0,T ;H1(Ω,Th)) +

1

p
‖u− uDG‖L∞(0,T ;L2(Ω)) ≤ C

hs

pk
‖u‖H1(0,T ;Hk(Ω)),

where the constant C > 0 is as above, 1 ≤ s ≤ min {p + 1, k}, and p ≥ 1. Hence the
error bounds (3.32) and (3.37) are fully optimal in h; the error bound (3.32) in the
broken H1 norm is suboptimal in p by half a power of p, while the error bound (3.37)
in the L2 norm is suboptimal in p by a single power of the polynomial degree p.

4. Conclusions. We have been concerned with the error analysis of the spatial
discretization of semilinear parabolic initial boundary value problems with mixed
Dirichlet and Neumann boundary conditions by interior penalty hp-DGFEMs. We
developed techniques for handling locally Lipschitz-continuous nonlinearities in the
error analysis, which allowed us to perform our proofs on the entire time interval
of existence of the solution. We showed that the presence of a locally Lipschitz
nonlinearity, satisfying a certain growth condition, does not degrade the convergence
rates observed in the case of a linear parabolic PDE. The resulting error bounds are
optimal in h and slightly suboptimal in p. As we have noted in the introduction,
full hp-optimality of the error bounds can be restored by hypothesizing piecewise
regularity of the solution in augmented Sobolev spaces instead of classical Sobolev
spaces, as was done in [17] in the case of linear elliptic equations. To the best of our
knowledge, the error bounds derived in the present paper are the first of this kind
for semilinear parabolic equations with locally Lipschitz-continuous nonlinearity. The
extension of the analysis of our semidiscrete scheme to simple fully discrete schemes,
using DGFEM time discretization, say, would proceed along very similar lines and is,
therefore, not considered here (see [29], which also includes numerical experiments).

Our error bound for the nonsymmetric version of the method was established in
the broken L2(0, T ; H1(Ω)) norm, while for the symmetric version of the method we
derived our error bounds in the broken L∞(0, T ; L2(Ω)) and L∞(0, T ; H1(Ω)) norms.
As we have noted above, all of these bounds are optimal with respect to h. Due to
the fact that the bilinear form featured in the nonsymmetric version of the method is
not adjoint-consistent, one cannot expect to observe a fully optimal bound for NSIP
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DGFEM in the L∞(0, T ; L2(Ω)) norm with respect to h—at least not for all p; in fact,
it is well documented in the literature that, already in the case of Poisson’s equation
with a homogeneous Dirichlet boundary condition, the (elliptic) NSIP DGFEM is
optimally convergent with respect to h only when p ≥ 1 is an odd integer (see, for
example, [20]). Yet, one may nevertheless wonder whether it is possible to derive, in-
stead of the broken L2([0, T ],H1(Ω)) norm, an optimal error bound for NSIP DGFEM
in the broken L∞([0, T ],H1(Ω)) norm, as has been done for SIP DGFEM. This is an
open problem: the main technical difficulty is that the bilinear form of NSIP DGFEM
is nonsymmetric (as well as adjoint-inconsistent), so the usual testing procedure for
convergence analysis in the L∞([0, T ],H1(Ω)) norm for second-order parabolic equa-
tions of the form ξ′+Aξ = g, based on taking the L2(Ω) inner product of the equation
with ξ′, fails to deliver a helpful energy estimate.

Finally, we note that by analogous arguments to those presented above all of our
results can be extended to the case of a general locally Lipschitz-continuous nonlin-
earity which, instead of inequality (1.2), satisfies

(4.1) |f(x, t, w) − f(x, t, v)| ≤ C(|w| , |v|) |w − v|
{

∀w, v ∈ R,

a.e. (x, t) ∈ Ω × (0, T ],

where C(·, ·) is a continuous function on [0,∞)2. Since, this time, no growth condi-
tion of the kind C(|w|, |v|) ≤ Gf (1 + |w| + |v|)γ is assumed, one cannot rely on the
broken Sobolev–Poincaré inequality. In fact, the only way to control terms such as
C(‖u(t)‖∞,Ω, ‖Πu(t)‖∞,Ω) and C(‖uDG(t)‖∞,Ω, ‖Πu(t)‖∞,Ω), which will arise in the
error analysis, is to show that maxt∈[0,T ] ‖Πu(t)‖∞,Ω and maxt∈[0,T ] ‖uDG(t)‖∞,Ω can
be bounded, independent of p and h. For the first of these, we first note that

‖Πu(t)‖∞,Ω ≤ ‖u(t)‖∞,Ω + ‖u(t) − Πu(t)‖∞,Ω.

We then show the smallness of the second term by using the smallness of the projec-
tion error ‖u(t) − Πu(t)‖1,h, the smallness of ‖u(t) − zhκ

pκ
(u(t))‖∞,κ, and an inverse

inequality relating ‖ · ‖∞,Ω to ‖ · ‖1,h. To bound ‖uDG(t)‖∞,Ω, we note that

‖uDG(t)‖∞,Ω ≤ ‖ξ(t)‖∞,Ω + ‖Πu(t)‖∞,Ω

and use an inverse inequality to relate the ‖ · ‖∞,Ω norm of ξ to its ‖ · ‖1,h norm. In
order to accommodate the use of the inverse inequality, one has then to assume in
the analysis of both SIP DGFEM and NSIP DGFEM that the mesh is quasi-uniform
in the sense of (3.20). For our analysis of SIP DGFEM under hypothesis (1.2), this
strong mesh-regularity assumption was not required. Thus, and for reasons of brevity,
we chose to base this paper on (1.2) rather than on the more general local Lipschitz
condition (4.1) which, at the expense of more restrictive hypotheses on the mesh,
makes no assumption on the growth rate of C(|w|, |v|) as |w|, |v| → ∞.
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A POSTERIORI ERROR ESTIMATES FOR LOWEST-ORDER
MIXED FINITE ELEMENT DISCRETIZATIONS OF

CONVECTION-DIFFUSION-REACTION EQUATIONS∗
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Abstract. We establish residual a posteriori error estimates for lowest-order Raviart–Thomas
mixed finite element discretizations of convection-diffusion-reaction equations on simplicial meshes
in two or three space dimensions. The upwind-mixed scheme is considered as well, and the emphasis
is put on the presence of an inhomogeneous and anisotropic diffusion-dispersion tensor and on a
possible convection dominance. Global upper bounds for the approximation error in the energy
norm are derived, where in particular all constants are evaluated explicitly, so that the estimators
are fully computable. Our estimators give local lower bounds for the error as well, and they hold
from the cases where convection or reaction are not present to convection- or reaction-dominated
problems; we prove that their local efficiency depends only on local variations in the coefficients
and on the local Péclet number. Moreover, the developed general framework allows for asymptotic
exactness and full robustness with respect to inhomogeneities and anisotropies. The main idea of
the proof is a construction of a locally postprocessed approximate solution using the mean value and
the flux in each element, known in the mixed finite element method, and a subsequent use of the
abstract framework arising from the primal weak formulation of the continuous problem. Numerical
experiments confirm the guaranteed upper bound and excellent efficiency and robustness of the
derived estimators.
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convection dominance, mixed finite element method, upwind weighting, a posteriori error estimates
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1. Introduction. We consider the convection-diffusion-reaction problem

−∇ · (S∇p) + ∇ · (pw) + rp = f in Ω,(1.1a)

p = 0 on ∂Ω,(1.1b)

where S is in general an inhomogeneous and anisotropic (nonconstant full-matrix)
diffusion-dispersion tensor, w is a (dominating) velocity field, r a reaction function,
f a source term, and Ω ⊂ R

d, d = 2, 3, is a polygonal (polyhedral) domain (open,
bounded, and connected set). Our purpose is to derive a posteriori error estimates
for the lowest-order Raviart–Thomas mixed finite element discretization of the prob-
lem (1.1a)–(1.1b) on simplicial meshes (consisting of triangles if d = 2 and of tetra-
hedra if d = 3), as well as for its upwind variant; cf. Douglas and Roberts [17] and
Dawson [16].
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and Department of Process Modeling, Faculty of Mechatronics and Interdisciplinary Engineering
Studies, Technical University of Liberec, Czech Republic.

http://www.siam.org/journals/sinum/45-4/65318.html
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A posteriori error estimates, pioneered by Babuška and Rheinboldt [7], are nowa-
days well established for primal discretizations of second-order elliptic problems in-
volving only a diffusion term; cf., for example, the survey by Verfürth [32] for the con-
forming finite element method. An approach encompassing all conforming, noncon-
forming, and discontinuous finite element methods was recently proposed by Ainsworth
[3], using a Helmholtz-like decomposition of the error in the numerical solution into its
conforming and nonconforming parts in order to give a computable error bound. In
most cases the analysis is given only for S being an identity matrix; an in-depth analy-
sis for the general inhomogeneous and anisotropic diffusion tensor in the framework of
the finite element method was presented by Bernardi and Verfürth [9]. Similar results
have been obtained by Petzoldt [28], for nonconforming finite elements by Ainsworth
[4], and some developments for the finite volume box scheme (in the given case actu-
ally equivalent to the lowest-order Raviart–Thomas mixed finite element method) are
presented by El Alaoui and Ern [19]. In all these references, a hypothesis of the type
“monotonicity around vertices” on the distribution of the inhomogeneities is necessary.
In recent years a posteriori error estimates have been extended to convection-diffusion
problems as well. We cite in particular Verfürth [33], who derived estimates in the
energy norm for the conforming Galerkin method and its stabilized SUPG (streamline
upwind Petrov–Galerkin) version. His estimates are both reliable (yielding a global
upper bound on the error between the exact and approximate solutions) and locally
efficient (giving a local lower bound). Moreover, they are semirobust in the sense
that the lower and upper bounds differ by constants whose dependence on the local
mesh discretization parameter vanishes as this approaches the ratio of the smallest
eigenvalue of S to the local size of the velocity field (i.e., when the local Péclet num-
ber gets sufficiently small). Recently, Verfürth [34] improved his results while giving
estimates which are fully robust with respect to convection dominance in a norm in-
corporating a dual norm of the convective derivative. The new norm is not, however,
easily computable, there is no local lower bound, and the estimators do not change
with respect to [33], and hence the adaptive strategies will remain the same. Finally,
a different approach, yielding an estimate in the L1-norm, independent of the size of
the diffusion tensor, is given by Ohlberger [26] in the framework of the vertex-centered
finite volume method.

In comparison with primal methods, the literature on a posteriori error estimates
in the mixed finite element method is much less extensive. Most of the results have
been obtained for the Poisson equation (i.e., w = r = 0 in (1.1a)–(1.1b)) in two
space dimensions: Alonso [5] derived estimates for the error in the flux u := −S∇p
of the scalar variable p and either Raviart–Thomas [29] or Brezzi–Douglas–Marini
[11] mixed finite elements. Braess and Verfürth [10] proved estimates for both u and
p for Raviart–Thomas elements, based on mesh-dependent norms and a saturation
assumption. Carstensen [13] derived rigorous estimates for various mixed finite ele-
ment schemes and for both u and p. Achchab et al. [1] can imbed Raviart–Thomas
elements in their hierarchical a posteriori error estimates, whereas Carstensen and
Bartels [14] give an upper bound using averaging techniques. Kirby [24] proposed
simple residual-based estimates for Raviart–Thomas elements, where, however, the
flux estimator is not proved to yield a lower bound and is, moreover, obtained under
a saturation assumption. Wheeler and Yotov [39] were able to obtain a posteriori
error estimates for the mortar version of all families of mixed finite elements, also in-
cluding the three-dimensional case; a saturation assumption was, however, necessary
for the velocity estimate. Recently, Lovadina and Stenberg [25] employed an idea of
postprocessing similar to that used in this paper (with, however, the postprocessed



1572 MARTIN VOHRALÍK

scalar unknown of one degree lower than the one used here) in order to prove reliable
and efficient a posteriori error estimates for both the scalar and flux variables in a
mesh-dependent norm. Finally, Hoppe and Wohlmuth [22] treat a diffusion-reaction
problem in two space dimensions and use the relation of lowest-order Raviart–Thomas
mixed finite elements to nonconforming finite elements derived by Arnold and Brezzi
in [6] in order to control, under a saturation assumption, the L2-norm error in the
primal variable p.

To the author’s knowledge, no a posteriori estimates for mixed finite element
discretizations of convection-diffusion(-reaction) problems have been presented in the
literature so far. We do this in section 4 of this paper, after stating the assumptions
on the data and formulating the continuous problem in section 2 and after defining the
schemes in section 3. The estimates are derived in the energy norm for a new locally
(on each element) postprocessed scalar variable p̃h such that its flux −S∇p̃h is equal
to uh and such that its mean on each element is equal to ph. By this construction, we
actually have the L2(Ω) control over both uh−u and p̃h−p. Our estimates, in contrast
to the usual practice, do not include any undetermined multiplicative constants, so
that they are fully (and locally and easily) computable. They represent local lower
bounds for the error as well, with efficiency constants of the form c1 + c2 min

{
Pe, �

}
,

where Pe (the local Péclet number) and � are given below by (4.8) and where c1, c2
depend only on local variations in S (i.e., on local inhomogeneities and anisotropies),
on local variations in w and r, on the space dimension, on the polynomial degree of f ,
and on the shape-regularity parameter of the mesh. They hold from the cases where
convection or reaction are not present to convection- or reaction-dominated problems
and are in particular semirobust as in [33] with respect to convection dominance. Next,
in the pure diffusion case, we can write the general framework for our estimators in a
form of an infimum over all H1

0 (Ω) functions plus a higher-order residual term, which
yields asymptotic exactness and full robustness with respect to inhomogeneities and
anisotropies, and this without any “monotonicity” hypothesis. Although in numerical
experiments we use only local discrete evaluations of the estimators, they remain
almost asymptotically exact (the ratio of the estimated and actual error is close to one,
and this even in the convection-diffusion-reaction case) and quite robust. Finally, as an
interesting consequence of our analysis, we find that in the pure diffusion case with
piecewise constant coefficients, the lowest-order mixed finite elements represent an
exact three-point scheme in one space dimension, and in two or three space dimensions,
the postprocessed approximation is exact with respect to some generalized continuous
solution. All these issues are discussed in detail in section 5.

Next, section 6 presents some discrete properties of the schemes and of the post-
processed scalar variable p̃h. Namely, we show that p̃h is nonconforming in the sense
that it is not included in H1

0 (Ω), but we prove that the means of its traces are con-
tinuous across interior sides (edges if d = 2, faces if d = 3) and equal to zero on
exterior sides of the mesh; they are, in fact, shown to equal the Lagrange multipliers
from the hybridized forms of the schemes. The actual proofs of our a posteriori error
estimates and of their local efficiency are then given in section 7. The key element
is Lemma 7.1 which states a primal weak formulation-based abstract framework al-
lowing for the above-discussed asymptotic exactness and asymptotic robustness. The
nonconformity of p̃h is then treated by the techniques developed in [2, 23, 19]. Nei-
ther any additional regularity of the weak solution nor any saturation assumption is
needed. Finally, we illustrate the accuracy of the derived estimates in section 8 in
several numerical experiments.

In this paper we focus only on lowest-order methods since in practice they are
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by far the most commonly used and hence we believe they deserve a special treat-
ment; on the other hand, we do cover the three-dimensional case. Moreover, we have
shown in [36] that there exists a local flux-expression formula in lowest-order mixed
finite elements and that they can namely be implemented with only one unknown per
element, which enables us to significantly decrease their traditional increased compu-
tational cost. The extension to higher-order schemes is an ongoing work. Finally, we
have also generalized the presented type of a posteriori error estimates to the finite
volume method in the forthcoming paper [38]. We treat there among other questions
a larger variety of meshes and general inhomogeneous Dirichlet or Neumann boundary
conditions. This paper is a detailed description of the results previously announced
in [37].

2. Notation, assumptions, and the continuous problem. We introduce
here the notation, define admissible triangulations to which the space W0(Th) and the
data will be related, and finally give details on the continuous problem (1.1a)–(1.1b).

2.1. Notation. For a domain S ⊂ R
d, we denote by L2(S) and L2(S) = [L2(S)]d

the Lebesgue spaces, by (·, ·)S the L2(S) or L2(S) inner product, and by ‖ · ‖S
the associated norm; |S| stands for the Lebesgue measure of S. Next, H1(S) and
H1

0 (S) are the Sobolev spaces of functions with square-integrable weak derivatives,
H(div, S) = {v ∈ L2(S);∇ · v ∈ L2(S)} is the space of functions with square-
integrable weak divergences, and 〈·, ·〉∂S stands for (d− 1)-dimensional inner product

on ∂S or for the duality pairing between H− 1
2 (∂S) and H

1
2 (∂S). We will also use the

“broken Sobolev space” H1(Th) := {ϕ ∈ L2(Ω);ϕ|K ∈ H1(K) ∀K ∈ Th}. In what
follows we conceptually denote by CA, cA constants dependent only on a quantity A.

2.2. Triangulation, Poincaré and Friedrichs inequalities, and the space
W0(Th). We suppose that Th for all h > 0 consists of closed simplices such that
Ω =

⋃
K∈Th

K and such that if K,L ∈ Th, K 	= L, then K ∩ L is either an empty
set or a common face, edge, or vertex of K and L. Let hK denote the diameter of
K and let h := maxK∈Th

hK . We make the following shape-regularity assumption on
the family of triangulations {Th}h, denoting κK := |K|/hd

K .
Assumption A (shape-regularity of the meshes). There exists a constant κT > 0

such that minK∈Th
κK ≥ κT for all h > 0.

Let ρK denote the diameter of the largest ball inscribed in K. Then Assumption A
is equivalent to the usual requirement of the existence of a constant θT > 0 such that
maxK∈Th

hK/ρK ≤ θT for all h > 0. We next denote by Eh the set of all sides of Th,
by E int

h the set of interior, by Eext
h the set of exterior, and by EK the set of all the

sides of an element K ∈ Th. Finally, hσ stands for the diameter of σ ∈ Eh.
Let K ∈ Th and ϕ ∈ H1(K). Two inequalities play an essential role in our

analysis. First, the Poincaré inequality states that

(2.1) ‖ϕ− ϕK‖2
K ≤ CP,dh

2
K‖∇ϕ‖2

K ,

where ϕK is the mean of ϕ over K, ϕK := (ϕ, 1)K/|K|, and where the constant CP,d

can for a simplex (using its convexity) be evaluated as d/π; cf. [27, 8]. Next, the
following generalized Friedrichs inequalities have been proved in [35, Lemma 4.1]:

(2.2) (ϕK − ϕσ)2 ≤ CF,d
h2
K

|K| ‖∇ϕ‖2
K , ‖ϕ− ϕσ‖2

K ≤ CF,dh
2
K‖∇ϕ‖2

K .

Here ϕσ is the mean of ϕ over σ ∈ EK , ϕσ := 〈ϕ, 1〉σ/|σ|, and CF,d = 3d.
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We finally define the space W0(Th) of functions with mean values of the traces
continuous across interior sides and zero on exterior sides,

W0(Th) :=
{
ϕ ∈ L2(Ω) ;ϕ|K ∈ H1(K) ∀K ∈ Th,
〈ϕ|K − ϕ|L, 1〉σK,L

= 0 ∀σK,L ∈ E int
h ,(2.3)

〈ϕ, 1〉σ = 0 ∀σ ∈ Eext
h

}
,

and recall the discrete Friedrichs inequality

(2.4) ‖ϕ‖2
Ω ≤ CDF

∑
K∈Th

‖∇ϕ‖2
K ∀ϕ ∈ W0(Th), ∀h > 0,

where CDF depends only on κT and infb∈Rd{thickb(Ω)}; cf. [35, Theorem 5.4].

2.3. Data. We suppose that there exists a basic triangulation T̃h of Ω such that
the data of the problem (1.1a)–(1.1b) are related to T̃h in the following way.

Assumption B (data).
(B1) SK := S|K is a constant, symmetric, bounded, and uniformly positive definite

tensor such that cS,K v · v ≤ SKv · v ≤ CS,K v · v, cS,K > 0, CS,K > 0, for

all v ∈ R
d and all K ∈ T̃h;

(B2) w ∈ RTN0(T̃h) satisfies
∣∣w|K

∣∣ ≤ Cw,K , Cw,K ≥ 0, for all K ∈ T̃h;
(B3) rK := r|K is a constant for all K ∈ T̃h;
(B4) 1

2∇·w|K+r|K = cw,r,K and
∣∣∇·w|K+rK

∣∣ = Cw,r,K , cw,r,K ≥ 0, Cw,r,K ≥ 0,

for all K ∈ T̃h;
(B5) f |K is a polynomial of degree at most k for each K ∈ T̃h;
(B6) if cw,r,K = 0, then Cw,r,K = 0.

The assumptions that S and r are piecewise constant on T̃h, that w ∈ RTN0(T̃h)
(cf. section 3.1 below for the definition of this space), and that f is a piecewise
polynomial are made for the sake of simplicity and are usually satisfied in practice.
If the functions at hand do not fulfill these requirements, interpolation can be used.
Finally, note that Assumption (B6) allows cw,r,K = 0 but w|K 	= 0.

2.4. Continuous problem. Let Th be, as throughout the whole paper, a re-
finement of T̃h. We define a bilinear form B by
(2.5)

B(p, ϕ) :=
∑

K∈Th

{
(S∇p,∇ϕ)K + (∇ · (pw), ϕ)K + (rp, ϕ)K

}
, p, ϕ ∈ H1(Th),

and the corresponding energy (semi)norm by
(2.6)

|||ϕ|||2Ω :=
∑

K∈Th

|||ϕ|||2K , |||ϕ|||2K := (S∇ϕ,∇ϕ)K + cw,r,K‖ϕ‖2
K , ϕ ∈ H1(Th).

In this way B(·, ·) and ||| · |||Ω are well defined for p, ϕ ∈ H1(Ω) as well as for p, ϕ that
are only piecewise regular. Note also that ||| · |||Ω is a norm on W0(Th) even if there
exists K ∈ Th such that cw,r,K = 0 because of the discrete Friedrichs inequality (2.4)
and Assumption (B1). The weak formulation of the problem (1.1a)–(1.1b) is then to
find p ∈ H1

0 (Ω) such that

(2.7) B(p, ϕ) = (f, ϕ)Ω ∀ϕ ∈ H1
0 (Ω).
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Assumption B, the Green theorem, and the Cauchy–Schwarz inequality imply that

B(ϕ,ϕ) = |||ϕ|||2Ω ∀ϕ ∈ H1
0 (Ω),(2.8)

B(ϕ,ϕ) = |||ϕ|||2Ω +
1

2

∑
K∈Th

〈ϕ2,w · n〉∂K ∀ϕ ∈ H1(Th),(2.9)

B(p, ϕ) ≤ max

{
1, max

K∈Th

{
Cw,r,K

cw,r,K

}}
|||p|||Ω|||ϕ|||Ω

+ max
K∈Th

{
Cw,K√
cS,K

}
|||p|||Ω‖ϕ‖Ω ∀p, ϕ ∈ H1(Th),(2.10)

and problem (2.7) under Assumption B, in particular, admits a unique solution.
Remark 2.1 (notation). In estimate (2.10), if cw,r,K = 0, the term Cw,r,K/cw,r,K

should be evaluated as zero, since Assumption (B6) in this case gives Cw,r,K = 0. To
simplify notation, we systematically use the convention 0/0 = 0 throughout the text.

3. Mixed finite element schemes. We define in this section the centered and
upwind-weighted mixed finite element schemes.

3.1. Function spaces. Let RTN0
−1(Th) be the space of elementwise linear vec-

tor functions uh such that, on each K ∈ Th, uh|K = (aK + dKx, bK + dKy) if d = 2
and uh|K = (aK + dKx, bK + dKy, cK + dKz) if d = 3. The Raviart–Thomas–Nédélec
space RTN0(Th) imposes the continuity of the normal trace across all σ ∈ E int

h and
is given by RTN0(Th) := RTN0

−1(Th) ∩ H(div,Ω). There is one basis function vσ

associated with each σ ∈ Eh. For σK,L ∈ E int
h , vσK,L

(x) = 1
d|K| (x − VK), x ∈ K;

vσK,L
(x) = 1

d|L| (VL−x), x ∈ L; vσK,L
(x) = 0 otherwise, where VK is the vertex of K

opposite to σ and VL the vertex of L opposite to σ. We suppose that the orientation
of vσK,L

, i.e., the order of K and L, is fixed. For a boundary side σ, the support
of vσ consists only of K ∈ Th such that σ ∈ EK . Next, the space Φ(Th) consists of
elementwise constant scalar functions; we denote ph|K = pK for ph ∈ Φ(Th). Recall
also that ∇ · uh ∈ Φ(Th) for each uh ∈ RTN0

−1(Th).

3.2. Centered scheme. The centered mixed finite element scheme (cf. [17])
reads: find uh ∈ RTN0(Th) and ph ∈ Φ(Th) such that

(S−1uh,vh)Ω − (ph,∇ · vh)Ω = 0 ∀vh ∈ RTN0(Th),(3.1a)

(∇ · uh, φh)Ω − (S−1uh · w, φh)Ω + ((r + ∇ · w)ph, φh)Ω = (f, φh)Ω(3.1b)

∀φh ∈ Φ(Th).

3.3. Upwind-weighted scheme. The upwind-weighted mixed finite element
scheme reads: find uh ∈ RTN0(Th) and ph ∈ Φ(Th) such that

(S−1uh,vh)Ω − (ph,∇ · vh)Ω = 0 ∀vh ∈ RTN0(Th),(3.2a)

(∇ · uh, φh)Ω +
∑

K∈Th

∑
σ∈EK

p̂σwK,σφK + (rph, φh)Ω = (f, φh)Ω(3.2b)

∀φh ∈ Φh(Th),
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where wK,σ := 〈w ·n, 1〉σ, σ ∈ EK , with n being the unit normal vector of the side σ,
outward to K, and where p̂σ is the weighted upwind value defined by

(3.3) p̂σ :=

{
(1 − νσ)pK + νσpL if wK,σ ≥ 0,

(1 − νσ)pL + νσpK if wK,σ < 0,

if σ is an interior side between elements K and L, and

(3.4) p̂σ :=

{
(1 − νσ)pK if wK,σ ≥ 0,

νσpK if wK,σ < 0,

if σ is a boundary side. Here, νσ ∈ [0, 1/2] is the coefficient of the amount of upstream
weighting which may be, in order to reduce the excessive numerical diffusion added
by the full upstream weighting used in [16], chosen as
(3.5)

νσ :=

⎧⎪⎪⎨⎪⎪⎩
min

{
cS,σ

|σ|
hσ|wK,σ|

,
1

2

}
if wK,σ 	= 0 and σ ∈ E int

h ,

or if σ ∈ Eext
h and wK,σ > 0,

0 if wK,σ = 0 or if σ ∈ Eext
h and wK,σ < 0,

where cS,σ is the harmonic average of cS,K and cS,L if σ = ∂K∩∂L and cS,K otherwise.

4. A posteriori error estimates. We summarize in this section our a posteriori
estimates on the error between the weak solution p and a postprocessed variable p̃h,
which we shall define first, along with its modified Oswald interpolate.

4.1. A postprocessed scalar variable p̃h. In standard mixed finite element
theory (see, e.g., Brezzi and Fortin [12] or Roberts and Thomas [31]) the two variables
ph and uh are considered as independent. In contrast, the basis for our a posteriori
error estimates is a construction of a postprocessed scalar variable p̃h which links ph
and uh on each simplex in the following way:

−SK∇p̃h|K = uh|K ∀K ∈ Th,(4.1a)

(p̃h, 1)K
|K| = pK ∀K ∈ Th.(4.1b)

Note that, in particular, if S = Id, p̃h|K = −dK/2 (x2 +y2)−aKx−bKy−eK if d = 2
and p̃h|K = −dK/2 (x2+y2+z2)−aKx−bKy−cKz−eK if d = 3. Here aK–dK are the
coefficients from section 3.1, and eK is given so that (4.1b) was satisfied. If S 	= Id,
then p̃h verifying (4.1a)–(4.1b) still exists due to the symmetry of S and is this time a
full second-order polynomial on each K ∈ Th. The new variable p̃h is nonconforming,
p̃h 	∈ H1

0 (Ω), but, by Lemma 6.1 below, p̃h ∈ W0(Th); i.e., its means on interior
sides are continuous and its means on exterior sides are equal to zero. In fact, by
Lemma 6.4 below, these means coincide with the Lagrange multipliers of hybridized
schemes. Moreover, the centered scheme can equivalently be rewritten with the help
of p̃h (see Lemma 6.2 below), which corresponds to the employment of the Lagrange
multipliers in the convection term. Note that the proposed postprocessing is local on
each element and its cost is negligible.
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4.2. A modified Oswald interpolation operator. Let Pl(Th) denote the
space of polynomials of degree at most l on each simplex, not necessary continu-
ous. The Oswald interpolation operator IOs : Pl(Th) → Pl(Th) ∩ H1

0 (Ω) has been
considered, e.g., in [2, 23, 19]. Given a function ϕh ∈ Pl(Th), IOs(ϕh) is prescribed at
the Lagrangian nodes (degrees of freedom; cf. [15, section 2.2]) of Pl(Th) ∩H1

0 (Ω) by
the average of the values of ϕh at this node. We will now construct its modification
which preserves the means of p̃h over the sides, since this will appear crucial when
convection is present.

The modified Oswald interpolation operator IMO : P2(Th) ∩W0(Th) → Pd(Th) ∩
H1

0 (Ω) is defined as follows: at all Lagrangian nodes of Pd(Th) ∩ H1
0 (Ω), except for

those lying at the barycenters of the sides, the value of IMO(ϕh) is given by the average
of the values of ϕh at this node (as in the standard Oswald interpolation operator).
The values at the barycenters of the sides are then established so that the means of
IMO(ϕh) over the sides were given by the means of ϕh. (The space P2(Th) ∩H1

0 (Ω)
in three space dimensions does not have Lagrangian nodes at side barycenters; this
is the reason to use P3(Th) ∩H1

0 (Ω) in this case.) It is easily verified that, as in the
case of the Oswald interpolation operator, IMO(ϕh) is a uniquely defined piecewise
polynomial continuous function. Let [ϕh] be the jump of a function ϕh across a side
σ: if σ = ∂K ∩ ∂L, then [ϕh] is the difference of the value of ϕh in K and L (the
order of K and L has no influence on what follows), and if σ ∈ Eext

h , then [ϕh] = ϕh.
Then the following lemma is an easy modification of [23, Theorem 2.2] (σ ∩ K 	= ∅
when σ contains a vertex of K).

Lemma 4.1 (modified Oswald interpolation operator). Let ϕh ∈ P2(Th)∩W0(Th),
and let IMO(ϕh) ∈ Pd(Th) ∩H1

0 (Ω) be constructed as described above. Then

‖∇(ϕh − IMO(ϕh))‖2
K ≤ C1

∑
σ;σ∩K �=∅

h−1
σ ‖[ϕh]‖2

σ ,

where the constant C1 depends only on d and κT .

4.3. A posteriori error estimates. We now finally state the a posteriori error
estimates. Let K ∈ Th. Let us first set

m2
K := min

{
CP,d

h2
K

cS,K
,

1

cw,r,K

}
.

We define the residual estimator ηR,K by

(4.2) ηR,K := mK‖f + ∇ · (S∇p̃h) −∇ · (p̃hw) − rp̃h‖K .

Next, denote v := p̃h − IMO(p̃h). The nonconformity estimator ηNC,K is given by

(4.3) ηNC,K := |||v|||K

and the convection estimator ηC,K by

(4.4)

ηC,K := min

{
‖∇ · (vw) − 1

2v∇ · w‖K√
cw,r,K

,

(
CP,dh

2
K‖∇v · w‖2

K

cS,K
+

9‖v∇ · w‖2
K

4cw,r,K

) 1
2

}
.

Finally, let

(4.5) m2
σ := min

{
max

K;σ∈EK

{
CF,d

|σ|h2
K

|K|cS,K

}
, max
K;σ∈EK

{
|σ|

|K|cw,r,K

}}
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for all σ ∈ Eh. We set p̃σ := 〈p̃h, 1〉σ/|σ|, the mean of the postprocessed scalar variable
p̃h over a side σ ∈ Eh; recall that p̂σ is the upwind value given by (3.3) or (3.4); and
define the upwinding estimator ηU,K by

(4.6) ηU,K :=
∑
σ∈EK

mσ‖(p̂σ − p̃σ)w · n‖σ .

We have the following a posteriori error estimates.
Theorem 4.2 (a posteriori error estimate for the centered mixed finite element

scheme). Let p be the weak solution of the problem (1.1a)–(1.1b) given by (2.7), and
let p̃h be the postprocessed solution of the centered mixed finite element scheme (3.1a)–
(3.1b) given by (4.1a)–(4.1b). Then

(4.7) |||p− p̃h|||Ω ≤
{ ∑

K∈Th

η2
NC,K

} 1
2

+

{ ∑
K∈Th

(ηR,K + ηC,K)2

} 1
2

.

Theorem 4.3 (a posteriori error estimate for the upwind-weighted mixed fi-
nite element scheme). Let p be the weak solution of the problem (1.1a)–(1.1b) given
by (2.7), and let p̃h be the postprocessed solution of the upwind-weighted mixed finite
element scheme (3.2a)–(3.2b) given by (4.1a)–(4.1b). Then

|||p− p̃h|||Ω ≤
{ ∑

K∈Th

η2
NC,K

} 1
2

+

{ ∑
K∈Th

(ηR,K + ηC,K + ηU,K)2

} 1
2

.

4.4. Local efficiency of the estimates. Let the local Péclet number PeK and
�K be given by

(4.8) PeK := hK
Cw,K

cS,K
, �K :=

Cw,K√
cw,r,K

√
cS,K

.

Next, let, for ϕ ∈ H1(K),

α∗,K := cS,K

(
CS,K

cS,K
+ 2�2

K

)
, β∗,K := cw,r,K +

∣∣∇ · w|K
∣∣2

2cw,r,K
,

α#,K := cS,K

(
CS,K

cS,K
+ CP,dPe2

K

)
, β#,K := cw,r,K +

9
∣∣∇ · w|K

∣∣2
4cw,r,K

,

|||ϕ|||2∗,K := α∗,K‖∇ϕ‖2
K + β∗,K‖ϕ‖2

K , |||ϕ|||2#,K := α#,K‖∇ϕ‖2
K + β#,K‖ϕ‖2

K .

Finally, let

(4.9) cS,ωK
:= min

L;L∩K �=∅
cS,L, cw,r,ωK

:= min
L;L∩K �=∅

cw,r,L, cS,Ω := min
K∈Th

cS,K .

The theorem below discusses the local efficiency of our a posteriori error estimators.
Theorem 4.4 (local efficiency of the a posteriori error estimators). Let p be the

weak solution of the problem (1.1a)–(1.1b) given by (2.7), and let p̃h be the postpro-
cessed solution of the centered mixed finite element scheme (3.1a)–(3.1b) or of the
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upwind-weighted mixed finite element scheme (3.2a)–(3.2b) given by (4.1a)–(4.1b).
Then, for the residual estimator ηR,K on each K ∈ Th, there holds
(4.10)

ηR,K ≤ C2|||p− p̃h|||K

{√
CS,K

cS,K
max

{
1,

Cw,r,K

cw,r,K

}
+ min

{
PeK ,

√
CS,K

cS,K
�K

}}
,

where the constant C2 depends only on the space dimension d, on the shape-regularity
parameter κT , and on the polynomial degree k of f (see Lemma 7.6 below). Next, for
the nonconformity and velocity estimators ηNC,K and ηC,K on each K ∈ Th, we have

η2
NC,K + η2

C,K ≤ C3 min

{
α∗,K
cS,ωK

+ min

{
β∗,K

cw,r,ωK

,
β∗,Kh2

K

cS,ωK

}
,

α#,K

cS,ωK

+ min

{
β#,K

cw,r,ωK

,
β#,Kh2

K

cS,ωK

}} ∑
L;L∩K �=∅

|||p− p̃h|||2L(4.11)

+ C3β#,K inf
sh∈P2(Th)∩H1

0 (Ω)

∑
L;L∩K �=∅

‖p− sh‖2
L ,

where the constant C3 depends only on d and κT (see Lemma 7.7 below). Finally, the
upwinding estimator ηU,K is not efficient and we have only

(4.12)
∑

K∈Th

η2
U,K ≤ C4 max

σ∈Eh

�σ max
K∈Th

�̃K min

{
1

2

∑
K∈Th

‖f‖2
K

cw,r,K
, ‖f‖2

Ω

CDF

cS,Ω

}
,

where CDF is the constant from the discrete Friedrichs inequality (2.4), the constant
C4 depends only on d and κT (see Lemma 7.8 below), and

�σ :=

⎛⎝ max
K;σ∈EK

cS,K

min
K;σ∈EK

cS,K

⎞⎠2

, �̃K := min

⎧⎨⎩(PeK)2, (�K)2
max

L;L∩K∈Eh

cw,r,L

min
L;L∩K∈Eh

cw,r,L

⎫⎬⎭ .

5. Various remarks. We give several remarks in this section.

5.1. Nature of the estimates. The basis of the a posteriori error estimates
derived in this paper is the construction of the postprocessed scalar variable p̃h and
the consequent application of the abstract framework arising from the primal weak
formulation (2.7) of the continuous problem; cf. Lemmas 7.1 and 7.2 below. Com-
pared to Galerkin finite element approximations, the crucial advantage is that p̃h, an
elementwise quadratic polynomial, has the normal traces of its flux −S∇p̃h (which
is, by (4.1a), nothing else than the mixed finite element vector variable uh) con-
tinuous across interior sides. Hence the side error estimators penalizing the mass
balance common in Galerkin finite element methods (cf. [33]) do not appear here at
all. This advantage is, however, compensated by the fact that p̃h 	∈ H1

0 (Ω), so that
the estimators known from nonconforming and discontinuous Galerkin finite elements
(cf. [19, 23]) appear. Next, whereas in the lowest-order Galerkin finite element method
∇ · (SK∇ph)|K is always equal to zero on all K ∈ Th, the element residuals (4.2) give
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a very good sense. We also notice that using (2.6), (4.1a), and (2.4),

(5.1)

|||p− p̃h|||2Ω =
∑

K∈Th

{
‖S− 1

2 (u − uh)‖2
K + cw,r,K‖p− p̃h‖2

K

}

≥
∑

K∈Th

{
1

2
‖S− 1

2 (u − uh)‖2
K + cw,r,K‖p− p̃h‖2

K

}
+

cS,Ω
2CDF

‖p− p̃h‖2
Ω ,

so that we have the usual mixed finite element L2(Ω) control over the error in both
the scalar and vector unknowns even if cw,r,K = 0 for some K ∈ Th.

5.2. The estimates and their local efficiency with respect to S and w.
We discuss here our a posteriori error estimates and their local efficiency that we have
been able to prove in Theorem 4.4. For further remarks, see the next section.

The minimum in the definition of the residual estimator ηR,K (4.2) prevents it
from growing to extreme values on coarse elements with a small value cS,K when
cw,r,K > 0. Its local efficiency depends only on anisotropy in its element expressed by

the ratio
√
CS,K/cS,K and there is no dependency on inhomogeneities. Next, under

the given assumptions, Cw,r,K/cw,r,K ≤ 2 whenever rK is nonnegative. Finally, the
minimum of the local Péclet number PeK and �K ensures boundedness if cw,r,K 	= 0
and if hK is large and optimal efficiency as PeK becomes small.

The minimum in the definition of the convection estimator ηC,K (4.4) prevents
it from exploding when cw,r,K = 0 but Cw,K 	= 0. Together with the nonconformity
estimator ηNC,K (4.3), they give local efficiency, up to higher-order terms if cw,r,K 	= 0
(the part infsh∈P2(Th)∩H1

0 (Ω)), which is shown to be a function of a local (meaning all
elements sharing a vertex with the given one) maximal ratio of inhomogeneities (the
term

√
α∗,K/cS,ωK

) and of
√

CS,K/cS,K in each element concerning anisotropy. For
further remarks, see the next section. Finally, the efficiency gets into optimal values
with respect to convection dominance as PeK gets sufficiently small. We note also that
the estimate is robust (up to the higher-order term) in the reaction-dominated case
as well, since the quantities Cw,r,K/cw,r,K and

√
β∗,K/cw,r,ωK

remain well bounded
in the limit.

The fact that the upwinding estimator ηU,K (4.6) cannot in general give a lower
bound for the error is quite obvious: it is not difficult to imagine a situation where
p = p̃h, whereas (p̂σ− p̃σ), the difference of the mean value of p̃h on a side σ and of the
combination of the mean values of p̃h on the elements sharing σ, is generally nonzero.
However, we at least show that there is an upper bound for the contributions of this
estimator, which moreover decreases with the local Péclet numbers as O(h). It should
be noted that this estimator does not change the limit optimality of the schemes and
estimates—see section 5.5 below for a remark on this point.

5.3. Asymptotic exactness and asymptotic robustness with respect to
inhomogeneities and anisotropies. We show in this remark that the (global
asymptotic) efficiency of our estimates is indeed even better than that proved in
Theorem 4.4 and discussed in the previous section.

5.3.1. Pure diffusion problems. Let us first consider a pure diffusion problem,
i.e., r = w = 0 in (1.1a)–(1.1b). Using that in this case −∇·(SK∇p̃h|K) = ∇·uh|K =
fK for all K ∈ Th, where fK is the mean value of f over K, the analysis for the general
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case simplifies to the a posteriori error estimate (4.7) with ηC,K = 0 and

η2
R,K := CP,d

h2
K

cS,K
‖f − fK‖2

K ,(5.2)

η2
NC,K := ‖S 1

2∇(p̃h − s)‖2
K ,(5.3)

where in particular s ∈ H1
0 (Ω) can be chosen arbitrarily (cf. Lemma 7.2 below).

Examples are the Oswald or the modified Oswald interpolates of p̃h—in the pure
diffusion case, all the presented results hold similarly for these two operators. Also
note that since ∇· (u−uh)|K = f−fK is fully computable for all K ∈ Th, the control
over ‖u − uh‖Ω + ‖∇ · (u − uh)‖Ω immediately follows using (5.1).

Our main point is, however, that the above developments in fact imply

(5.4) |||p− p̃h|||Ω ≤ inf
s∈H1

0 (Ω)
|||p̃h − s|||Ω +

{ ∑
K∈Th

CP,d
h2
K

cS,K
‖f − fK‖2

K

} 1
2

,

which, in the case where f is piecewise constant, by virtue of

inf
s∈H1

0 (Ω)
|||p̃h − s|||Ω ≤ |||p̃h − p|||Ω,

gives asymptotic global efficiency of such an estimator with a constant 1, i.e., asymp-
totic exactness and asymptotic full robustness with respect to inhomogeneities and
anisotropies (asymptotic with respect to the approximation of p̃h by some, e.g., poly-
nomial, s ∈ H1

0 (Ω) on a fixed grid Th). In the general case, if, e.g., f ∈ H1(Th), then
‖f − fK‖2

K ≤ CP,dh
2
K‖∇f‖2

K , and asymptotic exactness and asymptotic robustness
still hold true (this time asymptotic also with respect to h → 0). Although we use
only the Oswald or the modified Oswald interpolates of p̃h instead of evaluating or
approximating the infimum in (5.4), the numerical experiments of section 8.1 below
show that estimators of section 4.3 remain almost asymptotically exact and robust
with respect to inhomogeneities and anisotropies.

5.3.2. Convection-diffusion-reaction problems. The above considerations
roughly extend to the convection-diffusion-reaction case in the following sense: for the
centered mixed finite element scheme (3.1a)–(3.1b), one has (7.4) and consequently a
superconvergence of the residual estimators ηR,K (4.2) to zero. Next, for divergence-
free velocity fields w, the second arguments of the convection estimators ηC,K in (4.4)
again superconverge to zero since p̃h ∈ W0(Th) (both as h → 0). Hence the estimate
will be asymptotically given only by the nonconformity estimators ηNC,K of (4.3)
and thus by the best approximation of p̃h by s ∈ H1

0 (Ω) such that its means are
given by the means of p̃h. (This property is needed when convection is present; see
Lemma 7.4 below.) This asymptotic almost optimal efficiency is again observed below
in numerical experiments in section 8.2.

5.4. Pure diffusion problems: Mixed finite elements and a generalized
weak solution. Let us in this remark consider r = w = 0 in (1.1a)–(1.1b) and
generalize the classical weak solution to a function p̃ ∈ W0(Th) such that

(5.5) B(p̃, ϕ) = (f, ϕ)Ω ∀ϕ ∈ W0(Th) .

(In)equalities (2.9) and (2.10) together with the discrete Friedrichs inequality (2.4)
ensure the existence of a unique solution of (5.5).
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We thus have

|||p̃− p̃h|||Ω =
B(p̃− p̃h, p̃− p̃h)

|||p̃− p̃h|||Ω
≤ sup

ϕ∈W0(Th), |||ϕ|||Ω=1

B(p̃− p̃h, ϕ)

and develop, similarly as in the proof of Lemma 7.2 below,

B(p̃− p̃h, ϕ) = (f, ϕ)Ω +
∑

K∈Th

{
(∇ · (S∇p̃h), ϕ)K − 〈S∇p̃h · n, ϕ〉∂K

}
=

∑
K∈Th

(f −∇ · uh, ϕ)K +
∑
σ∈Eh

〈uh · n, [ϕ]〉σ

=
∑

K∈Th

(f −∇ · uh, ϕ)K =
∑

K∈Th

(f − fK , ϕ− ϕK)K ,

using the bilinearity of B(·, ·), the definition (5.5) of the generalized weak solution p̃,
the Green theorem in each K ∈ Th, the relation (4.1a) between p̃h and uh, reordering
the summation over the boundaries of elements to the summation over the sides,
using the continuity of the normal trace of uh expressed by uh|K ·nK = −uh|L ·nL on
σK,L ∈ E int

h , the fact that uh ·n is constant on all sides σ ∈ Eh and the definition (2.3)
of the space W0(Th), and finally the equation (3.1b) of the definition of the mixed
finite element scheme (ϕK is the mean of ϕ over K). Next, estimate (7.5) given below
holds true also in this case, so that finally the Cauchy–Schwarz inequality leads to

|||p̃− p̃h|||Ω ≤
{ ∑

K∈Th

η2
R,K

} 1
2

with ηR,K given by (5.2).
First, this is a completely data-dependent a posteriori error estimate, and sec-

ond, this is in fact an a priori error estimate as well: it shows that the mixed finite
element solutions p̃h and uh (cf. (5.1), which still holds true) converge both as O(h2)
in the L2(Ω), L2(Ω), respectively, norms to the generalized weak solution p̃ given
by (5.5) and its flux ũ, ũ|K := −S∇p̃|K (for f ∈ H1(Th)). Moreover, as soon as f
is piecewise constant, p̃h is directly equal to the generalized solution! We emphasize
that these results hold true for S piecewise constant but arbitrarily inhomogeneous
and anisotropic; they apparently confirm the observations of a very good behavior of
mixed methods in these circumstances. There are also very interesting consequences
in one space dimension; cf. section 5.6 below.

5.5. A combination of the centered and upwind-weighted schemes. The
scheme (3.2a)–(3.2b) guarantees stability in the convection-dominated case, but the
additional upwinding estimator ηU,K given by (4.6) is unfortunately not efficient. On
the other hand, the scheme (3.1a)–(3.1b), however precise if h is sufficiently small,
may give completely wrong results on coarse meshes. Hence a good idea may be a
smooth transition from the upwind-weighted to the centered scheme under the form

(S−1uh,vh)Ω − (ph,∇ · vh)Ω = 0 ∀vh ∈ RTN0(Th),

(∇ · uh, φK)K +
∑
σ∈EK

{
(μσp̂σ + (1 − μσ)p̃σ)wK,σφK

}
+ (rph, φK)K = (f, φK)K

∀K ∈ Th,
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where p̂σ is the upstream value and μσ is set to 1−2νσ with νσ given by (3.5). Notice
that such a scheme is fully rewritable in terms of the original unknowns ph, uh, using
that

∑
σ∈EK

p̃σwK,σφK = 〈p̃hw · n, φK〉∂K and Lemma 6.2 below.

5.6. The estimates in one space dimension. As the last remark, it appears
that the above results have interesting particular consequences in one space dimension,
where the two schemes (3.1a)–(3.1b) and (3.2a)–(3.2b) can likewise be defined.

5.6.1. One dimension: No nonconformity. First of all, Lemma 6.1 below
reduces in one space dimension to the assertion that the postprocessed variable p̃h
given by (4.1a)–(4.1b) is continuous, i.e., that in this case p̃h ∈ H1

0 (Ω). An immediate
consequence is that the parts of the a posteriori error estimates of Theorems 4.2–4.3
related to nonconformity disappear.

5.6.2. Lowest-order mixed finite elements: An exact three-point scheme
for one-dimensional diffusion problems with piecewise constant coefficients.
Another quite interesting consequence is related to the remark of section 5.4 and re-
sults of [36]. As there is no nonconformity, the superconvergence O(h2) of both p̃h
and uh (this time towards the weak solution and its flux, coinciding with the gener-
alized one) always holds true, and, moreover, it appears that in one space dimension,
one can always rewrite the schemes with only pK , K ∈ Th, as unknowns. Hence the
lowest-order mixed finite elements represent a scheme with a three-point stencil which
is exact for one-dimensional pure diffusion problems, where the diffusion tensor S (this
time a scalar function) and the right-hand side f are piecewise constant (and hence
possibly arbitrarily discontinuous). This should be compared to the known results for
the finite volume/finite difference method. In particular, the (best known?) scheme
proposed by Ewing, Iliev, and Lazarov in [21] is exact only when the right-hand side
is constant (the diffusion tensor may be piecewise constant); cf. Remark 2.4 in [21].

6. Discrete properties of the schemes. In this section we prove different
properties of the schemes (3.1a)–(3.1b) and (3.2a)–(3.2b) and of the postprocessed
scalar variable p̃h needed in the paper.

Lemma 6.1 (continuity of the means of traces of p̃h). It holds that p̃h ∈ W0(Th);
i.e.,

〈p̃h|K − p̃h|L, 1〉σK,L
= 0 ∀σK,L ∈ E int

h ,

〈p̃h, 1〉σ = 0 ∀σ ∈ Eext
h .

Proof. Let us consider a side σK,L ∈ E int
h . Then taking vh equal to the basis

function vσK,L
(cf. section 3.1) in (3.1a) or (3.2a) yields

0 = −(∇p̃h,vσK,L
)K∪L − (p̃h,∇ · vσK,L

)K∪L

= −〈vσK,L
· n, p̃h〉∂K − 〈vσK,L

· n, p̃h〉∂L = 〈vσK,L
· nK , p̃h|L − p̃h|K〉σK,L

,

using the definition (4.1a)–(4.1b) of p̃h, the fact that ∇ · vh for vh ∈ RTN0(Th) is
constant in each simplex (which allows us to replace ph by p̃h), the Green theorem,
and the fact that vσK,L

has a nonzero normal flux only through σK,L. The first

assertion of the lemma follows by the fact that vh · n for vh ∈ RTN0(Th) is constant
on each side σ ∈ Eh. The proof for boundary sides is completely similar.
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Lemma 6.2 (equivalent form of the centered scheme). The scheme (3.1a)–(3.1b)
can be equivalently written: find uh ∈ RTN0(Th) and ph ∈ Φ(Th) such that

(S−1uh,vh)Ω − (p̃h,∇ · vh)Ω = 0 ∀vh ∈ RTN0(Th),(6.1a)

(∇ · uh, φK)K + 〈p̃hw · n, φK〉∂K + (rp̃h, φK)K = (f, φK)K ∀K ∈ Th,(6.1b)

where p̃h is defined by (4.1a)–(4.1b).
Proof. Since ∇ · vh for vh ∈ RTN0(Th) is constant in each simplex and since r

was in Assumption (B3) supposed piecewise constant as well, one can replace ph by
p̃h in the terms (ph,∇·vh)Ω and (rph, φK)K using (4.1b). Similarly, using in addition
the Green theorem,

−(S−1
K uh · w, φK)K + (pK∇ · w, φK)K = (∇p̃h · w, φK)K + (p̃h∇ · w, φK)K

= (∇ · (p̃hw), φK)K = 〈p̃hw · n, φK〉∂K .

Remark 6.3 (hybridization of the schemes). Mixed finite element schemes can
equivalently be reformulated while relaxing the continuity of the normal trace of
uh required in the definition of the space RTN0(Th) and imposing it instead with
the help of Lagrange multipliers λσ, σ ∈ E int

h ; cf. [12, section V.1.2]. The centered
scheme (3.1a)–(3.1b), taking into account its equivalent form given by Lemma 6.2,
then changes to: find uh ∈ RTN0

−1(Th), ph ∈ Φ(Th), and λσ, σ ∈ E int
h , with p̃h

defined by (4.1a)–(4.1b), such that

∑
K∈Th

⎧⎨⎩(S−1uh,vh)K − (p̃h,∇ · vh)K +
∑

σ∈EK∩Eint
h

〈vh · n, λσ〉σ

⎫⎬⎭ = 0(6.2a)

∀vh ∈ RTN0
−1(Th),

(∇ · uh, φK)K + 〈p̃hw · n, φK〉∂K + (rp̃h, φK)K = (f, φK)K ∀K ∈ Th,(6.2b)

〈(uh · n)|K + (uh · n)|L, 1〉σK,L
= 0 ∀σK,L ∈ E int

h ,(6.2c)

whereas the upwind-weighted scheme (3.2a)–(3.2b) becomes: find uh ∈ RTN0
−1(Th),

ph ∈ Φ(Th), and λσ, σ ∈ E int
h such that

∑
K∈Th

⎧⎨⎩(S−1uh,vh)K − (ph,∇ · vh)K +
∑

σ∈EK∩Eint
h

〈vh · n, λσ〉σ

⎫⎬⎭ = 0(6.3a)

∀vh ∈ RTN0
−1(Th),

(∇ · uh, φK)K +
∑
σ∈EK

p̂σwK,σφK + (rph, φK)K = (f, φK)K ∀K ∈ Th,(6.3b)

〈(uh · n)|K + (uh · n)|L, 1〉σK,L
= 0 ∀σK,L ∈ E int

h .(6.3c)

Lemma 6.4 (relation of p̃h to the Lagrange multipliers λσ). It holds that

λσ = p̃σ =
〈p̃h, 1〉σ

|σ| ∀σ ∈ E int
h .
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Proof. The proof is similar to that of Lemma 6.1. Let K ∈ Th and σ ∈ EK ∩ E int
h .

Then taking vh = vσ in (6.2a) or (6.3a), we have

0 = −(∇p̃h,vσ)K − (p̃h,∇ · vσ)K + 〈vσ · n, λσ〉σ = 〈vσ · n, λσ − p̃h〉σ ,

using the definition (4.1a)–(4.1b) of p̃h, the fact that ∇·vσ is constant in each simplex,
the fact that vσ has a nonzero normal flux only through σ, and the Green theorem.
The assertion of the lemma follows by the fact that vσ · n is constant on σ.

Lemma 6.5 (a priori estimate for the upwind-weighted scheme). Let uh, ph be the
solutions of the upwind-weighted scheme (3.2a)–(3.2b), and let p̃h be the postprocessed
scalar variable given by (4.1a)–(4.1b). Then

∑
K∈Th

{
cS,K‖∇p̃h‖2

K +
1

2
cw,r,K ‖ph‖2

K

}
≤ 1

2

∑
K∈Th

‖f‖2
K

cw,r,K

if cw,r,K > 0 for all K ∈ Th and

∑
K∈Th

{
1

2
cS,K‖∇p̃h‖2

K + cw,r,K ‖ph‖2
K

}
≤ ‖f‖2

Ω

2

CDF

cS,Ω
,

where cS,Ω is given by (4.9) and CDF is the constant from the discrete Friedrichs
inequality (2.4).

Proof. Let us set φh = ph in (3.2b). We then can rewrite the first term of the
left-hand side of (3.2b) as∑
K∈Th

(∇ · uh, pK)K =
∑

K∈Th

{
−(uh,∇p̃h)K + 〈uh · n, p̃h〉∂K

}
=

∑
K∈Th

(SK∇p̃h,∇p̃h)K

+
∑

σK,L∈Eint
h

〈uh · nK , p̃h|K − p̃h|L〉σK,L
+

∑
σ∈Eext

h

〈uh · n, p̃h〉σ ≥
∑

K∈Th

cS,K‖∇p̃h‖2
K ,

using the fact that ∇ · uh is constant on each K ∈ Th and we thus can replace ph by
p̃h employing (4.1b), the Green theorem, (4.1a), the fact that uh · n is constant on
each σ ∈ Eh, the continuity of the means of the traces of p̃h given by Lemma 6.1, and
finally Assumption (B1). Next,∑

K∈Th

∑
σ∈EK

p̂σwK,σpK =
∑

σK,L∈Eint
h

{p̂σwK,σpK + p̂σwL,σpL} +
∑

σK∈Eext
h

p̂σwK,σpK

=
∑

σK,L∈Eint
h , wK,σ≥0

wK,σ

(
pK(pK − pL) − νσ(pL − pK)2

)
+

∑
σK∈Eext

h

p̂σwK,σpK

=
1

2

∑
σK,L∈Eint

h , wK,σ≥0

wK,σ(p2
K − p2

L) +
∑

σK,L∈Eint
h

|wK,σ|(pL − pK)2
(

1

2
− νσ

)

+
∑

σK∈Eext
h

{
1

2
p2
KwK,σ + |wK,σ|p2

K

(
1

2
− νσ

)}
≥ 1

2

∑
K∈Th

p2
K(∇ · w, 1)K ,

where we have rewritten the summation over the sides and fixed denotation of K,L ∈
Th sharing a side σK,L ∈ E int

h such that wK,σ ≥ 0; used that wK,σ = −wL,σ, the
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definition (3.3)–(3.4) of p̂σ, and the relation 2a(a − b) = (a − b)2 + a2 − b2; esti-
mated using 0 ≤ νσ ≤ 1/2, which follows from (3.5); rewritten the summation back
over the elements and their sides; and finally employed the Green theorem, giving∑

σ∈EK
wK,σ = (∇ · w, 1)K . Finally, (rph, ph)Ω =

∑
K∈Th

p2
K(r, 1)K .

The right-hand side of (3.2b) with φh = ph can be estimated either by

(f, ph)Ω ≤
∑

K∈Th

‖f‖K
√
cw,r,K

√
cw,r,K

‖ph‖K ≤ 1

2

∑
K∈Th

‖f‖2
K

cw,r,K
+

1

2

∑
K∈Th

cw,r,K‖ph‖2
K

or by

(f, ph)Ω ≤ ‖f‖Ω‖ph‖Ω ≤ ‖f‖2
Ω

2

CDF

cS,Ω
+

cS,Ω
CDF

‖p̃h‖2
Ω

2
≤ ‖f‖2

Ω

2

CDF

cS,Ω
+

cS,Ω
2

∑
K∈Th

‖∇p̃h‖2
K ,

using the Cauchy–Schwarz, ab ≤ εa2/2 + b2/(2ε), ε > 0, ‖ph‖K ≤ ‖p̃h‖K , and the
discrete Friedrichs (2.4) inequalities. The assertion follows by combining the above
estimates.

Remark 6.6 (existence and uniqueness for the upwind-weighted scheme). From
Lemma 6.5, existence and uniqueness for the upwind-weighted scheme (3.2a)–(3.2b)
easily follows. Indeed, let f = 0. Then ph = 0 and uh = −S∇p̃h = 0 for all K ∈ Th.

Remark 6.7 (existence and uniqueness for the centered scheme). In contrast with
the upwind-weighted scheme, existence and uniqueness for the centered scheme (3.1a)–
(3.1b) is in [17] guaranteed only for “h sufficiently small.” Alternatively, there exists
a unique solution if Cw,K ≤ 2(1 − μ)

√
cS,K

√
c̃w,r,K for some μ ∈ (0, 1) and all

K ∈ Th, where (∇ ·w + r)|K = c̃w,r,K > 0, which corresponds to the case that is not
convection-dominated.

7. Proofs of the a posteriori error estimates and of their local efficiency.
We shall prove in this section the a posteriori error estimates stated by Theorems 4.2–
4.3, as well as their local efficiency discussed in Theorem 4.4.

7.1. Proofs of the a posteriori error estimates. To begin with, we state
the following result, the purpose of which is to give an optimal abstract bound on the
error between p ∈ H1(Ω) and p̃ ∈ H1(Th) in the energy (semi)norm ||| · |||Ω. (H1

D(Ω)
is the subspace of H1(Ω) of functions with traces vanishing on ΓD ⊂ ∂Ω.)

Lemma 7.1 (abstract framework). Let ΓD ⊂ ∂Ω, |ΓD| 	= 0, let Γin := {x ∈
∂Ω;w ·n < 0} ⊂ ΓD, let p, s ∈ H1(Ω) be such that p−s ∈ H1

D(Ω), and let p̃ ∈ H1(Th)
be arbitrary. Then

|||p− p̃|||Ω ≤ |||p̃− s|||Ω +

∣∣∣∣∣B
(
p− p̃,

p− s

|||p− s|||Ω

)

+
∑

K∈Th

(
∇ · ((p̃− s)w) − 1

2
(p̃− s)∇ · w,

p− s

|||p− s|||Ω

)
K

∣∣∣∣∣ .
Proof. Let us set, for p, ϕ ∈ H1(Th),

BS(p, ϕ) :=
∑

K∈Th

{
(S∇p,∇ϕ)K +

((
1

2
∇ · w + r

)
p, ϕ

)
K

}
,

BA(p, ϕ) :=
∑

K∈Th

(
∇ · (pw) − 1

2
p∇ · w, ϕ

)
K

,
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so that

B(p, ϕ) = BS(p, ϕ) + BA(p, ϕ) ∀p, ϕ ∈ H1(Th),(7.1)

BS(ϕ,ϕ) = |||ϕ|||2Ω ∀ϕ ∈ H1(Th),(7.2)

BA(ϕ,ϕ) ≥ 0 ∀ϕ ∈ H1
D(Ω),(7.3)

using (2.9) and
∑

K∈Th
〈ϕ2,w · n〉∂K ≥ 0 for ϕ ∈ H1

D(Ω) in the estimate.

We then have, using that p− s ∈ H1
D(Ω),

|||p− s|||2Ω ≤ B(p− s, p− s) = B(p− p̃, p− s) + B(p̃− s, p− s)

= BS(p̃− s, p− s) + B(p− p̃, p− s) + BA(p̃− s, p− s)

≤ |||p̃− s|||Ω|||p− s|||Ω + |||p− s|||ΩB
(
p− p̃,

p− s

|||p− s|||Ω

)

+ |||p− s|||ΩBA

(
p̃− s,

p− s

|||p− s|||Ω

)
,

employing the Cauchy–Schwarz inequality in the first term. If |||p− p̃|||Ω ≤ |||p− s|||Ω,
this concludes the proof. In general, we could use the triangle inequality |||p− p̃|||Ω ≤
|||p− s|||Ω + |||s− p̃|||Ω and the above bound for |||p− s|||Ω, but this would lead to an
estimate which is not optimal (the term |||p̃− s|||Ω would be replaced by 2|||p̃− s|||Ω).
We thus show below that the same bound holds true also when |||p−s|||Ω ≤ |||p− p̃|||Ω.

We have, using (7.3) and the Cauchy–Schwarz inequality,

|||p− p̃|||2Ω = BS(p− p̃, p− p̃) = BS(p− p̃, p− s) + BS(p− p̃, s− p̃)

= BS(p− p̃, s− p̃) + B(p− p̃, p− s) − BA(p− p̃, p− s)

= BS(p− p̃, s− p̃) + B(p− p̃, p− s) − BA(p− s, p− s) + BA(p̃− s, p− s)

≤ BS(p− p̃, s− p̃) + B(p− p̃, p− s) + BA(p̃− s, p− s)

≤ |||p− p̃|||Ω|||s− p̃|||Ω + |||p− s|||ΩB
(
p− p̃,

p− s

|||p− s|||Ω

)

+ |||p− s|||ΩBA

(
p̃− s,

p− s

|||p− s|||Ω

)
,

which, by virtue of |||p− s|||Ω ≤ |||p− p̃|||Ω supposed in this second case, concludes the
proof.

Consequently, the following bound for the error |||p− p̃h|||Ω holds.
Lemma 7.2 (abstract error estimate). Let p be the weak solution of the prob-

lem (1.1a)–(1.1b) given by (2.7), and let s ∈ H1
0 (Ω) be arbitrary. If p̃h is the post-

processed solution of the centered mixed finite element scheme (3.1a)–(3.1b) given
by (4.1a)–(4.1b), then

|||p− p̃h|||Ω ≤ |||p̃h − s|||Ω + sup
ϕ∈H1

0 (Ω), |||ϕ|||Ω=1

{
TR(ϕ) + TC(ϕ)

}
,
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and if p̃h is the postprocessed solution of the upwind-weighted mixed finite element
scheme (3.2a)–(3.2b), given by (4.1a)–(4.1b), then

|||p− p̃h|||Ω ≤ |||p̃h − s|||Ω + sup
ϕ∈H1

0 (Ω), |||ϕ|||Ω=1

{
TR(ϕ) + TC(ϕ) + TU(ϕ)

}
,

where

TR(ϕ) :=
∑

K∈Th

(
f + ∇ · S∇p̃h −∇ · (p̃hw) − rp̃h, ϕ− ϕK

)
K
,

TC(ϕ) :=
∑

K∈Th

(
∇ · ((p̃h − s)w) − 1

2
(p̃h − s)∇ · w, ϕ

)
K

,

TU(ϕ) :=
∑

K∈Th

∑
σ∈EK

〈(p̂σ − p̃h)w · n, ϕK〉σ,

and where ϕK is the mean of ϕ over K ∈ Th, ϕK := (ϕ, 1)K/|K|.
Proof. Let us consider an arbitrary ϕ ∈ H1

0 (Ω). We have, using the bilinearity
of B(·, ·), the definition (2.7) of the weak solution p, and the Green theorem in each
K ∈ Th,

B(p− p̃h, ϕ) = (f, ϕ)Ω −
∑

K∈Th

{
(S∇p̃h,∇ϕ)K +

(
∇ · (p̃hw), ϕ

)
K

+ (rp̃h, ϕ)K
}

=
∑

K∈Th

{(
f + ∇ · (S∇p̃h) −∇ · (p̃hw) − rp̃h, ϕ

)
K
− 〈S∇p̃h · n, ϕ〉∂K

}
=

∑
K∈Th

(
f + ∇ · (S∇p̃h) −∇ · (p̃hw) − rp̃h, ϕ

)
K
.

Note that we have, in particular, used the continuity of the normal trace of S∇p̃h (i.e.,
by (4.1a), the mixed finite element continuity of the normal trace of uh), yielding

〈(S∇p̃h · n)|K + (S∇p̃h · n)|L, ϕ〉σK,L
= 〈0, ϕ〉σK,L

= 0 ∀σK,L ∈ E int
h

(the fact that 〈S∇p̃h · n, ϕ〉σ = 0 for σ ∈ Eext
h follows by ϕ ∈ H1

0 (Ω)).
Now the equation (6.1b) of the equivalent form of the centered scheme by the

definition of p̃h (4.1a)–(4.1b) and by the Green theorem implies that (recall that ϕK

is the constant mean of ϕ over K)

(7.4)
(
f + ∇ · (S∇p̃h) −∇ · (p̃hw) − rp̃h, ϕK

)
K

= 0 ∀K ∈ Th.

Hence in the case of the centered scheme,

B(p− p̃h, ϕ) =
∑

K∈Th

(
f + ∇ · (S∇p̃h) −∇ · (p̃hw) − rp̃h, ϕ− ϕK

)
K

= TR(ϕ).

For the upwind-weighted scheme, we have

B(p− p̃h, ϕ) = TR(ϕ) + TU(ϕ).

To conclude the proof, if now suffices to use Lemma 7.1.
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We now estimate the terms TR, TC, and TU separately, setting s = IMO(p̃h) in
Lemma 7.2.

Lemma 7.3 (residual estimate). Let ϕ ∈ H1
0 (Ω) be arbitrary. Then

TR(ϕ) ≤
∑

K∈Th

ηR,K |||ϕ|||K ,

where ηR,K is given by (4.2).
Proof. The Poincaré inequality (2.1) and the definition of ||| · |||K by (2.6) imply

(7.5) ‖ϕ− ϕK‖2
K ≤ CP,dh

2
K‖∇ϕ‖2

K ≤ CP,d
h2
K

cS,K
|||ϕ|||2K .

Next, the estimate

‖ϕ− ϕK‖2
K ≤ ‖ϕ‖2

K ≤ 1

cw,r,K
|||ϕ|||2K

is obvious using the definition of ||| · |||K by (2.6). Thus the Schwarz inequality implies

TR(ϕ) ≤
∑

K∈Th

∥∥f + ∇ · (S∇p̃h) −∇ · (p̃hw) − rp̃h
∥∥
K
‖ϕ− ϕK‖K

≤
∑

K∈Th

ηR,K |||ϕ|||K .

Lemma 7.4 (convection estimate). Let ϕ ∈ H1
0 (Ω) be arbitrary. Then

TC(ϕ) ≤
∑

K∈Th

ηC,K |||ϕ|||K ,

where ηC,K is given by (4.4).
Proof. Denote v := p̃h − IMO(p̃h). Then, for each K ∈ Th,(

∇ · (vw) − 1

2
v∇ · w, ϕ

)
K

≤
‖∇ · (vw) − 1

2v∇ · w‖K√
cw,r,K

|||ϕ|||K .

Note that this estimate is valid for an arbitrary s ∈ H1
0 (Ω) instead of s = IMO(p̃h).

Next, the fact that the modified Oswald interpolation operator of section 4.2
preserves the means of p̃h over the sides and that w ·n is constant on all sides implies

(7.6) (∇ · (vw), ϕK)K = 〈vw · n, ϕK〉∂K = 0,

where again ϕK := (ϕ, 1)K/|K|. Thus we also have an alternative estimate(
∇ · (vw) − 1

2
v∇ · w, ϕ

)
K

= (∇v · w, ϕ− ϕK)K +

(
1

2
v∇ · w, ϕ

)
K

− (v∇ · w, ϕK)K

≤
√

CP,dhK‖∇v · w‖K√
cS,K

√
cS,K‖∇ϕ‖K +

3‖v∇ · w‖K
2
√
cw,r,K

√
cw,r,K‖ϕ‖K

≤
(
CP,dh

2
K‖∇v · w‖2

K

cS,K
+

9‖v∇ · w‖2
K

4cw,r,K

) 1
2

|||ϕ|||K ,
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using the Cauchy–Schwarz inequality and the Poincaré inequality (2.1).
Finally, the proof of the following lemma can be found in [38].
Lemma 7.5 (upwinding estimate). Let ϕ ∈ H1

0 (Ω) be arbitrary. Then

TU(ϕ) ≤
∑

K∈Th

ηU,K |||ϕ|||K ,

where ηU,K is given by (4.6).
Lemmas 7.1–7.5 and the Cauchy–Schwarz inequality prove Theorems 4.2–4.3.

7.2. Proofs of the local efficiency of the estimates.
Lemma 7.6 (local efficiency of the residual estimator). Let K ∈ Th and let ηR,K

be the residual estimator given by (4.2). Then (4.10) holds true.
Proof. The proof follows that given in [33]. Let ψK be the bubble function on K,

given as the product of the d+1 linear functions that take the value 1 at one vertex of K
and vanish at the other vertices, and let us denote v := (f+∇·(S∇p̃h)−∇·(p̃hw)−rp̃h)
on a given K ∈ Th. Note that v is a polynomial in K by Assumption B. Then the
equivalence of norms on finite-dimensional spaces, the inverse inequality (cf., e.g., [15,
Theorem 3.2.6]), and the definition of ||| · |||K by (2.6) give

c ‖v‖2
K ≤ (v, ψKv)K ,

‖ψKv‖K ≤ ‖v‖K ,

|||ψKv|||K ≤ C min

{
hK√
CS,K

,
1

√
cw,r,K

}−1

‖v‖K ,

with the constants c and C depending only on the polynomial degree k of f , d, and
κK . Next, we immediately have (cf. the proof of Lemma 7.2)

B(p− p̃h, ψKv) = (v, ψKv)K ,

and, using (2.10),

B(p− p̃h, ψKv) ≤ max

{
1,

Cw,r,K

cw,r,K

}
|||p− p̃h|||K |||ψKv|||K

+
Cw,K√
cS,K

|||p− p̃h|||K‖ψKv‖K .

Combining the above estimates, one comes to

c‖v‖2
K ≤ |||p− p̃h|||K‖v‖K

·

⎧⎨⎩max

{
1,

Cw,r,K

cw,r,K

}
C min

{
hK√
CS,K

,
1

√
cw,r,K

}−1

+
Cw,K√
cS,K

⎫⎬⎭ .

Considering the definition of ηR,K by (4.2) and that of PeK and �K by (4.8) concludes
the proof.

Lemma 7.7 (local efficiency of the nonconformity and velocity estimators). Let
K ∈ Th and let ηNC,K and ηC,K be the nonconformity and velocity estimators given,
respectively, by (4.3) and (4.4). Then (4.11) holds true.
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Proof. One shows easily that (with ||| · |||∗,K and ||| · |||#,K defined in section 4.4)

η2
NC,K + η2

C,K ≤ min
{
|||p̃h − IMO(p̃h)|||2∗,K , |||p̃h − IMO(p̃h)|||2#,K

}
.

Throughout the rest of the proof, let C denote a constant depending only on d
and on κT , not necessarily the same at each occurrence. We first show that
(7.7)

|||p̃h − IMO(p̃h)|||2∗,K ≤ C

(
α∗,K

∑
σ;σ∩K �=∅

h−1
σ ‖[p̃h]‖2

σ + β∗,K
∑

σ;σ∩K �=∅
hσ‖[p̃h]‖2

σ

)
.

The first part of the estimate follows directly from Lemma 4.1 and the definition of
|||·|||∗,K . To estimate β∗,K‖p̃h−IMO(p̃h)‖2

K , we notice that the means of p̃h−IMO(p̃h)
over all sides of a simplex K ∈ Th are by the construction of the modified Oswald
interpolation operator equal to 0. Hence

‖p̃h − IMO(p̃h)‖2
K ≤ CF,dh

2
K‖∇(p̃h − IMO(p̃h))‖2

K

by the generalized Friedrichs inequality (2.2). The fact that hK/hσ for K ∩ σ 	= ∅
depends only on κT , which will be used in what follows as well, and another use
of Lemma 4.1 proves the second part of the estimate.

We will next use the inequality

h
− 1

2
σ ‖[p̃h]‖σ ≤ C

∑
L;σ∈EL

‖∇(p̃h − ϕ)‖L

established in [2, Theorem 10] for σ ∈ E int
h and an arbitrary ϕ ∈ H1(Ω). It generalizes

easily to the case σ ∈ Eext
h and ϕ ∈ H1

0 (Ω). This inequality implies that

(7.8) hγ
σ‖[p̃h]‖2

σ ≤ C
hγ+1
σ

minL;σ∈EL
cS,L

∑
L;σ∈EL

cS,L‖∇(p̃h − p)‖2
L ,

where we set γ = −1, 1. Next, for an arbitrary sh ∈ P2(Th) ∩H1
0 (Ω),

h
1
2
σ ‖[p̃h]‖σ ≤ hσC

∑
L;σ∈EL

‖∇(p̃h − sh)‖L ≤ C
∑

L;σ∈EL

hL‖∇(p̃h − sh)‖L

≤ C
∑

L;σ∈EL

‖p̃h − sh‖L ≤ C
∑

L;σ∈EL

‖p̃h − p‖L + C
∑

L;σ∈EL

‖p− sh‖L,

by the inverse inequality (cf. [15, Theorem 3.2.6]) and the triangle inequality. Hence

(7.9) hσ‖[p̃h]‖2
σ ≤ C

1

minL;σ∈EL
cw,r,L

∑
L;σ∈EL

cw,r,L‖p̃h − p‖2
L + C

∑
L;σ∈EL

‖p− sh‖2
L

holds as well, which gives a sense when all cw,r,L for L such that σ ∈ EL are nonzero.
Combining estimates (7.7)–(7.9) while estimating minL;σ∈EL

cL for a side σ such that
σ∩K 	= ∅ from below by minL;L∩K �=∅ cL concludes the proof for |||p̃h−IMO(p̃h)|||∗,K .
The proof for |||p̃h − IMO(p̃h)|||#,K is completely similar.

Lemma 7.8 ((non)efficiency of the upwinding estimator). Let K ∈ Th and let
ηU,K be the upwinding estimator given by (4.6). Then (4.12) holds true.
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Proof. Let K ∈ Th, ϕ ∈ H1(K), and ϕσ := 〈ϕ, 1〉σ/|σ|. Let us set ϕ̃ := ϕ − ϕσ

and ϕ̃K := (ϕ̃, 1)K/|K|. We now note that ϕ̃σ := 〈ϕ̃, 1〉σ/|σ| = 0 and that ∇ϕ̃ = ∇ϕ,
which allows us to estimate

‖ϕK − ϕσ‖2
σ = ϕ̃2

K |σ| ≤ |σ|
|K| ‖ϕ̃‖

2
K ≤ CF,d

|σ|h2
K

|K| ‖∇ϕ‖2
K ,

employing the generalized Friedrichs inequality (2.2). Now using the definition of p̂σ
for σ ∈ E int

h by (3.3), the fact that 0 ≤ νσ ≤ 1/2, (4.1b), and the above estimate,

‖p̂σ − p̃σ‖σ = ‖(1 − νσ)(pK − p̃σ) + νσ(pL − p̃σ)‖σ

≤ max
M ;σ∈EM

{
CF,d|σ|h2

M

|M |

} 1
2

(‖∇p̃h‖K + ‖∇p̃h‖L)

for suitable denotation K,L of the two elements sharing σ. For σ ∈ Eext
h , a similar

estimate holds. The assertion of the lemma follows by using the above estimate, (4.5),
(4.6), the definition of κK , the estimate |σ| ≤ hd−1

K /(d − 1), the Cauchy–Schwarz
inequality, and estimating the term

∑
K∈Th

cS,K‖∇p̃h‖2
K using Lemma 6.5.

Lemmas 7.6–7.8 together prove Theorem 4.4.

8. Numerical experiments. We test our a posteriori error estimates on two
model problems in this section. The first problem contains a strongly inhomogeneous
diffusion-dispersion tensor, and the second one is convection-dominated; in both cases,
the analytical solution is known. Estimators for inhomogeneous Dirichlet (and Neu-
mann) boundary conditions are adapted from [38].

8.1. Model problem with strongly inhomogeneous diffusion-dispersion
tensor. This model problem is taken from [30, 18] and is motivated by the fact that
in real-life applications, the diffusion-dispersion tensor S may be discontinuous and
strongly inhomogeneous. We consider in particular Ω = (−1, 1) × (−1, 1) and (1.1a)
with w = 0, r = 0, and f = 0. We suppose that Ω is divided into four subdomains
Ωi corresponding to the axis quadrants (in the counterclockwise direction) and that
S is constant and equal to si Id in Ωi. Under such conditions, an analytical solution
writing

p(r, θ) = rα(ai sin(αθ) + bi cos(αθ))

in each Ωi can be found. Here (r, θ) are the polar coordinates in Ω, ai and bi are
constants depending on Ωi, and α is a parameter. This solution is continuous across
the interfaces, but only the normal component of its flux u = −S∇p is continuous; it
finally exhibits a singularity at the origin. We assume Dirichlet boundary conditions
given by this solution and consider two sets of the coefficients, with s1 = s3 = 5,
s2 = s4 = 1 in the first case and s1 = s3 = 100, s2 = s4 = 1 in the second one:

α = 0.53544095 α = 0.12690207
a1 = 0.44721360 b1 = 1 a1 = 0.1 b1 = 1
a2 = −0.74535599 b2 = 2.33333333 a2 = −9.60396040 b2 = 2.96039604
a3 = −0.94411759 b3 = 0.55555556 a3 = −0.48035487 b3 = −0.88275659
a4 = −2.40170264 b4 = −0.48148148 a4 = 7.70156488 b4 = −6.45646175

The original grid consisted of 24 right-angled triangles, and we have refined it
either uniformly (up to five refinements) or adaptively on the basis of our estimator.
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Fig. 8.1. Estimated (left) and actual (right) error distribution, α = 0.53544095 (the maximum
is attained at the origin).
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Fig. 8.2. Approximate solution and the corresponding adaptively refined mesh, α = 0.12690207.

In the latter case, we refine each element where the estimated ||| · |||Ω-error is greater
than the half of the maximum of the estimators regularly into four subelements and
then use the “longest edge” refinement to recover an admissible mesh. In the given
case, the residual estimators ηR,K of (5.2) are zero for each K ∈ Th, and hence the
a posteriori error estimate is entirely given by the nonconformity estimators ηNC,K

in (5.3). We have done numerical experiments with two choices, s = IOs(p̃h) and
s = IMO(p̃h), and present the results with the first one, which gives a slightly better
efficiency.

We can see in Figure 8.1 that the predicted error distribution on an adaptively
refined mesh for the first test case is excellent. In particular, even if the solution
is smoother, the singularity is well recognized. Next, Figure 8.2 gives an example
of the approximate solution on an adaptively refined mesh and this mesh in the
second test case. Here, the singularity is much more important, and consequently
the grid is highly refined around the origin (for 1800 triangles, the diameter of the
smallest ones is 10−16, and 73% of them are contained in the circle of radius 0.1).
Figure 8.3 then reports the estimated and actual errors of the numerical solutions
on uniformly/adaptively refined grids in the two test cases. The energy norm (2.6)
was approximated with a 7-point quadrature formula in each triangle. It can be seen
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Fig. 8.3. Estimated and actual error against the number of elements in uniformly/adaptively
refined meshes for α = 0.53544095 (left) and α = 0.12690207 (right).
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Fig. 8.4. Overall efficiency of the a posteriori error estimates against the number of elements
in uniformly/adaptively refined meshes for α = 0.53544095 (left) and α = 0.12690207 (right).

from these plots that one can substantially reduce the number of unknowns necessary
to attain the prescribed precision using the derived a posteriori error estimates and
adaptively refined grids. Finally, Figure 8.4 gives the efficiency plots for the two
cases, i.e., the ratio of the estimated ||| · |||Ω-error to the actual ||| · |||Ω-error. This
quantity simply expresses how many times we have overestimated the error—recall
that there are no undetermined multiplicative constants in our estimates. These plots
confirm the theoretical results of section 5.3. Even while only using IOs(p̃h) instead of
evaluating the infimum in (5.4), (approximate) asymptotic exactness and robustness
with respect to inhomogeneities is confirmed.

8.2. Convection-dominated model problem. This problem is a modification
of a problem considered in [20]. We set Ω = (0, 1) × (0, 1), w = (0, 1), and r = 1
in (1.1a) and consider three cases with S = ε Id and ε equal to, respectively, 1, 10−2,
and 10−4. The right-hand-side term f , Neumann boundary conditions on the upper
side, and Dirichlet boundary conditions elsewhere are chosen so that

p(x, y) = 0.5

(
1 − tanh

(
0.5 − x

a

))
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Fig. 8.5. Estimated and actual error using s = IMO(p̃h) (left) and s = IOs(p̃h) (right) against
the number of elements, ε = 1, a = 0.5.
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Fig. 8.6. Overall efficiency using s = IMO(p̃h) (left) and s = IOs(p̃h) (right) against the
number of elements, ε = 1, a = 0.5.

was the exact solution. It is, in fact, one-dimensional and possesses an internal layer
of width a which we set, respectively, equal to 0.5, 0.05, and 0.02. We start the
computations from an unstructured grid of Ω consisting of 46 triangles and refine it
either uniformly (up to five refinements) or adaptively. We use the scheme described
in section 5.5.

We first compare, for ε = 1 and a = 0.5, the estimates with s = IMO(p̃h) as
proposed in section 4.3 and a modification with s = IOs(p̃h), corresponding to the
approach chosen in [38, 37], on uniformly refined grids. In the latter case, we no
longer have the important property (7.6), and consequently there is an additional
term which we associate with the upwinding estimator; it, however, turns out to be
of higher order; see Figure 8.5. Note that the (approximate) asymptotic exactness
observed in Figure 8.6 is in full correspondence with the theoretical considerations
of section 5.3.2. In this case, s = IOs(p̃h) gives a slightly better efficiency. In the
following examples, however, we use s = IMO(p̃h), since it turns out to be the better
choice.

For ε = 10−2 and a = 0.05 (convection-dominated regime on coarse meshes and
diffusion-dominated regime with progressive refinement), still the distribution of the
error is predicted very well; cf. Figure 8.7. Note in particular the correct localization of
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Fig. 8.7. Estimated (left) and actual (right) error distribution, ε = 10−2, a = 0.05.
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Fig. 8.8. Approximate solution and the corresponding adaptively refined mesh, ε = 10−4, a = 0.02.

the error away from the center of the shock, as well as the sensitivity of our estimator to
the shape of the elements. Next, an example of an adaptively refined mesh and of the
corresponding solution for ε = 10−4 and a = 0.02 is given in Figure 8.8. For these two
test cases, we have used as a refinement criterion 0.2- and 0.05-times the maximum of
the estimators, respectively. The estimated and actual errors are plotted against the
number of elements in uniformly/adaptively refined meshes in Figure 8.9. Again, one
can see that we can substantially reduce the number of unknowns necessary to attain
the prescribed precision using the derived estimators and adaptively refined grids.
Finally, the efficiency plots are given in Figure 8.10. In the first case, the efficiency
is almost optimal for finest grids, whereas in the second one, only the elements in
the refined shock region start to leave the convection-dominated regime, and thus the
efficiency starts to decrease.
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Fig. 8.9. Estimated and actual error against the number of elements in uniformly/adaptively
refined meshes for ε = 10−2, a = 0.05 (left) and ε = 10−4, a = 0.02 (right).
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Fig. 8.10. Overall efficiency of the a posteriori error estimates against the number of elements
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Abstract. In this paper we present an error analysis of the IMEX Runge–Kutta methods when
applied to stiff problems containing a nonstiff term and a stiff term, characterized by a small stiffness
parameter ε. In this analysis we expand the global error in powers of ε and show that the coefficients
of the error are the global errors of the IMEX Runge–Kutta method applied to a differential-algebraic
system. Interesting convergence results of these errors and of the remainder of the expansion allow
us to determine sharp error bounds for stiff problems. As a representative example of stiff problems
we have chosen the van der Pol equation. We illustrate that the theoretical prediction is confirmed
by the numerical test. Specifically, an order reduction phenomenon is observed when the problem
becomes increasingly stiff. In particular, making several assumptions, we try to improve global error
estimates of several IMEX Runge–Kutta methods existing in the literature.
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1. Introduction. Several physical phenomena of great importance for applica-
tions are described by stiff systems of differential equations in the form

U ′ = F (U) +
1

ε
G(U),(1)

where U = U(t) ∈ Rm, F ,G : Rm → Rm, and ε > 0 is the stiffness parameter.
Systems of such form, with a large number of equations, often arise from the

discretization of partial differential equations, such as convection-diffusion problems
and hyperbolic systems with relaxation (i.e., discrete kinetic theory of rarefied gases,
hydrodynamical models for semiconductors, etc., see [8], [17], [19], [18], [15], [6], [9]),
where a method of lines approach is usually used.

In order to be able to treat problems of the form (1), it is important to develop
suitable numerical schemes that work in an accurate and efficient way. A general
approach to the solution of problem (1) is based on implicit-explicit (IMEX) multistep
methods [14], [10], [3] or IMEX Runge–Kutta (R-K) methods [8], [17], [19], [18], [1],
[2].

We consider here IMEX R-K methods. An IMEX R-K method consists of apply-
ing an implicit discretization for G and an explicit one for F . In general, in order to
guarantee simplicity and efficiency in solving the algebraic equations corresponding
to the implicit part of the discretization at each step of problem (1), we will consider
diagonally implicit R-K (DIRK) methods.

In this paper we show that most of the popular IMEX R-K methods presented
in the literature suffer from the phenomenon of order reduction in the stiff regime
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(Δt � ε) when the classical order is greater than two [8], [17], [18], [1]. To this
aim, we investigate this phenomenon and give an answer through a theoretical error
analysis using typical techniques of differential-algebraic equations (DAEs) [12], [13],
[7], [11].

We observe that system (1) can be written as a system of 2m equations in the
form

y′ = f(y, z),
εz′ = g(y, z)

(2)

once we set U = y+z, F (U) = f(y, z), and G(U) = g(y, z). On the other hand, system
(2) is a particular case of system (1) when F (U) = (f(y, z), 0), G(U) = (0, g(y, z)).
Now, restricting our attention to system (2), such a problem is called a singular
perturbation problem (SPP). Classical books on this subject are [20] and [16]. These
SPPs give us the possibility of studying the dependence of the global error of IMEX
R-K methods on the stiffness parameter ε. Then in system (2) we suppose that
0 < ε � 1 and the functions f and g are sufficiently differentiable, with f , g and the
initial values y(0), z(0) that may depend smoothly on ε. For simplicity of notation
we suppress this dependence.

When the parameter ε in system (2) is small, the corresponding differential equa-
tion is stiff, and when ε tends to zero, the differential equation becomes differential
algebraic. A sequence of differential-algebraic systems arises in the study of SPPs.
Our analysis is based on the assumption of a smooth solution of system (2) and applies
to the stiff case (Δt � ε).

The paper is organized as follows. In the next section we introduce a description
and classification of the different types of IMEX R-K methods present in the literature,
based on the structure of the matrix of the implicit part. In section 3 we state our
main results, presenting convergence proofs which give sharp error bounds for such
methods. On the van der Pol equation, moreover, we provide numerical confirmation
of the theoretical analysis and compare the performances of several types of IMEX R-
K schemes. Also, these numerical results suggest how we can improve error estimates
of some IMEX R-K methods through straightforward assumptions. In section 4 we
consider the asymptotic expansion of the exact and numerical solution in terms of the
stiffness parameter ε. Sections 5 and 6 are devoted to examining the results obtained
when we apply IMEX R-K methods to DAEs of index 1 (zeroth-order expansion) and
higher (higher-order expansion). In particular, in section 7 we estimate the remainder
of the expansion. Finally, in section 8, conclusions are drawn and work in progress is
mentioned.

2. Description and classification of IMEX R-K methods. We consider an
IMEX R-K method applied to system (2),(

yn+1

zn+1

)
=

(
yn
zn

)
+ h

s∑
i=1

(
b̃ikni
bi�ni

)
,(3)

where (
kni
ε�ni

)
=

(
f(Yni, Zni)
g(Yni, Zni)

)
(4)

and the internal stages are given by(
Yni

Zni

)
=

(
yn
zn

)
+ h

( ∑i−1
j=1 ãijknj∑i
j=1 aij�nj

)
.(5)
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The matrices (ãij), with ãij = 0 for j ≥ i, and (aij) are s × s matrices such that
the resulting method is explicit in f and implicit in g. We use a diagonally implicit
scheme for g, i.e., aij = 0 for j > i. This will guarantee that f is always evaluated
explicitly.

Such methods are characterized by the coefficient matrices Ã = (ãij), A = (aij)

and vectors c̃ = (c̃1, . . . , c̃s)
T , b̃ = (b̃1, . . . , b̃s)

T , c = (c1, . . . , cs)
T , b = (b1, . . . , bs)

T .
They can be represented by a double tableau in the usual Butcher notation,

c̃ Ã

b̃T
c A

bT
.

The coefficients c̃ and c are given by the usual relation,

c̃i =

i−1∑
j=1

ãij , ci =

i∑
j=1

aij ,(6)

which allows the results of our analysis to be extended to nonautonomous systems.
We shall use the notation Name(s, σ, p), where this triplet characterizes the number
s of the stages of the implicit scheme, the number σ of stages of the explicit scheme
and the combined order of the method, p. Now we give some definitions that we will
use later.

Definition 2.1. We call qi the stage order of the ith stage of an R-K method
if and only if for a problem ẏ(t) = f(t, y(t)), with 0 ≤ t ≤ T and f a smooth
function, the intermediate local errors y(tn+cih)−Yi = O(hqi+1), where Yi = y(tn)+
h
∑s

j=1 aijf(tn + cjh, Yj) (1 ≤ i ≤ s).
Remark. For stiff differential equations the stage order q is an essential ingredient.

It is defined by the condition C(q) (see [12] and [13, sect. IV.5]), i.e.,

s∑
j=1

aijc
k−1
j =

cki
k

for k = 1, . . . , q and all i.(7)

For an s-stage DIRK method, the stage order is 1.
Definition 2.2. Methods that satisfy the condition asj = bj, j = 1, . . . , s, are

called stiffly accurate.
Remark. In our analysis we indicate R(∞) = limz→∞ R(z), with R(z) the stability

function of the implicit scheme, defined by R(z) = 1 + zbT (I − zA)−11 (see [13, sect.
IV.3]), with bT = (b1, . . . , bs) and 1= (1, . . . , 1)T . From the expression of R(z) follows
R(∞) = 1 −

∑s
i,j=1 biωij with ωij elements of the inverse of (aij). Moreover, if the

implicit method is stiffly accurate and the matrix A is invertible, one has always
R(∞) = 0. We shall use the notation q̃i, with q̃i ≥ 1, to indicate the stage order of
the ith stage of the explicit part of the IMEX R-K method, and with qi, qi ≥ 1, the
stage order of the ith stage of the implicit one. IMEX R-K methods present in the
literature can be classified in three different types characterized by the structure of
the matrix A = (aij)

s
i,j=1 of the implicit scheme.

Definition 2.3. We call an IMEX R-K method type A (see [18]) if the matrix
A ∈ Rs × s is invertible.

Definition 2.4. We call an IMEX R-K method type CK (see [8]) if the matrix
A ∈ Rs × s can be written as

A =

(
0 0

a Â

)
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with the submatrix Â ∈ R(s−1) × (s−1) invertible.
Remark. IMEX R-K methods of type ARS (see [1]) are a special case of type CK

with the vector a = 0.

3. Main results. Motivated by the procedure first suggested by Hairer, Lubich,
and Roche [12] (see also [13]), we extend this analysis to different types of IMEX R-K
methods. The main results of this paper are summarized in this section in the form
of theorems. The aim of these theorems is to present convergence results of these
methods when applied to SPP (2). We suppose that the initial values lie on a suitable
manifold that allows smooth solutions even in the limit of infinite stiffness and the
step size h = Δt � ε. In fact, arbitrary initial values introduce in the solution a fast
transient. One possible way to overcome this difficulty is simply to ensure that the
numerical method resolves the transient phase by taking time step h � ε in the first
few steps. Then the following results are obtained assuming that the transient phase
is over.

An essential ingredient to obtaining these results is to assume that the system is
dissipative. More precisely, we assume that

μ (gz(y, z)) ≤ −1(8)

in an ε-independent neighborhood of the solution, where μ denotes the logarithmic
norm with respect to some inner product. Condition (8) guarantees the existence of
an ε-expansion of problem (2) (see [13, p. 390]).

The proof of the theorems below will be a consequence of the results of sections 5
to 7. We start by considering the limit case ε = 0 (the reduced problem or problems
of index 1) for problem (2).

Theorem 3.1 (type A). Consider the stiff problem (2), (8) with initial values
y(0), z(0) admitting a smooth solution. Apply the type-A IMEX R-K method (3)–(5)
and let p be the order of explicit scheme. Assume that the method with coefficients bi
and aij is A-stable, that the stability function satisfies |R(∞)| < 1, and that aii > 0

for all i. Furthermore, assume that the weights satisfy the condition b̃i = bi for
i = 1, . . . , s.

Then if
∑s

i,j=1 biωij c̃j = 1, with ωij elements of the inverse matrix of A, for any
fixed constant C > 0, the global error satisfies

yn − y(tn) = O(hp) + O(εh2), zn − z(tn) = O(h2)

for ε ≤ Ch; otherwise, we obtain

yn − y(tn) = O(hp) + O(εh), zn − z(tn) = O(h).

If in addition asi = bi and ãsi = b̃i for all i, we have zn − z(xn) = O(hp) + O(εh2).
The estimates hold uniformly for h ≤ h0 and nh ≤ Const.

Theorem 3.2 (type CK). Consider the stiff problem (2), (8) with initial values
y(0), z(0) admitting a smooth solution. Apply the type-CK IMEX R-K method (3)–(5)
with invertible matrix Â and let p be the order of the explicit scheme. Assume that
the method, with coefficients bi and aij, is A-stable, that the stability function satisfies
|R(∞)| < 1, and that aii > 0 for all i. Assume that the weights satisfy the condition
b̃i = bi for i = 1, . . . , s and that the method is stiffly accurate. Then, for any fixed
constant C > 0, the global error satisfies, for ε ≤ Ch,

yn − y(xn) = O(hq̃+2 + hp) + O(εh2), zn − z(xn) = O(hq̃+1 + hp) + O(εh)(9)
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with q̃ = min {q̃s, q̃i + 1 for all i = 2, . . . , s− 1}. The estimates hold uniformly for
h ≤ h0 and nh ≤ Const.

Corollary 3.1 (type ARS). Under the same assumptions of Theorem 3.2 and
with b1 = 0, the global error satisfies (9). These estimates hold uniformly for h ≤ h0

and nh ≤ Const.
Remark. Next, we shall show that if the method of type ARS is not stiffly accurate,

one obtains the following estimates:

yn − y(xn) = O(hp + h3) + O(εh2), zn − z(xn) = O(hp + h2) + O(εh).

3.1. Numerical evidence. Before we provide proof of the main theorems, we
present numerical results for the different types of IMEX R-K methods developed in
the literature (see, e.g., [8], [1], [18], [19]), which confirm the theoretical prediction.
Specifically, we will conduct convergence tests to compare the performance of different
types of methods. As an example of a stiff problem (2) we consider one of the simplest
nonlinear equations (describing nonlinear oscillations) in the stiff literature, the van
der Pol equation

y′ = z, εz′ = (1 − y2)z − y(10)

with 0 ≤ ε � 1. When the stiffness parameter ε is sufficiently small, numerical results
confirm order reduction especially for the algebraic z-component. In our experiment,
errors are computed by choosing initial values

y(0) = 2, z(0) = −2

3
+

10

81
ε− 292

2187
ε2 − 1814

19683
ε3 + O(ε4)(11)

such that the solution is smooth, and ε = 10−6. In the following figures we have
plotted the relative global error at tend = 0.55139 as a function of the step size
h, which was taken to be a constant over the considered interval [0, tend]. We use
logarithmic scales in both directions. The relative global error behaves like C · hr,
where r is the slope of the straight line and C is a constant. We have indicated this
behavior in all figures.

Table 1 shows the different types of IMEX R-K methods together with the global
errors predicted by Theorems 3.1 and 3.2 and Corollary 3.1. Several conclusions are
drawn from the numerical tests.

3.2. Discussion. (a) In Figures 1–7 we see that whenever p is small or h is very
large the O(hp) term is dominant in the z-component, whereas the other terms can
be seen behaving otherwise. Furthermore the estimates in Table 1 demonstrate order
reduction for the algebraic component in every type of method for a sufficiently stiff
parameter (ε = 10−6).

(b) An important ingredient, suggested by the analysis, is the condition b̃i = bi for
all i. Such a choice provides a significant benefit for the differential y-component. In
fact the ARS(4, 4, 3) method does not satisfy this condition, and for the y-component
the global error drops to first order for a range of the step h. Note, however, that in
Theorems 6.1 and 6.2 a satisfactory theoretical explanation of this fact is given.

In particular, the ARS(4, 4, 3) method satisfies the conditions ãsi = b̃i ãsi = b̃i
for all i, and in the next sections we shall observe that as a consequence of the above
the z-component has the same estimate of the convergence rate as the y-component,
justifying the behavior shown in Figure 3.
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Table 1

Global errors predicted by theorems for the van der Pol equation.

Method Stiffly accurate y-comp. z-comp.

ARS(3, 4, 3), [1] yes h3 + εh2 h2

MARS(3, 4, 3) yes h3 + εh2 h3 + εh

ARS(4, 4, 3), [1] yes h3 + εh h3 + εh

ARK3(2)4L[2]SA, [8] yes h3 h2

ARK5(4)8L[2]SA, [8] yes h4 + εh2 h3 + εh

ARK4(3)6L[2]SA, [8] yes h4 h3 + εh

MARK3(2)4L[2]SA yes h3 h3 + εh

IMEX-SSP2(3, 3, 2), [18] yes h2 h2

IMEX-SSP3(3, 3, 2), [18] no h3 + εh h

IMEX-SSP3(4, 3, 3), [18] no h3 + εh h
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Fig. 1. Global error versus the step size h for the ARS(3, 4, 3)-IMEX method using the van der
Pol equation with ε = 10−6. On the left-hand side is the y-component; on the right-hand side is the
z-component.
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Fig. 2. Global error versus the step size h for the MARS(3, 4, 3)-IMEX method using the van
der Pol equation with ε = 10−6. On the left-hand side is the y-component; on the right-hand side
is the z-component.
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Fig. 3. Global error versus the step size h for the ARS(4, 4, 3)-IMEX method using the van der
Pol equation with ε = 10−6. On the left-hand side is the y-component; on the right-hand side is the
z-component.
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Fig. 4. Global error versus the step size h for the ARK3(2)4L[2]SA-IMEX method using the
van der Pol equation with ε = 10−6. On the left-hand side is the y-component; on the right-hand
side is the z-component.
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Fig. 5. Global error versus the step size h for the MARK3(2)4L[2]SA-IMEX method using the
van der Pol equation with ε = 10−6. On the left-hand side is the y-component; on the right-hand
side is the z-component.
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Fig. 6. Global error versus the step size h for the ARK4(3)6L[2]SA-IMEX method using the
van der Pol equation with ε = 10−6. On the left-hand side is the y-component; on the right-hand
side is the z-component.
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Fig. 7. Global error versus the step size h for a type A-SSP(4, 3, 3)-IMEX method using the
van der Pol equation with ε = 10−6. On the left-hand side is the y-component; on the right-hand
side is the z-component.

(c) As noted in [8], according to the estimated convergence rates for differential
and algebraic variables in [8, Table 12], several IMEX ARK2 methods confirm the
theoretical estimates given in Theorem 3.2. For instance, in order to justify the
behavior observed in Figure 6, several pertinent assumptions are satisfied: b2 = b̃2 = 0
as well as the formula

s∑
j=1

ãijcj =
c2i
2

(12)

for i = 3, . . . , s. Thus, using these assumptions, we achieve the estimates in Theo-
rem 3.2.

(d) Finally, it is worth mentioning that the IMEX-SSP3(4, 3, 3) scheme, as shown
in Figure 7, exhibits order reduction both in the differential and algebraic components.
Similarly, plots for the IMEX-SSP3(3, 3, 2) scheme yield similar results. This behavior
appears since the IMEX-SSP3(3, 3, 2) and IMEX-SSP3(4, 3, 3) schemes don’t satisfy
the condition

∑
ij biωij c̃j = 1 required in Theorem 3.1. On the other hand, the IMEX-

SSP2(3,3,2) scheme satisfies this condition so it achieves the anticipated convergence
rate.
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Improvements of existing schemes. A most relevant point demonstrated by this
test is that methods such as modified ARK3(2)4L[2]SA (MARK3(2)4L[2]SA) and
modified ARS(3, 4, 3) (MARS(3, 4, 3)) produce an estimate for the z-component of
the following form:

zn − z(tn) = O(h3) + O(εh) + O(ε2).(13)

In this result the term O(ε2) can be neglected since ε � h. Furthermore, to illustrate
the results shown in Figures 2 and 5, we note that if the step size h > ε1/2, the O(h3)
term is dominant; otherwise the term O(εh) can be observed. A singularity appears
in the neighborhood of h ≈ ε1/2 where we have a cancellation of error terms O(h3)
and O(εh) with error constants of an opposite sign.

Therefore, the modified schemes give an improvement in the error estimate for
the z-component when compared to the ARK3(2)4L[2]SA and ARS(3, 4, 3) methods.
In the following sections we will see that the global error estimates of these meth-
ods depend on q̃ = min {q̃s, q̃i + 1 for all i = 2, . . . , s− 1}. This fact enables us to
construct methods with more accuracy. Notice the following:

(i) For the MARS(3, 4, 3) method, a natural way to achieve the error estimate
(13) is to increase from 1 to 2 the stage order in the sth stage of the explicit scheme
so that q̃ = 2.

(ii) In order to reach estimate (13) in the case of the MARK3(2)4L[2]SA method,
we suggest using formula (12), for i = 3, . . . , s, in the explicit scheme accompanied by
the assumption b̃2 = 0. The assumption b̃2 = 0 is necessary because the assumption
(12) cannot be satisfied for i = 2; otherwise we would have c2 = 0 and the method
would be equivalent to one with fewer stages.

4. Asymptotic expansion. To obtain our main results in a general setting, we
start from the ε-expansion of the exact solution of problem (2). Here, in particular,
we are interested in smooth solutions which are of the form

y(t) = y0(t) + εy1(t) + ε2y2(t) + · · · ,

z(t) = z0(t) + εz1(t) + ε2z2(t) + · · · ,
(14)

where yi(t) and zi(t) are ε-independent functions, which are solutions of a sequence
of DAEs of arbitrary index.

The aim in this section is to analyze the ε-expansion of the numerical solution for
problem (2) and verify how a sequence of differential-algebraic systems arise in the
study of such a problem. A general and detailed investigation about the ε-expansion
of the exact solution for problem (2) is given in [13] and [16].

We consider the IMEX R-K method (3), (5). We formally expand the quantities
Yni, kni, yn, Zni, �ni, and zn into powers of ε with ε-independent coefficients:

yn = y0
n + εy1

n + ε2y2
n + · · · ,(15a)

Yni = Y 0
ni + εY 1

ni + ε2Y 2
ni + · · · ,(15b)

kni = k0
ni + εk1

ni + ε2k2
ni + · · · ,(15c)

zn = z0
n + εz1

n + ε2z2
n + · · · ,(15d)

Zni = Z0
ni + εZ1

ni + ε2Z2
ni + · · · ,(15e)

�ni = ε−1�−1
ni + �0ni + ε�1ni + ε2�2ni + · · · .(15f)
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Because of the linearity of relations (3) and (5) we have to order εν , with ν = −1,

0 = h

i∑
j=1

aij�
−1
nj , 0 = h

s∑
i=1

bi�
−1
ni(16)

and, for ν ≥ 0, (
yνn+1

zνn+1

)
=

(
yνn
zνn

)
+ h

s∑
i=1

(
b̃ik

ν
ni

bi�
ν
ni

)
,(17)

(
Y ν
ni

Zν
ni

)
=

(
yνn
zνn

)
+ h

( ∑i−1
j=1 ãijk

ν
nj∑i

j=1 aij�
ν
nj

)
.(18)

Inserting (15b), (15c), (15e), and (15f) into (4) and comparing equal powers of ε, we
obtain

ε0 :

{
k0
ni = f(Y 0

ni, Z
0
ni),

�−1
ni = g(Y 0

ni, Z
0
ni),

(19a)

ε1 :

{
k1
ni = fy(Y

0
ni, Z

0
ni)Y

1
ni + fz(Y

0
ni, Z

0
ni)Z

1
ni,

�0ni = gy(Y
0
ni, Z

0
ni)Y

1
ni + gz(Y

0
ni, Z

0
ni)Z

1
ni,

(19b)

. . . . . .

εν :

{
kνni = fy(Y

0
ni, Z

0
ni)Y

ν
ni + fz(Y

0
ni, Z

0
ni)Z

ν
ni + ϕν(Y

0
ni, Z

0
ni, . . . , Y

ν−1
ni , Zν−1

ni ),

�ν−1
ni = gy(Y

0
ni, Z

0
ni)Y

ν
ni + gz(Y

0
ni, Z

0
ni)Z

ν
ni + ψν(Y

0
ni, Z

0
ni, . . . , Y

ν−1
ni , Zν−1

ni ).

(19c)

Since (4) has a similar form to (2), the formulas (19a), (19b), and (19c) are exactly the
same as those of the expansion in powers of ε for the exact solution (see [13] and [12]).
In response to this fact, it follows that the coefficients y0

n, z0
n, y1

n, z1
n, . . . represent the

numerical solution of an arbitrary IMEX R-K method applied to DAEs of arbitrary
index. Finally, subtracting (15a) and (15d) from (14), we get formally

yn − y(tn) =
∑
ν≥0

εν(yνn − yν(tn)), zn − z(tn) =
∑
ν≥0

εν(zνn − zν(tn)).(20)

Hence, the error of the numerical solution possesses an ε-expansion whose coefficients
are the errors of the method applied to the differential-algebraic system. Clearly,
in order to study this error, one will investigate only the differences yνn − yν(tn),
zνn − zν(tn).

5. Zeroth-order expansion (index 1). From an arbitrary SPP (2) now we
want to study the behavior of the global error of different types of IMEX R-K schemes
for ε → 0. In this section we start by studying the limiting case ε = 0. This gives us
the corresponding reduced problem

y′ = f(y, z),
0 = g(y, z).

(21)
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We assume that gz(y, z) is invertible in a neighborhood of the solution of (21). This
assumption guarantees the solvability of (21) and that the equation g(y, z) = 0 pos-
sesses a locally unique solution (implicit function theorem). Furthermore, the same
assumption guarantees that system (21) is a differential-algebraic one of index 1 [13].
Therefore, our first goal is to consider the different types of schemes applied to the
reduced problem.

Type A. An IMEX R-K method of type A applied to the reduced problem has
the form

Yni = yn + h

i−1∑
j=1

ãijf(Ynj , Znj),(22a)

0 = g(Yni, Zni),(22b)

yn+1 = yn + h

s∑
i=1

b̃if(Yni, Zni),(22c)

zn+1 = R(∞)zn +

s∑
i,j=1

biωijZnj .(22d)

Remarks. (a) By the implicit function theorem applied to (22b), we have Zni =
G(Yni) for i = 1, . . . , s. Consequently, by Yni = y(tn + c̃ih)+O(hq̃i+1), it follows that
the internal stages Zni depend on the coefficients c̃i of the explicit scheme.

(b) Concerning system (21), the y-component can be interpreted as the numerical
solution of the ordinary differential equation y′ = f(y,H(y)) with z = H(y) (implicit
function theorem). Therefore, for the method (22a)–(22d) we have

yn − y(tn) = O(hp),

because the formulas (22a), (22b), and (22c) are independent of zn with p the order
of the explicit scheme. Thus, we have only to prove a convergence result for the
z-component.

Type CK. By Definition 2.4, we assume submatrix Â is invertible. By (16),

we have 0 = hai1�
−1
n1 + h

∑i
j=2 aij�

−1
nj for i = 2, . . . , s. Now, by the fact that �−1

n1 =
g(yn, zn), we obtain

�−1
ni = αig(yn, zn),(23)

where αi = −
∑s

i,j=2 ω̂ijaj1 for i = 2, . . . , s, with ω̂ij elements of the inverse matrix

of Â.
Now, looking at (16), Lemma 5.1 follows from (23) and �−1

n1 = g(yn, zn).
Lemma 5.1. The condition

b1 +

s∑
i=2

biαi = 0(24)

is automatically satisfied if the IMEX R-K method of type CK is stiffly accurate.
Therefore we assume that the method is stiffly accurate in the implicit part. This,

moreover, yields zn+1 = Zns. Next we will use this lemma.
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Then for the reduced problem a type-CK IMEX R-K scheme is defined by

Yni = yn + h

i−1∑
j=1

ãijf(Ynj , Znj),(25a)

yn+1 = yn + h

s∑
i=1

b̃if(Yni, Zni),(25b)

g(Yni, Zni) = αig(yn, zn), i = 2, . . . , s− 1,(25c)

g(Yns, zn+1) = αsg(yn, zn).(25d)

Type ARS. Since this is a particular case of CK with ai1 = 0 it follows that
αi = 0 and G(Yni, Zni) = 0 for i = 2, . . . , s. As an immediate consequence, we get
explicitly zn+1 = R(∞)zn +

∑s
i,j=2 bjω̂ijZnj . In particular, if the method is stiffly

accurate, zn+1 = Zns. In particular more theoretical insight into this type ARS
shows that if we have asi = bi and ãsi = b̃i for i = 1, . . . , s, it also follows that
g(yn+1, zn+1) = 0. Thus if gz(y, z) is invertible, we may express zn+1 as a function
of yn+1, and therefore we can declare that the z-component has the same asymptotic
error estimate as the y-component.

After having understood the structure of each method, we are now in a position to
prove the following results. All the theorems below are built on the assumption that
the reduced problem satisfies (8) in a neighborhood of the exact solution (y(t), z(t)),
and we assume that the initial values are consistent, i.e., g(y0, z0) = 0.

Theorem 5.1 (type A). Consider an IMEX R-K method of type A. Let p be the
classical order of the explicit R-K method. Assume that the stability function of the
implicit scheme satisfies |R(∞)| < 1. Then the numerical solution of (22a)–(22d) has
global error

zn − z(tn) =

{
O(h2) if

∑s
i,j=1 biωij c̃j = 1,

O(h) if
∑s

i,j=1 biωij c̃j 
= 1.
(26)

The estimates (26) hold uniformly for tn − t0 = nh ≤ Const.
Proof. We denote the global error by Δzn = zn − z(tn) and R(∞) = ρ. By

remark (b), we get Zni = z(tn) + c̃ihz
′(tn) + O(h2). Now, inserting it into (22d) and

considering z(tn+1) = z(tn) + hz′(tn) + O(h2), one obtains

Δzn+1 = ρΔzn +

⎛⎝ s∑
i,j=1

biωij c̃j − 1

⎞⎠hz′(tn) + O(h2),

which allows us to conclude that

Δzn+1 =

{
ρΔzn + δn+1 if

∑s
i,j=1 biωij c̃j = 1,

ρΔzn + δn+1 if
∑s

i,j=1 biωij c̃j 
= 1,
(27)

where

δn+1 =

{
O(h2) if

∑s
i,j=1 biωij c̃j = 1,

O(h) if
∑s

i,j=1 biωij c̃j 
= 1.
(28)
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Finally, repeated insertion of these formulas gives

Δzn =

{ ∑n
i=1 ρ

n−jδj if
∑s

i,j=1 biωij c̃j = 1,∑n
i=1 ρ

n−jδj if
∑s

i,j=1 biωij c̃j 
= 1
(29)

because Δz0 = 0. Thus, by the hypothesis |ρ| < 1, we obtain

Δzn =

{
O(h2) if

∑s
i,j=1 biωij c̃j = 1,

O(h) if
∑s

i,j=1 biωij c̃j 
= 1.
(30)

Remark. If the IMEX R-K method is stiffly accurate, it follows by (22b) that
zn+1 = Zns = G(Yns). By remark (b), since we get Zns − z(tn + c̃sh) = G(Yns) −
G(y(tn + c̃sh)) = O(hq̃s+1), if c̃s = 1, this proves the following estimate: zn − z(tn) =
O(hq̃s+1). Moreover, if in the explicit part we also have ãsi = b̃i for i = 1, . . . , s,
this yields yn+1 = Yns. Therefore, by g(yn+1, zn+1) = 0 and by the implicit function
theorem, it follows that zn+1 = G(yn+1), and in this situation the estimate is zn −
z(tn) = O(hp).

Theorem 5.2 (type CK). Consider an IMEX R-K method of type KC stiffly
accurate with invertible matrix Â and weights b̃i = bi for i = 1, . . . , s. Let p be the
order of explicit scheme. Assume that the stability function of the implicit scheme
satisfies |R(∞)| < 1 and δ = |αs| < 1. Then the numerical solution of (25a)–(25d)
has global error

yn − y(tn) = O(hq̃+2) + O(hp), zn − z(tn) = O(hq̃+1) + O(hp)(31)

with q̃ = min {q̃s, q̃i + 1, i = 2, . . . , s− 1}. These estimates holds uniformly for nh ≤
Const.

Proof. By the relation (23), it follows that

g(Yni, Zni) = αig(yn, zn),(32)

so that Zni is a function of Yni, yn, and zn for i = 2, . . . , s. On the other hand, to
provide an optimal estimate for the local error of the y-component we introduce the
internal stages Uni, Vni that satisfy the relation

g(Uni, Vni) = αig(y(tn), z(tn))(33)

for i = 2, . . . , s. Of course, this implies that Vni is a function of Uni, y(tn), and z(tn).
Also, the internal stage Uni is defined as

Uni = y(tn) + h

⎛⎝ãi1y
′(tn) +

i−1∑
j=2

ãijf(Unj , Vni)

⎞⎠ ,(34)

where y′(tn) = f(y(tn), z(tn)) is the exact solution of y(t) in tn.
Next we shall use the abbreviation gz(tn) = gz(y(tn), z(tn)), fy(tn) = fy(y(tn),

z(tn)) and denote Δyn = yn − y(tn) and Δzn = zn − z(tn).
Our proof proceeds in two parts, referred to as (a) and (b).
(a) We first estimate the differences ‖Zni − Vni‖ , ‖Yni − Uni‖ of the internal

stages. For this, we subtract Yni = yn + h(ãi1f(yn, zn) +
∑i−1

j=2 ãijf(Ynj , Znj)) from
(34) to obtain

‖Yni − Uni‖ ≤ ‖Δyn‖ + O(h ‖yn‖ + h ‖Δzn‖) + Ch

i−1∑
j=2

|ãij | ‖Znj − Vnj‖(35)
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for i = 2, . . . , s by the use of a Lipschitz condition for f .
We now linearize (32) and (33). Subtracting the two quantities, by the use of

(35) and the condition g−1
z (tn + cih)gz(tn) = I + O(h), we obtain

‖Zni − Vni‖ ≤ |αi| ‖Δzn‖ + O(h ‖Δzn‖) + O(‖Δyn‖).(36)

(b) Our next aim is to prove the recursion(
‖Δyn+1‖
‖Δzn+1‖

)
≤

(
1 + O(h) O(h2)
O(1) δ + O(h)

)(
‖Δyn‖
‖Δzn‖

)
+

(
O(hp+1)
O(hq̃+1)

)
.(37)

For the verification of the first relation in (37) we again linearize the quantities y(tn+h)
and yn+1 to obtain

Δyn+1 = Δyn + hb̃1(fy(tn)Δyn + fz(tn)Δzn) + h

s∑
i=2

b̃i(fy(tn) (Yni − Uni)

+ fz(tn) (Zni − Vni)) + O(h2 ‖yn‖ + h2 ‖zn‖) + O(hp+1),(38)

and inserting (35) and (36) into (38), we get

‖Δyn+1‖ ≤ (1 + C1h) ‖Δyn‖ + C2h
2 ‖Δzn‖ + O(hp+1).(39)

In (39), we applied the statement of Lemma 5.1.
Now we compute the second relation in (37) from (25d) and its exact expres-

sion g(y(tn + c̃sh), z(tn+1)) = αsg(y(tn), z(tn)). Linearizing and subtracting the two
quantities, respectively, we obtain

Δzn+1 = −g−1
z (tn + c̃sh)gy(tn)ΔYns + αsg

−1
z (tn + c̃sh)gy(tn)yn

+ αsg
−1
z (tn + c̃sh)gz(tn)zn + O

(
‖Δyn‖2

+ ‖Δzn‖2
)
.

We now assume that

‖Δyn‖ ≤ Ch, ‖Δzn‖ ≤ Ch,(40)

with some fixed constant C.1 Therefore, by g−1
z (tn + h)gz(tn) = I + O(h), it follows

that

‖Δzn+1‖ ≤ |αs| ‖Δzn‖ + O (‖Δyn‖ + h ‖Δzn‖) + O(‖ΔYns‖)(41)

as long as assumption (40) is satisfied. Now, using

ΔYni = Δyn + h

i−1∑
j=1

ãijΔknj + O(hq̃i+1)(42)

and a Lipschitz condition for f gives

‖Δkni‖ ≤ M ‖ΔYni‖ + N ‖ΔZni‖ .(43)

1This statement should be interpreted to mean that if h is sufficiently small, the numerical
solution will never violate the conditions (40).
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In order to find an optimal estimate of (41) we proceed as follows. The linearization
of (32) and the exact expression g(y(tn + c̃ih), z(tn + c̃ih)) = αig(y(tn), z(tn)) yields

‖ΔZni‖ ≤ |αi| ‖Δzn‖ + O (h ‖Δzn‖ + ‖Δyn‖) + O(‖ΔYni‖).

Inserted into (43), with the help of (42) after repeated insertions of ‖ΔYni‖, and
setting i = s, we obtain

‖ΔYns‖ ≤ ‖Δyn‖ + hC1 (‖Δyn‖ + ‖Δzn‖) + hC2(|αs| ‖Δzn‖ + ‖Δyn‖) + O(hq̃+1)

with q̃ = min {q̃s, q̃i + 1, i = 2, . . . , s− 1}. Now putting the previous formula into
(41), it follows that

‖Δzn+1‖ ≤ C ‖Δyn‖ + (δ + Ch) ‖Δzn‖ + O(hq̃+1),(44)

where δ = |αs|. This completes the proof of formula (37).
Now applying Lemma 5.2 below to (37) gives the estimates (31) for nh ≤ Const,

completing the proof.
Lemma 5.2. Let {un} and {vn} be two sequences of nonnegative numbers satis-

fying (componentwise)(
un+1

vn+1

)
≤

(
1 + O(h) O(h2)
O(1) δ + O(h)

)(
un

vn

)
+

(
O(hp+1)
O(hq̃+1)

)
(45)

with 0 ≤ δ < 1. Then the following estimate holds for nh ≤ Const and h ≤ h0:

un ≤ C(u0 + h2v0 + hq̃+2 + hp),

vn ≤ C(u0 + (δn + h) v0 + hq̃+1 + hp).
(46)

The proof is similar to that of Lemma 3.9 in [13].
Remarks. It is worth noting that if bi = b̃i for i = 1, . . . , s, then inserting (35)

and (36) into (38) yields the nonzero quantity b̃1 +
∑s

i=2 b̃iαi. For the y-component
this implies yn − y(tn) = O(hp) + O(hq̃+1).

Corollary 5.1 (type ARS). Suppose that the assumptions of Theorem 5.2 are
satisfied and b1 = 0. Then the numerical solution has global error satisfying (31).

Remarks. We now suppose that the ARS method is not stiffly accurate. In order
to obtain an optimal evaluation of Δzn, we proceed as follows. Since g(Yni, Zni) = 0,
we get Zni = G(Yni) for i = 2, . . . , s. By the Lipschitz condition for G, it follows that
‖ΔZni‖ ≤ C ‖ΔYni‖. Using (42) and (43), we get

‖ΔYni‖ ≤ ‖Δyn‖ + h |ãi1| (‖Δyn‖ + ‖Δzn‖) + O(hr̃i+1)(47)

with r̃i = min {q̃i, q̃j + 1, j = 1, . . . , i− 1}. It thus follows from the numerical and
exact solution that

‖Δzn+1‖ ≤ |ρ| ‖Δzn‖ + C

s∑
i,j=2

|biω̂ij | ‖ΔYnj‖ + O(hq+1),(48)

where ρ = 1 −
∑s

i,j=2 biω̂ij and q = mini≤sqi. Now, inserting (47) into (48) yields

‖Δzn+1‖ ≤ (|ρ| + C2h) ‖Δzn‖ + C1 ‖Δyn‖ + O(hr̃+1) + O(hq+1),(49)
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where r̃ = min {r̃2, . . . , r̃s} with |ρ| < 1. We now solve (39) and (49), applying again
Lemma 5.2, thus obtaining for the global error

yn − y(tn) = O(hp) + O(h3), zn − z(tn) = O(hp) + O(h2).

Observe that the estimates obtained above are given since q = 1.
It is interesting to note that if b̃1 
= 0, in (39) we get ‖Δyn+1‖ ≤ (1+C1h) ‖Δyn‖+

C2h ‖Δzn‖ + O(hp+1) and the proof follows as above.

6. Higher-order expansion (higher index). Now we study the global error
of IMEX R-K methods when applied to the SPP (2). To this end, we are interested
in studying the differences yνn − yν(tn) and zνn − zν(tn) from (20). All the theorems
below are built on the assumption that the stability function of the implicit scheme
satisfies |R(∞)| < 1 and the weights b̃i = bi for all i. In what follows, when we use the
superscript 0 in the quantities Yni, Zni, kni, �ni, yn, zn, we are treating the behavior
of the numerical solution of the reduced problem.

Theorem 6.1 (type A). Consider an IMEX R-K method of type A such that
(aij) is invertible. Assume (8) holds and the initial values of the differential-algebraic
system of index ν + 1 are consistent. Then if

∑s
ij biωij c̃j = 1, the global error of

method (17)–(19c) satisfies, for ν = 1, 2,

yνn − yν(tn) = O(h3−ν), zνn − zν(tn) = O(h2−ν);(50)

otherwise

yνn − yν(tn) = O(h2−ν), zνn − zν(tn) = O(h1−ν).(51)

Proof. Here we emphasize some straightforward differences with respect to
Theorem 3.4 in [13].

(a) We begin by denoting the differences to the exact solution values:

Δyνn = yνn − yν(tn), Δzνn = zνn − zν(tn),

ΔY ν
ni = Y ν

ni − yν(tn + c̃ih), ΔZν
ni = Zν

ni − Zν(tn + cih),

Δkνni = kνni − y
′

ν(tn + c̃ih), Δ�νni = �νni − z
′

ν(tn + cih).

(52)

Furthermore we have for an IMEX R-K method(
ΔY ν

ni

ΔZν
ni

)
=

(
Δyνn
Δzνn

)
+ h

( ∑i−1
j=1 ãijΔkνnj∑i
j=1 aijΔ�νnj

)
+

(
O(hq̃i+1)
O(hqi+1)

)
.(53)

From Theorem 5.1 it follows that

Δy0
n = O(hp), ΔY 0

ni = O(hq̃i+1),

Δk0
ni = O(hq̃i+1), ΔZ0

ni = O(hq̃i+1),
(54)

and

Δz0
n =

{
O(h2) if

∑s
i,j=1 biωij c̃j = 1,

O(h) otherwise.
(55)

We also have

Δ�0ni =

{
O(h) if

∑s
i,j=1 ωij c̃j = 1,

O(1) otherwise.
(56)
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Here ωij are the elements of the inverse of matrix A.
(b) We first consider the case ν = 1. In analogy to the proof of Theorem 3.4 in

[13], using the estimates (54), we deduce the following expressions:

Δk1
ni = fy(tn + c̃ih)ΔY 1

ni + fz(tn + c̃ih)ΔZ1
ni

+ O(hq̃i+1 + hq̃i+1
∥∥ΔY 1

ni

∥∥ + hq̃i+1
∥∥ΔZ1

ni

∥∥),

Δ�0ni = gy(tn + c̃ih)ΔY 1
ni + gz(tn + c̃ih)ΔZ1

ni

+ O(hq̃i+1 + hq̃i+1
∥∥ΔY 1

ni

∥∥ + hq̃i+1
∥∥ΔZ1

ni

∥∥).

(57)

Here we have used the abbreviations fy(t) = fy(y0(t), z0(t)), gy(t) = gy(y0(t), z0(t)).
Now, we compute ΔZ1

ni from the second relation in (57). Therefore, inserting it into
the first one and using (53), we can eliminate ΔY 1

ni and obtain

Δk1
ni − (fzg

−1
z )(tn + c̃ih)Δ�0ni = O(

∥∥Δy1
n

∥∥)

+ (fy − fzg
−1
z gy)(tn + c̃ih)h

i−1∑
j=1

(
(fzg

−1
z )(tn + c̃jh)ãijΔ�0nj + O(hq̃j+1)

)
+ O(hq̃i+1).

By (56), it follows that Δkni = O(
∥∥Δy1

n

∥∥) + O(h) if
∑i

i,j=1 biωij c̃j = 1; otherwise

Δkni = O(
∥∥Δy1

n

∥∥) + O(1). A direct estimation of Δy1
n proves that Δy1

n = O(h) if∑s
i,j=1 biωij c̃j = 1; otherwise Δy1

n = O(1). However, these estimations are not
optimal.

Following the argument in Theorem 3.4 in [13], we now introduce the new variable

Δu1
n = Δy1

n − (fzg
−1
z )(tn)Δz0

n.(58)

At this point the only difference is that we have to treat more carefully the quantity
Δk1

ni−fzg
−1
z (tn)Δ�0ni for all i. For details we refer to [4]. Using the hypothesis b̃i = bi

for i = 1, . . . , s, we obtain

Δu1
n+1 = Δu1

n + h

s∑
i=1

bi

(
O(

∥∥Δy1
n

∥∥) + O(h
∥∥Δ�0ni

∥∥)

+ (fy − fzg
−1
z gy)(tn + c̃ih)h

i−1∑
j=1

(
(fy − fzg

−1
z gy)(tn + c̃jh)ãijΔ�0nj + O(hq̃j+1)

)
+ O(hq̃i+1)

)
− ((fzg

−1
z )(tn + h) − (fzg

−1
z )(tn))Δz0

n+1 + O(hp+1),

where O(h
∥∥Δ�0ni

∥∥) = ((fzg
−1
z )(tn + c̃ih) − (fzg

−1
z )(tn))Δ�0ni. Consequently, the first

relations in (56) and (55) and the fact that ((fzg
−1
z )(tn + h) − (fzg

−1
z )(tn)) = O(h)

imply that ∥∥Δu1
n+1

∥∥ ≤ (1 + Ch)
∥∥Δu1

n

∥∥ + O(h3).(59)

Then we have Δu1
n = O(h2) for nh ≤ Const (observe that the initial values are

assumed to be consistent, i.e., Δu1
0 = 0), so that by (58) and (55) we also have

Δy1
n = O(h2). This implies Δk1

ni = O(h) and ΔY 1
ni = O(h2). The second relation in

(57) proves that ΔZ1
ni = O(h).
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In order to estimate Δz1
n we proceed as in Theorem 3.4 in [13] and, because

|R(∞)| < 1, we thus obtain Δz1
n = O(h). In particular, we emphasize that if we

consider the second relation in (56) and (55) in a similar way, we get Δy1
n = O(h)

with Δk1
ni = O(1) and, in addition, it follows from ΔZ1

ni = O(1) that Δz1
n = O(1).

(c) The proof for general ν is similar to that of Theorem 3.4 in [13]. It is
worth commenting that the only difference arises in the quantity Δ�ν−1

ni = O(h2−ν)
if
∑s

ij biωij c̃j = 1; otherwise Δ�ν−1
ni = O(h1−ν). Thus the statement follows with

if

s∑
ij

biωij c̃j = 1, ΔY ν
ni = O(h3−ν), ΔZν

ni = O(h2−ν);

otherwise ΔY ν
ni = O(h2−ν), ΔZν

ni = O(h1−ν).

(60)

Theorem 6.2 (type CK). Consider an IMEX R-K method of type CK which is
stiffly accurate and such that (âij) is invertible. If (8) holds and if the initial values
of the differential-algebraic system of index ν + 1 are consistent, then the global error
of method (17)–(19c) satisfies, for ν = 1, 2,

yνn − yν(tn) = O(h3−ν), zνn − zν(tn) = O(h2−ν).(61)

Proof. From Theorem 5.2 it follows that

Δy0
n = O(hq̃+2 + hp), ΔY 0

ni = O(hq̃i+1), Δk0
ni = O(hq̃i+1),

Δz0
n = O(hq̃+1 + hp), ΔZ0

ni = O(hq̃i+1),
(62)

with q̃ = min {q̃s, q̃i + 1, i = 2, . . . , s− 1}.
Again we consider the case ν = 1. Here the study of convergence needs further

investigation. We start by computing the difference Δ�0n1. From (19b), we have
�0n1 = gy(y

0
n, z

0
n)y1

n + gz(y
0
n, z

0
n)z1

n, and this implies ‖Δ�0n1‖ ≤ C(‖Δy0
n‖ + ‖Δz0

n‖ +
‖Δy1

n‖ + ‖Δz1
n‖). Consequently, using (53), we have

Δ�0ni = O(
∥∥Δy1

n

∥∥ +
∥∥Δz1

n

∥∥) + h−1ω̂i2(ΔZ0
n2 − Δz0

n) + O(hq̃i) + O(hqi),(63)

where ω̂ij are the elements of the inverse matrix of Â. Therefore, inserting (63) into
the quantity Δk1

ni − (fzg
−1
z )(tn + c̃ih)Δ�0ni computed in the previous theorem, we

obtain

Δk1
ni = h−1ω̂i2(fzg

−1
z )(tn + c̃ih)(ΔZ0

n2 − Δz0
n)

+ O(
∥∥Δy1

n

∥∥ +
∥∥Δz1

n

∥∥) + O(hq̃i) + O(hqi).

By (62) and q̃2 = 1, we have ΔY 0
n2 = O(h2) and ΔZ0

n2 = O(h2). Hence, this implies
Δk1

ni = O(
∥∥Δy1

n

∥∥ +
∥∥Δz1

n

∥∥) + O(h), and a direct estimation of Δy1
n leads to∥∥Δy1

n

∥∥ ≤ (1 + Ch)‖Δy1
n‖ + Ch‖Δz1

n‖ + O(h2).(64)

Now, using (53), this gives Δ�1ni = αiΔ�1n1 + h−1
∑

j≥2 ω̂ij(ΔZ1
nj − Δz1

n) + O(hqi)

for i = 2, . . . , s. Since the method is stiffly accurate and b̃i = bi for i = 1, . . . , s, the
statement of Lemma 5.1 is satisfied, and from Δz1

n+1 = Δz1
n+h(b1+

∑
i≥2 biαi)Δ�1n1+∑

i,j≥2 biω̂ij(ΔZ1
nj − Δz1

n) + O(hqi+1) we obtain∥∥Δz1
n+1

∥∥ ≤ |ρ|
∥∥Δz1

n

∥∥ +
∑
i,j≥2

|biω̂ij |
∥∥ΔZ1

nj

∥∥ + O(hqi+1)(65)
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with |ρ| = |R(∞)| < 1. By (63) and ΔZ0
ni = O(h2), it follows that Δ�0ni = O(‖Δy1

n‖+
‖Δz1

n‖) + O(h). Thus, the second relation of (57) proves that ΔZ1
ni = O(‖Δy1

n‖ +
‖Δz1

n‖) + O(h(‖Δy1
n‖ + ‖Δz1

n‖)) + O(h). Inserting (65), we obtain∥∥Δz1
n+1

∥∥ ≤
∥∥Δy1

n

∥∥ + (|ρ| + Ch)
∥∥Δz1

n

∥∥ + O(h).(66)

Now applying Lemma 5.2 to inequalities (64) and (66) gives Δy1
n = O(h), Δz1

n =
O(h). Again, we can conclude that the estimate about Δy1

n is not optimal. Therefore,
introducing the new variable (58), we obtain∥∥Δu1

n+1

∥∥ ≤ (1 + Ch)
∥∥Δu1

n

∥∥ + Ch2
∥∥Δz1

n

∥∥ + O(h3).(67)

We now apply Lemma 5.2 again, replacing the inequality (64) with (67). Then by
(58) and (62) we have Δy1

n = O(h2). Obviously, the proof for general ν is similar to
the one presented in Theorem 6.1. This completes the proof of the theorem.

Remark. Of course, concerning type ARS, under the same assumptions as Theo-
rem 6.2 (with also b1 = 0), we again deduce the estimates (61).

7. Estimates on the remainder. In order to estimate the remainder in the
expansion (20), we require the same detailed analysis previously developed by Hairer,
Lubich, and Roche in [12] (see also [13, sect. VI.3]). The main purpose in this section
is to extend the same results presented in [13, sect. VI.3] to the different types of
IMEX R-K methods.

Let us introduce existence and local uniqueness of the numerical solution of (4),
(5). Next we shall discuss the influence of perturbations in (5) to the numerical
solution.

We shall consider two steps in succession. First, we suppose that (yn, zn) are
known, denoted by (η, ζ), and prove the existence and uniqueness of (yn+1, zn+1). We
assume that g(η, ζ) = O(h), μ(gz(η, ζ)) ≤ 1 and that aii > 0 for all i. Thus we have
the nonlinear system for the stage values(

Yi − η
ε (Zi − ζ)

)
= h

( ∑i−1
j=1 ãijf(Yj , Zj)∑i
j=1 aijg(Yj , Zj)

)
.(68)

It is significant to note that if we restrict ourselves to the use of a particular type
of IMEX R-K method, for instance, type A, where the matrix A is invertible, we
immediately obtain the statement of Theorem 3.5 in [13]. Instead, for type CK, it is
worth commenting that the second equation in (68) becomes

ε

h
(Zi − ζ) − ai1g(η, ζ) −

i∑
j=2

âijg(Yj , Zj) = 0,

whereas for type ARS we have ai1 = 0 for all i. Therefore, we easily find again the
statement of Theorem 3.5 in [13].

We now study the influence of perturbations in (68) to the numerical solution.
For the perturbed IMEX R-K method(

Ŷi − η̂

ε
(
Ẑi − ζ̂

) )
= h

( ∑i−1
j=1 ãijf(Ŷj , Ẑj)∑i
j=1 aijg(Ŷj , Ẑj)

)
+ h

(
δi
θi

)
(69)

we allow the following remarks.
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Remarks. For an IMEX R-K scheme of type A the statement and the proof is
similar to that of Theorem 3.6 in [13]. Extra care must to be taken to properly handle
type CK. First observe that in addition to the assumptions of Theorem 3.5 in [13] we

suppose that η̂ − η = O(h), ζ̂ − ζ = O(h), δi = O(1), and θi = O(h) for i = 2, . . . , s
with δ1 = 0 and θ1 = 0. Then we have for h ≤ h0 the following estimates:

‖Ŷi − Yi‖ ≤ C(‖η̂ − η‖ + h‖ζ̂ − ζ‖) + hC(‖δ‖ + ‖θ‖),

‖Ẑi − Zi‖ ≤ C
(
‖η̂ − η‖ +

( ε

h
+ h

)
‖ζ̂ − ζ‖

)
+ C(h ‖δ‖ + ‖θ‖),

(70)

where δ = (δ1, . . . , δs)
T and θ = (θ1, . . . , θs)

T . Later, we note that we have to treat
the following homotopy more carefully:(

Yi − η
ε (Zi − ζ)

)
− h

( ∑i−1
j=1 ãijf(Yj , Zj)∑i
j=1 âijg(Yj , Zj)

)

= τ

(
η̂ − η + hδi

ε(ζ̂ − ζ) + hai1(g(η̂, ζ̂) − g(η, ζ)) + hθi

)
,

which relates system (68) for τ = 0 to the perturbed system (71) for τ = 1. Fur-
thermore, we denote by âij the elements of the submatrix Â, and, by the Lipschitz
condition for g, we have the inequality

‖(g(η̂, ζ̂) − g(η, ζ))‖ ≤ L‖η̂ − η‖ + L‖ζ̂ − ζ‖.

Then, in this situation, the same conclusions of Theorem 3.6 in [13] hold. In particular,
if ai1 = 0 for all i, the same also follows for type ARS.

Following [13], we finally estimate the remainder of the expansion (20).
Theorem 7.1 (type A). Under the same hypotheses as those of Theorem 3.1, for

any fixed constant c > 0 and ε ≤ ch, the global error satisfies

yn − y(tn) = Δy0
n + εΔy1

n + ε2Δy2
n + O(ε3),

zn − z(tn) = Δz0
n + εΔz1

n + ε2Δz2
n + O(ε3/h),

(71)

where Δy0
n = y0

n − y0(tn), Δz0
n = z0

n − z0(tn), . . . are the global errors of the method
applied to differential-algebraic system. The estimates (71) hold uniformly for h ≤ h0

and nh ≤ Const.
Remark. In order to enable a direct comparison with Theorem 3.8 in [13] (see also

[12]), by Theorem 6.1, and by (50) and (60), if
∑s

ij biωij c̃j = 1, it suffices to prove the
result for ν = 2; otherwise it must be proven for ν = 1. Therefore, the result follows
directly by applying Theorem 3.8 in [13].

Theorem 7.2 (type CK). Under the same hypotheses as those of Theorem 3.2,
then, for any fixed constant c > 0 and ε ≤ ch, the global error satisfies the estimates
(71) uniformly for h ≤ h0 and nh ≤ Const.

Remark. It is interesting, of course, to know how in the proof of Theorem 7.2
several formulas are related to those of Theorem 3.8 in [13]. For instance, by (19a)–
(19c) it follows from (60) and ν = 2 that

k̂ni = f(Ŷni, Ẑni) + O(ε3),

ε�̂ni = g(Ŷni, Ẑni) + ε3�2ni + O(ε3).
(72)
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Using Zν
ni = zνn + hai1�

ν
n1 + h

∑i
j=2 �

ν
nj , from (61) and

�νn1 = gy(y
0
n, z

0
n)yν+1

n + gz(y
0
n, z

0
n)zν+1

n + ψν+1(y
0
n, z

0
n, . . . , y

ν
n, z

ν
n),

we get �2ni = O(h−1). Together with (18), and by (72), it follows that we obtain a
perturbed IMEX R-K method which is of the form (69). Therefore, in the case of
Theorem 3.8 in [13], this yields

‖ΔYni‖ ≤ C(‖Δyn‖ + h‖Δzn‖) + O(ε3),

‖ΔZni‖ ≤ C
(
‖Δyn‖ +

( ε

h
+ h

)
‖Δzn‖

)
+ O(ε3/h),

(73)

provided that Δyn and Δzn are of size O(h). The justification of these assumptions
follows by induction on n where Δy0 = O(ε3) and Δz0 = O(ε3) and from Δyn =
O(ε3/h), Δzn = O(ε3/h), because ν = 2.

Moreover, we prove the recursion(
‖Δyn+1‖
‖Δzn+1‖

)
≤

(
1 + O(h) O(ε + h2)
O(1) α + O(h)

)(
‖Δyn‖
‖Δzn‖

)
+

(
O(ε3)

O(ε3/h)

)
.(74)

The value α < 1 is justified in [4] (see also [13]).
Second, in solving the second relation in (74) we use the result of Lemma 5.1

where we emphasize that the method is stiffly accurate and b̃i = bi for all i. Of
course, for type ARS, we have again the estimates (71).

Now by combining Theorems 5.1, 6.1, and 7.1, Theorem 3.1 follows. Theorem 3.2
follows from Theorems 5.2, 6.2, and 7.2. Finally, Corollary 3.1 follows from Corol-
lary 5.1 and from the remarks of Theorems 6.2 and 7.2.

8. Conclusions. A study of the global error for different types of IMEX R-K
methods has been investigated for a class of singular perturbation problems (SPPs).
This asymptotic analysis enables us to obtain convergence results, based on the
smoothness of the solution, giving error bounds for several classes of IMEX R-K
methods. In particular, the use of DAE techniques, when applied to the stiff case
Δt � ε, was found to give optimal estimates describing the structure of the solutions
of SPPs. Concerning the van der Pol equation, numerical results reveal order reduc-
tion for all methods in the second (algebraic) component of the solution for small
values of the stiffness parameter ε and likewise an order reduction in the first (differ-
ential) component when b̃i is not equal to bi for all i. In fact, the hypothesis b̃i = bi
represents the only remedy for preserving the classical order for the differential com-
ponent of the solution. Also, when ε is sufficiently small, and for a given set of suitable
assumptions, we obtain numerical results which display improved error estimates in
the algebraic component for some IMEX R-K methods appearing in the literature.
These results lead us to develop new IMEX R-K methods that work uniformly for a
wide range of values of the stiffness parameter ε. In future work we shall introduce
new order conditions for the construction of these IMEX R-K methods (see [5]) and
study their stability properties.
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AN ENERGY- AND HELICITY-CONSERVING FINITE ELEMENT
SCHEME FOR THE NAVIER–STOKES EQUATIONS∗
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Abstract. We present a new finite element scheme for solving the Navier–Stokes equations
that exactly conserves both energy (

∫
Ω u2) and helicity (

∫
Ω u · (∇ × u)) in the absence of viscosity

and external force. We prove stability, exact conservation, and convergence for the scheme. Energy
and helicity are exactly conserved by using a combination of the usual (convective) form with the
rotational form of the nonlinearity and solving for both velocity and a projected vorticity in a
trapezoidal time discretization. Numerical results are presented that compare the scheme to the
usual trapezoidal schemes.

Key words. Navier–Stokes, conservation, helicity, energy, rotational form, fully discrete
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1. Introduction. It is well known that the Navier–Stokes equations (NSE) con-

serve energy (E = 1
2

∫
Ω
|u|2) in the absence of viscosity and external force. Con-

serving energy in numerical schemes for the NSE not only leads to stability for the
scheme, but also is necessary for physical relevance of solutions. In rotational flows,
however, other integral invariants are also important. In two dimensions enstro-
phy (Ens = 1

2

∫
Ω
|∇ × u|2) and in three dimensions helicity (H =

∫
Ω
u · (∇ × u))

are also conserved quantities of the NSE when viscosity and external force are not
present [4], [6].

Although the importance of enstrophy in two-dimensional flow has been known for
many years, the importance of helicity in understanding three-dimensional turbulent
phenomena has only recently been recognized. The inviscid invariance of helicity was
discovered by Moreau in 1961 [15], and a famous 1992 review paper [14] of Moffatt and
Tsoniber finds helicity to have a status of importance comparable to energy for three-
dimensional flows. Hence, accurate helicity treatment, in addition to accurate energy
treatment, should be a goal for numerical schemes for three-dimensional rotational
flows.

Helicity in true fluid flow is created and dissipated only by viscous and body
forces, and thus for a numerical scheme for the NSE to have physical relevance, the
nonlinearity in the scheme should not create or dissipate helicity. If a scheme conserves
helicity in the inviscid case (even though an NSE scheme is typically designed for
viscous flows only), then under viscous conditions the scheme’s nonlinearity will not
nonphysically create or dissipate helicity.

For two-dimensional flows, schemes such as the classical Arakawa scheme [1] have
existed for over forty years which conserve both energy and enstrophy (this and all fu-
ture references to E/H/Ens conservation implicitly refer to the case of no viscosity or
external force). By conserving energy and enstrophy for inviscid flows, the Arakawa
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scheme is accurate over longer time intervals because it ensures only viscosity and
external force (and not the nonlinearity) create and dissipate energy and enstrophy.
For three-dimensional flows, however, it was not until 2004 that Liu and Wang devel-
oped the first scheme that conserves both energy and helicity. In [13], they present
an energy- and helicity-preserving scheme for axisymmetric flows and show that this
dual conservation eliminates the need for excessive numerical viscosity. It is their
work which motivated this article.

In this report, we present a new finite element scheme that conserves both energy
and helicity for general, viscous flows. Our development of the scheme herein is for
periodic boundaries (and hence we use a box for the domain Ω). The key features that
allow the scheme to conserve both energy and helicity are the use of the projection
of the vorticity in the scheme and a new variational formulation of the nonlinearity
that vanishes when tested against either the velocity or projected vorticity. For non-
periodic boundary conditions, helicity is not necessarily globally conserved. On the
other hand, helicity generation and helicity flux are equally important for nonperiodic
problems, and a numerical method should not generate spurious helicity through its
discretization of the nonlinear term.

Remark 1.1. Helicity is not necessarily globally conserved for more general bound-
ary conditions. Consider the Euler equations on Ω = (0, L)3. Multiply by the vorticity
w := (∇× u) and integrate over the domain:

(1)

∫
Ω

ut · w +

∫
Ω

(
1

2
∇u2 − u× w

)
· w +

∫
Ω

∇p · w = 0.

This reduces via integration by parts and vector identities to

(2)

∫
Ω

ut · w +

∫
∂Ω

(
p +

1

2
u2

)
(w · n) = 0.

The boundary integral in (2) can vanish without periodicity (e.g., if w · n = 0 is im-
posed), but the resulting equation,

∫
Ω
ut ·w = 0, still does not imply the conservation

of helicity since integrating by parts with u decomposed as u := 〈u1, u2, u3〉 shows

(3) H(T ) −H(0) =

∫ T

0

d

dt
H(t) =

∫ T

0

d

dt

∫
Ω

u · w =

∫ T

0

∫
Ω

(ut · w + u · wt)

=

(∫ L

0

∫ L

0

((
u1u3|y=L

y=0 dz dx
)

+
(
u1u2|z=L

z=0 dy dx
)

+
(
u2u3|x=L

x=0 dz dy
)))

|t=T
t=0 .

Thus we see that helicity is conserved for periodic boundary conditions or for zero
(Dirichlet) boundary conditions (with w · n = 0 imposed on the boundary), but not
necessarily conserved in general.

This article is arranged as follows: We present the energy- and helicity-conserving
scheme in section 3, after providing the necessary notation in section 2. Section 4 gives
a rigorous numerical analysis for the scheme, section 5 presents numerical results, and
section 6 presents conclusions.

2. Notation and preliminaries. (·, ·) and ‖·‖ denote the usual L2 inner prod-
uct and norm, respectively, and ‖·‖k the Hk(Ω) norm. ‖·‖∞ will denote the usual
L∞(Ω) norm, and all other norms that appear in this article will be clearly labeled
with subscripts. The domain Ω we use is the box (0, L)3.



1624 LEO G. REBHOLZ

Definition 2.1. The Hilbert space H1
#(Ω) will be defined as

H1
# :=

(
v ∈ H1 : v periodic on Ω,

∫
Ω

v dx = 0

)
.

This is the natural velocity space for the NSE with periodic boundary conditions,
as discussed in [11] and [12]. Note that velocities in this space automatically conserve
momentum (

∫
Ω
u), i.e., if u ∈ H1

#, then d
dt

∫
Ω
u = 0. This is physically important

because the NSE (with periodic boundary conditions) also conserve momentum [6].
Let Th = Th(Ω) be a conforming finite element mesh on Ω. Define the spaces

(Xh, Qh) ⊂ (H1
#, L2

0) to be conforming velocity, pressure finite element spaces (see,
e.g., [3], [5], or [7] for examples) that satisfy the discrete inf-sup condition (also known
as the LBB condition)

(4) 0 < β ≤ inf
q∈Qh

sup
v∈Xh

(q,∇ · v)
‖v‖1‖q‖

.

Define V h to be the space of discretely divergence-free, zero-mean, periodic functions.

V h = {v ∈ Xh : (∇ · v, q) = 0 ∀q ∈ Qh}.

Since V h is a closed subspace of H1
#(Ω), we have also that V h is a Hilbert space,

hence the following result.
Lemma 2.2. Let uh ∈ V h. Then there exists a unique wh ∈ V h satisfying

(5) (wh, v) = (∇× uh, v) ∀v ∈ V h.

Proof. Since uh ∈ V h ⊂ H1(Ω), it follows that ∇ × uh ∈ L2(Ω). Since V h is
a closed subset of the Hilbert space L2(Ω), the Riesz representation theorem implies
the existence and uniqueness of a solution wh to (5).

The next lemma shows how an elementary property of the cross product can be
used for double skew-symmetry of a trilinear term.

Lemma 2.3. Let uh, wh ∈ Xh. Then

(uh × wh, uh) = (uh × wh, wh) = 0.

Proof. This follows from an elementary property of the cross product; the cross
product of two vectors is perpendicular to each of them.

The significance of this lemma is that in a finite element scheme, the trilinear form
(uh × wh, vh) will vanish when vh = uh or wh. Such a trilinear form has significance
in the NSE if the rotational form of the nonlinearity is used (see, e.g., [6, p. 461] or
[17]). Our scheme uses this form and exploits the double skew-symmetry to show the
scheme conserves both energy and helicity.

The discrete Gronwall lemma will also be an essential tool in the error analysis;
we present it now.

Lemma 2.4 (discrete Gronwall). Let Δt, H, and an, bn, cn, dn (for integers n ≥ 0)
be nonnegative numbers such that

(6) al + Δt

l∑
n=0

bn ≤ Δt

l∑
n=0

dnan + Δt

l∑
n=0

cn + H for l ≥ 0.
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Suppose that Δtdn < 1 ∀n. Then

(7) al + Δt

l∑
n=0

bn ≤ exp

(
Δt

l∑
n=0

dn
1 − Δtdn

)(
Δt

l∑
n=0

cn + H

)
for l ≥ 0.

Proof. See [9], for example, for the proof of this well-known lemma.
We end this section with definitions for discrete energy and helicity.
Definition 2.5. We define the discrete energy E and helicity H to be, at time

tk,

Eh(tk) =
1

2
‖uk

h‖2,

Hh(tk) = (uk
h,∇× uk

h).

We are now ready to present the scheme.

3. An energy- and helicity-preserving scheme for periodic flows. The
energy- and helicity-preserving finite element scheme we study is composed of a trape-
zoidal time discretization with a nonlinearity that is doubly skew-symmetric. Let Δt
denote the timestep, tk = kΔt, tk+1/2 = (k + 1

2 )Δt, and uk
h the approximation to

u(x, tk). u
k+1/2
h will denote

u
k+1/2
h :=

1

2
(uk+1

h + uk
h),

and fn+1/2(x) := f(tn+1/2, x) ∈ V h,∗. T = Nk denotes the final time. Given
u0
h ∈ V h, define w0

h to be the (unique in V h by Lemma 2.2) solution of (w0
h, v) =

(∇×u0
h, v) ∀v ∈ V h, and find (uk

h;wk
h; pkh) ∈ Xh×Vh×Qh for k = 1, . . . , N , satisfying

(8)
1

Δt
(un+1

h , v) + (u
n+1/2
h × w

n+1/2
h , v) − (p

n+1/2
h ,∇ · v) +

ν

2
(∇u

n+1/2
h ,∇v)

+
ν

2
(w

n+1/2
h ,∇× v) = (fn+1/2, v) +

1

Δt
(un

h, v) ∀v ∈ Xh,

(∇ · un+1
h , q) = 0 ∀q ∈ Qh,(9)

(wn+1
h −∇× un+1

h , χ) = 0 ∀χ ∈ V h.(10)

We now prove the conservation properties of the scheme: energy and helicity are
exactly conserved in the absence of viscosity and external force.

Lemma 3.1. The scheme (8)–(10) conserves energy and helicity in the absence
of viscosity and body force, that is, Eh(tn) = Eh(t0) and Hh(tn) = Hh(t0) ∀n ≤ N ,
provided ν = f = 0.

Proof. For the conservation of energy, set v = u
n+1/2
h and ν = f = 0 in (8). This

gives

(11) (un+1
h , u

n+1/2
h ) = (un

h, u
n+1/2
h ).

By expanding the u
n+1/2
h terms in (11), we have

1

2
‖un+1

h ‖2 +
1

2
(un+1

h , un
h) =

1

2
‖un

h‖2 +
1

2
(un

h, u
n+1
h ),(12)

Eh(tn+1) = Eh(tn),(13)
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which implies that Eh(tn) = Eh(t0).

For helicity conservation, set v = w
n+1/2
h in (8). The pressure term vanishes since

wn
h , w

n+1
h ∈ V h, and so after setting ν = f = 0, we are left with

(14)
1

2
(un+1

h , wn+1
h ) +

1

2
(un+1

h , wn
h) =

1

2
(un

h, w
n
h) +

1

2
(un

h, w
n+1
h ).

Using (10) and integrating by parts, we have the following identities for the terms in
(14):

(un+1
h , wn+1

h ) = (un+1
h ,∇× un+1

h ) = Hh(tn+1),(15)

(un
h, w

n
h) = (un

h,∇× un
h) = Hh(tn),(16)

(un+1
h , wn

h) = (un
h, w

n+1
h ).(17)

Thus (14) can be rewritten as

(18) Hh(tn+1) = Hh(tn),

which implies that Hh(tn) = Hh(t0).
Lemma 3.1 shows that only viscous and external forces create and dissipate energy

and helicity in the scheme when ν > 0 and nonzero f . This is qualitatively important
for the physical relevance of the scheme’s solution because this is also true for helicity
in the NSE (true fluid flow):

(19) H(T ) = H(0) +

∫ T

0

((f(t),∇× u(t)) + ν(∇u(t),∇(∇× u(t)))) dt.

In the energy- and helicity-conserving scheme, we have that
(20)

HN
h = H0

h+

N−1∑
n=0

(f(tn+1/2), w
n+1/2
h )+

ν

2
(∇u

n+1/2
h ,∇w

n+1/2
h )+

ν

2
(w

n+1/2
h ,∇×w

n+1/2
h ).

However, schemes that do not conserve helicity will not necessarily share this
physical property. For example, in a trapezoidal scheme for the NSE that does not
conserve helicity (e.g., usual Crank–Nicholson in rotational form (67)), the nonlinear
term will not vanish when the test function is chosen to be the projection of the curl.
In this scheme,

HN
h = H0

h +

N−1∑
n=0

(f(tn+1/2), w
n+1/2
h ) + ν(∇u

n+1/2
h ,∇w

n+1/2
h )

(21)
+ (u

n+1/2
h × ((∇× u

n+1/2
h ) − w

n+1/2
h ), w

n+1/2
h ).

It is the last term in (21) that is nonphysical and thus can cause numerical errors and
a loss of physical fidelity over long time intervals in the usual trapezoidal scheme.

The following lemma shows that the energy- and helicity-conserving scheme is
also bounded by its data.

Lemma 3.2. Solutions to the discrete scheme (8)–(10) satisfy

(22) ‖uN
h ‖2 + Δt

N−1∑
n=0

(ν
2
‖∇u

n+1/2
h ‖2 + ν‖wn+1/2

h ‖2
)
≤ ‖u0

h‖2 +
2Δt

ν

N−1∑
n=0

‖fn+1/2‖2
∗.
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Proof. Set v = u
n+1/2
h in (8), q = p

n+1/2
h in (9), and add the equations. This

gives

(23)
1

2Δt
‖un+1

h ‖2 +
1

2Δt
(un+1

h , un
h) +

ν

2
‖∇u

n+1/2
h ‖2 +

ν

2
(w

n+1/2
h ,∇× un+1/2)

= (fn+1/2, u
n+1/2
h ) +

1

2Δt
‖un

h‖2 +
1

2Δt
(un

h, u
n+1
h ).

Note that (w
n+1/2
h ,∇×u

n+1/2
h ) = ‖wn+1/2

h ‖2 since (10) must hold for (n+1) replaced
by (n), and thus also for (n+ 1) replaced by (n+ 1/2). By making this substitution,
(23) reduces to

(24)
1

2Δt
‖un+1

h ‖2 +
ν

2
‖∇u

n+1/2
h ‖2 +

ν

2
‖wn+1/2

h ‖2 = (fn+1/2, u
n+1/2
h ) +

1

2Δt
‖un

h‖2.

Next we use the bound (fn+1/2, u
n+1/2
h ) ≤ ν

4‖∇u
n+1/2
h ‖2+ 1

ν ‖fn+1/2‖2
∗, and sum from

n = 0, . . . , (N − 1), yielding
(25)

1

2Δt
‖uN

h ‖2 +

N−1∑
n=0

(ν
2
‖∇u

n+1/2
h ‖2 + ν‖wn+1/2

h ‖2
)
≤ 1

2Δt
‖u0

h‖2 +
1

ν

N−1∑
n=0

‖fn+1/2‖2
∗.

Now multiplying both sides by (2Δt) proves the lemma.

3.1. Existence of solutions for the scheme. Given un
h, w

n
h ∈ V h, a nonlinear

system must be solved for the approximations at time level n + 1. The question
arises, Does that system have a solution? In other words, does imposing two integral
invariants overdetermine the system for un+1

h , wn+1
h ? The answer is that solutions to

(8)–(10) do exist, as we will show in this section.
For clarity, we show existence for the equivalent nonlinear problem: Given ν,Δt >

0, fn+1/2 ∈ V h,∗, and un
h ∈ V h, find (uh;wh) ∈ V h × V h satisfying

(26)
2

Δt
(uh, v) + (uh × wh, v) +

ν

2
(∇uh,∇v)

+
ν

2
(wh,∇× v) = (fn+1/2, v) +

2

Δt
(un

h, v) ∀v ∈ V h,

(27) (wh −∇× uh, χ) = 0 ∀χ ∈ V h.

This form of the scheme is derived from (8)–(10) by defining uh := u
n+1/2
h , wh :=

w
n+1/2
h and restricting the test functions to V h. Equations (26)–(27) are equivalent

to (8)–(10). To show solutions exist, we formulate (26)–(27) as a fixed point problem,
y = F (y), and use the Leray–Schauder fixed point theorem. We will first prove several
preliminary lemmas, followed by a theorem which proves that a solution to (26)–(27)
exists.

Lemma 3.3. For ν,Δt > 0, there exists a unique solution (uh, wh) to the follow-
ing: Given g ∈ V h,∗, find (uh;wh) ∈ V h × V h satisfying

2

Δt
(uh, v) +

ν

2
(∇uh,∇v) +

ν

2
(wh,∇× v) = (g, v) ∀v ∈ V h,(28)

(wh −∇× uh, χ) = 0 ∀χ ∈ V h.(29)
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Proof. We will prove uniqueness of solutions to (28)–(29) by showing only that the
trivial solution solves the homogeneous problem, which will also imply the existence
of solutions to the finite-dimensional problem. Since the space V h includes only zero-
mean functions, functions and operators are uniquely solvable, and thus we need not
consider the adjoint problem. Choose v = uh in (28), χ = wh in (29), and substitute
(29) into (28). This gives

(30)
2

Δt
‖uh‖2 +

ν

2
‖∇uh‖2 +

ν

2
‖wh‖2 = 0,

which implies uh = wh = 0, i.e., uniqueness.
This lemma allows us to define a solution operator to (28)–(29).
Definition 3.4. We define the solution operator T : V h,∗ → (V h×V h) to be the

solution operator of (28)–(29): if g ∈ V h,∗, then T (g) = (uh;wh) solves (28)–(29).
We have that T is well defined by the previous lemma, and we now prove it is

also bounded and linear.
Lemma 3.5. The solution operator T is linear, bounded, and continuous.
Proof. The linearity of T follows from the fact that T is a solution operator to

a linear problem. To see that T is bounded (and thus continuous since it is linear),
we let v = uh, χ = wh in (28)–(29), multiply (29) by ν

2 , and add the equations. This
gives

2‖uh‖2

Δt
+

ν

4
‖∇uh‖2 +

ν

2
‖wh‖2 ≤ 1

ν
‖g‖2

∗.

Then since uh, wh are finite-dimensional, ‖uh, wh‖V h×V h ≤ C‖g‖∗. Hence,

‖T‖ = sup
g∈V h

∗

‖T (g)‖
‖g‖∗

= sup
g∈V h

∗

‖uh, wh‖V h×V h

‖g‖∗
≤ C.

We next define the operator N . The function F that will be used in the formu-
lation of the fixed point problem will be a composition of T and N .

Definition 3.6. We define the operator N on (V h × V h) by

N(uh;wh) := fn+1/2 +
2

Δt
un
h + uh × wh.

We now prove properties for N necessary for use in Leray–Schauder.
Lemma 3.7. For the nonlinear operator N , we have that N : V h × V h → V h,∗,

N is bounded, and N is continuous.
Proof. To show N maps as stated, we let (uh, wh) ∈ V h × V h and write

‖N(uh;wh)‖∗ = sup
v∈V h

(N(uh;wh), v)

‖v‖1
.

From the definition of N , we have that
(fn+1/2,v)+(2(Δt)−1un

h ,v)
‖v‖1

≤ ‖f‖∗+C1‖un
h‖ ≤ C2,

and that

(uh × wh, v)

‖v‖1
≤ ‖uh‖∞‖wh‖ ≤ C3

since uh and wh are given to be in V h, and all norms are equivalent in finite dimension.
Hence ‖N(uh, wh)‖∗ < C, and so N maps as stated. Note we have also proven that
N is bounded.



AN ENERGY/HELICITY-CONSERVING NAVIER–STOKES SCHEME 1629

The equivalence of norms in finite dimension is also key in showing that N is
continuous, as

‖N(u;w) −N(uk;wk)‖∗ ≤ ‖u× (w − wk)‖∗ + ‖(u− uk) × wk‖∗(31)

≤ ‖u‖∞‖w − wk‖ + ‖wk‖∞‖u− uk‖,(32)

and thus → 0 as ‖(u;w) − (uk;wk)‖ → 0.

We are now ready to define the operator F , which will formulate (26)–(27) as a
fixed point problem.

Definition 3.8. Define the operator F : (V h × V h) → (V h × V h) to be the
composition of T and N : F (y) = T (N(Y )).

Lemma 3.9. F is well defined and compact, and a solution to y = F (y) solves
(26)–(27).

Proof. F is well defined because N and T are. The fact that F is compact follows
from the fact that both N and T are continuous and bounded. It can easily be seen
that a fixed point of F solves (26)–(27) by expanding F .

We are now ready to prove existence to (26)–(27).

Theorem 3.10. Let yλ = (uλ;wλ) ∈ V h × V h and consider the family of fixed
point problems yλ = λF (yλ), 0 ≤ λ ≤ 1. A solution yλ to any of these fixed point
problems satisfies ‖yλ‖ < K, independent of λ. Since F is compact, and fixed points of
F solve (26)–(27), by the Leray–Schauder theorem there exist solutions to (26)–(27).

Proof. All we have to show to prove this theorem is that solutions to yλ = λF (yλ)
are bounded independent of λ. Using the definition of F and the linearity of T we
have that

yλ = λF (yλ) = λT (N(yλ)) = T (λN (yλ)) = T

(
λ

(
fn+1/2 +

2

Δt
un
h + uλ × wλ

))
,

which implies that

(33)
2

Δt
(uλ, v) − λ(uλ × wλ, v) +

ν

2
(∇uλ,∇v)

+
ν

2
(wλ,∇× v) = (λfn+1/2, v) +

2λ

Δt
(un

h, v) ∀v ∈ V h,

(34) (wλ −∇× uλ, χ) = 0 ∀χ ∈ V h.

Multiply (34) by ν
2 , let χ = wλ in (34), v = uλ in (33), and add the equations.

Similarly to the stability estimate, this gives

(35)
1

Δt
‖uλ‖2 +

ν

4
‖∇uλ‖2 +

ν

2
‖wλ‖2

≤ λ2

(
1

ν
‖fn+1/2‖2 +

1

Δt
‖un

h‖2

)
≤

(
1

ν
‖fn+1/2‖2 +

1

Δt
‖un

h‖2

)
≤ C,

which is a bound independent of λ. Thus the theorem is proven.

We have now shown that the scheme (8)–(10) preserves energy and helicity when
ν = f = 0, that it is stable, and that it admits solutions. The final step is an error
analysis for the scheme.
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4. Error analysis of the scheme. This section presents a theorem for the
convergence of the scheme, followed by the proof. The restriction that the theorem
places on the timestep is for the use of the discrete Gronwall lemma. Although
we found its use necessary in the proof, it is widely believed that it gives a gross
underestimate of the largest timestep one can use, and we expect the same asymptotic
error. Without the projection step, the proof of the theorem is fairly standard; the
smoothness assumptions we make are also fairly standard and are similar to those
found in, for example, [10], [18].

Theorem 4.1. For u ∈ L∞(0, T ;W k+1
4 ) ∩ W 3

2 (0, T ;L2) ∩ W 2
4 (O, T,W 1

2 ), p ∈
L4(0, T ;W k) ∩ W 2

2 (0, T ;L2), f ∈ L2(0, T, V h,∗) satisfying the NSE on the periodic
box Ω = (0, L)3, (un

h;wn
h) given by (8)–(10) with velocity-pressure spaces chosen as

Pk, Pk−1 (k > 1), and timestep Δt sufficiently small (for Gronwall’s inequality), we
have that

(36)

‖u(T ) − uN
h ‖2 +

3νΔt

4

N−1∑
n=0

(
1

2
‖∇(un+1/2 − u

n+1/2
h )‖2 + ‖wn+1/2 − w

n+1/2
h ‖2

)
≤ C(u, p, ν−3,Ω, T )(Δt4 + h2k).

Remark 4.2. Under the smoothness assumptions of the theorem, the constant
in the error estimate can be prohibitively large for small ν, as the constant contains
ν−3 terms. This constant can be improved (i.e., to contain ν−1 instead of ν−3), but
requires the data to be assumed very smooth.

Remark 4.3. Under the assumptions of the theorem, a pressure estimate can

also be obtained: 1
Δt

∑N−1
n=0 ‖p(tn+1/2) − p

n+1/2
h ‖ ≤ C(u, p, ν−3,Ω, β, T )(Δt2 + hk).

Enforcing helicity conservation in this setting does not improve this estimate versus
the pressure estimate in the usual trapezoidal scheme; that is, this is the expected
result and its proof (which is omitted) follows in the standard way (see, e.g., [8], [9]).

Proof. The proof of the theorem is divided into the following parts. We first
develop the error equations by subtracting our scheme from the NSE. The error is
then split into parts in and out of the finite element spaces. This is followed by
bounding the error in the space by interpolation error, and the proof concludes by
bounding the total error. Note that we require that the spaces Xh, Qh satisfy the
discrete inf-sup condition; with such spaces, and since (w0

h −∇× u0
h, v) = 0 ∀v ∈ V h,

the energy- and helicity-conserving scheme is equivalent to finding solutions un, wn

∈ V h, n = 0, . . . , N , satisfying

(37)
1

Δt
(un+1

h − un
h, v) − (u

n+1/2
h × w

n+1/2
h , v) +

ν

2
(∇u

n+1/2
h ,∇v) +

ν

2
(w

n+1/2
h ,∇× v)

= (fn+1/2, v) ∀v ∈ V h,

(38) (w
n+1/2
h −∇× u

n+1/2
h , χ) = 0 ∀χ ∈ V h.

Using the identity u · ∇u = 1
2∇(u2) − u × (∇× u), and grouping the usual pressure

gradient with the 1
2∇(u2) term to form the Bernoulli pressure, a periodic solution
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(u; p) and w := ∇× u of the NSE satisfies

(39)

1

Δt
(un+1 − un, v) − (un+1/2 × wn+1/2, v) +

ν

2
(∇un+1/2,∇v) +

ν

2
(wn+1/2,∇× v)

− (p(tn+1/2),∇ · v) = (fn+1/2, v) +

(
un+1 − un

Δt
− ut(t

n+1/2), v

)
− (un+1/2 × wn+1/2 − u(tn+1/2) × w(tn+1/2), v)

+
ν

2
(∇(un+1/2 − u(tn+1/2)),∇v)

+
ν

2
(wn+1/2 − w(tn+1/2),∇× v) ∀v ∈ V h.

Define ei := ui − ui
h and Ei := wi − wi

h for i = n, n + 1, n + 1/2, and form the error
equations by subtracting the scheme (37), (38) from (39) and w = ∇× u to get

(40)
1

Δt
(en+1 − en, v) − (un+1/2 ×En+1/2, v) − (en+1/2 × w

n+1/2
h , v) +

ν

2
(∇en+1/2,∇v)

+
ν

2
(En+1/2,∇× v) − (p(tn+1/2),∇ · v) = IERR(un;wn; v) ∀v ∈ V h,

(41) (En+1/2, χ) − (∇× en+1/2, χ) = 0 ∀χ ∈ V h,

where the interpolation error in time, IERR, is defined by

IERR(un, wn, v) :=

(
un+1 − un

Δt
− ut(t

n+1/2), v

)
(42)

− (un+1/2 × wn+1/2 − u(tn+1/2) × w(tn+1/2), v)

+
ν

2
(∇(un+1/2 − u(tn+1/2)),∇v) +

ν

2
(wn+1/2 − w(tn+1/2),∇× v).

Next we split the error terms into pieces in and out of V h. Let U i and W i be
the projections of ui and wi, respectively, into V h. Then the error terms can be
decomposed as

ei = (ui − U i) − (ui
h − U i) =: ηi − φi

h,(43)

Ei = (wi −W i) − (wi
h −W i) =: ri − sih.(44)

Note that (ηi, v) = 0 for v ∈ V h by the definition of ηi. Rewriting (40), (41) with this
decomposition gives

1

Δt
(φn+1

h − φn
h, v) − (φ

n+1/2
h × w

n+1/2
h , v) +

ν

2
(∇φ

n+1/2
h ,∇v)(45)

+
ν

2
(s

n+1/2
h ,∇× v) = (un+1/2 × s

n+1/2
h , v) − (un+1/2 × rn+1/2, v)

− (ηn+1/2 × w
n+1/2
h , v) +

ν

2
(∇ηn+1/2,∇v)

+
ν

2
(rn+1/2,∇× v) − (p(tn+1/2),∇ · v) + IERR(un;wn; v) ∀v ∈ V h,

(46) (∇× φn+1
h , χ) = (s

n+1/2
h , χ) − (rn+1/2, χ) + (∇× ηn+1/2, χ) = 0 ∀χ ∈ V h.
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Let v = φ
n+1/2
h and χ = s

n+1/2
h and combine (45) and (46) to get

1

2Δt
(‖φn+1

h ‖2 − ‖φn
h‖2) +

ν

2
‖∇φ

n+1/2
h ‖2 +

ν

2
‖sn+1/2

h ‖2(47)

= (un+1/2 × s
n+1/2
h , φ

n+1/2
h ) − (un+1/2 × rn+1/2, φ

n+1/2
h )

− (ηn+1/2 × w
n+1/2
h , φ

n+1/2
h ) +

ν

2
(∇ηn+1/2,∇φ

n+1/2
h )

+
ν

2
(rn+1/2,∇× φ

n+1/2
h ) +

ν

2
(rn+1/2, s

n+1/2
h ) +

ν

2
(∇× ηn+1/2, s

n+1/2
h )

− (p(tn+1/2),∇ · φn+1/2
h ) + IERR(un;wn;φ

n+1/2
h ).

The terms on the right-hand side of (47) are now majorized in the usual way, using
Cauchy–Schwarz and Young’s inequalities, and the bound (u×w, v) ≤ C‖a‖0‖b‖1‖c‖1/2.
Note that this inequality holds no matter the order of u,w, v (provided the norms ex-
ist) due to a well-known vector identity from calculus. We first bound the following
right-hand side terms:

ν

2

∣∣∣(∇ηn+1/2,∇φ
n+1/2
h )

∣∣∣ ≤ ν

32
‖∇φ

n+1/2
h ‖2 + Cν−1‖∇ηn+1/2‖2,(48)

ν

2

∣∣∣(rn+1/2,∇× φ
n+1/2
h )

∣∣∣ ≤ ν

32
‖∇φ

n+1/2
h ‖2 + Cν−1‖rn+1/2‖2,(49)

ν

2

∣∣∣(rn+1/2, s
n+1/2
h )

∣∣∣ ≤ ν

32
‖sn+1/2

h ‖2 + Cν−1‖rn+1/2‖2,(50)

ν

2

∣∣∣(∇ηn+1/2, s
n+1/2
h )

∣∣∣ ≤ ν

32
‖sn+1/2

h ‖2 + Cν−1‖∇ηn+1/2‖2,(51) ∣∣∣(p(tn+1/2),∇ · φn+1/2
h )

∣∣∣ ≤ ν

32
‖∇φ

n+1/2
h ‖2 + Cν−1 inf

q∈Qh
‖p(tn+1/2) − q‖2.(52)

The first of the trilinear terms is bounded by

(53)
∣∣∣(un+1/2 × s

n+1/2
h , φ

n+1/2
h )

∣∣∣ ≤ C‖∇un+1/2‖‖sn+1/2
h ‖‖φn+1/2

h ‖1/2‖∇φ
n+1/2
h ‖1/2

≤ ν

32
‖sn+1/2

h ‖2 +
ν

32
‖∇φ

n+1/2
h ‖2 + Cν−3‖∇un+1/2‖4‖φn+1/2

h ‖2.

Similarly, the second of the trilinear terms is bounded by∣∣∣(un+1/2 × rn+1/2, φ
n+1/2
h )

∣∣∣ ≤ ν

32
‖rn+1/2‖2 +

ν

32
‖∇φ

n+1/2
h ‖2(54)

+ Cν−3‖∇un+1/2‖4‖φn+1/2
h ‖2.

The third of the trilinear terms is expanded by adding and subtracting wn+1/2 to

w
n+1/2
h to form wn+1/2 − En+1/2, followed by decomposing En+1/2, and bounding

each of the three resulting trilinear terms to get∣∣∣(ηn+1/2 × w
n+1/2
h , φ

n+1/2
h )

∣∣∣ ≤ 3ν

32
‖φn+1/2

h ‖2 +
ν

32
‖sn+1/2

h ‖2(55)

+ Cν−1‖rn+1/2‖2‖∇ηn+1/2‖2 +
1

2
‖∇ηn+1/2‖2‖wn+1/2‖2

+ Cν−1‖φn+1/2
h ‖2 + Cν−3‖∇ηn+1/2‖4‖φn+1/2

h ‖2.

Three of the four terms in IERR(un;wn;φ
n+1/2
h ) are majorized as

(56)∣∣∣∣(un+1 − un

Δt
− ut(t

n+1/2), φ
n+1/2
h

)∣∣∣∣ ≤ 1

2
‖φn+1/2

h ‖2 +
1

2

∥∥∥∥un+1 − un

Δt
− ut(t

n+1/2)

∥∥∥∥2

,
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(57)∣∣∣ν
2
(∇(un+1/2 − u(tn+1/2)),∇φ

n+1/2
h )

∣∣∣ ≤ ν

32
‖∇φ

n+1/2
h ‖2+Cν‖∇(un+1/2−u(tn+1/2))‖2,

(58)∣∣∣ν
2
(wn+1/2 − w(tn+1/2),∇× φ

n+1/2
h )

∣∣∣ ≤ ν

32
‖∇φ

n+1/2
h ‖2 + Cν‖wn+1/2 − w(tn+1/2)‖2,

with the remaining term bounded by

(un+1/2 × wn+1/2 − u(tn+1/2) × w(tn+1/2), φ
n+1/2
h )(59)

≤ 2ν

32
‖∇φ

n+1/2
h ‖2 + Cν−1‖∇un+1/2‖2‖wn+1/2 − w(tn+1/2)‖2

+ Cν−1‖w(tn+1/2)‖2‖∇(un+1/2 − u(tn+1/2))‖2.

We may now rewrite (47) as

1

2Δt
(‖∇φn+1

h ‖2 − ‖∇φn
h‖2) +

3ν

32
‖∇φ

n+1/2
h ‖2 +

12ν

32
‖sn+1/2

h ‖2(60)

≤ Cν−1‖∇ηn+1/2‖2 + C(ν−1 + ν)‖rn+1/2‖2 + Cν−1 inf
q∈Qh

‖p(tn+1/2) − q‖2

+ Cν−3‖∇un+1/2‖4‖φn+1/2
h ‖2 + Cν−1‖rn+1/2‖2‖∇ηn+1/2‖2

+
1

2
‖∇ηn+1/2‖2‖wn+1/2‖2 + Cν−3‖∇ηn+1/2‖4‖φn+1/2

h ‖2

+ Cν−1‖φn+1/2
h ‖2 +

1

2

∥∥∥∥un+1 − un

Δt
− ut(t

n+1/2)

∥∥∥∥2

+ Cν‖∇(un+1/2 − u(tn+1/2))‖2

+ Cν‖wn+1/2 − w(tn+1/2)‖2 + Cν−1‖∇un+1/2‖2‖wn+1/2 − w(tn+1/2)‖2

+ Cν−1‖w(tn+1/2)‖2‖∇(un+1/2 − u(tn+1/2))‖2.

Taylor series can be used to bound the interpolation in time terms, and thus (60) can
be reduced to

1

2Δt
(‖∇φn+1

h ‖2 − ‖∇φn
h‖2) +

3ν

32
‖∇φ

n+1/2
h ‖2 +

12ν

32
‖sn+1/2

h ‖2(61)

≤ Cν−1‖∇ηn+1/2‖2 + C(ν−1 + ν)‖rn+1/2‖2 + Cν−1 inf
q∈Qh

‖pn+1/2 − q‖2

+ Cν−1‖rn+1/2‖2‖∇ηn+1/2‖2 +
1

2
‖∇ηn+1/2‖2‖wn+1/2‖2

+ C(Δt)3
∫ tn+1

tn
‖uttt‖2 dt + Cν(Δt)3

∫ tn+1

tn
‖∇utt‖2 dt

+ Cν(Δt)3
∫ tn+1

tn
‖wtt‖2 dt + Cν−1(Δt)3‖∇un+1/2‖2

∫ tn+1

tn
‖wtt‖2 dt

+ Cν−1(Δt)3‖w(tn+1/2)‖2

∫ tn+1

tn
‖∇utt‖2 dt

+ C(ν−1 + ν−3‖∇un+1/2‖4 + ν−3‖∇ηn+1/2‖4)‖φn+1/2
h ‖2.

Next we sum from n = 0, . . . , N−1, multiply both sides by 2Δt, recall φ0
h = 0 and the

smoothness assumptions, and reduce. With the choice of Pk, Pk−1 velocity-pressure
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spaces, (61) reduces to

‖φN
h ‖2 +

N−1∑
n=0

(
3νΔt

16
‖∇φ

n+1/2
h ‖2 +

3νΔt

4
‖sn+1/2

h ‖2

)
(62)

≤ C((Δt)4 + ν−1h2k + (ν−1 + ν)h2k+2 + ν−1h2k + h4k+2)

+ Δt
N−1∑
n=0

‖∇ηn+1/2‖2‖wn+1/2‖2 + Cν−1(Δt)4
N−1∑
n=0

‖∇un+1/2‖2

∫ tn+1

tn
‖wtt‖2 dt

+ Cν−1(Δt)4
N−1∑
n=0

‖w(tn+1/2)‖2

∫ tn+1

tn
‖∇utt‖2 dt

+ CΔt
N−1∑
n=0

(ν−1 + ν−3‖∇un+1/2‖4 + ν−3‖∇ηn+1/2‖4)‖φn+1/2
h ‖2.

Since w = ∇× u, we reduce (62) to

‖φN
h ‖2 +

N−1∑
n=0

(
3νΔt

16
‖∇φ

n+1/2
h ‖2 +

3νΔt

4
‖sn+1/2

h ‖2

)
(63)

≤ C((Δt)4 + ν−1h2k + (ν−1 + ν)h2k+2 + ν−1h2k + h4k+2)

+ Δt
N−1∑
n=0

‖∇ηn+1/2‖2‖∇un+1/2‖2 + Cν−1(Δt)4
N−1∑
n=0

‖∇u(tn+1/2)‖2

∫ tn+1

tn
‖∇utt‖2 dt

+ CΔt

N−1∑
n=0

(ν−1 + ν−3‖∇un+1/2‖4 + ν−3‖∇ηn+1/2‖4)‖φn+1/2
h ‖2.

We bound the third and second to last terms with Holder’s inequality and the smooth-
ness assumptions, then reduce by assuming Δt, ν ≤ 1. This yields

(64) ‖φN
h ‖2 +

N−1∑
n=0

(
3νΔt

16
‖∇φ

n+1/2
h ‖2 +

3νΔt

4
‖sn+1/2

h ‖2

)

≤ C((Δt)4+ν−1h2k)+CΔt

N−1∑
n=0

(ν−1+ν−3‖∇un+1/2‖4+ν−3‖∇ηn+1/2‖4)‖φn+1/2
h ‖2.

Now with Δt chosen sufficiently small, we use the discrete Gronwall inequality to get
(65)

‖φN
h ‖2 +

N−1∑
n=0

(
3νΔt

16
‖∇φ

n+1/2
h ‖2 +

3νΔt

4
‖sn+1/2

h ‖2

)
≤ C(u, p, ν,Ω)(Δt)4 + h2k).

Using the triangle inequality with (65) completes the proof.

5. Numerical experiments. We now present numerical experiments for the
energy- and helicity-conserving scheme. This section makes several comparisons be-
tween this scheme and the usual convective form of the trapezoidal (Crank–Nicholson)
scheme for the NSE

(66)
1

Δt
(un+1

h − un
h, v) +

1

2
(u

n+1/2
h · ∇u

n+1/2
h , v) − 1

2
(u

n+1/2
h · ∇v, u

n+1/2
h )

+ ν(∇u
n+1/2
h ,∇v) = (fn+1/2, v) ∀v ∈ V h,
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and the rotational form

(67)
1

Δt
(un+1

h − un
h, v) − (u

n+1/2
h × (∇× u

n+1/2
h ), v) + ν(∇u

n+1/2
h ,∇v)

= (fn+1/2, v) ∀v ∈ V h.

All of the schemes were implemented in MATLAB using Taylor–Hood elements and
periodic boundary conditions and uniform meshes on the unit cube. Simple fixed
point iterations were used to solve the nonlinear problem in each timestep.

5.1. Computational cost of the schemes. The energy- and helicity-conser-
ving scheme is more computationally expensive than the usual trapezoidal schemes
(66) and (67). It solves for velocity and a projected vorticity, both in V h, and results in
linear systems that are double the size of those arising from the usual schemes. Hence,
the energy- and helicity-conserving scheme would be more practical if a linearization
or decoupling of the system could be found that would still conserve both energy and
helicity. At this point, we do not know if such a linearization can be found. It is
possible that an (effective and reliable) iteration between decoupled equations could
be discovered. Since the energy- and helicity-conserving scheme, when decoupled,
will take a form much like that of (67), one may even be able to take advantage
of more efficient solvers designed for rotational-form Navier–Stokes schemes such as
those described by Benzi and Liu in [2] or Olshanskii in [16].

5.2. Experiment 1: Helicity conservation for ν = f = 0. The first nu-
merical experiment is a comparison of helicity treatment in the three schemes when
ν = f = 0. This is the case where helicity is exactly conserved in the true physics, and
thus for physical fidelity should also be conserved in the numerical schemes. Using

(68) u0 = 〈cos(2πz), sin(2πz), sin(2πx)〉

for the initial condition (since it is simple and has nonzero helicity), we set ν = f = 0
in each scheme and computed from (0, 1] on the (periodic) unit cube. The energy-
and helicity-conserving scheme was run on an h = 1/8 uniform mesh, and the other
two schemes were run on h = 1/8 and h = 1/16 uniform meshes. Timesteps were
chosen to be 0.025 and 0.01 for the two meshes, respectively. Figure 1 shows a plot of
each solution’s helicity on [0, 1], and from here it is clear that the usual trapezoidal
schemes do not conserve helicity, and that the energy- and helicity-conserving scheme,
as expected, does.

5.3. Experiment 2: Accuracy comparison for a known solution. Given
the true solution

(69) u = ((2− t)cos(2πz), (1 + t)sin(2πz), (1− t)sin(2πx)), p = sin(2π(x+ y + t)),

we calculated f from u and p and implemented each of the schemes on an h = 1/8
mesh with T = 2, Δt = 0.025, and ν = 1. Shown below are the plots of helicity error,
L2 error, and H1 error vs. time for the three schemes. We see from the plots that the
usual trapezoidal schemes (66) and (67) give nearly identical results, and that these
schemes have a better H1 error but worse L2 error and helicity error than the energy-
and helicity-conserving scheme. Similar experiments should be conducted for smaller
ν (and thus finer meshes) to verify that the results will hold in a setting with less
viscosity.
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Fig. 1. Helicity conservation in different trapezoid schemes for the NSE with ν = f = 0 and
u0 = (cos(2πz), sin(2πz), sin(2πx)).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

t

H
h
(t

) 
|

Helicity Error vs. Time for u2 and h=1/8

Crank Nicholson Convective Form
Crank Nicholson Rotational Form
Energy/Helicity Conserving Scheme

Fig. 2. Helicity error in the schemes.

We believe the oscillations near t = 0 (seen in Figures 2 and 3) are a result of
using Crank–Nicholson schemes, and we offer the following possibility for the more
pronounced oscillations in the new scheme: On such a coarse mesh, the different
schemes treat the viscous term(s) significantly differently, as the new scheme employs
a vorticity projection. We believe the error introduced (by such a coarse mesh projec-
tion) may amplify initial oscillations, and thus we expect the difference in magnitude
of the schemes’ oscillations to decrease with finer meshes.
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Fig. 3. L2 error in the schemes.
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Fig. 4. H1 error in the schemes.

6. Conclusions. In an effort to find more physically relevant solutions to the
NSE, we have developed an energy- and helicity-conserving finite element scheme
for periodic flows which is second order in time and converges optimally in space.
The scheme is able to conserve two inviscid invariants by using the rotational form
of the nonlinearity with a projected vorticity. The scheme retains the asymptotic
velocity convergence rates of the usual trapezoidal finite element method. Numerical
evidence suggests that the scheme can predict helicity more accurately than the usual
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trapezoidal scheme. However, each linear system that needs to be solved is double
the size of those in usual trapezoidal scheme, and thus further work must be done to
make this promising scheme more practical.
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Abstract. We establish a general framework for analyzing the class of finite volume methods
which employ continuous or totally discontinuous trial functions and piecewise constant test func-
tions. Under the framework, optimal order convergence in the H1 and L2 norms can be obtained
in a natural and systematic way for classical finite volume methods and new finite volume methods
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1. Introduction. Due to the local conservation property and other attractive
properties such as robustness with unstructured meshes, the finite volume method is
widely used in computational fluid dynamics. Numerical analysis of a finite volume
method is more difficult than that of a finite element method, since in general a
finite volume method uses two different function spaces: one for the trial space and
one for the test space. For example, obtaining the optimal L2 error estimates is a
common practice for finite element methods. They are very difficult to obtain for
the finite volume methods. Because of this reason, the optimal L2 estimates have
not been derived for the finite volume methods proposed in [8, 9, 10, 13, 25]. The
main motivation of this paper is to propose a general framework under which we
can systematically give a thorough analysis for finite volume methods to second order
elliptic problems and obtain the optimal error estimates in energy norm and L2 norm.

In recent years, there have appeared different approaches in the convergence and
stability analysis of the finite volume method; see, for example, [2, 5, 6, 12, 13, 16,
15, 17, 18, 22], among others. Motivated by the popularity of discontinuous Galerkin
methods, Ye [25] proposed a finite volume method with a totally discontinuous trial
function space for elliptic problems. Our general framework covers the finite volume
methods (continuous or discontinuous) developed in all of the papers mentioned above
in a unified way, and previously hard-to-obtain optimal L2 estimates [8, 10, 9, 13, 25]
can now be derived naturally.

For simplicity in this paper we will treat only finite volume methods applied to the
self-adjoint elliptic equations. To illustrate the idea, we consider the model problem

(1.1) Lu := −∇ · A∇u = f in Ω, u = 0 on ∂Ω,

where Ω ⊂ R2 is a bounded polygonal domain and A is in either W 1,∞ or W 2,∞. A
typical finite volume method uses piecewise constant functions as test functions, and,
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Fig. 1. Primal and dual grids. Left figure: Conforming finite volume method. Right figure:
Nonconforming finite volume method.

to keep the same dimension for the spaces of the trial functions and test functions, two
different partitions of the domain Ω are needed: one called the primal partition is asso-
ciated with the trial space, and one called the dual partition is associated with the test
space. For example, in Figure 1, on the left the primal partition is made up of the stan-
dard triangular finite elements, and the dual partition is the usual barycentric subdivi-
sion consisting of polygons around Pi’s obtained by connecting midpoints Mi’s of edges
and barycenters Qi’s of the triangles. Thus M1Q1M2Q2M3Q3M4Q4M5Q5M6Q6 is a
typical dual volume around P0. On the other hand, in the right figure of Figure 1
we use triangles in the primal partition, and for each midpoint of an edge in the
triangles we define a quadrilateral element that serves as an element in the dual par-
tition. So, for example, in Figure 1 the quadrilateral EB1CB2 around midpoint P
(Bi barycenters of triangles) is in the dual partition.

Figure 2 shows two more possible configurations of primal (solid lines) and dual
(dashed lines) partitions. In particular, the partitions in the right figure will be
used for the discontinuous finite volume method in section 3.3. Here we use standard
triangular elements in the primal partition, and each triangular element then generates
three dual triangular volumes (AB1D and two others) by connecting its barycenter
and vertices.

Denote by Th the primal triangulation of Ω, by T ∗
h the dual partition of Th, and

by Pl(T ) the space of all polynomials on T whose degree is at most l. The finite
dimensional trial space Vh associated with Th is a subspace of piecewise linears, i.e.,

(1.2) Vh ⊂ {v ∈ V : v|T ∈ P1(T ) ∀T ∈ Th},

where V is either H1
0 (Ω) or L2(Ω) (standard Sobolev spaces notation will be adopted

throughout the paper). Examples of such space are continuous P1 conforming space,
the Crouzeix–Raviart P1 nonconforming space [14] (continuous at midpoints), and
totally discontinuous P1 space to be used in conjunction with the discontinuous finite
volume method in section 3.3. The test function space Qh associated with the dual
partition T ∗

h is

(1.3) Qh = {q ∈ L2(Ω) : q|K ∈ P0(K) ∀K ∈ T ∗
h }.
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Fig. 2. Primal and dual grids. Left figure: Nonconforming finite volume method. Right figure:
Discontinuous finite volume method.

We mention in passing that classical finite volume methods adopt piecewise P0

shape functions, and their applications abound. The present (and newer) finite volume
methods using piecewise P1 shape functions also find many practical applications in
heat transfer and fluid flow problems [7, 21] and the references therein. These methods
are also natural when combined with the multilevel adaptive methods [19, 20].

Due to the efforts of several authors [6, 12, 15, 17], especially [6, 15, 17], it is now
recognized that, for finite volume methods applied to second order elliptic problems on
polygonal domains, it is to be expected that, for the exact solution u and approximate
solution uh, the best form of the L2 estimates is

||u− uh|| ≤ Ch2(||u||2 + ||f ||1).

(We use || · ||p for the standard Sobolev Hp norm and drop the subindex for the L2

norm.) One notes that this is not the same as assuming u in H3(Ω). For example,
the solution of the boundary value problem Δu = 1 on the unit square and u = 0 on
the boundary belongs to H2(Ω) but not to H3(Ω). While it is easy and natural to
deduce the above error estimates under our present framework, it should be pointed
out that there are other ways to view finite volume methods, depending on how
one views what the distinctive traits of a finite volume method are. For example,
one may consider the so-called mixed finite volume method in which the flux can
be recovered by a simple formula [11]. On the other hand, in other finite volume
methods the flux itself plays an important role in the derivation of the method. For
instance, in [16], finite volume methods are based on considering averages of solutions
on the control volumes which coincide with the supports of the test functions in the
present paper. The stiffness matrix is calculated from a difference approximation
of the fluxes between two neighboring elements. Compactness methods are used
to prove the convergence. While this approach can be generalized consistently to
convection-diffusion and hyperbolic problems, it shows considerable difficulties when
error estimates are to be obtained. Our approach focuses on a narrower elliptic
problem class and explores its natural relation to the Galerkin finite element method.
Consequently, optimal order error estimates are easier to obtain.
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The organization of the paper is as follows. In section 2 we present our general
finite volume framework and its stability and convergent analysis. Under this frame-
work, in section 3 we systematically derive for the new as well as the old finite volume
methods the optimal H1 estimates of the usual form and optimal L2 estimates of the
above form.

Let e be an interior edge common to elements T1 and T2 in Th, and let n1 and n2

be the unit normal vectors on e exterior to K1 and K2, respectively. For a scalar q
and a vector w we define their average {·} on e and jump [[ · ]] across e, respectively, as

{q} =
1

2
(q|∂T1 + q|∂T2), [[q]] = q|∂T1

n1 + q|∂T2n2,

{w} =
1

2
(w|∂T1 + w|∂T2), [[w]] = w|∂T1 · n1 + w|∂T2

· n2.

Note that the jump of a vector is a scalar, whereas the jump of a scalar is a vector.
If e is an edge on the boundary of Ω, we define

{q} = q, [[w]] = w · n.

The quantities [[q]] and {w} on boundary edges are defined analogously. Let Eh denote
the union of the boundaries of the triangles T of Th and E0

h := Eh\∂Ω the collection
of all interior edges.

Following [8, 12], we assume the existence of a transfer operator γ from V (h) :=
Vh +H2(Ω)∩H1

0 (Ω) to the test space Qh. In particular, γ connects the trial space Vh

with the test space Qh. Throughout the paper, the operator γ is required to satisfy
the following sets of assumptions.

Assumption 1. Quadraturelike and restriction assumptions for γ:∫
T

(v − γv)dx = 0 ∀v ∈ Vh, ∀T ∈ Th,(1.4) ∫
e

(v − γv)ds = 0 ∀v ∈ H2(Th), ∀e ∈ ∂T, ∀T ∈ Th,(1.5)

if [[v]] = 0, then [[γv]] = 0,(1.6)

where H2(Th) := {v ∈ L2(Ω) : v|T ∈ H2(T ) ∀T ∈ Th}.
Equations (1.4)–(1.5) have been observed in [12, 13] and perhaps can be viewed

as a type of quadrature condition. Equation (1.6) is our new observation in this paper
regarding to the jump.

Assumption 2. Approximation property of γ:

(1.7) ||γw − w||0,T ≤ ChT |w|1,T ∀T ∈ Th.

Then the solution of (1.1) necessarily satisfies

Lu = −∇ · A∇u = f on K ∀K ∈ T ∗
h ,(1.8)

[[γu]]e = 0 ∀e ∈ Eh,(1.9)

[[A∇u]]e = 0 ∀e ∈ E0
h.(1.10)

2. Finite volume formulation. In this section, we will derive a general formu-
lation for finite volume methods. The formulation is based on enforcing (1.8)–(1.10)
by testing with “element” test functions for (1.8) and “edge” test functions for (1.9)
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and (1.10). To this end, we further assume the existence of two linear operators
B1 : V (h) → L2(Eh) and B2 : V (h) → L2(E0

h) (they will be defined shortly). Testing
(1.8), (1.9), and (1.10) by γv, B1v, and B2v, respectively, and adding them up, we
obtain the “global” equation

(2.1) (Lu, γv)T ∗
h

+ ([[γu]], B1v)Eh
+ ([[A∇u]], B2v)E0

h
= (f, γv),

where each inner product obviously means the sum of its local inner products. A
remark is in order here. Interpreting PDEs and jump conditions such as (1.8)–(1.10)
as residual equations and testing them with test functions of different levels is, of
course, quite common in finite element and finite volume methods. However, the fact
that summing them up as equal weight relations can lead to fruitful analysis is more
recent. In fact, using this technique Brezzi et al. [4] have demonstrated stabilization
mechanisms in discontinuous Galerkin methods in a unified way.

Integrating (2.1) by parts and using the fact that γv is constant on K, we have

(Lu, γv)T ∗
h

= −
∑

K∈T ∗
h

∫
K

∇ · A∇uγvdx

= −
∑

K∈T ∗
h

∫
∂K

A∇u · nγvds

=

⎛⎝−
∑

K∈T ∗
h

∫
∂K

A∇u · nγvds +
∑
T∈Th

∫
∂T

A∇u · nγvds

⎞⎠
−

∑
T∈Th

∫
∂T

A∇u · nγvds,

where we have added and subtracted the last term to bring in the effect of primal
triangulation.

Define the bilinear form a : V (h) × V (h) → R

a(u, v) := −
∑

K∈T ∗
h

∫
∂K

A∇u · nγvds +
∑
T∈Th

∫
∂T

A∇u · nγvds.

Recall the following easily derived identity (or see [1]): For all q ∈
∏

T∈Th
L2(∂T ) and

for all v ∈ [
∏

T∈Th
L2(∂T )]2,

(2.2)
∑
T∈Th

∫
∂T

qv · nds =

∫
Eh

[[q]]{v}ds +

∫
E0
h

{q}[[v]]ds.

In particular,

(2.3)
∑
T∈Th

∫
∂T

A∇u · nγvds =
∑
e∈Eh

∫
e

[[γv]] · {A∇u}ds +
∑
e∈E0

h

∫
e

{γv}[[A∇u]]ds,

and hence (2.1) becomes

a(u, v) − ([[A∇u]], {γv})E0
h
− ({A∇u}, [[γv]])Eh

+ ([[γu]], B1v)Eh
+ ([[A∇u]], B2v)E0

h
= (f, γv).
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The choice of B2v = {γv} leads to

a(u, v) − ({A∇u}, [[γv]])Eh
+ ([[γu]], B1v)Eh

= (f, γv).

Furthermore, if we take the common pick of B1v = αh−1[[γv]] + δ{A∇v}, where α is
a positive number and δ = 1,−1, the above equation becomes

a(u, v) − ({A∇u}, [[γv]])Eh
+ δ([[γu]], {A∇v})Eh

+ αh−1([[γu]], [[γv]])Eh
= (f, γv).

For simplicity, we will fix our choices and take B1v = αh−1[[γv]] + δ{A∇v} and
B2v = {γv} in the remaining part of the paper. However, our analysis carries through
for other choices in [4] as well.

Let

(2.4) A(u, v) := a(u, v) − ({A∇u}, [[γv]])Eh
+ δ([[γu]], {A∇v})Eh

+ αh−1([[γu]], [[γv]])Eh
,

and consider the following class of finite volume methods: Find uh ∈ Vh

(2.5) A(uh, v) = (f, γv) ∀v ∈ Vh.

The formulation (2.5) is consistent; i.e., the true solution u satisfies

(2.6) A(u, v) = (f, γv) ∀v ∈ Vh.

Subtracting (2.5) from (2.6) gives

(2.7) A(u− uh, v) = 0 ∀v ∈ Vh.

We define a norm ||| · ||| on V (h) as

|||v|||2 = |u|21,h +
∑
e∈Eh

[[γv]]
2
e +

∑
T∈Th

h2
T |v|22,T .

We assume the bilinear for A(·, ·) is bounded and coercive:
Assumption 3.

|A(v, w)| ≤ C1|||v||||||w||| ∀v, w ∈ V (h) × V (h),(2.8)

A(v, v) ≥ C2|||v|||2 ∀v ∈ Vh.(2.9)

Then we have the following theorem that is the counterpart of Céa’s lemma [3] in the
finite element theory.

Theorem 2.1. Let u and uh be the solutions of (1.1) and (2.5). Then

|||u− uh||| ≤ C inf
v∈Vh

|||u− v|||.

Proof. From (2.9) and (2.7), we have that for any v ∈ Vh

C1|||uh − v|||2 ≤ A(uh − v, uh − v) = A(u− v, uh − v) ≤ C2|||u− v||||||uh − v|||.

Hence by the triangle inequality we have

|||u− uh||| ≤ C inf
v∈Vh

|||u− v|||.

This completes the proof.
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To obtain the L2 error estimate for our general finite volume formulation (2.5),
we assume that the bilinear form a(v, w) satisfies the following equations.

Assumption 4. For any v, w ∈ V (h),

a(v, w) = (A∇hv,∇hw) +
∑
T∈Th

∫
∂T

A∇v · n(γw − w)ds

+
∑
T∈Th

(∇ · A∇v, w − γw)T .(2.10)

For this reason, we shall take δ = −1 in the following analysis.
Theorem 2.2. Let u ∈ H2(Ω) ∩ H1

0 (Ω) and uh ∈ Vh be the solutions of (1.1)
and (2.5) with δ = −1, respectively. Assume that A ∈ W 2,∞(Ω) and that (1.4), (1.5),
(1.7), and (2.10) hold. Then

‖u− uh‖ ≤ Ch(|||u− uh||| + h‖f‖1).

Proof. Let w ∈ H1
0 (Ω) ∩H2(Ω) be the solution of the dual problem

−∇ · A∇w = u− uh in Ω,(2.11)

w = 0 on ∂Ω,(2.12)

so that the following estimate holds:

(2.13) ‖w‖2 ≤ C‖u− uh‖.

Let wI ∈ Vh be the usual continuous piecewise linear Lagrange interpolant of w, so
that

(2.14) |||w − wI ||| ≤ Ch|w|2.

From (2.11) we deduce that

‖u− uh‖2 = −(u− uh,∇ · A∇w)

= (A∇h(u− uh),∇hw) −
∑
T∈Th

∫
∂T

A∇w · n(u− uh)ds

= (A∇h(u− uh),∇hw) −
∑
e∈Eh

({A∇w}, [[u− uh]])e,(2.15)

where we have used (2.3) and the fact that [[A∇w]]e = 0 on all interior edges e.
On the one hand, (2.10) implies

a(u− uh, wI) = (A∇h(u− uh),∇hwI) +
∑
T∈Th

(A∇(u− uh) · n, γwI − wI)∂T

+
∑
T∈Th

(∇ · A∇(u− uh), wI − γwI)T ,(2.16)

and, on the other hand, it follows from (2.7) that

(2.17) a(u− uh, wI) =
∑
e∈Eh

({A∇wI}, [[γ(u− uh)]])e.
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Thus, subtracting (2.16) from the sum of (2.15) and (2.17), we have

‖u− uh‖2 = (A∇h(u− uh),∇h(w − wI)) −
∑
T∈Th

(∇ · A∇(u− uh), wI − γwI)T

+

(∑
e∈Eh

({A∇wI}, [[γ(u− uh)]])e −
∑
e∈Eh

({A∇w}, [[u− uh]])e

)
−

∑
T∈Th

(A∇(u− uh) · n, γwI − wI)∂T

:= I1 + I2 + I3 + I4.(2.18)

The four I terms can be estimated as follows. Using (2.14) and (2.13), we have

I1 = (A∇h(u− uh),∇(w − wI)) ≤ C|||u− uh||||w − wI |1
≤ Ch‖u− uh‖|||u− uh|||.

As for the I2 term, first it follows from (1.1), (1.4), (1.7), and (2.13) that∑
T∈Th

(∇ · A∇u,wI − γwI)T =
∑
T∈Th

(f̄ − f, wI − γwI)T

≤ Ch2‖f‖1‖u− uh‖,

where f̄ is the average of f over each element. Next,∑
T∈Th

(∇ · A∇uh, wI − γwI)T =
∑
T∈Th

(∇ · A∇uh −∇ · A∇uh, wI − γwI)T

≤ Ch||A||2,∞|uh|1,h‖u− uh‖
≤ Ch||A||2,∞(|||u− uh||| + ||f ||) ‖u− uh‖,(2.19)

where ∇ · A∇uh is the average of ∇ · A∇uh over each element T .
For the I3 term, using (1.5) and (2.13), we have∑
e∈Eh

({A∇wI}, [[γ(u− uh)]])e −
∑
e∈Eh

({A∇w}, [[(u− uh)]])e

=
∑
e∈Eh

({A∇wI}, [[γ(u− uh)]])e −
∑
e∈Eh

({A∇w}, [[γ(u− uh)]])e

+
∑
e∈Eh

({A∇w}, [[γ(u− uh)]])e −
∑
e∈Eh

({A∇w}, [[(u− uh)]])e

=
∑
e∈Eh

({A∇(wI − w)}, [[γ(u− uh)]])e

−
∑
e∈Eh

({A∇w −A∇w}, [[(u− uh) − γ(u− uh)]])e

:= J1 + J2

≤ Ch|||u− uh|||‖u− uh‖,

where A∇w is the average of A∇w over each edge and the J terms are estimated as
follows. In fact, the Ji terms can be estimated using the following easily derived trace
inequality [12]: For φ ∈ H1(T ) and for an edge e of T with he the length of e,

(2.20) ‖φ‖2
e ≤ C(h−1

e |φ|20,T + he|φ|21,T ),
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where C depends on the shape parameter of T such as the minimal angle of T in the
triangular case. For instance,

J1 =
∑
e∈Eh

({A∇(wI − w)}, [[γ(u− uh)]])e

≤
∑
e∈Eh

|{A∇(wI − w)}|0,e|[[γ(u− uh)]]|0,e

=
∑
e∈Eh

|{A∇(wI − w)}|0,e h1/2
e [[γ(u− uh)]]e

≤
∑
e∈Eh

h1/2
e

(
h−1/2
e |{A∇(wI − w)}|T + h1/2

e |{A∇(wI − w)}|1,T
)

[[γ(u− uh)]]e

≤ Ch||A||0,∞‖u− uh‖ |||u− uh|||,

where we have used (2.20) in the last inequality. The term J2 can be handled similarly.
For the I4 term first observe that, for any matrix-valued function M such that

M is constant on each e ∈ Eh,

∑
T∈Th

∫
∂T

M∇(u− uh) · n(γwI − wI)ds =
∑
T∈Th

∫
∂T

M∇u · n(γwI − wI)ds

−
∑
T∈Th

∫
∂T

M∇uh · n(γwI − wI)ds

= I1 + I2 = 0,

where I1 = 0 due to [[M∇u]] = 0, and [[wI − γwI ]] = 0 and I2 = 0 due to the fact
that M∇uh · n is a constant on e and (1.5). Now define M so that on each e ∈ Eh,
M = A(m), the value of A at the midpoint:

|I4| =

∣∣∣∣∣ ∑
T∈Th

((A−M)∇(u− uh) · n, γwI − wI)∂T

∣∣∣∣∣
≤ Ch||A||1,∞

∑
T∈Th

(|∇(u− uh) · n|, |γwI − wI |)∂T

≤ Ch||A||1,∞|||u− uh||| ||u− uh||0,(2.21)

where the last inequality was obtained via the trace inequality (2.20) as before.
Combining the above four estimates with (2.18), we obtain

‖u− uh‖ ≤ Ch(|||u− uh||| + h‖f‖1).

This completes the proof.
The counterexamples in [15, 17] show that the assumption of f ∈ H1(Ω) is nec-

essary for finite volume methods.

3. Applications to finite volume and discontinuous finite volume meth-
ods. In this section, we will illustrate how our general theory can be applied to analyze
different finite volume schemes.
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3.1. Finite volume method with conforming trial functions. The finite
volume discussed in this subsection is the classical finite volume method. For a given
regular subdivision Th of triangles, its dual partition T ∗

h is the union of the convex
hulls. These convex hulls in T ∗

h are obtained by connecting the barycenters of the
triangles and the midpoints of the edges of the triangles in Th as shown in Figure 1.

The trial function space associated with Th for the traditional finite volume
method is defined as

Vh = {v ∈ H1
0 (Ω) : v|T ∈ P1(T ) ∀T ∈ T h},

with V = H1
0 (Ω) in (1.2). The test function space is defined as in (1.3).

Let N be a set containing all of the interior nodal points associated with the
partition T h. The operator γ : V (h) → Qh is defined by

(3.1) γv(x) ≡
∑
P∈N

v(P )χP (x) ∀x ∈ Ω,

where χP is the characteristic function of the dual element K∗
P associated with the

node P . It can be easily verified that γ defined in (3.1) satisfies (1.4)–(1.7).
The traditional conforming finite volume method is to find uh ∈ Vh such that for

any v ∈ Vh

(3.2) a(uh, v) = (f, γv).

The bilinear form A(v, w) in (2.5) reduces to a(v, w) and

a(u, v) = −
∑

K∈T ∗
h

∫
∂K

A∇u · nγvds.

Lemma 3.1. For any v, w ∈ V (h),

a(v, w) = (A∇v,∇w) +
∑
T∈Th

∫
∂T

A∇v · n(γw − w)ds

+
∑
T∈Th

(∇ · A∇v, w − γw)T .(3.3)

Proof. Equation (3.3) appeared in [12, 15, 24], and for completeness we include
a short proof here. For ease of proof, a typical primal triangle in Figure 1 is isolated
and indexed as in Figure 3. For j = 1, 2, 3, let �j denote the quadrilaterals formed
by the four corner nodes Q,Mj , Pj+1,Mj+1 as shown in Figure 3; when out of bound
we use M4 = M1 and P4 = P1. Using the divergence theorem on each quadrilateral,
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Fig. 3. Partial primal and dual grids for integration.

we have

a(v, w) = −
∑
T∈Th

3∑
j=1

∫
Mj+1QMj

A∇v · nγwds

=
∑
T∈Th

3∑
j=1

∫
MjPj+1Mj+1

A∇v · nγwds−
∑
T∈Th

∑
�j

(∇ · A∇v, γw)

=
∑
T∈Th

3∑
j=1

∫
MjPj+1Mj+1

A∇v · n(γw − w)ds +
∑
T∈Th

∫
∂T

wA∇v · nds

−
∑
T∈Th

∑
�j

(∇ · A∇v, γw)

=
∑
T∈Th

∫
∂T

A∇v · n(γw − w)ds +
∑
T∈Th

(A∇v,∇w)T +
∑
T∈Th

(∇ · A∇v, w)T

−
∑
T∈Th

∑
�j

(∇ · A∇v, γw)

= (A∇v,∇w) +
∑
T∈Th

∫
∂T

A∇v · n(γw − w)ds +
∑
T∈Th

(∇ · A∇v, w − γw)T .

This lemma implies that Assumption 3 holds: The boundedness of a(v, w) is
straightforward. For the proof of coercivity (2.9) on Vh, notice the following. First of
all, |||v||| = |v|1,h, and so C|||v||| ≤ (A∇v,∇v) for all v ∈ Vh. The last two terms in the
right side of (3.3) are the O(h|v|21,h) term when v = w. In fact, just as in estimating
the I4 term of (2.21), we have

∑
T∈Th

∫
∂T

A∇v · n(γv − v)ds ≤ Ch‖A‖1,∞|v|21,h
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and

(3.4)
∑
T∈Th

(∇ · A∇v, v − γv)T =
∑
T∈Th

(∇ · A · ∇v, v − γv)T ≤ Ch‖A‖1,∞|v|21,h,

where ∇ · A is the vector obtained by applying the divergence rowwise. Thus for h
small enough we have the coercivity. Note that this last term could be handled like
(2.19), but this would require A to be in W 2,∞, which is unnecessary.

Applying Theorems 2.1 and 2.2, we have the following results.
Theorem 3.1. If u ∈ H1

0 (Ω) ∩H2(Ω) and f ∈ H1(Ω), then

|||u− uh||| ≤ Ch‖u‖2,

‖u− uh‖ ≤ Ch2(‖u‖2 + ‖f‖1),

where the L2 estimate requires A ∈ W 2,∞(Ω).
The same conclusions hold for the conforming bilinear trial function case [9], and

we omit the details.

3.2. Finite volume method with nonconforming trial functions. For a
given regular triangulation Th, its dual partition T ∗

h is the union of quadrilaterals.
Each quadrilateral in T ∗

h is made up of two subtriangles which share a common edge
(see Figure 1). These subtriangles are formed by connecting the barycenter and the
three corners of the triangles.

The trial function space associated with Th for the nonconforming finite volume
method is defined as

Vh = {v ∈ L2(Ω) : v|T ∈ P1(T ) ∀T ∈ Th,
is continuous at the midpoint of e ∈ E0

h

and is zero at the midpoint of boundary edges e on ∂Ω}.

The test function space is defined as in (1.3).
Let M be a set containing all of the midpoints of the interior edges associated

with the triangulation T h. The operator γ : V (h) → Qh is defined by

(3.5) γv(x) ≡
∑
P∈M

v(P )χP (x) ∀x ∈ Ω,

where χP is the characteristic function of dual element K∗
P associated with the node

P . The mapping γ satisfies Assumptions 1 and 2 (see [8]). Finite volume methods
using the above nonconforming trial functions were considered in [8, 6].

Our version [8] is to find uh ∈ Vh such that for any v ∈ Vh

(3.6) a(uh, v) = (f, γv).

The bilinear form A(v, w) in (2.5) reduces to a(v, w) and

a(u, v) = −
∑

K∈T ∗
h

∫
∂K

A∇u · nγvds.

Lemma 3.2. For any v, w ∈ V (h),

a(v, w) = (A∇hv,∇hw) +
∑
T∈Th

∫
∂T

A∇v · n(γw − w)ds

+
∑
T∈Th

(∇ · A∇v, w − γw)T .
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Proof. See Lemma 3.2 in [24].
Using the above lemma, as before we can prove that (2.8) and (2.9) hold easily.

Then we have the following estimates.
Theorem 3.2. If u ∈ H1

0 (Ω) ∩H2(Ω) and f ∈ H1(Ω), then

|||u− uh||| ≤ Ch‖u‖2

‖u− uh‖ ≤ Ch2(‖u‖2 + ‖f‖1),

where the L2 estimate requires A ∈ W 2,∞.
The same conclusions hold for the finite volume method [10] using the rotated

bilinear trial functions, i.e., the nonconforming Q1 elements on rectangular grids [23].
We omit the details here.

3.3. Finite volume method with totally discontinuous trial functions.
The finite volume method using totally discontinuous trial functions was first proposed
in [24].

Let Th be a quasiuniform triangulation of Ω. We define the dual partition T ∗
h of

Th for the test function space as follows. We divide each T ∈ Th into three triangles by
connecting the barycenter and the three corners of the triangle as shown in Figure 2.
Let T ∗

h consist of all of these triangles Tj , j = 1, 2, 3.
We define the finite dimensional space associated with Th for the trial functions

as

(3.7) Vh = {v ∈ L2(Ω) : v|T ∈ P1(T ) ∀T ∈ Th}.

The test function space is defined as in (1.3). The operator γ : V (h) → Qh is defined
as

(3.8) γv|T =
1

he

∫
e

v|T ds ∀T ∈ Th,

where he is the length of the edge e. The operator γ satisfies (1.4)–(1.7) (see [25]).
The discontinuous finite volume method is to find uh ∈ Vh such that

(3.9) A(uh, v) = (f, γv) ∀v ∈ Vh.

Lemma 3.3. For any v, w ∈ V (h),

a(v, w) = (A∇hv,∇hw) +
∑
T∈Th

∫
∂T

A∇v · n(γw − w)ds

+
∑
T∈Th

(∇ · A∇v, w − γw)T .(3.10)

Proof. See Lemma 2.1 in [25].
Using the above lemma, one can prove coercivity and boundedness.
Lemma 3.4. There is a constant C independent of h such that

(3.11) A(v, v) ≥ C|||v|||2 ∀v ∈ Vh

for any positive α if δ = 1 and for α larger enough if δ = −1.
Proof. See Lemma 2.2 in [25].
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Lemma 3.5. For v, w ∈ V (h), we have

(3.12) A(v, w) ≤ C|||v||||||w|||.

Proof. See Lemma 2.3 in [25].
Since all of the conditions for Theorems 2.1 and 2.2 are satisfied, we have the

following error estimates for the discontinuous finite volume method.
Theorem 3.3. If u ∈ H1

0 (Ω) ∩H2(Ω) and f ∈ H1(Ω), then

|||u− uh||| ≤ Ch‖u‖2,

‖u− uh‖ ≤ Ch2(‖u‖2 + ‖f‖1).

We point out that the above L2 estimate was not obtained in [25].
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THE RESIDUAL-FREE-BUBBLE FINITE ELEMENT METHOD ON
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Abstract. The subject of this work is the analysis and implementation of stabilized finite el-
ement methods on anisotropic meshes. We develop the anisotropic a priori error analysis of the
residual-free-bubble (RFB) method applied to elliptic convection-dominated convection-diffusion
problems in two dimensions, with finite element spaces of type Qk, k ≥ 1. In the case of P1 fi-
nite elements, relying on the equivalence of the RFB method to classical stabilized finite element
methods, we propose a new rule, justified through the analysis of the RFB method, for selecting the
stabilization parameter in classical stabilized methods on two-dimensional anisotropic triangulations.

Key words. residual-free-bubble finite element method, convection-dominated diffusion prob-
lems, stabilized finite element methods
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1. Introduction. Elliptic convection-diffusion problems arise in a vast number
of applications, and their stable, accurate, and efficient solution is of significant the-
oretical and practical interest. From the computational point of view, problems of
this kind become particularly challenging when convection dominates diffusion in the
sense that the Péclet number, which measures the magnitude of the convective vec-
tor field over the length scale of the computational domain relative to the size of
the diffusion coefficient, is large. Convection-dominated diffusion equations exhibit
features which resemble those of the reduced, first-order hyperbolic equation arising
from the second-order elliptic convection-diffusion equation on neglecting the diffu-
sion term. For example, the solution may contain thin internal layers within the
computational domain; also, due to the singular perturbation nature of an elliptic
convection-dominated diffusion problem, the solution may exhibit thin boundary lay-
ers along sections of the boundary of the computational domain which correspond to
the outflow part of the boundary for the reduced problem. As a result of this, on
meshes which do not resolve internal and boundary layers, standard Galerkin finite
element methods have poor stability and accuracy properties. The difficulties typ-
ically manifest themselves as large, maximum-principle-violating, oscillations in the
numerical solution which occur predominantly along the characteristics of the reduced
problem.

The situation may be remedied by using a classical stabilized finite element
method (such as a streamline-diffusion method or a Galerkin least-squares method) or
a residual-free-bubble (RFB) finite element method; we refer to the monograph [28]
for an extensive survey of the literature. Due to the presence of anisotropic numerical
dissipation terms in the direction of the characteristics of the reduced equation whose
role is to suppress undesirable numerical oscillations, these methods are capable of
delivering accurate numerical solutions even on shape-regular computational meshes
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whose granularity is relatively coarse compared to the thickness of internal and bound-
ary layers. Alternatively, motivated by the fact that internal and boundary layers are
highly localized and anisotropic, one may choose to use a standard Galerkin finite
element method, albeit on a stretched, anisotropic, or layer-adapted (and, certainly,
non-shape-regular) computational mesh (see, for example, the discussion in [28] on
Shishkin-type meshes).

In recent years, there have been attempts to employ these remedies simulta-
neously; see, for example, the work of Apel and Lube [3] and Micheletti, Perotto,
and Picasso [25] concerning classical stabilized finite element methods on anisotropic
meshes. The developments in the present article are in a similar spirit.

The objective of this paper is twofold. We aim to develop the a priori error anal-
ysis of the RFB method for two-dimensional elliptic convection-dominated diffusion
equations on anisotropic partitions. Specifically, we aim to bound the error by appro-
priately weighted norms of directional derivatives of the solution, so as to incorporate
the anisotropic nature of the solution into the bounds. On the one hand, our results
complement the work in [3, 25] on the a priori error analysis of classical stabilized
finite element methods over anisotropic meshes; on the other hand, they extend earlier
results by Brezzi, Marini, and Süli [7], Brezzi and Marini [8], and Sangalli [29] on the
a priori error analysis of RFB methods on shape-regular triangulations.

Anisotropy also has to be taken into account in the selection of parameters appear-
ing in stabilized finite element methods, such as streamline-diffusion-type methods.
The second key objective of the paper is to use the stabilizing term derived from the
RFB method to redefine the mesh Péclet number and propose a new choice of the
streamline-diffusion (SD) parameter that is suitable for use on anisotropic partitions.
The proposed choice of the SD parameter improves earlier suggestions based on the
a priori analysis of the streamline-diffusion method (cf. [3, 23, 25]).

The paper is structured as follows. The first part of this work is concerned with the
analysis of stabilized finite element methods on anisotropic computational meshes: We
consider the anisotropic a priori error analysis of the RFB method applied to elliptic
convection-dominated convection-diffusion problems in two dimensions. In the second
part of the paper, in the case of P1 finite elements on triangular meshes, appealing to
the equivalence of the RFB method to classical stabilized finite element methods, we
propose a new rule, justified through the analysis of the RFB method, for selecting the
stabilization parameter in classical stabilized methods on two-dimensional anisotropic
triangulations; we then relate our work to existing developments on classical stabilized
finite element methods on anisotropic meshes, including [3, 23, 25].

2. Statement of the problem. Let Ω ⊂ R
2 be a bounded open polygonal

domain. We consider the model elliptic boundary-value problem

(2.1)

{
find u ∈ V = H1

0(Ω) such that

Lu := −εΔu + a · ∇u = f in Ω,

where ε is a positive parameter, a ∈ [W1,∞(Ω)]2, with div(a) ≤ 0 in Ω, and f be-
longs to L2(Ω). The homogeneous Dirichlet boundary condition u|∂Ω = 0 has been
assumed here only for ease of presentation. We normalize the problem by requiring
that ‖a‖L∞(Ω) ≤ 1. Our focus of interest is the convection-dominated regime, namely,
when 0 < ε � 1; thus we assume, without loss of generality, that ε ∈ (0, 1]. The ex-
tension of the results of this paper to the, more general, convection-diffusion-reaction
equation −εΔu+ a · ∇u+ cu = f in Ω, subject to a homogeneous Dirichlet boundary
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condition on ∂Ω, is straightforward, provided that div(a) − 2c ≤ 0 in Ω. Below, we
shall briefly comment on the case when div(a)−2c ≤ −2c0 in Ω, where c0 is a positive
constant.

The variational formulation of the boundary-value problem (2.1) is

(2.2)

{
find u ∈ V such that

L(u, v) = (f, v) ∀v ∈ V,

where

(2.3) L(w, v) := ε

∫
Ω

∇w · ∇v dx +

∫
Ω

(a · ∇w) v dx

is a continuous and coercive bilinear form on V × V and (·, ·) denotes the L2 inner
product over Ω.

The existence and uniqueness of a solution to (2.2) (that is, of a weak solution
to (2.1)) are well-known consequences of the Lax–Milgram lemma; for a more general
existence and uniqueness result, see [19, Theorem 8.6].

We consider finite element discretizations of (2.2) over conforming partitions Th
of Ω consisting of affine-equivalent quadrilateral or triangular elements. We shall
not assume that the family of partitions {Th}h>0 is shape-regular, because we wish to
allow anisotropic local refinements in parts of the computational domain where special
features of the exact solution, such as thin layers, are detected. Our only assumption
will be the existence of a positive constant c ≤ 1 such that

(2.4) ε ≤ chγ ,

for all element edges γ in the partition; here hγ represents the length of γ. This is
a reasonable assumption when dealing with the analysis of stabilized finite element
methods for convection-dominated diffusion problems such as our model problem,
which exhibits boundary layers whose thickness is commensurate with ε � 1: For,
if we could afford to solve the problem on meshes whose granularity is smaller than
ε, then we would not need to use a stabilized method in the first place. Thus, our a
priori error bounds, developed under the hypothesis (2.4), will be of a preasymptotic
nature: Since the lower bound ε � 1 on chγ is fixed, we will not let hγ tend to zero.

An optimal mesh (in terms of the number of degrees of freedom required to ob-
tain a given accuracy) must mimic the behavior of the solution to (2.1). Such an
optimal mesh would, in general, be designed through successive mesh refinements/de-
refinements. In early stages of the mesh adaptation process, the use of a stabilized
finite element method is mandatory, since on coarse meshes classical Galerkin finite
element approximations of (2.1) will exhibit large maximum-principle-violating nu-
merical oscillations when ε � 1, hence the need for sharp preasymptotic error bounds
for stabilized finite element methods. In later stages of the mesh refinement process,
when the mesh has been adapted to the solution, the stabilized method could be
simplified, for instance, by omitting the stabilization term, as was done in [10].

We denote by λ1 and λ2 some characteristic dimensions of a generic element
T ∈ Th, to be defined on a case-by-case basis; λ1 and λ2 are used to group the
elements according to the following rule (which defines the subpartitions T1 and T2):

1. T ∈ T1 if λ1 ≤ λ2;
2. T ∈ T2 if λ2 < λ1.

An admissible structured mesh and its subpartitions are shown in Figure 2.1.
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T1 T1

T2 T1

Fig. 2.1. A locally anisotropic partition and its subpartitions T1 and T2.

Given k ≥ 1, let Pk denote the space of algebraic polynomials of degree ≤ k, and
let Qk denote the space of algebraic polynomials of degree ≤ k with respect to each
variable. Further, let FT : T̂ → T be the affine transformation mapping the reference
element onto T ∈ Th.

The residual-free-bubble space is defined as follows (see [7]):

(2.5) VRFB :=
{
v ∈ V : v|e ∈ Pk for each edge e of T and any element T ∈ Th

}
.

We note that the space VRFB is infinite-dimensional, admitting the representation

(2.6) VRFB = V k
h + Bh,

where V k
h is the classical finite element space given by

V k
h :=

{
vh ∈ H1

0(Ω) :

{
vh|T ∈ Pk if T is a triangle
vh|T ◦ FT ∈ Qk if T is a parallelogram

}
,

and

(2.7) Bh :=
⊕
T∈Th

H1
0(T )

is the space of all bubble functions in V ; i.e., all function with zero trace on the skeleton
of the partition Th.

The RFB approximation of (2.2) is defined as the Galerkin approximation of (2.2)
in the space VRFB:

(2.8)

{
find uRFB ∈ VRFB such that

L(uRFB, v) = (f, v) ∀v ∈ VRFB.

Since VRFB is infinite-dimensional, the formulation (2.8) does not represent a numer-
ical method in the classical sense. In fact, a numerical algorithm can be devised from
(2.8) through static condensation of the bubble component ub of the solution uRFB,
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which belongs to the infinite-dimensional space Bh, and then discretizing the result-
ing infinite-dimensional problem over the finite-dimensional space V k

h . For instance,
if k ≤ 2, the sum in (2.7) is direct, and hence we then have the following unique
decomposition of the RFB solution:

uRFB = uh + ub.

Consequently, by testing in V k
h and then in Bh, we can split (2.8) into the following

two problems:

L(uh, vh) + L(ub, vh) = (f, vh) ∀vh ∈ V k
h ,(2.9)

L(uh, vb) + L(ub, vb) = (f, vb) ∀vb ∈ Bh.(2.10)

Equation (2.10) is referred to as a bubble equation as it is equivalent to solving, in
each element T ∈ Th, the boundary-value problem

(2.11)

{
Lub = f − Luh in T,
ub = 0 on ∂T

for the “fine-scale” bubble component ub of the approximate solution uRFB in terms
of the “coarse-scale” piecewise polynomial component uh of uRFB. The static con-
densation procedure corresponds to eliminating ub from (2.9) in favor of uh using
(2.11). This can be done by numerically solving a finite number of independent local
problems such as (2.11); this then leads to a (fully discrete) numerical algorithm. An
instance of such a procedure is discussed in section 6 of this paper. For further details,
we refer the reader to [9, 7].

The general a priori error analysis of the RFB method on shape-regular partitions
is due to Brezzi, Marini, and Süli [7]; it was shown there that if u ∈ Hk+1(Ω), then the
numerical solution uRFB delivered by the RFB method satisfies the following optimal
asymptotic error bound in the energy norm:

(2.12) ε1/2|u− uRFB|1,Ω ≤ Chk+1/2‖u‖Hk+1(Ω),

where h represents the characteristic size of the partition.
The technique used here to extend the a priori error analysis of the RFB method

to anisotropic partitions is different from the one employed in [7]. Instead, we follow
the approach adopted by Sangalli [29] to subsequently rederive and localize the results
presented in [7]. The key idea of Sangalli’s approach, and of the analysis below, is to
exploit the approximation properties of the space VRFB. To do so, Sangalli explicitly
constructs a projector from H1 onto the RFB space in a certain ε-weighted H1 norm.
A similar approach is followed by Risch in [27].

A second key ingredient of our analysis is the use of anisotropic approximation
results. These must be employed in order to derive an a priori error bound in terms
of appropriately weighted norms of directional derivatives of the exact solution u.

3. Structured quadrilateral partitions. We begin with the case of axiparallel
rectangular elements, leaving the treatment of more general partitions to subsequent
sections.

In this case it is natural to define λ1 = h1 and λ2 = h2, where h1 and h2 denote
the dimensions of the generic element T ∈ T in the x1 and x2 coordinate directions,
respectively.
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3.1. Notations and preliminary results. Let T̂ = (−1, 1)2 be the master

element. Given a function v ∈ H1(T ), we consider v̂ ∈ H1(T̂ ), the function associated

to v through the affine transformation FT which maps T̂ into T ; hence v̂ := v ◦ FT .
Further, we denote by i∗ = 3 − i the complementary index to i with respect to the
set {1, 2}.

Since T is a rectangle, the usual scaling properties for functions v ∈ H1(T ) yield

‖v‖2
0,T =

1

4
h1h2‖v̂‖2

0,T̂
,(3.1) ∥∥∥∥ ∂v∂xi

∥∥∥∥2
0,T

=
hi∗

hi

∥∥∥∥ ∂v̂∂x̂i

∥∥∥∥2
0,T̂

, i ∈ {1, 2}.(3.2)

We will also need some scaling properties for functions defined over edges of the
elements T ∈ Th. The trace of a function belonging to the space H1(T ) = W1,2(T )
and, more generally, to the Sobolev space W1,p(T ), 1 ≤ p < ∞, is characterized in
terms of the fractional-order Sobolev space W1−1/p,p(∂T ), which, for p > 1, can be
defined using the real method of function space interpolation; see, e.g., Adams [1].

The space Ws,p(∂T ), 0 < s < 1, can also be characterized in terms of an intrinsi-
cally defined norm. For instance, for every s ∈ (0, 1), the norm ‖ ·‖s,∂T and seminorm
| · |s,∂T of the Sobolev space Hs(∂T ) = Ws,2(∂T ) of fractional order s are defined by

‖v‖s,∂T :=

{
‖v‖2

0,∂T +

∫
∂T

∫
∂T

|v(x) − v(y)|2
|x− y|1+2s

dσ(x) dσ(y)

}1/2

=
{
‖v‖2

0,∂T + |v|2s,∂T
}1/2

,(3.3)

where dσ denotes the one-dimensional Hausdorff measure of ∂T . This definition can
be extended to portions of ∂T .

The trace theorem (again, see [1]) ensures that the trace of a function v ∈ Hs(T )
belongs to Hs−1/2(∂T ), s ∈ (1/2, 1], and that there exists a constant C, independent
of v, such that

(3.4) ‖v‖s−1/2,∂T ≤ C‖v‖s,T ∀v ∈ Hs(T ).

Let γ be an edge of T ∈ Th and γ̂ = F−1
T (γ) the corresponding edge of T̂ . Scaling

the Sobolev seminorm | · |s,γ , 0 ≤ s ≤ 1, from γ̂ to γ, we have

(3.5) |v|2s,γ =

(
hγ

2

)1−2s

|v̂|2s,γ̂ ∀v ∈ Hs(γ),

where, as before, hγ = |γ|. The scaling property (3.5) will be used to prove the
following anisotropic trace inequalities which are refinements of the usual ones valid
for axiparallel domains.

Lemma 3.1. Let v ∈ H1(T ), where T is an axiparallel rectangle in R
2, and let

γi be an edge of T parallel to the ith coordinate axis, with hi = |γi|, i = 1, 2. The
following trace inequalities hold:

‖v‖2
0,γi

≤ 1

hi∗
‖v‖2

0,T + 2 ‖v‖0,T ‖vxi∗ ‖0,T , i = 1, 2;(3.6)

|v|21/2,∂T ≤ C

(
1

h1h2
‖v‖2

0,T +
h1

h2
‖vx1‖

2
0,T +

h2

h1
‖vx2‖

2
0,T

)
,(3.7)

where the constant C is independent of h1 and h2.
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Proof. The proof of (3.6) can be found, for instance, in [17]. To prove (3.7), we

apply (3.5) with s = 1/2 to scale from ∂T to ∂T̂ and the trace inequality (3.4) to

shift from ∂T̂ to T̂ , and, finally, we use (3.1) and (3.2) to scale back from T̂ to T :

|v|21/2,∂T = |v̂|21/2,∂T̂ ≤ ‖v̂‖2
1/2,∂T̂ ≤ C ‖v̂‖2

1,T̂

= C
(
‖v̂‖2

0,T̂ + ‖v̂x1
‖2
0,T̂ + ‖v̂x2

‖2
0,T̂

)
= C

(
1

h1h2
‖v‖2

0,T +
h1

h2
‖vx1

‖2
0,T +

h2

h1
‖vx2

‖2
0,T

)
and hence the desired result for any v ∈ H1(T ).

We shall also require the following trace-lifting lemma (see, e.g., Sangalli [29]).

Lemma 3.2. Given a function ŵ0 ∈ H1/2(∂T̂ ) and a real parameter t, with

0 < t ≤ 1, there exists ŵ ∈ H1(T̂ ) such that ŵ = ŵ0 on ∂T̂ and

(3.8) t |ŵ|21,T̂ + t−1 ‖ŵ‖2
0,T̂ ≤ C

(
t |ŵ0|21/2,∂T̂ + ‖ŵ0‖2

0,∂T̂

)
,

where the constant C is independent of t and ŵ0.

3.2. The projection error. Let us consider the function space Hr1,r2(T ) of
dominant mixed smoothness, defined by

Hr1,r2(T ) :=
{
v ∈ L2(T ) : Dr1

x1
v, Dr2

x2
v, Dr1

x1
Dr2

x2
∈ L2(T )

}
.

It is known that if ri > 1/2, i = 1, 2, then Hr1,r2(T ) is continuously embedded into
the space C(T ) of uniformly continuous functions on T (see, for example, [32, Chapter
2, Theorem 2.2.3]). Trivially, Hr+1(T ) is continuously embedded into H1,1(T ) for any
r ≥ 1.

We begin by introducing a suitable interpolant from Qk of a generic function in
H1,1(T )— the tensor-product H1-projection operator Πk, as has been defined in [17]
(see also [31, 18]), by means of truncated Legendre expansions.

Definition 3.3. Let Ln denote the Legendre polynomial of degree n on the open
interval I = (−1, 1). We define the L2-projection operator

π̃k : L2(I) → Pk(I)

by

π̃kv(x) :=

k∑
n=0

anLn(x),

where

an :=
2n + 1

2

∫
I

v(x)Ln(x) dx.

Further, we define the H1-projection operator

π̂k : H1(I) → Pk(I)

by setting, for any v ∈ H1(I),

π̂kv(x) :=

∫ x

−1

π̃k−1(v
′)(η) dη + v(−1), x ∈ (−1, 1).
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A convenient feature of the above definition is that it can be easily extended to the
multidimensional setting by means of a tensor-product construction; this is achieved
at the cost of assuming additional regularity (viz. assuming H1,1-regularity instead of
H1-regularity).

Definition 3.4. Let T̂ = (−1, 1)2. We define the tensor-product projection
operator

Π̂k : H1,1(T̂ ) → Qk(T̂ )

by

Π̂k := π̂x1

k ◦ π̂x2

k ,

where π̂x1

k , π̂x2

k denote the one-dimensional H1-projection operators from Definition 3.3,
and the superscripts xi, i = 1, 2, indicate the directions in which the one-dimensional
projections are applied.

The above definition is easily extended to a generic axiparallel rectangle T as
follows.

Definition 3.5. Let T ∈ Th. We define the tensor-product projection operator

Πk : H1,1(T ) → Qk(T )

by setting, for any v ∈ H1,1(T ),

Πkv := Π̂kv̂ ◦ F−1
T .

By virtue of being of tensor-product type, the projection Πk admits anisotropic
error bounds. As a matter of fact, it is better-behaved than the L2-projection operator
when bounds on the derivatives of the interpolation error are needed. The relevant
approximation properties of Πk are summarized in the next lemma.

Lemma 3.6. Suppose that T is an axiparallel rectangle and v ∈ Hr+1(T ), with
1 ≤ r ≤ k—and thereby v ∈ H1,1(T ). Then, for any s with 0 ≤ s ≤ r, the following
error bound holds:

‖v − Πkv‖2
0,T ≤ Φ2(k, s)

((
h1

2

)2s+2

‖∂s+1
x1

v‖2
0,T +

(
h2

2

)2s+2

‖∂s+1
x2

v‖2
0,T

)

+ Φ2(k, s− 1) min
i, j = 1, 2

i �= j

(
hi

2

)2(
hj

2

)2s

‖∂s
xj
∂xiv‖2

0,T ,

and, for any i = 1, 2,

‖∂xi(v−Πkv)‖2
0,T ≤ Φ1(k, s)

(
hi

2

)2s

‖∂s+1
xi

v‖2
0,T +Φ2(k, s−1)

(
hi∗

2

)2s

‖∂s
xi∗

∂xi
v‖2

0,T ,

where

Φ1(k, s) :=

(
Γ(k − s + 1)

Γ(k + s + 1)

)1/2

, Φ2(k, s) :=
Φ1(k, s)√
k(k + 1)

,

and Γ is the Gamma function.
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The proof of the interpolation error bounds stated in the above lemma has been
given by Georgoulis in [17] (see also [18]), where such results are presented in a much
more general setting.

Remark. Interpolation error bounds similar to those in Lemma 3.6 are provided,
although for a different interpolation operator, by Apel [2, Theorem 2.7]. These, too,
are limited to rectangular elements and are obtained as improvements of the general
but slightly less sharp bounds presented in earlier sections of [2]; see also section 4
(especially Theorem 4.10) in the recent work of Georgoulis, Hall, and Houston [16]
concerning interpolation results on anisotropic nonaxiparallel meshes. For a recent
survey of anisotropic mesh adaptivity and anisotropic interpolation error estimates,
particularly on triangular meshes, we refer to the work of Huang [21].

3.3. Error bound. Suppose that the bounded polygonal domain Ω ⊂ R
2 is a

finite union of axiparallel rectangles. We begin the error analysis with the construction
of a suitable projector P : H1

0(Ω) ∩ H2(Ω) → VRFB, whose definition is based on the
H1,1-projection operator Πk described above and the trace-lifting lemma, Lemma 3.2.

Given v̂ ∈ H1,1(T̂ ) ⊂ H1(T̂ ), let ŵ ∈ H1(T̂ ) be the function obtained by applying
Lemma 3.2 with

ŵ0 = (v̂ − Π̂kv̂)|
∂T̂

, t =
ε

hi
.

We note that t ≤ 1 due to assumption (2.4). We define PT̂ v̂ ∈ H1(T̂ ) by

(3.9) PT̂ v̂ := v̂ − ŵ,

and let PT v = PT̂ v̂ ◦ F−1
T . Finally, for v ∈ H1

0(Ω) ∩ H2(Ω), we define Pv ∈ H1
0(Ω)

elementwise by (Pv)|T = PT (v|T ), T ∈ Th; recall that v|T ∈ H2(T ) ⊂ H1,1(T ), so
this definition is meaningful. It is clear from this construction that, for every element
T ∈ Th, PT : H1,1(T ) → VRFB|T , and P : H1

0(Ω) ∩ H2(Ω) → VRFB.
The main task in the a priori error analysis is to bound the quantity EP

T (v) defined
for v ∈ H1,1(T ) by

(3.10) EP
T (v) := ε|v − PT v|21,T + ε−1‖v − PT v‖2

0,T .

To this end, let us assume that T ∈ Ti, with i ∈ {1, 2}. Using (3.1) and (3.2), and
noting that for T ∈ Ti we have hi ≤ hi∗ , it follows that

EP
T (v) = ε

hi

hi∗
‖(v̂ − PT̂ v̂)x̂i∗ ‖2

0,T̂
+ ε

hi∗

hi
‖(v̂ − PT̂ v̂)x̂i‖2

0,T̂
+

ε−1hi∗hi

4
‖v̂ − PT̂ v̂‖

2
0,T̂

≤ Chi∗

(
ε

hi
|v̂ − PT̂ v̂|

2
1,T̂

+

(
ε

hi

)−1

‖v̂ − PT̂ v̂‖
2
0,T̂

)
.(3.11)

Hence, by applying (3.8) in (3.11) with ŵ = v̂ − PT̂ v̂, we have

(3.12) EP
T (v) ≤ C

(
ε
hi∗

hi
|v̂ − Π̂kv̂|21/2,∂T̂ + hi∗‖v̂ − Π̂kv̂‖2

0,∂T̂

)
.

We are now in a position to prove the following result which justifies our choice
of the projector P .
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Lemma 3.7. Let T ∈ T and v ∈ Hr+1(T ), with 1 ≤ r ≤ k, and consider the
quantity EP

T (v) defined by (3.10). If T ∈ Ti, i ∈ {1, 2}, then

EP
T (v) ≤ C

22r+1

(
Φ12(k, r)

(
h2r+1
i ‖∂r+1

xi
v‖2

0,T +
h2r+2
i∗

hi
‖∂r+1

xi∗
v‖2

0,T

)

+
5

2
Φ2(k, r − 1)

(
h2r−1
i h2

i∗‖∂r
xi
∂xi∗ v‖2

0,T + hih
2r
i∗ ‖∂xi∂

r
xi∗

v‖2
0,T

))
,(3.13)

where Φ12(k, r) := 2Φ1(k, r) + Φ2(k, r)/2.
Proof. Assume that T ∈ Ti, i ∈ {1, 2}, and let ∂xi

T and ∂xi∗T be the collec-
tion of the edges of T parallel to the xi and xi∗ coordinate directions, respectively.
From (3.12), upon returning to ∂T using (3.5) and applying the trace inequalities of
Lemma 3.1, we have

EP
T (v) ≤ C

(
ε
hi∗

hi
|v − Πkv|21/2,∂T + 4‖v − Πkv‖2

0,∂xi∗ T + 4
hi∗

hi
‖v − Πkv‖2

0,∂xi
T

)
≤ C

((
ε

h2
i

+
1

hi

)
‖v − Πkv‖2

0,T + ε
h2
i∗

h2
i

‖(v − Πkv)xi∗ ‖2
0,T + ε‖(v − Πkv)xi

‖2
0,T

+
hi∗

hi
‖v − Πkv‖0,T ‖(v − Πkv)xi∗ ‖0,T + ‖v − Πkv‖0,T ‖(v − Πkv)xi

‖0,T

)
≤ C

((
ε

h2
i

+
1

hi

)
‖v − Πkv‖2

0,T

+

(
ε
h2
i∗

h2
i

+
h2
i∗

hi

)
‖(v − Πkv)xi∗ ‖2

0,T + (ε + hi) ‖(v − Πkv)xi
‖2
0,T

)
.

With assumption (2.4) this bound may be written

EP
T (v) ≤ C

(
1

hi
‖v − Πkv‖2

0,T +
h2
i∗

hi
‖(v − Πkv)xi∗ ‖2

0,T + hi‖(v − Πkv)xi
‖2
0,T

)
.

Thus, we have bounded EP
T (v) in terms of the H1-projection error. The required

bound (3.13) follows by applying the projection error bounds from Lemma 3.6.
We are ready to prove the following a priori error bound for the RFB method in

the energy norm ε1/2| · |1,Ω.
Theorem 3.8. Let u ∈ V be the solution of (2.2) and uRFB ∈ VRFB the RFB

solution defined by (2.8). Assume that the partition Th consists of axiparallel rectangles
and that there exists a constant c ∈ (0, 1] such that, for any T ∈ Th, ε ≤ cmin{h1, h2}.
Finally, let T1 be the subpartition given by all T ∈ Th such that h1 ≤ h2, and let
T2 := Th \ T1.

If u ∈ H1
0(Ω) ∩ Hk+1(Ω), then there exists a positive constant C, independent of

ε, k and of the mesh dimensions, such that for any 1 ≤ r ≤ k

(3.14)

ε1/2|u− uRFB|1,Ω ≤ C
Φ̄(k, r)

2r+1/2

2∑
i=1

( ∑
T∈Ti

(
h2r+1
i ‖∂r+1

xi
u‖2

0,T +
h2r+2
i∗

hi
‖∂r+1

xi∗
u‖2

0,T

+ hih
2r
i∗ ‖∂xi∂

r
xi∗

u‖2
0,T + h2r−1

i h2
i∗‖∂r

xi
∂xi∗u‖2

0,T

))1/2

,
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where Φ̄(r, k) := max{Φ12(k, r),
5
2Φ2(k, r − 1)}. The constant C depends only on the

constant in the trace inequality (3.7) and on the constant in Lemma 3.2.
Proof. We consider the decomposition

u− uRFB = (u− Pu) + (Pu− uRFB),

where P is the approximation operator described in the previous section. By em-
ploying the coercivity of L and the Galerkin orthogonality property, on recalling that
Pu ∈ VRFB, we have that

ε|u− uRFB|21,Ω ≤ L(u− uRFB, u− uRFB)

= L(u− uRFB, u− Pu).

Thus, on applying the Cauchy–Schwarz inequality to L(u−uRFB, u−Pu) after rewrit-
ing it explicitly using the definition of the bilinear form (2.3), we get

ε|u− uRFB|21,Ω ≤
∑
T∈Th

(
ε

∫
T

∇(u− uRFB) · ∇(u− PTu) dx

+

∫
T

a · ∇(u− uRFB)(u− PTu) dx

)
≤
∑
T∈Th

(
ε1/2|u− uRFB|1,T

)(
ε1/2|u− PTu|1,T + ε−1/2‖u− PTu‖0,T

)

≤ ε1/2|u− uRFB|1,Ω

(∑
T∈Th

(
ε1/2|u− PTu|1,T + ε−1/2‖u− PTu‖0,T

)2)1/2

.

Next, we split the sum on the right-hand side between the subpartitions T1 and T2 to
obtain

ε1/2|u− uRFB|1,Ω ≤ C
∑
i=1,2

(∑
T∈Ti

EP
T (u)

)1/2

,

with EP
T (u) as in (3.10). The required bound now follows from (3.13).

Remark. When the problem (2.1) is strongly convection-dominated, the solution
is highly anisotropic locally. For this reason it is crucial that the error is bounded
by appropriately weighted norms of directional derivatives of the solution, as in our
error bound (3.14). We also observe that, if the partition is shape-regular, our error
bound collapses to the isotropic error estimate (2.12).

We conclude the section with a remark on the extension of the above bound to the
case when, in addition to diffusion and convection terms, the equation also contains
a reaction term. Suppose therefore that −εΔu + a · ∇u + cu = f in Ω, subject to
u = 0 on ∂Ω, with 2c− div(a) ≤ −2c0 in Ω, where c0 is a positive constant. Arguing
similarly as in the proof above, we then obtain
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ε|u− uRFB|21,Ω + c0‖u− uRFB‖2
0,Ω

≤ ε1/2|u− uRFB|1,Ω

(∑
T∈Th

(
ε1/2|u− PTu|1,T + ε−1/2‖u− PTu‖0,T

)2)1/2

+ ‖c‖L∞(Ω)‖u− uRFB‖0,Ω

(∑
T∈Th

‖u− PTu‖2
0,T

)1/2

≤
(
ε|u− uRFB|21,Ω + c0‖u− uRFB‖2

0,Ω

)1/2
×
(∑

T∈Th

(
ε1/2|u− PTu|1,T + ε−1/2‖u− PTu‖0,T

)2
+

‖c‖2
L∞(Ω)

c0
‖u− PTu‖2

0,T

)1/2

.

The rest of the argument, based on bounding the second factor on the right-hand side
in the final inequality, proceeds as in the proof of Theorem 3.8.

4. Affine partitions. We now discuss the case of partitions Th consisting of
affine-equivalent (triangular or quadrilateral) elements. As before, our assumptions
on the partition are conformity and that (2.4) holds.

The following a priori error analysis is based on Lemma 3.2 and on the tech-
nique introduced by Formaggia and Perotto [14] (see also the references therein and
Micheletti, Perotto, and Picasso [25]) to prove anisotropic error estimates for the in-
terpolation error. More precisely, we will employ suitable scaling properties derived
in [14] in terms of certain characteristic quantities of the affine transformation FT .
A limitation of the approach is that only an a priori error bound in terms of the
H2-seminorm can be obtained, so this analysis applies only in the case when k = 1.
An extension of the bounds presented here to the case when k ≥ 1 can be carried out
using the techniques developed in section 2.2 of the paper of Huang [20].

Let FT (x̂) = M x̂ + t (we omit the dependence of M and t on T to simplify
the notation). As the matrix M is invertible, it admits a unique polar decomposition
M = BZ, where B is symmetric and positive definite and Z is orthonormal.

Further, B is factorized as B = RTΛR, where Λ is diagonal with positive de-
creasing entries (the eigenvalues of B) and R is orthonormal (with rows which are the
eigenvectors of B). Hence,

Λ =

[
λ1 0
0 λ2

]
, R =

[
rT

1

rT
2

]
,

where λ1 ≥ λ2 and r1, r2 are the eigenvalues and eigenvectors of B, respectively. The
above decomposition corresponds to the singular value decomposition M = RTΛQ,
with Q = RZ: The reference element T̂ is rotated using Q, stretched by Λ, and then
rotated again by RT. The translation t finally gives the correct location of T . The
eigenvalues λ1 and λ2 of Λ thus give the element dimensions in a rotated orthogonal
frame and hence are used to replace h1 and h2 from the previous section as the
characteristic dimensions of the element T .

With this new notation, we get the following scaling rules, which are the coun-
terparts of (3.1) and (3.2):

‖v‖2
0,T = λ1λ2‖v̂‖2

0,T̂
,(4.1)

|v|21,T ≤ λ1

λ2
|v̂|2

1,T̂
.(4.2)

The equality (4.1) is elementary, while (4.2) is proved in [14] as Lemma 2.2.
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To scale back from the reference element we shall use the following identity which
is Lemma 2.2 in [25] (see also the proof of Lemmas 2.1 and 2.2 in [14]):

(4.3) |v̂|2
2,T̂

=
λ3

1

λ2
L11v +

λ3
2

λ1
L22v + 2λ1λ2L12v,

where

(4.4) Lijv :=

∫
T

(
rT
i H(v)rj

)2
dx, with i, j = 1, 2,

and H(v) is the Hessian matrix associated with the function v; that is,

H(v) :=

[
∂2v
∂x2

1

∂2v
∂x1∂x2

∂2v
∂x1∂x2

∂2v
∂x2

2

]
.

Theorem 4.1. Let u ∈ V be the solution of (2.2) and uRFB ∈ VRFB the RFB
solution defined by (2.8). Consider a conforming affine-equivalent partition Th assum-
ing that there exists a constant c ∈ (0, 1] such that, for every T ∈ Th, ε ≤ cλ2, where
λ1 ≥ λ2 are the characteristic dimensions of T defined above.

If u ∈ H1
0(Ω)∩H2(Ω), then there exists a positive constant C, independent of the

mesh dimensions and of ε, such that

(4.5) ε1/2|u− uRFB|1,Ω ≤ C

(∑
T∈Th

(
λ4

1

λ2
L11u + λ3

2L22u + 2λ2
1λ2L12u

))1/2

,

where the terms Lij, i, j = 1, 2, are defined elementwise as in (4.4) in terms of the
Hessian of the function u.

Proof. Let T ∈ Th. As in the previous section, we need to bound the quantity
given by (3.10); that is,

EI
T (v) = ε|v − PT v|21,T + ε−1‖v − PT v‖2

0,T ,

where v ∈ H1(T ). As before, we start by scaling EI
T (v) to the reference element T̂ .

Using (4.1) and (4.2) we get

EI
T (v) ≤ ε

λ1

λ2
|v̂ − PT̂ v̂|

2
1,T̂

+ ε−1λ1λ2‖v̂ − PT̂ v̂‖
2
0,T̂

= λ1

(
ε

λ2
|v̂ − PT̂ v̂|

2
1,T̂

+

(
ε

λ2

)−1

‖v̂ − PT̂ v̂‖
2
0,T̂

)
.(4.6)

We then apply Lemma 3.2, this time with ŵ0 = (v̂− π̂1v̂)|
∂T̂

, where π̂1 is the standard
linear Lagrange interpolant (that is, π̂k, with k = 1) defined on the reference triangle

T̂ , and with t = ε/λ2. In this way we get

EI
T (v) ≤ C

(
ε
λ1

λ2
|v̂ − π̂1v̂|21/2,∂T̂ + λ1‖v̂ − π̂1v̂‖2

0,∂T̂

)
.

Instead of scaling back to the boundary of the element T as was done previously,
we now proceed by applying the trace inequality (3.4) and the standard Lagrange
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interpolation error bounds on T̂ (see Ciarlet [13]). Since λ2 ≤ λ1 and ε ≤ cλ2, with
c ∈ (0, 1], we get

EI
T (v) ≤ C

(
ε
λ1

λ2
+ λ1

)
‖v̂ − π̂1v̂‖2

1,T̂

≤ Cλ1|v̂|22,T̂

≤ C

(
λ4

1

λ2
L11v + λ3

2L22v + 2λ2
1λ2L12v

)
,(4.7)

the last bound being a consequence of (4.3). The desired error bound now follows by
repeating the steps in the proof of Theorem 3.8.

If the partition Th is axiparallel, then λi = hi/ci, with hi and ci, i = 1, 2, being

the dimensions along the coordinate axes of T and T̂ , respectively. In this case
Theorem 4.1 collapses to the a priori error bound (3.14), with r = 1.

5. Numerical examples. As discussed in section 1, a fully discrete RFB method
is obtained after approximating the bubble space. In the following experiment, the
local bubble problem on each element is solved using the standard Galerkin finite
element method (FEM) on an 8 × 8 Shishkin partition. This is a piecewise uniform
mesh with half of the nodes in each coordinate direction lying in the boundary-layer
region of the element; see [24] and references therein. This choice abundantly ensures
that the subgrid discretization error is of higher order than the RFB error controlled
by our error analysis. In fact, in the case of P1 shape-regular finite elements, it has
been proved by Brezzi and Marini [8] that a subgrid consisting of a single internal
node placed inside the boundary layer of the bubble problem is sufficient; see also [4].
This is the fully discrete method that we suggest for practical implementations.

Another possibility, exploited in further experiments presented later on, is to
discretize the convection field with piecewise constants and then approximate the
solution of each local bubble problem by the solution of the corresponding reduced
(hyperbolic) elemental problem [9]. This procedure is computationally inexpensive,
as it amounts to the calculation of the volume of a pyramid on each element. More-
over, when the problem is convection-dominated, such an approximation does not
compromise the accuracy of the method (a choice that is optimal in all regimes is
the link-cutting bubble proposed in [4] for one-dimensional problems). Indeed, the
discretization of the bubble functions need not be particularly accurate as long as the
elemental average ∫

T
bT dx

|T |

of the bubble bT has been sufficiently accurately approximated; the reason, as is
shown later on in this paper (see also [5]), is that only the elemental averages of the
bubbles enter into the fully discrete method. The behavior of the above term on
shape-regular partitions, as a function of the mesh Péclet number PeT = hT |a|/ε, is
analyzed in [5], where it is also shown that the average of the solution of the reduced
bubble problem behaves similarly in the convection-dominated regime to the average
of the exact bubble bT . Lemma 6.1 below extends the analysis from [5] to anisotropic
partitions, thus suggesting that this simple recipe for full discretization is still viable
on anisotropic partitions.
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Fig. 5.1. ε1/2-weighted H1-seminorm error and error bound under (the correct) h2-refinement
(left) and (the incorrect) h1-refinement (right); ε = 10−2. In both cases, we start from the 4 × 4
uniform square mesh.

We consider the following simple boundary-value problem

(5.1)

⎧⎨⎩
−εΔu + ux2 = 0 in Ω = (0, 1)2,
u(x1, 0) = 0; u(x1, 1) = 1, x1 ∈ [0, 1],
ux1 = 0 on ΓN = ({0} × (0, 1)) ∪ ({1} × (0, 1)),

whose solution is given by

u(x1, x2) =
ex2/ε − 1

e1/ε − 1
.

We consider discretizations of this problem with respect to axiparallel uniform rect-
angular grids of dimensions h1 and h2 in the respective coordinate directions. For
this problem the error bound (3.14) reduces to

ε1/2|u− uRFB|1,Ω ≤ C

⎧⎨⎩ h3
2||∂2

x2
u||20,Ω if h2 ≤ h1,

h4
2

h1
||∂2

x2
u||20,Ω if h2 > h1.

We verify the validity of the bound by performing the following tests. Starting from
the uniform 4 × 4 mesh, we either

• fix h1 while halving h2 (correct refinement) or
• fix h2 while halving h1 (incorrect refinement).

The relevant energy norm errors and error bounds are shown in the log-log plot in
Figure 5.1 (left-hand panel) for ε = 10−2.

Performing the correct refinement is, of course, not too different from solving
the related sequence of one-dimensional problems. The similarity of the numerical
solution of the two-dimensional problem to the numerical solution of the related one-
dimensional problem is lost when the incorrect refinement is performed (notice that
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Fig. 5.2. Profile of the solution along x1 = 1/2 under h1-refinement (as in the right-hand panel
in Figure 5.1), while h2 = 1/4. The lowest profile represents the piecewise Q1 standard Galerkin
FEM solution computed on a uniform 4×4 mesh. The exact solution is also plotted for comparison.

this does not happen when applying the standard Galerkin method with linear el-
ements). As predicted by the error bound, the accuracy of the solution actually
deteriorates under the incorrect refinement; see the log-log plot in Figure 5.1 (right-
hand panel). This is due to the peculiar definition of the RFB finite element space.
Mesh refinement corresponds to a relative impoverishment of the bubble subspace and
an enrichment of the piecewise polynomial subspace. If the latter enrichment, as is
the case with our incorrect refinement, is ineffective, then the overall approximation
properties of VRFB will be worse than on a coarser mesh. The detailed error analysis
of the RFB method on shape-regular partitions presented in our recent work [12] aims
to clarify the approximation properties of the method in the preasymptotic regime
when ε ≤ ch. In particular, in [12], we relate the phenomenon just observed to the
inadequacy of V k

h to capture the exponential behavior of the solution along element
edges contained in the boundary layer.

In the limit of h1 → 0, the solution becomes constant along x1. That is, it tends
to the piecewise Q1 standard Galerkin solution, which is unaffected by the reduction
of h1; see Figure 5.2. Asymptotically, in the case of the incorrect refinement (with
h1 → 0), the error is of order O(1) (cf. Figure 5.1 (right)). In other words, since
the bubble part of the solution is forced to tend to zero as h1 → 0, its stabilizing
effect is diminished until, in the limit, it vanishes and the RFB method collapses
to the standard Galerkin FEM. This fact shows that the stabilization properties of
stabilized FEMs are affected by the anisotropy of the partition.

The use of anisotropic partitions for the solution of highly convection-dominated
problems can become mandatory if resolution of thin layers in the solution is para-
mount. Let us consider, for example, the boundary-value problem

(5.2)

⎧⎨⎩
−εΔu + (2, 1)T · ∇u = 0 in Ω = (0, 1)2,
u(x1, 0) = u(1, x2) = 0, x1, x2 ∈ (0, 1),
u(x1, 1) = u(0, x2) = 1, x1, x2 ∈ [0, 1].

The solution of (5.2) exhibits an internal layer emanating from the origin of the coor-
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Fig. 5.3. The solution of (5.2) with ε = 10−4 on ad hoc-refined triangulations. Left: Shape-
regular mesh (23256 elements, 12693 nodes) and the corresponding solution. Right: Anisotropic
mesh (478 elements, 263 nodes) and the corresponding solution.

dinate system and a boundary layer situated along x1 = 1. The RFB approximation
of (5.2) is shown in Figure 5.3. The bubble solution is approximated by the solution
of the related reduced (hyperbolic) elemental problem [9]. We compute the RFB solu-
tion using, respectively, a shape-regular triangulation (left-hand panels in the figure)
and an anisotropic triangulation (right-hand panels in the figure). The anisotropic
triangulation has been generated by Picasso [26], by applying a ZZ-type error indi-
cator for the gradient error to the classical stabilized Galerkin least-squares (GLS)
method, until the stopping criterion ZZ-indicator ≤ 1/4 was satisfied in all elements.
The triangulation was then used to compute the RFB solution shown in the bottom
right-hand panel of Figure 5.3. The computation on the shape-regular triangulation
was performed by applying the residual-based L2-error indicator proposed in [10] for
the RFB method. For the sake of consistency, the adaptation was stopped when
the error indicator fell below 1/4 in all elements. The RFB solution computed on
the anisotropic triangulation is clearly superior, as the triangulation consists of only
263 nodes instead of the 12693 nodes, with comparable accuracy, in the case of the
shape-regular partition.

6. Tuning of the SD parameter. The RFB method is closely related to clas-
sical stabilized finite element methods (streamline upwind Petrov–Galerkin (SUPG),
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GLS, etc.). For instance, in the case of piecewise constant coefficients and linear fi-
nite elements, RFB is equivalent to SUPG and GLS (the latter methods coincide in
this case with what Johnson, Nävert, and Pitkäranta [22] refer to as the streamline-
diffusion finite element method (SDFEM)). Here we exploit this identification to ob-
tain a theoretically justified value of the user-selected stabilization parameter in sta-
bilized finite element methods.

We consider the RFB method (2.8), assuming that Th consists of triangles, and fix
k = 1. In this case, VRFB = V 1

h ⊕Bh, where V 1
h is the space of linear finite elements.

Let us also assume that a and f are constant on every element of Th. Then the
right-hand side of (2.11) is constant, and the bubble part of the RFB solution is given
locally on T by ub|T = (f − Luh)|T bT , where bT ∈ H1

0(T ) satisfies

(6.1) −εΔbT + a · ∇bT = 1.

Substituting ub into (2.9) it follows that uh ∈ V 1
h is the solution of

(6.2) L(uh, vh) +
∑
T∈Th

∫
T
bT dx

|T | (a · ∇uh − f,a · ∇vh)T = (f, vh) ∀vh ∈ V 1
h .

The formulation (6.2) coincides with the SDFEM with the particular choice of the SD
parameter given by

(6.3) τb :=

∫
T
bT dx

|T | .

Thus, as anticipated, the RFB method and the SDFEM are, in this case, equivalent.
This well-known fact was first observed by Brezzi and Russo [9].

A numerical method is obtained from the RFB formulation by considering (6.2)
where the quantity τb has been suitably approximated (examples are given in [9, 15,
6, 8, 4, 30, 11]). As discussed in [5] in the case of shape-regular triangulations, the
crucial property is that the approximated value of τb scales as τb with respect to the
mesh size and the coefficients ε and b.

Specifically, let ha indicate the length of the longest segment parallel to a con-
tained in T . On shape-regular partitions, i.e., assuming that the minimal angle of T
is bounded below by a fixed positive constant, we know from [5] that

(6.4) C
hT

|a|min

{
h|a|
ε

, 1

}
≤ τb ≤

ha

|a| .

In practice, τb ∼ hT

|a|min {h|a|
ε , 1}, which is qualitatively the value of the SD parameter

suggested by the a priori error analysis of the SDFEM (see, e.g., [28]).
The situation is less clear when considering anisotropic elements. Attempts have

been made to derive the optimal behavior of the SD parameter through a priori
analysis; see, e.g., [3, 23, 25]. The outcome of the investigations in these papers
is that the stabilization parameter should depend on the smaller dimension of the
element.

For instance, assume that T is a right-angled triangle of dimensions h1, h2, and
let hmin = min{h1, h2}. Then, according to [25], we should choose the SD parameter
as

(6.5) τsd := C
hmin

2|a| min

{
hmin|a|

6ε
, 1

}
.
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This choice seems less favorable when the mesh is not aligned with the solution (as
in the incorrect refinement in our example above). We notice that in this case the a
priori analysis does not predict convergence anyway.

By appropriately modifying the argument employed in [5] to derive (6.4), we shall
now obtain a new lower bound for τb that takes the two characteristic dimensions of
T into account. This result is then used to provide a new rule for selecting the SD
parameter.

Lemma 6.1. Suppose that T is a right-angled triangle, oriented along the coordi-
nate axes, of dimensions h1, h2; then the quantity τb given by (6.3), where bT solves
(6.1), satisfies

(6.6) C
ha

|a| min {PeT , 1} ≤ τb ≤
ha

|a| ,

with C = 1/45 and with the following definition of the element Péclet number:

(6.7) PeT := h2
min

|a|
8εha

.

Proof. The upper bound is already given in (6.4). Assume that h2 < h1, so that

hmin = h2. To prove the lower bound, we map T into the right-angled triangle T̂
with its two orthogonal edges of length hah1/h

2
2 and ha/h2 aligned with the positive

semiaxes of the coordinate system (x̂1, x̂2). The image b̂ of bT ∈ H1
0(T̂ ) satisfies

−ε
ha

h2
2

Δb̂ + a · ∇b̂ =
h2

2

ha
in T̂ ,

and we have

(6.8) τb =
2h3

2

h1h2
a

∫
T̂

b̂dx̂.

To bound the integral in (6.8) we proceed as in [5]. We let λ̂1, λ̂2, and λ̂3 be the

barycentric coordinates on T̂ , define b̂3 := λ̂1λ̂2λ̂3, and note that

(6.9)

∫
T̂

b̂3 dx̂ =
h2
ah1

120h3
2

.

Since h2 < h1, we have

(6.10) MΔ :=
1

8
max
T̂

|Δb̂3| =
1

4

h5
2

h3
ah1

max
T̂

(
x̂1

h2
+

x̂2

h1

)
=

1

4

h2
2

h2
a

,



RESIDUAL-FREE-BUBBLE FEM ON ANISOTROPIC PARTITIONS 1673

the maximum being attained at the vertex (hah1/h
2
2, 0), and

Mg :=
1

|a| max
T̂

|a · ∇b̂3|

=
h3

2

|a|h2
ah1

max
T̂

∣∣∣∣a1

(
x̂2 − 2

h2
2

hah1
x̂1x̂2 −

h2

ha
x̂2

2

)
+a2

(
x̂1 −

h2
2

hah1
x̂2

1 − 2
h2

ha
x̂1x̂2

)∣∣∣∣
≤ h3

2

|a|h2
ah1

(
|a1|max

T̂

∣∣∣∣x̂2 − 2
h2

2

hah1
x̂1x̂2 −

h2

ha
x̂2

2

∣∣∣∣
+ |a2|max

T̂

∣∣∣∣x̂1 −
h2

2

hah1
x̂2

1 − 2
h2

ha
x̂1x̂2

∣∣∣∣)
=

h3
2

|a|h2
ah

1

(
|a1|

ha

4h2
+ |a2|

hah1

4h2
2

)
=

1

4|a|

(
|a1|

h2
2

hah1
+ |a2|

h2

ha

)
,(6.11)

both maxima being attained at the midpoint of the hypotenuse. We note that if
sign(a1) = sign(a2), the above bound reduces to an equality.

We now define

γ :=
1

MΔ + Mg
min

{
h2

2

8εha
,

1

|a|

}
, ŵ := γb̂3, v̂ :=

ha

h2
2

b̂,

and introduce the differential operator

L̂ϕ := −ε
ha

h2
2

Δϕ + a · ∇ϕ.

By the definition of γ, ŵ, MΔ, and Mg, we have

|L̂ŵ| ≤ γ

(
ε
ha

h2
2

MΔ + |a|Mg

)
≤ 1.

Thus, by the definition of v̂, we have

L̂(v̂ − ŵ) =
ha

h2
2

L̂b̂− L̂ŵ = 1 − L̂ŵ ≥ 0,

and, since both v̂ and ŵ vanish on ∂T̂ , using the maximum principle, we conclude
that v̂ ≥ ŵ in T̂ . We are now ready to bound τb. Recalling (6.8) and (6.9), we have

τb =
2h5

2

h3
ah1

∫
T̂

v̂ dx̂ ≥ 2h5
2

h3
ah1

γ

∫
T̂

b̂3 dx̂ =
h2

2

60ha
γ.

Further, using the definition of γ, and inserting (6.10) and (6.11), we have

τb ≥
1

15
(

|a|
ha

+ |a1|
h1

+ |a2|
h2

) min

{
|a|h2

2

8εha
, 1

}
.

We distinguish between the following two cases.
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• If sign(a1) = sign(a2), then ha is the length of the line segment oriented with
a which joins the hypotenuse of T with the opposite vertex. Thus,

ha =

√√√√ h2
2(

a2

a1
+ h2

h1

)2 (1 +
a2
2

a2
1

)
=

|a|
|a1|
h1

+ |a2|
h2

.

It follows that |a1|/h1 + |a2|/h2 = |a|/ha.
• If sign(a1) �= sign(a2) and |a2|/h2 > |a1|/h1, then ha is the length of the line

segment oriented with a which joins the edge of T parallel to the x1-axis with
the opposite vertex. Thus,

ha =

√
h2

2 +
a2
1

a2
2

h2
2 =

h2|a|
|a2|

,

and so |a2|/h2 = |a|/ha. Similarly, if |a2|/h2 > |a1|/h1, then |a1|/h1 =
|a|/ha.

It follows that

|a|
ha

+
|a1|
h1

+
|a2|
h2

≤ C
|a|
ha

,

with C = 2 or 3, depending on the cases listed above, respectively.
Since the above argument can be repeated in the case h1 ≤ h2 by interchanging

the role of h1 and h2, we conclude that the bound (6.6) holds with C = 1/45.
To verify the bound obtained, we compare the behavior of

τa := C
ha

|a| min {PeT , 1} ,

with that of τb with respect to the dimensions of T . We let h1 = 1 while halving h2

starting from h2 = 1. We do this twice in succession, with a = (1, 0) and then with
a = (0, 1). The results are shown in Figure 6.1 (τb is calculated by solving (6.1) very
accurately). The superimposition of the graphs is obtained by renormalizing τa (the
factor is always around 3) so that its first values coincide with that of τb. As we can
see in Figure 6.1, τa and τb are very close to each other.

Figure 6.1 also reports the results obtained with the choice τsd given by (6.5),
which was proposed as a SD parameter in [3, 23, 25]. We notice that the two choices
τa and τsd have different turning points, particularly when a is aligned with the
longest edge of T . This is due to the fact that our definition of the element Péclet
number depends not only on the magnitude of the convective field, but also on its
direction. We believe that this should indeed be the case when anisotropic partitions
are considered, and hence we propose τa as the appropriate SD parameter. The
definition of τa easily extends to a general element by substituting h1 and h2 by the
characteristic dimensions λ1 and λ2.

We assess experimentally our new choice of the SD parameter τa by comparing its
performance with that of τsd on some model problems. From the discussion above we
know that the two choices τa and τsd differ the most when the stretching of the element
is aligned with the direction of convection. We must also take into account, though,
that the magnitude of the SDFEM stabilization term depends on the alignment of the
convection with the gradient of the solution; cf. (6.2); see also section 3 in [20]. We
therefore consider two test problems: (5.1), whose solution exhibits a boundary layer,
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Fig. 6.1. Comparisons of τb with τa and τsd on a rectangle of dimensions 1 and h2 for ε = 10−4.
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Fig. 6.2. Mesh and SDFEM solution profile along x1 = 1/2 for the model problem (5.1) with
ε = 10−4.

and a modification of (5.2) obtained by imposing a Neumann boundary condition on
the outflow boundary, so that the solution of the problem contains an internal layer.
In all tests we solved the problem on a slightly stretched uniform partition of aspect
ratio 4/10.

We start with (5.1). We compare the two different choices of the SD parameter τa
and τsd by solving the model problem (5.1) with ε = 10−4 by means of the SDFEM. In
both cases, the constant factors C in the definitions of the two parameters are tuned
by solving the problem on a uniform partition. We apply the SDFEM on the partition
depicted in the left-hand panel of Figure 6.2. The solution profile at x1 = 1/2 is shown
in the right-hand panel of Figure 6.2. While the solution obtained using τa correctly
reproduces the exact solution, the one obtained using τsd is corrupted by oscillations,
indicating that the stabilization parameter τsd is too small. The difference is due to the
fact that, while τsd always depends on hmin, the parameter τa is linked to hmax as long
as PeT > 1. Eventually, if the mesh is further stretched in the incorrect direction, the
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Fig. 6.3. SDFEM solution of the model problem (6.12) with ε = 10−4.

use of τa will also lead to maximum-principle-violating oscillations in the numerical
solution, but this happens for partitions with significantly higher aspect ratios than for
τsd; for the present model problem, PeT > 1 for hmin > 25/210−2 ≈ 0.05, correspond-
ing to an aspect ratio of 1/5. In conclusion, our choice will guarantee stability for
any, not too unreasonably designed, partition, such as the one used in the experiment.

We finally consider the following boundary-value problem:

(6.12)

⎧⎪⎨⎪⎩
−εΔu + a · ∇u = 0 in Ω = (0, 1)2,
u(x1, 0) = 0; u(x1, 1) = 1, x1 ∈ (0, 1),

u(0, x2) = χ[1/3,1](x2);
∂u
∂x1

(1, x2) = 0, x2 ∈ [0, 1],

which exhibits an internal layer emanating from the boundary-value discontinuity in
(0, 1/3) in the direction of a. We fix the partition to be a uniform 4 × 10 partition
and test the different choices of the SD parameter as functions of the convection
direction by setting a = (2, 1) as in (5.2) and then a = (2, 0.1), i.e., aligned with the
partition. The SDFEM solutions are shown in Figure 6.3. The solutions obtained
using τa are slightly less oscillatory, particularly in the case a = (2, 1), where we
observe differences in the solutions at the outflow up to a factor of 1.6. This latter
fact may seem counterintuitive, as τa and τsd differ the most in the case a = (2, 0.1)
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when convection is aligned with the stretching of the partition, but the alignment
improves the performance of the method and reduces the need for stabilization.

7. Conclusions. When a convection-diffusion problem is strongly convection-
dominated, the solution is often highly anisotropic, exhibiting large gradients in spe-
cific directions. In this paper we have developed the a priori error analysis of the RFB
method, in the energy norm, on anisotropic partitions. The error is bounded by ap-
propriately weighted norms of directional derivatives of the solution, so as to respect
the anisotropic nature of the solution to the problem. The error bound established is
an extension of that obtained by Sangalli [29] for shape-regular partitions.

Anisotropy also has to be taken into account in the tuning of the parameters
appearing in streamline-diffusion-type methods. We have used the stabilizing term
derived from the RFB method to redefine the mesh Péclet number and proposed a
new choice of the SD parameter which is suitable for use on anisotropic partitions.
Our choice improves the choices of the SD parameter presented in previous works
based on the a priori analysis of the SD method (cf. [3, 23, 25]).

Acknowledgment. We are grateful to Professor Marco Picasso (Ecole Polytech-
nique Fédérale de Lausanne) for supplying the anisotropic triangulation that was used
to generate the right-hand panels in Figure 5.3.
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Abstract. We consider a standard model for a stationary two-phase incompressible flow with
surface tension. In the variational formulation of the model a linear functional which describes
the surface tension force occurs. This functional depends on the location and the curvature of the
interface. In a finite element discretization method the functional has to be approximated. For an
approximation method based on a Laplace–Beltrami representation of the curvature we derive sharp
bounds for the approximation error. A new modified approximation method with a significantly
smaller error is introduced.
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1. Introduction. Let Ω ⊂ R
3 be a polyhedral domain that contains a flow of

two different immiscible incompressible newtonian phases (fluid-fluid or fluid-gas).
At the interface between the two phases there are surface tension forces that are
significant and cannot be neglected. An example is a (rising) liquid drop contained in
a surrounding fluid. The standard model to describe such a flow problem consists of
instationary Navier–Stokes equations with certain coupling conditions at the interface
which describe the effect of surface tension. In this paper we analyze errors that are
due to the discretization of the surface tension force that occurs in the continuous
model. To simplify the presentation and the analysis we assume a stationary flow.

The domains which contain the phases are denoted by Ω1 and Ω2 with Ω1∪Ω2 = Ω
and ∂Ω1 ∩ ∂Ω = ∅. The interface between the two phases (∂Ω1 ∩ ∂Ω2) is denoted by
Γ. To model the forces at the interface we make the standard assumption that the
surface tension balances the jump of the normal stress on the interface; i.e., we have
an interface condition

[σn]Γ = τKn,

with n = nΓ the unit normal at the interface (pointing from Ω1 in Ω2), τ the surface
tension coefficient (material parameter), K the curvature of Γ, and σ the stress tensor,
i.e.,

σ = −pI + μD(u), D(u) = ∇u + (∇u)T ,

with p = p(x, t) the pressure, u = u(x, t) the velocity vector, and μ the viscosity.
We assume continuity of the velocity across the interface. In combination with the
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conservation laws of mass and momentum this yields the following standard model
(cf., for example, [23, 22, 26, 25]):⎧⎨⎩−div(μiD(u)) + ρi(u · ∇)u −∇p = ρig in Ωi

div u = 0 in Ωi

for i = 1, 2,(1.1)

[σn]Γ = τKn, [u]Γ = 0.(1.2)

The vector g is a known external force (gravity). In addition we need boundary
conditions for u at ∂Ω. For simplicity we take homogeneous Dirichlet boundary
conditions. The two Navier–Stokes equations in (1.1) and the coupling conditions at
the interface in (1.2) can be reformulated into one Navier–Stokes equation in the whole
domain in which the effect of the surface tension is expressed in terms of a localized
force at the interface; cf. the so-called continuum surface force (CSF) model [5, 6]. We
consider this alternative formulation in a standard weak form (as in [12, 27, 28, 29, 30])
in the spaces

V := H1
0 (Ω)3, Q := L2

0(Ω) =

{
q ∈ L2(Ω) |

∫
Ω

q dx = 0

}
.

For the L2 scalar product we use the notation (f, g) :=
∫
Ω
fg dx (and similarly for

vector functions). The standard norm in V is denoted by ‖·‖1. The weak formulation
is as follows: Determine (u, p) ∈ V ×Q such that

∫
Ω

μ

2
D(u) : D(v) dx + (ρu · ∇u,v) + (div v, p) = (ρg,v) + fΓ(v) for allv ∈ V,

(div u, q) = 0 for all q ∈ Q,

(1.3)

with

(1.4) fΓ(v) = τ

∫
Γ

KnΓ · v ds,

and D(u) : D(v) = tr
(
D(u)D(v)

)
. The functions μ and ρ are strictly positive and

piecewise constant in Ωi, i = 1, 2. For Γ sufficiently smooth we have supx∈Γ |K(x)| ≤
c < ∞, and thus

(1.5) |fΓ(v)| ≤ c τ

∫
Γ

|nΓ · v| ds ≤ c ‖v‖L2(Γ) ≤ c‖v‖1 for all v ∈ V.

Here and in the remainder we use the notation c for a generic constant. From (1.5)
we see that fΓ ∈ V′, and thus under the usual assumptions (cf. [13]) the stationary
Navier–Stokes equations (1.3) have a unique solution. We emphasize that the location
of the interface is in general unknown and has to be determined (approximated) before
the Navier–Stokes equations (1.3) can be solved. In this paper we assume that the
unknown interface is captured using a level set technique. For a discussion of level
set methods in incompressible two-phase flow problems we refer to the literature
[6, 14, 21, 24]. We assume that the interface Γ is characterized as the zero level of the
level set function d, which locally (close to the interface) is a signed distance function.
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We now turn to the discretization of (1.3). We assume that S is a triangulation of
Ω consisting of tetrahedra. With this triangulation we associate a mesh size parameter
H. Let VH ⊂ V, QH ⊂ Q be standard polynomial finite element spaces corresponding
to the triangulation S, for example, the Hood–Taylor P2-P1 pair. In practice, the
triangulation S is locally refined close to the interface Γ but not aligned with this
interface; cf. Figures 2.1 and 6.1. The Galerkin discretization is as follows: Determine
(uH , pH) ∈ VH ×QH such that∫

Ω

μ

2
D(uH) : D(vH) dx + (ρuH · ∇uH ,vH) + (div vH , pH)

= (ρg,vH) + fΓ(vH) for all vH ∈ VH ,

(div uH , qH) = 0 for all qH ∈ QH .

(1.6)

For this discrete problem, many important theoretical issues are still unsolved. For
example, regarding iterative solvers there is the issue of robustness w.r.t. large jumps
in the density and viscosity coefficients (results for Stokes equations are given in
[20, 19, 18]). A second example is the effect of errors in the approximation of fΓ(vH)
on the accuracy of the flow variables. In this paper we treat the latter topic.

As mentioned above, the interface Γ has to be approximated. Furthermore, to
evaluate the integral in (1.4) the curvature of Γ has to be approximated and a quadra-
ture rule may be needed. Thus the term fΓ(vH) on the right-hand side in (1.6) will
be replaced by an approximation f̃(vH). For the effect of the surface tension force
approximation error on the accuracy of the velocity and pressure variables, the quan-
tity

(1.7) sup
v∈VH

fΓ(vH) − f̃(vH)

‖vH‖1

is crucial (Strang lemma). The two main ingredients in the approximation method
that we use are the following. First, a Laplace–Beltrami characterization of the cur-
vature is used. This technique has been applied in mean curvature flows (cf. [7])
and in flows with a free capillary surface (cf. [3, 4]). Application of this technique in
two-phase incompressible flows can be found in [12, 11, 14, 17]. Second, the unknown
interface Γ (zero level of d) is approximated as the zero level Γh of a finite element
approximation dh of d. The approximate interface Γh consists of triangular faces. The
parameter h is the maximal diameter of these faces and is not necessarily of the same
order of magnitude as H. For this approximation technique we derive a sharp bound
for the quantity in (1.7). The main result of this paper is the O(

√
h) bound given in

Corollary 4.8. We do not know of any literature in which, for this technique or for any
other technique for approximating fΓ(vH), rigorous bounds for the quantity in (1.7)
are derived. A numerical experiment (given in section 6) indicates that the O(

√
h)

is sharp. Our analysis reveals how the approximation method can be improved. A
modified new approach, resulting in an O(h) bound, is presented in section 5.

2. Approximation of the surface tension force fΓ(vH). In this section we
explain how the localized surface tension force term, fΓ(vH) in (1.6), is approximated.
For this we first need some notions from differential geometry.

Let U be an open subset in R
3 and Γ a connected C2 compact hypersurface

contained in U . For a sufficiently smooth function g : U → R the tangential derivative
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(along Γ) is defined by projecting the derivative on the tangent space of Γ, i.e.,

(2.1) ∇Γg = ∇g −∇g · nΓ nΓ.

The Laplace–Beltrami operator of g on Γ is defined by

ΔΓg := ∇Γ · ∇Γg.

It can be shown that ∇Γg and ΔΓg depend only on values of g on Γ. For vector valued
functions f, g : Γ → R

3 we define

ΔΓf := (ΔΓf1,ΔΓf2,ΔΓf3)
T , ∇Γf · ∇Γg :=

3∑
i=1

∇Γfi · ∇Γgi.

We recall the following basic result from differential geometry.
Theorem 2.1. Let idΓ : Γ → R

3 be the identity on Γ and K = κ1 + κ2 the sum
of the principal curvatures. For all sufficiently smooth vector functions v on Γ the
following holds:

(2.2)

∫
Γ

KnΓ · v ds = −
∫

Γ

(ΔΓ idΓ) · v ds =

∫
Γ

∇Γ idΓ ·∇Γv ds.

In a finite element setting (which is based on a weak formulation) it is natural
to use the expression on the right-hand side of (2.2) as a starting point for the dis-
cretization. This idea is used in, for example, [10, 4, 12, 14]. In this discretization we
use an approximation Γh of Γ.

For the formulation of assumptions on the approximate interface Γh it is conve-
nient to introduce the signed distance function d : U → R, |d(x)| := dist(x,Γ) for all
x ∈ U . Thus Γ is the zero level set of d. We assume d < 0 on the interior of Γ (that is,
in Ω1) and d > 0 on the exterior. Note that nΓ = ∇d on Γ. We define n(x) := ∇d(x)
for all x ∈ U . Thus n = nΓ on Γ and ‖n(x)‖ = 1 for all x ∈ U . Here and in the
remainder ‖ · ‖ denotes the Euclidean norm. The Hessian of d is denoted by H:

(2.3) H(x) = D2d(x) ∈ R
3×3 for all x ∈ U.

The eigenvalues of H(x) are denoted by κ1(x), κ2(x), and 0. For x ∈ Γ the eigenvalues
κi(x), i = 1, 2, are the principal curvatures.

We will need the orthogonal projection

P(x) = I − n(x)n(x)T for x ∈ U.

Note that the tangential derivative can be written as ∇Γg = P∇g.
Using the distance function d we now introduce assumptions on the approximate

interface Γh. In Remark 2 below we indicate how in practice an approximate interface
Γh can be constructed which satisfies these assumptions. Let {Γh}h>0 be a family of
polygonal approximations of Γ. Each Γh is contained in U and consists of a set Fh

of triangular faces: Γh = ∪T∈Fh
T . For T1, T2 ∈ Fh with T1 
= T2 we assume that

T1 ∩ T2 is either empty or a common edge or a common vertex. The parameter h
denotes the maximal diameter of the triangles in Fh: h = maxT∈Fh

diam(T ). By nh

we denote the outward pointing unit normal on Γh. This normal is piecewise constant
with possible discontinuities at the edges of the triangles in Fh.
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The approximation Γh is assumed to be close to Γ in the following sense:

|d(x)| ≤ ch2 for all x ∈ Γh,(2.4)

ess infx∈Γh
n(x)Tnh(x) ≥ c > 0,(2.5)

ess supx∈Γh
‖P(x)nh(x)‖ ≤ ch.(2.6)

Here c denotes a generic constant independent of h.
Remark 1. The conditions (2.5), (2.6) are satisfied if

(2.7) ess supx∈Γh
‖n(x) − nh(x)‖ ≤ min{c0, ch} with c0 <

√
2

holds. This easily follows from

‖n(x) − nh(x)‖2 = 2
(
1 − n(x)Tnh(x)

)
and

‖P(x)nh(x)‖ = ‖P(x)
(
n(x) − nh(x)

)
‖ ≤ ‖n(x) − nh(x)‖.

Remark 2. We briefly explain the approach that is used in [14] (cf. also [9]) for
computing Γh. Let S be the (locally refined) triangulation of Ω, consisting of tetra-
hedra, that is used for the discretization of the flow variables with finite elements;
cf. (1.6) (in our approach we use the Hood–Taylor P2-P1 pair). The level set equation
for d is discretized with continuous piecewise quadratic finite elements on a triangula-
tion T . This triangulation is either equal to S or obtained from one or a few regular
refinements of S (the subdivision of each tetrahedron in eight child tetrahedra). The
piecewise quadratic finite element approximation of d on T is denoted by dh. We
now introduce one further regular refinement of T , resulting in T ′. Let I(dh) be the
continuous piecewise linear function on T ′ which interpolates dh at all vertices of all
tetrahedra in T ′. The approximation of the interface Γ is defined by

Γh := {x ∈ Ω | I(dh)(x) = 0 }

which consists of piecewise planar segments. The mesh size parameter h is the maxi-
mal diameter of these segments. This (maximal) diameter is approximately the (max-
imal) diameter of the tetrahedra in T ′ that contain the discrete interface; i.e., h is
approximately the maximal diameter of the tetrahedra in T ′ that are close to the
interface. In Figure 2.1 we illustrate this construction for the two-dimensional case.

Each of the planar segments of Γh is either a triangle or a quadrilateral. The
quadrilaterals can (formally) be divided into two triangles. Thus Γh consists of a set
Fh of triangular faces. For the example considered in section 6, in which Γ is a sphere,
the resulting polygonal approximations Γh for h = 1

5 and h = 1
10 , resp., are shown in

Figure 2.2.
We note the following related to the assumptions (2.4)–(2.6). If we assume

|I(dh)(x) − d(x)| ≤ c h2 for all x in a neighborhood of Γ, which is reasonable for
a smooth d and piecewise quadratic dh, then for x ∈ Γh we have |d(x)| = |d(x) −
I(dh)(x)| ≤ c h2, and thus (2.4) is satisfied. Instead of (2.5), (2.6) we consider the
sufficient condition (2.7). We assume ‖∇d(x)−∇I(dh)(x)‖ ≤ c h for all x in a neigh-
borhood of Γ (x not on an edge), which again is reasonable for a smooth d and
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T

T ′

Γ
Γh

Fig. 2.1. Construction of approximate interface for the two-dimensional case.

Fig. 2.2. Approximate interface Γh for the example from section 6 on a coarse grid (left) and
after one refinement (right).

piecewise quadratic dh. Due to ‖∇d‖ = 1 we then also have ‖∇I(dh)(x)‖ = 1 +O(h)
in a neighborhood of Γ. For x ∈ Γh (not on an edge) we obtain

‖nh(x) − n(x)‖ =
∥∥∥ ∇I(dh)(x)

‖∇I(dh)(x)‖ − ∇d(x)
∥∥∥

≤
∣∣∣ 1

‖∇I(dh)(x)‖ − 1
∣∣∣ · ‖∇I(dh)(x)‖ + ‖∇I(dh)(x) −∇d(x)‖ ≤ c h,

and thus (2.7) is satisfied (for h sufficiently small).
Given an approximate interface Γh, the localized force term fΓ(vH) is approxi-

mated by

(2.8) f̃(vH) = fΓh
(vH) := τ

∫
Γh

∇Γh
idΓh

·∇Γh
vH ds, vH ∈ VH .

Under the assumptions (2.4)–(2.6) on the family {Γh}h>0 in section 4 we will derive
a bound for the approximation error

(2.9) sup
vH∈VH

fΓ(vH) − fΓh
(vH)

‖vH‖1
with fΓh

(vH) as in (2.8).

Remark 3. From Theorem 2.1, the fact that fΓ(v) = τ
∫
Γ
Kv · n ds is a bounded

linear functional on V, and a density argument, it follows that the linear functional

(2.10) fΓ : v → τ

∫
Γ

∇Γ idΓ ·∇Γv ds , v ∈
(
C∞

0 (Ω)
)3
,
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has a unique bounded extension to V. Therefore, for fΓ : V → R we can use both the
representation in (1.4) and the one in (2.10) (these are the same on a dense subset).
This, however, is not the case for fΓh

. Because Γh is not sufficiently smooth, a partial
integration result as in Theorem 2.1 does not hold. The linear functional

v → τ

∫
Γh

∇Γh
idΓh

·∇Γh
v ds

is not necessarily bounded on V. For this reason the restriction to vH from the finite
element space VH in (2.9) is essential.

Remark 4. At many places in this section, for example in (2.2), (2.3) and (implic-
itly) in (2.4), and also in the analysis presented in the next section, the assumption
that Γ is a C2 smooth interface plays a crucial role. We do not know of any literature
in which smoothness properties of the interface are analyzed for a Navier–Stokes in-
compressible two-phase flow problem with surface tension. In [2] and [1] a two-phase
Stokes flow problem without surface tension, in which the evolution is driven by the
gravity force, is analyzed. In [2] it is proved that if the initial configuration has a C2

smooth interface Γ = Γ(0), then for arbitrary finite time t > 0 the interface Γ(t) is a
surface of class C2−ε for arbitrary ε ∈ (0, 2]. In [1] it is shown that if Γ(0) is a C2+�

smooth surface, with � > 0, then Γ(t) is of class C2+�, too, for all t ∈ [0, T ] and T > 0
sufficiently small.

3. Preliminaries. In this section we collect some results that will be used in
the analysis in section 4. The techniques that we use come from the paper [8]. For
proofs of certain results we will refer to that paper.

We introduce a locally (in a neighborhood of Γ) orthogonal coordinate system by
using the projection p : U → Γ:

p(x) = x− d(x)n(x) for all x ∈ U.

We assume that the decomposition x = p(x)+d(x)n(x) is unique for all x ∈ U . Note
that

n(x) = n(p(x)) for all x ∈ U.

We use an extension operator defined as follows. For a (scalar) function v defined on
Γ we define

veΓ(x) := v(x− d(x)n(x)) = v(p(x)) for all x ∈ U ;

i.e., v is extended along normals on Γ. We will also need extensions of functions
defined on Γh to U . This is done again by extending along normals n(x). For v
defined on Γh we define, for x ∈ Γh,

(3.1) veΓh
(x + αn(x)) := v(x) for all α ∈ R with x + αn(x) ∈ U.

The projection p and the extensions veΓ, veΓh
are illustrated in Figure 3.1.

We define a discrete analogue of the orthogonal projection P:

Ph(x) := I − nh(x)nh(x)T for x ∈ Γh, x not on an edge.

The tangential derivative along Γh can be written as ∇Γh
g = Ph∇g. In the analy-

sis a further technical assumption is used, namely that the neighborhood U of Γ is
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x̂1

x1 = p(x̂1)

n1

x̂2

x2 = p(x̂2)

n2

Γh

Γ

Fig. 3.1. Example for projection p and construction of extension operators. n1 and n2 are
straight lines perpendicular to Γ. For v defined on Γ we have veΓ ≡ v(x1) on n1. For vh defined on
Γh we have veΓh

≡ vh(x̂2) on n2.

sufficiently small in the following sense. We assume that U is a strip of width δ > 0
with

(3.2) δ−1 > max
i=1,2

‖κi(x)‖L∞(Γ).

Assumption 1. In the remainder of the paper we assume that (2.4), (2.5), (2.6),
and (3.2) hold.

We present two lemmas from [8]. Proofs are elementary and can be found in [8].
Lemma 3.1. For the projection operator P and the Hessian H the relation

P(x)H(x) = H(x)P(x) = H(x) for all x ∈ U

holds. For v defined on Γ and sufficiently smooth the following holds:

(3.3) ∇Γh
veΓ(x) = Ph(x)

(
I − d(x)H(x)

)
P(x)∇Γv(p(x)) a.e. on Γh.

Proof. A proof is given in section 2.3 in [8].
In (3.3) (and also below) we have the result “a.e. on Γh” because quantities

(derivatives, Ph, etc.) are not well defined on the edges of the triangulation Γh.
Lemma 3.2. For x ∈ Γh (not on an edge) define

μ(x) =
[
Π2

i=1(1 − d(x)κi(x))
]
n(x)Tnh(x),(3.4)

A(x) =
1

μ(x)
P(x)

[
I − d(x)H(x)

]
Ph(x)

[
I − d(x)H(x)

]
P(x).(3.5)

Let Ae
Γh

be the extension of A as in (3.1). The following identity holds for functions
v and ψ that are defined on Γh and sufficiently smooth:

(3.6)

∫
Γh

∇Γh
v · ∇Γh

ψ ds =

∫
Γ

Ae
Γh

∇Γv
e
Γh

· ∇Γψ
e
Γh

ds.

Proof. A proof is given in section 2.3 in [8].
Due to the assumptions in (2.5) and (3.2) we have ess infx∈Γh

μ(x) > 0, and thus
A(x) is well defined.

We now derive two further results that are needed in the analysis in section 4.
Lemma 3.3. There exists a constant c independent of h such that

‖∇Γv
e
Γh

‖L2(Γ) ≤ c ‖∇Γh
v‖L2(Γh) for all v ∈ H1(Γh) ∩ C(Γh).
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Proof. Due to Lemma 3.2 we have

‖∇Γh
v‖2

L2(Γh) =

∫
Γ

Ae
Γh

(y)∇Γv
e
Γh

(y) · ∇Γv
e
Γh

(y) ds(y)

with ds(y) the surface measure on Γ. Take x ∈ Γh with p(x) = y. If x does not
lie on an edge, we have Ae

Γh
(y) = A(x) with A(x) as in (3.5). We drop the symbol

x in the notation and write A(x) = A = 1
μP(I − dH)Ph(I − dH)P. Decompose

nh as nh = αn + βn⊥ with ‖n⊥‖ = 1 and nTn⊥ = 0. From (2.5) is follows that
α ≥ c > 0 and thus β2 ≤ 1 − c2 < 1. Take z ∈ range(P) with ‖z‖ = 1. We then have
‖Phz‖ ≥ ‖z‖ − |zTnh| = ‖z‖ − |β||zTn⊥| ≥ (1 − |β|)‖z‖. Hence, there is a constant
c > 0 such that

‖PhPw‖ ≥ c ‖Pw‖ for all w ∈ R
3.

Using (3.2) it follows that there is a constant c > 0 such that ‖(I − dH)w‖ ≥ c ‖w‖
for all w ∈ R

3. Note that μ = μ(x) ≥ c > 0 holds. From these results we obtain,
using PH = HP (Lemma 3.1),

wTAw =
1

μ
wTP(I − dH)Ph(I − dH)Pw

=
1

μ
‖PhP(I − dH)w‖2 ≥ c ‖Pw‖2 for all w ∈ R

3,

with a constant c > 0. This yields, using n(x) = n(p(x)) = n(y),

Ae
Γh

(y)w · w = wTA(x)w ≥ c ‖P(x)w‖2 = ‖P(y)w‖2,

with c > 0. For w = ∇Γv
e
Γh

(y) we have P(y)w = P(y)∇Γv
e
Γh

(y) = ∇Γv
e
Γh

(y), and
thus we get

‖∇Γh
v‖2

L2(Γh) =

∫
Γ

Ae
Γh

(y)∇Γv
e
Γh

(y) · ∇Γv
e
Γh

(y) ds(y)

≥ c

∫
Γ

∇Γv
e
Γh

(y) · ∇Γv
e
Γh

(y) ds(y) = c ‖∇Γv
e
Γh

‖2
L2(Γ),

with a constant c > 0.
Lemma 3.4. The following holds:

ess supy∈Γ‖
(
Ae

Γh
(y) − I

)
P(y)‖ ≤ ch2.

Proof. Take y ∈ Γ and a corresponding x ∈ Γh such that p(x) = y. Assume that
x does not lie on an edge of the triangulation Γh, which is true for almost all y ∈ Γ.
Then we have

(Ae
Γh

(y) − I)P(y) = (A(x) − I)P(x).

We drop the symbol x in the notation and write A(x) = A = 1
μP(I−dH)Ph(I−dH)P.

Note that |μ| = μ(x) ≥ c > 0 holds. Decompose nh as nh = αn+βn⊥ with ‖n⊥‖ = 1
and nTn⊥ = 0. Due to (2.5) we have α = nTnh ≥ c > 0. From (2.6) we get
‖Pnh‖ = |β| ≤ ch. Hence,

(3.7) |nTnh − 1| = 1 − α =
1 − α2

1 + α
≤ 1 − α2 = β2 ≤ c h2.
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Using this and |d(x)| ≤ ch2, |κi(x)| ≤ c, we obtain |μ− 1| ≤ c h2. Thus

(3.8)
∣∣∣ 1
μ
− 1

∣∣∣ =
|μ− 1|

μ
≤ c h2

holds. We have

(A − I)P =
1

μ
P(I − dH)Ph(I − dH)P − P

=

[(
1

μ
− 1

)
P(I − dH)Ph(I − dH)P

]
+
[
P(I − dH)Ph(I − dH)P − P

]
and consider the two terms on the right-hand side separately. For the first term we
get, using (3.8),∥∥∥∥( 1

μ
− 1

)
P(I − dH)Ph(I − dH)P

∥∥∥∥ ≤
∣∣∣∣ 1μ − 1

∣∣∣∣ (1 + c h2)(1 + c h2) ≤ c h2.

For the second term we obtain, using (2.6),

‖P(I − dH)Ph(I − dH)P − P‖ ≤ ‖PPhP − P‖ + c h2

= ‖Pnhn
T
hP‖ + c h2 = ‖Pnh‖2 + c h2 ≤ c h2.

Combination of these bounds completes the proof.

4. Approximation error analysis. We are interested in the difference between
the terms

τ

∫
Γ

∇Γ idΓ ·∇ΓvH ds and τ

∫
Γh

∇Γh
idΓh

·∇Γh
vH ds for vH ∈ VH .

Since ∇Γ idΓ ·∇ΓvH =
∑3

i=1 ∇Γ(idΓ)i · ∇Γ(vH)i we consider only one term in this
sum, say the ith. We write idΓ and v for the scalar functions (idΓ)i and (vH)i,
respectively. We write idΓh

for (idΓh
)i. Note that

∇Γ idΓ = P∇ idΓ = Pei, ∇Γh
idΓh

= Ph∇ idΓh
= Phei,

with ei the ith basis vector in R
3. We introduce scalar versions of the functionals fΓ

and fΓh
defined in (2.10) and (2.8) (without loss of generality we can take τ := 1):

g(v) :=

∫
Γ

∇Γ idΓ ·∇Γv ds, gh(v) :=

∫
Γh

∇Γh
idΓh

·∇Γh
v ds.

As noted in Remark 3, g is a bounded linear functional on H1(U). To guarantee that
gh and the extension operator in (3.1) are well defined we assume v ∈ H1(Γh)∩C(Γh).
Therefore, in the analysis in this section we use the subspace W of H1(U) consisting
of functions whose restriction to Γh belongs to H1(Γh) ∩ C(Γh).

Remark 5. If we use a Hood–Taylor pair VH × QH in the discretization of the
Navier–Stokes equations, then the ith component v ∈ VH of vH ∈ VH = (VH)3

is continuous and piecewise polynomial (on the tetrahedral triangulation S). Thus
v ∈ W holds.
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In this section we first derive, for v ∈ W , a bound for |g(v) − gh(v)| in terms of
‖v‖1,U := ‖v‖H1(U) and ‖∇Γh

v‖L2(Γh). This bound is given in Corollary 4.4. Using
this bound we then derive a bound for

sup
v∈VH

g(v) − gh(v)

‖v‖1
;

cf. Theorem 4.7. This immediately implies a bound for the approximation error as in
(2.9); cf. Corollary 4.8.

The analysis is based on the following splitting:

g(v) − gh(v)

=

∫
Γ

∇Γ idΓ ·∇Γv ds−
∫

Γh

∇Γh
ide

Γ ·∇Γh
v ds +

∫
Γh

∇Γh
(ide

Γ − idΓh
) · ∇Γh

v ds

(3.6)
=

∫
Γ

∇Γ idΓ ·∇Γv ds−
∫

Γ

Ae
Γh

∇Γ idΓ ·∇Γv
e
Γh

ds +

∫
Γh

∇Γh
(ide

Γ − idΓh
) · ∇Γh

v ds

=

∫
Γ

∇Γ idΓ ·∇Γ(v − veΓh
) ds +

∫
Γ

(I − Ae
Γh

)∇Γ idΓ ·∇Γv
e
Γh

ds

+

∫
Γh

∇Γh
(ide

Γ − idΓh
) · ∇Γh

v ds.(4.1)

In the lemmas below we derive bounds for the three terms in (4.1). Note that the
first two terms do not involve idΓh

.
Lemma 4.1. The following holds:∣∣∣∣∫

Γ

(I − Ae
Γh

)∇Γ idΓ ·∇Γv
e
Γh

ds

∣∣∣∣ ≤ c h2 ‖∇Γh
v‖L2(Γh) for all v ∈ W.

Proof. Using the Cauchy–Schwarz inequality and the results in Lemmas 3.3 and
3.4 we obtain∣∣∣∣∫

Γ

(I − Ae
Γh

)∇Γ idΓ ·∇Γv
e
Γh

ds

∣∣∣∣ =

∣∣∣∣∫
Γ

(I − Ae
Γh

)P∇Γ idΓ ·∇Γv
e
Γh

ds

∣∣∣∣
≤ ess supy∈Γ‖(I − Ae

Γh
(y))P(y)‖ ‖∇Γ idΓ ‖L2(Γ) ‖∇Γv

e
Γh

‖L2(Γ)

≤ c h2 ‖∇Γh
v‖L2(Γh),

and thus the result holds.
Lemma 4.2. The following holds:∣∣∣∣∫

Γh

∇Γh
(ide

Γ − idΓh
) · ∇Γh

v ds

∣∣∣∣ ≤ c h‖∇Γh
v‖L2(Γh) for all v ∈ W.

Proof. From Lemma 3.1 we get for x ∈ Γh (not on an edge),

∇Γh
ide

Γ(x) = Ph(x)
(
I − d(x)H(x)

)
P(x)∇Γ idΓ(p(x))

= Ph(x)
(
I − d(x)H(x)

)
P(x)ei.
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We also have ∇Γh
idΓh

= Ph∇ idΓh
= Phei. Hence,∣∣∣∣∫

Γh

∇Γh
(ide

Γ − idΓh
) · ∇Γh

v ds

∣∣∣∣(4.2)

=

∣∣∣∣∫
Γh

(
Ph(I − dH)Pei − Phei

)
· ∇Γh

v ds

∣∣∣∣
≤ c ess supx∈Γh

‖Ph(x)
(
I − d(x)H(x)

)
P(x) − Ph(x)‖ ‖∇Γh

v‖L2(Γh)

≤ c ess supx∈Γh

(
‖Ph(x)P(x) − Ph(x)‖(4.3)

+ |d(x)|‖Ph(x)H(x)P(x)‖
)
‖∇Γh

v‖L2(Γh).(4.4)

Note that |d(x)| ≤ c h2 for x ∈ Γh, and

ess supx∈Γh
‖Ph(x)H(x)P(x)‖ ≤ ess supx∈Γh

‖H(x)‖ ≤ c.

For the term in (4.3) we have (we drop x in the notation)

‖PhP − Ph‖ = ‖PhnnT ‖ ≤ ‖Phn‖ ≤ ‖Phn + Pnh‖ + ‖Pnh‖.

For the first term we get, using (3.7),

‖Phn + Pnh‖ =
∥∥(1 − nTnh)(n + nh)

∥∥ ≤ 2|1 − nTnh| ≤ c h2.

From (2.6) we get ‖Pnh‖ ≤ c h (a.e. on Γh). Thus ‖Ph(x)P(x) −Ph(x)‖ ≤ c h holds
a.e. on Γh. As an upper bound for (4.2) we obtain ch ‖∇Γh

v‖L2(Γh).
Lemma 4.3. The following holds:∣∣∣∣∫

Γ

∇Γ idΓ ·∇Γ(v − veΓh
) ds

∣∣∣∣ ≤ ch‖v‖1,U for all v ∈ W.

Proof. We take v ∈ C1(U). For y ∈ Γ we have veΓh
(y) = v(y ± δ(y)n(y)) with

a unique δ(y) ≥ 0 such that y ± δ(y)n(y) ∈ Γh. Note that δ(y) ≤ c h2 holds. Let
Um ⊂ U be a strip around Γ that contains Γh and has width m ≤ c h2. We now have∣∣∣∣∫

Γ

∇Γ idΓ ·∇Γ(v − veΓh
) ds(y)

∣∣∣∣ =

∣∣∣∣∫
Γ

ΔΓ idΓ

(
v(y) − v(y ± δ(y)n(y))

)
ds(y)

∣∣∣∣
≤

∫
Γ

|ΔΓ idΓ |
∣∣∣∣∣
∫ δ(y)

0

∂v

∂t
(y ± tn(y)) dt

∣∣∣∣∣ ds(y)
≤ c

∫
Γ

∫ δ(y)

0

∣∣∣∣∂v∂t (y ± tn(y))

∣∣∣∣ dt ds(y).
For x = y ± tn(y) with 0 ≤ t ≤ δ(y) we use n(x) = n(p(x)) = n(y) and obtain∣∣∣∣∫

Γ

∇Γ idΓ ·∇Γ(v − veΓh
) ds(y)

∣∣∣∣ ≤ c

∫
Um

|n(x) · ∇v(x)| dx

≤ c

(∫
Um

1 dx

) 1
2
(∫

Um

(∇v)2 dx

) 1
2

≤ c h ‖v‖1,U .
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A density argument yields the same bound for all v ∈ W .
A direct consequence of the previous three lemmas is the following corollary.
Corollary 4.4. The three terms in (4.1) can be bounded by∣∣∣∣∫

Γ

∇Γ idΓ ·∇Γ(v − veΓh
) ds

∣∣∣∣ ≤ c h ‖v‖1,U ,(4.5)

∣∣∣∣∫
Γ

(I − Ae
Γh

)∇Γ idΓ ·∇Γv
e
Γh

ds

∣∣∣∣ ≤ c h2 ‖∇Γh
v‖L2(Γh),(4.6)

∣∣∣∣∫
Γh

∇Γh
(ide

Γ − idΓh
) · ∇Γh

v ds

∣∣∣∣ ≤ c h ‖∇Γh
v‖L2(Γh),(4.7)

and thus

|g(v) − gh(v)| ≤ c h ‖v‖1,U + c h2 ‖∇Γh
v‖L2(Γh) + c h ‖∇Γh

v‖L2(Γh) for all v ∈ W

holds.
In view of Corollary 4.4 and the error measure in (2.9), we want to derive a bound

for ‖∇Γh
v‖L2(Γh) in terms of ‖v‖1 for v from the scalar finite element space VH . An

obvious approach is to apply an inverse inequality combined with a trace theorem,
resulting in

(4.8) ‖∇Γh
v‖L2(Γh) ≤ c h−1

min‖v‖L2(Γh) ≤ c h−1
min‖v‖1 for all v ∈ VH .

This, however, is too crude (cf. the bound in Corollary 4.4). To derive a better bound
than the one in (4.8) we have to introduce some further assumptions related to the
family of triangulations {Γh}h>0. We assume that to each triangulation Γh = ∪T∈Fh

T
there can be associated a set of tetrahedra Sh with the following properties:

For each T ∈ Fh there is a corresponding ST ∈ Sh with T ⊂ ST .(4.9)

For T1, T2 ∈ Fh with T1 
= T2 we have meas3(ST1
∩ ST2

) = 0.(4.10)

The family {Sh}h>0 is shape-regular.(4.11)

c0h ≤ diam(ST ) ≤ ch for all T ∈ Fh with c0 > 0 (quasi-uniformity).(4.12)

For each ST ∈ Sh there is a tetrahedron S ∈ S such that ST ⊂ S.(4.13)

Recall that S is the (fixed) tetrahedral triangulation that is used in the finite element
discretization of the Navier–Stokes problem in (1.6). Note that the set of tetrahedra
Sh has to be defined only close to the approximate interface Γh and that this set does
not necessarily form a regular tetrahedral triangulation of Ω. Furthermore, it is not
assumed that the family {Γh}h>0is shape-regular or quasi-uniform.

Remark 6. Consider the construction of {Γh}h>0 as in Remark 2. The approxi-
mate interface Γh is the zero level of the function I(dh), which is continuous piecewise
linear on the tetrahedral triangulation T ′:

Γh = ∪TT.

Each T is a triangle or a quadrilateral. To each T there can be associated a tetrahedron
ST ∈ T ′ such that T ⊂ ST . If T is a quadrilateral, then we can subdivide T and
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ST in two disjoint triangles T1, T2 and two disjoint tetrahedra ST1
, ST2

, respectively,
such that Ti ⊂ STi ⊂ ST for i = 1, 2. One can check that this construction results in
a family {Sh}h>0 that satisfies conditions (4.9)–(4.13).

In the following lemma we consider a standard affine mapping between a tetrahe-
dron ST ∈ Sh and the reference unit tetrahedron and apply it to the triangle T ⊂ ST .

Lemma 4.5. Assume that the family {Γh}h>0 is such that for the associated family
of sets of tetrahedra {Sh}h>0 conditions (4.9)–(4.13) are satisfied. Take T ∈ Fh and
the corresponding ST ∈ Sh. Let Ŝ be the reference unit tetrahedron and F (x) = Jx+b
an affine mapping such that F (Ŝ) = ST . Define T̂ := F−1(T ). The following holds:

‖J‖2 meas3(Ŝ)

meas3(ST )
≤ c h−1,(4.14)

‖J−1‖2 meas2(T )

meas2(T̂ )
≤ c,(4.15)

with constants c independent of T and h.
Proof. Let ρ(ST ) be the diameter of the maximal ball contained in ST and

similarly for ρ(Ŝ). From standard finite element theory we have

‖J‖ ≤ diam(ST )

ρ(Ŝ)
, ‖J−1‖ ≤ diam(Ŝ)

ρ(ST )
.

Using (4.11) and (4.12) we then get

‖J‖2 meas3(Ŝ)

meas3(ST )
≤ c

diam(ST )2

meas3(ST )
≤ c diam(ST )−1 ≤ c h−1,

and thus the result in (4.14) holds.
The vertices of T̂ = F−1(T ) are denoted by V̂i, i = 1, 2, 3. Let V̂1V̂2 be a longest

edge of T̂ and M̂ the point on this edge such that M̂V̂3 is perpendicular to V̂1V̂2.
Define Vi := F (V̂i), i = 1, 2, 3, and M := F (M̂). Then Vi, i = 1, 2, 3, are the vertices
of T and M lies on the edge V1V2. We then have

meas2(T̂ ) =
1

2
‖V̂1 − V̂2‖‖V̂3 − M̂‖ =

1

2
‖J−1(V1 − V2)‖‖J−1(V3 −M)‖

≥ 1

2
‖J‖−2‖V1 − V2‖‖V3 −M‖ ≥ c

ρ(Ŝ)2

diam(ST )2
meas2(T ),

with a constant c > 0. Thus we obtain

‖J−1‖2 meas2(T )

meas2(T̂ )
≤ c

diam(Ŝ)2

ρ(ST )2
diam(ST )2

ρ(Ŝ)2
≤ c,

which completes the proof.
Theorem 4.6. Assume that the family {Γh}h>0 is such that for the associated

family of sets of tetrahedra {Sh}h>0 conditions (4.9)–(4.13) are satisfied. The follow-
ing holds:

‖∇Γh
v‖L2(Γh) ≤ c h− 1

2 ‖v‖1 for all v ∈ VH .
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Proof. Note that

‖∇Γh
v‖2

L2(Γh) =
∑

T∈Fh

‖∇T v‖2
L2(T ).

Take T ∈ Fh and let ST be the associated tetrahedron as explained above. Let Ŝ be
the reference unit tetrahedron and F : Ŝ → ST as in Lemma 4.5. Define v̂ := v ◦ F .
Using standard transformation rules and Lemma 4.5 we get

‖∇T v‖2
L2(T ) = ‖Ph∇v‖2

L2(T ) ≤ ‖∇v‖2
L2(T ) =

∑
|α|=1

‖∂αv‖2
L2(T )

≤ c ‖J−1‖2
∑
|α|=1

‖(∂αv̂) ◦ F−1‖2
L2(T )

≤ c ‖J−1‖2 meas2(T )

meas2(T̂ )

∑
|α|=1

‖∂αv̂‖2
L2(T̂ )

≤ c
∑
|α|=1

‖∂αv̂‖2
L2(T̂ )

≤ c
∑
|α|=1

max
x∈T̂

∣∣∂αv̂(x)
∣∣2 ≤ c

∑
|α|=1

max
x∈Ŝ

∣∣∂αv̂(x)
∣∣2,

with a constant c independent of T . From (4.13) it follows that v̂ is a polynomial on
Ŝ of maximal degree k, where k depends only on the choice of the finite element space
VH . On P ∗

k := { p ∈ Pk | p(0) = 0 } we have, due to equivalence of norms,∑
|α|=1

max
x∈Ŝ

∣∣∂αv̂(x)
∣∣2 ≤ c

∑
|α|=1

‖∂αv̂‖2
L2(Ŝ)

for all v̂ ∈ P ∗
k .

Because ∂αv̂ is independent of v̂(0) for v̂ ∈ Pk and |α| = 1, the same inequality holds
for all v̂ ∈ Pk. Thus we get

‖∇T v‖2
L2(T ) ≤ c

∑
|α|=1

‖∂αv̂‖2
L2(Ŝ)

≤ c ‖J‖2
∑
|α|=1

‖(∂αv) ◦ F‖2
L2(Ŝ)

= c ‖J‖2 meas3(Ŝ)

meas3(ST )

∑
|α|=1

‖∂αv‖2
L2(ST ) ≤ c h−1‖∇v‖2

L2(ST ) ,

with a constant c independent of T and h. Using (4.10) we finally obtain

‖∇Γh
v‖2

L2(Γh) ≤ c h−1
∑

T∈Fh

‖∇v‖2
L2(ST )

≤ c h−1

∫
Ω

(∇v)2 dx ≤ c h−1‖v‖2
1 ,

which proves the result.
We now present the main result of this paper.
Theorem 4.7. Let the assumptions be as in Theorem 4.6. The following holds:

sup
v∈VH

g(v) − gh(v)

‖v‖1
≤ c

√
h.
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Proof. Combine the result in Corollary 4.4 with that in Theorem 4.6.
As a direct consequence we obtain the following.
Corollary 4.8. Let the assumptions be as in Theorem 4.6. For fΓ and fΓh

as
defined in section 2 the following holds:

sup
v∈VH

fΓ(vH) − fΓh
(vH)

‖vH‖1
≤ τc

√
h.

Proof. Note that

fΓ(vH) − fΓh
(vH)

= τ

3∑
i=1

(∫
Γ

∇Γ(idΓ)i · ∇Γ(vH)i ds−
∫

Γh

∇Γh
(idΓh

)i · ∇Γh
(vH)i ds

)
,

and use the result in Theorem 4.7.
An upper bound O(

√
h) as in Corollary 4.8 for the error in the approximation of

the localized force term may seem rather pessimistic, because Γh is an O(h2) accurate
approximation of Γ. Numerical experiments in section 6, however, indicate that the
bound is sharp.

5. Improved approximation of the localized force term fΓ(vh). In this
section we show how the approximation of the localized force term can be improved,
resulting in an improved error bound of the form O(h) (instead of O(

√
h)).

From Corollary 4.4 and Theorem 4.6 we see that the
√
h behavior is caused by the

estimate in (4.7):

(5.1)

∣∣∣∣∫
Γh

∇Γh
(ide

Γ − idΓh
) · ∇Γh

v ds

∣∣∣∣ ≤ c h ‖∇Γh
v‖L2(Γh).

The term ∇Γh
idΓh

that is used in gh(v) occurs in (5.1) but not in the other two terms
of the splitting; cf. (4.5), (4.6). We consider

g̃h(v) =

∫
Γh

mh · ∇Γh
v ds

and try to find a function mh = mh(x) such that g̃h(v) remains easily computable and
the bound in (5.1) is improved if we use mh instead of ∇Γh

idΓh
. The latter condition

is trivially satisfied for mh = ∇Γh
ide

Γ (leading to a bound 0 in (5.1)). This choice,
however, does not satisfy the first condition, because Γ is not known. We now discuss
another possibility that is used in the experiments in section 6.

Due to |d(x)| ≤ ch2 we get from Lemma 3.1, for x ∈ Γh:

∇Γh
ide

Γ(x) = Ph(x)P(x)∇Γ idΓ(p(x)) + O(h2) = Ph(x)P(x)ei + O(h2).

In the construction of the interface Γh (cf. Remark 2), we have available a piecewise
quadratic function dh ≈ d. Define

ñh(x) :=
∇dh(x)

‖∇dh(x)‖ , P̃h(x); = I − ñh(x)ñh(x)T , x ∈ Γh.

Thus an obvious modification is based on the choice mh(x) = Ph(x)P̃h(x)ei, i.e.,

(5.2) g̃h(v) :=

∫
Γh

Ph(x)P̃h(x)ei · ∇Γh
v ds =

∫
Γh

P̃h(x)ei · ∇Γh
v ds.
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In this approach the approximate interface Γh is not changed (piecewise planar). For
piecewise quadratics dh and v, the function ∇Γh

v = Ph∇v is piecewise linear and
P̃hei is piecewise (very) smooth on the segments of Γh. Hence, the functional in (5.2)
can be evaluated easily.

Under reasonable assumptions the modified functional indeed yields a better error
bound, as the following lemma shows.

Lemma 5.1. Assume that there exists p > 0 such that

(5.3) ‖∇dh(x) −∇d(x)‖ ≤ c hp for x ∈ Γh.

Then the following holds:∣∣∣∣∫
Γh

(
∇Γh

ide
Γ −PhP̃hei

)
· ∇Γh

v ds

∣∣∣∣ ≤ c hmin{p,2} ‖∇Γh
v‖L2(Γh) for all v ∈ W.

Proof. Using ‖∇d‖ = 1 it follows that ‖∇dh‖ = 1 +O(hp) holds. We can use the
same line of reasoning as in the proof of Lemma 4.2. The term in (4.4) remains the
same. Instead of the term in (4.3) we now get ‖Ph(x)P(x)−Ph(x)P̃h(x)‖. We drop
x in the notation, and using the assumption we obtain

‖PhP − PhP̃h‖ = ‖Ph(P − P̃h)‖ ≤ ‖nnT − ñhñ
T
h ‖

≤ ‖(n − ñh)nT ‖ + ‖ñh(n − ñh)T ‖ = 2‖n − ñh‖

= 2

∥∥∥∥∇d− ∇dh
‖∇dh‖

∥∥∥∥
≤ 2

∣∣1 − ‖∇dh‖−1
∣∣‖∇dh‖ + 2‖∇d−∇dh‖ ≤ c hp.

Thus we get an estimate ‖PhP − PhP̃h‖ ≤ c hp. Combined with the inequality
|d(x)|‖Ph(x)H(x)P(x)‖ ≤ c h2 for the term in (4.4) this proves the result.

If we assume that the condition in (5.3) is satisfied for p = 2, which is reasonable
for a piecewise quadratic approximation dh of d, we get the following improvement
due to the modified functional g̃h (cf. Corollary 4.4):

|g(v) − g̃h(v)| ≤ c h ‖v‖1,U + c h2 ‖∇Γh
v‖L2(Γh) for all v ∈ W.

Combining this with the result in Theorem 4.6 yields (under the assumption as in
Theorem 4.6)

|g(v) − g̃h(v)| ≤ c h ‖v‖1,U + c h
3
2 ‖v‖1 for all v ∈ VH .

Hence, using this modified functional g̃h we have an O(h) error bound. This significant
improvement (compared to the O(

√
h) error bound for the functional gh) is confirmed

by the numerical experiments in the next section.

6. Numerical experiments. In this section we present results of a numerical
experiment which indicates that the O(

√
h) bound in Corollary 4.8 is sharp. Further-

more, for the improved approximation described in section 5 the O(h) bound will be
confirmed numerically.

We consider the domain Ω := [−1, 1]3, where the ball Ω1 := {x ∈ Ω | ‖x‖ < R}
is located in the center of the domain. In our experiments we take R = 1

2 .
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Fig. 6.1. Lower half of the four times refined mesh T4.

For the discretization a uniform tetrahedral mesh T0 is used, where the vertices
form a 6 × 6 × 6 lattice; hence h0 = 1

5 . This coarse mesh T0 is locally refined in
the vicinity of Γ = ∂Ω1 using an adaptive refinement algorithm presented in [15].
This repeated refinement process yields the gradually refined meshes T1, T2, . . . with
local (i.e., close to the interface) mesh sizes hi = 1

5 · 2−i, i = 1, 2, . . . . Part of the
tetrahedral triangulation T4 is shown in Figure 6.1. The corresponding finite element
spaces Vi := Vhi

= (Vhi
)3 consist of vector functions where each component is a

continuous piecewise quadratic function on Ti.
The interface Γ = ∂Ω1 is a sphere, and thus the curvature K = 2

R is constant.
If we discretize the flow problem using Vi as a discrete velocity space, we have to
approximate the surface tension force

(6.1) fΓ(v) =
2τ

R

∫
Γ

nΓ · v ds = τ

∫
Γ

∇Γ idΓ ·∇Γv ds, v ∈ Vi.

To simplify notation, we take a fixed i ≥ 0, and the corresponding local mesh size
parameter is denoted by h = hi. For the approximation of the interface we use the
following approach (cf. Remark 2). The interface Γ is the zero level of the signed
distance function d. In this test problem, d is known. For the finite element approx-
imation dh ∈ Vh of d we take the continuous piecewise quadratic function on Ti that
interpolates d at the vertices and midpoints of edges. Then I(dh) is the continuous
piecewise linear function on T ′

i that interpolates dh at the vertices of all tetrahedra
in T ′

i ; cf. Remark 2 (note that in this test problem, dh also can be computed by
piecewise linear interpolation of d on T ′

i ). The approximation of Γ is defined by

Γh = {x ∈ Ω | I(dh)(x) = 0 }

and is illustrated in Figure 2.2. The discrete approximation of the surface tension
force is

fΓh
(v) = τ

∫
Γh

∇Γh
idΓh

·∇Γh
v ds, v ∈ Vi.

We are interested in (cf. Corollary 4.8)

(6.2) ‖fΓ − fΓh
‖V′

i
:= sup

v∈Vi

fΓ(v) − fΓh
(v)

‖v‖1
.
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The evaluation of fΓ(v), for v ∈ Vi, requires the computation of integrals on curved
triangles or quadrilaterals Γ ∩ S, where S is a tetrahedron from the mesh Ti. We are
not able to compute these exactly. Therefore, we introduce an artificial force term
which, in this model problem with a known constant curvature, is computable and
sufficiently close to fΓ.

Lemma 6.1. For v ∈ V = (H1
0 (Ω))3 define

f̂Γh
(v) :=

2τ

R

∫
Γh

nh · v ds

(nh denotes the piecewise constant outward unit normal on Γh). Then the following
inequality holds:

‖fΓ − f̂Γh
‖V′ ≤ ch.(6.3)

Proof. Let Ω1,h ⊂ Ω be the domain enclosed by Γh, i.e., ∂Ω1,h = Γh. We define
D+

h := Ω1 \Ω1,h, D−
h := Ω1,h \Ω1, and Dh := D+

h ∪D−
h . Due to the Stokes theorem,

for v ∈ V we have

|fΓ(v) − f̂Γh
(v)| =

2τ

R

∣∣∣∣∣
∫

Ω1

div v dx−
∫

Ω1,h

div v dx

∣∣∣∣∣(6.4)

=
2τ

R

∣∣∣∣∣
∫
D+

h

div v dx −
∫
D−

h

div v dx

∣∣∣∣∣(6.5)

≤ 2τ

R

∫
Dh

|div v| dx.(6.6)

Using the Cauchy–Schwarz inequality, we get the estimate

|fΓ(v) − f̂Γh
(v)| ≤ c

√
|Dh|‖v‖1 for all v ∈ V.

For the piecewise planar approximation Γh of the interface Γ we have |Dh| = O(h2),
and thus (6.3) holds.

From Lemma 6.1 we obtain ‖fΓ − f̂Γh
‖V′

j
≤ c h with a constant c independent of

j. Thus we have

(6.7) ‖f̂Γh
− fΓh

‖V′
i
− ch ≤ ‖fΓ − fΓh

‖V′
i
≤ ‖f̂Γh

− fΓh
‖V′

i
+ ch.

The term ‖f̂Γh
−fΓh

‖V′
i
can be evaluated as follows. Since Γh is piecewise planar and

v ∈ Vi is a piecewise quadratic function, for v ∈ Vi, both f̂Γh
(v) and fΓh

(v) can
be computed exactly (up to machine accuracy) using suitable quadrature rules. For
the evaluation of the dual norm ‖ · ‖V′

i
we proceed as follows. Let {φj}j=1,...,n be the

standard nodal basis in Vi and J : R
n → Vi the isomorphism J�x =

∑n
k=1 xkφk. Let

Mh be the mass matrix and Ah the stiffness matrix of the Laplacian:

(Mh)i,j :=

∫
Ω

φi · φj dx,

(Ah)i,j :=

∫
Ω

∇φi · ∇φj dx.

1 ≤ i, j ≤ n.
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Table 6.1

Error norms and numerical order of convergence for different refinement levels.

i ‖f̂Γh
− fΓh

‖V′
i

order ‖f̂Γh
− f̃Γh

‖V′
i

order

0 1.79 E-1 – 1.32 E-1 –
1 1.40 E-1 0.35 4.43 E-2 1.57
2 1.03 E-1 0.45 1.46 E-2 1.61
3 7.22 E-2 0.51 5.06 E-3 1.52
4 5.02 E-2 0.53 1.78 E-3 1.51

Define Ch = Ah + Mh. Note that for v = J�x ∈ Vi we have ‖v‖2
1 = 〈Ch�x, �x〉. Take

e ∈ V′
i and define �e ∈ R

n by ej := e(φj), j = 1, . . . , n. Due to

‖e‖V′
i
= sup

v∈Vi

|e(v)|
‖v‖1

= sup
�x∈Rn

|
∑n

j=1 xje(φj)|√
〈Ch�x, �x〉

we obtain

‖e‖V′
i
= sup

�x∈Rn

〈�x,�e〉√
〈Ch�x, �x〉

= ‖C−1/2
h �e‖ =

√
〈C−1

h �e,�e〉.(6.8)

Thus for the computation of ‖e‖V′
i

we proceed in the following way:

1. Compute �e =
(
e(φj)

)n
j=1

.

2. Solve the linear system Ch�z = �e up to machine accuracy.
3. Compute ‖e‖V′

i
=

√
〈�z,�e〉.

We applied this strategy to e := f̂Γh
− fΓh

. The results are given in the second
column in Table 6.1. The numerical order of convergence in the third column of this
table clearly indicates an O(

√
h) behavior. Due to (6.7) this implies the same O(

√
h)

convergence behavior for ‖fΓ − fΓh
‖V′

i
. This indicates that the O(

√
h) bound in

Corollary 4.8 is sharp.
The same procedure can be applied with fΓh

replaced by the modified (improved)
approximate surface tension force

f̃Γh
(v) = τ

3∑
i=1

g̃h,i(vi)

with g̃h,i as defined in (5.2). This yields the results in the fourth column in Ta-
ble 6.1. For this modification the numerical order of convergence is significantly
better, namely, at least first order in h. From (6.7) it follows that for ‖fΓ − f̃Γh

‖V′
i

we can expect O(hp) with p ≥ 1.
Summarizing, we conclude that the results of these numerical experiments confirm

the theoretical O(
√
h) error bound derived in the analysis in section 4 and show that

the modified approximation indeed leads to (much) better results.
Results of numerical experiments for a Stokes two-phase flow problem using both

fΓh
and f̃Γh

are presented in [16].
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Abstract. We study adaptive finite element methods for elliptic problems with domain corner
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1. Introduction. Let Ω ⊂ R2 be a bounded polygon with boundary ∂Ω. Con-
sider the following Dirichlet boundary problem: Find u ∈ H1(Ω) such that u = g on
∂Ω and

(1.1) A(u, v) =

∫
Ω

∇u · ∇v = f(v) ∀v ∈ H1
0 (Ω),

where f ∈ H−1(Ω).
It is well known that the solution u may have singularities at corners of Ω. Since

the treatment of multiple singular points is no different from a simple one, without
loss of generality we assume that the solution u has a singularity at the origin O and
can be decomposed as a sum of a singular part and a smooth part:

(1.2) u = v + w,

where

(1.3)

∣∣∣∣ ∂mv

∂xi∂ym−i

∣∣∣∣ � rδ−m and

∣∣∣∣ ∂mw

∂xi∂ym−i

∣∣∣∣ � 1, m = 1, . . . , k + 2, i = 0, . . . ,m,

where r =
√
x2 + y2 and 0 < δ < k + 1 is a constant. Here k = 1 for linear finite

element methods and k = 2 for quadratic finite element methods.
Next, we briefly explain the rationale of the above regularity assumption. When

Ω is a polygonal domain, the solution of the Poisson equation with the Dirichlet
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boundary condition,

−Δu = f in Ω, u|∂Ω = g,

with sufficiently smooth data f and g, has the following decomposition (see, e.g., [3]
and [11]), at a corner with angle ω:

u(r, θ) =

J∑
j=1

cjr
αj lnsj r sinαjθ + w, αj =

jπ

ω
,

where w is smoother than the terms in the sum, and

sj =

{
1 αj is an integer,

0 otherwise.

Especially for the L-shaped domain, ω = 3π/2 at the re-entrance corner, and the
expansion is

u = c1r
2/3 sin

2

3
θ + c2r

4/3 sin
4

3
θ + c3r

2 ln r sin 2θ + c4r
8/3 sin

8

3
θ + w,

with w ∈ W 3
∞(Ω). For a cracked domain, ω = 2π at the crack tip and the expansion

is

u = c1r
1/2 sin

1

2
θ + c22r ln r sin θ + c3r

3/2 sin
3

2
θ

+ c4r
2 ln r sin 2θ + c5r

5/2 sin
5

2
θ + c6r

3 ln r sin 3θ + w,

with w ∈ W 3
∞(Ω). More terms are needed in the expansion if we want higher regularity

on w. These are the two cases we shall test numerically in the last section.
Let Mh be a regular triangulation of the domain Ω, Eh be the set of all interior

edges, and Nh be the set of all nodal points. Assume that the origin O ∈ Nh.
Remember that any triangle τ ∈ Mh is considered to be closed. Let

V k
h =

{
vh : vh ∈ H1(Ω), vh|τ ∈ Pk(τ)

}
, k = 1, 2,

be the conforming finite element space associated with Mh, and let
◦
V k
h = V k

h

⋂
H1

0 (Ω).
Here Pk denotes the set of polynomials with degree ≤ k. Denote by Ikh : C(Ω̄) → V k

h

the standard finite element interpolation operator. The finite element solution uh ∈
V k
h satisfies uh = Ikhu on ∂Ω and

(1.4) A(uh, vh) =

∫
Ω

∇uh · ∇vh = f(vh) ∀vh ∈
◦
V k
h .

In adaptive finite element methods, the convergence rate is measured by the total
number of degrees of freedom N , since the mesh is not quasi-uniform. For a two-
dimensional second-order elliptic equation, the optimal convergence rates are

(1.5) ‖∇(u− uh)‖L2(Ω) �
{

N−1/2, k = 1,
N−1, k = 2,
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where k = 1 for the linear element and k = 2 for the quadratic.

The theoretical development of residual-type error estimates is now in its matu-
rity. For the early literature, readers are referred to [1, 4, 10, 21] and references therein.
Starting from the fundamental work of [9], in the last decade the convergence proof
of residual-based adaptive finite element method has been well established; see, e.g.,
[2, 8, 17, 19]. On the contrary, there is no convergence proof for using recovery-based
error estimators. Nevertheless, by shifting the error estimator from residual based
to recovery based, we have obtained the same numerical convergence rate following
the same mark-up and refinement procedure for two model problems—the Poisson
equation on the L-shaped domain and cracked square. Theoretically, we are able to
prove that there exists an adaptive mesh satisfying a discrete mesh density condition
such that the convergence rate (1.5) can be established. Moreover, under the same
mesh density condition, the recovered gradient Ghuh is superconvergent in the sense
that

(1.6) ‖∇u−Ghuh‖L2(Ω) �
{

N−1/2−ρ, k = 1,
N−1−ρ, k = 2,

where ρ > 0 is a constant, which depends on the quality of the adaptive mesh, and
Gh : V k

h → V k
h × V k

h is the recovery operator. Now the question is: Is the condition
required by our theory practical? We demonstrate that the meshes generated by the
standard adaptive procedure in both of our model problems indeed satisfies the mesh
density condition.

In recent years there have been some superconvergence results for a recovered
gradient [5, 15, 8, 16, 20, 23, 24, 25, 26, 28]. All of them assumed at least u ∈
H3(Ω) ∩ W 2

∞(Ω) (a condition that rules out domains with a re-entrant corner) and
required some stronger (than we required here) mesh conditions. Our current work fills
in this gap. To the best of our knowledge, this is the first theoretical superconvergence
proof for real-life adaptive meshes.

Some further theoretical results about recovery techniques and recovery-type error
estimators can be found in [1, 7, 22, 13].

Based on the estimate (1.6), we suggest that, even for residual-type adaptive
method, a gradient recovery procedure at the very last mesh would dramatically
improve the numerical gradient.

Throughout the paper, we use the notation A � B to represent the inequality
A ≤ constant×B, where the constant may depend only on the minimum angle of the
triangles in the mesh Mh, the constant δ, and the domain Ω. The notation A � B is
equivalent to the statement A � B and B � A.

2. Preliminaries. Following the discussion in [8], we consider in Figure 2.1 an
edge e, two elements τ and τ ′ sharing e, and Ωe = τ∪τ ′ the patch of e. For an element
τ ⊂ Ωe, θe denotes the angle opposite of the edge e, he, he+1, and he−1 denote the
lengths of the three edges of τ . The subscript e + 1 or e − 1 is for orientation. All
triangles in the triangulation are orientated counterclockwise. te is the unit tangent
vector of e with counterclockwise orientation and ne is the unit outward normal vector.
An index ′ is added for the corresponding quantities in τ ′. Notice that te = −t′e and
ne = −n′

e because of the orientation. For any τ ∈ Mh, we denote by hτ its diameter
and by rτ the distance from the origin to the barycenter of τ , and by |τ | the area
of the triangle τ . For any e ∈ Eh, let re be the distance from the origin O to the
midpoint of e.
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Fig. 2.1. Notation in the patch Ωe.

Let e ∈ Eh be an interior edge. Recall that Ωe, the patch of e, consists of two
adjacent triangles sharing e. We say that Ωe is an ε approximate parallelogram if the
lengths of any two opposite edges differ by at most ε.

Definition. The triangulation Mh is said to satisfy Condition (α, σ, μ) if there
exist constants α > 0, σ ≥ 0, and μ > 0 such that the interior edges can be separated

into two parts Eh = E1,h ⊕ E2,h: Ωe forms an O
(
h1+α
e

/
r
α+μ(1−α)
e

)
parallelogram for

e ∈ E1,h and the number of edges in E2,h satisfies #E2,h � Nσ.
Remark 2.1. The meaning of Condition (α, σ, μ) is the following. The edges can

be grouped into “good” (E1,h) and “bad” (E2,h), where the number of bad edges is
much smaller than that of good edges. The ratio is

#E2,h

#E1,h
� Nσ

N
=

1

N1−σ
.

When re = O(1), i.e., an edge e is far away from the singular point O, more restrictions
are put on the adjacent triangles with the common edge e. This condition requires
that they form an O(h1+α

e ) parallelogram, which is the same as in previous works [20,

23, 25, 26]. When e is in a neighborhood of O, where r
1+μ(1−α)/α
e � he, the condition

O(he) implies O
(
h1+α
e

/
r
α+μ(1−α)
e

)
. In other words, two adjacent triangles that share e

are allow to distort O(he) from a parallelogram, which implies no restriction on them.
Roughly speaking, the number of edges in E1,h that have no restriction imposed is
O(N1−α) if hτ � r1−μ

τ hμ for any τ ∈ Mh. Here h and μ are positive constants. An
explanation is given below after Lemma 2.1.

We see from the above discussion that the closer we are to the singular point, the
less restriction is imposed on the mesh. Indeed, for an adaptively refined mesh, the
closer we are to the singular point, the worse the mesh quality is in terms of forming
parallelogram triangular pairs.

Lemma 2.1. Assume that hτ � r1−μ
τ hμ for any τ ∈ Mh, where h and μ are

positive constants. Then the total number of degrees of freedom N of the finite element
equation (1.4) satisfies

(2.1) N �
1

h2μ .

Proof.

N �

∑
τ∈Mh

h2
τ

h2
τ

�
1

h2μ

∑
τ∈Mh

1

r2−2μ
τ

· |τ |

�
1

h2μ

∫
Ω

1

r2−2μ
�

1

h2μ

∫ 1

0

1

r2−2μ
· r dr �

1

h2μ .
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This completes the proof of the lemma.
Remark 2.2. For the linear element, μ = δ/2, N � 1/hδ, and for the quadratic

element μ = δ/3, N � 1/h2δ/3. The condition hτ � r1−μ
τ hμ can be viewed as a

discrete mesh density function. The positive number h � minτ∈Mh
hτ , is the size

of the minimum element because for an element τ neighboring O, rτ � hτ and the
condition hτ � r1−μ

τ hμ implies that hτ � h. It is clear that the condition hτ � r1−μ
τ hμ

for any τ ∈ Mh is equivalent to the condition he � r1−μ
e hμ for any e ∈ Eh. We recall

that Condition (α, σ, μ) means no restriction on Ωe if r
1+μ(1−α)/α
e � he. Furthermore,

if hτ � r1−μ
τ hμ, i.e., he � r1−μ

e hμ, then re � hα. Therefore if the mesh Mh satisfies
Condition (α, σ, μ) and hτ � r1−μ

τ hμ, then no restriction is imposed on edges within
the ball of radius R � hα. The number of edges in the ball is O(N1−α) by an argument
similar to the proof of Lemma 2.1.

3. Superconvergence between the finite element solution and linear
interpolant. We now define a quadratic interpolant of φ based on moment conditions
on edges. Let φQ = ΠQφ be a quadratic element defined by

(3.1) (ΠQφ)(z) = φ(z), and

∫
e

ΠQφ =

∫
e

φ ∀z ∈ Nh, e ∈ Eh.

The following fundamental identity is proved in [8] for vh ∈ P1(τ):

(3.2)

∫
τ

∇(φ− φI) · ∇vh =
∑
e⊂∂τ

(
βe

∫
e

∂2φQ

∂t2e

∂vh
∂te

+ γe

∫
e

∂2φQ

∂te∂ne

∂vh
∂te

)
,

where

(3.3) βe =
1

12
cot θe(h

2
e+1 − h2

e−1), γe =
1

3
cot θe |τ | ,

and φI ∈ P1(τ) is the linear interpolant of φ on τ . The following lemma is a simple
modification of [8, Lemma 2.13].

Lemma 3.1. Let me denote te or ne. Assume that Mh satisfies Condition
(α, σ, δ/2) with 0 < α ≤ 1 and 0 ≤ σ < 1. For any interior edge e ∈ Mh and two
elements τ , τ ′ ⊂ Ωe, we have

|βe| + |β′
e| � h2

e, |γe| + |γ′
e| � h2

e ∀e ∈ Eh;(3.4)

|βe − β′
e| � h2+α

e

/
rα+δ(1−α)/2
e , |γe − γ′

e| � h2+α
e

/
rα+δ(1−α)/2
e ∀e ∈ E1,h;(3.5) ∫

e

∂2φ

∂te∂me

∂vh
∂te

� |φ|W 2,∞(e) ‖∇vh‖L2(τ) ;(3.6)

∫
e

∂2(φ− φQ)

∂te∂me

∂vh
∂te

� |φ|H3(τ) ‖∇vh‖L2(τ) .(3.7)

Proof. The arguments for (3.4), (3.5), and (3.6) are trivial, and that for (3.7)
follows from the trace theorem and the standard error estimate |φ− φQ|H2(τ) �
hτ |φ|H3(τ).

To deal with the singularity at the origin O we introduce the following lemma.
Recall that v is the singular part of the decomposition u = v + w.
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Lemma 3.2. Let MO = {τ ∈ Mh : the origin O ∈ ∂τ} be the set of elements
with one vertex at O. Then,

‖∇v −∇vI‖L2(τ) � hδ
τ ∀τ ∈ MO,

where vI = I1
hv is the linear interpolant of v.

Proof.

(3.8) ‖∇v −∇vI‖L2(τ) � ‖∇v‖L2(τ) + ‖∇vI‖L2(τ) .

It follows from (1.3) that

(3.9) ‖∇v‖L2(τ) =

(∫
τ

|∇v|2
)1/2

�
(∫

τ

r2δ−2

)1/2

�
(∫ hτ

0

r2δ−2r dr

)1/2

� hδ
τ .

Since ∇C = 0, for any constant C, we have,

‖∇vI‖L2(τ) = ‖∇(vI − v(O))‖L2(τ) � hτ max
z∈Nh∩τ

∣∣∇(vI − v(O)
)
(z)
∣∣

� hτ
1

hτ
max

z∈Nh∩τ
|v(z) − v(O)|

= max
z∈Nh∩τ

∣∣∣∣∫ 1

0

d

dt
v(zt)dt

∣∣∣∣ = max
z∈Nh∩τ

∣∣∣∣∫ 1

0

z · ∇v(zt)dt

∣∣∣∣ .
Noting that |z| � hτ for τ ∈ MO, it follows from assumption (1.3) that

(3.10) ‖∇vI‖L2(τ) �
∫ 1

0

hτ · (hτ t)
δ−1dt � hδ

τ .

The proof is completed by combining (3.8)–(3.10).
Lemma 3.3. Assume that Mh satisfies Condition (α, σ, δ/2) with 0 < α ≤ 1 and

0 ≤ σ < 1, and that hτ � r
1−δ/2
τ hδ/2 for any τ ∈ Mh. Then for any vh ∈

◦
V 1
h ,

(3.11)

∣∣∣∣∫
Ω

∇(u− uI) · ∇vh

∣∣∣∣ � 1 + (lnN)1/2

N1/2+ρ
‖∇vh‖L2(Ω) , ρ = min

(
α

2
,
1 − σ

2

)
,

where uI = I1
hu ∈ V 1

h is the piecewise linear interpolant of u.
Proof. From the decomposition u = v + w,

(3.12)

∫
Ω

∇(u− uI) · ∇vh =

∫
Ω

∇(v − vI) · ∇vh +

∫
Ω

∇(w − wI) · ∇vh,

where vI = I1
hv and wI = I1

hw are the linear interpolants of v and w, respectively.
We first estimate

∫
Ω
∇(v−vI)·∇vh. Let EO = {e ∈ Eh : e ⊂ ∂τ the origin O ∈ τ}

and ∂EO =
{
e ∈ EO : O /∈ e

}
. Recall that MO is the set of elements with one vertex

at O. Applying (3.2),∫
Ω

∇(v − vI) · ∇vh =
∑

τ∈Mh

∫
τ

∇(v − vI) · ∇vh =
∑

τ∈MO

∫
τ

∇(v − vI) · ∇vh

+
∑

τ∈Mh\MO

∑
e⊂∂τ

(
βe

∫
e

∂2vQ

∂t2e

∂vh
∂te

+ γe

∫
e

∂2vQ
∂te∂ne

∂vh
∂te

)

= I1 + I2 + I3 + I4,(3.13)
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where

Ij =
∑

e∈Ej,h\EO

[
(βe − β′

e)

∫
e

∂2v

∂t2e

∂vh
∂te

+ (γe − γ′
e)

∫
e

∂2v

∂te∂ne

∂vh
∂te

+ βe

∫
e

∂2(vQ − v)

∂t2e

∂vh
∂te

+ γe

∫
e

∂2(vQ − v)

∂te∂ne

∂vh
∂te

+ β′
e

∫
e

∂2(v − vQ)

∂t2e

∂vh
∂te

+ γ′
e

∫
e

∂2(v − vQ)

∂te∂ne

∂vh
∂te

]
, j = 1, 2,

I3 =
∑

τ∈MO

∫
τ

∇(v − vI) · ∇vh,

I4 =
∑

e∈∂EO

(
βe

∫
e

∂2vQ

∂t2e

∂vh
∂te

+ γe

∫
e

∂2vQ
∂te∂ne

∂vh
∂te

)
.

First, I3 can be estimated by Lemma 3.2 and the fact that hτ � h for τ ∈ MO:

(3.14) |I3| � hδ
∑

τ∈MO

‖∇vh‖L2(τ) � hδ ‖∇vh‖L2(Ω) .

Second, I4 can be estimated by Lemma 3.1, assumption (1.3), and the fact that
he � re � h for e ∈ ∂EO:

|I4| �
∑

e∈∂EO

h2
e

(
|v|W 2,∞(e) + |v|H3(τ : τ∈Ωe,τ /∈MO)

)
‖∇vh‖L2(τ : τ∈Ωe,τ /∈MO)

�
∑

e∈∂EO

h2
e

(
rδ−2
e + her

δ−3
e

)
‖∇vh‖L2(τ : τ∈Ωe,τ /∈MO)

� hδ
∑

e∈∂EO

‖∇vh‖L2(τ : τ∈Ωe,τ /∈MO) � hδ ‖∇vh‖L2(Ω) .

(3.15)

Next we estimate I1. Notice that he � hτ and re � rτ for τ ⊂ Ωe and e ∈ E1,h\EO.
It follows from Lemma 3.1 and assumption (1.3) that

|I1| �
∑

e∈E1,h\EO

[
h2+α
e

r
α+δ(1−α)/2
e

rδ−2
e + h2

ehτr
δ−3
τ

]
‖∇vh‖L2(τ : τ∈Ωe)

�
∑

e∈E1,h\EO

[
h2+α
e rδ−2−α−δ(1−α)/2

e + h3
er

δ−3
e

]
‖∇vh‖L2(τ : τ∈Ωe)

�
{ ∑

e∈E1,h\EO

[
h2
eh

2+2α
e r2δ−4−2α−δ(1−α)

e + h2
eh

4
er

2δ−6
e

]}1/2

‖∇vh‖L2(Ω)

�
{ ∑

e∈E1,h\EO

[
h2
eh

δ(1+α)r(2−δ)(1+α)
e r2δ−4−2α−δ(1−α)

e + h2
eh

2δr4−2δ
e r2δ−6

e

]}1/2

× ‖∇vh‖L2(Ω) .
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Here we have used he � r
1−δ/2
e hδ/2 to derive the last inequality. Therefore

(3.16)

I1 �
{
hδ(1+α)

∑
e∈E1,h\EO

h2
er

−2
e

}1/2

‖∇vh‖L2(Ω) �
{
hδ(1+α)

∑
τ∈Mh\MO

h2
τr

−2
τ

}1/2

× ‖∇vh‖L2(Ω)

�
{
hδ(1+α)

∑
τ∈Mh\MO

∫
τ

r−2

}1/2

‖∇vh‖L2(Ω) �
{
hδ(1+α)

∫ 1

h

r−1 dr

}1/2

× ‖∇vh‖L2(Ω)

� hδ(1+α)/2(|lnh|1/2) ‖∇vh‖L2(Ω) .

Finally, we estimate I2. Notice that he � re for e /∈ EO. It follows from Lemma 3.1
and assumption (1.3) that

|I2| �
∑

e∈E2,h\EO

[
h2
er

δ−2
e + h2

ehτr
δ−3
τ

]
‖vh‖L2(τ : τ∈Ωe)

�
∑

e∈E2,h\EO

h2
er

δ−2
e ‖vh‖L2(τ : τ∈Ωe)

�
{ ∑

e∈E2,h\EO

h4
er

2δ−4
e

}1/2

‖∇vh‖L2(Ω)

� hδ

{ ∑
e∈E2,h\EO

1

}1/2

‖∇vh‖L2(Ω) .

Here we have used he � r
1−δ/2
e hδ/2 to derive the last inequality. Therefore

(3.17) |I2| � hδ
{
#E2,h

}1/2 ‖∇vh‖L2(Ω) � hδ
{
Nσ
}1/2 ‖∇vh‖L2(Ω) .

From Lemma 2.1, hδ
� 1/N , |lnh| � lnN . Combining (3.13)–(3.17) we have∣∣∣∣∫

Ω

∇(v − vI) · ∇vh

∣∣∣∣ � (hδ(1+α)/2(|lnh|1/2) + hδ
{
Nσ
}1/2

)
‖∇vh‖L2(Ω)

� 1 + (lnN)1/2

N1/2+ρ
‖∇vh‖L2(Ω) , ρ = min

(
α

2
,
1 − σ

2

)
.

(3.18)

Now we turn to the estimate for
∫
Ω
∇(w − wI) · ∇vh. Since w is smooth, we do

not exclude the point O. From (3.2),

(3.19)

∫
Ω

∇(w − wI) · ∇vh =
∑

τ∈Mh

∫
τ

∇(w − wI) · ∇vh = J1 + J2,
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where

Jj =
∑

e∈Ej,h

[
(βe − β′

e)

∫
e

∂2w

∂t2e

∂vh
∂te

+ (γe − γ′
e)

∫
e

∂2w

∂te∂ne

∂vh
∂te

+ βe

∫
e

∂2(wQ − w)

∂t2e

∂vh
∂te

+ γe

∫
e

∂2(wQ − w)

∂te∂ne

∂vh
∂te

+ β′
e

∫
e

∂2(w − wQ)

∂t2e

∂vh
∂te

+ γ′
e

∫
e

∂2(w − wQ)

∂te∂ne

∂vh
∂te

]
, j = 1, 2.

By a similar argument as for I1 and I2, we can prove that∣∣∣∣∫
Ω

∇(w − wI) · ∇vh

∣∣∣∣ � 1

N1/2+ρ
‖∇vh‖L2(Ω) .(3.20)

Now, the proof of the lemma follows from (3.12), (3.18), and (3.20).

Applying Lemma 3.3 we obtain the following superconvergence result between
the finite element solution uh and the linear interpolant uI of the solution of (1.1).

Theorem 3.4. Assume that Mh satisfies Condition (α, σ, δ/2) with 0 < α ≤ 1

and 0 ≤ σ < 1 and that hτ � r
1−δ/2
τ hδ/2 for any τ ∈ Mh. Then

(3.21) ‖∇(uh − uI)‖L2(Ω) � 1 + (lnN)1/2

N1/2+ρ
, ρ = min

(
α

2
,
1 − σ

2

)
.

Proof. Taking vh = uh − uI in Lemma 3.3 we have

‖∇(uh − uI)‖2
L2(Ω) = A(uh − uI , vh) = A(u− uI , vh) =

∫
Ω

∇(u− uI) · ∇vh

� 1 + (lnN)1/2

N1/2+ρ
‖∇vh‖L2(Ω) =

1 + (lnN)1/2

N1/2+ρ
‖∇(uh − uI)‖L2(Ω) .

The proof is completed by canceling ‖∇(uh − uI)‖L2(Ω) on both sides of the inequal-
ity.

4. Superconvergence between the finite element solution and quadratic
interpolation. Most parts of the proof are similar to those for linear elements and
therefore are omitted. We emphasize only the differing parts. In this section uh is the
solution of (1.4) with k = 2, that is, the quadratic finite element approximation of u.

We first introduce some estimates over triangles from [14]. Recall that φQ = ΠQφ
is the quadratic interpolant defined in (3.1) based on the moment conditions.

Lemma 4.1. Assume that φ ∈ H4(τ); then there holds

∫
τ

∇(φ− ΠQφ) · ∇vh =
∑
e⊂∂τ

3∑
s=0

(
ase(τ)

|τ |
he

+ bse(τ)

)∫
e

∂3φ

∂ns
e∂t

3−s
e

∂2vh

∂t2e

+ O(h3
τ ) |φ|H4(τ) ‖vh‖H1(τ) ∀vh ∈ P2(τ),

(4.1)
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where for s = 0, 1, 2, 3,

(4.2)

|ase(τ)| + |ase(τ ′)| � h3
e, |bse(τ)| + |bse(τ ′)| � h4

e if e ∈ Eh;

(4.3)

|ase(τ)|τ | − ase(τ
′)|τ ′|| � h5+α

e

/
rα+δ(1−α)/3
e , |bse(τ) − bse(τ

′)| � h4+α
e

/
rα+δ(1−α)/3
e

if Mh satisfies Condition (α, σ, δ/3) with 0 < α ≤ 1 and 0 ≤ σ < 1, and if e ∈ E1,h.
To obtain the superconvergence of

∥∥∇(uh − I2
hu)
∥∥
L2(Ω)

, we estimate the difference

between two quadratic interpolation operators ΠQ and I2
h. It is easy to check that [27]

ΠQp− I2
hp = 0 ∀p ∈ P3.

By the Bramble–Hilbert lemma, we have∫
τ

(∇ΠQφ−∇I2
hφ) · ∇vh � h3

τ |φ|H4(τ) ‖∇vh‖L2(τ) .

Therefore we have the following lemma from (4.1).
Lemma 4.2. Assume that φ ∈ H4(τ), then there holds∫

τ

∇(φ− I2
hφ) · ∇vh =

∑
e⊂∂τ

3∑
s=0

(
ase(τ)

|τ |
he

+ bse(τ)

)∫
e

∂3φ

∂ns
e∂t

3−s
e

∂2vh

∂t2e

+ O(h3
τ ) |φ|H4(τ) ‖vh‖H1(τ) for vh ∈ P2(τ).

(4.4)

Recall from Lemma 2.1 that, in the quadratic case, if hτ � r
1−δ/3
τ hδ/3 for any

τ ∈ Mh, then the total number of degrees of freedom N of the finite element equation
(1.4) satisfies

(4.5) N �
1

h2δ/3
.

The following lemma is analogous to Lemma 3.2. We omit the proof.
Lemma 4.3. For v in decomposition (1.2),∥∥∇v −∇I2

hv
∥∥
L2(τ)

� hδ
τ ∀τ ∈ MO.

The following lemma is the counterpart of Lemma 3.3 for the quadratic case.
Lemma 4.4. Assume that Mh satisfies Condition (α, σ, δ/3) with 0 < α ≤ 1 and

0 ≤ σ < 1, and that hτ � r
1−δ/3
τ hδ/3 for any τ ∈ Mh. Then for any vh ∈

◦
V 2
h ,

(4.6)

∣∣∣∣∫
Ω

∇(u− I2
hu) · ∇vh

∣∣∣∣ � 1 + (lnN)1/2

N1+ρ
‖∇vh‖L2(Ω) , ρ = min

(
α

2
,
1 − σ

2

)
.

Proof. From the decomposition u = v + w,

(4.7)

∫
Ω

∇(u− I2
hu) · ∇vh =

∫
Ω

∇(v − I2
hv) · ∇vh +

∫
Ω

∇(w − I2
hw) · ∇vh.
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We first estimate the term
∫
Ω
∇(v − I2

hv) · ∇vh. It follows from Lemma 4.2 that∫
Ω

∇(v − I2
hv) · ∇vh =

∑
τ∈Mh

∫
τ

∇(v − I2
hv) · ∇vh = I1 + I2 + I3 + I4,(4.8)

where

Ij =
∑

e=τ∩τ ′∈Ej,h\EO

{
3∑

s=0

{
ase(τ) |τ | − ase(τ

′) |τ ′|
he

+
[
bse(τ) − bse(τ

′)
]}∫

e

∂3v

∂ns
e∂t

3−s
e

∂2vh

∂t2e

+ O(h3
e) |v|H4(Ωe)

‖vh‖H1(Ωe)

}
, j = 1, 2,

I3 =
∑

τ∈MO

∫
τ

∇(v − I2
hv) · ∇vh,

I4 =
∑

e∈∂EO

[
3∑

s=0

(
ase(τ)

|τ |
he

+ bse(τ)

)∫
e

∂3v

∂ns
e∂t

3−s
e

∂2vh

∂t2e
+ O(h3

τ ) |v|H4(τ) ‖vh‖H1(τ)

]
.

Notice that the τ in I4 is not in MO.
From Lemma 4.3,

(4.9) |I3| � hδ ‖∇vh‖L2(Ω) .

It follows from (4.2) and assumption (1.3) that

|I4| �
∑

e∈∂EO

(
h5
er

δ−3
e |vh|W 2,∞(τ) + h3

τhτr
δ−4
e ‖vh‖H1(τ)

)

�
∑

e∈∂EO

(
h3
er

δ−3
e ‖vh‖H1(τ)

)
+ h4

er
δ−4
e ‖vh‖H1(τ) � hδ ‖vh‖H1(Ω) .

(4.10)

Here we have used the inverse estimate |vh|W 2,∞(τ) � h−2
e ‖vh‖H1(τ) and the fact that

he � re � h for e ∈ ∂EO.
Next we estimate I1. It follows from Lemma 4.1 and assumption (1.3) that

|I1| �
∑

e∈E1,h\EO

[
h5+α
e

r
α+δ(1−α)/3
e

rδ−3
e |vh|W 2,∞(τ) + h3

ehτr
δ−4
τ ‖vh‖H1(Ωe)

]

�
∑

e∈E1,h\EO

[
h3+α
e rδ−3−α−δ(1−α)/3

e + h4
er

δ−4
e

]
‖vh‖H1(Ωe)

�
{ ∑

e∈E1,h\EO

[
h2
eh

4+2α
e r2δ−6−2α−2δ(1−α)/3

e + h2
eh

6
er

2δ−8
e

]}1/2

‖vh‖H1(Ω)

�
{ ∑

e∈E1,h\EO

[
h2
eh

2δ(2+α)/3r(4+2α)(1−δ/3)
e r2δ−6−2α−2δ(1−α)/3

e

+ h2
eh

2δr6−2δ
e r2δ−8

e

]}1/2

‖vh‖H1(Ω) .
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Here we have used he � r
1−δ/3
e hδ/3 to derive the last inequality. Therefore

(4.11)

I1 �

⎧⎨⎩h2δ(2+α)/3
∑

e∈E1,h\EO

h2
er

−2
e

⎫⎬⎭
1/2

‖vh‖H1(Ω) �

⎧⎨⎩h2δ(2+α)/3
∑

τ∈Mh\MO

h2
τr

−2
τ

⎫⎬⎭
1/2

× ‖vh‖H1(Ω)

�

⎧⎨⎩h2δ(2+α)/3
∑

τ∈Mh\MO

∫
τ

r−2

⎫⎬⎭
1/2

‖vh‖H1(Ω) � hδ(2+α)/3 |lnh|1/2 ‖vh‖H1(Ω) .

By a similar argument for (3.17) we can show that

(4.12) |I2| � hδ
{
#E2,h

}1/2 ‖vh‖H1(Ω) � hδ
{
Nσ
}1/2 ‖vh‖H1(Ω) .

Notice that ‖vh‖H1(Ω) � ‖∇vh‖L2(Ω) from Poincaré’s inequality. Combining (4.8)–

(4.12), we have∣∣∣∣∫
Ω

∇(v − vI) · ∇vh

∣∣∣∣ � (hδ(2+α)/3 |lnh|1/2 + hδ
{
Nσ
}1/2

)
‖∇vh‖L2(Ω)

� 1 + (lnN)1/2

N1+ρ
‖∇vh‖L2(Ω) , ρ = min

(
α

2
,
1 − σ

2

)
.

(4.13)

The estimate for the term
∫
Ω
∇(w − I2

hw) · ∇vh is similar to (4.13). It follows
from Lemma 4.2 that∫

Ω

∇(w − I2
hw) · ∇vh =

∑
τ∈Mh

∫
τ

∇(w − I2
hw) · ∇vh = J1 + J2,(4.14)

where

Jj =
∑

e=τ∩τ ′∈Ej,h

{
3∑

s=0

{
ase(τ) |τ | − ase(τ

′) |τ ′|
he

+
[
bse(τ) − bse(τ

′)
]}∫

e

∂3w

∂ns
e∂t

3−s
e

∂2vh

∂t2e

+ O(h3
e) |w|H4(Ωe)

‖vh‖H1(Ωe)

}
, j = 1, 2.

There holds ∣∣∣∣∫
Ω

∇(w − wI) · ∇vh

∣∣∣∣ � 1

N1+ρ
‖∇vh‖L2(Ω) .(4.15)

Now, the conclusion follows from (4.7), (4.13), and (4.15).
Applying Lemma 4.4 we obtain the following superconvergence result between

the quadratic finite element approximation uh and the quadratic interpolant I2
hu of

the solution of problem (1.1).
Theorem 4.5. Assume that Mh satisfies Condition (α, σ, δ/3) with 0 < α ≤ 1

and 0 ≤ σ < 1, and that hτ � r
1−δ/3
τ hδ/3 for any τ ∈ Mh. Then

(4.16)
∥∥∇(uh − I2

hu)
∥∥
L2(Ω)

� 1 + (lnN)1/2

N1+ρ
, ρ = min

(
α

2
,
1 − σ

2

)
.
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5. The asymptotically exact a posteriori error estimators. In this section,
we apply a newly developed gradient recovery operator, called polynomial preserving
recovery (PPR) [20, 26, 28], to define an a posteriori error estimator. We further
prove some superconvergence properties of the recovery operator. As a consequence,
the error estimator based on PPR is asymptotically exact under a mesh density as-
sumption.

5.1. The gradient recovery operator Gh and its superconvergence. Given
a node z ∈ Nh, we select n ≥ m = (k + 2)(k + 3)/2 sampling points zj ∈ Nh,
j = 1, 2, . . . , n, in an element patch ωz containing z (z is one of zj) and fit a polyno-
mial of degree k + 1, in the least squares sense, with values of uh at those sampling
points. In other words, we are looking for pk+1 ∈ Pk+1 such that

(5.1)

n∑
j=1

(pk+1 − uh)2(zj) = min
q∈Pk+1

n∑
j=1

(q − uh)2(zj).

The recovered gradient at of z is then defined as

(5.2) Ghuh(z) = (∇pk+1)(z).

It was proved in [20] that the above least squares fitting procedure has a unique
solution as long as those n sampling points are not on the same conic curve for the
linear element. Conditions for higher order elements were given as well. Furthermore,
the gradient recovery operator Gh : C(Ω) 
→ V k

h × V k
h , k = 1 or 2, has the following

properties:
(i) ‖Ghvh‖L2(Ω) � ‖∇vh‖L2(Ω) ∀vh ∈ V k

h .

(ii) For any nodal point z, (Ghp)(z) = ∇p(z) if p ∈ Pk+1(ωz).
(iii) |(Ghφ)(z)| � 1

hτ
maxz′∈Nh∩ωz |φ(z′)| for any node z in an element τ ∈ Mh.

(iv) Ghφ = GhI
k
hφ.

Since Ikhφ and φ have the same nodal values and Gh uses only nodal values, (iv) is clear.
The polynomial preserving property (ii) can be established easily by the least squares
procedure [28]. A key observation is that Gh provides a finite difference scheme at
each node z ∈ Nh; therefore, (iii) is obvious. Under a very mild mesh condition, “the
sum of any two adjacent angles in Mh is at most π,” the boundedness property (i)
can be proved, though it is not trivial. The reader is referred to [20, 26, 28] for more
details.

We first consider the case of linear finite elements and then state the corresponding
results for quadratic elements since the proofs are similar. We have from (i),

‖Ghuh −∇u‖L2(Ω) ≤ ‖Ghuh −GhuI‖L2(Ω) + ‖GhuI −∇u‖L2(Ω)

� ‖∇(uh − uI)‖L2(Ω) + ‖GhuI −∇u‖L2(Ω) .
(5.3)

Here uI is the linear interpolant of u. The estimate for the first term of the right hand
side of the inequality (5.3) is given in Theorem 3.4. To estimate the second term we
need the following lemma.

Lemma 5.1. Under properties (ii)–(iii), for any element τ ∈ Mh and any function
φ ∈ W 3,∞(τ̃),

‖GhφI −∇φ‖L2(τ) � h3
τ |φ|W 3,∞(τ̃) ,

where τ̃ =
⋃
{ωz : z ∈ Nh ∩ τ} and φI is the linear interpolant of φ.
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Proof. Let (∇φ)I be the linear interpolant of ∇φ. Then

(5.4) ‖GhφI −∇φ‖L2(τ) ≤ ‖GhφI − (∇φ)I‖L2(τ) + ‖(∇φ)I −∇φ‖L2(τ) .

The standard theory of finite element interpolation estimates says that [6]

(5.5) ‖(∇φ)I −∇φ‖L2(τ) � h2
τ |φ|H3(τ) � h3

τ |φ|W 3,∞(τ̃) .

For a node z ∈ τ, let φ2(x, y) be the 2nd-degree Taylor expansion of φ at the point z.
It is clear that

|φ(x, y) − φ2(x, y)| � h3
τ |φ|W 3,∞(τ̃) ∀(x, y) ∈ τ̃ .

By properties (ii) and (iii),∣∣(GhφI − (∇φ)I
)
(z)
∣∣ = ∣∣(GhφI −∇φ

)
(z)
∣∣ = ∣∣(Gh(φI − φ2) − (∇φ−∇φ2)

)
(z)
∣∣

=
∣∣(Gh(φI − φ2)

)
(z)
∣∣ � 1

hτ
max

z′∈Nh∩ωz

|(φ− φ2)(z
′)|

� h2
τ |φ|W 3,∞(ωz) .

Therefore

(5.6) ‖GhφI − (∇φ)I‖L2(τ) � hτ max
z∈Nh∩τ

∣∣(GhφI − (∇φ)I
)
(z)
∣∣ � h3

τ |φ|W 3,∞(τ̃) .

The proof of the lemma is completed by combining (5.4)–(5.6).
The following theorem is devoted to the estimate of the second term of (5.3).

Theorem 5.2. Assume that hτ � r
1−δ/2
τ hδ/2 for any τ ∈ Mh. Then

(5.7) ‖GhuI −∇u‖L2(Ω) � 1 + (lnN)1/2

N
.

Proof. Recall the decomposition (1.2) u = v + w, we have, by the triangular
inequality,

(5.8) ‖GhuI −∇u‖L2(Ω) ≤ ‖GhvI −∇v‖L2(Ω) + ‖GhwI −∇w‖L2(Ω) ,

where vI = I1
hv and wI = I1

hw are the linear interpolants of v and w, respectively.
We first estimate the singular part ‖GhvI −∇v‖L2(Ω). Introduce the set of trian-

gles MÕ = {τ ∈ Mh : the origin O ∈ τ̃}. For any τ ∈ MÕ,

(5.9) ‖GhvI −∇v‖L2(τ) ≤ ‖GhvI‖L2(τ) + ‖∇v‖L2(τ) .

By property (ii), GhC = 0 for any constant C. Thus, from property (iii),

‖GhvI‖L2(τ) = ‖Gh(vI − v(O))‖L2(τ) � hτ max
z∈Nh∩τ

∣∣Gh

(
vI − v(O)

)
(z)
∣∣

� hτ
1

hτ
max

z′∈Nh∩τ̃
|v(z′) − v(O)|

= max
z′∈Nh∩τ̃

∣∣∣∣∫ 1

0

d

dt
v(z′t)dt

∣∣∣∣ = max
z′∈Nh∩τ̃

∣∣∣∣∫ 1

0

z′ · ∇v(z′t)dt

∣∣∣∣ .
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Since τ ∈ MÕ, |z′| � h. It follows from assumption (1.3) that

(5.10) ‖GhvI‖L2(τ) �
∫ 1

0

h · (ht)δ−1dt � hδ.

On the other hand,

(5.11) ‖∇v‖L2(τ) �
(∫

τ

|∇v|2
)1/2

�
(∫

τ

r2δ−2

)1/2

�
(∫ ch

0

r2δ−2r dr

)1/2

� hδ.

Here ch is the diameter of τ̃ . Combining (5.9), (5.10), and (5.11), we obtain

(5.12) ‖GhvI −∇v‖L2(τ) � hδ for τ ∈ MÕ.

It follows from Lemma 5.1 and (1.3) that

(5.13) ‖GhvI −∇v‖L2(τ) � h3
τ |v|W 3,∞(τ̃) � h3

τr
δ−3
τ for τ ∈ Mh \MÕ,

where rτ is the distance form O to the barycenter of τ . Therefore from hτ �

r
1−δ/2
τ hδ/2,

‖GhvI −∇v‖2
L2(Ω) =

∑
τ∈Mh

‖GhvI −∇v‖2
L2(τ) � h2δ +

∑
τ∈Mh\MÕ

h6
τr

2δ−6
τ

� h2δ +
∑

τ∈Mh\MÕ

h2
τr

4−2δ
τ h2δr2δ−6

τ � h2δ +
∑

τ∈Mh\MÕ

h2δh2
τr

−2
τ

� h2δ + h2δ
∑

τ∈Mh\MÕ

∫
τ

r−2 � h2δ + h2δ

∫ 1

h

r−1 dr � h2δ

+ h2δ |lnh| .

Therefore Lemma 2.1 implies that

(5.14) ‖GhvI −∇v‖L2(Ω) � hδ
(
1 + |lnh|1/2

)
� 1 + (lnN)1/2

N
.

Next we estimate the term ‖GhwI −∇w‖L2(Ω) in (5.8). Since w is smooth, we
do not have to divide Mh into two parts as above. From Lemma 5.1 and assumption
(1.3),

‖GhwI −∇w‖L2(Ω) �
( ∑

τ∈Mh

‖GhwI −∇w‖2
L2(τ)

)1/2

�
( ∑

τ∈Mh

h6
τ

)1/2

�
( ∑

τ∈Mh

h2
τr

4−2δ
τ h2δ

)1/2

� hδ

(∫
Ω

r4−2δ

)1/2

� hδ � 1

N
.

(5.15)

The proof of the theorem is completed by inserting estimates (5.14) and (5.15) into
inequality (5.8).
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The following superconvergence result of the gradient recovery operator Gh can
be proved by combining (5.3), Theorem 3.4, and Theorem 5.2.

Theorem 5.3. Let uh be the linear finite element approximation of u. Assume
that Mh satisfies Condition (α, σ, δ/2) with 0 < α ≤ 1 and 0 ≤ σ < 1, and that

hτ � r
1−δ/2
τ hδ/2 for any τ ∈ Mh. Then

(5.16) ‖Ghuh −∇u‖L2(Ω) � 1 + (lnN)1/2

N1/2+ρ
, ρ = min

(
α

2
,
1 − σ

2

)
.

We remark that the result of Theorem 5.3 is a superconvergence result since the
asymptotically optimal convergence rate of ‖∇(u− uh)‖L2(Ω) is O(1/N1/2).

Next we state the results for quadratic finite elements. The following theorem
provides the estimate for the gradient recovery operator Gh. The proof is similar to
that of Theorem 5.2 and therefore is omitted.

Theorem 5.4. Assume that hτ � r
1−δ/3
τ hδ/3 for any τ ∈ Mh. Then

(5.17)
∥∥GhI

2
hu−∇u

∥∥
L2(Ω)

� 1 + (lnN)1/2

N3/2
.

The superconvergence of the gradient recovery operator Gh is presented in the
following theorem which is parallel to Theorem 5.3.

Theorem 5.5. Let uh be the quadratic finite element approximation of u. Assume
that Mh satisfies Condition (α, σ, δ/3) with 0 < α ≤ 1 and 0 ≤ σ < 1 and that

hτ � r
1−δ/3
τ hδ/3 for any τ ∈ Mh. Then

(5.18) ‖Ghuh −∇u‖L2(Ω) � 1 + (lnN)1/2

N1+ρ
, ρ = min

(
α

2
,
1 − σ

2

)
.

5.2. The a posteriori error estimators. With preparation from the previous
subsections, it is now straightforward to prove the asymptotic exactness of error es-
timators based on the recovery operator Gh. The global error estimator is naturally
defined by

(5.19) ηh = ‖Ghuh −∇uh‖L2(Ω) .

Theorem 5.6. Let uh be the linear finite element approximation of u. Assume
that Mh satisfies Condition (α, σ, δ/2) with 0 < α ≤ 1 and 0 ≤ σ < 1, and that

hτ � r
1−δ/2
τ hδ/2 for any τ ∈ Mh. Furthermore, assume that

(5.20)
1

N1/2
� ‖∇(u− uh)‖L2(Ω) .

Then

(5.21)

∣∣∣∣∣ ηh
‖∇(u− uh)‖L2(Ω)

− 1

∣∣∣∣∣ � 1 + (lnN)1/2

Nρ
, ρ = min

(
α

2
,
1 − σ

2

)
.

The following lemma says that ‖∇(u− uh)‖L2(Ω) is the asymptotically optimal

on the mesh Mh satisfying hτ � r
1−δ/2
τ hδ/2 as the total number of degrees of freedom

N → ∞.
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Lemma 5.7. Let uh be the linear finite element approximation of u. Assume that

hτ � r
1−δ/2
τ hδ/2 for any τ ∈ Mh. Then

‖∇(u− uI)‖L2(Ω) � 1

N1/2
and hence ‖∇(u− uh)‖L2(Ω) � 1

N1/2
.

Proof. Recall that u is decomposed as u = v + w satisfying (1.3). Noticing that

‖∇(v − vI)‖L2(τ) � hτ |v|H2(τ) � h2
τr

δ−2
τ ∀τ ∈ Mh \MO,

and that

‖∇(w − wI)‖L2(τ) � hτ |w|H2(τ) � h2
τ ∀τ ∈ Mh,

we have, by Lemma 3.2,

‖∇(u− uI)‖2
L2(Ω) � ‖∇(v − vI)‖2

L2(Ω) + ‖∇(w − wI)‖2
L2(Ω)

=
∑

τ∈Mh

(
‖∇(v − vI)‖2

L2(τ) + ‖∇(w − wI)‖2
L2(τ)

)
� h2δ +

∑
τ∈Mh\MO

h4
τr

2δ−4
τ � h2δ +

∑
τ∈Mh\MO

h2
τr

2−δ
τ hδr2δ−4

τ

� h2δ + hδ

∫
Ω

rδ−2 � h2δ + hδ.

In light of Lemma 2.1, we obtain

‖∇(u− uI)‖2
L2(Ω) � 1

N2
+

1

N
,

which completes the proof of the lemma.
The following lemma says that, for the quadratic finite element approximation

uh, ‖∇(u− uh)‖L2(Ω) is asymptotically optimal on the mesh Mh satisfying hτ �

r
1−δ/3
τ hδ/3 as the total number of degrees of freedom N → ∞.

Lemma 5.8. Let uh be the quadratic finite element approximation of u. Assume

that hτ � r
1−δ/3
τ hδ/3 for any τ ∈ Mh. Then∥∥∇(u− I2

hu)
∥∥
L2(Ω)

� 1

N
and hence ‖∇(u− uh)‖L2(Ω) � 1

N
.

By Theorem 5.5, we can prove the asymptotic exactness of error estimators based
on the recovery operator Gh for quadratic elements.

Theorem 5.9. Let uh be the quadratic finite element approximation of u. Assume
that Mh satisfies Condition (α, σ, δ/3) with 0 < α ≤ 1 and 0 ≤ σ < 1 and that

hτ � r
1−δ/3
τ hδ/3 for any τ ∈ Mh. Furthermore, assume that

(5.22)
1

N
� ‖∇(u− uh)‖L2(Ω) .

Then

(5.23)

∣∣∣∣∣ ηh
‖∇(u− uh)‖L2(Ω)

− 1

∣∣∣∣∣ � 1 + (lnN)1/2

Nρ
, ρ = min

(
α

2
,
1 − σ

2

)
.
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6. Implementation and numerical examples. In this section we present
some numerical examples to verify the asymptotic exactness of the error estimator ηh
based on the recovery operator Gh using quadratic finite elements. For examples on
linear elements we refer to [12].

Implementation of the adaptive algorithm in this section is based on FEMLAB.1

We define the local a posteriori error estimator on element τ as

ητ = ‖Ghuh −∇uh‖L2(τ) ,

and the global error estimator as

ηh =

( ∑
τ∈Mh

η2
τ

)1/2

.

Now we describe the adaptive algorithm used in this paper.
Algorithm. Given the tolerance TOL > 0,
• generate an initial mesh Mh over Ω;
• while ηh > TOL do

– choose a set of elements M̂h ⊂ Mh such that⎛⎝ ∑
τ∈M̂h

η2
τ

⎞⎠1/2

> 0.7

( ∑
τ∈Mh

η2
τ

)1/2

,

then refine the elements in M̂h. Update the mesh Mh.
– solve the discrete problem (1.4) on Mh.
– compute error estimators on Mh.

end while
Remark 6.1. The marking strategy, that is, the method of how to choose M̂h

for refinements used in our algorithm, is well known in the adaptive finite element
community. Actually, it was used, e.g., in [9, 18] to design convergent finite element

algorithms. In our implementation of the algorithm, the elements in M̂h are chosen
from the elements which have larger local a posteriori error estimators ητ .

Example 1. The Laplace equation on the L-shaped domain of Figure 6.1 with
the Dirichlet boundary condition is chosen so that the true solution is r2/3 sin(2θ/3)
in polar coordinates.

Figure 6.1 plots the initial mesh and the adaptively refined mesh of 3565 elements
after 15 adaptive iterations. Figure 6.2 demonstrates asymptotic exactness of the error
estimator ηh = ‖Ghuh −∇uh‖L2(Ω) for the Laplace equation on the L-shaped domain.
We see that

‖∇uh −∇u‖L2(Ω) ≈ O(N−1), ‖Ghuh −∇u‖L2(Ω) ≈ O(N−1.2),

and

‖Ghuh −∇uh‖L2(Ω)

/
‖∇u−∇uh‖L2(Ω) ≈ 1 + O(N−0.5).

1http://ecs.rutgers.edu/eitlab/femlab.php.
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Fig. 6.1. The initial mesh (left) and the adaptively refined mesh (right) of 3565 elements after
15 adaptive iterations for the Laplace equation on the L-shaped domain.
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Fig. 6.2. ‖∇u−∇uh‖L2(Ω), ‖∇u−Ghuh‖L2(Ω), and ‖Ghuh −∇uh‖L2(Ω) /‖∇u−∇uh‖L2(Ω)

−1 versus the total number of degrees of freedom for the Laplace equation on the L-shaped domain.
Dotted lines give reference slopes.

Notice that the decay of ‖∇uh −∇u‖L2(Ω) is quasi-optimal, ‖Ghuh −∇u‖L2(Ω)

is superconvergent with order O(N−1.2), and ηh/ ‖∇u−∇uh‖L2(Ω) approaches 1 at

the rate of O(N−0.5). In this paper, the L2 norms are calculated by the six points
Gauss quadrature rule over triangles.

Let us have a close look at the mesh density assumption hτ � r
1−δ/3
τ hδ/3 =

r
7/9
τ h2/9 for δ = 2/3. We shall verify this on the final mesh, which has 112880
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elements after 24 adaptive iterations. We choose h = minτ∈Mh
hτ ≈ 5.96× 10−8 and

have

0.44 ≤ hτ

r
7/9
τ h2/9

≤ 2.35

for all elements τ ∈ Mh. Note that the ratio between the upper and lower bounds is
less than 6. This fact indicates that all elements in the final mesh satisfy the mesh
density assumption.

Next, let us examine the condition (α, σ, μ) on the final mesh. Here μ = δ/3 = 2/9.

It is shown that, for every e ∈ Eh, Ωe is a 3.92 × h1+0.4
e /r

0.4+μ(1−0.4)
e approximate

parallelogram. That is, the final mesh satisfies Condition (0.4, 0, 2/9).

Example 2. Let Ω = {(x1, x2) : |x1|, |x2| < 0.5}\{(x1, 0) : 0 ≤ x1 < 0.5} be the
domain with a crack. We consider the Poisson equation

−Δu = 1

with a Dirichlet boundary condition chosen so that the true solution is r1/2 sin(θ/2)−
1
4r

2 in polar coordinates.

Figure 6.3 plots the initial mesh and the adaptively refined mesh of 3353 elements
after 16 adaptive iterations. Figure 6.4 shows asymptotic exactness of the error esti-
mator ηh = ‖Ghuh −∇uh‖L2(Ω) for the crack problem. We see that

‖∇uh −∇u‖L2(Ω) ≈ O(N−1), ‖Ghuh −∇u‖L2(Ω) ≈ O(N−1.1),

and

‖Ghuh −∇uh‖L2(Ω)

/
‖∇u−∇uh‖L2(Ω) ≈ 1 + O(N−0.3).

Notice that the decay of ‖∇uh −∇u‖L2(Ω) is quasi-optimal, ‖Ghuh −∇u‖L2(Ω) is

superconvergent at an order O(N−1.1), and ηh/ ‖∇u−∇uh‖L2(Ω) approaches 1 at

the rate of O(N−0.3).

Let us take a close look at the mesh density assumption hτ � r
1−δ/3
τ hδ/3 =

r
5/6
τ h1/6 for δ = 1/2. We verify this on the final mesh, which has 110563 elements

after 27 adaptive iterations. We choose h = minτ∈Mh
hτ ≈ 3.67 × 10−9 and have

0.32 <
hτ

r
5/6
τ h1/6

< 1.92

for all elements τ ∈ Mh. Note that the ratio between the upper and lower bounds
is 6. This fact indicates that all elements in the final mesh satisfy the mesh density
assumption.

Next, let us examine the condition (α, σ, μ) on the final mesh. Here μ = δ/3 = 1/6.

It is shown that, for every e ∈ Eh, Ωe is a 1.49 × h1+0.2
e /r

0.2+μ(1−0.2)
e approximate

parallelogram. That is, the final mesh satisfies Condition (0.2, 0, 1/6).
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Fig. 6.3. The initial mesh (left) and the adaptively refined mesh (right) of 3353 elements after
16 adaptive iterations for the crack problem.
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MESHLESS COLLOCATION: ERROR ESTIMATES WITH
APPLICATION TO DYNAMICAL SYSTEMS∗
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Abstract. In this paper, we derive error estimates for generalized interpolation, in particular
collocation, in Sobolev spaces. We employ our estimates in collocation problems using radial basis
functions and extend and improve previously known results for elliptic problems. Finally, we use
meshless collocation to approximate Lyapunov functions for dynamical systems.
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1. Introduction. Meshless collocation methods for the numerical solution of
partial differential equations have recently become more and more popular. They
provide a greater flexibility when it comes to adaptivity and time-dependent changes
of the underlying region.

Radial basis functions or, more generally, (conditionally) positive definite kernels
are one of the mainstream methods in the field of meshless collocation. There are,
in principle, two different approaches to collocation using radial basis functions. The
unsymmetric approach by Kansa [14, 15] has the advantage that less derivatives have
to be formed but has the drawback of an unsymmetric collocation matrix, which can
even be singular [13]. Despite this drawback unsymmetric collocation has been used
frequently and successfully in several applications.

In this paper, however, we will concentrate on symmetric collocation methods
based on radial basis functions, as they have been introduced in the context of gen-
eralized interpolation in [28, 17] and used for elliptic problems in [4, 5, 7, 6].

Radial basis functions, in general, are a powerful tool for reconstruction processes
from scattered data (see, for example, [3, 26]).

In this paper, we study a general linear partial differential equation of the form

Lu = f on Ω,(1)

where Ω is a domain in R
n and L is a linear differential operator of the form

(2) Lu(x) =
∑

|α|≤m

cα(x)Dαu(x),

where the coefficients have a certain smoothness cα ∈ Cσ(Ω,R); i.e., the derivatives
of order β with |β| ≤ σ exist and are continuous on Ω.
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Moreover, we consider boundary value problems, where in addition to (1), u is
required to satisfy the following boundary condition:

u(x) = F (x) for x ∈ ∂Ω.(3)

The numerical solution of such boundary value problems by collocation using
radial basis functions has been studied by several authors. First error estimates have
been given in [7, 6]. However, despite following a rather general approach, the authors
of those papers show that the problems are well-posed and provide error estimates only
for differential operators with constant coefficients cα. A generalization to nonconstant
coefficients without zeros, including also a more thorough discussion of the boundary
estimates, can be found in [26]. However, in that book the approximation orders are,
to a certain extent, not optimal. Moreover, the restriction to nonzero coefficients is
not sufficient for our applications in dynamical systems.

Our goals in this paper are to investigate well-posedness of the collocation prob-
lem for the differential operator (2) with nonconstant coefficients and to state error
estimates with optimal orders in Sobolev spaces. To this end we will put the setting
in the general framework of generalized interpolation in reproducing kernel Hilbert
spaces and then use a recent result [18] on error estimates in Sobolev spaces for
arbitrary scattered data reconstruction methods.

Next, we will apply the general estimates to derive error estimates in Sobolev
spaces for elliptic partial differential equations. Another major and new application
will be the approximation of Lyapunov functions in dynamical systems. Here, the
differential operator is given by the orbital derivative of a function u with respect to
the ordinary differential equation ẋ = g(x), i.e., by

Lu(x) := 〈∇u(x), g(x)〉 =
n∑

j=1

gj(x)∂ju(x).

This operator L is a first-order differential operator of the form (2) with cej (x) = gj(x).
The approximation of the orbital derivative for Lyapunov functions has been studied
in [11, 8, 9, 10]. However, the approximation orders of those results can be improved
significantly with the results of this paper.

This paper is organized as follows. In the rest of this section we will introduce
notation which is necessary throughout the paper. Section 2 deals with generalized
interpolation and is mainly a collection of known results, which will be helpful in this
paper. In section 3 we investigate collocation by radial basis functions, derive our new
estimates, and apply these results to elliptic problems. The final section deals with
applications to dynamical systems. In particular, we describe a method to calculate
Lyapunov functions and thus to calculate the basin of attraction of an equilibrium.

1.1. Notation. We will need to work with a variety of Sobolev spaces. Let
Ω ⊆ R

n be a domain. For k ∈ N0, and 1 ≤ p < ∞, the Sobolev spaces W k
p (Ω) consist,

as usual, of all u with weak derivatives Dαu ∈ Lp(Ω), |α| ≤ k. Associated with these
spaces are the (semi-)norms

|u|Wk
p (Ω) =

⎛⎝ ∑
|α|=k

‖Dαu‖pLp(Ω)

⎞⎠1/p

and ‖u‖Wk
p (Ω) =

⎛⎝ ∑
|α|≤k

‖Dαu‖pLp(Ω)

⎞⎠1/p

.

The case p = ∞ is defined in the obvious way:

|u|Wk
∞(Ω) = sup

|α|=k

‖Dαu‖L∞(Ω) and ‖u‖Wk
∞(Ω) = sup

|α|≤k

‖Dαu‖L∞(Ω).
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We also need fractional order Sobolev spaces. However, it will not be necessary to
discuss them in detail. We just remind the reader that there are different ways of
introducing fractional order Sobolev spaces. For our purposes, interpolation theory
in Sobolev spaces as it has, for example, been discussed in [1, 23, 2] will be sufficient.

Let X := {x1, . . . , xN} be a finite, discrete subset of Ω, which we now assume
to be bounded. There are two quantities that we associate with X: the separation
radius and the mesh norm or fill distance. Respectively, these are given by

qX :=
1

2
min
j �=k

‖xj − xk‖2, hX,Ω := sup
x∈Ω

min
xj∈X

‖x− xj‖2,

where ‖ · ‖2 denotes the Euclidean distance in R
n.

The first is half the smallest distance between points in X, and the second mea-
sures the maximum distance which a point in Ω can be from any point in X. Fre-
quently, when it is clear from the context what the set Ω (or X) is, we will drop
subscripts and write hX or h. Other notation will be introduced along the way.

2. Generalized interpolation.

2.1. Reproducing kernel Hilbert spaces. Let H ⊆ C(Ω) be a Hilbert space
of functions f : Ω → R and let H∗ be its dual. We consider a generalized interpolation
problem of the following form.

Definition 2.1. Given N linearly independent functionals λ1, . . . , λN ∈ H∗

and N function values f1, . . . , fN ∈ R, a generalized interpolant is a function s ∈ H
satisfying λj(s) = fj, 1 ≤ j ≤ N . The norm-minimal interpolant s∗ is the interpolant
that, in addition, minimizes the norm of the Hilbert space; i.e., s∗ is the solution of

(4) min{‖s‖H : λj(s) = fj , 1 ≤ j ≤ N}.

It is well known that the norm-minimal generalized interpolant is a linear com-
bination of the Riesz representers of the functionals and that the coefficients can be
computed by solving a linear system. Such problems can be best solved if H is a repro-
ducing kernel Hilbert space (RKHS), i.e., if there exists a unique kernel Φ : Ω×Ω → R,
satisfying

1. Φ(·, x) ∈ H for all x ∈ Ω,
2. f(x) = (f,Φ(·, x))H for all x ∈ Ω and all f ∈ H.

Here, the Riesz representer of a functional λ ∈ H∗ is simply given by applying it
to one argument of the kernel, i.e., by λyΦ(·, y).

Lemma 2.2 (see [26, Theorem 16.1]). If H is a reproducing kernel Hilbert space,
then the solution s∗ of (4) is given by

s∗ =

N∑
j=1

αjλ
y
jΦ(·, y),

where α ∈ R
N is the solution of the linear system AΛ,Φα = f with AΛ,Φ = (λx

i λ
y
jΦ(x,

y)) and f = (fj).
Note that the matrix AΛ,Φ = (aij) is a Gramian matrix because of

aij = λx
i λ

y
jΦ(x, y) = (λx

i Φ(·, x), λy
jΦ(·, y))H = (λi, λj)H∗

and hence is positive semidefinite. Since the functionals are assumed to be linearly
independent the matrix is even positive definite.



1726 PETER GIESL AND HOLGER WENDLAND

Looking at point evaluations λj(f) = δxj
(f) = f(xj) alone, we see that the

kernel of a reproducing kernel Hilbert space is positive definite in the sense that all
the matrices

(Φ(xi, xj))1≤i,j≤N

are positive definite, provided that point evaluation functionals are linearly indepen-
dent.

Now, it is easy to see that the kernel of a reproducing kernel Hilbert space is
uniquely determined. On the other hand, the Hilbert space is also uniquely determined
by the kernel. Moreover, every positive definite kernel generates a unique Hilbert space
to which it is the reproducing kernel. More details about this fact and the construction
of such native function spaces can be found in [26]. Here, the only thing that matters
is that two different kernels can generate the same function Hilbert space H but with
different, yet equivalent, inner products. In such a situation we will say that both
kernels are reproducing kernels of H, thus relaxing the definition of a reproducing
kernel Hilbert space. Moreover, it will be helpful to consider kernels defined on all
R

n instead of on only Ω ⊆ R
n. Such kernels are often translation-invariant, meaning

Φ(x, y) = Φ(x− y), and are often even radial, meaning Φ(x, y) = Φ(‖x− y‖2).
This will be very useful when it comes to Sobolev spaces. Remember that the

Sobolev embedding theorem states that W τ
2 (Rn) can be embedded into C(Rn) pro-

vided that τ > n/2. Hence, in this situation W τ
2 (Rn) is a reproducing kernel Hilbert

space. Unfortunately, the reproducing kernel involves some modified Bessel functions
of the third kind.

However, it is well known that other reproducing kernels of W τ
2 (Rn) can be char-

acterized by their Fourier transform

Φ̂(ω) = (2π)−n

∫
Rn

Φ(x)e−ixTωdx.

To be more precise, the following result holds.
Lemma 2.3 (see [26, Corollary 10.13]). Let τ > n/2. Suppose the Fourier

transform of an integrable function Φ : R
n → R satisfies

(5) c1(1 + ‖ω‖2
2)

−τ ≤ Φ̂(ω) ≤ c2(1 + ‖ω‖2
2)

−τ , ω ∈ R
n,

with two constants c2 ≥ c1 > 0. Then, the kernel Φ is also a reproducing kernel of
W τ

2 (Rn), and the inner product defined by

(f, g) :=

∫
Rn

f̂(ω)ĝ(ω)

Φ̂(ω)
dω

is equivalent to the usual inner product on W τ
2 (Rn).

The following observation will be of use. It follows directly from the Fourier
inversion theorem.

Remark 2.4. If Φ ∈ L1(R
n) satisfies (5) with τ > m + n/2, then Φ ∈ C2m(Rn).

The most prominent examples of kernels satisfying (5) are the Wendland functions
[24, 25]. They are positive definite and radial functions with compact support. On
its support, each function can be represented by a univariate polynomial. Here it is
mainly important that they satisfy (5) with τ = k + (n + 1)/2, where k is a given
smoothness index. Hence, they belong to C2k(Rn) and generate integer order Sobolev



MESHLESS COLLOCATION 1727

spaces in odd space dimensions, while for even space dimensions the order is integer
plus one half.

Although most kernels which generate Sobolev spaces are radial, there exist also
kernels which are not even translation invariant; cf. [21, 20]. Our results will hold
regardless of whether the kernels are translation invariant or not.

We end this section by citing a general convergence result from [18] in its improved
form (see the remarks in [19]) using also the fact that a region with a Lipschitz
boundary automatically satisfies a cone condition (see [27]).

Theorem 2.5. Let Ω ⊆ R
n be a bounded domain with a Lipschitz continuous

boundary. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, and let m ∈ N0 and τ ∈ R satisfying
�τ
 > m + n/p if p > 1, or �τ
 ≥ m + n if p = 1. Also, let X ⊆ Ω be a discrete set
with a sufficiently small mesh norm h. If u ∈ W τ

p (Ω) satisfies u|X = 0, then

(6) |u|Wm
q (Ω) ≤ Chτ−m−n(1/p−1/q)+ |u|W τ

p (Ω),

where (x)+ = max{x, 0}.
3. Partial differential equations (PDEs).

3.1. General PDE operators. It is now time to look at specific collocation
problems. We start with the PDE (1). Following the general approach of the previous
section, we define functionals

λj(u) := δxj ◦ L(u) = (Lu)(xj)

with scattered points X = {x1, . . . , xN} ⊆ Ω. Hence, employing a sufficiently smooth
kernel Φ : Ω × Ω → R results in the approximating function

(7) s =

N∑
k=1

αk(δxk
◦ L)yΦ(·, y).

Applying the interpolation conditions yields the following interpolation problem.
Definition 3.1 (interpolation problem, operator). Let X = {x1, . . . , xN} be a

set of pairwise distinct points in Ω ⊆ R
n and u : Ω → R. Let L be a linear differential

operator. Then, the reconstruction s of u with respect to the set X and the operator
L is given by (7), where the coefficient vector α is the solution of Aα = f = (fj) with
the interpolation matrix A = (ajk)j,k=1,...,N given by

(8) ajk = (δxj ◦ L)x(δxk
◦ L)yΦ(x, y)

and fj = (δxj ◦ L)xu(x) = Lu(xj).
According to Lemma 2.2, the generalized interpolation matrix is positive definite,

provided that the involved functionals are linearly independent.
Definition 3.2 (singular points of L). The point x ∈ R

n is called a singular
point of L if δx ◦ L = 0, i.e., cα(x) = 0 for all |α| ≤ m.

Proposition 3.3. Suppose Φ : R
n → R is a reproducing kernel of W τ

2 (Rn) with
τ > m+n/2. Let L be a linear differential operator of degree m. Let X = {x1, . . . , xN}
be a set of pairwise distinct points, which are not singular points of L. Then, the
functionals λj = δxj

◦ L are linearly independent over W τ
2 (Rn).

Proof. First of all note that, according to Remark 2.4, (8) is well defined for
reproducing kernels of W τ

2 (Rn) even with τ > m + n/2. Moreover, the functionals
are indeed in the dual space to W τ

2 (Rn).
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Next, suppose that

(9)

N∑
k=1

dkλk = 0

on W τ
2 (Rn) with certain coefficients d1, . . . , dN .

Then we choose a flat bump function g ∈ C∞
0 (Rn), i.e., a nonnegative, compactly

supported function with support B(0, 1) = {x ∈ R
n : ‖x‖2 ≤ 1} which is non-

vanishing and satisfies g(x) = 1 on B(0, 1/2). Fix 1 ≤ j ≤ N . Since xj is not a
singular point of L, there exists a β ∈ N

n
0 with minimal |β| ≤ m such that cβ(xj) �= 0.

Employing the separation radius qX , the function

gj(x) =
1

β!
(x− xj)

βg

(
x− xj

qX

)
then satisfies Dαgj(xk) = 0 for all |α| ≤ m and xk �= xj . Furthermore, we have
Dαgj(xj) = 0 if α �= β and Dβgj(xj) = 1. Hence, (9) gives, in particular,

0 =
N∑

k=1

dkλk(gj) =
∑

|α|≤m

N∑
k=1

dkcα(xk)D
αgj(xk) = djcβ(xj),

which implies dj = 0. Since j was chosen arbitrarily, this shows that the functionals
are linearly independent.

This proposition is a generalization of the results in [6], where only constant
coefficients have been allowed, and of the results in [26], where also variable coefficients
without zeros were treated.

Note also that the reproducing kernel Hilbert space does not have to be a Sobolev
space at all. It is necessary only that the Hilbert space contains bump functions of
the described form. Hence, the results remain true, if, for example, function spaces
associated with Gaussians or (inverse) multiquadrics are considered.

Next we turn to error estimates. We need a simple auxiliary result.
Lemma 3.4. Fix τ ∈ R with k = �τ
 > n/2 + m, where m is the order of the

differential operator L. Suppose that the coefficients cα of the differential operator L
belong to W k−m+1

∞ (Ω). Then L is a bounded operator from W τ
2 (Ω) to W τ−m

2 (Ω), i.e.,

‖Lu‖W τ−m
2 (Ω) ≤ C‖u‖W τ

2 (Ω), u ∈ W τ
2 (Ω).

Proof. Take a multi-index α ∈ N
n
0 with |α| ≤ k + 1 −m. Then

|Dα(Lu)| =

∣∣∣∣∣∣
∑

|β|≤m

∑
γ≤α

(
α
γ

)
(Dα−γcβ)(Dγ+βu)

∣∣∣∣∣∣
≤ C

∑
|β|≤m

∑
γ≤α

|Dγ+βu|,

where we used the boundedness of the derivatives of the coefficients. This shows that

‖Dα(Lu)‖L2(Ω) ≤ C‖u‖
W

m+|α|
2 (Ω)

,

and hence

‖Lu‖Wk−m
2 (Ω) ≤ C‖u‖Wk

2 (Ω), ‖Lu‖Wk+1−m
2 (Ω) ≤ C‖u‖Wk+1

2 (Ω).
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From this, the result for fractional order Sobolev spaces W τ
2 (Ω) follows by interpola-

tion theory.
Theorem 3.5. Suppose Φ is a reproducing kernel of W τ

2 (Rn) with k := �τ
 >
m + n/2. Let Ω ⊆ R

n be a bounded domain having a Lipschitz boundary. Let L be
a linear differential operator of order m with coefficients cα in W k−m+1

∞ (Ω). Finally,
let s be the generalized interpolant to u ∈ W τ

2 (Ω) from Definition 3.1. If X ⊆ Ω has a
sufficiently small mesh norm hX , then for 1 ≤ p ≤ ∞, the error estimate

‖Lu− Ls‖Lp(Ω) ≤ Ch
τ−m−n(1/2−1/p)+
X ‖u‖W τ

2 (Ω)

is satisfied.
Proof. Note that u ∈ W τ

2 (Ω) ⊆ Cm(Rn) by assumption, while s ∈ Cm(Rn) by
Remark 2.4. Hence, application of L is feasible.

Since Lu|X = Ls|X by definition, we can apply Theorem 2.5 to derive

‖Lu− Ls‖Lp(Ω) ≤ Ch
τ−m−n(1/2−1/p)+
X ‖Lu− Ls‖W τ−m

2 (Ω)

≤ Ch
τ−m−n(1/2−1/p)+
X ‖u− s‖W τ

2 (Ω),

where we have also used Lemma 3.4.
Next, we follow the ideas in [18]. Our assumptions on the region Ω allow us

to extend the function u ∈ W τ
2 (Ω) to a function Eu ∈ W τ

2 (Rn). Moreover, since
X ⊆ Ω and Eu|Ω = u|Ω, the generalized interpolant s = su to u coincides with the
generalized interpolant sEu to Eu on Ω. Finally, the Sobolev space norm on W τ

2 (Rn)
is equivalent to the norm induced by the kernel Φ on W τ

2 (Rn) (Lemma 2.3) and the
generalized interpolant is norm-minimal (Lemma 2.2). This all gives

‖u− s‖W τ
2 (Ω) = ‖Eu− sEu‖W τ

2 (Ω) ≤ ‖Eu− sEu‖W τ
2 (Rn)

≤ C‖Eu‖W τ
2 (Rn) ≤ C‖u‖W τ

2 (Ω),

which establishes the stated error estimate.
The most important choices of p = 2 and p = ∞ yield

‖Lu− Ls‖L2(Ω) ≤ Chτ−m
X ‖u‖W τ

2 (Ω),

‖Lu− Ls‖L∞(Ω) ≤ Ch
τ−m−n/2
X ‖u‖W τ

2 (Ω).

As a consequence, using Wendland’s compactly supported functions, we have to set
τ = k + (n + 1)/2, where k is the smoothness index of the compactly supported
functions, i.e., Φ = ψ�,k(c‖ · ‖2) ∈ C2k(Rn). Note that this k is different from the
k in Theorem 3.5. As a matter of fact the k in that theorem is given by �τ
 =
k + �(n + 1)/2
.

Corollary 3.6. Denote by k the smoothness index of the compactly supported
Wendland function. Let k > m − 1

2 if n is odd or k > m if n is even. Let cα ∈
W

k−m+1+�n+1
2 	

∞ . Suppose u ∈ W
k+(n+1)/2
2 (Ω). Then, employing this basis function

yields

‖Lu− Ls‖L∞(Ω) ≤ Ch
k−m+1/2
X ‖u‖

W
k+(n+1)/2
2 (Ω)

.
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3.2. Boundary value problems. The collocation problem of the previous sec-
tion will already be useful in its form in our application to dynamical systems; however,
boundary value problems also will occur; cf. section 4. Furthermore, for applications
such as solving elliptic PDEs, incorporating boundary values is crucial.

In order to solve a boundary value problem of the form (1) and (3), we need two
linear operators L and L0 = id, the values of which are given on Ω, ∂Ω, respectively.
The ansatz for the approximating function s reflects this. We choose two sets of
points, X1 := {x1, . . . , xN} ⊆ Ω and X2 := {xN+1, . . . , xN+M} ⊆ ∂Ω, and define the
functionals by

(10) λj =

{
δxj ◦ L for 1 ≤ j ≤ N,

δxj ◦ L0 for N + 1 ≤ j ≤ N + M.

The mixed ansatz for the approximant s of the function u is then given by

s(x) =
N+M∑
k=1

αkλ
y
kΦ(x, y)

=

N∑
k=1

αk(δxk
◦ L)yΦ(x, y) +

N+M∑
k=N+1

αk(δxk
◦ L0)yΦ(x, y),(11)

where we will assume that L0 = id. The coefficient vector α ∈ R
N+M is determined

by the interpolation conditions

(δxj
◦ L)(s) = (δxj

◦ L)(u) = f(xj), 1 ≤ j ≤ N,(12)

(δxj ◦ L0)(s) = (δxj ◦ L0)(u) = F (xj), N + 1 ≤ j ≤ N + M.(13)

Plugging the ansatz (11) into both (12) and (13) gives the following.
Definition 3.7 (mixed interpolation problem). Let u : Ω → R be the solution

of (1) and (3). Let X1 = {x1, . . . , xN} ⊆ Ω and X2 := {xN+1, . . . , xN+M} ⊆ ∂Ω be
two sets of pairwise distinct points. Then the collocation reconstruction s of u based
upon X1 and X2 and the kernel Φ is given by (11), where the coefficient vector is

determined by solving the linear system Ãα = β, with the interpolation matrix

(14) Ã :=

(
A C
CT A0

)
∈ R

(N+M)×(N+M)

having submatrices A = (aij) ∈ R
N×N , C = (cij) ∈ R

N×M , and A0 = (a0
ij) ∈ R

M×M

with elements

ai,j = (δxi
◦ L)x(δxj

◦ L)yΦ(x, y),

ci,�−N = (δxi ◦ L)x(δx�
◦ L0)yΦ(x, y),

a0
k−N,�−N = (δxk

◦ L0)x(δx�
◦ L0)yΦ(x, y)

for 1 ≤ i, j ≤ N, N + 1 ≤ k, 
 ≤ N + M .
The right-hand side of the linear system is determined by βj = f(xj) for 1 ≤ j ≤

N and βj = F (xj) for N + 1 ≤ j ≤ N + M , respectively.
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As in the case of one operator, it is easy to show that the functionals λj , this
time defined by (10), are linearly independent.

Proposition 3.8. Suppose Φ : R
n → R is a reproducing kernel of W τ

2 (Rn)
with τ > m + n/2. Let L be a linear differential operator of degree m. Let X1 =
{x1, . . . , xN} ⊆ Ω and X2 = {xN+1, . . . , xN+M} ⊆ ∂Ω be two sets of pairwise distinct
points such that X1 contains no singular point of L. Then, the functionals Λ =
{λ1, . . . , λN+M} with λj = δxj ◦L for 1 ≤ j ≤ N and λj = δxj for N+1 ≤ j ≤ N+M
are linearly independent over W τ

2 (Rn).
Next we turn to error estimates. To this end we have to make certain further

assumptions on the boundary.
We will assume that the bounded region Ω ⊆ R

n has a Ck,s-boundary ∂Ω, where
τ = k + s with k ∈ N0 and s ∈ [0, 1). This means, in particular, that ∂Ω is an n− 1
dimensional Ck,s-submanifold of R

n. It also means that Ω is Lipschitz continuous
and satisfies the cone condition. For details, we refer the reader to [27].

We will represent the boundary ∂Ω by a finite atlas consisting of Ck,s-diffeomor-
phisms with a slight abuse of terminology. To be more precise, we assume that
∂Ω ⊆ ∪K

j=1Vj , where Vj ⊆ R
n are open sets. Moreover, the sets Vj are images of

Ck,s-diffeomorphisms

ϕj : B → Vj ,

where B = B(0, 1) denotes the unit ball in R
n−1. Finally, suppose {wj} is a partition

of unity with respect to {Vj}. Then the Sobolev norms on ∂Ω can be defined via

‖u‖p
Wμ

p (∂Ω)
=

K∑
j=1

‖(uwj) ◦ ϕj‖pWμ
p (B)

.

It is well known that this norm is independent of the chosen atlas {Vj , ϕj}, but this is
of less importance here since we will assume that the atlas is fixed. For us, the next
well known result will play a crucial role.

Lemma 3.9 (trace theorem [27, Theorem 8.7]). Suppose Ω ⊆ R
n is a bounded

region with a Ck,s-boundary ∂Ω. Then, the restriction of u ∈ W τ
2 (Ω) with τ = k + s

to ∂Ω is well defined, belongs to W
τ−1/2
2 (∂Ω), and satisfies

‖u‖
W

τ−1/2
2 (∂Ω)

≤ C‖u‖W τ
2 (Ω).

Moreover, we now have two different mesh norms, hX1,Ω for the domain part and
hX2,∂Ω for the boundary part. Using the atlas {Vj , ϕj}, we simply define the latter
to be

hX2,∂Ω := max
1≤j≤K

hTj ,B

with Tj = ϕ−1
j (X2 ∩ Vj) ⊆ B. As mentioned before, we will assume the atlas is fixed

and hence will not be concerned about the dependence of hX2,∂Ω on the atlas.
Theorem 3.10. Suppose Φ is the reproducing kernel of W τ

2 (Rn) with k := �τ
 >
m+n/2. Let Ω ⊆ R

n be a bounded domain having a Ck,s-boundary. Let L be a linear
differential operator of order m with coefficients cα in W k−m+1

∞ (Ω). Finally, let s be
the generalized interpolant to u ∈ W τ

2 (Ω) from Definition 3.7. If the data sets have
sufficiently small mesh norms, then for 1 ≤ p ≤ ∞, the error estimates

‖Lu− Ls‖Lp(Ω) ≤ Ch
τ−m−n(1/2−1/p)+
X1,Ω

‖u‖W τ
2 (Ω),(15)

‖u− s‖Lp(∂Ω) ≤ Ch
τ−1/2−(n−1)(1/2−1/p)+
X2,∂Ω ‖u‖W τ

2 (Ω)(16)
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are satisfied.
Proof. Estimate (15) follows as in Theorem 3.5. For the second estimate, note

that the functions uj = ((u − s)wj) ◦ ϕj belong to W
τ−1/2
2 (B) and vanish on Tj .

Hence, using the definition of the Sobolev norm on ∂Ω and Theorem 2.5 yields

‖u− s‖pLp(∂Ω) =

K∑
j=1

‖uj‖pLp(B)

≤ C

K∑
j=1

h
p(τ−1/2−(n−1)(1/2−1/p)+)
Tj ,B

‖uj‖p
W

τ−1/2
2 (B)

≤ Ch
p(τ−1/2−(n−1)(1/2−1/p)+)
X2,∂Ω ‖u− s‖p

W
τ−1/2
2 (∂Ω)

≤ Ch
p(τ−1/2−(n−1)(1/2−1/p)+)
X2,∂Ω ‖u− s‖pW τ

2 (Ω)

for 1 ≤ p < ∞, and the case p = ∞ is treated in the same fashion. Finally, since s
is a norm-minimal interpolant, the norm in the last expression can again be bounded
by the norm of u.

The two most important estimates for the boundary part are hence

‖u− s‖L∞(∂Ω) ≤ Ch
τ−n/2
X2,∂Ω‖u‖W τ

2 (Ω),

‖u− s‖L2(∂Ω) ≤ Ch
τ−1/2
X2,∂Ω‖u‖W τ

2 (Ω).

The proof of Theorem 3.10 shows that the following alternative version of Theo-
rem 3.10 is also true.

Corollary 3.11. Suppose Γ ⊆ ∂Ω is a part of the boundary satisfying

(17) Γ =

J⋃
j=1

(Vj ∩ ∂Ω).

This means, that the first J charts {Vj , ϕj}Jj=1 are exclusive for Γ, or that, for 1 ≤
j ≤ J , Vj ∩ (∂Ω \Γ) = 0. Suppose further that the boundary collocation points X2 are
chosen only on Γ, while the interior points are still chosen in Ω; then estimate (15)
remains valid and (16) becomes

(18) ‖u− s‖Lp(Γ) ≤ Ch
τ−1/2−(n−1)(1/2−1/p)+
X2,Γ

‖u‖W τ
2 (Ω),

where hX2,Γ = max1≤j≤L hTj ,B with Tj defined as before.
As a matter of fact, neither condition (17) nor the fact that X2 ⊆ Γ are necessary

to derive (18). But if (17) is not satisfied, the fill distance hX2,Γ might be larger than
necessary if X2 is chosen only from Γ. On the other hand, if X2 is dense on all of ∂Ω,
then, of course, (16) implies (18).

Considering again the compactly supported functions Φ = ψ�,k(‖ · ‖2), i.e., choos-
ing τ = k + (n + 1)/2, gives this time the following corollary.

Corollary 3.12. Let k > m − 1/2 if n is odd or k > m if n is even. Let

cα ∈ W
k−m+1+�n+1

2 	
∞ . Suppose u ∈ W

k+(n+1)/2
2 (Ω). Then, employing Wendland’s
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compactly supported basis functions yields

‖Lu− Ls‖L∞(Ω) ≤ Ch
k−m+1/2
X1,Ω

‖u‖
W

k+(n+1)/2
2 (Ω)

,(19)

‖u− s‖L∞(∂Ω) ≤ Ch
k+1/2
X2,∂Ω‖u‖Wk+(n+1)/2

2 (Ω)
.(20)

A similar statement holds also for Γ ⊂ ∂Ω; cf. Corollary 3.11.

3.3. Elliptic PDEs. We now consider the following elliptic operator of second
order in a bounded domain Ω ⊂ R

n with a sufficiently smooth boundary

Lu(x) :=

n∑
i,j=1

aij(x)∂i,ju(x) +

n∑
i=1

bi(x)∂iu(x) + c(x)u(x),(21)

where a, b, and c are bounded, aij(x) = aji(x) (symmetry), and c(x) ≤ 0 holds for
all x ∈ Ω. Moreover, let L be strictly elliptic; i.e., there is a constant λ > 0 such that

λ‖ξ‖2
2 ≤

n∑
i,j=1

aij(x)ξiξj

for all x ∈ Ω and ξ ∈ R
n. Then, if u ∈ C0(Ω) ∩ C2(Ω) is the solution of (1) and (3),

it enjoys the following estimate (see [12, Theorem 3.7]):

(22) ‖u‖L∞(Ω) ≤ ‖F‖L∞(∂Ω) +
C

λ
‖f‖L∞(Ω),

where the constant C depends on the diameter of Ω and on ‖b‖L∞(Ω)/λ. This, together
with Theorem 3.10, immediately yields the next result.

Corollary 3.13. Assume that the solution u belongs to W τ
2 (Ω) with �τ
 >

2+n/2. Then, the error between u and its collocation approximation s can be bounded
by

‖u− s‖L∞(Ω) ≤ C
(
h
τ−2−n/2
X1,Ω

+ h
τ−n/2
X2,∂Ω

)
‖u‖W τ

2 (Ω)

≤ Ch
τ−2−n/2
X ‖u‖W τ

2 (Ω),

where hX = max{hX1,Ω, hX2,∂Ω}.
Note that this result unfortunately means that we have to choose a higher data

density in the interior than on the boundary.

The result for the compactly supported functions is

‖u− s‖L∞(Ω) ≤ C
(
h
k−3/2
X1,Ω

+ h
k+1/2
X2,∂Ω

)
‖u‖

W
k+(n+1)/2
2 (Ω)

.

In the case of constant coefficients, i.e., aij(x) = aij , bi(x) = bi and c(x) = c for
all x ∈ Ω, this result was obtained in [6] using a transformation theorem. Our result,
however, also holds for nonconstant coefficients and is mainly a simple application of
Theorem 3.10.
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4. Dynamical systems.

4.1. A short introduction. Consider the ordinary differential equation

ẋ =
dx

dt
= g(x),(23)

where g ∈ Cσ(Rn,Rn), σ ≥ 1, and x(t) ∈ R
n. We search for solutions x(t), t ≥ 0, of

the initial value problem (23), x(0) = ξ. We denote these solutions also by Stξ := x(t).
Since g is at least C1, we have existence and uniqueness of solutions of this initial
value problem locally in time.

Since one cannot calculate the solutions of (23) in general, from the viewpoint
of dynamical systems theory we are interested in the qualitative long-time behavior
of solutions. Therefore, one studies simple solutions such as equilibria, i.e., solutions
which are constant in time.

Definition 4.1. x0 ∈ R
n is called an equilibrium for (23) if g(x0) = 0. Then

Stx0 = x0 for all t ≥ 0; i.e., the constant function x(t) = x0 is a solution of (23).
The concept of stability describes the behavior of solutions near the equilibrium

x0. Stability can be analyzed using the linearization of g at x0.
Proposition 4.2. Let x0 ∈ R

n be an equilibrium for (23). If all eigenvalues of
the Jacobian Dg(x0) have a negative real part, then x0 is asymptotically stable.

For the rest of this section we assume that x0 is an equilibrium such that all
eigenvalues of Dg(x0) have a negative real part. For such an asymptotically stable
equilibrium x0 we can define the basin of attraction A(x0). Note that A(x0) �= ∅ and
A(x0) is open.

Definition 4.3. Let x0 ∈ R
n be an asymptotically stable equilibrium for (23).

Then we define the basin of attraction as A(x0) := {ξ ∈ R
n | limt→∞ Stξ = x0}.

A method to determine subsets of the basin of attraction is the method of Lya-
punov functions; cf. [16]. The main characteristic of a Lyapunov function V ∈
C1(Rn,R) is that its orbital derivative V ′(x) is negative.

Definition 4.4. Given a function V ∈ C1(Rn,R) its orbital derivative with
respect to (23) is defined as V ′(x) := 〈∇V (x), g(x)〉 =

∑n
j=1 ∂jV (x)gj(x).

The orbital derivative is the derivative along a solution of (23) due to the chain
rule:

d

dt
V (x(t)) = 〈∇V (x(t)), ẋ(t)〉 =

n∑
j=1

(∂jV )(x(t))gj(x(t)) = V ′(x(t)).

Note that the orbital derivative is a linear differential operator of first order of the
form (2):

LV (x) = V ′(x) =

n∑
i=1

gi(x)∂iV (x).

Here, the singular points, i.e., those points where (δx ◦ L) = 0, are simply the equi-
librium points, i.e., those points satisfying g(x) = 0.

The following theorem explains the use of Lyapunov functions for the determina-
tion of the basin of attraction.

Theorem 4.5 (see [11, Theorem 2.24]). Let s ∈ C1(Rn,R) and K ⊂ R
n be a

compact set with neighborhood B such that x0 ∈
◦
K. Furthermore, let

1. K = {x ∈ B | s(x) ≤ R} with an R ∈ R; i.e., K is a sublevel set of s.
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2. s′(x) < 0 for all x ∈ K \{x0}; i.e., s is decreasing along solutions in K \{x0}.
Then K ⊂ A(x0).

Hence, a Lyapunov function provides information on the basin of attraction
through its sublevel sets. However, it is not easy to find a Lyapunov function for
a general system (23). Although existence of several types of Lyapunov functions is
known, their construction is not easy.

However, for linear differential equations, i.e., g(x) is linear, one can easily calcu-
late a Lyapunov function. For a nonlinear system we consider the linearized system at
the equilibrium point, namely, ẋ = Dg(x0)(x−x0). This is a linear system and, thus,
one can easily calculate a Lyapunov function of the form v(x) = (x− x0)

TC(x− x0),
where the positive definite matrix C is the unique solution of the matrix equation
Dg(x0)

TC +CDg(x0) = −I; cf. [22]. The function v is a Lyapunov function not only
for the linearized system but also for the nonlinear system in a neighborhood of x0;
for details, cf. [11].

Lemma 4.6 (local Lyapunov function). Let x0 be an equilibrium of ẋ = g(x)
such that all eigenvalues of Dg(x0) have a negative real part. Denote by C ∈ R

n×n

the unique solution of the matrix equation Dg(x0)
TC +CDg(x0) = −I and define the

local Lyapunov function

v(x) = (x− x0)
TC(x− x0).

Then there is a compact set K with a neighborhood B such that x0 ∈
◦
K. Moreover,

v′(x) < 0 holds for all x ∈ K \ {x0} and K = {x ∈ B | v(x) ≤ R} with R > 0.

We return to Lyapunov functions which have a negative orbital derivative for all
x ∈ A(x0)\{x0}. We consider special Lyapunov functions satisfying certain equations
for their orbital derivatives. In the first part of Theorem 4.8 below, a feasible candidate
is given by p(x) = ‖x− x0‖2

2. For the second part we need the following definition.

Definition 4.7 (noncharacteristic hypersurface [11, Definition 2.36]). Let h ∈
Cσ(Rn,R). The set Γ ⊂ R

n is called a noncharacteristic hypersurface if

• Γ is compact,
• h(x) = 0 holds if and only if x ∈ Γ,
• h′(x) < 0 holds for all x ∈ Γ, and
• for each x ∈ A(x0) \ {x0} there is a time θ(x) ∈ R such that Sθ(x)x ∈ Γ.

An example of a noncharacteristic hypersurface is a level set of the local Lyapunov
function; cf. Lemma 4.6.

Theorem 4.8 (see [11, Theorems 2.38 and 2.46]). Consider (23) with g ∈
Cσ(Rn,Rn) and let x0 be an equilibrium such that all eigenvalues of Dg(x0) have
a negative real part.

1. Let p(x) ∈ Cσ(Rn,R) satisfy the following conditions:
(a) p(x) > 0 for x �= x0.
(b) p(x) = O(‖x− x0‖η2) with η > 0 for x → x0.
(c) For all ε > 0, p has a lower positive bound on R

n \B(x0, ε).
Then there exists a Lyapunov function V1 ∈ Cσ(A(x0),R) such that V1(x0) =
0 and

LV1(x) = f1(x) := −p(x) for all x ∈ A(x0).
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2. Let c > 0, let Γ be a noncharacteristic hypersurface (see Definition 4.7),
and let F ∈ Cσ(Γ,R). Then there is a Lyapunov function V2 ∈ Cσ(A(x0) \
{x0},R) such that

LV2(x) = f2(x) := −c for all x ∈ A(x0) \ {x0},

V2(x) = F (x) for all x ∈ Γ.

4.2. Approximating Lyapunov functions. Theorem 4.8 shows two possibili-
ties for approximating Lyapunov functions. We can use the first part to approximate
V1 by solving the problem

Ls1(x) = LV1(x) = −p(x), x ∈ A(x0).

This is an example of an operator problem of type (1), and our theory from section 3.1
applies.

On the other hand, the second part of Theorem 4.8 implies to solve the boundary
value problem

Ls2(x) = f2(x) = −c, x ∈ A(x0) \ {x0},

s2(x) = F (x), x ∈ Γ,

such that we can use our theory from section 3.2.
However, in both cases the application of our error estimates now has a different

character. An error bound of the form |LV (x) − Ls(x)| = |V ′(x) − s′(x)| < ε leads
to s′(x) ≤ V ′(x) + ε < 0, provided that ε is sufficiently small. Remember that V , as
a Lyapunov function, satisfies V ′(x) < 0. Hence, in this case s is itself a Lyapunov
function.

However, for the specific choices of Lyapunov functions from Theorem 4.8 we have
a problem if x is close to x0. In the first case, V ′

1(x) = f1(x) = −p(x) and p(x) → 0
as x → x0. Hence, this estimate will not hold near x0 and thus s′1 may be positive
near x0. The same problem arises for the approximation s2 of V2, since V2 is not
defined in x0. Fortunately, locally it is easy to determine the basin of attraction by
linearization; cf. Lemma 4.6.

Before we can apply the results of this paper to the calculation of Lyapunov
functions, we need some information about the level sets of Lyapunov functions. We
assume that g is bounded in A(x0). This can easily be achieved by considering

the system ẋ = h(x) := g(x)
1+‖g(x)‖2 . Note that ‖h(x)‖ ≤ 1

2 . This system has the

same equilibria and basins of attraction as system (23) since h(x) is obtained by
multiplication of g(x) by a positive, scalar factor; i.e., the orbits of both systems are
the same, but the velocities are different.

Theorem 4.9 (see [11, Corollary 2.43, Proposition 2.44, and Theorem 2.46]).
Let x0 be an equilibrium of ẋ = g(x), g ∈ Cσ(Rn,Rn), σ ≥ 1, and let the maximal
real part of all eigenvalues of Dg(x0) be negative. Let g be bounded in A(x0) and let
V = Vi, i = 1, 2, be one of the functions of Theorem 4.8.

Then for all r > 0 the set {x ∈ A(x0) \ {x0} | V (x) ≤ r} ∪ {x0} is compact.
Moreover, there is a Cσ-diffeomorphism

φ ∈ Cσ(Sn−1, {x ∈ A(x0) | V (x) = r}),

where Sn−1 = {x ∈ R
n | ‖x‖2 = 1}. For V2 we have limx→x0 V2(x) = −∞.
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In the second case V2, one first has to link the function V2 to a local Lyapunov
function to obtain the above theorem. For details, see [11].

In order to apply the results of section 3 to approximate the functions V1, V2 of
Theorem 4.8, we have to choose a set Ω in an appropriate way such that Ω has a
smooth boundary.

Theorem 4.10. Let k := �τ
 > 1 + n/2 and σ := �τ�. Consider the dynamical
system defined by the ordinary differential equation ẋ = g(x), where g ∈ Cσ(Rn,Rn).
Let x0 ∈ R

n be an equilibrium such that the real parts of all eigenvalues of Dg(x0)
are negative. Let g be bounded in A(x0) and denote by V1 ∈ W τ

2 (A(x0),R), V2 ∈
W τ

2 (A(x0) \ {x0},R) the Lyapunov functions of Theorem 4.8.
1. The reconstruction s1 of the Lyapunov function V1 with respect to the operator

Lu(x) = 〈∇u(x), g(x)〉 and a set X ⊆ Ω := {x ∈ A(x0) | V1(x) ≤ r} \ {x0},
r > 0, satisfies

‖s′1 − V ′
1‖L∞(Ω) = ‖s′1 + p‖L∞(Ω) ≤ Ch

τ−1−n/2
X ‖V1‖W τ

2 (Ω).

2. Let Γ = {x ∈ A(x0)\{x0} | h(x) = 0} be a noncharacteristic hypersurface and
set Ω = {x ∈ A(x0) \ {x0} | V2(x) ≤ r and h(x) ≥ 0}, where r > 0 is large
enough such that {x ∈ A(x0) \ {x0} | V2(x) = r}∩Γ = ∅. The reconstruction
s2 of V2 with respect to the boundary value problem Lu(x) = 〈∇u(x), g(x)〉,
u(x) = 0 = F (x) for Γ and the data sites X1 ⊂ Ω and X2 ⊂ Γ satisfies

‖s′2 − V ′
2‖L∞(Ω) = ‖s′2 + c‖L∞(Ω) ≤ Ch

τ−1−n/2
X1,Ω

‖V2‖W τ
2 (Ω),

‖s2 − V2‖L∞(Γ) = ‖s2‖L∞(Γ) ≤ Ch
τ−n/2
X2,Γ

‖V2‖W τ
2 (Ω).

Proof. Note that the data sites xj , 1 ≤ j ≤ N , are no singular points, i.e.,
g(xj) �= 0 or equilibria in this case, since there are no equilibria in A(x0) \ {x0}.

1. We apply Theorem 3.5 with m = 1. The set Ω is bounded and has a smooth
boundary by Theorem 4.9 and thus satisfies the conditions of Theorem 3.5;
cf. [27]. The functions cα are gj ∈ Cσ(Rn,R) and thus are in W k

∞(Ω).
2. We apply Corollary 3.11 with m = 1. The sets Ω and Γ ⊂ ∂Ω are bounded and

Ω has a smooth boundary by Theorem 4.9 (see also [27]). Thus the conditions
of Corollary 3.11 are satisfied. The functions cα are gj ∈ Cσ(Rn,R) and thus
are in W k

∞(Ω).
The calculation of the interpolation matrix A in Definition 3.1 can easily be

achieved for radial basis functions, in particular for Wendland’s compactly supported
ones; cf. [11, Proposition 3.5 and Table 3.1].

Corollary 4.11. Denote by k the smoothness index of the compactly supported
Wendland function. Let k > 1

2 if n is odd or k > 1 if n is even. Set τ = k + (n + 1)/2
and σ = �τ�. Consider the dynamical system defined by the ordinary differential
equation ẋ = g(x), where g ∈ Cσ(Rn,Rn). Let x0 ∈ R

n be an equilibrium such that
all eigenvalues of Dg(x0) have a negative real part. Let g be bounded in A(x0) and
denote by V1 ∈ W τ

2 (A(x0),R) and V2 ∈ W τ
2 (A(x0) \ {x0},R) the Lyapunov functions

of Theorem 4.8.
1. The reconstruction s1 of the Lyapunov function V1 with respect to the operator

Lu(x) = 〈∇u(x), g(x)〉 and a set X ⊆ Ω := {x ∈ A(x0) | V1(x) ≤ r} \ {x0},
r > 0, satisfies

‖s′1 − V ′
1‖L∞(Ω) = ‖s′1 + p‖L∞(Ω) ≤ Ch

k− 1
2

X ‖V1‖Wk+(n+1)/2
2 (Ω)

.(24)
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2. Let Γ = {x ∈ A(x0)\{x0} | h(x) = 0} be a noncharacteristic hypersurface and
set Ω = {x ∈ A(x0) \ {x0} | V2(x) ≤ r and h(x) ≥ 0}, where r > 0 is large
enough such that {x ∈ A(x0) \ {x0} | V2(x) = r}∩Γ = ∅. The reconstruction
s2 of V2 with respect to the boundary value problem Lu(x) = 〈∇u(x), g(x)〉,
u(x) = 0 = F (x), for Γ and the sets of data sites X1 ⊂ Ω and X2 ⊂ Γ
satisfies

‖s′2 − V ′
2‖L∞(Ω) ≤ Ch

k− 1
2

X1,Ω
‖V2‖Wk+(n+1)/2

2 (Ω)
,(25)

‖s2 − V2‖L∞(Γ) ≤ Ch
k+ 1

2

X2,Γ
‖V2‖Wk+(n+1)/2

2 (Ω)
.(26)

Proof. Apply Corollaries 3.6, 3.11, and 3.12, respectively, with m = 1.
The method described in this paper has already been used in [8, 9, 10, 11]. How-

ever, the approximation orders derived in those papers were based on Taylor approx-
imation of first order, and hence the results in those papers were significantly worse
than the results of Corollary 4.11.

The theorems and corollaries of this section, in particular (24) and (25), ensure
that the approximation of the Lyapunov functions V1 and V2 produces functions s1,
s2, respectively, with negative orbital derivatives in Ω if the data sites are dense
enough. For the remaining neighborhood of the equilibrium x0 we use a local Lya-
punov function; cf. Lemma 4.6. We can combine the approximated function s and the
local Lyapunov function v to a new Lyapunov function s̃ such that s̃′(x) < 0 holds
for all x ∈ Ω \ {x0} and such that level sets of s are level sets of s̃.

However, since Theorem 4.5 requires a sublevel set of s within the region where
s′(x) < 0, we need information about the level sets of the approximants s. Here we
make use of the estimate for s2 on Γ; cf. (26). The following theorem shows that
we can cover each compact subset K̃ of the basin of attraction with a sublevel set
of s, and thus the approximation method finds every compact subset of the basin of
attraction, provided that the sets Ω and Γ are chosen appropriately and the data sites
are dense enough.

Theorem 4.12 (see [11, Theorems 5.1 and 5.3]).

1. Let K̃ be a compact set with x0 ∈
◦
K̃ ⊂ K̃ ⊂ A(x0). Let s1 be an approxi-

mation of V1 as in Corollary 4.11 with Ω := {x ∈ A(x0) | V1(x) ≤ r} \ {x0},
where r > 0 is large enough and hX is small enough.
Then there is a ρ ∈ R with K̃ ⊂ {x ∈ Ω | s1(x) ≤ ρ}.

2. Let K̃ be a compact set with x0 ∈
◦
K̃ ⊂ K̃ ⊂ A(x0). Let s2 be an approxima-

tion of V2 as in Corollary 4.11 with Ω = {x ∈ A(x0) \ {x0} | V2(x) ≤ r and
h(x) ≥ 0}, where r > 0 is large enough and hX1 and hX2 are small enough.
Set U = {x ∈ A(x0) | h(x) ≤ 0}.
Then there is a ρ ∈ R with K̃ ⊂ U ∪ {x ∈ Ω | s2(x) ≤ ρ}.

The proof of 2 compares level sets of s2 with level sets of V2 using estimate (26)
on Γ and (25) along solutions. For 1 we can derive an estimate near x0 since V1 is
defined and smooth at x0; then we use the estimate (24) along solutions.

4.3. Example. As an example we consider the dynamical system given by{
ẋ = −x− 2y + x3,

ẏ = −y + 1
2x

2y + x3
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Fig. 1. The grid XN (plus signs), the basin of attraction bounded by the black periodic orbit,
and the set {(x, y) ∈ R

2 | s′(x, y) = 0} (grey dotted lines) with the approximation s of the function
V , where V ′(x, y) = −x2 − y2 with the Wendland function ψ4,2(2/3‖x‖2) and the grid distance α.
Left: α = 0.4; middle: α = 0.2; right: α = 0.1.

and denote the right-hand side by g(x, y). The system has an asymptotically stable
equilibrium at (0, 0) with Jacobian

Dg(0, 0) =

(
−1 −2

0 −1

)
.

For a local Lyapunov function (cf. Lemma 4.6), we calculate the unique solution C of
the matrix equation Dg(0, 0)TC + CDg(0, 0) = −I, which is given by

C =

⎛⎜⎜⎝
1

2
−1

2

−1

2

3

2

⎞⎟⎟⎠ .

The basin of attraction A(0, 0) is bounded by an unstable periodic orbit which we
have calculated numerically. We approximate the function V1 satisfying V ′

1(x, y) =

−x2 − y2. We use a hexagonal grid of the form α[j (1, 0)
T

+ k( 1
2 ,

√
3

2 )T ] for the data
sites. Then the mesh norm is h = α/2. Since we have to avoid singular points we
must exclude the origin. We use three different grids with parameters α1 = 0.1,
α2 = 0.2, and α3 = 0.4 and two different Wendland functions as radial basis functions
Φ(x) = ψk,l(c‖x‖2) with c = 2/3 and k = 2, 3; cf. Figures 1 and 2.

We consider the grid 0.1[j (1, 0)
T

+ k( 1
2 ,

√
3

2 )T + ( 3
4 ,

√
3

4 )T ]. These grid points are
in between the grid points of the smallest grid above. We calculate the maximal error
on this grid. By our error analysis the errors ek,α and ek,2α should behave as

ek,2α
ek,α

≈ (2α)k−1/2

(α)k−1/2
= 2k−1/2

(cf. (24)), which is approximately reflected in our numerical results; see Table 1.
For the basin of attraction, however, the level sets of s are also important. Even

if the set, where s′ is negative, is large, a subset of the basin of attraction is given only
by a sublevel set of s within this region. For one example we have calculated such a
sublevel set and have compared it to the sublevel set of the local Lyapunov function;
see Figure 3. If the function g is bounded in the basin of attraction, then one can
cover each given compact set in A(x0) with a sublevel set of s, where the data sites
are dense enough; see Theorem 4.12.
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Fig. 2. The grid XN (plus signs), the basin of attraction bounded by the black periodic orbit,
and the set {(x, y) ∈ R

2 | s′(x, y) = 0} (grey dotted lines) with the approximation s of the function
V , where V ′(x, y) = −x2 − y2 with the Wendland function ψ5,3(2/3‖x‖2) and the grid distance α.
Left: α = 0.4; middle: α = 0.2; right: α = 0.1.
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Fig. 3. Left: The local Lyapunov function v(x) = xTCx: level set v′(x) = 0 (grey dotted lines)
and a sublevel set {x ∈ R

2 | v(x) ≤ 0.37} which is a subset of the basin of attraction. Middle: The
calculated Lyapunov function s (k = 3, α = 0.1): level set s′(x) = 0 (grey dotted lines) and a sublevel
set {x ∈ R

2 | s(x) ≤ −0.5} which is a subset of the basin of attraction. Right: Comparison of the
subsets obtained by the local Lyapunov function v (small black ellipse), the calculated Lyapunov
function s (large black set), and the whole basin of attraction (grey dotted lines).

Table 1

The approximation error eα = maxx∈X3
‖s′1(x)−V ′

1(x)‖2, where X3 is a dense grid for different
Wendland functions ψk+2,k and different grids with mesh norm α for the example discussed in this

section. The ratio of the errors eα is compared to the theoretical bound 2k−1/2 of Corollary 4.11,
(24).

k / α 0.4 0.2 0.1 e0.4/e0.2 e0.2/e0.1 2k−1/2

2 0.8862 0.4641 0.1814 1.9094 2.5592 2.8284

3 1.1308 0.4265 0.1041 2.6516 4.0960 5.6569
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LOCALLY CONSERVATIVE FLUXES FOR THE CONTINUOUS
GALERKIN METHOD∗

BERNARDO COCKBURN† , JAYADEEP GOPALAKRISHNAN‡ , AND HAIYING WANG†

Abstract. The standard continuous Galerkin (CG) finite element method for second order el-
liptic problems suffers from its inability to provide conservative flux approximations, a much needed
quantity in many applications. We show how to overcome this shortcoming by using a two-step
postprocessing. The first step is the computation of a numerical flux trace defined on element inter-
faces and is motivated by the structure of the numerical traces of discontinuous Galerkin methods.
This computation is nonlocal in that it requires the solution of a symmetric positive definite system,
but the system is well conditioned independently of mesh size, so it can be solved at asymptoti-
cally optimal cost. The second step is a local element-by-element postprocessing of the CG solution
incorporating the result of the first step. This leads to a conservative flux approximation with con-
tinuous normal components. This postprocessing applies for the CG method in its standard form
or for a hybridized version of it. We present the hybridized version since it allows easy handling
of variable-degree polynomials and hanging nodes. Furthermore, we provide an a priori analysis of
the error in the postprocessed flux approximation and display numerical evidence suggesting that
the approximation is competitive with the approximation provided by the Raviart–Thomas mixed
method of corresponding degree.

Key words. continuous Galerkin methods, conforming finite element method, hybridization,
elliptic problems, conservation
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1. Introduction. In this paper, we revisit the classical finite element method
[13, 20], otherwise known as the continuous Galerkin (CG) method, for second order
elliptic problems, with the intention of showing how to overcome what is perhaps
its main disadvantage, namely, the discontinuity of the normal component of the
approximate flux across element interfaces. We show how to achieve this by means of
an efficient postprocessing of the approximate solution provided by the CG method.
We also show that the postprocessed flux is competitive with the flux provided by the
Raviart–Thomas mixed method of corresponding degree.

We illustrate our technique in the framework of the model second order elliptic
boundary value problem

−∇ · (a∇u) = f on Ω,(1.1a)

u = g on ΓD,(1.1b)

−a∇u · n = qN on ΓN .(1.1c)

Here Ω ⊂ R
N is a polyhedral domain (N ≥ 2) with boundary ∂Ω, f ∈ L2(Ω), and

a = a(x) is a symmetric N × N matrix function that is uniformly positive definite

∗Received by the editors July 28, 2006; accepted for publication (in revised form) February 16,
2007; published electronically August 24, 2007.

http://www.siam.org/journals/sinum/45-4/66630.html
†School of Mathematics, University of Minnesota, Vincent Hall, Minneapolis, MN 55455

(cockburn@math.umn.edu, hywang@math.umn.edu). The research of the first author was supported
in part by the National Science Foundation under grant DMS-0411254 and by the University of
Minnesota Supercomputing Institute.

‡Department of Mathematics, University of Florida, Gainesville, FL 32611 (jayg@math.ufl.edu).
This author’s research was supported in part by the National Science Foundation under grants DMS-
0410030 and SCREMS-0619080.

1742



HYBRIDIZATION OF CONTINUOUS GALERKIN METHODS 1743

on Ω with components in L∞(Ω). The boundary conditions are given by functions g
and qN on disjoint subsets ΓD and ΓN of ∂Ω, upon which further assumptions will
be placed shortly. Here and elsewhere we use n to denote the unit outward normal
on the boundary of some domain—the domain will be clear from the context, e.g.,
in (1.1c) it is Ω. As is well known, this boundary value problem models a wide range
of problems of practical interest from electromagnetics to heat dissipation and flow in
porous media.

To facilitate the discussion of the results, let us introduce our notation for the
CG method right away. Let Th denote a triangulation of the domain Ω, which for
simplicity we assume consists of simplices. Define the space

(1.2) Vh =
{
v ∈ C0(Ω) : v|K ∈ Pk(K) for K ∈ Th

}
,

where C0(D) denotes the space of continuous functions on a domain D. We assume
that ΓD is the union of some mesh faces (edges if N = 2) lying on ∂Ω and that
ΓN = ∂Ω \ ΓD. We assume that g is in the space of traces on ΓD of functions in Vh

and set Vh(g) = {v ∈ Vh : v = g on ΓD} . If a Dirichlet data that is not polynomial
is given, one can proceed by approximating it as usual, but we shall not consider this
case. As is well known, the approximate solution uh of the CG method is the function
in Vh(g) determined by

(1.3) (a∇uh,∇v)Ω = (f, v)Ω − 〈qN , v〉ΓN
for all v ∈ Vh(0).

Here we have used common notation for innerproducts: For scalar functions w and v
on some domain D ⊂ R

N , (w, v)D =
∫

D
w v dx; for vector functions (p, q)D =

∫
D
p ·

q dx; and for functions on domains B formed by lower-dimensional objects like union
of a few mesh faces, 〈η, ζ〉B =

∫
B

η ζ dγ.
It is well known that the CG approximation given by −a∇uh to the flux q =

−a∇u is not conservative. The root of the problem is evident once we write (1.1a)
in conservation form as div q = f . While the flux approximations from mixed and
discontinuous Galerkin (DG) methods satisfy a discrete analogue of this equation, the
CG flux −a∇uh does not. We say that a discrete flux qh approximating the exact
flux q is conservative if the total outward flux across any “discrete subdomain” as
measured by q and qh coincides, or more precisely,

(1.4)

∫
∂Dh

q · n ds =

∫
∂Dh

qh · n ds

for any domain Dh formed by the union of some mesh elements in Th (where n is unit
outward normal on the boundary of Dh). Conservative flux approximations are very
important in many applications, e.g., in oil recovery simulations, more generally in
flows through porous media, and indeed in computational fluid dynamics in general.
The same is true in computational structural mechanics, where mixed and hybrid
methods were devised to cope with its absence in the so-called one-field displacement
method for linear elasticity (which is the CG method for elasticity); see, e.g., the first
paragraph of section 3.3 in [31].

Many researchers have attempted to overcome the lack of conservativity of the
CG flux by generating a better flux through postprocessing. However, a conservative
H(div,Ω)-conforming flux approximation has eluded their efforts for more than three
decades. Let us briefly review what has been achieved to date. In [33], J. Wheeler
showed how to postprocess the CG solution to obtain approximations to the nor-
mal component of q at the boundary of the computational domain. In one space
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dimension, this procedure can be extended to compute approximations to q at all
the nodes. In fact, such approximations were proven by M. Wheeler in [34] to su-
perconverge with order 2 k when using polynomial approximations of degree k. This
solves the problem in the one-dimensional case. In the multidimensional case, how-
ever, the situation is rather different and no H(div,Ω)-conforming approximation of
q has been constructed so far. Moreover, there are only a few theoretical and nu-
merical studies of the approximation given by J. Wheeler’s procedure. In [23], it was
shown that such a procedure provides an approximation that superconverges in the
L2(∂Ω)-norm with order k + 1 for a ≡ 1, and with order k + 1/2 when a is smooth
(under the assumption that Ω is a square endowed with a Cartesian mesh). In [3],
the integral of the normal component of the flux on the whole boundary was proven
to superconverge with order k + 1 when Ω is a curved domain and isoparametric
elements are used, and with order 2k when it is a polyhedron. For numerical stud-
ies, see the references cited in [25]. More importantly, in [25] the CG method was
argued to have the property of local conservativity; see also [26] for an extension of
this approach to the advection-diffusion and incompressible Navier–Stokes equations.
In [9], the so-called superconvergent integral flux postprocessing formula was revisited.
The conservation property was proven and a relation to a Lagrange multiplier mixed
formulation and the associated consistency implications were established. See also
[10] for further work on conservative projections involving multipliers in a different
context. However, none of the approaches used in [25, 9] can be employed to construct
an H(div,Ω)-conforming approximation of the flux, rendering the CG method locally
conservative. (The precise relation between this approach and ours is displayed right
before section 3.2.) In [7], this approach was used (for a = 1 and N = 2) to obtain
an approximation of the integral of the normal component of the flux on an internal
boundary which splits the domain in two; an order of convergence of 2 k was proven
for such an approximation.

In this paper, we show how to obtain a conservative flux approximation qh in
H(div,Ω) that renders the CG method locally conservative. This is done by post-
processing the CG solution uh in two steps. The objective of the first is to compute
a numerical trace q̂h of the flux whose normal component is single-valued on the
interelement boundaries and renders locally conservative the CG method, that is, it
satisfies

−
∑

K∈Th

(a∇uh,∇v)K +
∑

K∈Th

〈q̂h · n, v〉∂K = (f, v)Ω

for all v such that v|K ∈ P�(K) for all K ∈ Th for some � ≤ k. The form of this
numerical trace is similar to that of the corresponding numerical traces of the DG
methods. However, unlike the DG numerical traces, the crucial stabilization term
cannot have the form of a parameter times the jump of the uh, since in our case such
a jump is identically equal to zero. Instead, it is a quantity that belongs to a certain
nonstandard space of jumps and that depends globally on the CG approximation uh.
While the need for this term is far from obvious when approaching from the standard
CG formulation, it becomes clearer from the hybridized form of the CG method, which
uses a space of discontinuous functions that generate the above-mentioned space of
jumps on mesh faces. Because of this, we now face difficulties not encountered in
DG methods: the computation of q̂h requires (i) a local basis representation of the
space of jumps, and (ii) the solution of a global system in that space. We are able
to overcome the former difficulty by extending some techniques developed in [17, 18].
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Although the latter difficulty persists, it turns out that the stiffness matrix of the
global system is symmetric, positive definite, and well conditioned. In particular, we
prove that its condition number is bounded independently of mesh size, so it can be
solved iteratively at asymptotically optimal cost. In [27] a similar but different way of
computing a numerical trace has been proposed; see the discussion before section 3.3.

The second step in the postprocessing is the local element-by-element recovery
of a conservative flux approximation qh throughout the computational domain by a
variation of the so-called Raviart–Thomas (RT) projection [29]. Similar techniques
have been used by [4] in the framework of DG methods for Darcy’s law and by [19]
in the context of DG methods for the Navier–Stokes equations. The flux approxima-
tion qh coincides with the numerical trace q̂h on element boundaries supplied by the
previous step and is lifted to the interior of each element by using the a∇uh in such
a way that

−
∑

K∈Th

(a∇uh,∇v)K +
∑

K∈Th

〈q̂h · n, v〉∂K =
∑

K∈Th

(∇ · qh, v)K = (f, v)Ω

for all v such that v|K ∈ P�(K) for all K ∈ Th for some � ≤ k. We prove that the
resulting approximation qh converges to the exact flux q at the same order of conver-
gence as the approximation provided by the RT mixed method of corresponding order.
Moreover, since the computation of the CG solution requires solving a system that is
smaller in size than the corresponding RT system, our flux computation becomes a
competitive alternative.

In [32], a technique is proposed for computing a locally conservative flux approx-
imation in the domain Ω from its exact divergence in Ω and an approximation of its
normal component on the interelement boundaries. It also proceeds in two steps. In
the first, a locally conservative approximation to the normal component is obtained by
solving a global constrained minimization problem. Then, on each element, the data
on the border is lifted to the interior to obtain the desired flux; a local mixed element
method is used to achieve this. The application of this technique to the CG method
differs from ours in several respects. First of all, the resulting numerical trace does
not render locally conservative the CG method, in the sense defined above. Moreover,
to obtain it, a global constrained minimization problem is to be solved; this has to be
contrasted with our unconstrained minimization problem whose stiffness matrix has
a condition number bounded independently of the mesh size. Finally, to obtain what
we call qh, the approximation uh given by the CG method is not used.

Let us compare our flux qh with the RT flux obtained for the model problem (1.1)
with f = 0, Ω = (0, 1)× (0, 1) and boundary conditions as indicated in Figure 1. Here
a = 0.001Id in the region (.25, .75) × (.25, .75) and a = Id elsewhere (Id denotes
the identity matrix); see Figure 1. We can think of this problem as modeling the
steady state flow of a fluid through a porous medium with permeability given by a.
In Figure 2 we display the streamlines of the approximations to the velocity field
−a∇u for the approximation given by the RT mixed method of order 1 (left) as well
as that given by a postprocessing of the CG method of order 2 (right). The results
are very similar. Notice that the singularity of the flow around the corners of the low
permeability region (.25, .25) × (.75, .75) makes this a hard test problem.

We discuss the postprocessing procedure for a hybridized version of the CG
method, although it can be applied directly to the standard CG formulation. This is
not only because it is easier to understand the first step of the postprocessing using
the hybridized formulation (as mentioned previously), but also because the hybridized
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Boundary conditions:

u = 0 on {(1, y) : y ∈ [0, 1]},

q · n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 {(0, y) : y ∈ [0, .5)},

0 {(0, y) : y ∈ [.5, 1]},
0 {(x, 1) : x ∈ [0, 1]},
0 {(x, 0) : x ∈ [0, 1]}.

Fig. 1. The computational domain Ω = (0, 1)2 with a uniform 8 × 8 mesh. The region of low
permeability is indicated in dark gray.

Fig. 2. Streamlines of the approximate fluxes for the RT1 method (left) and the RT1-
postprocessed CG2 method (right) obtained using a uniform 32 × 32 mesh.

method has interesting features in its own right. The hybridized CG method is ob-
tained as a natural extension of the new perspective introduced in [15] for hybridizing
mixed methods. It can be briefly described in two steps. First, we express the ap-
proximate solution of the CG method uh in terms of the data components (g and f)
and a Lagrange multiplier λh. It turns out that for the CG method, λh is nothing
but the restriction of uh to the faces of the elements of the triangulation. The second
step consists in showing that λh can be characterized as the only element of certain
set Mh(g) satisfying a weak formulation of the form

(1.5) ah(λh, μ) = bh(μ) for all μ ∈ Mh(0).

This formulation was also obtained in [5] with the purpose of devising efficient sub-
structuring preconditioners for the CG method.

Hybridization in the context of mixed methods is different from what goes by the
name of static condensation in the engineering literature, because the former gives
extra information through the Lagrange multiplier, a solution component absent in
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static condensation. However, in the hybridized CG case, the fact that the Lagrange
multiplier λh equals uh on the element interfaces implies that hybridization and static
condensation coincide, except when we have variable degree elements and hanging
nodes. In the static condensation approach, the degrees of freedom of the approximate
solution uh must be very carefully chosen in order to ensure the required continuity
across interelement boundaries. The data structures needed to enforce such continuity
for variable-degree approximations and hanging nodes have attained a high degree of
sophistication; see, for example, [21, 22]. On the other hand, if we use the hybridized
version of the CG method (1.5), there is no need to enforce any continuity constraint
at all. We apply CG on each element without caring about continuity restrictions, as
the continuity is automatically enforced by the equations of the method, provided we
pick a suitable Lagrange multiplier space Mh(0).

The paper is organized as follows. In section 2, we present the hybridized CG
method and briefly discuss the result characterizing λh as the unique solution of (1.5).
We also discuss extensions to the variable-degree case and hanging nodes. In section 3,
we describe the construction of H(div,Ω)-conforming approximation to the flux. We
state the error estimates of the flux approximation and the results on the relationship
between our method and the corresponding RT mixed method. We explain how to
explicitly construct a local basis for the space required to compute a single-valued
numerical flux trace. An estimate of the conditioning of the global system that arises
also appears in this section. In section 4, we give all the proofs of the theorems. A
numerical study of the approximation properties of these approximations is presented
in section 5. We end with some concluding remarks in section 6.

2. Characterization of the Lagrange multiplier. We begin this section by
hybridizing the CG method. We then state, discuss, and prove the main result of this
section, Theorem 2.1, which characterizes the Lagrange multiplier.

2.1. The hybridized CG method. To hybridize the CG method, we relax
the continuity restriction and impose it back through suitably chosen new equations.
Since the continuity restriction is enforced in the sets Vh(·), to relax it means to work
instead with the space

Vh =
{
v ∈ L2(Ω) : v|K ∈ Pk(K) for all K ∈ Th

}
.(2.1a)

The new approximation Uh in Vh must, however, coincide with uh, which means,
in particular, that it has to be continuous. To enforce the continuity of Uh across
interelement boundaries, we force Uh to be equal to the Lagrange multiplier λh, which
we take in

Mh(g) = {μ ∈ C0(Eh) : μ|e ∈ Pk(e) for all e ∈ Eh, μ = g on ΓD},(2.1b)

where

Eh = {e : e is a face of K for all K ∈ Th}.(2.1c)

Notice that we are implicitly assuming that the triangulation Th does not have hanging
nodes. To ensure that Uh = uh, we are going to use an auxiliary variable which
approximates q · n = −a∇u · n on ∂K for each element K. This additional variable
is denoted by qn,h and will be taken in the space

Wh =
{
p ∈ L2({∂K : K ∈ Th}) : p|∂K = v|∂K for v ∈ Vh

}
.(2.1d)
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Note that p ∈ Wh is double-valued in the interior faces of the elements K ∈ Th.
Thus the hybridized method seeks an approximation to (u|K∈Th

, u|Eh
, q ·n|∂K,K∈Th

),
(Uh, λh, qn,h) in the space Vh ×Mh(g) ×Wh. It is defined by∑

K∈Th

(a∇Uh,∇v)K +
∑

K∈Th

〈qn,h, v〉∂K = (f, v)Ω for all v ∈ Vh,(2.2a)

Uh = λh on Eh,(2.2b) ∑
K∈Th

〈qn,h, μ〉∂K = 〈qN , μ〉ΓN
for all μ ∈ Mh(0).(2.2c)

Notice that, by the definition of the space Mh(0), (2.1b), μ = v|Eh
belongs to Mh(0)

whenever v ∈ Vh(0). This implies that the last equation can be rewritten as

〈 [[qn,h]], v〉Eh
= 〈qN , v〉ΓN

for all v ∈ Vh(0),

where the jump of the approximate normal component of the flux is

[[qn,h]] :=

{
qn,h|∂K+ + qn,h|∂K− on the face e = ∂K+ ∩ ∂K−,

qn,h on the face e = ∂K ∩ ∂Ω.

We thus see that it enforces a weak continuity of the interelement boundary of the
jump of this variable; this is why we call it the jump condition. Next, we see that this
condition ensures that Uh = uh.

Proposition 2.1. There exists a unique function (Uh, λh, qn,h) in the space
Vh ×Mh(g) ×Wh satisfying the formulation (2.2). Moreover,

Uh = uh on Ω and λh = uh on Eh.

Proof. Since λh ∈ Mh(g) and Uh ∈ Vh, we have that Uh ∈ Vh(g). Moreover, since
Vh(0) ⊂ Vh, by (2.2a) we have

(a∇Uh,∇v)Ω +
∑

K∈Th

〈qn,h, v〉∂K = (f, v)Ω for all v ∈ Vh(0),

and, by the jump condition (2.2c),

(a∇Uh,∇v)Ω = (f, v)Ω − 〈qN , v〉ΓN
for all v ∈ Vh(0).

By the uniqueness of the approximate of the CG method, we immediately obtain that
Uh = uh on Ω and, as a consequence, that λh = uh on Eh.

It only remains to prove that the function qn,h exists and is unique. This is
equivalent to proving that the trivial solution is the only solution of∑

K∈Th

〈qn,h, v〉∂K = 0 for all v ∈ Vh .

Since qn,h ∈ Wh, there is a w ∈ Vh such that qn,h = w. Taking v = w in the above
equation, we conclude that qn,h ≡ 0, as desired. This completes the proof.
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2.2. Characterization of the Lagrange multiplier λh. Next, we show how
to eliminate the unknowns Uh and qn,h from (2.2) and obtain a formulation only
for λh. The discussion here is a straightforward generalization of well-known results
in domain decomposition [5] to the case when subdomains are reduced to elements.
Analogous to the discrete harmonic extensions of [5], we now define a local lifting.

The lifting associates to each m ∈ Mh(·) the pair of functions (Um ,Qnm ) ∈
Pk(K) × {v|∂K : v ∈ Pk(K)} defined by requiring that

(a∇Um ,∇v)K + 〈Qnm , v〉∂K = 0 for all v ∈ Pk(K),(2.3a)

Um = m on ∂K.(2.3b)

In addition, we define a second local mapping that associates to the function f ∈ L2(Ω)
the pair of functions (Uf ,Qnf ) ∈ Pk(K) × {v|∂K , v ∈ Pk(K)} defined by

(a∇Uf ,∇v)K + 〈Qnf , v〉∂K = (f, v)K for all v ∈ Pk(K),(2.4a)

Uf = 0 on ∂K.(2.4b)

Notice that ( Um ,Qnm ) and (Uf ,Qnf ) are approximations to the solutions of

−div(a∇u) = 0, −div(a∇u) = f on K,(2.5a)

u = m, u = 0 on ∂K.(2.5b)

We are now ready to state the characterization of the CG solution in terms of the
Lagrange multiplier, whose proof is at the end of this section.

Theorem 2.1. Let (Uh, λh, qn,h) be the solution of the hybridized version of the
CG method. Then

Uh = Uλh + Uf and qn,h = Qnλh + Qnf .

Moreover, the Lagrange multiplier λh ∈ Mh(g) is the unique solution of∑
K∈Th

(a∇Uλ h,∇Uμ )K = (f, Uμ )Ω − 〈qN , μ〉ΓN
for all μ ∈ Mh(0).

Like other hybridized formulations, the utility of such a result lies in its ease of
computation of a “stiffness matrix” for the Lagrange multiplier. Furthermore, once
λh has been obtained, Uh and qn,h can be easily computed element by element using
the local mappings (2.3) and (2.4).

It is interesting to note that qn,h|∂K is strongly related to what was denoted by
Hh(K) in [25]; in fact, when the element K does not have a face lying on the boundary,
these two quantities are identical. However, in [25] they are used to uncover a local
conservativity property of the CG method, whereas here we use them as an auxiliary
means to hybridize it.

Finally, notice that Theorem 2.1 states that the functions qn,h|∂K need not be
actually computed to construct the matrix equations for the multiplier λh. Indeed,
from the definition of the lifting (2.3), we see that we can independently compute Um
on the element K by solving

(a∇Um ,∇v)K = 0 for all v ∈ Pk(K) such that v = 0 on ∂K,

Um = m on ∂K.
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This implies that Um can be written as a linear combination of

dim Pk(K) − dim Pk−3(K) =

(
k + N

N

)
−
(
k − 3 + N

N

)
basis functions, when k ≥ 3, of course. In two space dimensions (N = 2), this means
that instead of working with a basis of (k + 2)(k + 1)/2 functions, we can work with
a basis of only 3 k functions. In three space dimensions, it means that instead of
working with (k + 3)(k + 2)(k + 1)/6 basis functions, we only have to work with
(3k2 + 3k + 2)/2. Thus, the computation of Um can be rendered extremely efficient,
especially for high polynomial degrees k. This is especially true if the exact solution
is harmonic, that is, if f = 0.

2.3. Variable-degree approximations and hanging nodes. The hybridized
CG formulation is particularly attractive for variable-degree approximate spaces and
meshes with hanging nodes.

We begin by briefly showing how to extend our previous results to the variable-
degree case, that is, to the case in which the approximate solution uh belongs to

Vh(s) =
{
v ∈ C0(Ω) : v|K ∈ Pk(K)(K), v = s on ΓD

}
,

where the polynomial degree k(K) now varies with as K varies within Th. We can
then hybridize the resulting CG method, just as we hybridized the uniform-degree
CG method, if we take

Mh(g) =
{
μ ∈ C0(Eh) : μ|e ∈ Pk(e)(e) for all e ∈ Eh, μ = g on ΓD

}
,(2.6)

Wh =
{
w ∈ L2(Eh) : w = v|∂K , v ∈ Pk(K)(K) for all K ∈ Th

}
,

Vh =
{
v ∈ L2(Th) : v|K ∈ Pk(K)(K) for all K ∈ Th

}
.

With this, the burden of enforcing the continuity constraint is automatically dealt
with by the local mappings which are defined exactly as before with k replaced by
k(K). While the current practice for implementing variable-degree methods is via
transitional basis functions and the minimum degree rule [21], the above hybridization
approach removes the continuity matching considerations from the design of shape
functions.

To end this subsection, let us briefly address the case of hanging nodes, which
is also surprisingly simple to handle by hybridization, even in three dimensions. We
only have to define the multiplier space Mh(g) in a suitable way. In fact, we can
continue to define Mh(g) by (2.6) provided we redefine the set Eh there. To do this,
we need to introduce the notion of a maximal face. A face e of an element K ∈ Th is
said to be a maximal face of the triangulation Th if it lies on ∂Ω or whenever there is
another element K ′ ∈ Th such that e ∩ ∂K ′ has nonzero (N − 1)-Lebesgue measure,
e∩ ∂K ′ is a face of K ′. An illustration is given in Figure 3. The new definition of Eh

is simply

(2.7) Eh = {e : e is a maximal face of the triangulation Th}.

2.4. Proof of Theorem 2.1. To prove this result, we need the following lemma.
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P Q

R

A
B

C

Fig. 3. Detail of a triangulation. The faces RQ, BR, and AB are maximal, whereas the faces
RA and AQ are not.

Lemma 2.2 (elementary identities). We have, for any m ∈ Mh(·), μ ∈ Mh(0),
and f ∈ L2(Ω),

(i) −
∑

K∈Th

〈Qnm , μ〉∂K =
∑

K∈Th

(a∇Um ,∇Uμ )K ,

(ii) −
∑

K∈Th

〈Qnf , μ〉∂K = − (f, Uμ )Ω .

Proof. We have

−
∑

K∈Th

〈Qnm , μ〉∂K = −
∑

K∈Th

〈Qnm , Uμ 〉∂K by (2.3b),

=
∑

K∈Th

(a∇Um ,∇Uμ )K by (2.3a).

This proves the first identity.
Let us prove the second identity. We have

−
∑

K∈Th

〈Qnf , μ〉∂K = −
∑

K∈Th

〈Qnf , Uμ 〉∂K by (2.3b),

= − (f, Uμ )Ω +
∑

K∈Th

(a∇Uf ,∇Uμ )K by (2.4a),

= − (f, Uμ )Ω +
∑

K∈Th

〈Qnμ , Uf 〉∂K by (2.3a),

= − (f, Uμ )Ω by (2.4b).

This completes the proof.
Proof of Theorem 2.1. By the definition of the local mappings, we have that

Uh = Uλh + Uf and qn,h = Qnλh + Qnf .

This implies that the third equation in the definition of the hybridized version of the
CG method (2.2c) can be rewritten as∑

K∈Th

〈Qnλh + Qnf , μ〉∂K = 〈qN , v〉ΓN
for all μ ∈ Mh(0),
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or, by Lemma 2.2, as

−
∑

K∈Th

(a∇Uλh ,∇Uμ )K + (f, Uμ )Ω = 〈qN , v〉ΓN
.

This completes the proof. .

3. An H(div,Ω)-conforming approximation of the flux. In this section,
we define an H(div,Ω)-conforming approximation, qh, to the flux q = −a∇u. Then
we state, discuss, and prove a theorem about the quality of the resulting approxi-
mation as well as the complexity of the algorithm needed to compute it. Although
all considerations in this section hold for the variable degree case, for simplicity we
restrict ourselves to the uniform degree case spaces defined in (2.1) with no hanging
nodes.

3.1. The new approximation to the flux. The key step in the construction of
an H(div,Ω)-conforming approximation qh is the definition of its normal component
on the element interfaces. The function qn,h represents an approximation to the
normal component of the flux, but unfortunately it is not a single-valued function in
general. Notice, however, that by (2.2a), we have∑

K∈Th

(a∇Uh,∇v)K +
∑

K∈Th

〈qn,h, v〉∂K = (f, v)Ω for all v ∈ Vh,

so the possibility of constructing a single-valued function q̂h satisfying

(3.1)
∑

K∈Th

〈q̂h · n, v〉∂K =
∑

K∈Th

〈qn,h, v〉∂K for all v ∈ Vh

opens up. If such a q̂h could be constructed, we could then define the approximate
flux qh as follows: On any simplicial element K, we can set qh in the RT space

VRT�
(K) := P�(K)N + xP�(K)(3.2a)

by requiring that

〈qh · n, v〉e = 〈q̂h · n, v〉e for all v ∈ P�(e) for any face e ⊂ ∂K,(3.2b)

(qh,v)K = −(a∇Uh,v)K for all v ∈ P�−1(K)N .(3.2c)

Note that the definition (3.2) is a modification of the well-known RT projection,
(see (3.12) later). A similar projection was suggested in [4] in the framework of
the interior penalty method for Darcy’s law and in [19] in the framework of local
discontinuous Galerkin methods for the Navier–Stokes equations. It is not difficult
to show that a qh constructed by (3.2b) belongs to H(div,Ω), thanks to the single-
valuedness of the normal component of the numerical trace q̂h.

Such a construction will yield a flux qh that is conservative whenever � ≤ k.
Indeed, we can rewrite (2.2a) as

−
∑

K∈Th

(qh,∇v)K +
∑

K∈Th

〈qh · n, v〉∂K = (f, v)Ω

for all v such that v|K ∈ P�(K) for all K ∈ Th. Hence, if we take v to be the
characteristic function of a discrete subdomain Dh formed by the union of some
elements K ∈ Th, we obtain

〈qh · n, 1〉∂Dh
= (f, 1)Dh

,
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which is the same as the exact conservation property (1.4).
It is interesting to see that there is an extremely simple relation between the

normal component of qh and the approximation Hh(·) defined in [25] or, equivalently,
what is called σ̃h in [9]. Indeed, if D is any union of elements K ∈ Th, then from the
definition of qh and that of Hh(D) (see equations (47) and (57) in [25]), we have that

〈qh · n−Hh(D) , v〉∂D = 0 for all v ∈ Vh,D := {v ∈ Vh ∩ C0(D)}.

Since Hh(D)|∂D belongs to the space of traces on ∂D of the functions in Vh,D, we see
that Hh(D) is the L2-projection of qh · n into such space.

3.2. The numerical trace q̂h. It remains to find the numerical trace q̂h. To
do that, we first notice that if q̂h is single valued, then (3.1) takes the form

〈q̂h , [[vn]]〉Eh
=

∑
K∈Th

〈qn,h, v〉∂K for all v ∈ Vh.

Since the flux on ΓN is given to be qN, incorporating this information into the above
equation, we get

(3.3) 〈q̂h , [[vn]]〉Eh\ΓN
=

∑
K∈Th

〈qn,h, v〉∂K − 〈qN , v〉ΓN
for all v ∈ Vh.

In the one-dimensional case Ω = (0, 1), this equation can be readily solved. In-
deed, we have that

q̂h(xi) =

⎧⎪⎨⎪⎩
qn,h(1−) if xi = 1,

qn,h(x−
i ) = −qn,h(x+

i ) if xi is an interior node,

−qn,h(0+) if xi = 0,

where we have used the fact that, by (2.2c), qn,h(x−
i ) + qn,h(x+

i ) = 0 on all interior
nodes xi. Let us find expressions for qn,h in terms of the data f and uh. By (2.2c),
qn,h = qN on ΓN , and we get that

q̂h = qN on ΓN .

To find qn,h in the remaining nodes, we simply use (2.2a). Thus, if we let xi be any
node not lying on ΓN , and let ϕ+

i (resp., ϕ−
i ) be the linear function with support the

interval I+
i = (xi, xi+1) (resp., I−i = (xi−1, xi)) such that ϕ+

i (xi) = 1 and ϕ+
i (xi+1) =

0 (resp., ϕ−
i (xi) = 1 and ϕ−

i (xi−1) = 0), we obtain that

q̂h(xi) = ∓
(
a
d

dx
uh,

d

dx
ϕ±
i

)
I±
i

± (f, ϕ±
i )I±

i
.

These expressions have been known for a long time; see the work by J. Wheeler [33]
and M. Wheeler [34]. Moreover, in [34], it was shown that the approximation q̂h

superconverges with order 2 k if the CG method uses polynomials of degree k and is
exact, that is,

q̂h(xi) = −a
d

dx
u(xi),

whenever a is a constant.
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Fig. 4. Plots of the error |q − qh| with the wrong flux trace choice on successively refined
meshes. Computational details: Here qh is obtained by (3.2) with q̂h chosen as the unique function
in Jh satisfying (3.3). The parameters are a = Id, f = 0, Ω = (0, 1) × (0, 1), ΓD = {0} × (0, 1), the
polynomial degrees are k = 1 and � = k − 1 (for postprocessing), and the boundary conditions are
set in such a way that the exact solution is u(x, y) = 1 + x. We see that while the error is small far
from the boundary, near the boundary the error remains of order one. Therefore, we expect to see
an order of convergence of 1/2 in the L2-norm. This is confirmed in Table 1.

Extensions of the above approach to the multidimensional case for obtaining
approximations to the normal component of q̂h have been explored by many authors.
See [9] for an overview and recent developments, [8] for early computational tricks,
[11] for a fully developed technique, and [14, 28] for rigorous error estimates.

Here, we do not use this approach. Instead, we begin by noting that from the
formulation (3.3) it is clear that we can only obtain a projection of q̂h into the space
of jumps

(3.4) Jh = { [[wn]]|Eh\ΓN
: w ∈ Vh}.

This may seem to suggest choosing q̂h in Jh. We have experimented with such a
choice. The results of one such experiment are reported in Figure 4 and Table 1. We
found that such a flux approximation is often reasonable away from the boundary, but
near ∂Ω the degradation of the approximation is clearly evident for some problems.
Furthermore, from a theoretical standpoint, such a choice appears dubious as the space
Jh does not contain the constant function. For these reasons, we do not advocate it.

The solution we found practically acceptable as well as theoretically sound pro-
ceeds by borrowing ideas from the development of the DG method. We select the
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Table 1

The L2-norm of the error q − qh when the wrong flux trace is used. The parameters are the
same as those described in Figure 4.

k = 1 k = 2 k = 3

h Error Order Error Order Error Order
1/8 0.11E+00 0.46 0.62E-01 0.41 0.40E-01 0.46
1/16 0.77E-01 0.48 0.45E-01 0.46 0.29E-01 0.48
1/32 0.55E-01 0.49 0.32E-01 0.48 0.21E-01 0.49
1/64 0.39E-01 0.50 0.23E-01 0.49 0.15E-01 0.50

following form for the numerical trace:

q̂h =

⎧⎪⎨⎪⎩
qNn on ΓN ,

−a∇Uh + αJh on ΓD,

−{{a∇Uh}} − β [[a∇Uh · n]] + αJh on Eh \ ∂Ω,

(3.5)

where α and β are single-valued bounded (resp., scalar and vector) functions on
Eh \ ∂Ω, α > 0, and Jh is an element of the space of jumps Jh to be determined.
A typical choice of the parameters that we have found adequate in our numerical
experiments (on uniform meshes) is β ≡ 0 and α ≡ 1 (also see Theorem 3.2 for better
choices of α on highly nonuniform meshes). Here, we have used the now standard DG
notation (cf., e.g., [2]),

{{v}} =

{
1
2 (v+ + v−) on E◦

h,

v on ∂Ω
(3.6a)

and

[[vn]] =

{
v+ n+ + v− n− on E◦

h,

vn on ∂Ω,
(3.6b)

where for a piecewise smooth function v, the traces from either side of a mesh face
(edge) e are denoted by v±(x) = limε↓0 v(x − εn±) for all x in e (and n± denotes
the corresponding unit outward normal on e from either side).

Next, we insert the expression we have selected in (3.5) for the numerical flux q̂h

into (3.3). This gives us an equation for Jh:

〈αJh, [[vn]]〉Eh\ΓN
= 〈 {{a∇Uh}} + β [[a∇Uh · n]], [[vn]]〉Eh\∂Ω(3.7)

+ 〈a∇Uh, vn〉ΓD
+

∑
K∈Th

〈qn,h, v〉∂K − 〈qN , v〉ΓN
.

The computation of Jh from this equation requires solving a global, but well-condi-
tioned, system. The details involved are discussed in the next subsection. For the
moment, observe that if we are using the hybridized form of the CG method and have
already computed Uh and qn,h, the right-hand side of (3.7) can be computed using
integrations only on element boundaries.

On the other hand, if we have computed Uh using a standard CG implementation
without hybridization (and so do not have access to qn,h), we can still use the above
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postprocessing. Indeed, by using (2.2a), we can transform (3.7) into an equation that
is more convenient for this case:

〈αJh, [[vn]]〉Eh\ΓN
= 〈 {{a∇Uh}} + β [[a∇Uh · n]], [[vn]]〉Eh\∂Ω

(3.8)

+ 〈a∇Uh, vn〉ΓD
−

∑
K∈Th

(a∇Uh,∇v)K + (f, v)Ω − 〈qN , v〉ΓN
.

Observe that whenever [[vn]] = 0 on Eh \ΓN , i.e., whenever v ∈ Vh(0), the right-hand
side of the above equation is equal to zero by the definition of the CG method, by
(1.3), and by Proposition 2.1. Therefore, this equation defines Jh uniquely. When
using spaces of high polynomial degrees, it is preferable to use (3.7) instead of (3.8),
as the former involves faster quadratures.

This completes the definition of the numerical trace q̂h. To summarize, q̂h is
defined by (3.3), wherein Jh is the unique function in Jh satisfying (3.7) or (3.8). Let
us point out that this definition of the numerical trace reproduces constant fluxes.
More precisely, if −a∇Uh is a constant vector, say c, then q̂h is also c. To see this,
note that in this case we must have qN = c · n and f = 0, so that (3.8) becomes

〈αJh, [[vn]]〉Eh\ΓN
= −〈c, [[vn]]〉Eh\ΓN

+
∑

K∈Th

(c,∇v)K − 〈c · n , v〉ΓN
= 0.

This implies Jh ≡ 0, and hence q̂h = c, as claimed.
Let us end this subsection by relating our approach to compute q̂h to that pro-

posed in [27]. In such an approach, the numerical trace q̂h is taken as in (3.5) with
β = 0 and α = 1/h, where Jh is taken in the space

Jh,0 = { [[wn]]|Eh\ΓN
: w|K ∈ P0(K) for all K ∈ Th}

and is defined by requiring that

〈αJh, [[vn]]〉Eh\ΓN
= 〈 {{a∇Uh}}, [[vn]]〉Eh\∂Ω + 〈a∇Uh, vn〉ΓD

+ (f, v)Ω − 〈qN , v〉ΓN

be satisfied for all v ∈ Jh,0. Note that our Jh also satisfies this formulation, in the
case in which β = 0 and α = 1/h, since the formulation (3.8) reduces to the one under
consideration when v ∈ Jh is restricted to v ∈ Jh,0.

3.3. The computation of Jh. Next, we discuss the computation of Jh through
solution of (3.7) or (3.8). First, in order to represent Jh in computations we need a
basis for the space Jh of jumps. We construct a local basis for Jh extending a
similar construction carried out in [17, 18] in the context of Stokes flow. Second, we
need to solve for Jh from (3.7) or (3.8). We show that this can be accomplished by
solving a square system whose matrix is well conditioned. Thus, we conclude that
the computational complexity needed to solve for Jh is negligible with respect to that
required to solve for the multiplier λh. Proofs of all results here are given in section 4.

The basis is easiest to see in the lowest order case (i.e., when k = 1). In two
dimensions, this basis is closely related to the “wedge” basis functions obtained in [17].
However, in three dimensions, it is different from that given in [18], so let us begin
by describing our lowest order basis in three dimensions. For a mesh vertex z and a
mesh element K having z as a vertex, let λz,K denote the linear function on K which
equals one on z and zero at all other vertices of K and let φz,K denote its extension
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(Omit one.)

Fig. 5. Illustration of the elements connected to one vertex z and the omission of one φz ,K to
construct a basis.

by zero from K to all Ω. Then clearly the restrictions of [[φz,Kn]] on Eh\ΓN are in Jh.
However, they are not all linearly independent, because for any vertex z not on ΓD,
the sum of the functions [[φz,Kn]]|Eh\ΓN

over all K sharing z vanishes. Therefore, we
must omit one function per vertex to get a basis: For each z, we define Vz as the set
of functions φz,K for all K having z as a vertex. Then for vertices z not on ΓD, we
define V �

z as the set obtained by omitting (any) one member of Vz (see Figure 5), while
for vertices on ΓD, we define V �

z = Vz. Then, by a straightforward generalization of
the arguments in [17, Proposition 4.2], one can prove that the set

B
1 = { [[φn]]

∣∣
Eh\ΓN

: φ ∈ V �
z for all mesh vertices z}

is linearly independent, so it forms a basis for Jh.

Next, we describe one possible extension of this basis construction to the higher
order case. For any given simplex S ∈ R

N with vertices xi,S , i = 1, . . . , N + 1, we
define the points in its principal lattice (of order k) [13] by

xα,S =

N+1∑
j=1

αj xj,S ,

where α is taken in Ak
N = {(α1, . . . , αN+1) : k αj ∈ {0, 1, . . . , k} and

∑N+1
j=1 αj = 1}.

We associate to each point xα,S the standard Lagrange finite element basis func-
tion vα,S defined as the unique function in Pk(S) satisfying

vα,S(xβ,S) =

{
1 if α = β,

0 otherwise

for all α and β in Ak
N . Let φα,S be the extension by zero to Ω of vα,S . Since the

basis will be constructed using the jumps of these functions across element interfaces,
we will need to separate the functions associated to the points on element interfaces,
which we collect in

(3.9) Gk
h = {xα,S ∈ ∂K : K ∈ Th,α ∈ Ak

N}.
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To any z in Gk
h, we associate more than one φα,K if more than one simplex shares z.

We collect these functions in Vz = {φα,K : xα,K = z} and define

V �
z =

{
Vz if z ∈ ΓD,

Vz \ {φα�,K� for some xα�,K� = z} otherwise,

where, as in the lowest order case, we have selected (arbitrarily) one degree of freedom
(represented by the multi-index α� and K�) for every z in Gk

h \ ΓD and omitted the
corresponding Lagrange function φα�,K� . With this notation, we have the following
result, whose proof follows by generalizing the above-mentioned arguments for the
lowest order case.

Theorem 3.1. The set

B
k = { [[φn]]

∣∣
Eh\ΓN

: φ ∈ V �
z for all z ∈ Gk

h}

is a basis for Jh.
Now that a local basis of the jump space Jh has been constructed, we can compute

the representation of the jump function Jh in the basis Bk by using (3.7) or (3.8). For
example, to solve for Jh using (3.7), we begin by introducing an extension operator
Th from the space of jumps Jh to the space Vh, constructed in such a way that we
have

[[Th(Jh)n]] = Jh on Eh \ ΓN ,(3.10a)

Th(Jh)
∣∣
K�,xα�,K�

= 0.(3.10b)

Here and elsewhere, we use the notation w|K,r to denote the limit of the function
w(x) as x approaches r from within K. One can easily verify that the choice

(3.11) Th(Jh) =
∑

z∈Gk
h

∑
φ∈V �

z

cφ φ whenever Jh =
∑

z∈Gk
h

∑
φ∈V �

z

cφ [[φn]]

satisfies both properties of (3.10). Then, for any Yh ∈ Jh, setting v = Th(Yh) in (3.7)
and using (3.10a), we get that Jh satisfies

〈αJh, Yh〉Eh\ΓN
= 〈 {{a∇Uh}} + β [[a∇Uh · n]], [[Th(Yh)n]]〉Eh\∂Ω

+ 〈a∇Uh, Th(Yh)n〉ΓD
+

∑
K∈Th

〈qn,h, Th(Yh)〉∂K − 〈qN , Th(Yh)〉ΓN

≡ F (Yh).

This shows that Jh is the unique solution of a square system.
The next result shows that this square system is well conditioned. Let [Jh] denote

the vector of coefficients in the expansion of Jh in the basis Bk. We place some
minimal assumptions on the mesh from now on. As per standard terminology, we say
that the mesh Th is shape regular if, letting ρK be the diameter of the largest ball
contained in K, the ratios γK = diam(K)/ρK are uniformly bounded by some fixed
constant γ for all K. If we use the parameter α on every mesh face e to scale by the
measure of the face, namely, |e|, then we obtain a well-conditioned matrix as stated
in the following theorem.

Theorem 3.2. Let M be the matrix defined by

[Yh]tM [Zh] = 〈αZh,Yh〉Eh\ΓN
for all Yh and Zh ∈ Jh .
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Table 2

Condition number of M with α ≡ 1 for different mesh levels using different polynomial approx-
imations.

h 1 1/2 1/4 1/8 1/16 1/32

k = 1 3.4 5.7 6.8 7.3 7.5 7.5

k = 2 2.0 3.4 5.9 7.5 8.7 10.4

k = 3 2.1 5.8 5.7 8.6 11.8 10.9

Then, whenever

α|e =
ζ|e
|e| on e ∈ Eh \ ΓN

for some piecewise constant function ζ on Eh \ ΓN satisfying 0 < ζ� ≤ ζ ≤ ζ�, the
spectral condition number of M , namely, κM , is uniformly bounded by

κM ≤ C0 ζ
�/ζ�,

where C0 > 0 is independent of the number of mesh elements (but depends on the
space dimension N , the polynomial degree k, and the shape regularity constant γ).

This theorem implies that to compute the solution Jh of (3.7) by the method
of conjugate gradients, we need a number of iterations that is independent of the
number of unknowns. In Table 2, we numerically verify this fact for k = 1, 2, and 3
on a sequence of uniform meshes. Since the meshes are uniform, we have simply taken
α ≡ 1 for this computation. Notice that, as expected, the condition numbers observed
do not vary significantly as the mesh size h is reduced. For practical computations,
one often uses the method of conjugate gradients to solve for the Lagrange multiplier
λh. Since the system for λh has condition number O(h−2) (cf. [24]) without any
preconditioner, it is clear that the cost of computing Jh is a negligible addition to the
cost of solving for λh.

3.4. Error analysis. In this subsection, we give a priori error estimates for our
new postprocessed flux approximation qh. Recall that qh is computed by the following
steps:

1. Compute the CG solution Uh.
2. Using this Uh in (3.7), compute the unique function Jh in Jh satisfying (3.7).
3. Set the flux trace q̂h by substituting the Jh computed above in (3.3).
4. Solve for qh element by element using (3.2), with the data set by the Uh and

q̂h computed above.
Notice that the last step involves equations very similar to the well-known RT pro-
jection defined as follows: We denote by π� q the RT projection [29] of the function
q, which is the unique function in

VRT�
(K) := P�(K)N + xP�(K),(3.12a)

satisfying

〈π� q · n, v〉e = 〈q · n, v〉e for all v ∈ P�(e) for any face e ⊂ ∂K,(3.12b)

(π� q,v)K = (q,v)K for all v ∈ P�−1(K)N .(3.12c)
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It is well known [6] that the domain of definition of π� is slightly smaller than
H(div,Ω). We shall tacitly assume that the exact flux q is smooth enough so that π�

can be applied to it (e.g., q in H(div,Ω)∩Lp(Ω) with p > 2 is enough when N = 2).
Because of the similarity of (3.12) to (3.2), we shall refer to our flux approximation qh

as the RT�-postprocessed CGk flux.
To describe our error estimates for this flux approximation, we need the following

notation. We set diam(K) = hK , and h is the maximum of hK over all K in Th.
For Sobolev norms, we denote by ‖ · ‖�,D and | · |�,D the H�-norm and seminorm,
respectively, on D. We also set

V 0
h,� :={v ∈ H(div,Ω) : ∇ · v = 0,v|K ∈ P�(K)N for all K ∈ Th,v · n|ΓN

= 0},
(3.13a)

and denote by P� the weighted L2-projection into V 0
h,� defined by

(a−1(P� q − q),v)Ω = 0 for all v ∈ V 0
h,�.(3.13b)

Finally, we set α� := maxe∈Eh\ΓN
α|e and α� := mine∈Eh\ΓN

α|e. With these nota-
tions, we have the following result.

Theorem 3.3. Let qh be the RT�-postprocessed CGk flux for an integer 0 ≤ � ≤ k.
Then the following statements hold:

1. The RT�-postprocessed CGk flux qh is in H(div,Ω) and satisfies

div(π� q − qh) = 0.

In particular, it satisfies the exact conservativity property (1.4).
2. If � > 1 and a(x) is constant on each mesh element, P�−1(π� q − qh) = 0.
3. The divergence of the flux approximation satisfies

‖∇ · (q − qh)‖0,Ω ≤ C1h
min(�,s)+1 | f |s+1,Ω.

4. If a(x)|K is in W 1,∞(K) for all mesh elements K, and the mesh Th is quasi
uniform, then the following error estimate holds:

‖q − qh‖0,Ω ≤ C2h
min(k, �+1,s)

(
| q |s,Ω + |u|s,Ω

)
.

In the inequalities above, C1 and C2/(1 + α�/α�) are independent of q and h (but
dependent on k, N , β, a, and γ).

The first identity of the theorem can be interpreted as a superconvergence prop-
erty for the divergence. Indeed, if the load f is a piecewise polynomial satisfying
f |K ∈ P�(K), then the exact and discrete divergences coincide, i.e., div(q − qh) = 0,
because of a well-known commutativity property of π�. In one space dimension, it
states that the difference between π�q and qh is just a constant; moreover, if the
Neumann boundary is not empty, π�q and qh are identical. This implies that at each
node xi we have that

qh(xi) = q(xi),

by definition of the projection π�. The fact that this holds independently of how we
chose the parameter β in (3.5) is remarkable, although this fits very well with similar
results obtained in [12]. Notice also that when the Neumann boundary is empty but
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a is piecewise constant, the second identity states that π�q and qh are also identical,
provided � ≥ 1.

Next, we compare our approximation qh to the corresponding RT approximation.
We begin by recalling the standard result that all statements of Theorem 3.3 continue
to hold if we replace q by the approximation to the flux given by the RT� method; i.e.,
both the standard RTk−1 method and our new RTk−1-postprocessed CGk method
produce H(div)-conforming approximations to the flux q that converge at the same
order. This indicates that the RTk−1-postprocessed CGk method is competitive with
the RTk−1 method. Indeed, to compare their computational complexities, we recall
the earlier observation that the cost of the computation of our approximation qh is
negligible compared to that of solving for the Lagrange multiplier λh. The condition
number of the Lagrange multiplier system in the CG case as well as the RT case [24]
is O(h−2), so in both cases, the cost of solving for λh dominates the cost of the
computation of qh. Thus the relative size of the stiffness matrices for the Lagrange
multiplier becomes the deciding factor.

It is not difficult to see that this matrix for the CGk method has smaller size
than that of the RTk−1 method. Let us show this in the case of a two-dimensional
simply connected domain Ω. We denote the number of mesh vertices, edges, and
triangles by ne, nv, and nt, respectively. The number of degrees of freedom of the
Lagrange multipliers for the CGk method is (k − 1)ne + nv, whereas it is kne for
the RTk−1 method. Since nv − ne + nt = 1, we see that the Lagrange multipliers
of the CGk method have (nt − 1) fewer degrees of freedom than RTk−1. This is
a significant difference in practice. The numerical experiments of section 5 show
that for the same mesh, the approximations given by the RTk−1-postprocessed CGk

method and the RTk−1 method are very similar. This shows that the former method
may be better than the latter. A final point reinforcing this conclusion is obtained
by comparing the approximation to u given by both methods. The uh of the CGk

method converges in the L2-norm with order k+1 when the exact solution is smooth.
However, the approximation to u given by the RTk−1 method converges only with
order k. Of course, following [1], we can use the Lagrange multipliers to obtain a
locally postprocessed approximation that also converges with order k + 1, but such
postprocessing is not available for arbitrary values of k. Moreover, our numerical
results show that for k ∈ {0, 1, 2}, the CGk and the postprocessed RTk−1 methods
produce roughly similar approximations to u.

4. Proofs.

4.1. Norm equivalences. In this subsection, we will prove the condition num-
ber estimate of Theorem 3.2 using certain norm equivalences. Recall that the exten-
sion operator Th is defined in (3.10) and that [Jh] is the vector representation of the
function Jh in the basis Bk. Define the norms

‖Jh‖S =

( ∑
e∈Eh\ΓN

1

|e| ‖Jh‖2
0,e

)1/2

and ‖Jh‖T =

( ∑
K∈Th

1

|K| ‖T (Jh)‖2
0,K

)1/2

,

where |K| and |e| denote the measures (in their respective dimensions) of an element K
and face e, respectively. The following lemma shows that the three norms ‖Jh‖S ,
‖Jh‖T , and ‖ [Jh] ‖2

�2 are equivalent.
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Lemma 4.1. There is a constant C independent of the mesh size (but depending
on the degree k, dimension N , and the shape regularity constant γ) such that

(4.1)
1

C
‖Jh‖2

T ≤ ‖Jh‖2
S ≤ C ‖Jh‖2

T

and

(4.2)
1

C
‖Jh‖2

S ≤
∥∥ [Jh]

∥∥2

�2
≤ C ‖Jh‖2

S

for all Jh ∈ Jh.
Proof. First, let us prove the upper bound of (4.1). Recall that by (3.10a), Jh

and [[Th(Jh)n]] coincide for any Jh in Jh, so by standard trace inequalities,

(4.3)
1

|e| ‖Jh‖2
0,e ≤ C

∑
K∈Ke

1

|K|
∥∥Th(Jh)

∥∥2

0,K
,

where Ke denotes the set of elements K ∈ Th such that e is a face of K. Since Ke

has at most two elements for any mesh face e, summing over all edges in Eh \ ΓN , we
obtain the upper bound in (4.1).

Next, let us prove the lower bound of (4.1). By standard scaling arguments using
the principal lattice Ak

N on any mesh element K, we have

C

|K| ‖Th(Jh)‖2
0,K ≤

∑
α∈Ak

N

∣∣(Th(Jh))(xα,K)
∣∣2

=
∑

z∈Gk
h∩∂K

Th(Jh)
∣∣2
K,z

,(4.4)

where, as before, w|K,z denote the limit of w(x) as x approaches z from within K.
We need to bound each of the terms in (4.4) using norms of Jh. Let us first

consider the case when z is not on ΓD. For such a z, recalling the way we constructed
the basis of Theorem 3.1, note that there is a mesh element K� such that z = xα�,K� ,
where the limit Th(Jh)|K�, z is zero; see (3.10b). Using this fact, it is easy to see that
we can write Th(Jh)

∣∣
K,z

as the telescoping sum

(4.5) Th(Jh)
∣∣
K,z

=

m∑
i=1

[
Th(Jh)

∣∣
Ki,z

− Th(Jh)
∣∣
Ki+1,z

]
for some collection of mesh elements Ki such that z is in K̄i, K1 = K, Km+1 = K�,
and Ki ∩Ki+1 is a mesh face in Eh \ ΓN . If z lies on ΓD, we can still write a similar
sum as long as we omit the last term (as there is no K� for such z) and choose Km

such that it has a face on ∂Ω. By (3.10a), the absolute value of the ith summand
inside the square brackets in (4.5) equals the magnitude of the limit of Jh as we
approach z from within the mesh face Ki∩Ki+1. Expressing each of the terms in the
sum in (4.4) in terms of Jh this way, we obtain

(4.6)
C

|K| ‖Th(Jh)‖2
0,K ≤

∑
z∈Gk

h∩∂K

∑
e∈Fz

1

|e| ‖Jh‖2
0,e,

where Fz denotes the set of all mesh faces e in Eh \ ΓN such that z ∈ e. Note that
in obtaining the above inequality, we have used the fact that for every z, the number
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m in (4.5) can be bounded uniformly in terms of the shape regularity constants.
Summing over all mesh elements K, we obtain the lower bound of (4.1).

It now remains to prove (4.2). Recall that a standard norm equivalence asserts
the existence of a constant C (depending on the shape regularity of K, but otherwise
independent of K) such that for all w ∈ Pk(K),

1

C|K| ‖w‖
2
0,K ≤

∑
α∈Ak

N

|w(xα,K)|2 ≤ C

|K| ‖w‖
2
0,K .

Applying this with w = Th(Jh)|K , and observing that in the expansion for Th(Jh)
in (3.11), the coefficients {cφ} are the nonzero values of Th(Jh) at the points xα,K ,
we obtain

(4.7)
1

C|K| ‖Th(Jh)‖2
0,K ≤

∑
z∈Gk

h∩∂K

∑
φ∈V �

z

c2φ ≤ C

|K| ‖Th(Jh)‖2
0,K .

The upper inequality above implies∑
z∈Gk

h∩∂K

∑
φ∈V �

z

c2φ ≤ C

|K| ‖Th(Jh)‖2
0,K by (4.7)

≤ C
∑

z∈Gk
h∩∂K

∑
e∈Fz

1

|e| ‖Jh‖2
0,e by (4.6).

If we sum this inequality over all mesh elements K, the resulting left-hand side dom-
inates ‖ [Jh] ‖2

�2 . Hence we have proven that

(4.8)
∥∥ [Jh]

∥∥2

�2
≤ C

∑
e∈Eh\ΓN

1

|e| ‖Jh‖2
0,e.

Returning to (4.7) and using its lower inequality, we also have

1

|e| ‖Jh‖2
0,e ≤ C

∑
K∈Ke

1

|K| ‖Th(Jh)‖2
0,K by (4.3)

≤ C
∑

K∈Ke

∑
z∈Gk

h∩∂K

∑
φ∈V �

z

c2φ by (4.7).

Summing this inequality over all edges e in Eh \ ΓN and noting that the resulting
number of repetitions in c2φ can be uniformly bounded, we obtain

(4.9)
∑

e∈Eh\ΓN

1

|e| ‖Jh‖2
0,e ≤ C

∥∥ [Jh]
∥∥2

�2
.

Combining (4.9) and (4.8), the proof of (4.2) is finished.
Proof of Theorem 3.2. Since the matrix M is symmetric and positive definite, its

spectral condition number κM is given by

(4.10) κM =

(
max

Yh∈Jh

〈αYh , Yh〉Eh\ΓN

‖ [Yh] ‖2
�2

)/(
min

Yh∈Jh

〈αYh , Yh〉Eh\ΓN

‖ [Yh] ‖2
�2

)
.
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By the assumptions in the theorem on α,

ζ�

( ∑
e∈Eh\ΓN

1

|e| ‖Yh‖2
0,e

)
≤ 〈αYh , Yh〉Eh\ΓN

≤ ζ�
( ∑

e∈Eh\ΓN

1

|e| ‖Yh‖2
0,e

)
.

Applying (4.2) of Lemma 4.1 to the above inequality, we obtain

ζ�
C

∥∥ [Yh]
∥∥2 ≤ 〈αYh , Yh〉Eh\ΓN

≤ Cζ�
∥∥ [Yh]

∥∥2
.

Using this in (4.10), we find that κM ≤ C2ζ�/ζ�.

4.2. Proof of the flux error estimates. This subsection is devoted to proving
the error estimates of Theorem 3.3. The error in the divergence is easy to analyze, but
the proof of the L2-estimate is more involved. Proceeding as in [16] in the analysis of
the hybridized RT method, we start with the error equations.

Proof of Theorem 3.3. We divide this proof into seven steps.
Step 1. Obtaining the error equations. If we set q∇,h := −a∇Uh, on each element

K ∈ Th, from (2.2a) and (2.2b) defining the hybridized continuous Galerkin method
and from (3.1) relating qn,h with the numerical trace q̂h, it follows that(

a−1q∇,h, v
)
K
− (Uh, ∇ · v)K = −〈λh, v · n〉∂K ,

−
(
q∇,h, ∇w

)
K

+ 〈q̂h, wn〉∂K = (f, w)K

for any (v, w) ∈ Pk(K)N × Pk(K). As a consequence, by the definition of qh given
by (3.2), we obtain that for � ≤ k,(

a−1qh, v
)
K
− (Uh, ∇ · v)K = −〈λh, v · n〉∂K +

(
a−1(qh − q∇,h), v

)
K
,(4.11a)

− (qh, ∇w)K + 〈qh, wn〉∂K = (f, w)K(4.11b)

for any (v, w) ∈ Pk(K)N × P�(K). The error equations are derived by comparing
these equations to the equations satisfied by the exact solution (q, u), namely,(

a−1q, v
)
K
− (u, ∇ · v)K = −〈u, v · n〉∂K ,

− (q, ∇w)K + 〈q, wn〉∂K = (f, w)K

for any (v, w) ∈ VRT�
(K) × P�(K). They imply, as a consequence of the definition of

the RT projection π� given in (3.12), that(
a−1π� q, v

)
K
− (u, ∇ · v)K = −〈u, v · n〉∂K +

(
a−1(π� q − q), v

)
K
,(4.12a)

− (π� q, ∇w)K + 〈π� q, wn〉∂K = (f, w)K(4.12b)

for any (v, w) ∈ VRT�
(K) × P�(K).

Thus, if we define the errors of the approximation as

eq = π� q − qh, eu = u− Uh, eλ = u− λh,

we see, after subtracting (4.11) from (4.12), that they satisfy(
a−1eq, v

)
K
− (eu, ∇ · v)K = − 〈eλ, v · n〉∂K

−
(
a−1(qh − q∇,h), v

)
K

(4.13a)

+
(
a−1(π� q − q), v

)
K
,

−(eq, ∇w)K + 〈eq · n, w〉∂K = 0(4.13b)
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for any (v, w) ∈ (VRT�
(K) ∩ Pk(K)N ) × P�(K) for � ≤ k.

Step 2. Analyzing errors in the divergence of the flux. Integrating (4.13b) by
parts, we obtain

(∇ · eq, w)K = 0 for all w ∈ P�(K).

Since ∇ · eq ∈ P�(K), we immediately get that

∇ · eq ≡ 0 on K,

which is the first identity of Theorem 3.3. (It is obvious that eq is in H(div,Ω).)
The first inequality of Theorem 3.3 follows from the fact that

∇ · (q − qh) = ∇ · (q − π� q) = (Id − P�) f,

where P� is the L2-projection into the space of functions w such that wK ∈ P�(K)
for all K ∈ Th. Notice that in the last step, we used the commutativity property
∇ · π� = P�∇· (see, e.g., [6, 16, 22]).

Step 3. Establishing the second identity. If in the error equation (4.13a) we select
v ∈ PN

�−1(K), we find that whenever a(x) is constant on K,(
a−1eq, v

)
K
− (eu, ∇ · v)K = −〈eλ, v · n〉∂K ,

where we used (3.2c) of the definition of qh and (3.12c) of the definition of π�. This
readily implies that(

a−1eq, v
)
Ω
−

∑
K∈Th

(eu, ∇ · v)K = −
∑
e∈Eh

〈eλ, [[v · n]]〉e,

and so (
a−1eq, v

)
Ω

= −〈eλ , v · n〉ΓD
= 0 for all v ∈ V 0

h,�−1,

since we are assuming that g|e ∈ Pk(e) for each face e on ΓD. The second identity of
Theorem 3.3 immediately follows from this and the definition of the projection P�−1

given by (3.13).
Step 4. Splitting errors in the flux. It remains to prove the second inequality of

Theorem 3.3. To do this, we begin by noting that since eq ∈ V 0
h,�, we can choose

v = eq in the error equation (4.13a). Doing this and summing over all the elements
K ∈ Th, we obtain

(a−1eq, eq)Ω = −
(
a−1(qh − q∇,h), eq

)
Ω

+
(
a−1(π� q − q), eq

)
Ω
.

Introducing π�q∇,h into the right-hand side,

(a−1eq, eq)Ω = −
(
a−1(qh − π�q∇,h), eq

)
Ω
−
(
a−1(π�q∇,h − q∇,h), eq

)
Ω

+
(
a−1(π� q − q), eq

)
Ω

= −
(
a−1(qh − π�q∇,h), eq

)
Ω
−
(
a−1(Id− π�)(q − q∇,h), eq

)
Ω
.

Applying the Cauchy–Schwarz inequality,

(4.14) C‖eq‖0,Ω ≤ ‖qh − π� q∇,h‖0,Ω + ‖(Id − π�)(q − q∇,h)‖0,Ω.
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We now estimate each of the terms on the right-hand side separately in the next two
steps.

Step 5. Estimating ‖qh − π�q∇,h‖0,Ω. In order to estimate this term, we rewrite
(3.2b) and (3.2c) defining qh as

(qh − π�q∇,h, v)K = 0 for all v ∈ P�−1(K)N ,

〈(qh − π�q∇,h) · n, w〉e = 〈(q̂h − q∇,h) · n, w〉e for all w ∈ P�(e) and all faces e ⊂ ∂K.

Then a standard scaling argument gives

‖qh − π�q∇,h‖2
0,K ≤ ChK‖(q̂h − q∇,h) · n‖2

0,∂K .

Summing over all mesh elements and using the definition of the numerical trace q̂h

given (3.5), we obtain

‖qh − π�q∇,h‖2
0,Ω ≤ C

∑
K∈Th

hK

(∥∥∥∥(β · n− 1

2

)
[[q∇,h · n]] + αJh · n

∥∥∥∥2

0,∂K\ ∂Ω

+
∥∥αJh · n

∥∥2

0,∂K∩ΓD
+
∥∥qN − q∇,h · n

∥∥2

0,∂K∩ΓN

)
≤ C h (T1 + T2),(4.15)

where

T1 :=
∥∥ [[q∇,h · n− π�q · n]]

∥∥2

0,Eh\ΓD
and T2 := ‖αJh · n‖2

0,Eh\ΓN
.

The term T1 can be easily estimated by an inverse inequality:

T1 ≤ Ch−1‖q∇,h − π�q‖2
0,Ω ≤ Ch−1

(
|u− Uh|21,Ω + ‖q − π�q‖2

0,Ω

)
.(4.16)

The other term T2 requires more work.
To estimate T2, we rewrite the definition of the jump Jh, namely, (3.8), as

〈αJh, [[vn]]〉Eh\ΓN
=
〈
[[q∇,h · n]], {{v}} − β · [[vn]]

〉
Eh\∂Ω

+
∑

K∈Th

(f −∇ · q∇,h, v)K

=
〈
[[q∇,h · n]], {{v}} − β · [[vn]]

〉
Eh\∂Ω

+
∑

K∈Th

(∇ · (πkq − q∇,h), v)K

for all v ∈ Vh. Choosing v = Th(Jh) and using the property (3.10a) of the operator
Th, we get

〈αJh , Jh〉Eh\ΓN
= 〈 [[q∇,h · n]], {{Th(Jh)}}〉E◦

h
− 〈 [[q∇,h · n]], β · Jh)〉E◦

h

+
∑

K∈Th

(∇ · (πkq − q∇,h), Th(Jh))K .

Using (4.1) of Lemma 4.1 after applying suitable inverse inequalities, we obtain

〈αJh , Jh〉Eh\ΓN
≤ C

(∥∥ [[q∇,h · n]]
∥∥

0,E◦
h

+ h1/2‖∇ · (πkq − q∇,h)‖0,Ω

)
‖Jh‖0,Eh\ΓN

.
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This implies that

T2 ≤ C
α�

α�

(∥∥ [[q∇,h · n]]
∥∥2

0,E◦
h

+ h ‖∇ · (πkq − q∇,h)‖2
0,Ω

)
.

Treating the first term inside the parentheses above as in the proof of (4.16), and
applying an inverse inequality to the second, we get

T2 ≤ C h−1
(
|u− Uh|21,Ω + ‖q − π�q‖2

0,Ω + ‖q − πkq‖2
0,Ω

)
.

Using the estimates for T1 and T2 in (4.15), we conclude that

(4.17) C ‖qh − π�q∇,h‖2
0,Ω ≤ |u− Uh|21,Ω + ‖q − π�q‖2

0,Ω + ‖q − πkq‖2
0,Ω.

Step 6. Estimating ‖(Id − π�)(q − q∇,h)‖0,Ω. On an element K, using the well-
known approximation property of π� [6, 29], we obtain

‖(Id− π�)(q − q∇,h)‖0,K ≤ ChK |q − q∇,h|1,K
≤ ChK‖a‖W 1

∞(K)‖∇u−∇Uh‖1,K .

Now using any projector ΠK well defined on L2(K)N with standard approximation
properties, e.g., the one constructed in [30], we have

‖(Id− π�)(q − q∇,h)‖0,K ≤ ChK

(
‖∇u−ΠK∇u‖1,K + ‖ΠK(∇u−∇Uh)‖1,K

)
≤ C

(
hK‖∇u−ΠK∇u‖1,K + ‖ΠK(∇u−∇Uh)‖0,K

)
≤ C

(
hK‖∇u−ΠK∇u‖1,K + ‖∇u−∇Uh‖0,K

)
.

Thus, we obtain

(4.18) ‖(Id − π�)(q − q∇,h)‖0,Ω ≤ Chmin(s,k)|u|s+1,Ω.

Step 7. Completing the proof of Theorem 3.3. Now we use the results of the
previous two steps, namely, (4.17) and (4.18), in the splitting (4.14) of the error term.
Then we obtain

C‖eq‖0,Ω ≤ |u− Uh|1,Ω + ‖q − π� q‖0,Ω + ‖q − πkq‖0,Ω + hmin(s,k)|u|s+1,Ω,

and the estimate of qh immediately follows from the standard approximation results:

|u− Uh|1,Ω ≤ Chmin{k,s}|u|s+1,Ω,

‖q − πmq‖0,Ω ≤ Chmin{m+1,s}|q|s,Ω.

This concludes the proof.

5. Numerical results. In this section, we carry out some numerical experiments
to verify the theoretical results when the exact solution is smooth (Test 1) and to test
the performance of the method when the exact solution has a singularity (Test 2).
For the sake of simplicity, we use uniform meshes and pick β = 0 in the definition of
the numerical trace q̂h, (3.5).

In what follows, by the approximation given by the “RT� method” we mean
the pair (qh, Uh) obtained as follows. The function (qh, uh, λh) is the solution of
the hybridized RT method whose Lagrange multipliers are piecewise polynomials of
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Table 3

Comparison of the history of convergence of the RT0 and the postprocessed CG1 methods.

Grid ‖eUh
‖0 ‖edivqh

‖0 ‖eqh
‖0 ‖ea∇Uh

‖0

level Error Order Error Order Error Order Error Order

RT0 method

1 .42e+0 – .18e+2 – .35e+1 – .44e+1 –

2 .12e+0 1.77 .11e+2 0.69 .27e+1 0.39 .29e+1 0.59

3 .35e-1 1.81 .58e+1 0.95 .14e+1 0.96 .15e+1 0.95

4 .90e-2 1.95 .30e+1 0.99 .69e+0 0.99 .76e+0 0.99

5 .23e-2 1.99 .15e+1 1.00 .35e+0 1.00 .38e+0 1.00

6 .57e-3 2.00 .74e+0 1.00 .17e+0 1.00 .19e+0 1.00

7 .14e-3 2.00 .37e+0 1.00 .87e-1 1.00 .95e-1 1.00

RT0-postprocessed CG1 method

1 .50e+0 – .18e+2 – .38e+1 – .61e+1 –

2 .27e+0 0.89 .11e+2 0.69 .30e+1 0.33 .42e+1 0.54

3 .94e-1 1.52 .58e+1 0.95 .16e+1 0.96 .25e+1 0.76

4 .26e-1 1.83 .30e+1 0.99 .74e+0 1.09 .13e+0 0.92

5 .69e-2 1.95 .15e+1 1.00 .36e+0 1.05 .66e+0 0.98

6 .17e-2 1.98 .74e+0 1.00 .18e+0 1.02 .33e+0 0.99

7 .43e-3 2.00 .37e+0 1.00 .87e-1 1.01 .17e+0 1.00

RT1-postprocessed CG1 method

1 .50e+0 – .90e+1 – .83e+1 – .61e+1 –

2 .27e+0 0.89 .28e+1 1.70 .60e+1 0.47 .42e+1 0.54

3 .94e-1 1.52 .73e+0 1.93 .37e+1 0.67 .25e+1 0.76

4 .26e-1 1.83 .19e+0 1.98 .20e+1 0.91 .13e+1 0.92

5 .69e-2 1.95 .46e-1 2.00 .10e+1 0.98 .66e+0 0.98

6 .17e-2 1.98 .12e-1 2.00 .51e+0 1.00 .33e+0 0.99

7 .43e-3 2.00 .29e-2 2.00 .25e+0 1.00 .17e+0 1.00

degree �. The function Uh is obtained from (uh, λh) by using the local postprocessing
described in [1]. The resulting pair (qh, Uh) is then compared to the solution of our
RT�-postprocessed CGk method, for which qh is the RT�-postprocessed CGk flux and
Uh is the solution of the CG method with piecewise polynomials of degree k.

Test 1. We take

a =

(
x + 2 x + y
x + y y + 2

)
and then g and f so that the exact solution is

u(x, y) = sin(πx) sin(πy).

The history of convergence of the approximations given by the RTk−1 and the
RT�-postprocessed CGk methods, for � ∈ {k− 1, k}, are displayed in Tables 3, 4, and
5 for k = 1, 2, and 3, respectively. Plots of these results are also displayed in Figure 6
for an easier comparison.

We see that the approximation given by the RT�-postprocessed CGk method
converges with the orders predicted by Theorem 3.3. Observe that the errors of the
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Table 4

Comparison of the history of convergence of the RT1 and the postprocessed CG2 methods.

Grid ‖eUh
‖0 ‖edivqh

‖0 ‖eqh
‖0 ‖ea∇Uh

‖0

level Error Order Error Order Error Order Error Order

RT1-method

1 .16e+0 – .90e+1 – 0.23e+1 – .42e+1 –

2 .28e-1 2.49 .28e+1 1.70 0.50e+0 2.17 .12e+1 1.87

3 .37e-2 2.94 .73e+0 1.93 0.13e+0 1.94 .30e+0 1.95

4 .47e-3 2.96 .19e+0 1.98 0.33e-1 1.98 .76e-1 1.99

5 .60e-4 2.98 .46e-1 2.00 0.83e-2 1.99 .19e-1 2.00

6 .75e-5 2.99 .12e-1 2.00 0.21e-2 2.00 .47e-2 2.00

7 .94e-6 3.00 .29e-2 2.00 0.52e-3 2.00 .12e-2 2.00

RT1-postprocessed CG2 method

1 .24e+0 – .90e+1 – .25e+1 – .40e+1 –

2 .35e-1 2.77 .28e+1 1.70 .76e+0 1.73 .13e+1 1.64

3 .46e-2 2.93 .73e+0 1.93 .16e+0 2.25 .37e+0 1.79

4 .56e-3 3.04 .19e+0 1.98 .35e-1 2.17 .97e-1 1.93

5 .69e-4 3.02 .46e-1 2.00 .85e-2 2.07 .25e-1 1.98

6 .86e-5 3.01 .12e-1 2.00 .21e-2 2.02 .62e-2 1.99

7 .11e-5 3.00 .29e-2 2.00 .52e-3 2.00 .15e-2 2.00

RT2-postprocessed CG2 method

1 .24e+0 – .29e+1 – .66e+1 – .40e+1 –

2 .35e-1 2.77 .54e+0 2.40 .21e+1 1.65 .13e+1 1.64

3 .46e-2 2.93 .72e-1 2.92 .67e+0 1.64 .37e+0 1.79

4 .56e-3 3.04 .91e-2 2.98 .18e+0 1.89 .97e-1 1.93

5 .69e-4 3.02 .11e-2 2.99 .46e-1 1.97 .25e-1 1.98

6 .86e-5 3.01 .14e-3 3.00 .12e-1 1.99 .62e-2 1.99

7 .11e-5 3.00 .18e-4 3.00 .29e-2 2.00 .15e-2 2.00

divergence between the RTk−1 and the RTk−1-postprocessed CGk methods are exactly
the same, as predicted by the theory. Moreover, as can be clearly seen from Figure 6,
the approximations of the RTk−1 and the RTk−1-postprocessed CGk methods are
comparable in accuracy. We also see that the approximate flux provided by the
RTk−1-postprocessed CGk is better than the approximation −a∇Uh provided by the
CGk method. Finally, note that if we increase � by one more degree than k − 1 in
RT�-postprocessing, there is no improvement—in fact, the approximate flux given by
the RTk-postprocessed CGk method produces an approximate flux that is worse than
that provided by the RTk−1-postprocessed CGk method.

Test 2. Now we work on a problem in which the solution has singularities produced
by drastic changes in the permeability a; see Figure 1 in the introduction. We compare
the streamlines of the approximate flux obtained by the RTk−1-postprocessed CGk

method and that of the RTk−1 method around the upper left corner of the rock
in Figures 7, 8, and 9. We see that the presence of the singularity at the corner
induces small distortions in the streamlines. However, even in this hard case, the flux
produced by the RTk−1 method and the solution given by the RTk−1-postprocessed
CGk method are remarkably similar.
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Table 5

Comparison of the history of convergence of the RT2 and the postprocessed CG3 methods.

Grid ‖eUh
‖0 ‖edivqh

‖0 ‖eqh
‖0 ‖ea∇Uh

‖0

level Error Order Error Order Error Order Error Order

RT2-method

1 .12e+0 – .29e+1 – 0.47e+0 – .35e+1 –

2 .85e-2 3.84 .54e+0 2.40 0.85e-1 2.46 .50e+0 2.78

3 .60e-3 3.84 .72e-1 2.92 0.11e-1 2.92 .72e-1 2.81

4 .39e-4 3.94 .91e-2 2.98 0.14e-2 2.98 .94e-2 2.94

5 .25e-5 3.98 .11e-2 2.99 0.18e-3 2.99 .12e-2 2.98

6 .16e-6 3.99 .14e-3 3.00 0.22e-4 3.00 .15e-3 2.99

7 .97e-8 4.00 .18e-4 3.00 0.28e-5 3.00 .19e-4 3.00

RT2-postprocessed CG3 method

1 .96e-1 – .29e+1 – .14e+1 – .20e+1 –

2 .63e-2 3.93 .54e+0 2.40 .20e+0 2.82 .27e+0 2.90

3 .35e-3 4.15 .72e-1 2.92 .21e-1 3.23 .35e-1 2.94

4 .20e-4 4.12 .91e-2 2.98 .22e-2 3.29 .43e-2 3.00

5 .12e-5 4.06 .11e-2 2.99 .23e-3 3.23 .54e-3 3.01

6 .75e-7 4.02 .14e-3 3.00 .26e-4 3.15 .67e-4 3.01

7 .47e-8 4.01 .18e-4 3.00 .31e-5 3.09 .83e-5 3.00

RT3-postprocessed CG3 method

1 .96e-1 – .16e+1 – .31e+1 – .20e+1 –

2 .63e-2 3.93 .90e-1 4.12 .48e+0 2.71 .27e+0 2.90

3 .35e-3 4.15 .59e-2 3.93 .63e-1 2.93 .35e-1 2.94

4 .20e-4 4.12 .37e-3 3.98 .79e-2 3.00 .43e-2 3.00

5 .12e-5 4.06 .24e-4 4.99 .98e-3 3.01 .54e-3 3.01

6 .75e-7 4.02 .15e-5 4.00 .12e-3 3.01 .67e-4 3.01

7 .47e-8 4.01 .93e-7 3.98 .15e-4 3.00 .83e-5 3.00

6. Concluding remarks. We have shown that a new postprocessing of the CGk

solution gives rise to an H(div)-conforming approximation to the flux which renders
the CG method locally conservative. The postprocessing belongs to the RT space of
degree k − 1 and displays convergence properties similar to the approximation given
by the RT method of degree k− 1 itself. By counting the degrees of freedom we have
established that the computational effort needed to obtain the new postprocessed flux
is less than that of the RT method.

We have also shown how to hybridize the CG method, making it easier to treat
variable degree approximation spaces and hanging nodes.

The study of the effect of the numerical trace parameter β on the quality of the
approximation and the extension of this approach to linear elasticity are subjects of
ongoing research.

Acknowledgments. The authors would like to thank the reviewers for bringing
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and Graham F. Carey for bringing to their attention the papers [27, 32] and [9, 28,
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Fig. 7. Streamlines in the upper left corner with k = 1. On the left column is the solution given
by the RTk method and on the right column that of the RT(k−1)-postprocessed CGk method. From
top to bottom, mesh size h = 1
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Fig. 8. Streamlines in the upper left corner with k = 2. On the left column is the solution given
by the RTk method and on the right column that of the RT(k−1)-postprocessed CGk method. From
top to bottom, mesh size h = 1
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Fig. 9. Streamlines in the upper left corner with k = 3. On the left column is the solution given
by the RTk method and on the right column that of the RT(k−1)-postprocessed CGk method. From
top to bottom, mesh size h = 1
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Abstract. It is shown that the interelement discontinuities in a discontinuous Galerkin finite
element approximation are subordinate to the error measured in the broken H1-seminorm. One con-
sequence is that the DG-norm of the error is equivalent to the broken energy seminorm. Computable
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1. Introduction. Discontinuous Galerkin finite element methods for the ap-
proximation of elliptic problems were pioneered in the late 1970s [4, 6, 18] but lay
virtually dormant until recently, when they became the subject of intense research
activity. The reader is referred to [5, 9] for an overview of developments in the formu-
lation of the methods and their a priori error analysis.

The theory of a posteriori error bounds for discontinuous Galerkin methods in
energy-type norms is considerably less developed in comparison with the huge lit-
erature on such methods for conforming finite element schemes. Explicit a posteri-
ori estimators for the error in the discontinuous Galerkin approximation measured
in mesh-dependent energy-type norms were developed in [7, 12, 14, 15] and later in
[11, 16, 19]. Explicit estimators take the form of norms of residuals and jump discon-
tinuities in the finite element approximation, weighted in terms of the local mesh-size
and involving unknown generic constants. As noted in [14], the presence of such
unknown constants means that one does not actually have numerical bounds on the
error, and this limits the practical usage of the estimators to error indication for the
purposes of, say, adaptive mesh refinement, as opposed to actual quantitative error
control.

In the present work, we wish to derive a posteriori error estimators that are free of
any unknown constants, provide actual error bounds, and give local error indicators
suitable for driving adaptive refinement procedures. Of course, if one aims to provide
error bounds, then the question of the choice of norm in which the error should
be bounded naturally arises. Traditionally, a priori error analysis of discontinuous
Galerkin methods has been carried out in a mesh-dependent “DG-norm” defined by

|||e|||2DG =
∑
K∈P

‖a1/2 grad e‖2
K +

∑
γ∈EI∪ED

κ

|γ| ‖[e]‖
2
γ
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using standard notation (see (11)), which incorporates a term involving the jump dis-
continuity in the error [e] across element interfaces weighted with the interior penalty
parameter κ. However, when it comes to a posteriori error estimation, the practical
relevance of a bound for the error measured in a parameter-dependent DG-norm is less
clear cut. Of course, the jump term has to be included to ensure that |||·|||DG defines
a norm on the discontinuous finite element space, but one may hope that if the jumps
have been appropriately penalized, then their contribution should be dominated by
the first term; i.e., for κ “sufficiently large” one may hope that∑

γ∈EI∪ED

κ

|γ| ‖[e]‖
2
γ ≤ C

∑
K∈P

‖a1/2 grad e‖2
K

for a positive constant C depending on κ. At first sight, the validity of such a bound
hardly seems credible since the bounding term vanishes if e is piecewise constant, while
the jump term does not. Nevertheless, in Theorem 3 we show that such a bound does
indeed hold (modulo data oscillation which we ignore in this introductory discussion).
Moreover, we quantify precisely how “sufficiently large” κ must be and show that the
threshold is consistent with the value of κ that must be chosen to ensure the discrete
problem itself is uniquely solvable. This result seems to be of some interest in its own
right—quite apart from its significance for a posteriori error estimation. In particular,
the following equivalence holds:∑

K∈P

‖a1/2 grad e‖2
K ≤ |||e|||2DG ≤ C

∑
K∈P

‖a1/2 grad e‖2
K .

As a consequence, we see that it makes sense to estimate and control the error in
the broken energy seminorm safe in the knowledge that the jumps are controlled
implicitly.

Finally, returning to the issue of a posteriori error bounds, we derive computable
upper bounds for the error in the symmetric interior penalty discontinuous Galerkin
approximation in both the DG- and broken energy norms. In addition, we obtain
local lower bounds which imply that our upper bounds are also lower bounds up
to a positive constant. We restrict our attention to the symmetric interior penalty
discontinuous Galerkin scheme, although we believe the extension of our results to
other variants of discontinuous Galerkin is possible. Some of the results in the present
work were announced previously in [2].

2. Preliminaries.

2.1. Model problem. Consider the model problem

(1)
−divσ(u) = f ∈ L2(Ω)

σ(u) − agradu = 0

}
in Ω

subject to u = uD on ΓD and σν(u) = ν · σ(u) = g ∈ L2(ΓN ) on ΓN , where ν is
the unit outward normal. The domain Ω is assumed to be a plane polygon, and the
disjoint sets ΓD and ΓN form a partitioning of the boundary Γ = ∂Ω of the domain.
The datum a is assumed to be strictly positive and, for simplicity, is assumed piecewise
constant on subdomains of Ω, while uD is assumed to be continuous, piecewise linear
on ΓD.
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The standard variational formulation of the problem consists of seeking u ∈ H1(Ω)
such that u = uD on ΓD, with

(2) (agradu,grad v) = (f, v) +

∫
ΓN

gv ds ∀v ∈ H1
E(Ω),

where H1
E(Ω) denotes the space {v ∈ H1(Ω) : v = 0 on ΓD}. Throughout, we use

the notation (·, ·)ω to denote the integral inner product over a region ω, and omit the
subscript in the case where ω is the physical domain Ω.

2.2. Discontinuous Galerkin formulation. We consider a family of partitions
{P} of the domain Ω into the union of nonoverlapping, triangular elements such that
the nonempty intersection of a distinct pair of elements is a single common node or
single common edge. The family of partitions is assumed to be locally quasi-uniform
in the sense that the ratio of the diameters of any pair of neighboring elements is
uniformly bounded above and below over the whole family. Furthermore, it is assumed
that the partitioning is compatible with the data so that a is piecewise constant on
each element and uD is piecewise linear on an element edge.

The set of all edges of the elements is denoted by E , which we partition into subsets
ED, EN , and EI consisting of edges lying on the Dirichlet boundary ΓD, the Neumann
boundary ΓN , and the interior edges, respectively. Likewise, the corresponding quan-
tities relative to an individual element K are denoted by E(K), ED(K), EN (K), and
EI(K), respectively. The set of element nodes is denoted by N , while the nodes on a
particular element K or edge γ are denoted by N (K) or N (γ), respectively. For each
edge γ ∈ E , the set γ̃ consists of those elements for which γ is an edge,

(3) γ̃ = {K ′ ∈ P : γ ∈ E(K ′)},

while for each element K ∈ P, the set K̃ consists of those elements having an edge in
common with K,

(4) K̃ = {K ′ ∈ P : E(K) ∩ E(K ′) is nonempty}.

Let XP denote the finite-dimensional space relative to the partition defined by

XP = {v ∈ L2(Ω) : v|K ∈ P1(K) ∀v ∈ P},

where P1(K) denotes the set of polynomials of degree at most one in each variable.
We now describe the so-called discontinuous Galerkin finite element method for the
approximation of the solution of the model problem (2) using the space XP. Observe
that membership of the space XP carries no interelement continuity constraints or
boundary conditions. Instead, these will be enforced indirectly in the variational
scheme. For this purpose, we shall need some notation and conventions to describe
jumps and averages of functions associated with the space XP across interelement
edges. For each element K ∈ P, we let μK : ∂K → {+1,−1} denote a sign function
that is piecewise constant on the edges of element K and chosen such that μK +μK′ =
0 on ∂K ∩∂K ′ and μK = 1 on ∂K ∩∂Ω. For v ∈ XP, we define the jump and average
values of v on the edges E by

(5) [v] =

{
μKvK + μK′vK′ on γ = ∂K ∩ ∂K ′,

vK on γ = ∂K ∩ ΓD
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and

(6) 〈v〉 =

⎧⎨⎩
1

2
(vK + vK′) on γ = ∂K ∩ ∂K ′,

vK on γ = ∂K ∩ ΓD.

The sign functions {μK} may be used to define a unique, unit normal vector ν on
any given edge γ ∈ E according to the formula ν = μKνK , γ ⊂ ∂K, where νK

denotes the unit outward normal relative to element K. This definition is independent
of the choice of element K sharing the γ. The jump and average in the flux of a
function v ∈ XP on individual edges may then be defined by [σν(v)] = ν · [σ(v)] and
〈σν(v)〉 = ν · 〈σ(v)〉.

For a given positive constant κ to be specified later, we define the bilinear form
BP : XP ×XP → R by the rule

BP(v, w) =
∑
K∈P

(agrad v,gradw)K(7)

−
∑

γ∈EI∪ED

∫
γ

(〈σν(v)〉 [w] + [v] 〈σν(w)〉) ds +
∑

γ∈EI∪ED

κ

|γ|

∫
γ

[v] [w] ds

and the linear form LP : XP → R by

LP(w) =
∑
K∈P

(f, wK)K

+
∑
γ∈EN

∫
γ

gw ds−
∑
γ∈ED

∫
γ

uD 〈σν(w)〉 ds +
∑
γ∈ED

κ

|γ|

∫
γ

uDw ds,(8)

where |γ| is used to denote the length of an edge γ.
An approximation of the true solution u is obtained by seeking UP ∈ XP such

that

(9) BP(UP, v) = LP(v) ∀v ∈ XP.

This type of scheme is often referred to as the symmetric interior penalty discontinuous
Galerkin finite element method. The quantity |||·||| defined by

(10) |||v||| =

{∑
K∈P

(agrad v,grad v)K

}1/2

is sometimes dubbed the broken energy or H1-seminorm (note that |||v||| vanishes
whenever v is a piecewise constant function), while the quantity |||·|||DG given by

(11) |||v|||DG =

⎧⎨⎩|||v|||2 +
∑

γ∈EI∪ED

κ

|γ|

∫
γ

[v]
2

ds

⎫⎬⎭
1/2

is generally referred to as the DG-norm and plays an important role in the a priori
error analysis of the method.
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For a sufficiently large choice of parameter κ, it may be shown (see, for example,
section 4.2 of [5]) that (9) has a unique solution. In view of the developments in
section 4, where bounds on the residuals are obtained under an assumption on the
size of the interior penalty parameter κ, it is of practical importance that the bound
assumed there is consistent with the values of interior penalty for which the method
itself is well-posed. Therefore, we shall give a simple quantitative bound on the choice
of the interior penalty parameter κ.

The bound on the interior penalty parameter is stated in terms of the spectral
radius of the element stiffness matrix SK obtained using the standard barycentric
coordinates {λn : n ∈ N (K)} on element K, i.e.,

(12) [SK ]mn = (agradλm,gradλn)K .

Obviously, SK is positive semidefinite and has a largest eigenvalue �(SK) that de-
pends on the shape of the element but not on the mesh-size.

Lemma 1. Suppose that the interior penalty parameter appearing in the bilinear
form BP(·, ·) is chosen so that

(13) κ > 4 max
K∈P

�(SK).

Then there exists a unique UP ∈ XP such that

(14) BP(UP, v) = LP(v) ∀v ∈ XP.

Proof. Thanks to the finite dimensionality, it suffices to show that the only solu-
tion to the homogeneous problem vanishes. Let δ > 0 be a constant to be determined
and let v ∈ XP be arbitrary. Then, for each edge γ ∈ EI ∪ ED,

2

∫
γ

〈σν(v)〉 [v] ds ≤ δ

∫
γ

|γ| 〈σν(v)〉2 ds + δ−1

∫
γ

|γ|−1 [v]
2

ds.

If γ ∈ EI is an interior edge shared by elements K and K ′, then∫
γ

|γ| 〈σν(v)〉2 ds ≤ 1

2
|γ|2

{
(νK · σK(v)|γ)2 + (νK′ · σK′(v)|γ)2

}
,

where we have exploited the fact that σ(v) is constant on each element. Likewise, if
γ ∈ ED is an edge of element K, then∫

γ

|γ| 〈σν(v)〉2 ds ≤ |γ|2(νK · σK(v)|γ)2.

Hence, by including nonnegative contributions from the edges on the Neumann bound-
ary, we deduce that∑

γ∈EI∪ED

∫
γ

|γ| 〈σν(v)〉2 ds ≤
∑
K∈P

∑
γ⊂∂K

|γ|2(νK · σK(v))2|γ .

Making use of the relationship gradλn(γ) = −|γ|νK/2|K| between the barycentric
coordinate λn(γ) associated with the vertex opposite edge γ and the unit outward
normal νK on the edge, we deduce that∑

γ⊂∂K

|γ|2(νK · σK(v))2|γ = 4
v�KS2
K
vK ,
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where 
vK is the vector of values of v at the vertices of element K, and hence

|γ|2(νK · σK(v))2|γ ≤ 4�(SK)
v�KSK
vK = 4�(SK)(agrad v,grad v)K .

These estimates imply that

BP(v, v) ≥
∑
K∈P

(1 − 4δ�(SK))(agrad v,grad v)K

+
∑

γ∈EI∪ED

(κ− δ−1)|γ|−1

∫
γ

[v]
2

ds.

By selecting δ such that κ > δ−1 > 4 maxK∈P �(SK), we ensure that 1 − 4δ�(SK)
and κ− δ−1 are positive. Consequently, in the case of homogeneous data LP(·), any
solution UP of (14) satisfies (agradUP,gradUP)K = 0 on every element K, and∫
γ

[UP]
2

ds = 0 on the interior and Dirichlet edges. Consequently, UP must vanish
identically. This completes the proof.

3. A posteriori error analysis. Various a priori error bounds are available for
the approximation scheme described above [5]. However, the issues that we wish to
focus on in the present work are (i) can one obtain computable a posteriori estimates
for the error u − UP, and if so, (ii) in what norms? One complication is caused
by the fact that the error e = u − UP in the finite element approximation generally
fails to belong to the natural space H1

E(Ω) for the original variational problem (2).
The following result, due to Dari et al. [10], will be useful in this respect, where,
for a discontinuous function v, we define the broken gradient by the rule gradP v =
(grad v)|K and the broken flux by the rule σP(v) = (agrad v)|K on element K.

Theorem 1. Let H denote the space

(15) H = {w ∈ H1(Ω) : ∂w/∂s = 0 on ΓN}.

Then the error in the flux may be decomposed into the form

(16) σP(e) = σ(χ) + curlψ,

where χ ∈ H1
E(Ω) satisfies

(17) (agradχ,grad v) = (agradP e,grad v) ∀v ∈ H1
E(Ω)

and ψ ∈ H satisfies

(18) (a−1 curlψ, curlw) = (a−1σP(e), curlw) = (gradP e, curlw) ∀w ∈ H.

This splitting is orthogonal in the sense that

(19) (a−1σP(e),σP(e)) = (a−1σ(χ),σ(χ)) + (a−1 curlψ, curlψ).

A proof of this result can be found in [10], while a proof of a slightly more general
version is given in [1]. The function χ constitutes the orthogonal projection of the
total error onto the conforming space H1

E(Ω) and is referred to as the conforming
error, while the remaining part ψ is referred to as the nonconforming error. The
orthogonality of the splitting means that it suffices to estimate the contribution of
each part to the total error independently.
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3.1. Statement of the a posteriori error bounds. The treatment of the
nonconforming part of the error forms the subject of section 6, where it is shown in
Lemma 9 that

(a−1 curlψ, curlψ) ≤
∑
K∈P

η2
NC,K ,

where ηNC,K = ‖a1/2 gradP(U∗
P − UP)‖K and U∗

P is defined in section 6. The con-
forming part of the error is dealt with in section 5, where it is shown in Lemma 8
that

(agradχ,gradχ) ≤
∑
K∈P

ηCF,K(β)2,

where

ηCF,K(β) = a
−1/2
K

√
‖ρK‖2

K − C�
K(β)2|K|‖curlρK‖2

K

+ Cp(K)a
−1/2
K ‖f − fK‖K +

∑
γ∈EN (K)

Ct(K, γ)a
−1/2
K ‖g − gγ‖γ ,

aK denotes the restriction of the data a to element K, and fK = |K|−1
∫
K
f dx

and gγ = |γ|−1
∫
γ
g ds denote average values of the data over an element or edge,

respectively.
We emphasize that all of these quantities are given explicitly and are fully com-

putable in terms of the discontinuous Galerkin approximation UP, the data f and
gN , and geometrical information on the element. The final two terms often represent
higher order contributions measuring the oscillation in the data f and gN but are
nevertheless included in the estimator, using values for the multiplicative constants
Cp and Ct given explicitly in (61) and (64), so that one has a guaranteed upper bound
on the error even if the terms turn out not to be of higher order. The principal
part of the estimator involves the function ρK defined in Lemma 6, where an easily
computable closed form expression for its norm is given. The quantity C�

K(β) defined
in (49) involves an arbitrarily chosen “bubble” function β ∈ H1

0 (K). One possibility is
to choose β = 0. The best choice, in terms of maximizing C�

K , satisfies −Δβ = 1 in K
and vanishes on the element boundary. In general such a function is not available in
closed form and in practice a simple cubic polynomial approximation of the function
is found to be sufficient, for which one may show that

(20) C�
K(β)2 =

aK
20 trace(SK)

,

where SK is the element stiffness matrix in terms of the barycentric coordinates
defined earlier.

Lemmas 8 and 9 also assert that ηCF,K(β) and ηNC,K provide local lower bounds
for the conforming and nonconforming parts of the error up to data oscillation. Con-
sequently, by combining Theorem 1 and the above lemmas we obtain computable
bounds for the error measured in both the broken energy seminorm and DG-norm,
along with corresponding lower bounds.

Theorem 2. Let e = UP − u denote the error in the discontinuous Galerkin
approximation. Then

(21) |||e|||2 ≤
∑
K∈P

(ηCF,K(β)2 + η2
NC,K)
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Fig. 1. (a) Domain Ω and (b) initial mesh used in numerical example.

and

(22) |||e|||2DG ≤
∑
K∈P

(ηCF,K(β)2 + η2
NC,K) +

∑
γ∈EI∪ED

κ

|γ| ‖[UP]‖2
γ ,

where ηCF,K(β) and ηNC,K are defined in Lemmas 8 and 9, respectively. Moreover,
if the interior penalty parameter κ > 4 maxK∈P �(SK), then the above bounds are
efficient up to data oscillation and a positive constant independent of any mesh-size
and the solution.

3.2. Numerical example. In order to illustrate the theoretical results, we con-
sider a simple Poisson problem with homogeneous Dirichlet data on the domain Ω as
shown in Figure 1, with the source term f chosen so that the true solution is given
by u(r, θ) = (r3 − r2/3) sin(2θ/3). The problem is approximated using discontinuous
Galerkin with an interior penalty parameter κ = 10, which was observed to be consis-
tent with the bound given in Lemma 1, using a sequence of adaptively refined meshes
obtained starting with the mesh shown in Figure 1 and selecting those elements for
which the “full” local error indicator exceeds 30% of the value of the largest local
error indicator. In Figure 2 we compare the values of the a posteriori error estimator
corresponding to the choice β = 0, or to choosing β to be the cubic, quartic, or quintic
polynomial that maximizes the value of C�

K(β). In order to illustrate the influence of
the choice of the bubble more clearly, the data oscillation term in (57) is not included
but rather is shown separately, where it is seen to be of higher order. The “full”
estimator, with optimal quintic bubble and including data oscillation, is also shown
separately.

The results obtained in this particular example are typical. In particular, we
observe that the use of a cubic bubble β provides a marked improvement over the raw
estimator (β = 0), while the use of higher order bubbles provides marginal further
improvement at best. Therefore, the use of a cubic bubble seems to be merited in
general practical computations, particularly in view of the ease with which it may be
implemented.

4. Jumps in DGFEM are subordinate to the error in the broken H1-
seminorm. As usual, we define the oscillation of the data f ∈ L2(Ω) over a collection
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Fig. 2. (a) Values of a posteriori estimators and data oscillation, and (b) ratio of estimated
error to true error obtained for numerical example.

P′ of elements by

(23) osc(f,P′)2 =
∑

K⊂P′

|K|‖f − fK‖2
K ,

where fK is the average value of f over element K. Likewise, the oscillation of the
Neumann data g over a collection E ′ ⊂ EN of edges is defined by

(24) osc(g, E ′)2 =
∑
γ⊂E′

|γ|‖g − gγ‖2
γ ,

where gγ denotes the average value of g on the edge γ. The main result of this section
may be stated as follows.

Theorem 3. Suppose that κ > 4 maxK∈P �(SK), and e = UP − u denote the
error in the discontinuous Galerkin approximation. Then∑

γ∈EI∪ED

κ

|γ|

∫
γ

[e]
2

ds(25)

≤ Cκ

[
κ

κ− 4 maxK∈P �(SK)

]2
[∑
K∈P

‖a1/2 grad e‖2
K + osc(f,P)2 + osc(g, EN )2

]
,

where C is a positive constant independent of any mesh-size.
This result shows, up to terms involving oscillation of the data, that the con-

tributions from the jump terms to the value of |||e|||DG may be bounded in terms
of the contributions from the broken H1-seminorm |||e|||. At first glance, this result
is somewhat surprising in the sense that it does not hold for an arbitrary function.
Note, for example, that (ignoring oscillation terms) the expression appearing in the
bound vanishes when applied to a piecewise constant function, while the left-hand
side is nonzero for such a function. There is of course no paradox here, since the
estimate is claimed to hold only in the case of the error in a discontinuous Galerkin
approximation.

This type of estimate seems to be of wider significance for discontinuous Galerkin
finite element schemes, confirming that the jump discontinuities in the approximation
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are properly controlled through the interior penalty term and, as a result, play a
subordinate role to that of the error measured in the broken H1-seminorm.

The proof of Theorem 3 is postponed until the end of this section. We begin by
deriving estimates for the element volume residuals and jumps in function values and
fluxes across interelement edges in terms of the error in a neighborhood of the entity.

The bounds given in the following result for the volume residuals and interelement
fluxes are more or less standard and we confine ourselves to a statement of the results.

Lemma 2. Let χ ∈ H1
E(Ω) denote the conforming part of the error defined in (17).

Then there exist positive constants c, independent of any mesh-size, such that on every
element K ∈ P,

(26) chK‖f‖K ≤ ‖a1/2 gradχ‖K + osc(f,K);

on every edge γ ∈ EI ,

(27) c|γ|1/2‖[σν(UP)]‖γ ≤ ‖a1/2 gradχ‖γ̃ + osc(f, γ̃);

and, on every edge γ ∈ EN ,

(28) c|γ|1/2‖g − σν(UP)‖γ ≤ ‖a1/2 gradχ‖γ̃ + osc(f, γ̃) + osc(g, γ).

Let ψ ∈ H denote the nonconforming part of the error defined in (18). Then, on
every edge γ ∈ EI ,

(29) c|γ|1/2‖[∂UP/∂s]‖γ ≤ ‖a−1/2 curlψ‖γ̃ ,

and on every edge γ ∈ ED,

(30) c|γ|1/2‖∂(uD − UP)/∂s‖γ ≤ ‖a−1/2 curlψ‖γ̃ .

Proof. The first three estimates are obtained by applying a standard “bubble”
function argument to (17) (see, e.g., [3, section 2.3] or [17]). The remaining estimates
are obtained in a similar fashion (see, e.g., [10]) using (18).

The above estimates give only bounds on the jumps in the gradient of the approx-
imation across element boundaries. Our objective here is to obtain bounds on the
jumps in actual values. The next result gives bounds on the average value of the jump
in the approximation across edges provided that the choice of the penalty parameter
κ is consistent with the bound obtained in Lemma 1 that was shown to be sufficient
to ensure that the discrete scheme is well-posed.

Lemma 3. Suppose that κ > 4�(SK). Then

∑
γ∈EI(K)

∣∣∣∣|γ|−1

∫
γ

[UP] ds

∣∣∣∣+ ∑
γ∈ED(K)

∣∣∣∣|γ|−1

∫
γ

(UP − uD) ds

∣∣∣∣
≤ C(κ− 4�(SK))−1

[
‖a1/2 gradχ‖

K̃
+ osc(f, K̃)

+ κ‖a−1/2 curlψ‖
K̃

+ osc(g, EN (K))
]
,(31)

where C is a positive constant independent of any mesh-size.
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Proof. Fix an element K ∈ P and, for each edge γ ∈ EI(K) ∪ ED(K), define

αγ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

|γ|

∫
γ

μK [UP] ds, γ ∈ EI(K),

1

|γ|

∫
γ

(UP − uD) ds, γ ∈ ED(K).

Let γ∗ ∈ EI(K)∪ED(K) and define ϕγ∗ ∈ P1(K) by the rule ϕγ∗ = 1−2λ∗, where λ∗
is the barycentric coordinate associated with the vertex in element K that is opposite
to the edge γ∗. Observe that ϕγ∗ has constant value (unity) on the edge γ∗ and
satisfies

(32)
1

|γ|

∫
γ

ϕγ∗ ds = δγ∗γ , γ ∈ E(K).

The lack of any interelement continuity requirements on the test functions means that
the function ϕγ∗ , extended onto the remaining elements by zero, is admissible.

Inserting the test function into the variational statement (9), integrating the
volumetric term in the bilinear form (7) by parts, and simplifying, we arrive at the
identity

(f, ϕγ∗)K +
∑

γ∈EN (K)

∫
γ

(g − σν(UP))ϕγ∗ ds− 1

2

∑
γ∈EI(K)

∫
γ

[σν(UP)]ϕγ∗ ds

=
∑

γ∈ED(K)

κ

|γ|

∫
γ

(UP − uD)ϕγ∗ ds +
∑

γ∈EI(K)

κ

|γ|

∫
γ

μK [UP]ϕγ∗ ds(33)

−
∑

γ∈ED(K)

∫
γ

(UP − uD)σνK
(ϕγ∗) ds− 1

2

∑
γ∈EI(K)

∫
γ

μK [UP]σνK
(ϕγ∗) ds.

It will be useful to express several of the terms appearing on the right-hand side in
an alternative form. In view of (32), for γ ∈ EI(K) there holds

κ

|γ|

∫
γ

μK [UP]ϕγ∗ ds =

⎧⎪⎨⎪⎩
καγ∗ if γ∗ = γ,

κ

|γ|

∫
γ

μK([UP] − cγ)ϕγ∗ ds otherwise,

while for γ ∈ ED(K),

κ

|γ|

∫
γ

(UP − uD)ϕγ∗ ds =

⎧⎪⎨⎪⎩
καγ∗ if γ∗ = γ,

κ

|γ|

∫
γ

(UP − uD − cγ)ϕγ∗ ds otherwise,

where cγ is an arbitrary constant (to be chosen later).
By observing that σνK

(ϕγ∗) is piecewise constant on the element boundary and
again using property (32), we see that

|γ| σνK
(ϕγ∗)|γ =

∫
∂K

ϕγσνK
(ϕγ∗) ds = (agradϕγ∗ ,gradϕγ)K
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for any edge γ ⊂ ∂K. By further exploiting the fact that σνK
(ϕγ∗) is piecewise

constant and by the definition of αγ , we deduce that∫
γ

(UP − uD)σνK
(ϕγ∗) ds = (agradϕγ∗ ,gradϕγ)K αγ , γ ∈ ED(K),

and ∫
γ

μK [UP]σνK
(ϕγ∗) ds = (agradϕγ∗ ,gradϕγ)K αγ , γ ∈ EI(K).

It is convenient to express these quantities in terms of entries in the element stiffness
matrix SK relative to the barycentric coordinates defined earlier:

(agradϕγ ,gradϕγ′)K = 4[SK ]γγ′ .

Inserting the above alternative forms into expression (33) and rearranging, we
obtain the following relation for each edge γ∗ ∈ EI(K) ∪ ED(K):

καγ∗ − 4
∑

γ∈ED(K)

[SK ]γ∗γ αγ − 2
∑

γ∈EI(K)

[SK ]γ∗γ αγ = rKγ∗ ,

where

rKγ∗ = (f, ϕγ∗)K

+
∑

γ∈EN (K)

∫
γ

(g − σν(UP))ϕγ∗ ds− 1

2

∑
γ∈EI(K)

∫
γ

[σν(UP)]ϕγ∗ ds

−
∑

γ∈ED(K)\γ∗

κ

|γ|

∫
γ

(UP − uD − cγ)ϕγ∗ ds

−
∑

γ∈EI(K)\γ∗

κ

|γ|

∫
γ

μK([UP] − cγ)ϕγ∗ ds.

Introducing a diagonal matrix ΛK ∈ R
m×m, where m is the number of Dirichlet and

internal edges on K, with entries

Λγγ =

{
1 if γ ∈ ED(K),

1
2 if γ ∈ EI(K),

we may write the above equations in the form

καK − 4SKΛKαK = rK ,

where [αK ]γ = αγ and [rK ]γ = rKγ . Observing that

(ΛKαK)�SKΛKαK ≤ �(SK)α�
KΛ2

KαK ≤ �(SK)α�
KΛKαK ,

we obtain

(κ− 4�(SK))α�
KΛKαK ≤ α�

KΛKrK
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and hence, with the aid of a Cauchy–Schwarz inequality,

(κ− 4�(SK))2α�
KΛKαK ≤ r�KΛKrK .

It remains to bound the terms appearing in the entries rKγ∗ of the vector rK . Observing

that ϕγ∗ satisfies ‖ϕγ∗‖K ∼ hK and ‖ϕγ∗‖γ ∼ |γ|1/2, we obtain

c|rKγ∗ | ≤ hK‖f‖K

+
∑

γ∈EN (K)

|γ|1/2‖g − σν(UP)‖γ +
1

2

∑
γ∈EI(K)

|γ|1/2‖[σν(UP)]‖γ

+
∑

γ∈ED(K)\γ∗

κ|γ|−1/2‖UP − uD − cγ‖γ

+
∑

γ∈EI(K)\γ∗

κ|γ|−1/2‖[UP] − cγ‖γ ,

where c is a positive constant independent of κ and any mesh-size. The above estimate
holds for all choices of constants {cγ} and hence, taking cγ to be appropriate averages
and using a scaling argument, we may arrange that

‖UP − uD − cγ‖γ ≤ C|γ|‖∂(UP − uD)/∂s‖γ , γ ∈ ED(K),

and

‖[σν(UP)] − cγ‖γ ≤ C|γ|‖[∂UP/∂s]‖γ , γ ∈ EI(K).

In view of the estimates in Lemma 2, we conclude that

c|rK | ≤ ‖a1/2 gradχ‖
K̃

+ κ‖a−1/2 curlψ‖
K̃

+ osc(f, K̃) + osc(g, EN (K)),

and the result then follows as claimed.
We are now in a position to give bounds on the norms of the jumps in the discon-

tinuous Galerkin approximation in terms of the local conforming and nonconforming
parts of the error.

Lemma 4. Suppose that κ > 4�(SK). Then

|γ|−1/2‖[UP]‖γ ≤C(κ− 4�(SK))−1
[
‖a1/2 gradχ‖

K̃
+ osc(f, K̃)

+ κ‖a−1/2 curlψ‖
K̃

+ osc(g, EN (K))
]

(34)

for γ ∈ EI(K), and

|γ|−1/2‖UP − uD‖γ ≤C(κ− 4�(SK))−1
[
‖a1/2 gradχ‖

K̃
+ osc(f, K̃)

+ κ‖a−1/2 curlψ‖
K̃

+ osc(g, EN (K))
]

(35)

for γ ∈ ED(K), where C is a positive constant independent of any mesh-size.
Proof. It is not difficult to show that for any function F ∈ H1(0, h) we have

h−1‖F − F‖2
L2(0,h) ≤ Ch‖F ′‖2

L2(0,h),
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where the prime denotes the derivative, and F is the average value of F . Observing
that the left-hand side may be rewritten as

h−1‖F‖2
L2(0,h) − |F |2,

we deduce that

h−1‖F‖2
L2(0,h) ≤ |F |2 + Ch‖F ′‖2

L2(0,h).

Choosing F = [UP], we obtain

|γ|−1‖[UP]‖2
γ ≤

∣∣∣∣|γ|−1

∫
γ

[UP] ds

∣∣∣∣2 + C|γ|‖[∂UP/ds]‖2
γ ,

while choosing F = UP − uD, we obtain

|γ|−1‖UP − uD‖2
γ ≤

∣∣∣∣|γ|−1

∫
γ

(UP − uD) ds

∣∣∣∣2 + C|γ|‖∂(UP − uD)/ds‖2
γ .

The assertions then follow at once from Lemmas 2 and 3.
Finally, we come to the proof of Theorem 3.
Proof. The result follows at once from Theorem 1 and Lemma 4 on observing that

[e] coincides with [UP] on an interior edge and with UP−uD on an edge γ ∈ ED.

5. Estimation of conforming error.

5.1. Equilibrated fluxes. Given the finite element approximation UP, we intro-
duce a set of piecewise linear flux functions {gK : K ∈ P} on the element boundaries
gK : ∂K → R as follows:

(36) gK |γ =

⎧⎪⎪⎨⎪⎪⎩
μK

(
〈σν(UP)〉 − κ|γ|−1 [UP]

)
on γ ∈ EI(K),

σν(UP) − κ|γ|−1(UP − uD) on γ ∈ ED(K),

gγ on γ ∈ EN (K),

where gγ denotes the average value of g on edge γ.
The fluxes {gK} have the following useful properties, referred to as equilibration

conditions in [3].
Lemma 5. Let {gK : K ∈ P} be defined as in (36). Then

(37)
∑
K∈P

∫
∂K

gKv ds =

∫
ΓN

gv ds−
∑
γ∈EN

∫
γ

(g − gγ)v ds ∀v ∈ H1
E(Ω)

and

(38)

∫
∂K

gK ds +

∫
K

f dx = 0

for each element K ∈ P.
Proof. The presence of the sign function μK in definition (36) means that, on any

given interior edge γ ∈ EI(K) ∩ EI(K ′), the fluxes satisfy gK + gK′ = 0. The first
identity is an easy consequence of this fact, the definition of the fluxes on ΓN , and
the vanishing of the trace of the test function v on ΓD. Let χK denote the piecewise
constant function supported on element K, where it takes the value unity. The second
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Fig. 3. Locations of vertices and associated tangent vectors on triangle.

assertion follows by inserting the expression for the flux function and simplifying to
obtain ∫

∂K

gK ds +

∫
K

f dx

=
∑
γ∈EN

∫
γ

gχK ds + (f, χK) +
∑
γ∈ED

κ|γ|−1

∫
γ

uDχK ds

+
∑

γ∈EI∪ED

∫
γ

〈σν(UP)〉 [χK ] −
∑

γ∈EI∪ED

κ|γ|−1

∫
γ

[UP] [χK ]

= LP(χK) − BP(UP, χK) = 0,

where we have used the facts that [χK ] = μKχK , that gradP χK and 〈σν(χK)〉 both
vanish, and that UP satisfies (9).

The data appearing in the definition of the conforming part of the error may be
rewritten, using (2), as

(39) (agradχ,grad v) = (f, v) +

∫
ΓN

gv ds− (agradP UP,grad v) ∀v ∈ H1
E(Ω).

Then, exploiting property (37), we may split the right-hand side into contributions
from individual elements, arriving at the identity

(agradχ,grad v)

=
∑
K∈P

{
(fK , v)K +

∫
∂K

gKv ds− (agradUP,grad v)K

}

+
∑
K∈P

(f − fK , v)K +
∑
γ∈EN

∫
γ

(g − gγ)v ds ∀v ∈ H1
E(Ω).(40)

The next step is to construct a computable local representation of the functionals
appearing in parentheses.

5.2. Construction of local representer. Let K ∈ P be any element and,
without loss of generality, assume that the vertices and edges are enumerated as
shown in Figure 3, where τn are the nonnormalized tangent vectors shown. The
following result gives an explicit construction for the local representer and a closed
form for its norm.
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Lemma 6. For K ∈ P, let

(41) ρK =
1

2|K|
∑

n∈N (K)

ρ(K)
n λn,

where |K| is the area of the element,

(42)

ρ
(K)
1 = |γ3|Δ(K)

3 (x1)τ 2 − |γ2|Δ(K)
2 (x1)τ 3,

ρ
(K)
2 = |γ1|Δ(K)

1 (x2)τ 3 − |γ3|Δ(K)
3 (x2)τ 1,

ρ
(K)
3 = |γ2|Δ(K)

2 (x3)τ 1 − |γ1|Δ(K)
1 (x3)τ 2,

and

(43) Δ(K)
n = (gK − σνK

(UP))|γn
, γn ⊂ E(K).

Then

(44) (ρK ,grad v)K = (fK , v)K +

∫
∂K

gKv ds− (agradUP,grad v)K ∀v ∈ H1
E(K)

and

(45) ‖ρK‖2
K =

1

48|K|

⎡⎢⎣
∣∣∣∣∣∣
∑

n∈N (K)

ρ(K)
n

∣∣∣∣∣∣
2

+
∑

n∈N (K)

∣∣∣ρ(K)
n

∣∣∣2
⎤⎥⎦ .

Proof. Let ν1 denote the unit normal on edge γ1. Then

ν1 · ρK =
1

2|K|

[
ν1 · ρ(K)

2 λ2 + ν1 · ρ(K)
3 λ3

]
on γ1.

Elementary algebra reveals that ν1 ·ρ(K)
n = 2|K|Δ(K)

1 (xn) for n = 2 and 3, and hence

ν1 · ρK = Δ
(K)
1 (x2)λ2 + Δ

(K)
1 (x3)λ3 on γ1.

Since Δ(K) is piecewise linear on the element edges, we have ν1 · ρK = Δ
(K)
1 on γ1.

The same argument applies equally well to the remaining edges, and we conclude that

νK · ρK = gK − σνK
(UP) on ∂K.

Furthermore, since divρK is constant, we have

divρK =
1

|K|

∫
K

divρK dx =
1

|K|

∫
∂K

νK · ρK ds.

Then inserting the expression for the normal components and integrating by parts,
we obtain

divρK =
1

|K|

∫
∂K

gK ds− 1

|K|

∫
K

divσ(UP) dx,

and, thanks to (38), we deduce that

−divρK = fK + divσ(UP) on K.
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Given v ∈ H1(K), we have

(ρK ,grad v)K =

∫
∂K

vνK · ρK ds− (v,divρK)K ,

and by again inserting the expressions for the normal components and divergence
of ρK , integrating by parts, and simplifying, we arrive at the identity (44). Finally,
recalling that ∫

K

λmλn dx =
1

12
|K|(1 + δmn), m, n ∈ N (K),

we have

‖ρK‖2
K =

1

48|K|
∑

m∈N (K)

∑
n∈N (K)

(1 + δmn)ρ(K)
m · ρ(K)

n ,

which simplifies to give (45).
The following result gives an alternative representer having in general a smaller

norm than the previous one.
Lemma 7. Let K ∈ P and define ρK as in Lemma 6. Let β ∈ H1

0 (K) be arbitrary.
Then

(46) ρ�
K = ρK − c�K curlβ,

where

(47) c�K =

∫
K
β dx

‖curlβ‖2
K

curlρK

satisfies (44) (with ρK replaced by ρ�
K) and

(48) ‖ρ�
K‖2

K = ‖ρK‖2
K − C�

K(β)2|K|‖curlρK‖2
K ,

where

(49) C�
K(β) =

∫
K
β dx

|K|‖curlβ‖K
.

Proof. The fact that ρ�
K satisfies the identity follows at once from Lemma 6 after

noting that curlρK is constant and then observing that (curlβ,grad v)K vanishes
for v ∈ H1(K). Equally well, again using the fact that curlρK is constant, we find

(50) curlρK

∫
K

β dx =

∫
K

β curlρK dx = (ρK , curlβ)K ,

and so c�K = (ρK , curlβ)K/‖curlβ‖2
K . Direct calculation then gives

‖ρ�
K‖2

K = ‖ρK‖2
K −

[
(ρK , curlβ)K
‖curlβ‖K

]2

and the result then follows thanks to (50).
Note that the quantity C�

K(β) depends on the shape of the element K but not on
its size. The choice of the bubble function β was discussed in section 3.
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5.3. Bounds on the conforming error. With the above representation result
in hand, we resume the argument following (40) by inserting the representation (44)
for the terms in parentheses, giving

(agradχ,grad v)

=
∑
K∈P

(ρ�
K ,grad v)K +

∑
K∈P

(f − fK , v)K +
∑
γ∈EN

(g − gγ , v)γ(51)

for all v ∈ H1
E(Ω). The following result gives a computable upper bound on the

conforming error and a local lower bound up to a positive constant independent of
any mesh-size.

Lemma 8. Let K ∈ P and define ρK as above. Then

(52) (agradχ,gradχ) ≤
∑
K∈P

ηCF,K(β)2,

where

ηCF,K(β) = a
−1/2
K

√
‖ρK‖2

K − C�
K(β)2|K|‖curlρK‖2

K

+ Cp(K)a
−1/2
K ‖f − fK‖K +

∑
γ∈EN (K)

Ct(K, γ)a
−1/2
K ‖g − gγ‖γ ,(53)

with C�
K , Cp, and Ct as defined in Lemma 7, Theorem 4, and Lemma 11, respectively.

Moreover,
(54)

cηCF,K(β) ≤ ‖a1/2 gradχ‖
K̃

+ ‖a−1/2 curlψ‖
K̃

+ osc(g, {γ ∈ EN (K)}) + osc(f, K̃),

where c is a positive constant independent of any mesh-size.
Proof. The first term in (51) is simply estimated using

(ρ�
K ,grad v)K ≤ ‖ρ�

K‖K‖grad v‖K ,

while the remaining terms are estimated using Theorem 4 and Lemma 11 to obtain
for each element K ∈ P

(f − fK , v)K = inf
c∈R

(f − fK , v − c)K ≤ Cp(K)‖f − fK‖K‖grad v‖K

and

(g − gγ , v)γ = inf
c∈R

(g − gK , v − c)γ ≤ Ct(K, γ)‖g − gγ‖γ‖grad v‖K ∀γ ∈ EN (K).

Choosing v = χ and applying the Cauchy–Schwarz inequality results in the claimed
upper bound.

It suffices to prove the lower bound for the choice β = 0. Let K ∈ P and note
that

‖ρK‖2
K ≤ C|K|−1

∑
n∈N (K)

|ρ(K)
n |2

and

|ρ(K)
1 | ≤ |γ2||γ3|[|Δ(K)

2 (x1)| + |Δ(K)
3 (x1)|] ≤ C|K|[Δ(K)

2 (x1)
2 + Δ

(K)
3 (x1)

2]1/2,
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with similar bounds for ρ
(K)
2 and ρ

(K)
3 . Since the flux Δ(K) is piecewise linear, it

follows that

‖ρK‖2
K ≤ C|K|

∑
γ∈E(K)

|γ|−1‖Δ(K)‖2
γ ≤ C

∑
γ∈E(K)

|γ|‖Δ(K)‖2
γ .

Then

Δ(K) = gK − σνK
(UP) =

⎧⎪⎪⎨⎪⎪⎩
− 1

2 [σν(UP)] − κ|γ|−1μK [UP] , γ ∈ EI(K),

−κ|γ|−1(UP − uD), γ ∈ ED(K),

g − σν(UP), γ ∈ EN (K),

and hence, applying the triangle inequality and the estimates of Lemma 4, we may
bound the quantity |γ|1/2‖gK − σνK

‖γ by

|γ|1/2‖[σν(UP)]‖γ + κ

∣∣∣∣|γ|−1

∫
γ

[UP] ds

∣∣∣∣+ κ|γ|1/2‖[∂UP/ds]‖γ

for edges γ ∈ EI(K), by

κ

∣∣∣∣|γ|−1

∫
γ

(UP − uD) ds

∣∣∣∣+ κ|γ|1/2‖[∂(UP − uD)/ds]‖γ

for edges γ ∈ ED(K), and by

|γ|1/2‖g − σν(UP)‖γ

for edges γ ∈ EN (K). Squaring and summing these bounds over all edges γ of the
element, then using the estimates in Lemmas 2 and 3, we deduce that

cηCF,K(0) ≤ ‖a1/2 gradχ‖
K̃

+ ‖a−1/2 curlψ‖
K̃

+ osc(g, {γ ∈ EN (K)}) + osc(f, K̃),

where c is a positive constant that is independent of any mesh-size, since the shape
regularity of the elements means that the diameter of the element and the lengths of
its edges means that all such dimensions are equivalent up to constants that depend
only on the shape of the element.

6. Estimation of nonconforming error. The estimation of the nonconform-
ing part of the error is based on the following identity:

(55) (a−1 curlψ, curlψ) = min
u∗∈H1

uD
(Ω)

(agradP(u∗ − UP),gradP(u∗ − UP)),

where H1
uD

(Ω) = {v ∈ H1(Ω) : v = uD on ΓD}. A proof of this can be found in [1]. In
order to make use of the bound, we construct an admissible function u∗ ∈ H1

uD
(Ω) by

smoothing the finite element approximation UP. Specifically, take u∗ to be a piecewise
affine function U∗

P on P with nodal values given by

(56) U∗
P(xn) =

⎧⎪⎨⎪⎩
1

#Ωn

∑
K⊂Ωn

UP|K(xn) if xn �∈ ΓD,

uD(xn) if xn ∈ ΓD,
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where Ωn is the set of elements that have a vertex at the point xn, and #Ωn denotes its
cardinality. Inserting the function into the above statement shows that the estimator

(57) η2
NC,K = (agradP(U∗

P − UP),gradP(U∗
P − UP))K

provides a computable upper bound on the nonconforming part of the error.
The next result asserts that the estimator provides two-sided bounds on the error.
Lemma 9. Let ηNC,K denote the estimator defined in (57). Then

(58) (a−1 curlψ, curlψ) ≤
∑
K∈P

η2
NC,K

and, for each element K ∈ P,
(59)
cηNC,K ≤ ‖a1/2 gradχ‖K∗ + ‖a−1/2 curlψ‖K∗ + osc(g, {γ ∈ EN (K∗)}) + osc(f,K∗),

where

(60) K∗ = ∪{γ̃ : N (K) ∩N (γ) is nonempty}

and c is a positive constant independent of any mesh-size.
Proof. The upper bound follows from the foregoing arguments. A simple scaling

argument shows that

η2
NC,K ≤ CaK

∑
n∈N (K)

|U∗
P(xn) − UP|K(xn)|2.

We distinguish two cases.
Case (i). If xn �∈ ΓD, then

U∗
P(xn) − UP|K(xn) =

1

#Ωn

∑
K′∈Ωn

(UP|K′(xn) − UP|K(xn)).

If elements K and K ′ share a common edge γ, then

|UP|K′(xn) − UP|K(xn)| = | [UP] (xn)|

and, by writing [UP]γ in terms of its average value and (constant) gradient on the
edge, we deduce that

| [UP] (xn)| ≤
∣∣∣∣ 1

|γ|

∫
γ

[UP] ds

∣∣∣∣+ 1

2
|γ|1/2‖[∂UP/∂s]‖γ .

If K and K ′ are separated by intervening elements, we write the difference UP|K −
UP|K′ as a telescoping sum of differences between neighboring elements and use the
above estimate to deduce that

|UP|K′(xn) − UP|K(xn)| ≤ C
∑

γ:xn∈γ

∣∣∣∣ 1

|γ|

∫
γ

[UP] ds

∣∣∣∣+ 1

2
|γ|1/2‖[∂UP/∂s]‖γ

whenever K and K ′ ∈ Ωn.
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Case (ii). If xn ∈ ΓD, then U∗
P(xn) = uD(xn). If K has an edge γ ⊂ ΓD, then,

arguing as in the previous case, we obtain

|U∗
P(xn) − UP|K(xn)| ≤

∣∣∣∣ 1

|γ|

∫
γ

(UP − uD) ds

∣∣∣∣+ 1

2
|γ|1/2‖∂(UP − uD)/∂s‖γ .

As before, if element K is separated from the Dirichlet boundary by intervening
elements, then we write the difference as a telescoping sum of differences between
neighboring elements and use the previous estimates.

Finally, making use of the above bounds and the estimates in Lemmas 2 and 3,
we conclude that in both cases,

c|U∗
P(xn) − UP|K(xn)|

≤ ‖a1/2 gradχ‖K∗ + ‖a−1/2 curlψ‖K∗ + osc(g, {γ ∈ EN (K∗)}) + osc(f,K∗)

and the desired result is then a simple consequence of this estimate.

Appendix. Some basic estimates. We collect some basic estimates needed
in the upper bounds for the conforming part of the error in section 5. The following
optimal Poincaré estimate is proved in [13].

Theorem 4. Let K ∈ P and v ∈ H1(K). Then

(61) inf
c∈R

‖v − c‖K ≤ Cp(K)‖grad v‖K ,

where Cp(K) = 1
π maxx,y∈K |x− y|.

The next estimate gives a bound for the L2-norm of a function over an element
edge in terms of the H1-norm over the element. Again, the bound may be shown to
be optimal.

Lemma 10. Let γ be any edge of a triangle K ∈ P. Let xγ denote the vertex of
K opposite to edge γ and define Lγ = maxx∈γ |x − xγ | and �γ = minx∈γ |x − xγ |.
Then, for all v ∈ H1(K),

(62) ‖v‖2
γ ≤ 2

�γ
‖v‖K [‖v‖K + Lγ‖grad v‖K ] .

Proof. Let ν denote the unit outward normal on ∂K, and observe that the
quantity ν · (x − xγ) equals �γ on γ and vanishes on the remaining portion of the
boundary of K. Hence,

�γ‖v‖2
∂K =

∫
∂K

ν · (x− xγ)v2 ds =

∫
K

div[(x− xγ)v2] dx

= 2‖v‖2
K + 2

∫
K

v(x− xγ) · grad v dx.

The result then follows by noting that the second term on the right-hand side is
bounded by 2Lγ‖v‖K‖grad v‖K . In fact, we have proved a slightly stronger estimate
whereby grad v could be replaced by the derivative of v in the direction of x −
xγ . A different argument used in [8] led to the same kind of estimate with a worse
constant.

The following simple corollary of the above results will be used in the main text.
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Lemma 11. Let γ be any edge of a triangle K ∈ P. Then

(63) inf
c∈R

‖v − c‖γ ≤ Ct(K, γ)‖grad v‖K ,

where

(64) Ct(K, γ)2 =
2

�γ
Cp(K) (Cp(K) + Lγ)

and Lγ , �γ are given in Lemma 10, and Cp is given in Theorem 4.
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OF TWO VARIABLES∗
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Abstract. We correct several errors in [SIAM J. Numer. Anal., 39 (2002), pp. 1780–1793]
caused by a formula wrongly copied from the literature.

Key words. Hermite interpolation, polynomials, two variables

DOI. 10.1137/060676027

On p. 1789 of [1], the expression hk,0(r) of the basic polynomials in the classical
Hermite interpolation was wrongly copied from the literature. It should be

hk,0(r) =

(
1 − r

2

)s+1
2k

k!

s−k∑
j=0

(
s + j

j

)(
1 + r

2

)k+j

.

This mistake then manifested in some of the formulas in section 3. The corrected
formulas are given below:

(1) The formula for p(r) in the statement of Corollary 3.3 should be

p(r) =

[n/2]∑
k=0

(−1)k2kFk

k!

[n/2]−k∑
j=0

(
[n/2] + j

j

)

×
[(

1 − r

2

)[n/2]+1 (
1 + r

2

)k+j

+

(
1 + r

2

)[n/2]+1 (
1 − r

2

)k+j
]
.

(2) The formula for the coefficients Λk in Theorem 3.6 should be

Λk =
2π

2m + 1

(−1)k

k!

s−k∑
j=0

(
s + j

j

) [(s+1−k−j)/2]∑
i=0

(
s + 1 − k − j

2i

)

× Γ(k + j + 1)Γ(i + 1)

2s+j+1Γ(k + j + i + 2)
.

Also, on p. 1790, the expression following the product sign in the formula for g(r)
should be r2 − r2

j . We are grateful to M. Gachpazan and S. Serajzadeh for detecting
these errors and giving the correct formulas.

We also take this opportunity to mention again that the proof of Theorem 2.5
covers only the case when all α1, . . . , αλ are equal. This was pointed out to us by H.
Hakopian and was already acknowledged in the paper [2]. For further development in
this direction, see [3, 4, 5].
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Abstract. We study numerical methods for solving a coupled Stokes–Darcy problem in porous
media flow applications. A two-grid method is proposed for decoupling the mixed model by a coarse
grid approximation to the interface coupling conditions. Error estimates are derived for the proposed
method. Both theoretical analysis and numerical experiments show the efficiency and effectiveness of
the two-grid approach for solving multimodeling problems. Potential extensions and future directions
are discussed.

Key words. porous media flow, Stokes equations, Darcy’s law, multimodeling problems, two-
grid method
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1. Introduction. There are many multimodeling problems in real applications
of complex systems. They consist of multiple models in different regions coupled
through interface conditions. The local models may be very varied in type, scale,
control variable, and many other physical and mathematical properties. The corre-
sponding numerical treatments may, of course, also vary significantly in geometric and
PDE discretization, algebraic solution, and so on, in order to cope with local proper-
ties. The mixture of coupled models also leads to various mathematical and numerical
difficulties. For instance, interface coupling conditions involve different control vari-
ables from different local models and may have complex, or even nonlinear, forms.
Coupling different models may lead to very singular and complex structures across the
interface and strong stiffness due to different scales, which would present considerable
numerical difficulties. Examples of coupled multimodel applications include viscous-
inviscid flows [5], compressible-incompressible fluids [17], turbulent-laminar flows [9],
viscous-porous media flows [11, 16, 21, 27], and inertial confinement fusion with high
ratio of density and temperature [31].

In general, there are two types of approaches to solving multimodel problems.
One is to solve coupled problems directly, and the other is to first decouple mixed
models and then apply appropriate local solvers individually. There are many appeal-
ing reasons to use the decoupling approach. First, it allows one to tailor algorithm
components flexibly and conveniently in terms of physical, mathematical, and nu-
merical properties for each local model and solver. Second, it is suitable for today’s
grid computing environment because it can efficiently and effectively exploit the exist-
ing computing resources, including both hardware and software, that are distributed
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over the Internet and that have been developed by different experts for use in vari-
ous application fields [26]. As a by-product, it naturally results in parallelism in the
conventional sense.

There are various decoupling techniques. Many of them are in the spirit of domain
decomposition in general. For instance, Quarteroni and Valli [29] have extensively in-
vestigated heterogeneous domain decomposition methods for various coupled models.
The Lagrange multiplier approach is also widely used [15, 28] for decoupling multi-
model problems. The interface relaxation approach [24, 25] has also been successfully
applied in multimodel simulations. We note that two-grid methods were proposed in
[34, 35] for discretizing nonsymmetric and indefinite PDEs. The approach was also
used for linearizing nonlinear problems [23, 36, 37], for localization and parallelization
[38, 39, 40], as well as for many other applications; see, for instance, Axelssson and
coworkers [2, 3, 4], Girault and Lions [13], Layton and coworkers [18, 19, 20], and
Utnes [32]. In this paper, we demonstrate that the two-grid approach can also be
applied successfully to solve multimodel problems.

The rest of the paper is organized as follows. A coupled Stokes–Darcy model is
described in the next section as our model problem. A two-grid algorithm is proposed
in section 3 for decoupling the mixed model. The basic idea is to first solve a much
smaller problem on a coarse grid. The coarse grid solution is then used to interpolate
the interface condition, which leads to a decoupled problem on the fine grid. Section 4
contains the error analysis for the two-grid method and discusses its computational
aspects as well as potential extensions and future directions. Both theoretical analysis
and numerical experiments confirm that approximation accuracy does not deteriorate
under the proposed two-grid decoupling technique so that the decoupled discrete
problem is of the same accuracy as the couple discrete problem for approximating the
mixed Stokes–Darcy model. Concluding remarks follow in section 5.

2. Coupled Stokes–Darcy model. Let us consider a mixed model of Stokes
equations and Darcy equations for coupling a fluid flow with a porous media flow.
There has been very active research done recently on its applications, mathematical
analysis, finite element approximation, and numerical solution; see, e.g., [1, 11, 16, 21,
27] and references therein. In particular, a subdomain iterative method is proposed
to decouple the Stokes–Darcy problem by applying the preconditioned Richardson–
Franklin method to the interface equation with the Steklov–Poincaré pseudo-PDE
operator [11].

We consider a fluid flow in Ωf coupled with a porous media flow in Ωp; see Fig-
ure 1, where Ωf and Ωp are two- or three-dimensional bounded domains, Ωf

⋂
Ωp = ∅,

and Ωf

⋂
Ωp = Γ. Denote by Ω = Ωf

⋃
Ωp, nf , and np as usual the unit outward

normal directions on ∂Ωf and ∂Ωp.

The fluid motion is governed by the Stokes equations for the velocity Vf and the
pressure pf : ∀t > 0,⎧⎨⎩

∂Vf

∂t
− divT(Vf , pf ) = gf ∀x ∈ Ωf (conservation of momentum),

divVf = 0, ∀x ∈ Ωf (conservation of mass),

(1)

where

T(Vf , pf ) = −pfI + 2μD(Vf )



A TWO-GRID METHOD OF A MIXED STOKES–DARCY MODEL 1803

Fig. 1. A global domain Ω consisting of a fluid region Ωf and a porous media region Ωp

separated by an interface Γ.

is the stress tensor, μ > 0 is the kinematic viscosity, gf is the external force, and

D(Vf ) =
1

2
(∇Vf + ∇TVf )

is the deformation rate tensor.
The porous media flow motion is governed by Darcy’s law for the piezometric

head φ and the discharge vector q that is proportional to the velocity Vp, namely,
q = nVp with n being the volumetric porosity: ∀t > 0,⎧⎨⎩S0

∂φ

∂t
+ divq = gp ∀x ∈ Ωp (conservation of mass),

q = −K∇φ ∀x ∈ Ωp (Darcy’s law),

(2)

where S0 is the mass storativity, K is the hydraulic conductivity tensor of the porous
medium, and the source gp satisfies the solvability condition∫

Ωp

gp = 0,

and

φ = z +
pp
ρfg

,

where z is the elevation from a reference level, pp is the pressure in Ωp, ρf is the
density, and g is the gravity acceleration.
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We consider the following boundary conditions. Denote ∂Ωf \Γ = ∂Ωf,D

⋃
∂Ωf,N

and ∂Ωp \ Γ = ∂Ωp,D

⋃
∂Ωp,N , as shown in Figure 1. For the fluid flow, we impose{

Vf = 0 on ∂Ωf,D with meas(∂Ωf,D) �= 0,

−(T(Vf , pf )) · nf = h on ∂Ωf,N ,

where h is a given vector. For the porous medium, we assume{
φ = φp on ∂Ωp,D,

Vp · np = vp on ∂Ωp,N .

A key part in a mixed model is the interface coupling conditions. The following
interface conditions have been extensively used and studied in the literature [6, 21, 27]:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Vf · nf + Vp · np = 0,

−[(T(Vf , pf )) · nf ] · nf = ρfgφ,

−[(T(Vf , pf )) · nf ] · τ i =
α√

τ i · K · τ i

(Vf − Vp) · τ i, i = 1, . . . , d− 1,

(3)

where {τ i}d−1
i=1 are linearly independent unit tangential vectors on Γ, d is the spacial

dimension, and α is a positive parameter depending on the properties of the porous
medium and must be experimentally determined. The first interface condition ensures
mass conservation across Γ. The second one is a balance of normal forces across the
interface. The third one states that the slip velocity along Γ is proportional to the
shear stress along Γ. There have been many discussions in the literature on the slip
condition along the interface. It is even unclear if the third condition in (3) leads to a
well-posed problem. However, it has been observed that in practice the term Vp · τ i

on the right-hand side from the porous media flow is much smaller than the other
terms. The most accepted interface condition, known as the Beavers–Joseph–Saffman
law, is then given by

−[2μD(Vf ) · nf ] · τ i =
α√

τ i · K · τ i

Vf · τ i, i = 1, . . . , d− 1,(4)

which can be justified by a statistical approach and the Brinkman approximation [30].
We note that different interface conditions have been used in numerical studies. For
instance, the Beavers–Joseph–Saffman condition is used in [1, 21], while the free-slip
condition with α = 0 is assumed in [10, 11, 12]. We will assume the Beavers–Joseph–
Saffman condition (4) from now on.

For simplicity, let us assume n, ρf , and g are constants. We also assume the
homogenous boundary condition on φ, φp = 0, which can be easily handled by a
lifting function in the nonhomogenous case.

Denote

Hf = {v ∈ (H1(Ωf ))d | v = 0 on ∂Ωf,D},

Hp = {φ ∈ H1(Ωp) | φ = 0 on ∂Ωp,D},

W = Hf ×Hp,

Q = L2(Ωf ).
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By integration by parts as in [21], the weak formulation for the above coupled (sta-
tionary) Stokes–Darcy problem reads as follows: For f ∈ W ′, find u = (u, φ) ∈ W ,
p ∈ Q such that {

a(u, v) + b(v, p) = f(v) ∀v = (v, ψ) ∈ W ,

b(u, q) = 0 ∀q ∈ Q,
(5)

where

a(u, v) = aΩ(u, v) + aΓ(u, v),

with

aΩ(u, v) = aΩf
(u,v) + aΩp(φ, ψ),

aΩf
(u,v) =

∫
Ωf

2nμD(u) ·D(v) +

d−1∑
i=1

αn√
τ i · K · τ i

∫
Γ

(u · τ i)(v · τ i),

aΩp(φ, ψ) =

∫
Ωp

ρfg∇ψ · K∇φ,

aΓ(u, v) =

∫
Γ

nρfg[φv − ψu] · nf

and with

b(v, p) ≡ b(v, p) = −
∫

Ωf

np div v.

Similarly to [10], it is easy to verify that (i) a(·, ·) is continuous and coercive on W ,
and that (ii) b(·, ·) is continuous on W×Q and satisfies the well-known Brezzi–Babuska
condition as follows: There exists a positive constant β > 0 such that ∀q ∈ Q,∃w ∈ W
such that

b(w, q) ≥ β||w||W ||q||Q.(6)

The well-posedness of the model problem (5) then follows from Brezzi’s theory for
saddle-point problems [7]. The only difference from [10] is that the extension from
the free-slip interface condition to the case of nonzero α results in the inclusion of
an extra term

∑d−1
i=1

αn√
τ i·K·τ i

∫
Γ
(u · τ i)(v · τ i) in the bilinear form aΩf

(u,v). Note

that this extension does not affect property (i) for the bilinear form a(·, ·). The
continuity is obvious, while the coercivity is still a consequence of the well-known
Poincaré inequality and Korn inequality as in the free-slip case because α is positive
and the corresponding term can thus be ignored in the estimation.

3. A two-grid algorithm. Let Wh = Hf,h × Hp,h ⊂ W and Qh ⊂ Q be two
finite element spaces. The finite element discretization applied to the model problem
(5) leads to a coupled discrete problem as follows: Find uh = (uh, φh) ∈ Wh, ph ∈ Qh

such that {
a(uh, vh) + b(vh, ph) = f(vh) ∀vh = (vh, ψh) ∈ Wh,

b(uh, qh) = 0 ∀qh ∈ Qh.
(7)
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The construction of the finite element spaces Wh and Qh is described more specif-
ically as follows. Let the triangulation of the global domain be regular, as well as
compatible and quasi-uniform on Γ as described in [11]. Furthermore, the finite ele-
ment spaces Hf,h and Qh approximating the velocity and pressure fields in the fluid
region are assumed to satisfy the discrete inf-sup condition as follows: There exists a
positive constant β∗ > 0, independent of h, such that ∀vh ∈ Hf,h, qh ∈ Qh,

b(vh, qh) ≥ β∗||vh||Hf
||qh||Q.(8)

Several families of finite element spaces designed for the Stokes problem are pro-
vided in IV.2 and Chapter VI in [7]. They all satisfy the discrete inf-sup condition
(8) and can thus be applied for Hf,h and Qh. Finally, standard finite element ap-
proximations of Hm(Ωp), such as piecewise linear elements for m = 1, can be applied
for Hp,h in the porous media region. The well-posedness and error analysis of the
coupled discrete model (7) can be found in [11].

We now propose a two-grid algorithm consisting of the following two steps.
Algorithm.

1. Solve a coarse grid problem (7) with spacing H as follows: Find uH =
(uH, φH) ∈ WH ⊂ Wh, pH ∈ QH ⊂ Qh such that{

a(uH , vH) + b(vH , pH) = f(vH) ∀vH = (vH, ψH) ∈ WH ,

b(uH , qH) = 0 ∀qH ∈ QH .
(9)

2. Solve a modified fine grid problem as follows: Find uh = (uh, φh) ∈ Wh,
ph ∈ Qh such that{

aΩ(uh, vh) + b(vh, p
h) = f(vh) − aΓ(uH , vh) ∀vh ∈ Wh,

b(uh, qh) = 0 ∀qh ∈ Qh.
(10)

It is easy to see that the modified fine grid problem (10) is also well-posed. More
important, the discrete model (10) is in fact equivalent to two decoupled problems that
correspond to the Stokes problem on Ωf and the Darcy problem on Ωp, respectively,
with the boundary conditions defined by uH on Γ. More specifically, the discrete
Stokes problem on the fluid region reads as follows: Find uh ∈ Hf,h, ph ∈ Qh such
that ⎧⎪⎨⎪⎩

aΩf
(uh,vh) + b(vh, p

h) = (ngf ,vh) −
∫

Γ

nρfgφHvh · nf ∀vh ∈ Hf,h,

b(uh, qh) = 0 ∀qh ∈ Qh.

(11)

Similarly, the discrete Darcy problem on the porous media region reads as follows:
Find φh ∈ Hp,h such that

aΩp(φ
h, ψh) = (ρfggp, ψh) +

∫
Γ

nρfgψhuH · nf ∀ψh ∈ Hp,h.(12)

4. Error analysis. For convenience, from now on we will use x � y to denote
that there exists a constant C, such that x ≤ Cy. Let Wh and Qh be any finite
element spaces as described in the previous section. In addition, for illustration assume
the regularity u ∈ (H2(Ωf ))d × H2(Ωp) and p ∈ H1(Ωf ), and thus finite element
spaces as described above of first order approximation O(h) are used for the fluid and
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porous media regions. Then the error analysis for the coupled model in [11] yields the
estimates {

||u− uh||W � h,

||p− ph||Q � h.
(13)

Note that estimates (13) apply to the coupled problem (7) but not to the decoupled
problem (10). Furthermore, the extended framework of the Aubin–Nitsche duality
technique [7] gives the following L2-norm estimate.

Lemma 1. Let W− = (L2(Ωf ))d ×L2(Ωp). Then under the same assumptions as
above, we have

||u− uh||W− � h2.(14)

Proof. As in the Aubin–Nitsche duality technique for the general framework of
mixed problems in [7], consider the dual problem defined by the error pair (u −
uh, p − ph) to be (2.90) and (2.93) from [7]. For the solution (w, s) of the dual
problem, from the regularity of the dual problem we have (w, s) ∈ W++ × Q++ =
((H2(Ωf ))d × H2(Ωp)) × H1(Ωf ) in the particular setting of our problem. Then,
Theorem 2.2 (in particular the estimate of (2.100)) in [7] gives

||u− uh||W− � m(h)(‖u− uh‖W + ‖p− ph‖Q) + n(h)‖u− uh‖W ,

where

inf
wh∈Wh

‖w − wh‖W ≤ m(h)‖w‖W++ ,

and

inf
qh∈Qh

‖s− qh‖Q ≤ n(h)‖s‖Q++ .

Note that both m(h) and n(h) are of the order of O(h) as shown in [7]. Estimate (14)
then follows immediately from (13), which completes the proof.

As a consequence, the following estimates, which will be used in the proof of the
next theorem, follow immediately from (13) and (14):{

||uh − uH ||Hf
� H, ||uh − uH ||(L2(Ωf ))d � H2,

‖φh − φH‖Hp � H, ‖φh − φH‖L2(Ωp) � H2.
(15)

Theorem 2. Let uh, ph and uh, ph be defined by the two discrete models (7) and
(10) on the fine grid. The following error estimates hold:

||φh − φh||Hp � H2,(16)

||uh − uh||Hf
� H3/2,(17)

||ph − ph||Q � H3/2.(18)

Proof. Note that by comparing the two discrete models (7) and (10) on the fine
grid, we have{

aΩ(uh − uh, vh) + aΓ(uh − uH , vh) + b(vh, ph − ph) = 0 ∀vh ∈ Wh,

b(uh − uh, qh) = 0 ∀qh ∈ Qh.
(19)
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First, taking vh = (0, ψh) ∈ Wh in (19), we obtain

aΩp(φh − φh, ψh) + aΓ(uh − uH , vh) = 0.

In particular, when ψh = φh − φh, it is further reduced to

aΩp(φh − φh, φh − φh) =

∫
Γ

nρfg(φh − φh)(uh − uH) · nf .

Let θ ∈ H1(Ωf ) be a harmonic extension of φh − φh to the fluid flow region,
satisfying ⎧⎪⎨⎪⎩

−Δθ = 0 in Ωf ,

θ = φh − φh on Γ,

θ = 0 on ∂Ωf/Γ.

Let H
1/2
00 (Γ) denote the interpolation space [22]

H
1/2
00 (Γ) = [L2(Γ), H1

0 (Γ)]1/2.

Apparently,

||θ||H1(Ωf ) � ||φh − φh||
H

1/2
00 (Γ)

� ||φh − φh||Hp
.

Note that ∀qH ∈ QH ,∫
Γ

nρfg(φh − φh)(uh − uH) · nf

=

∫
∂Ωf

nρfgθ(uh − uH) · nf

=

∫
Ωf

div(uh − uH)(nρfgθ) +

∫
Ωf

(uh − uH) · ∇(nρfgθ)

= nρfg

(∫
Ωf

(θ − qH)div(uh − uH) +

∫
Ωf

(uh − uH) · ∇θ

)
,

where in the last equality we use the discrete divergence-free property for uh and uH ,

b(uh − uH , qH) =

∫
Ωf

nqHdiv(uh − uH) = 0 ∀qH ∈ QH .

Therefore, we have

||φh − φh||2Hp

� aΩp(φh − φh, φh − φh)

� inf
∀qH∈QH

∣∣∣∣∣
∫

Ωf

(θ − qH)div(uh − uH)

∣∣∣∣∣ +

∣∣∣∣∣
∫

Ωf

(uh − uH) · ∇θ

∣∣∣∣∣
� ||uh − uH ||Hf

inf
∀qH∈QH

||θ − qH ||L2(Ωf ) + ||uh − uH ||(L2(Ωf ))d ||θ||H1(Ωf )

� (H||uh − uH ||Hf
+ ||uh − uH ||(L2(Ωf ))d)||θ||H1(Ωf )

� H2||φh − φh||
H

1/2
00 (Γ)

� H2||φh − φh||Hp ,
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which leads to estimate (16).
To show (17), taking vh = (vh, 0) ∈ Wh in (19), we obtain

aΩf
(uh − uh,vh) + aΓ(uh − uH , vh) + b(vh, ph − ph) = 0.

In particular, when vh = uh − uh, due to the discrete divergence-free property of uh

and uh so that b(uh − uh, ph − ph) = 0, we further have

aΩf
(uh − uh,uh − uh) =

∫
Γ

nρfg(φh − φH)(uh − uh) · nf .

Hence,

||uh − uh||2Hf
� aΩf

(uh − uh,uh − uh)

=

∫
Γ

nρfg(φh − φH)(uh − uh) · nf

� ‖φh − φH‖L2(Γ)‖uh − uh‖(L2(Γ))d

� ‖φh − φH‖L2(Γ)‖uh − uh‖Hf
.

(20)

Using a refined trace result (see [33, p. 27], with ε = H1/2), we get

‖φh − φH‖L2(Γ) � H−1/2‖φh − φH‖L2(Ωp) + H1/2‖φh − φH‖H1(Ωp) � H3/2.(21)

Applying (21) to (20) then yields estimate (17).
Finally, let us show (18). From the discrete Brezzi–Babuska condition on Ωf , for

qh = ph − ph ∈ Qh,∃vh ∈ Hf,h such that

||ph − ph||L2(Ωf ) �
−
∫
Ωf

n(ph − ph)divvh

||vh||Hf

.

Recall that for vh = (vh, 0) ∈ Wh in (19), we have

aΩf
(uh − uh,vh) + aΓ(uh − uH , vh) + b(vh, ph − ph) = 0.

The first term above is easy to handle by

|aΩf
(uh − uh,vh)| � ||uh − uh||Hf

||vh||Hf
.

For the second term, we have

|aΓ(uh − uH , vh)| =

∣∣∣∣∫
Γ

nρfg(φh − φH)vh · nf

∣∣∣∣
� ‖φh − φH‖L2(Γ)‖vh‖(L2(Γ))d

� ‖φh − φH‖L2(Γ)‖vh‖Hf
.

Using (21) and (17), we have

||ph − ph||L2(Ωf ) �
|aΩf

(uh − uh,vh)| + |aΓ(uh − uH , vh)|
||vh||Hf

� ||uh − uh||Hf
+ ‖φh − φH‖L2(Γ)

� H3/2,
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which leads to estimate (18). This completes the proof.
Corollary 3. Let (uh, ph) ∈ Wh ×Qh be the solution of the two-grid algorithm

with H =
√
h. We have

||φ− φh||Hp
� h(22)

and

||u − uh||Hf
+ ||p− ph||Q � h3/4.(23)

If H = h2/3, estimate (23) is further improved to the optimal order as follows:

||u − uh||Hf
+ ||p− ph||Q � h.(24)

We remark that error estimates (17) and (18) for uh−uh and ph−ph may not be
optimal due to technical reasons. These two estimates might be further improved to
O(H2) by a finer analysis, as suggested by numerical experiments in [8], which could
then lead to an improvement of (23) to an optimal estimate of the order of O(h) for
u − uh and p − ph, yet still with H =

√
h. Furthermore, the error analysis may be

extended to finite element spaces with higher order approximation O(hm), provided
that the solution is locally smooth enough within each subdomain. Specifically, if
Wh ⊂ W and Qh ⊂ Q are finite element spaces with the approximation order O(hm),
and the solution (u, p) is locally smooth enough within each subdomain, we expect
the following estimates to hold:

||φh − φh||Hp
� Hm+1(25)

and

||uh − uh||Hf
+ ||ph − ph||Q � Hm+1,(26)

which implies the optimal error estimates if we take H = h
m

m+1 :

||φ− φh||Hp � hm(27)

and

||u − uh||Hf
+ ||p− ph||Q � hm.(28)

We refer readers to [8] for more details on this extension.
Comprehensive numerical experiments on various aspects of the proposed theoret-

ical framework are under investigation and will be reported in [8]. For instance, if the
well-known Taylor–Hood elements [7], also known as the P2-P1 elements, are applied
to the Stokes model, and the P2 elements are applied to the Darcy model, and for
convenience we simply take H =

√
h, the numerical approximations of the two-grid

algorithm to a locally very smooth solution clearly demonstrate an optimal conver-
gence rate of O(h2), which confirms our theoretical expectation. For more details,
see [8].

Most important, the presented theory suggests that one can effectively and effi-
ciently decouple a coupled multimodel problem by proper multigrid techniques. This
allows for different submodel problems to be solved independently by applying the
most appropriate numerical techniques individually. In addition, these decoupled lo-
cal problems can be solved by different processors on a parallel multiprocessor or
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by different computing nodes on a traditional cluster or even a remotely distributed
computational grid. Furthermore, in a grid computing environment, powerful and
efficient local solvers are usually available which were developed at different sites by
different experts for various single models. Therefore, substantial coding tasks can
also be reduced thanks to resource sharing in grid computing.

We also remark that the proposed two-grid algorithm still requires a coarse grid
solver for the coupling purpose. The coarse grid problem usually has a much smaller
size, say H =

√
h, and can thus be solved on a front end machine or a client machine.

It is also numerically easier to solve than a fine grid problem in various aspects such
as approximation accuracy, stiffness, and so on.

In addition, iterative strategies such as preconditioned error correction can be
applied for the coarse grid solver by restricting the computed fine grid approximation
to the coarse grid so that the coarse grid problem is also similarly decoupled. This
then leads to a fully decoupled iterative two-grid algorithm. Finally, we remark that
the same strategy can be applied recursively to the coarse grid problem, if necessary,
which then leads to a multigrid algorithm.

5. Conclusions. We have proposed a two-grid method for solving the coupled
Stokes–Darcy problem. Error estimates are obtained, which suggests that multigrid
can provide a general framework for solving multimodeling problems. It is promising
to extend this approach to more general settings, such as other boundary and interface
conditions, Navier–Stokes/Darcy coupling, time-dependent problems, as well as other
coupling applications. It is also possible to generalize the framework to other versions,
including iterative two-grid methods and multilevel methods.

Acknowledgments. The authors would like to thank M. C. Cai for implement-
ing the two-grid algorithm and conducting the numerical experiments. They also
thank the referees very much for helpful comments and suggestions, which led to
substantial improvements in the presentation.

REFERENCES

[1] T. Arbogast and D. S. Brunson, A computational method for approximating a Darcy–Stokes
system governing a vuggy porous medium, Comput. Geosci., to appear.

[2] O. Axelsson and I. E. Kaporin, Minimum residual adaptive multilevel finite element proce-
dure for the solution of nonlinear stationary problems, SIAM J. Numer. Anal., 35 (1998),
pp. 1213–1229.

[3] O. Axelsson and W. Layton, A two-level method for the discretization of nonlinear boundary
value problems, SIAM J. Numer. Anal., 33 (1996), pp. 2359–2374.

[4] O. Axelsson and A. Padiy, On a two level Newton type procedure applied for solving nonlinear
elasticity problems, Internat. J. Numer. Methods Engrg., 49 (2000), pp. 1479–1493.

[5] D. Barberis and P. Molton, Shock Wave/Turbulent Boundary Layer Interaction in a Three-
Dimensional Flow, AIAA paper 1995-227, American Institute of Aeronautics and Astro-
nautics, Inc., Reston, VA, 1995.

[6] G. Beavers and D. Josephn, Boundary conditions at a naturally permeable wall, J. Fluid
Mech., 30 (1967), pp. 197–207.

[7] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New
York, 1991.

[8] M. C. Cai, M. Mu, and J. C. Xu, Numerical Study on Two-Level and Multilevel Methods for
Mixed Stokes/Darcy Model, in preparation.

[9] B. Chanetz, R. Benay, J. Bousquet, R. Bur, T. Pot, F. Grasso, and J. Moss, Experi-
mental and numerical study of the laminar separation in hypersonic flow, Aerospace Sci.
Technol., 3 (1998), pp. 205–218.



1812 MO MU AND JINCHAO XU

[10] M. Discacciati and A. Quarteroni, Analysis of a domain decomposition method for the
coupling of Stokes and Darcy equations, in Proceedings of the 3rd European Conference
on Numerical Mathematics and Advanced Applications (ENUMATH 2001), F. Brezzi,
A. Buffa, S. Corsaro, and A. Murli, eds., Springer, Milan, 2003, pp. 3–20.

[11] M. Discacciati and A. Quarteroni, Convergence analysis of a subdomain iterative method for
the finite element approximation of the coupling of Stokes and Darcy equations, Comput.
Vis. Sci., 6 (2005), pp. 1001–1026.

[12] M. Discacciati, E. Miglio, and A. Quarteroni, Mathematical and numerical models for
coupling surface and groundwater flows, Appl. Numer. Math., 43 (2002), pp. 57–74.

[13] V. Girault and J.-L. Lions, Two-grid finite-element schemes for the transient Navier-Stokes
problem. Mathematical modelling and numerical analysis, M2AN Math. Model. Numer.
Anal., 35 (2001), pp. 945–980.

[14] V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory
and Algorithms, Springer-Verlag, Berlin, 1986.

[15] R. Glowinski, T. Pan, and J. Periaux, A Lagrange multiplier/fictitious domain method for
the numerical simulation of incompressible viscous flow around moving grid bodies: I. Case
where the rigid body motions are known a priori, C. R. Acad. Sci. Paris Sér. I Math., 324
(1997), pp. 361–369.

[16] W. Jager and A. Mikelic, On the boundary conditions at the contact interface between a
porous medium and a free fluid, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23 (1996),
pp. 403–465.

[17] S. Klainerman and A. Majda, Compressible and incompressible fluids, Comm. Pure Appl.
Math., 35 (1982), pp. 629–651.

[18] W. Layton and W. Lenferink, Two-level Picard and modified Picard methods for the Navier-
Stokes equations, Appl. Math. Comput., 69 (1995), pp. 263–274.

[19] W. Layton, A. Meir, and P. Schmidt, A two-level discretization method for the stationary
MHD equations, Electron. Trans. Numer. Anal., 6 (1997), pp. 198–210.

[20] W. Layton and L. Tobiska, A two-level method with backtracking for the Navier–Stokes
equations, SIAM J. Numer. Anal., 35 (1998), pp. 2035–2054.

[21] W. J. Layton, F. Schieweck, and I. Yotov, Coupling fluid flow with porous media flow,
SIAM J. Numer. Anal., 40 (2003), pp. 2195–2218.

[22] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications,
Vol. 1, Springer-Verlag, New York, Heidelberg, 1972.

[23] M. Marion and J. Xu, Error estimates on a new nonlinear Galerkin method based on two-grid
finite elements, SIAM J. Numer. Anal., 32 (1995), pp. 1170–1184.

[24] S. Markus, E. Houstis, A. Catlin, J. Rice, P. Tsompanopoulou, E. Vavalis, D. Got-

tfried, K. Su, and G. Balakrishnan, An agent-based netcentric framework for multi-
disciplinary problem solving environments (MPSE), Internat. J. Comput. Engrg. Sci., 1
(2000), pp. 33–60.

[25] M. Mu, Solving composite problems with interface relaxation, SIAM J. Sci. Comput., 20 (1999),
pp. 1394–1416.

[26] M. Mu, PDE.Mart: A network-based problem-solving environment for PDEs, ACM Trans.
Math. Software, 31 (2005), pp. 508–531.

[27] L. Payne and B. Straughan, Analysis of the boundary condition at the interface between a
viscous fluid and a porous medium and related modelling questions, J. Math. Pures Appl.,
77 (1998), pp. 317–354.

[28] M. Peszynska, M. Wheeler, and I. Yotov, Mortar upscaling for multiphase flow in porous
media, Comput. Geosci., 6 (2002), pp. 73–100.

[29] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equa-
tions, Oxford University Press, Oxford, UK, 1999.

[30] P. Saffman, On the boundary condition at the surface of a porous media, Stud. Appl. Math.,
50 (1971), pp. 93–101.

[31] A. Shestakov, M. Prasad, J. Milovich, N. Gentile, J. Painter, and G. Furnish, The
radiation-hydrodynamic ICF3D code, Comput. Methods Appl. Mech. Engrg., 187 (2000),
pp. 181–200.

[32] T. Utnes, Two-grid finite element formulations of the incompressible Navier-Stokes equations,
Comm. Numer. Methods Engrg., 13 (1997), pp. 675–684.

[33] J. Xu, Theory of Multilevel Methods, Ph.D. dissertation, Cornell University, Ithaca, NY, 1989.
[34] J. Xu, A new class of iterative methods for nonselfadjoint or indefinite problems, SIAM J.

Numer. Anal., 29 (1992), pp. 303–319.
[35] J. Xu, Iterative methods by SPD and small subspace solvers for nonsymmetric or indefinite

problems, in Proceedings of the Fifth International Symposium on Domain Decomposition
Methods for Partial Differential Equations, SIAM, Philadelphia, 1992, pp. 106–118.



A TWO-GRID METHOD OF A MIXED STOKES–DARCY MODEL 1813

[36] J. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15
(1994), pp. 231–237.

[37] J. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer.
Anal., 33 (1996), pp. 1759–1777.

[38] J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretiza-
tions, Math. Comp., 69 (2000), pp. 881–909.

[39] J. Xu and A. Zhou, Local and parallel finite element algorithms based on two-grid discretiza-
tions for nonlinear problems, Adv. Comput. Math., 14 (2001), pp. 293–327.

[40] J. Xu and A. Zhou, Local and parallel finite element algorithms for eigenvalue problems, Acta
Math. Appl. Sin. Engl. Ser., 18 (2002), pp. 185–200.



SIAM J. NUMER. ANAL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 45, No. 5, pp. 1814–1842

SPECIALIZED PARTITIONED ADDITIVE RUNGE–KUTTA
METHODS FOR SYSTEMS OF OVERDETERMINED DAES WITH
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Abstract. We consider a general class of systems of overdetermined differential-algebraic equa-
tions (ODAEs). We are particularly interested in extending the application of the symplectic Gauss
methods to Hamiltonian and Lagrangian systems with holonomic constraints. For the numerical
approximation to the solution to these ODAEs, we present specialized partitioned additive Runge–
Kutta (SPARK) methods, and in particular the new class of (s, s)-Gauss–Lobatto SPARK methods.
These methods not only preserve the constraints, symmetry, symplecticness of the flow, and varia-
tional nature of the trajectories of holonomically constrained Hamiltonian and Lagrangian systems,
but they also have an optimal order of convergence 2s.
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1. Introduction. Gauss methods for Hamiltonian systems are known to be sym-
plectic [7, 8, 19, 25, 28]. For Lagrangian systems these methods are also known to
be of a variational nature [21]. The main objective of this paper is to present ex-
tensions of Gauss methods to Hamiltonian and Lagrangian systems with holonomic
constraints. For these systems we have found extensions of Gauss methods preserving
symplecticness, the manifold of constraints, the variational nature of trajectories, and
having an optimal order of convergence. When applied to nonstiff ordinary differen-
tial equations (ODEs), Gauss methods have a maximal order of convergence in the
class of Runge–Kutta (RK) methods [3, 8]. However, for index 3 differential-algebraic
equations (DAEs) such as Hamiltonian systems with holonomic constraints, standard
Gauss methods either are divergent or have a very low order of convergence when the
underlying differentiated constraints are not taken into account [5]. Gauss methods
have thus not been considered of much practical interest for the numerical solution of
high index DAEs. Recently, optimal methods based on Gauss coefficients have been
obtained for index 2 DAEs [18] and have stirred renewed interest in Gauss methods
for DAEs.

In this paper we consider a general class of systems of overdetermined differen-
tial-algebraic equations (ODAEs), including a unified formulation of Hamiltonian and
Lagrangian systems with holonomic constraints. To approximate numerically the
solution to these systems of ODAEs, we present the new class of specialized partitioned
additive Runge–Kutta (SPARK) methods. We make great use of the structure of the
ODAEs. The new class of (s, s)-Gauss–Lobatto SPARK methods extends to these
ODAEs the application of Gauss methods to ODEs. These symmetric methods are
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shown to be superconvergent of order 2s and constraint preserving. Moreover, for
Hamiltonian and Lagrangian systems with holonomic constraints these methods are
shown to be symplectic and to satisfy a discrete variational principle.

The paper is organized as follows. In section 2 we introduce the equations of
Hamiltonian and Lagrangian systems with holonomic constraints. We state some
of their relations and main properties. A unified formulation of Hamiltonian and
Lagrangian systems is presented and generalized to a larger class of systems of ODAEs.
In section 3 we introduce the new class of SPARK methods. Examples of SPARK
methods are given. In section 4 we characterize symplectic SPARK methods and show
their variational nature. In section 5 we give results about existence, uniqueness, local
error, and global convergence of SPARK methods. Finally, in section 6 some numerical
experiments are given to illustrate our theoretical results. A short conclusion is given
in section 7.

Regarding notation, we denote by x′ the total derivative of x with respect to
the independent variable t. For a function f(x, y), we denote by fx(x, y) its partial
derivative with respect to x.

2. Hamiltonian and Lagrangian systems with holonomic constraints. In
this section we introduce the equations of Hamiltonian and Lagrangian systems with
holonomic constraints. For these systems some important relations and properties are
stated [1, 4, 20]. A unified and generalized formulation of Hamiltonian and Lagrangian
systems is presented.

2.1. Hamiltonian systems with holonomic constraints. The Hamiltonian
system with Hamiltonian H : R

n×R
n −→ R and holonomic constraints g : R

n −→ R
m

(m < n) is given by

q′ = HT
p (q, p),(2.1a)

p′ = −HT
q (q, p) − gTq (q)λ,(2.1b)

0 = g(q).(2.1c)

Differentiating (2.1c) once with respect to the independent variable t, we obtain
gq(q)q

′ = 0, and from (2.1a) this leads to

0 = gq(q)H
T
p (q, p).(2.1d)

We assume that gq(q) is of full row rank m and that the Hessian matrix

HT
pp(q, p) is invertible.(2.2)

For example, HT
pp(q, p) is generally assumed to be (strictly) positive definite. Equa-

tions (2.1a,b,c) are DAEs of index 3 in Hessenberg form [2, 6, 9, 12, 15]. The whole
system (2.1) can be considered as a system of index 2 ODAEs. For consistent initial
values, i.e., for (q0, p0) ∈ V , where

V :=
{
(q, p) ∈ R

n × R
n | 0 = g(q), 0 = gq(q)H

T
p (q, p)

}
,(2.3)

we have existence and uniqueness of a solution.
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2.2. Lagrangian systems with holonomic constraints. The Lagrangian
system with Lagrangian L : R

n×R
n −→ R and holonomic constraints g : R

n −→ R
m

(m < n) is given by

q′ = v,(2.4a)

(LT
v (q, v))′ = LT

q (q, v) − gTq (q)λ,(2.4b)

0 = g(q).(2.4c)

Differentiating (2.4c) once with respect to t, we obtain gq(q)q
′ = 0, and from (2.4a)

this leads to

0 = gq(q)v.(2.4d)

We assume that gq(q) is of full row rank m and that the Hessian matrix

LT
vv(q, v) is invertible,(2.5)

for example, LT
vv(q, v) is generally assumed to be (strictly) positive definite. Equa-

tions (2.4a,b,c) are usually called Euler–Lagrange equations and are DAEs of index 3
[15]. The whole system (2.4) can be considered as a system of index 2 ODAEs. For
consistent initial values, i.e., for (q0, v0) ∈ W , where

W := {(q, v) ∈ R
n × R

n | 0 = g(q), 0 = gq(q)v} ,(2.6)

we have existence and uniqueness of a solution. For Lagrangian systems with holo-
nomic constraints (2.4), it is advantageous to consider directly the formulation (2.4b)
instead of

LT
vv(q, v)v

′ = −LT
vq(q, v)v + LT

q (q, v) − gTq (q)λ,(2.7)

since this formulation (2.7) requires an extra term LT
vq(q, v)v which usually corre-

sponds to Coriolis forces; see [14, 15]. Moreover, preserving the Lagrangian symplectic
2-form (2.10) for numerical methods is certainly more problematic with formulation
(2.7) than with (2.4b); see also Corollary 4.2.

2.3. Relations and properties of Hamiltonian and Lagrangian systems
with holonomic constraints. Lagrangian systems are closely related to Hamilto-
nian systems. The momenta p of a Lagrangian system are defined by

p := LT
v (q, v).(2.8)

From (2.5), the relation p − LT
v (q, v) = 0 defines v as an implicit function v(q, p).

Under assumption (2.5) the Lagrangian system (2.4) is equivalent by the change of
variables (2.8) to the Hamiltonian system (2.1) with Hamiltonian

H(q, p) := pT v(q, p) − L(q, v(q, p)).

This is known as a Legendre transform. Assumption (2.5) is equivalent to (2.2). The
velocities of a Hamiltonian system are defined by

v := HT
p (q, p).(2.9)
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From (2.2), the relation v−HT
p (q, p) = 0 defines p as an implicit function p(q, v). Un-

der assumption (2.2) Hamiltonian system (2.1) is equivalent by the change of variables
(2.9) to Lagrangian system (2.4) with Lagrangian

L(q, v) := pT (q, v)v −H(q, p(q, v)).

This is also a Legendre transform. Under the equivalent assumptions (2.2) and (2.5)
we have the following symmetric relations between Lagrangian systems and their
Hamiltonian counterparts:

pT v = H(q, p) + L(q, v),

p = LT
v (q, v),

v = HT
p (q, p),

In = HT
pp(q, p)L

T
vv(q, v).

Properties of Lagrangian systems can thus be transferred to Hamiltonian systems,
and vice versa. Hence, here we state only five important properties of Lagrangian
systems with holonomic constraints as follows:

1. Any solution to (2.4) must lie on the manifold of constraints W (2.6). In
particular, any initial conditions (q0, v0) at t0 must belong to W .

2. The energy function E(q, v) := Lv(q, v)v − L(q, v) is invariant along a solu-
tion, i.e.,

E(q(t), v(t)) = Const.

3. The flow ϕτ : (q(t), v(t)) �→ (q(t + τ), v(t + τ)) on the manifold of constraints
W preserves the Lagrangian symplectic 2-form

n∑
i=1

dqi ∧ dLvi(q, v) =

n∑
i=1

n∑
j=1

(Lviqj (q, v)dq
i ∧ dqj + Lvivj (q, v)dqi ∧ dvj).(2.10)

4. The action of the Lagrangian∫ tb

ta

L(q(t), v(t)) − gT (q(t))λ(t)dt

is stationary. This is Hamilton’s variational principle. The algebraic variables λ are
Lagrange multipliers associated with the holonomic constraints (2.4c).

5. The flow may be γ-reversible, i.e., ϕτ = γ−1 ◦ ϕ−1
τ ◦ γ for some transfor-

mation γ of the variables (q, v). For example, for conservative mechanical systems
in Lagrangian form, the Lagrangian is given by L(q, v) = T (q, v) − U(q), where
T (q, v) = 1

2v
TM(q)v is the kinetic energy with M(q) being the (strictly) positive

definite symmetric generalized mass matrix, and U(q) is the potential energy. The
flow is γ-reversible with respect to a reflection of the velocities γ : (q, v) �→ (q,−v).
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2.4. Unification and generalization of the formulation of Hamiltonian
and Lagrangian systems with holonomic constraints. We present here a unified
and generalized formulation of Hamiltonian and Lagrangian systems with holonomic
constraints, consisting of a set of implicit ODAEs

y′ = v(y, z),(2.11a)

(p(y, z))′ = f(y, z) + r(y, λ),(2.11b)

0 = g(y),(2.11c)

0 = gy(y)v(y, z).(2.11d)

These equations encompass the formulation of conservative mechanical systems with
constraints of holonomic and scleronomic types [10, 22, 26, 27]. In mechanics the
quantities y, v, p, f, r usually represent, respectively, generalized coordinates, gener-
alized velocities, generalized momenta, generalized forces, and reaction forces due
to the holonomic constraints (2.11c). These equations include Hamiltonian systems
with holonomic constraints (2.1) and Lagrangian systems with holonomic constraints
(2.4). For Hamiltonian systems (2.1) we have q = y, p(y, z) = z, v(y, z) = HT

z (y, z),
f(y, z) = −HT

y (y, z), and r(y, λ) = −gTy (y)λ. For Lagrangian systems (2.4) we have

q = y, v(y, z) = z, p(y, z) = LT
z (y, z), f(y, z) = LT

y (y, z), and r(y, λ) = −gTy (y)λ.
Equation (2.11d) corresponds to 0 = (g(y))′ = gy(y)y

′. The variable t ∈ R is the
independent variable and

y = (y1, . . . , yny )T ∈ R
ny ,

z = (z1, . . . , znz )T ∈ R
nz ,

λ = (λ1, . . . , λnλ)T ∈ R
nλ ,

p : R × R
ny × R

nz −→ R
nz ,

g : R × R
ny −→ R

nλ ,

v : R × R
ny × R

nz −→ R
ny ,

f : R × R
ny × R

nz −→ R
nz ,

r : R × R
ny × R

nλ −→ R
nz .

The variables y, z are called the differential variables and the variables λ are called
the algebraic variables. The latter correspond to Lagrange multipliers when the DAEs
are derived from a constrained variational principle [10, 22]. The initial values y0, z0

at t0 are assumed to be given and consistent, i.e., (2.11c) and (2.11d) must be sat-
isfied. Some differentiability conditions on the above functions are also assumed to
ensure existence and uniqueness of the solution. In a neighborhood of the solution
the following conditions are assumed to be satisfied:

pz is invertible,(2.12a) (
pz −rλ

gyvz O

)
is invertible.(2.12b)
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Differentiating the left-hand side of (2.11b), under the assumption (2.12a) we obtain
the following expression:

z′ = pz(y, z)
−1 (f(y, z) + r(y, λ) − py(y, z)v(y, z)) .(2.13)

Differentiating the constraints (2.11d) leads to

0 = gyy(y) (v(y, z), v(y, z)) + gy(y)(vy(y, z)v(y, z) + vz(y, z)z
′).(2.14)

Introducing the expression for z′ from (2.13) into (2.14), we see that under assumption
(2.12b) equations (2.14) form an implicit system of equations for λ whose solution
exists and is locally unique by application of the implicit function theorem.

Introducing the new variables q, p and the relations

q = y, p = p(y, z),(2.15)

under the assumption (2.12a) we can formally express the differential variables y and
z as (implicit) functions of (q, p), i.e.,

y = q, z = z(q, p).

Defining

V (q, p) := v (q, z (q, p)) , F (q, p) := f (q, z (q, p)) , R(q, λ) := r (q, λ) , G(q) := g (q) ,

the whole system (2.11) can be reformulated in an equivalent way as

q′ = V (q, p),(2.16a)

p′ = F (q, p) + R(q, λ),(2.16b)

0 = G(q),(2.16c)

0 = Gq(q)V (q, p),(2.16d)

and assumption (2.12b) is equivalent to

GqVpRλ is invertible.(2.17)

There is no implicit derivative in (2.16b). Since the application of SPARK meth-
ods (3.2) below is invariant under the change of variables (2.15), for the analysis in
section 5 we can simply consider p(y, z) = z in (2.11b).

3. SPARK methods. After briefly considering the class of standard RK meth-
ods, we introduce the new class of SPARK methods for the ODAEs (2.11). Examples
of SPARK methods are then given.

3.1. Standard RK methods. The standard application of RK methods to the
system of index 3 DAEs (2.11a,b,c) with p(y, z) = z is as follows [6]:

Yi = y0 + h

s∑
j=1

aijv(Yj , Zj) for i = 1, . . . , s,

Zi = z0 + h

s∑
j=1

aij (f(Yj , Zj) + r(Yj ,Λj)) for i = 1, . . . , s,
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0 = g(Yi) for i = 1, . . . , s,

y1 = y0 + h

s∑
j=1

bjv(Yj , Zj),

z1 = z0 + h

s∑
j=1

bj (f(Yj , Zj) + r(Yj ,Λj)) .

For example, the standard s = 1-stage Gauss RK method for Hamiltonian systems
with holonomic constraints (2.1a,b,c), based on the implicit midpoint rule for ODEs,
reads as

Q1 = q0 + h
1

2
HT

p (Q1, P1) =
1

2
(q1 + q0),

P1 = p0 − h
1

2
HT

q (Q1, P1) − h
1

2
gTq (q1)Λ1 =

1

2
(p1 + p0),

0 = g(Q1),

q1 = q0 + hHT
p (Q1, P1),

p1 = p0 − hHT
q (Q1, P1) − hgTq (q1)Λ1.

Unfortunately, this method is in general divergent. More generally, the standard
definition of RK methods does not take advantage of the additive structure of (2.11b)
and of the presence of the two sets of constraints (2.11c,d). A different extension of the
implicit midpoint rule, convergent even for the more general system of ODAEs (2.11),
can be found within the class of SPARK methods (3.2) to be discussed hereafter.
When p(y, z) = z, this extension is given by

Y1 = y0 + h
1

2
v(Y1, Z1) =

1

2
(y1 + y0),(3.1a)

Z1 = z0 + h
1

2
f(Y1, Z1) + h

1

2
r(y0,Λ0),(3.1b)

y1 = y0 + hv(Y1, Z1),(3.1c)

0 = g(y1),(3.1d)

z1 = z0 + hf(Y1, Z1) + h
1

2
r(y0,Λ0) + h

1

2
r(y1,Λ1),(3.1e)

0 = gy(y1)v(y1, z1)(3.1f)

and is named a (1, 1)-Gauss–Lobatto SPARK method; see subsection 3.3. Note that
the quantity Λ0 is local to the current step and does not come from the previous step.
For Hamiltonian systems with holonomic constraints (2.1), we obtain

Q1 = q0 + h
1

2
HT

p (Q1, P1) =
1

2
(q1 + q0),

P1 = p0 − h
1

2
HT

q (Q1, P1) − h
1

2
gTq (q0)Λ0,



SPARK METHODS FOR SYSTEMS OF OVERDETERMINED DAES 1821

q1 = q0 + hHT
p (Q1, P1),

0 = g(q1),

p1 = p0 − hHT
q (Q1, P1) − h

1

2
gTq (q0)Λ0 − h

1

2
gTq (q1)Λ1,

0 = gq(q1)H
T
p (q1, p1).

For separable Hamiltonian systems of the form H(q, p) = 1
2p

TM−1p + U(q), this
method is equivalent to a method proposed by Reich in [24].

3.2. Definition of SPARK methods. We propose here a class of methods
based on RK coefficients taking advantage of the structure of (2.11), in particular
of the additive and partitioned structure of (2.11a,b) and of the presence of the two
sets of constraints (2.11c,d). The definition of SPARK methods is given below. A
similar application of SPARK methods has been proposed for the numerical solution
of mechanical systems in [15]; see also [16].

Definition 3.1. One step of an (s, s̃)-SPARK method applied to the system of
implicit overdetermined partitioned DAEs (2.11) with consistent initial values (y0, z0)
at t0 and stepsize h is given as follows:

Yi = y0 + h

s∑
j=1

aijv(Yj , Zj) for i = 1, . . . , s,(3.2a)

p(Yi, Zi) = p0 + h

s∑
j=1

âijf(Yj , Zj) + h

s̃∑
j=0

ãijr(Ỹj ,Λj) for i = 1, . . . , s,(3.2b)

Ỹi = y0 + h

s∑
j=1

aijv(Yj , Zj) for i = 0, 1, . . . , s̃,(3.2c)

0 = g(Ỹi) for i = 0, 1, . . . , s̃,(3.2d)

y1 = y0 + h

s∑
j=1

bjv(Yj , Zj),(3.2e)

p(y1, z1) = p0 + h

s∑
j=1

b̂jf(Yj , Zj) + h

s̃∑
j=0

b̃jr(Ỹj ,Λj),(3.2f)

0 = g(y1),(3.2g)

0 = gy(y1)v(y1, z1),(3.2h)

where p0 := p(y0, z0). We have four sets of coefficients (bj , aij , ci), (̂bj , âij), (̃bj , ãij),
(aij , c̃i), where we have defined

ci :=

s∑
j=1

aij for i = 1, . . . , s, c̃i :=

s∑
j=1

aij for i = 0, 1, . . . , s̃.
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Notice that the coefficients (bj , cj)
s
j=1 and (̃bj , c̃j)

s̃
j=0 are generally two distinct quadra-

ture formulas. The SPARK coefficients can be expressed concisely in four Butcher-
style tableaux:

ci aij
A bj

âij

Â b̂j

ãij

Ã b̃j

c̃i aij

A
.

When the RK matrix A = (aij)
s
i,j=1 is invertible we can express the values Ỹi for

i = 0, 1, . . . , s̃ and y1 as linear combinations of y0 and Yj for j = 1, . . . , s as follows:

Ỹi = y0 +

s∑
j=1

ηij(Yj − y0), y1 = y0 +

s∑
j=1

νj(Yj − y0),

where η := AA−1 and νT := bTA−1. An (s, s̃)-SPARK method (3.2) can be seen as
an extension of an s-stage standard (partitioned) RK method for partitioned ODEs

y′ = v(y, z), z′ = f(y, z).

To ensure existence and uniqueness of the SPARK solution (see Theorem 5.1), we
assume the SPARK coefficients satisfy the following conditions:

a0j = 0 for j = 1, . . . , s,(3.3a)

as̃j = bj for j = 1, . . . , s,(3.3b)

s∑
j=1

aijcj =

s∑
j=1

s∑
k=1

aij âjk =

s∑
j=1

s̃∑
k=0

aij ãjk =
c̃2i
2

for i = 0, 1, . . . , s̃,(3.3c)

AÃ =:

(
0 · · · 0

N

)
,

(
N

b̃T

)
is invertible.(3.3d)

Condition (3.3a) implies that c̃0 = 0 and Ỹ0 = y0. Therefore g(Ỹ0) = 0 is automat-
ically satisfied since we assume g(y0) = 0. Such SPARK methods generally do not
require the evaluation of v(y0, z0) and f(y0, z0). However, r(y0,Λ0) is required. Con-

dition (3.3b) implies that g(y1) = 0 is automatically satisfied since g(Ỹs̃) = 0 from

(3.2d) for i = s̃ and y1 = Ỹs̃.

3.3. The (s, s)-Gauss–Lobatto SPARK methods. We are especially inter-
ested in extending Gauss RK methods for ODEs without constraints to corresponding
(s, s)-SPARK methods (3.2) for the ODAEs (2.11) having an optimal order of con-

vergence 2s. The Gauss RK coefficients âij = aij , b̂j = bj can be found, e.g., in [3, 7].
The Gauss RK coefficients satisfy

s∑
i=1

bic
k−1
i =

1

k
, k = 1, . . . , 2s,

s∑
j=1

aijc
k−1
j =

cki
k
, i = 1, . . . , s, k = 1, . . . , s.
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For the coefficients b̃i and c̃i, we take the coefficients of the (s + 1)-stage Lobatto
quadrature formula (c̃0 = 0, c̃s = 1) of order 2s which satisfy

s∑
i=0

b̃ic̃
k−1
i =

1

k
, k = 1, . . . , 2s.

The coefficients aij can be taken according to

s∑
j=1

aijc
k−1
j =

c̃ki
k
, i = 0, 1, . . . , s, k = 1, . . . , s,

and the coefficients ãij are then simply determined by

ãij = b̃j

(
1 − aji

bi

)
, i = 1, . . . , s, j = 0, 1, . . . , s.

These methods are called (s, s)-Gauss–Lobatto SPARK methods. They have order
2s of convergence; see Corollary 5.4. It can be shown that these methods satisfy
conditions (3.3) and

ãi0 = b̃0, ãis = 0, i = 1, . . . , s.

The algebraic variable Λs appears only in (3.2f) and is thus determined by (3.2h).

The (1, 1)-Gauss–Lobatto SPARK method corresponds to the following Butcher-
style tableaux of SPARK coefficients:

1/2 1/2
A 1

1/2

Â 1

1/2 0

Ã 1/2 1/2

0 0
1 1

A

.

We have Ỹ0 = y0 and Ỹ1 = y1. When p(y, z) = z in (2.11b) the method simplifies to
(3.1) for Y1, y1, Z1, z1,Λ0,Λ1.

The (2, 2)-Gauss–Lobatto SPARK method corresponds to the following Butcher-
style tableaux of SPARK coefficients:

1/2 −
√

3/6 1/4 1/4 −
√

3/6

1/2 +
√

3/6 1/4 +
√

3/6 1/4
A 1/2 1/2

1/4 1/4 −
√

3/6

1/4 +
√

3/6 1/4

Â 1/2 1/2

1/6 1/3 −
√

3/6 0

1/6 1/3 +
√

3/6 0

Ã 1/6 2/3 1/6

0 0 0

1/2 1/4 +
√

3/8 1/4 −
√

3/8
1 1/2 1/2

A

.

We have Ỹ0 = y0 and Ỹ2 = y1.

3.4. The Lobatto IIIA-B partitioned RK (PRK) methods. SPARK meth-
ods (3.2) include the Lobatto IIIA-B PRK methods of [12, 13]. For example, the
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(2, 1)-Lobatto IIIA-B SPARK method of order 2 (an extension of the Störmer/leap-
frog/Verlet/RATTLE/ SHAKE methods) corresponds to the following Butcher-style
tableaux of SPARK coefficients:

0 0 0
1 1/2 1/2
A 1/2 1/2

1/2 0
1/2 0

Â 1/2 1/2

1/2 0
1/2 0

Ã 1/2 1/2

0 0 0
1 1/2 1/2

A

.

For this method we have Y1 = Ỹ0 = y0 and Y2 = Ỹ1 = y1. When p(y, z) = z in (2.11b)
the method simplifies to the following equations for y1, Z1 = Z2, z1,Λ0,Λ1:

y1 = y0 + h
1

2
v(y0, Z1) + h

1

2
v(y1, Z2),

Z1 = z0 + h
1

2
f(y0, Z1) + h

1

2
r(y0,Λ0),

0 = g(y1),

z1 = z0 + h
1

2
f(y0, Z1) + h

1

2
f(y1, Z2) + h

1

2
r(y0,Λ0) + h

1

2
r(y1,Λ1)

= Z1 + h
1

2
f(y1, Z2) + h

1

2
r(y1,Λ1),

0 = gy(y1)v(y1, z1).

3.5. The symplectic Euler method. For Hamiltonian systems with holo-
nomic constraints (2.1), the symplectic Euler method [7, 9, 23] is defined as follows:

P1 = p0 − hHT
q (q0, P1) − hgTq (q0)Ψ0,(3.4a)

q1 = q0 + hHT
p (q0, P1),(3.4b)

0 = g(q1),(3.4c)

p1 = p0 − hHT
q (q0, P1) − hgTq (q0)Ψ0 − hgTq (q1)Ψ1 = P1 − hgTq (q1)Ψ1,(3.4d)

0 = gq(q1)H
T
p (q1, p1).(3.4e)

It is a method of order 1 and the two quantities Ψ0, Ψ1 are locally determined by these
equations. The symplectic Euler method can be interpreted as a SPARK method (3.2)
with coefficients

0 0
A 1

1

Â 1

α 0

Ã α 1−α

0 0
1 1

A

,

which we call the “natural” symplectic Euler method. The quantities Ψ0 and Ψ1

correspond to Ψ0 = αΛ0 and Ψ1 = (1 − α)Λ1. Unfortunately, this method does
not satisfy (3.3c), and when applied to the more general problem (2.11) this SPARK
method is generally not convergent [17] when r(y, λ) is nonlinear in λ. A convergent
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extension of the symplectic Euler method to (2.11) (here given when p(y, z) = z in
(2.11b)) is as follows:

Z1 = z0 + hf(y0, Z1) + hαr(y0,Λ0),

y1 = y0 + hv(y0, Z1),

0 = g(y1),

z1 = z0 + hf(y0, Z1) + hα(r(y0,Λ0) − r(y1,Λ0)) + hr(y1, Λ̃1)

= Z1 − hαr(y1,Λ0) + hr(y1, Λ̃1),

0 = gy(y1)v(y1, z1),

with α �= 0. We call this method the “true” symplectic Euler method. It is convergent
of order 1 [17]. It cannot be expressed in the format of a SPARK method (3.2)
when r(y, λ) is nonlinear in λ. When r(y, λ) is affine in λ it is equivalent to the
natural symplectic Euler method, which is symplectic for Hamiltonian systems with
holonomic constraints (2.1) and for Lagrangian systems with holonomic constraints
(2.4); see Theorems 4.1 and 4.2.

4. Symplecticness and variational properties of SPARK methods. The
preservation of the symplecticness of the flow of Hamiltonian and Lagrangian systems
with holonomic constraints by SPARK methods is considered in this section. The
variational properties of the discrete trajectories of symplectic SPARK methods are
also examined.

4.1. Symplectic SPARK methods. For Hamiltonian systems with holonomic
constraints (2.1), SPARK methods whose numerical flow preserves (locally) the sym-
plecticness property are characterized as follows.

Theorem 4.1. We consider Hamiltonian systems with holonomic constraints
(2.1) satisfying the assumptions given in section 2.1. If the SPARK method (3.2)
applied to (2.1) satisfies

b̂i = bi for i = 1, . . . , s,(4.1a)

b̂iaij + bj âji − b̂ibj = 0 for i, j = 1, . . . , s,(4.1b)

b̃iaij + bj ãji − b̃ibj = 0 for i = 0, 1, . . . , s̃, j = 1, . . . , s,(4.1c)

then the numerical flow (q0, p0) �→ (q1, p1) preserves on V (2.3) the symplectic 2-form∑n
i=1 dq

i ∧ dpi.
Proof. We denote

Vj := HT
p (Qj , Pj), Fj := −HT

q (Qj , Pj), Rj := −gTq (Q̃j)Λj .

We have

dqJ1 ∧ dpJ1 − dqJ0 ∧ dpJ0 = h

s∑
i=1

b̂idq
J
0 ∧ dF J

i + h

s̃∑
i=0

b̃idq
J
0 ∧ dRJ

i + h

s∑
j=1

bjdV
J
j ∧ dpJ0

+h2
s∑

j=1

bjdV
J
j ∧

s∑
i=1

b̂idF
J
i + h2

s∑
j=1

bjdV
J
j ∧

s̃∑
i=0

b̃idR
J
i .
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Introducing in the first three terms the following three relations for q0 and p0, respec-
tively:

q0 = Qi − h

s∑
j=1

aijVj , q0 = Q̃i − h

s∑
j=1

aijVj , p0 = Pj − h

s∑
i=1

âjiFi − h

s̃∑
i=0

ãjiRi,

we obtain

n∑
J=1

dqJ1 ∧ dpJ1 −
n∑

J=1

dqJ0 ∧ dpJ0 = h

s∑
i=1

(
b̂i

n∑
J=1

dQJ
i ∧ dF J

i + bi

n∑
J=1

dV J
i ∧ dP J

i

)

+h
s̃∑

i=0

b̃i

(
n∑

J=1

dQ̃J
i ∧ dRJ

i

)

+h2
n∑

J=1

s∑
j=1

s∑
i=1

(
bj b̂i − bj âji − b̂iaij

)
dV J

j ∧ dF J
i

+h2
n∑

J=1

s∑
j=1

s̃∑
i=0

(
bj b̃i − bj ãji − b̃iaij

)
dV J

j ∧ dRJ
i .

The first term vanishes by assumption (4.1a) and

n∑
J=1

(dQJ
i ∧ dF J

i + dV J
i ∧ dP J

i ) = 0;

see [8, Formula (II.16.18)]. The last two terms also vanish by assumptions (4.1b,c).
It remains to show that the second term also vanishes. We have

dRJ
i = −

m∑
L=1

n∑
K=1

∂2gL

∂qK∂qJ
(Q̃i)Λ

L
i dQ̃

K
i −

m∑
L=1

∂gL

∂qJ
(Q̃i)dΛ

L
i .

We thus get

n∑
J=1

dQ̃J
i ∧ dRJ

i = −
m∑

L=1

ΛL
i

(
n∑

J=1

n∑
K=1

∂2gL

∂qK∂qJ
(Q̃i)dQ̃

J
i ∧ dQ̃K

i

)

−
m∑

L=1

(
n∑

J=1

∂gL

∂qJ
(Q̃i)dQ̃

J
i

)
∧ dΛL

i .

Since the second derivative of gL is symmetric the expression in brackets in the first
term vanishes. Moreover, since gL(Q̃i) = 0 the expression in brackets in the second
term also vanishes. This concludes the proof.

Notice that by adding the terms ai0v(y0, z0) in (3.2c) and b0v(y0, z0) in (3.2e),
we obtain in Theorem 4.1 the additional condition (4.1c) for j = 0. For b0 = 0 this

implies ai0 = 0 if b̃i �= 0 (i = 0, 1, . . . , s̃).
A consequence of Theorem 4.1 is the following.
Corollary 4.2. We consider Lagrangian systems with holonomic constraints

(2.4) satisfying the assumptions given in section 2.2. If the SPARK method (3.2)
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applied to (2.4) satisfies (4.1), then the numerical flow (q0, v0) �→ (q1, v1) preserves on
W (2.6) the Lagrangian symplectic 2-form (2.10).

Proof. For systems without constraints this result was stated in [14]. The re-
sult follows from the equivalence between Hamiltonian and Lagrangian systems as
described in section 2.3. Under assumption (2.5), Lagrangian system (2.4) with vari-
ables (q, v) can be reformulated in terms of an equivalent Hamiltonian system (2.1)
with variables (q, p). A SPARK method (3.1) can be formally applied to this Hamilto-
nian system (2.1) and then rewritten in terms of the variables (q, v) of the Lagrangian
form. This is in fact equivalent to applying a SPARK method (3.1) with the same
coefficients directly to Lagrangian system (2.4).

Assuming coefficients (bi, aij) and (̂bi) are given, to satisfy the symplecticness
conditions (4.1b) we must have

âij = b̂j

(
1 − aji

bi

)
for i, j = 1, . . . , s, when bi �= 0.

Assuming coefficients (̃bi, aij) and (bi) are given, to satisfy the symplecticness condi-
tions (4.1c) we must have

ãij = b̃j

(
1 − aji

bi

)
for i = 1, . . . , s, j = 0, 1, . . . , s̃, when bi �= 0.

From the symplecticness condition (4.1c), the assumption a0j = 0 (3.3a) implies bj = 0

or ãj0 = b̃0. We are thus particularly interested in SPARK methods satisfying

ãi0 = b̃0 for i = 1, . . . , s.(4.2)

From the symplecticness condition (4.1c), the assumption as̃j = bj implies bj = 0 or
ãjs̃ = 0. We are thus particularly interested in SPARK methods satisfying

ãis̃ = 0 for i = 1, . . . , s.(4.3)

From this condition the algebraic variable Λs̃ appears only in (3.2f) and is determined
by (3.2h).

4.2. Symplectic SPARK methods are variational integrators. The appli-
cation of a SPARK method to Lagrangian systems (2.4) with holonomic constraints
and consistent initial values q0, v0 at t0, i.e., g(q0) = 0 and gq(q0)v0 = 0, reads as

Qi = q0 + h

s∑
j=1

aijVj for i = 1, . . . , s,(4.4a)

Pi = p0 + h

s∑
j=1

âijFj + h

s̃∑
j=0

ãijRj for i = 1, . . . , s,(4.4b)

Q̃i = q0 + h

s∑
j=1

aijVj for i = 0, 1, . . . , s̃,(4.4c)

0 = g(Q̃i) for i = 0, 1, . . . , s̃,(4.4d)
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q1 = q0 + h

s∑
j=1

bjVj ,(4.4e)

p1 = p0 + h

s∑
j=1

b̂jFj + h

s̃∑
j=0

b̃jRj ,(4.4f)

0 = g(q1),(4.4g)

0 = gq(q1)v1,(4.4h)

where

p0 := LT
v (q0, v0), p1 := LT

v (q1, v1), Pi := LT
v (Qi, Vi) for i = 1, . . . , s,

Fi := LT
q (Qi, Vi) for i = 1, . . . , s, Ri := −gTq (Q̃i)Λi for i = 0, 1, . . . , s̃.

When the SPARK coefficients satisfy symplecticness conditions (4.1), SPARK method
(4.4) can also be derived from a variational point of view following the ideas intro-
duced by Marsden and West [21]. Notice that the variational property in a backward
analysis sense of symplectic PRK integrators was derived in [14]. The nonequivalent
derivation of [7] would consider V1, . . . , Vs as independent variables and would remove
the constraints (4.4b). This derivation would be difficult to apply in our context due
to the presence of holonomic constraints.

Following Marsden and West [21], instead of considering the unknown quantities
in (3.2) as implicit functions of q0, v0, and h, we consider them as implicit functions
of q0, q1, and h. More precisely, assuming g(q0) = 0 and g(q1) = 0 we implicitly define
as functions of q0, q1, and h the quantities p0, p1, v0, v1, Qi, Pi, Vi, Fi for i = 1, . . . , s
and Q̃i, Ri,Λi for i = 0, 1, . . . , s̃ by (4.4), except that we replace (4.4g) g(q1) = 0 by
0 = gq(q0)v0. Formally speaking, we should make a distinction between the solution
of (4.4) and the solution of (4.4) with the equation g(q1) = 0 replaced by 0 = gq(q0)v0.
In any case, the solution to one system is also the solution to the other under the
assumptions g(q0) = 0 and gq(q0)v0 = 0 for the first system of equations and g(q0) = 0
and g(q1) = 0 for the second system of equations.

Considering the discrete action

Ad(q0, q1, h) := h

s∑
i=1

biL(Qi, Vi) − h

s̃∑
i=0

b̃iΛig(Q̃i),

we can show after some lengthy calculations (see the proof of Theorem 4.3) that
when the SPARK coefficients satisfy the symplecticness assumptions (4.1), we have
the relations

p0 = −∇1Ad(q0, q1, h), p1 = ∇2Ad(q0, q1, h).

Therefore, the discrete Euler–Lagrange equations

∇2Ad(qn−1, qn, h) + ∇1Ad(qn, qn+1, h) = 0

are satisfied for n = 1, . . . , N −1. This implies stationarity of the total discrete action

N∑
n=1

Ad(qn−1, qn, h)(4.5)
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with respect to qn for n = 1, . . . , N − 1. This is nothing else but a discrete version
of Hamilton’s principle applied to this sum (4.5). Therefore a SPARK symplectic
integrator is also a variational integrator in this sense; more precisely, we have the
following.

Theorem 4.3. For Lagrangian systems with holonomic constraints (2.4) and
a corresponding SPARK method (4.4), assume q0 and qN are fixed and consistent.
Replace 0 = g(qn+1) for n = 0, 1, . . . , N−1 by 0 = gq(qn)vn. If the SPARK coefficients
satisfy symplecticness assumptions (4.1), then we have a variational integrator in the
sense of Marsden and West [21]; i.e., we have stationarity of the total discrete action
(4.5) with respect to qn for n = 1, . . . , N − 1.

Proof. We show now the relation −∇1Ad(q0, q1, h) = p0. We have

−∂Ad

∂q0
(q0, q1, h) = −h

s∑
i=1

biLq(Qi, Vi)
∂Qi

∂q0
− h

s∑
i=1

biLv(Qi, Vi)
∂Vi

∂q0

+h

s̃∑
i=0

b̃iΛ
T
i

(
gq(Q̃i)

∂Q̃i

∂q0

)
+ h

s̃∑
i=0

b̃ig
T (Q̃i)

∂Λi

∂q0

= −h

s∑
i=1

biF
T
i

⎛⎝I + h

s∑
j=1

aij
∂Vj

∂q0

⎞⎠− h

s∑
i=1

biP
T
i

∂Vi

∂q0

+h

s̃∑
i=0

b̃iΛ
T
i gq(Q̃i)

⎛⎝I + h

s∑
j=1

aij
∂Vj

∂q0

⎞⎠ + h

s̃∑
i=0

b̃ig
T (Q̃i)

∂Λi

∂q0

= −h

s∑
i=1

biF
T
i I − h2

s∑
i=1

s∑
j=1

biaijF
T
i

∂Vj

∂q0

−h

s∑
i=1

bi

⎛⎝pT0 + h

s∑
j=1

âijF
T
j + h

s̃∑
j=0

ãijR
T
j

⎞⎠ ∂Vi

∂q0
− h

s̃∑
i=0

b̃iR
T
i I

−h2
s̃∑

i=0

s∑
j=1

b̃iaijR
T
i

∂Vj

∂q0
+ h

s̃∑
i=0

b̃ig
T (Q̃i)

∂Λi

∂q0

= −h

s∑
j=1

bjF
T
j I − h2

s∑
i=1

s∑
j=1

(bjaji + biâij)F
T
j

∂Vi

∂q0

−pT0 h

s∑
i=1

bi
∂Vi

∂q0
− h2

s∑
i=1

s̃∑
j=0

biãijR
T
j

∂Vi

∂q0
− h

s̃∑
i=0

b̃iR
T
i I

−h2
s̃∑

i=0

s∑
j=1

b̃iaijR
T
i

∂Vj

∂q0
+ h

s̃∑
i=0

b̃ig
T (Q̃i)

∂Λi

∂q0
.

From (4.4e) we have

0 = I + h
s∑

i=1

bi
∂Vi

∂q0
;
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hence

−∂Ad

∂q0
(q0, q1, h) = −h2

s∑
i=1

s∑
j=1

(bjaji + biâij − bjbi)F
T
j

∂Vi

∂q0
+ pT0

−h2
s̃∑

i=0

s∑
j=1

(bj ãji + b̃iaij − b̃ibj)R
T
i

∂Vj

∂q0
+ h

s̃∑
i=0

b̃ig
T (Q̃i)

∂Λi

∂q0
.

From (4.4d) and symplecticness assumptions (4.1) we obtain the desired result of

−∂Ad

∂q0
(q0, q1, h) = pT0 .

The relation ∇2Ad(q0, q1, h) = p1 can be shown in a similar way; thus we skip its
proof.

A consequence of Theorem 4.3 is the following.
Corollary 4.4. For Hamiltonian systems with holonomic constraints (2.1), as-

sume q0 and qN are fixed and consistent. Replace the equations 0 = g(qn+1) for
n = 0, 1, . . . , N − 1 by 0 = gq(qn)Hp(qn, pn). If the SPARK coefficients satisfy sym-
plecticness assumptions (4.1), then we have a variational integrator in the sense of
Marsden and West [21]; i.e., we have stationarity of the total discrete action

N∑
n=1

Ad(qn−1, qn, h)

with respect to qn for n = 1, . . . , N − 1, where

Ad(q0, q1, h) := h

s∑
i=1

bi
(Qi, Pi) − h

s̃∑
i=0

b̃iΛ
T
i g(Q̃i)

and where 
(q, p) := pTHT
p (q, p) −H(q, p).

Proof. The result follows from the equivalence between Hamiltonian and La-
grangian systems described in section 2.3. Under assumption (2.2), Hamiltonian
system (2.1) with variables (q, p) can be reformulated in terms of an equivalent La-
grangian system (2.4) with variables (q, v). A SPARK method (3.1) can be formally
applied to this Lagrangian system (2.1) and then rewritten in terms of the variables
(q, p) of the Hamiltonian form. This is in fact equivalent to applying a SPARK method
(3.1) with the same coefficients directly to Hamiltonian system (2.1).

5. Analysis of SPARK methods. In this section we give results about ex-
istence, uniqueness, local error, and global convergence of SPARK methods. Since
SPARK methods are invariant under the change of variables (2.15) (see (2.16) and
(2.17)), for the analysis we can simply consider p(y, z) = z in (2.11b), under the
assumption

gyvzrλ is invertible.

5.1. Existence and uniqueness. Generally there does not exist a solution to
the nonlinear system of Definition 3.1 without any assumption on the coefficients of
the SPARK method. For consistent SPARK methods satisfying (3.3), existence and
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uniqueness for the nonlinear system can be shown under some additional assumptions
(see Theorem 5.1). A very accurate value for λ1 may be unnecessary. For a consistent
SPARK method, by (3.3b) we have c̃s̃ = 1. Hence, a fairly good choice for λ1 is given
by λ1 := Λs̃ if one is not interested in enforcing constraints (2.14). The accuracy of the
numerical λ-component does not influence the convergence of the (y, z)-components
and the properties of the SPARK method. Existence and uniqueness for the system
of nonlinear equations of SPARK methods (3.1) are shown in the following theorem.

Theorem 5.1. Suppose that y0 = y0(h), z0 = z0(h), λ0 = λ0(h) satisfy

0=g(y0),(5.1a)

O(h2)=gy(y0)v(y0, z0),(5.1b)

O(h)=gyy(y0)(v(y0, z0), v(y0, z0)) + gy(y0)vy(y0, z0)v(y0, z0)(5.1c)

+ gy(y0)vz(y0, z0)(f(y0, z0) + r(y0, λ0)),

where (2.12) is satisfied in a neighborhood of (y0, z0, λ0). Then for SPARK methods
satisfying (3.3) and |h| ≤ h0 there exists a locally unique SPARK solution of

0=Yi − y0 − h

s∑
j=1

aijv(Yj , Zj) for i = 1, . . . , s,(5.2a)

0=Zi − z0 − h

s∑
j=1

âijf(Yj , Zj) − h

s̃∑
j=0

ãijr(Ỹj ,Λj) for i = 1, . . . , s,(5.2b)

0= Ỹi − y0 − h

s∑
j=1

aijv(Yj , Zj) for i = 0, 1, . . . , s̃,(5.2c)

0=g(Ỹi) for i = 0, 1, . . . , s̃,(5.2d)

0=y1 − y0 − h

s∑
j=1

bjv(Yj , Zj),(5.2e)

0=z1 − z0 − h

s∑
j=1

b̂jf(Yj , Zj) − h

s̃∑
j=0

b̃jr(Ỹj ,Λj),(5.2f)

0=g(y1),(5.2g)

0=gy(y1)v(y1, z1),(5.2h)

which satisfies

Yi − y0 = O(h) for i = 1, . . . , s,

Ỹ0 = y0, Ỹi − y0 = O(h) for i = 1, . . . , s̃, y1 = Ỹs̃,

Zi − z0 = O(h) for i = 1, . . . , s, z1 − z0 = O(h),

Λi − λ0 = O(h) for i = 0, 1, . . . , s̃.
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Proof. The proof of this theorem can be done by application of the implicit
function theorem, as in the proof of [12, Theorem V.4.1]. We have Ỹ0 = y0; hence

g(Ỹ0) = 0 is automatically satisfied by assumption. We have Ỹs̃ = y1; hence (5.2g) can

be removed since it is equivalent to (5.2d) for i = s̃. We expand g(Ỹi) for i = 1, . . . , s̃
and v(Yi, Zi) for i = 1, . . . , s into Taylor series around y0

g(Ỹi)=g(y0) + gy(y0)(Ỹi − y0)

+

∫ 1

0

(1 − τ)gyy(y0 + τ(Ỹi − y0))dτ(Ỹi − y0, Ỹi − y0),

v(Yi, Zi)=v(y0, z0) +

∫ 1

0

vy(y0 + τ(Yi − y0), z0 + τ(Zi − z0))dτ(Yi − y0)

+

∫ 1

0

vz(y0 + τ(Yi − y0), z0 + τ(Zi − z0))dτ(Zi − z0)

=v(y0, z0) + h

∫ 1

0

vy(y0 + τ(Yi − y0), z0 + τ(Zi − z0))dτ

s∑
j=1

aijv(Yj , Zj)

+h

∫ 1

0

vz(y0 + τ(Yi − y0), z0 + τ(Zi − z0))dτ

⎛⎝ s∑
j=1

âijf(Yj , Zj) +

s̃∑
j=0

ãijr(Ỹj ,Λj)

⎞⎠ .

Dividing g(Ỹi) by h2 and replacing the terms Ỹi − y0, Yi − y0, and Zi − z0 by using
(5.2a,b,c), we obtain

1

h2
g(Ỹi)=

1

h2
g(y0) +

1

h

s∑
j=1

aijgy(y0)v(Yj , Zj)

+

s∑
j=1

s∑
k=1

aijaik

∫ 1

0

(1 − τ)gyy(y0 + τ(Ỹi − y0))dτ(v(Yj , Zj), v(Yk, Zk))

=
1

h2
g(y0) +

1

h

s∑
j=1

aijgy(y0)v(y0, z0)

+

s∑
j=1

s∑
k=1

aijajkgy(y0)

∫ 1

0

vy(y0 + τ(Yj − y0), z0 + τ(Zj − z0))dτv(Yk, Zk)

+

s∑
j=1

s∑
k=1

aij âjkgy(y0)

∫ 1

0

vz(y0 + τ(Yj − y0), z0 + τ(Zj − z0))dτf(Yk, Zk)

+
s∑

j=1

s̃∑
k=0

aij ãjkgy(y0)

∫ 1

0

vz(y0 + τ(Yj − y0), z0 + τ(Zj − z0))dτr(Ỹk,Λk)

+

s∑
j=1

s∑
k=1

aijaik

∫ 1

0

(1 − τ)gyy(y0 + τ(Ỹi − y0))dτ(v(Yj , Zj), v(Yk, Zk)).
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By (3.3c), for the values Yi := y0, Ỹi := y0, Zi := z0, and Λi = λ0 we obtain

1

h2
g(Ỹi)=

c̃2i
2

(
gy(y0)vy(y0, z0)v(y0, z0) + gy(y0)vz(y0, z0)f(y0, z0)

+ gy(y0)vz(y0, z0)r(y0, λ0) + gyy(y0)(v(y0, z0), v(y0, z0)
))

= O(h).

Hence the values Yi(0) := y0(0), Ỹi(0) := y0(0), Zi(0) := z0(0), and Λi(0) = λ0(0)
satisfy (5.2a,b,c) and

0 =
1

h2
g(Ỹi)(5.3)

=

s∑
j=1

s∑
k=1

aijajkgy(y0)

∫ 1

0

vy(y0 + τ(Yj − y0), z0 + τ(Zj − z0))dτv(Yk, Zk) + · · · .

Similarly we have

gy(y1)=gy(y0) +

∫ 1

0

gyy(y0 + τ(y1 − y0))dτ(y1 − y0, ·)

=gy(y0) + h

s∑
j=1

bj

∫ 1

0

gyy(y0 + τ(y1 − y0))dτ(v(Yj , Zj), ·),

v(y1, z1)=v(y0, z0) +

∫ 1

0

vy(y0 + τ(y1 − y0), z0 + τ(z1 − z0))dτ(y1 − y0)

+

∫ 1

0

vz(y0 + τ(y1 − y0), z0 + τ(z1 − z0))dτ(z1 − z0)

=v(y0, z0) + h

∫ 1

0

vy(y0 + τ(y1 − y0), z0 + τ(z1 − z0))dτ

s∑
j=1

bjv(Yj , Zj)

+h

∫ 1

0

vz(y0 + τ(y1 − y0), z0 + τ(z1 − z0))dτ

⎛⎝ s∑
j=1

b̂jf(Yj , Zj) +

s̃∑
j=0

b̃jr(Ỹj ,Λj)

⎞⎠ .

Hence, dividing gy(y1)v(y1, z1) by h, we obtain

1

h
gy(y1)v(y1, z1)=

1

h
gy(y0)v(y0, z0)

+

s∑
j=1

bjgy(y0)

∫ 1

0

vy(y0 + τ(y1 − y0), z0 + τ(z1 − z0))dτv(Yj , Zj)

+

s∑
j=1

b̂j

∫ 1

0

vz(y0 + τ(y1 − y0), z0 + τ(z1 − z0))dτf(Yj , Zj)

+

s̃∑
j=0

b̃j

∫ 1

0

vz(y0 + τ(y1 − y0), z0 + τ(z1 − z0))dτr(Ỹj ,Λj)

+

s∑
j=1

bj

∫ 1

0

gyy(y0 + τ(y1 − y0))dτ(v(Yj , Zj), v(y1, z1)).
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By consistency
∑s

j=1 bj = 1,
∑s

j=1 b̂j = 1,
∑s̃

j=0 b̃j = 1, for the values Yi := y0,

Ỹi := y0, y1 := y0, Zi := z0, z1 := z0, and Λi = λ0, we obtain

1

h
gy(y1)v(y1, z1)=gy(y0)vy(y0, z0)v(y0, z0) + gy(y0)vz(y0, z0)f(y0, z0)

+ gy(y0)vz(y0, z0)r(y0, λ0) + gyy(y0)(v(y0, z0), v(y0, z0)) = O(h).

Hence the values Yi(0) := y0(0), Ỹi(0) := y0(0), y1(0) := y0(0), Zi(0) := z0(0),
z1(0) := z0(0), and Λi(0) = λ0(0) satisfy

0=
1

h
gy(y1)v(y1, z1)(5.4)

=

s∑
j=1

bjgy(y0)

∫ 1

0

vy(y0 + τ(y1 − y0), z0 + τ(z1 − z0))dτv(Yj , Zj) + · · · .

Replacing y1 and z1 in (5.3)–(5.4) by using (5.2e,f), and using tensor matrix product
notations, we see that the Jacobian of (5.2a,b,c), (5.3), and (5.4) with respect to Yi

(i = 1, . . . , s), Zi (i = 1, . . . , s), Ỹi (i = 1, . . . , s̃), and Λi (i = 0, 1, . . . , s̃) is of the form⎛⎜⎜⎜⎜⎜⎜⎜⎝

Isny + O(h) O O(h) O

O(h) Isnz + O(h) O(h) O(h)

O(h) O(h) Is̃ny
O

O(1) O(1) O(1)

(
N

b̃T

)
⊗ gy(y0)vz(y0, zo)rλ(y0, λ0) + O(h)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
with N as defined in (3.3d). This Jacobian matrix is invertible for |h| ≤ h0 suffi-
ciently small. Therefore, the implicit function theorem yields the existence of a locally
unique solution to (5.2a,b,c), (5.3), and (5.4), and hence to the corresponding SPARK
method (5.2).

5.2. Local error of the (s, s)-Gauss–Lobatto SPARK methods. A thor-
ough local error analysis of the whole class of SPARK methods (3.2) based on using
simplifying assumptions is beyond the scope of this paper. SPARK methods include a
class of PRK methods whose local error analysis based on trees is long and technical
[12, 13]. For Lobatto IIIA-B methods, an alternative proof using the idea of discon-
tinuous collocation can be found in [7, section VII.1]. Here we will analyze only the
local error of the (s, s)-Gauss–Lobatto SPARK methods as defined in subsection 3.3.

Theorem 5.2. Consider the system of ODAEs (2.11), consistent initial values
y0, z0 at t0, where (2.12) is satisfied in a neighborhood of (y0, z0, λ0). Then for |h| ≤ h0

the local error of the (s, s)-Gauss–Lobatto SPARK methods satisfies

y1 − y(t0 + h) = O(h2s+1), z1 − z(t0 + h) = O(h2s+1).(5.5)

Proof. For the proof we can consider p(y, z) = z in (2.11b). To prove this theorem
we use the same techniques of proof as used in [11] for collocation methods. We define

the polynomials Y (t), Ỹ (t), Z(t), and Λ(t) of degree s by

Y (t)=
s∑

i=0


i

(
t− t0
h

)
Yi, Ỹ (t) =

s∑
i=0


̃i

(
t− t0
h

)
Ỹi,
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Z(t)=

s∑
i=0


i

(
t− t0
h

)
Zi, Λ(t) =

s∑
i=0


̃i

(
t− t0
h

)
Λi,

where


i(τ) :=

s∏
j=0
j �=i

(
τ − cj
ci − cj

)
, 
̃i(τ) :=

s∏
j=0
j �=i

(
τ − c̃j
c̃i − c̃j

)
,

c0 := 0, Y0 := y0, and Z0 := z0. We have Y (t0) = Ỹ (t0) = y0, Z(t0) = z0, Y (t0 +h) =

Ỹ (t0 + h) = y1, Z(t0 + h) = z1, and

Y ′(t)=v(Y (t), Z(t)) + δ(t),(5.6a)

Ỹ ′(t)=v(Y (t), Z(t)) + δ̃(t),(5.6b)

Z ′(t)=f(Y (t), Z(t)) + r(Ỹ (t),Λ(t)) + μ(t),(5.6c)

0=g(Ỹ (t)) + θ̃(t),(5.6d)

0=gy(Ỹ (t))(v(Y (t), Z(t)) + δ̃(t)) + θ̃′(t),(5.6e)

with defects δ(t), δ̃(t), μ(t), θ̃(t) satisfying

δ(t0 + cih)=0 for i = 1, . . . , s,

δ̃(t0 + c̃ih)=0 for i = 0, 1, . . . , s,

μ(t0 + cih)=0 for i = 1, . . . , s,

θ̃(t0 + c̃ih)=0 for i = 0, 1, . . . , s,

θ̃′(t0)=−gy(Ỹ (t0))δ̃(t0) = 0,

θ̃′(t0 + h)=−gy(Ỹ (t0 + h))δ̃(t0 + h) = 0.

The exact solution (y(t), y(t), z(t), λ(t)) satisfies the same above relations (5.6) with

δ(t) ≡ 0, δ̃(t) ≡ 0, μ(t) ≡ 0, and θ̃(t) ≡ 0. One more differentiation of (5.6e) yields

0=gyy(Ỹ (t))(v(Y (t), Z(t)) + δ̃(t), v(Y (t), Z(t)) + δ̃(t))

+ gy(Ỹ (t))vy(Y (t), Z(t))(v(Y (t), Z(t)) + δ(t))

+ gy(Ỹ (t))vz(Y (t), Z(t))(f(Y (t), Z(t)) + r(Ỹ (t),Λ(t)) + μ(t))

+ gy(Ỹ (t))δ̃′(t) + θ̃′′(t).

We can express Λ(t) from this equation as an implicit function

Λ(t) = Υ(Y (t), Ỹ (t), Z(t), δ(t), δ̃(t), δ̃′(t), μ(t), θ̃′′(t)).
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Inserting this relation into (5.6c), we obtain the system of ODEs

Y ′(t)=v(Y (t), Z(t)) + δ(t),

Ỹ ′(t)=v(Y (t), Z(t)) + δ̃(t),

Z ′(t)=f(Y (t), Z(t)) + r(Ỹ (t),Υ(Y (t), Ỹ (t), Z(t), δ(t), δ̃(t), δ̃′(t), μ(t), θ̃′′(t))) + μ(t).

To apply the Gröbner–Alekseev formula [8, Theorem I.14.5] we need the defect d(t) :=
(d1(t), d2(t), d3(t))

T :

d1(t) :=Y ′(t) − v(Y (t), Z(t)) = δ(t),

d2(t) := Ỹ ′(t) − v(Y (t), Z(t)) = δ̃(t),

d3(t) :=Z ′(t) − f(Y (t), Z(t)) − r(Ỹ (t),Υ(Y (t), Ỹ (t), Z(t), 0, 0, 0, 0, 0)).

We have

d3(t) = Φ3(t, 1) − Φ3(t, 0) =

∫ 1

0

∂Φ3

∂τ
(t, τ)dτ,

where

Φ3(t, τ) := r(Ỹ (t),Υ(Y (t), Ỹ (t), Z(t), τδ(t), τ δ̃(t), τ δ̃′(t), τμ(t), τ θ̃′′(t))) + τμ(t).

Hence, we get

d3(t) = Q1(t)δ(t) + Q2(t)δ̃(t) + Q3(t)δ̃
′(t) + (I + Q4(t))μ(t) + Q5(t)θ̃

′′(t),

where we give only the expressions of Q3(t) and Q5(t):

Q3(t)=−
∫ 1

0

(rλ(gyvzrλ)−1gy)(Y (t), Ỹ (t), Z(t),Υ(Y (t), Ỹ (t),

Z(t), τδ(t), τ δ̃(t), τ δ̃′(t), τμ(t), τ θ̃′′(t))dτ,

Q5(t)=−
∫ 1

0

(rλ(gyvzrλ)−1(Y (t), Ỹ (t), Z(t),Υ(Y (t), Ỹ (t),

Z(t), τδ(t), τ δ̃(t), τ δ̃′(t), τμ(t), τ θ̃′′(t))dτ.

We denote the resolvent of the exact solution

R(t, s) := R(t, s, ys, Ỹs, zs) =
∂(y, Ỹ , z)

∂(ys, Ỹs, zs)
(t, s, ys, Ỹs, zs).

From the Gröbner–Alekseev formula we have⎛⎝ Y (t) − y(t)

Ỹ (t) − y(t)
Z(t) − z(t)

⎞⎠ =

∫ t

t0

R(t, s)d(s)ds

=

∫ t

t0

S1(t, s)δ(s) + S2(t, s)δ̃(s) + S3(t, s)δ̃
′(s) + S4(t, s)μ(s) + S5(t, s)θ̃

′′(s)ds,
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where

S1(t, s)=R(t, s)

⎛⎝ I
O

Q1(s)

⎞⎠ , S2(t, s)=R(t, s)

⎛⎝ O
I

Q2(s)

⎞⎠ ,

S3(t, s)=R(t, s)

⎛⎝ O
O

Q3(s)

⎞⎠ , S4(t, s)=R(t, s)

⎛⎝ O
O

I + Q4(s)

⎞⎠ ,

S5(t, s)=R(t, s)

⎛⎝ O
O

Q5(s)

⎞⎠ .

Hence, by integration by parts, we obtain⎛⎝ Y (t) − y(t)

Ỹ (t) − y(t)
Z(t) − z(t)

⎞⎠= S3(t, s)δ̃(s) −
∂S5

∂s
(t, s)θ̃(s) + S5(t, s)θ̃

′(s)

∣∣∣∣t
s=t0

+

∫ t

t0

σ(t, s)ds +

∫ t

t0

σ̃(t, s)ds,

where

σ(t, s) :=S1(t, s)δ(s) + S4(t, s)μ(s),

σ̃(t, s) :=

(
S2(t, s) −

∂S3

∂s
(t, s)

)
δ̃(s) +

∂2S5

∂s2
(t, s)θ̃(s).

We have δ̃(t0) = 0 = δ̃(t0 + h), θ̃(t0) = 0 = θ̃(t0 + h), θ̃′(t0) = 0 = θ̃′(t0 + h); hence
at t = t0 + h we are left with⎛⎝ y1 − y(t0 + h)

y1 − y(t0 + h)
z1 − z(t0 + h)

⎞⎠=

∫ t0+h

t0

σ(t0 + h, s)ds +

∫ t0+h

t0

σ̃(t0 + h, s)ds.

Applying the Gauss quadrature formula with s nodes of order 2s for the first integral,
and the Lobatto quadrature formula with s + 1 nodes of order 2s for the second
integral, we obtain∫ t0+h

t0

σ(t0 + h, s)ds = h

s∑
i=1

σ(t0 + h, t0 + cih) + O(h2s+1),

∫ t0+h

t0

σ̃(t0 + h, s)ds = h

s∑
i=0

σ̃(t0 + h, t0 + c̃ih) + O(h2s+1),

and since σ(t, t0 + cih) = 0 for i = 1, . . . , s and σ̃(t, t0 + c̃ih) = 0 for i = 0, 1, . . . , s,
this leads to the desired result (5.5).
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5.3. Global convergence of SPARK methods. Once local error estimates
of SPARK methods are known, global convergence results can be obtained without
too much difficulty.

Theorem 5.3. Consider the system of ODAEs (2.11) under assumptions (2.12)
and a SPARK method (3.2) of local order p satisfying assumptions (3.3). Then it is
globally convergent of order p, i.e.,

yn − y(tn) = O(hp), zn − z(tn) = O(hp)

for tn − t0 = nh ≤ Const.
Proof. For the proof we can consider p(y, z) = z in (2.11b). Replacing (5.2d,g,h),

respectively, by

g(Ỹi)=g(y0) + hc̃igy(y0)v(y0, z0) for i = 0, 1, . . . , s̃,

g(y1)=g(y0) + hgy(y0)v(y0, z0),

gy(y1)v(y1, z1)=gy(y0)v(y0, z0)

extends the definition of SPARK methods to a neighborhood of (y0, z0) in R
ny ×R

nz ;
i.e., SPARK methods are not restricted to just the manifold of constraints {(y, z) ∈
R

ny × R
nz |0 = g(y), 0 = gy(y)v(y, z)}. Hence, SPARK methods can be locally ex-

pressed as a mapping (
yn+1

zn+1

)
=

(
yn
zn

)
+ hnΦ(hn, yn, zn)

from R
ny ×R

nz to R
ny ×R

nz . Hence, classical convergence results, like those for RK
methods applied to ODEs, can then be applied [8].

For the (s, s)-Gauss–Lobatto SPARK methods, as a consequence of Theorem 4.1,
Corollary 4.2, Theorem 4.3, Corollary 4.4, and Theorems 5.2 and 5.3, we can now
state a major result of this paper.

Corollary 5.4. Consider the system of ODAEs (2.11) under assumptions
(2.12). The (s, s)-Gauss–Lobatto SPARK method (3.2) is constraint-preserving, sym-
metric, and of maximal order 2s, i.e.,

yn − y(tn) = O(h2s), zn − z(tn) = O(h2s)

for |tn − t0| ≤ Const and h := max(|h1|, . . . , |hn|). For holonomically constrained
Hamiltonian systems (2.1) and Lagrangian systems (2.4) these methods are also sym-
plectic and variational.

6. Numerical experiments. Figure 6.3
To illustrate Corollary 5.4, we have applied (s, s)-Gauss–Lobatto SPARK methods

with constant stepsize h to the following system of ODAEs:(
y′1
y′2

)
=

(
2z1

−z2

)
,(6.1a)

(
z′1
z′2

)
=

(
2y1y2z1z2 − y1z1z2

z1 − y1z
3
2

)
+

(
y1y2λ

2
1

−√
y1λ1

)
,(6.1b)

0=y1y
2
2 − 1,(6.1c)

0=2y2(z1y2 − y1z2).(6.1d)
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Fig. 6.1. Global error in y at tn = 1 of (s, s)-Gauss–Lobatto SPARK methods (s = 1, 2) applied
with various constant stepsizes h to the test problem (6.1).
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Fig. 6.2. Global error in z at tn = 1 of (s, s)-Gauss–Lobatto SPARK methods (s = 1, 2) applied
with various constant stepsizes h to the test problem (6.1).

For the initial conditions y1(0) = y2(0) = z1(0) = z2(0) = 1 at t0 = 0, the ex-
act solution to this test problem is given by y1(t) = z1(t) = e2t, y2(t) = z2(t) =
e−t, λ1(t) = et. We have plotted in Figures 6.1 and 6.2 the global errors for the y-
and z-components at tn = 1 with respect to various constant stepsizes h. Logarithmic
scales have been used so that a curve appears as a straight line of slope k whenever
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Fig. 6.3. Error in Hamiltonian of (s, s)-Gauss–Lobatto SPARK methods (s = 1, 2) applied with
constant stepsize h = 0.12 to the test problem (6.2).

the leading term of the global error is of order k, i.e., when ‖yn−y(tn)‖ = O(hk). For
the (s, s)-Gauss–Lobatto SPARK methods with s = 1, 2 of order 2s = 2, 4 we observe
straight lines of slope 2s = 2, 4, thus confirming the orders of convergence predicted
by Corollary 5.4.

As a second test problem, we consider the motion of a particle of mass m and
electric charge e under the influence of an electric field (0, 0, E)T and a magnetic field
(0, 0, B)T and restricted to a sphere of radius R [4, Problem 7.16]. This system can
be described in term of Cartesian coordinates (q1, q2, q3)

T and generalized momenta
(p1, p2, p3)

T with a nonseparable Hamiltonian

H =
1

2m
((p1 + mωq2)

2 + (p2 −mωq1)
2 + p2

3) − eEq3(6.2a)

with ω := eB/(2mc) and holonomic constraint√
q2
1 + q2

2 + q2
3 −R = 0.(6.2b)

We choose the parameters

m = 1, ω = 1, R = 1, eE = 1

and initial conditions

q1(0) = 0.2, q2(0) = 0.2, q3(0) =
√

0.92, p1(0) = 1, p2(0) = −1, p3(0) = 0.

In Figure 6.3 we plot the Hamiltonian error of (s, s)-Gauss–Lobatto SPARK methods
(s = 1, 2) applied with constant stepsize h = 0.12 to this system. As expected for a
symplectic integrator, we observe that the Hamiltonian error remains bounded and
small over long-time intervals.
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7. Conclusion. We have considered a general class of ODAEs, and, more partic-
ularly, a unified formulation of Hamiltonian and Lagrangian systems with holonomic
constraints. We have defined the application of SPARK methods for these systems,
including in particular the new (s, s)-Gauss–Lobatto SPARK methods and also well-
known schemes such as the Lobatto IIIA-B PRK methods. SPARK methods preserve
the constraints. The (s, s)-Gauss–Lobatto SPARK methods have been proved to be
of optimal order of convergence 2s. For Hamiltonian and Lagrangian systems with
holonomic constraints, these methods have also been shown to be symplectic and to
preserve the variational nature of trajectories.
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A SMALL EDDY CORRECTION METHOD FOR A 3D
NAVIER–STOKES-TYPE SYSTEM OF EQUATIONS RELATED TO

THE PRIMITIVE EQUATIONS OF THE OCEAN∗

T. TACHIM MEDJO†

Abstract. Considering the interaction between the baroclinic and barotropic flows and using
the idea of the Newton iteration, a small eddy correction method is proposed for approximating and
numerically solving the primitive equations of the ocean. We assume that the barotropic approxi-
mation to the solution is known. Formally applying the Newton iterative procedure to the baroclinic
flow equation, we then generate approximate systems. It is shown that the first step leads to the
well-known quasi-geostrophic equations. The convergence analysis is presented and the results show
that the small eddy correction method can greatly improve the accuracy of the quasi-geostrophic
approximate solution. More precisely, we prove that the approximate system derived from the pro-
cedure converges to the original primitive equations, and we estimate the rate of convergence as a
function of the aspect ratio of the domain. Some numerical simulations are presented to illustrate
the method.

Key words. primitive equations, barotropic flow, baroclinic flow, small eddy
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DOI. 10.1137/05063074X

1. Introduction. In dynamical systems theory the objective is to study the
long-term behavior of solutions of an evolution equation. When the equation is dissi-
pative all solutions converge as t �−→ ∞ to a complicated set A, the global attractor,
which may be a fractal set. This set embodies the large-time dynamics of the equa-
tions, corresponding to all sorts of regimes, including turbulent ones. Although this set
may be fairly complicated, in general it has finite dimension [26]. Despite the consid-
erable increase in available computing power during the past few years, the numerical
approximation of the global attractor remains a difficult task especially for important
systems such as the Navier–Stokes equations or the primitive equations (PEs) of the
ocean. For the Navier–Stokes flows, there are some approaches to deriving simplified
behavioral laws for the smallest structure set in motion with the aim of reducing the
computational cost [9, 24]. In the nonlinear Galerkin (NLG) method introduced in
[24], the small scales are given as a function of the large scales, and the nonlinear
interaction between the large and the small scales is only approximately modeled. In
[13], the authors presented a small eddy correction method for the two-dimensional
(2D) Navier–Stokes equations. It is shown that the first step of this iterative method
leads to the standard Galerkin method and the second step yields the NLG method.

Although the source of the extensive scale variability differs for the Navier–Stokes
and the PE models (the scale variability in the Navier–Stokes system is mainly the
result of the nonlinear term, while the sources are more varied for the PE model),
there exists an energy cascade that is similar for the two models, and for which one
can apply the main principle of description given by Charney [5].
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Every mode undergoes constraints due to wind. Even for a fairly constant wind,
there is still an infinite number of modes stimulated by the boundary conditions.
These modes will exhibit different behaviors with respect to the stimulations based
on their position in the spectrum. They can be grouped into three categories:

• At the largest scales, geophysical flows such as the ocean and the atmosphere
are essentially 2D (barotropic component). These barotropic modes transmit
their energy in the following two ways:
(i) at modes of greater dimension, through an inverse kinetic energy cas-

cade; the surplus energy is then dissipated by the boundary conditions;
(ii) at modes of smaller dimension, through an entropy barotropic cascade.

• At the medium scales, we have the baroclinic modes. These modes will re-
distribute their energy as a baroclinic energy cascade, thus transporting the
energy to the viscous dispersal area. This cascade is similar to the energy
cascade predicted by Kolmogorov for the Navier–Stokes system [9, 8].

• At the very small scales, the energy provided by the surface forces is insuffi-
cient to oppose the viscous dispersion constraint.

Given the similarities with the Navier–Stokes system and inspired by the results
obtained for the 2D Navier–Stokes equations with the small eddy correction method
[13] and the NLG method [24, 12, 11], we present in this article a small eddy cor-
rection method for the PEs of the ocean. Considering the interaction between the
baroclinic and barotropic flows and using the idea of the Newton iteration, a small
eddy correction method is proposed for approximating and numerically solving the
PEs of the ocean. We assume that the barotropic approximation to the solution
is known. Formally applying the Newton iterative procedure to the baroclinic flow
equation, we then generate approximate systems. It is shown that the first step leads
to the well-known quasi-geostrophic equations. The convergence analysis is presented
and the results show that the small eddy correction method can greatly improve the
accuracy of the quasi-geostrophic approximate solution. More precisely, we prove that
the approximate system derived from the procedure converges to the PEs of the ocean

with a rate of convergence O((δ1/2)2
l−1

), where δ is the shape ratio of the ocean and
l is the number of small eddy iterations.

The article is organized as follows. In section 2, we recall the PEs of the ocean
and their mathematical setting. The third section of this article presents the small
eddy correction method. We prove the existence and uniqueness of solutions to the
small eddy correction method when the aspect ratio is small enough. The fourth
section is devoted to the convergence of small eddy correction models to the PEs
as the aspect ratio goes to zero. We derive an estimate to the rate of convergence
as a power of the aspect ratio of the ocean. Although the approach used here is
similar to that of [13], there are several differences between the work of [13] and that
presented here. First, our model is more complicated. In fact, the PEs of the ocean
possess some specific difficulties to circumvent; for instance, the nonlocal constraint
(incompressible condition) and the integral expression of the vertical velocity lead to
a strong nonlinear term

(1.1)

(∫ 0

z

divvds

)
∂v

∂z
.

More importantly, in [13] the authors used the eigenvalues of the Stokes operator to
split the solution between the large and small scales, while in this article the large
scale is the depth average (barotropic mode) of the solution and the small scale is the
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deviation (baroclinic mode), a decomposition commonly used in ocean modeling. To
illustrate the method, some numerical simulations are presented in the last section of
this article.

Let us recall that despite advances in the study of the PEs, the mathematical
theory of the PEs is far from complete [15, 16, 19, 20, 21, 22, 23, 29, 4]. In [16], the
authors prove the existence and uniqueness of global strong solutions of the PEs in
thin domains for a broad class of data which include the most physically relevant ones.
The most recent result appears in [3], in which the authors prove the existence and
uniqueness of global strong solutions without any restriction on the size of the data
and the domain occupied by the fluid. It is also worth mentioning that the existence
and regularity of solutions to the primitive equations are also studied in [1, 2]. In
all these works, the model is a 2D primitive equations, while this article deals with
a three-dimensional (3D) problem. Another model of a fluid under the effect of a
Coriolis force is studied in [6, 7]. In these articles, the model is a 3D Navier–Stokes
equation with a Coriolis force. The authors proved in [6] the existence and uniqueness
of strong solutions when the domain is the whole space �3 and the Rossby number
is small enough. In [7], the authors studied the convergence of the model when the
Rossby number goes to zero.

2. The primitive equations and its mathematical setting.

2.1. Governing equations. We first recall the primitive equations. In the
nondimensional form, the equations read

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
− 1

Re1

Δv − 1

Re2

∂2v

∂z2 + fk0 × v + (v · ∇)v + w
∂v

∂z
+ grad p = F1,

∂ρ

∂t
− 1

Rt1

Δρ− 1

Rt2

∂2ρ

∂z2 + (v · ∇)ρ + w
∂ρ

∂z
= F2,

div v +
∂w

∂z
= 0,

∂p

∂z
= −ρ.

The boundary conditions are given by

(2.2)

⎧⎨⎩
∂v

∂z
=

∂ρ

∂z
= 0, w = 0 at z = −δ, 0,

v, w, ρ periodic in the direction x, y with period ω.

In (2.1)–(2.2), the unknown functions are the horizontal velocity v, the vertical velocity
w, and the density ρ of the fluid. The constants Re1 = μ

L1U1
> 0, Re2 = ν

L1U1
> 0,

Rt1 = μT

L1U1
> 0, and Rt2 = νT

L1U1
> 0 are the nondimensional Reynolds numbers,

δ = H1

L1
is the aspect ratio, p is the pressure of the fluid, F1, F2 are the volume forces,

and k0 is the unit vector in the vertical direction. Here U1 is the reference value for
the horizontal velocity, L1 is the reference value for the horizontal length scale, H1 is
the reference value for the vertical length scales, ν and μ are the effective molecular
dissipation in the horizontal and vertical directions, and μT and νT reflect the heat
diffusion [19, 20, 21].

The Coriolis parameter f is defined by f = f0 + βy, where β > 0, f0 > 0 are
positive constants.
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Throughout this article, we use Δ, ∇, div to denote the 2D gradient, Laplacian,
and divergence operators on the horizontal plane. The nondimensional domain M
occupied by the fluid is given by

(2.3) M = ω × (−δ, 0),

where ω ⊂ �2 is a smooth convex, bounded open set of �2 with boundary ∂ω, and
δ > 0 is a constant.

From (2.1)3,4 we derive that

(2.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

W (v) = −
∫ z

−δ

div vds,

p = ps +

∫ 0

z

ρds,

div

∫ 0

−δ

u dz = 0.

Therefore, (2.1) becomes

(2.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
− 1

Re1

Δv − 1

Re2

∂2v

∂z2 + fk0 × v + (u · ∇)v

+ W (v)
∂v

∂z
+ grad ps + grad

∫ 0

z

ρds = F1,

∂ρ

∂t
− 1

Rt1

Δρ− 1

Rt2

∂2ρ

∂z2 + (v · ∇)ρ + W (v)
∂ρ

∂z
= F2,

div

∫ 0

−δ

v dz = 0.

Remark 2.1. As in [14], on the surface z = 0 of the ocean, we consider a simplified
boundary condition. A more physical boundary conditions should be

(2.6)
∂v

∂z
+ αvv = 0,

∂ρ

∂z
+ αρρ = 0 at z = 0.

In [14], the author pointed out that his existence and uniqueness results cannot
be easily extended to the boundary conditions (2.6). Since we extensively used some
results given in [14], we will restrict ourselves to the boundary conditions (2.2).

2.2. Mathematical setting. In this section we first recall from [14] the func-
tional spaces suitable for the mathematical setting of (2.5)–(2.2). Let C∞(M) be the
usual infinitely differentiable function space in M. Let Hs(M), for s ∈ �, be the
Sobolev spaces constructed on L2(M). Motivated by the boundary conditions (2.2),
we define

(2.7) C∞
l,per(M) = {v ∈ C∞(M), v periodic in the x, y direction with period ω},

where the subscript “l” represents the lateral boundary.
Let

V1 =

{
v ∈ C∞

l,per(M), div

∫ 0

−δ

vds = 0

}
,(2.8)

H1 = closure of V1 in (L2(M))2, H2 = L2(M), H = H1 ×H2,(2.9)
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and

(2.10) V1 = closure of V1 in the (H1(M))2 − norm, V2 = H1(M), V = V1 × V2.

The scalar product in H is simply denoted by (·, ·), the one in V is denoted by ((·, ·)),
and the associated norms are denoted by | · |L2 and ‖ · ‖, respectively.

We define the function spaces X1 and X2 by

X1 =

{
ū = (v̄, q̄), for u = (v, q) ∈ L2(0, T ;D(A)),

du

dt
∈ L2(0, T ;H)

}
,

X2 =

{
u� = (v�, q�), for u = (v, q) ∈ L2(0, T ;D(A)),

du

dt
∈ L2(0, T ;H)

}
,

where ū = Mu, u� = N are defined by (2.22)–(2.24).
The spaces X1 and X2 are endowed with the norms

‖ū‖X1
=

(
‖ū‖2

L2(0,T ;D(A)) +

∣∣∣∣dūdt
∣∣∣∣2
L2(0,T ;H)

) 1
2

,

‖u�‖X2 =

(
‖u�‖2

L2(0,T ;D(A)) +

∣∣∣∣dv�dt

∣∣∣∣2
L2(0,T ;H)

) 1
2

.

We define the bilinear forms a : V × V → �, ai : Vi × Vi → �, i = 1, 2, and the
corresponding linear operators A : V → V ′, Ai : Vi → V ′

i , i = 1, 2, by

(2.11)

a1(v, ṽ) = 〈A1v, ṽ〉 =

∫
M

[
1

Re1

∇v∇ṽ +
1

Re2

∂v

∂z

∂ṽ

∂z

]
dxdydz,

a2(ρ, ρ̃) = 〈A2ρ, ρ̃〉 =

∫
M

[
1

Rt1

∇ρ∇ρ̃ +
1

Rt2

∂ρ

∂z

∂ρ̃

∂z

]
dxdydz,

a(u, ũ) = 〈Au, ũ〉 = 〈A1v, ṽ〉 + 〈A2ρ, ρ̃〉

for u = (v, ρ), ũ = (ṽ, ρ̃) ∈ V.
We have the following characterization of the operators Ai and their domains (see

[14] for the details):

(2.12)

D(A1) =

{
v ∈ (H2(M))2 ∩ V1;

∂v

∂z
= 0 at z = −δ, 0

}
,

D(A2) =

{
ρ ∈ H2(M) ∩ V2;

∂ρ

∂z
= 0 at z = −δ, 0

}
,

and

(2.13)

A1v = −P
[

1

Re1

Δv +
1

Re2

∂2v

∂z2

]
∀v ∈ D(A1),

A2ρ = −
[

1

Rt1

Δρ +
1

Rt2

∂2ρ

∂z2

]
∀ρ ∈ D(A2),

where P is the orthogonal projection from (L2(M))2 onto H1.
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The linear operators Ai, i = 1, 2, which are isomorphisms from Vi onto V ′
i are

unbounded, self-adjoint linear operators on Hi; they are positive operators and admit
compact inverses, so that the fractional power of Ai can also be defined; see [14] and
also [28] in which the regularity of A1 has been studied in a different context.

Note that there exist constants m1 > 0 and m2 > 0 such that

(2.14) m1‖w‖2 ≤ 〈Aw,w〉 ≤ m2‖w‖2 ∀w ∈ V.

For the nonlinear term, we define the following trilinear functionals and associated
operators

(2.15)

b1(v, ṽ, v
′) = 〈B1(v, ṽ), v

′〉 =

∫
M

[
(v · ∇)ṽ + W (v)

∂ṽ

∂z

]
· v′dxdydz,

b2(v, ρ̃, ρ
′) = 〈B2(v, ρ̃), ρ

′〉 =

∫
M

[
(v · ∇)ρ̃ + W (v)

∂ρ̃

∂z

]
· ρ′dxdydz,

b(u, ũ, u′) = 〈B(u, ũ), u′〉 = b1(v, ṽ, v
′) + b2(v, ρ̃, ρ

′)

for u = (v, ρ), ũ = (ṽ, ρ̃), u′ = (v′, ρ′) in V.
For the Coriolis term, we define the bilinear functional e : H1 ×H1 → � and the

associated operator E : H1 → H1 by

(2.16) e(u, ũ) = 〈E(u), ũ〉 =

∫
M

(f0k × v) · ṽdxdydz ∀u = (v, ρ), ũ = (ṽ, ρ̃) ∈ H.

Finally we define γ and Λ by

(2.17) Λu =

∫ 0

z

gradρds, γ(u, ũ) = 〈Λu, ṽ〉 ∀u = (v, ρ), ũ = (ṽ, ρ̃) ∈ V.

With these notations, we have the following weak formulation of (2.5)–(2.2) (see
page 431 of [14] for the details):

(2.18)

Find u = (v, ρ) ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) ∀T > 0, such that

d

dt
(u, u′) + a(u, u′) + b(u, u, u′) + e(u, u′) + γ(u, u′) = (F, u′) ∀u′ = (v′, ρ′) ∈ V,

u(0) = a ∈ H.

The following result concerning the existence of weak solutions for the PEs is proved
in [18, 19].

Theorem 2.1. For T > 0, there exists at least one solution u = (v, ρ) for (2.18)
defined on (0, T ) and such that

u ∈ C([0, T ];Hw),
du

dt
∈ L2(0, T ; (V ∩H3(M))′),

where Hw is the space H equipped with the weak topology and (V ∩ H3(M))′ is the
dual space of V ∩H3(M).

Let us recall that the existence and uniqueness of strong solutions to the PEs was
recently proved in [3] without any restriction on the size of the data and the domain
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occupied by the fluid. However, in this article, we restrict ourselves to the framework
given in [14].

To state the results of [14], we introduce a monotone increasing function R0(δ)
which satisfies

(2.19) lim
δ→0

δ1/2R2
0(δ) = 0.

Theorem 2.2. Assume that the initial condition a ∈ H and the forcing F ∈ H
satisfy

(2.20) ‖a�‖2 + |F �|2L2 ≤ δ1/4R2
0(δ), ‖ā‖2 + |F̄ |2L2 ≤ δR2

0(δ).

Then there exist a constant δ0 which depends on Rei , Rti , i = 1, 2, ω and a constant
σ > 1 independent of δ such that, whenever δ ∈ (0, δ0), the strong solution u = (v, ρ)
of (2.18) exists and is unique for all times. More precisely, for all T > 0, u ∈
L∞(0,∞;V ) ∩ L2(0, T ;D(A)) and the following estimates hold:

(2.21) ‖v�‖2 + ‖ρ�‖2 ≤ σδ1/2R2
0(δ), ‖v̄‖2 ≤ σδR2

0(δ), ‖ρ̄‖2 ≤ σR2
0(δ),

where u� = Nu, ū = Mu. The operator M and N which are, respectively, the average
operator in the thin direction and its complementary part are defined in (2.22).

Proof. See page 436 of [14].
Remark 2.2. The restriction (2.19) on the data is still physically relevant. In fact

the baroclinic components a� and F � of the data can be of order O(δ−1/4), while the
baroclinic components ā and F̄ are of order O(1).

2.2.1. Functional inequalities in thin domains. We recall from [28] (see also
[14]) some functional inequalities in thin domains. First we define average operator
M in the thin direction and its complementary N as follows:

(2.22) Mψ(x, y) =
1

δ

∫ 0

−δ

ψ(x, y, z)dz, Nψ(x, y, z) = ψ(x, y, z) −Mψ(x, y).

Clearly, M and N are orthogonal projections on L2(M). They commute with the
partial derivatives ∂

∂x ,
∂
∂y , and ∂

∂z .

It follows that (see [14])

(2.23) MPv = PMv ∀v ∈ (L2(M))2, MA1v = A1Mv ∀v ∈ D(A1).

Hereafter, we will also use the following notation:

(2.24) v̄ = Mv, v� = Nv.

We also have the Poincaré inequalities

(2.25)
|v�|L2 ≤ δ

∣∣∣∣∂v�∂z

∣∣∣∣
L2

∀v ∈ V1,

|v�|L2 ≤ δ2|Av�|L2 ∀v ∈ D(A1).

The following lemma is borrowed from [28] (see also [14]).
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Lemma 2.3. Let k ∈ (0, 1/2). Then there exists c1 = c1(k) independent of δ such
that

(2.26)

|b1(ū, v�, w)| ≤ c1δ
k‖ū‖|A1v

�|L2 |w|L2 ∀u ∈ V1, v ∈ D(A1), w ∈ (L2(M))2,

|b1(u�, v̄, w)| ≤ c1δ
1/2‖v̄‖|A1u

�|L2 |w|L2 ∀u ∈ D(A1), v ∈ V1, w ∈ (L2(M))2,

|b1(u�, v�, w)| ≤ c1δ
1/2‖v�‖|A1u

�|L2 |w|L2 ∀u ∈ D(A1), v ∈ V1, w ∈ (L2(M))2,

|b2(v̄, ρ�, w)| ≤ c1δ
k‖v̄‖|A2ρ

�|L2 |w|L2 ∀v ∈ V1, ρ ∈ D(A2), w ∈ (L2(M))2,

|b2(v�, ρ̄, w)| ≤ c1δ
1/2‖ρ̄‖|A1v

�|L2 |w|L2 ∀v ∈ D(A1), ρ ∈ V2, w ∈ (L2(M))2,

|b2(v�, ρ�, w)| ≤ c1δ
1/2‖ρ�‖|A1v

�|L2 |w|L2 ∀v ∈ D(A1), ρ ∈ V2, w ∈ (L2(M))2,

|Λw|2L2 ≤ cδ2|Aw|2L2 ∀w ∈ D(A),

|Ew|2L2 ≤ c|w|2L2 ∀w ∈ H.

We also recall the following well-known estimate on the trilinear form of the 2D
Navier–Stokes equations (see [26]):

(2.27)

b(ū, v̄, v̄) = 0 ∀u, v ∈ V,

|b(ū, v̄, w̄)| ≤ c0|ū|
1
2

L2‖ū‖
1
2 ‖v̄‖ 1

2 |Av̄|
1
2

L2 |w̄|L2 ∀u ∈ V, v ∈ D(A), w ∈ H,

|b(ū, v̄, w̄)| ≤ c0|ū|
1
2

L2 |Aū|
1
2

L2‖v̄‖|w̄|L2 ∀u ∈ D(A), v ∈ V,w ∈ H,

|b(ū, v̄, w̄)| ≤ c0|ū|
1
2

L2‖ū‖
1
2 ‖v̄‖|w̄|

1
2

L2‖w̄‖
1
2 ∀u, v, w ∈ V.

In [14, p. 436], the author derived the following weak formulation for the M
and N components ū and u� of u (note that γ(u, θ̄) = 0 for all θ ∈ V since for
θ = (w, φ) ∈ V, div w̄ = 0):

(2.28)

d

dt
(ū, θ̄) + a(ū, θ̄) + e(ū, θ̄) + b(ū, ū, θ̄) + b(u�, u�, θ̄) = (F̄ , θ̄) ∀θ ∈ V,

ū(0) = ā ∈ H,

d

dt
(u�, θ�) + a(u�, θ�) + e(u�, θ�) + b(ū, u�, θ�) + b(u�, ū, θ�)(2.29)

+ b(u�, u�, θ�) + γ(ū + u�, θ�) = (F �, θ�) ∀θ ∈ V,

u�(0) = a� ∈ H.

Hereafter, c0 = c0(ω, T ) will denote constants that depend only on the horizontal
domain ω and T, c2 = c2(ω, k, T ) will denote a constant that depends on ω, T , and
k, and c1 = c1(k, T ) will denote a constant that depend on k and T. Finally c will
denote a generic constant.
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2.2.2. The 2D Navier–Stokes. We first recall the following 2D Navier–Stokes
equations (with a Coriolis force) and an associated transport equation:

(2.30)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂w̄1

∂t
− 1

Re1

Δw̄1 + fk0 × w̄1 + (Ū1 · ∇)w̄1 + (w̄1 · ∇)Ū1

+ (w̄1 · ∇)w̄1 + grad ps = F̄1,

∂q̄1
∂t

− 1

Rt1

Δq̄1 + (Ū1 · ∇)q̄1 + (w̄1 · ∇)ψ̄ + (v̄1 · ∇)q̄ = F̄2,

div w̄1 = 0,

with the initial and boundary conditions

(2.31)
v̄1 = (w̄1, q̄) is periodic in the x and y direction with period ω,

v̄1(0) = ā, at t = 0.

It is clear that v̄1 = (w̄1, q̄1) satisfies

d

dt
(v̄1, θ̄) + a(v̄1, θ̄) + e(v̄1, θ̄) + b(Ū , v̄1, θ̄) + b(v̄1, Ū , θ̄) + b(v̄1, v̄1, θ̄)(2.32)

= (F̄ , θ̄) ∀θ ∈ V, v̄1(0) = ā,

where Ū = (Ū1, ψ̄1), F̄ = (F̄1, F̄2), ā = (ā1, ā2).
In (2.30), the unknown functions are the velocity w̄, the temperature q̄1, and the

surface pressure ps. The volume force F̄ and the initial condition ā are given.
We assume the following regularity conditions:

(2.33) F̄ ∈ L2(0, T ;H) ∀T > 0, ā ∈ V ; Ū ∈ L∞(0, T ;V ) ∩ L2(0, T ;D(A)).

The domain ω occupied by the fluid is a smooth convex, bounded open set of �2 with
boundary ∂ω. Finally the constant Re1 > 0 is the nondimensional Reynolds number.

Proposition 2.4. The system (2.30) has a unique solution v̄1 ∈ L2(0, T ;D(A))∩
L∞(0, T ;V ). Moreover, we have the estimates

(2.34)

|v̄1(t)|2L2 +

∫ T

0

‖v̄1‖2dt ≤ eM0(T )

(
|ā|2L2 +

∫ T

0

|F̄ |2L2ds

)
,

‖v̄1(t)‖2 +

∫ T

0

|Av̄1|2L2dt ≤ eM1(T )

(
‖ā‖2 +

∫ T

0

|F̄ |2L2ds

)
,

∫ T

0

∣∣∣∣dv̄1

dt

∣∣∣∣2
L2

dt ≤ eM1(T )

(
‖ā‖2 +

∫ T

0

|F̄ |2L2ds

)
,

where

M0(t) = c0

∫ t

‖Ū‖2ds, M1(t) = c0

∫ t

0

|Ū |L2 |A1Ū |L2ds(2.35)

+ e2M0(t)

(
|ā|2L2 +

∫ T

0

|F̄ |2L2ds

)2

.
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Proof. For the existence and uniqueness of solutions to (2.32), (2.30), see, for
instance, [26]. The estimates (2.34) are also standard, but for the sake of clarity, we
give a sketch of the proof.

For (2.34)1, multiplying (2.30) by v̄1 and using (2.27) yield

(2.36)
d

dt
|v̄1|2L2 + c0‖v̄1‖2 ≤ c0|v̄1|2L2‖Ū‖2 + c0|F̄ |2L2 ,

and (2.34)1 follows from the Gronwall lemma [26].

For (2.34)2, we first note that (see (2.27))

|b(v̄1, Ū , Av̄1)| ≤ c0|v̄1|1/2L2 |Av̄1|3/2L2 ‖Ū‖(2.37)

≤ 1

8
|Av̄1|2L2 + c0|v̄1|2L2‖Ū‖4,

|b(Ū , v̄1, Av̄1)| ≤
1

8
|Av̄1|2L2 + c0|Ū |L2 |AŪ |L2 ,

|b(v̄1, v̄1, Av̄)| ≤
1

8
|Av̄1|2L2 + c0|v̄1|2L2‖v̄1‖4,

|e(v̄1, Av̄1)| ≤
1

8
|Av̄1|2L2 + c0|v̄1|2L2 .

Now multiplying (2.30) by Av̄ and using (2.37) yield

(2.38)
d

dt
‖v̄1‖2 + |Av̄1|2L2 ≤ c0|F̄ |2L2 + c0|v̄1|2L2 + h(t)‖v̄1‖2,

where

h(t) = c0|Ū |L2 |AŪ |L2 + c0|v̄1|2L2‖v̄1‖2 + c0‖Ū‖4

and ∫ t

0

h(s)ds ≤ c0

∫ t

0

|Ū |L2 |AŪ |L2ds + sup
s

|v̄1(s)|2L2

∫ t

0

‖v̄1‖2ds(2.39)

+ c0

∫ t

0

‖Ū‖4ds ≡ M1(t),

and (2.34)2 follows from the standard Gronwall lemma.

For (2.34)3, we note that

(2.40)

∣∣∣∣dv̄1

dt

∣∣∣∣2
L2

≤ c|Av̄1|2L2 + c|Ev̄1|2L2 + c|B(Ū , v̄1)|2L2

+ c|B(v̄1, Ū)|2L2 + c|B(v̄1, v̄1)|2L2

≤ c|Av̄1|2L2 + c0|v̄1|2L2 + c0|Ū |L2 |AŪ |L2‖v̄1‖2 + c0|v̄1|L2 |Av̄1|L2‖Ū‖2

+c0|v̄1|L2 |Av̄1|L2‖v̄1‖2,

and (2.34)3 follows from (2.34)2.
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2.2.3. The 3D linear system. We also consider the following 3D heat-type
equations:

(2.41)
d

dt
(v�, θ�) + a(v�, θ�) + e(v�, θ�) + γ(v�, θ�) = (F �, θ�) ∀θ ∈ V, v�(0) = a�.

In (2.41), the unknown function v� = (v�1, q
�
1), the volume force F � = (F �, F �

2), and the
initial condition a� = (a�1, a

�
2) are given. We assume the following regularity condition:

(2.42) a� ∈ V, F � ∈ L2(0, T ;H).

Proposition 2.5. The heat-type equation (2.41) has a unique solution v� ∈
L2(0, T ;D(A)) ∩ L∞(0, T ;V ). Moreover, we have the estimates

(2.43)

‖v�(t)‖2 ≤ c

(
‖a�‖2 +

∫ T

0

|F �|2L2ds

)
≡ c5,

∫ T

0

|Av�|2L2dt ≤ c5,

∫ T

0

∣∣∣∣dv�dt

∣∣∣∣2
L2

dt ≤ c5, |v�(t)|2L2 ≤ δ2c5.

Proof. Multiplying (2.41) by v� gives

(2.44) |v�(t)|2L2 +

∫ t

0

‖v�‖2ds+ ≤ c

(
|a�|2L2 +

∫ t

0

|F �|2L2ds

)
.

Now, multiplying (2.41) by Av� yields

(2.45) ‖v�(t)‖2 +

∫ t

0

|Av�|2L2ds ≤ c

(
‖a�‖2 +

∫ t

0

|F �|2L2ds

)
and (2.43)2,3 follow. Note that (2.43)4 follows from (2.25).

3. A small eddy correction method. Hereafter we set

(F(ū, u�), θ�) =
d

dt
(u�, θ�) + a(u�, θ�) + e(u�, θ�) + γ(ū + u�, θ�) + b(ū, u�, θ�)(3.1)

+ b(u�, ū, θ�) + b(u�, u�, θ�) − (F �, θ�).

Then (2.29)1 is equivalent to

(3.2) (F(ū, u�), θ�) = 0 ∀θ ∈ V, u�(0) = a�.

Supposing that the barotropic flow ū is known, and formally applying the Newton
iteration to (3.2), we get the following iterative procedure: assuming that the initial
guess for the baroclinic (or the small eddy) component u�

0 = 0 and the (j − 1)th
approximation u�

j−1 is known for some integer j, find the jth approximation u�
j such

that

(3.3) Du�F(ū, u�)(u�
j − u�

j−1) = −F(ū, u�
j−1).

Simple calculation shows that (3.3) reduces to

(3.4)

d

dt
(u�

j , θ
�) + a(u�

j , θ
�) + e(u�

j , θ
�) + γ(v + u�

j , θ
�) + b(ū, u�

j , θ
�) + b(u�

j , ū, θ
�)

+ b(u�
j−1, u

�
j , θ

�) + b(u�
j , u

�
j−1, θ

�) + b(u�
j−1, u

�
j−1, θ

�)

= (F �, θ�) ∀θ ∈ V, u�
j(0) = a�.
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Combining (3.4) with the barotropic equation (2.29) (with ū replaced by v and u�
j

replaced by wj), we obtain the following small eddy correction method: let w0 = 0
and let l be a fixed positive integer:

(3.5)
d

dt
(v, θ̄) + a(v, θ̄) + e(v, θ̄) + b(v, v, θ̄) + b(wl, wl, θ̄) = (F̄ , θ̄) ∀θ ∈ V, v(0) = ā,

(3.6)

d

dt
(wj , θ

�) + a(wj , θ
�) + e(wj , θ

�) + γ(v + wj , θ
�) + b(v, wj , θ

�) + b(wj , v, θ
�)

+ b(wj−1, u
�
j , θ

�) + b(wj , wj−1, θ
�) + b(wj−1, wj−1, θ

�)

= (F �, θ�) ∀θ ∈ V, wj(0) = a�

for j = 1, 2, . . . , l.
Remark 3.1. For l = 0, (3.5)–(3.6) reduce (since w0 = 0) to

(3.7)
d

dt
(v, θ̄) + a(v, θ̄) + e(v, θ̄) + b(v, v, θ̄) = (F̄ , θ̄) ∀θ ∈ V, v(0) = ā,

which is the well-known quasi-geostrophic model.
For l = 1, (3.5)–(3.6) become

(3.8)
d

dt
(v, θ̄) + a(v, θ̄) + e(v, θ̄) + b(v, v, θ̄) + b(w1, w1, θ̄) = (F̄ , θ̄) ∀θ ∈ V, v(0) = ā,

(3.9)

d

dt
(w1, θ

�) + a(w1, θ
�) + e(w1, θ

�) + γ(v + w1, θ
�) + b(v, w1, θ

�) + b(w1, v, θ
�)

= (F �, θ�) ∀θ ∈ V, w1(0) = a�,

which is similar to the NLG method studied in [27, 17, 24, 25] for the 2D Navier–Stokes
equations.

3.1. Some a priori estimates. In this part, we prove the existence and unique-
ness of a strong solution to (3.5)–(3.6) when δ is small enough.

Hereafter we set X = X1 × (X2)
l. For v = (v̄, w1, w2, . . . , wl) ∈ X, we set

(3.10) ‖v‖2
X = ‖v̄‖2

X1
+ sup

i
‖wi‖2

X2
.

3.1.1. Linear problems. To (3.5)–(3.6) we associate the following system: Find
(v̄0, w0

1, w
0
2, . . . , w

0
l ) ∈ X such that

(3.11)
d

dt
(v0, θ̄) + a(v0, θ̄) + e(v0, θ̄) = (F̄ , θ̄) ∀θ ∈ V, v0(0) = ā,

and for j = 1, 2, . . . , l

(3.12)
d

dt
(w0

j , θ
�) + a(w0

j , θ
�) + e(w0

j , θ
�) = (F �, θ�) ∀θ ∈ V, w0

j (0) = a�.

Following Propositions 2.4 and 2.5, the unique strong solution (v0, w0
1, w

0
2, . . . , w

0
l ) ∈

X to (3.11)–(3.12) satisfies

(3.13) ‖v0‖2
X1

≤ α2
1, sup

j
‖w0

j‖2
X2

≤ α2
2, sup

j
|w0

j (t)|2L2 ≤ δ2α2
2,
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where

(3.14)

α2
1 ≡ c

(
‖ā‖2 +

∫ T

0

|F̄ |2L2ds

)
≤ cδ1/2R2

0(δ),

α2
2 ≡ c

(
‖a�‖2 +

∫ T

0

|F �|2L2ds

)
≤ cδ1/4R2

0(δ), α2
0 = α2

1 + α2
2.

Note that from (2.19)–(2.20), α2
1 goes to zero as δ goes to zero.

3.1.2. Nonlinear problems. Now let us set ϑ = v − v0, ηj = wj −w0
j . Then ϑ

and ηj satisfy

d

dt
(ϑ, θ̄) + a(ϑ, θ̄) + e(ϑ, θ̄) + b(ϑ, v0, θ̄) + b(v0, ϑ, θ̄) + b(ϑ, ϑ, θ̄) + (S1, θ̄)(3.15)

= 0 ∀θ ∈ V, ϑ(0) = 0,

(3.16)
d

dt
(ηj , θ

�) + a(ηj , θ
�) + e(ηj , θ

�) + (S2, θ
�) = 0 ∀θ ∈ V, ηj(0) = 0,

where

(3.17)

S1 = B(v0, v0) + B(ηl + w0
l , ηl + w0

l ),

S2 = B(ϑ + v0, ηj + w0
j ) + B(ηj + w0

j , ϑ + v0) + B(ηj−1 + w0
j−1, ηj + w0

j )

+ B(ηj + w0
j , ηj−1 + w0

j−1) −B(ηj−1 + w0
j−1, ηj−1 + w0

j−1) + Λ(ϑ + ηj).

To solve (3.15)–(3.16), we consider the following iterative process:

(3.18)

d

dt
(ϑn+1, θ̄) + a(ϑn+1, θ̄) + e(ϑn+1, θ̄) + b(ϑn+1, v0, θ̄) + b(v0, ϑn+1, θ̄)

+ b(ϑn+1, ϑn+1, θ̄) + (Sn
1 , θ̄) = 0 ∀θ ∈ V, ϑn+1(0) = 0,

(3.19)
d

dt
(ηn+1

j , θ�) + a(ηn+1
j , θ�) + e(ηn+1

j , θ�) + (Sn
2 , θ

�) = 0 ∀θ ∈ V, ηn+1
j (0) = 0,

where

(3.20)

Sn
1 = B(v0, v0) + B(ηnl + w0

l , η
n
l + w0

l ),

Sn
2 = B(ϑn + v0, ηnj + w0

j ) + B(ηnj + w0
j , ϑ

n + v0) + B(ηnj−1 + w0
j−1, η

n
j + w0

j )

+ B(ηnj + w0
j , η

n
j−1 + w0

j−1) −B(ηnj−1 + w0
j−1, η

n
j−1 + w0

j−1) + Λ(ϑn + ηnj )

for (v0, η0
1 , η

0
2 , . . . , η

0
l ) ∈ X such that

(3.21) ‖ϑ0‖2
X1

+ sup
j

‖η0
j ‖2

X2
≤ R2, sup

j
|η0

j (t)|2L2 ≤ δ2R2,
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where R = R(a, g, T,Re1 , Re2) > 0 is given by (3.34).
The goal is to prove (using a fixed-point argument) that the sequence (ϑn, ηnj ) is

convergent for δ small enough.
Proposition 3.1. Let k ∈ (0, 1/2). We assume that

(3.22) ‖ϑn‖2
X1

+ sup
j

‖ηnj ‖2
X2

≤ R2,

where R will be made precise later. Then the following estimates hold true for Sn
1 and

Sn
2 :

(3.23)∫ T

0

(|Sn
1 |2L2 + |Sn

2 |2L2)dt ≤ c2δ
2k(R2(‖ϑn‖2

X1
+ sup

j
‖ηnj ‖2

X2
) + R4 + α4

0 + R2) + c0α
4
1.

Proof. The proof follows from the inequalities (see (2.26)–(2.27))

(3.24) |Sn
1 |2L2 ≤ c0|v0|L2 |Av0|L2‖v0‖2 + c1δ‖ηnl + w0

l ‖2|A(ηnl + w0
l )|2L2 ,

which gives

(3.25)

∫ T

0

|Sn
1 |2L2dt ≤ c0α

4
1 + c1δ sup

s
‖ηnl (s) + w0

l (s)‖2

∫ T

0

|A(ηnl + w0
l )|2L2ds

≤ c0α
4
1 + c1δ(R

2 sup
j

‖ηnj ‖2
X2

+ α4
0 + R4).

We also have

(3.26)

|Sn
2 |2L2 ≤ c1δ

2k‖ϑn + v0‖2|A(ηnj + w0
j )|2L2 + c1δ‖ϑn + v0‖2|A(ηnj + w0

j )|2L2

+ c1δ‖ηnj + w0
j‖2|A(ηnj−1 + w0

j−1)|2L2 + c1δ‖ηnj−1 + w0
j−1‖2|A(ηnj + w0

j )|2L2

+ c1δ‖ηnj−1 + w0
j−1‖2|A(ηnj−1 + w0

j−1)|2L2 + c1δ
2‖ηnj + ϑn‖2,

which gives

(3.27)

∫ T

0

|Sn
2 |2L2dt ≤ c1δ

2k sup
s

‖ϑn(s) + v0(s)‖2

∫ T

0

|A(ηnj + w0
j )|2L2ds

+ c1δ sup
s

‖ϑn + v0‖2 + c1δ sup
s

‖ηnj + w0
j‖2

∫ T

0

|A(ηnj−1 + w0
j−1)|2L2ds

+ c1δ sup
s

‖ηnj−1 + w0
j−1‖2

∫ T

0

|A(ηnj + w0
j )|2L2ds

+ c1δ sup
s

‖ηnj−1 + w0
j−1‖2

∫ T

0

|A(ηnj−1 + w0
j−1)|2L2ds + c1δ

2R2

and

(3.28)

∫ T

0

|Sn
2 |2L2dt ≤ c1δ

2k(R2(‖ϑn‖2 + sup
j

‖ηnj ‖2) + α4
0 + R4) + c1δ

2R2.
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Therefore (3.23) follows from (3.25) and (3.28).
Proposition 3.2. Let k ∈ (1/4, 1/2). We assume that (3.22) holds true. Then

for δ small enough, we have

(3.29) ‖ϑn+1‖2
X1

+ sup
j

‖ηn+1
j ‖2

X2
≤ R2, sup

j
|ηn+1

j (t)|2L2 ≤ δ2R2.

Proof. It clearly follows from Proposition 2.4 and the estimate (3.25) that

(3.30)

|ϑn+1(t)|2L2 ≤ c2e
N0(T )(δR2(‖ϑn‖2

X1
+ sup

j
‖ηnj ‖2

X2
) + δα4

0 + δR4 + α4
1),

‖ϑn+1(t)‖2
X1

≤ c2e
N1(T )(δR2(‖ϑn‖2

X1
+ sup

j
‖ηnj ‖2

X2
) + δα4

0 + δR4 + α4
1),∫ T

0

|Aϑn+1|2L2dt ≤ c2e
N1(T )(δR2(‖ϑn‖2

X1
+ sup

j
‖ηnj ‖2

X2
) + δα4

0 + δR4 + α4
1),∫ T

0

∣∣∣∣dϑn+1

dt

∣∣∣∣2
L2

dt ≤ c2e
N1(T )(δR2(‖ϑn‖2

X1
+ sup

j
‖ηnj ‖2

X2
) + δα4

0 + δR4 + α4
1).

The exact form of N0(T ) and N1(T ) can be obtained, respectively, from (2.35) by
replacing Ū by v0; i.e., N0(T ) = N0(T, α1) and N1(T ) = N1(T, α1).

It also follows from Proposition 2.5 and the estimate (3.28) that

(3.31)

sup
j

|ηn+1
j (t)|2L2 ≤ c1δ

2k(R2(‖ϑn‖2
X1

+ sup
j

‖ηnj ‖2
X2

) + α4
0 + R4) + c1δ

2R2,

sup
j

‖ηn+1
j (t)‖2 ≤ c1δ

2k(R2(‖ϑn‖2
X1

+ sup
j

‖ηnj ‖2
X2

) + α4
0 + R4) + c1δ

2R2,

sup
j

∫ T

0

|Aηn+1
j |2L2dt ≤ c1δ

2k(R2(‖ϑn‖2
X1

+ sup
j

‖ηnj ‖2
X2

) + α4
0 + R4) + c1δ

2R2,

sup
j

∫ T

0

∣∣∣∣∣dη
n+1
j

dt

∣∣∣∣∣
2

L2

dt ≤ c1δ
2k(R2(‖ϑn‖2

X1
+ sup

j
‖ηnj ‖2

X2
) + α4

0 + R4) + c1δ
2R2.

From (3.30) and (3.31) we can write

(3.32) ‖ϑn+1‖2
X1

+ sup
j

‖ηn+1
j ‖2

X2
≤ ε(‖ϑn‖2

X1
+ sup

j
‖ηnj ‖2

X2
) + L0,

where

(3.33) ε = c2δ
2kR2, L0 = c2δ

2k(α4
0 + R4) + c2δ

2R2 + c0α
4
1.

Let

(3.34) R2 = 8c2α
4
0,

where c2 is the constant that appears in (3.33). Note that from (2.19) and (3.14), R
does not go to zero as δ goes to zero.

Now we choose δ small enough such that

(3.35) L0 ≤ R2/4, ε ≤ 1

2
.
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This is possible since from (2.19)–(2.20) and (3.14), all the quantities δ2R2, α4
1, δ

2kR2,
and

(3.36)
δ2k(α4

0 + R4)

R2 = c2δ
2k(1 + α4

0)

go to zero as δ goes to zero for k ∈ (1/4, 1/2).
Therefore, using inequality (3.32) successively, we get

(3.37)
‖ϑn+1‖2

X1
+ sup

j
‖ηn+1

j ‖2
X2

≤ εn(‖ϑ0‖2
X1

+ sup
j

‖η0
j ‖2

X2
) +

1 − εn

1 − ε
L0,

≤ R2/2 + 2L0 ≤ R2,

and (3.29)1 follows. Note that (3.29)2 follows from (3.29)1 and (2.25).
Proposition 3.3. Let k ∈ (1/4, 1/2). Let R be given by (3.34). We assume that δ

is small enough so that (3.35) is satisfied. Let (ϑ0, η0
1 , . . . , η

0
l ) ∈ X such that (3.21) is

satisfied. Then the sequence (ϑn, ηn1 , η
n
2 , . . . , η

n
l ) ∈ X given by (3.18)–(3.19) satisfies

the estimates

(3.38) ‖ϑn‖2
X1

+ sup
j

‖ηnj ‖2
X2

≤ R2, sup
j

|ηnj (t)|2L2 ≤ δ2R2.

Proof. The proof follows by induction from (3.21) and Proposition 3.2.
Now, let us set θn+1 = ϑn+1 − ϑn, qn+1

j = ηn+1
j − ηnj . Then (θn+1, qn+1

j ) satisfy

(3.39)

d

dt
(θn+1, ζ̄) + a(θn+1, ζ̄) + e(θn+1, ζ̄) + b(θn+1, ϑn+1 + v0, ζ̄)

+ b(ϑn + v0, θn+1, ζ̄) + (Kn
1 , ζ̄) = 0 ∀ζ ∈ V, θn+1(0) = 0,

(3.40)
d

dt
(qn+1

j , ζ�) + a(qn+1
j , ζ�) + e(qn+1

j , ζ�) + (Kn
2 , ζ

�) = 0 ∀ζ ∈ V, qn+1
j (0) = 0,

where

(3.41) K1
n = B(qnl , η

n−1
l + w0

l ) + B(ηnl + w0
l , q

n
l )

and

(3.42)

K2
n = B(θn, ηnj + w0

j ) + B(qnj , ϑ
n + v0) + B(qnj , η

n
j + w0

j )

+ B(ϑn−1 + v0, qnj ) + B(ηn−1
j + w0

j , θ
n) + B(ηn−1

j + w0
j , q

n
j ) + Λ(θn + qnj ).

Proposition 3.4. Let k ∈ (1/4, 1/2). We assume that δ is small enough so that
(3.35) holds. Then the following estimate holds:

(3.43)

∫ T

0

(|K1
n|2L2 + |K2

n|2L2)dt ≤ c3δ
2k(‖θn‖2

X1
+ sup

j
‖qnj ‖2

X2
).

Proof. The proof follows from the following estimates:

(3.44) |K1
n|2L2 ≤ c1δ‖ηnl + w0

l ‖2|Aqnl |2L2 + c1δ‖qnl ‖2|A(ηnl + w0
l )|2L2
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and

(3.45)

∫ T

0

|K1
n|2L2dt ≤ c1δ sup

s
‖ηnl (s) + w0

l (s)‖2

∫ T

0

|Aqnl |2L2ds

+ c1δ sup
s

‖qnl (s)‖2

∫ T

0

|A(ηnl + w0
l )|2L2ds

≤ c3δ sup
j

‖qnj ‖2
X2

.

We also have

(3.46)

|K2
n|2L2 ≤ c1δ

2k‖θn‖2|A(ηnj + w0
j )|2L2 + c1δ‖ϑn + v0‖2|Aqnj |2L2

+ c1δ‖ηnj + w0
j‖2|Aqnj |2L2 + c1δ

2k‖ϑn−1 + v0‖2|Aqnj |2L2

+ c1δ‖θn‖2|A(ηn−1
j + w0

j )|2L2

+ c1δ‖qnj ‖2|A(ηn−1
j + w0

j )|2L2 + c1δ
2|A(θn + qnj )|2L2

and

(3.47)

∫ T

0

|K2
n|2L2dt ≤ c1δ

2k sup
s

‖θn(s)‖2

∫ T

0

|A(ηnj + w0
j )|2L2ds + c1δ sup

s
‖ϑn(s)

+ v0(s)‖2

∫ T

0

|Aqnj |2L2dt + c1δ sup
s

‖ηnj (s) + w0
j (s)‖2

∫ T

0

|Aqnj |2L2dt

+ c1δ
2k sup

s
‖ϑn−1(s) + v0(s)‖2

∫ T

0

|Aqnj |2L2dt

+ c1δ sup
s

‖θn(s)‖2

∫ T

0

|A(ηn−1
j + w0

j )|2L2dt

+ c1δ sup
s

‖qnj (s)‖2

∫ T

0

|A(ηn−1
j + w0

j )|2L2dt

+ c1δ
2

∫ T

0

|A(θn + qnj )|2L2dt ≤ c3δ
2k(‖θn‖2

X1
+ sup

j
‖qnj ‖2

X2
).

Finally (3.43) follows from (3.45) and (3.47).
Note that from the previous estimates, c3 has the form

(3.48) c3 = c(α2
2 + R2).

It follows from (2.20) and (3.14) that δ2kc3 goes to zero as δ goes to zero. Hereafter,
we choose δ small enough such that

(3.49) δ1 = δ2kc3 < 1.

Proposition 3.5. Let k ∈ (1/4, 1/2). We assume that δ is small enough so that
(3.35), (3.49) hold. Then the following estimate holds:

(3.50) ‖θn+1‖2
X1

+ sup
j

‖qn+1
j ‖2

X2
≤ c3δ

2k

(
‖θn‖2

X1
+ sup

j
‖qnj ‖2

X2

)
.
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Proof. The proof, which is similar to those of Propositions 2.4 and 2.5, follows
from (3.43). Moreover, the following result is proved.

Proposition 3.6. Let k ∈ (1/4, 1/2). We assume that δ is small enough so
that (3.35) and (3.49) are satisfied. Then the sequence (ϑn, ηn1 , η

n
2 , . . . , η

n
l ) ∈ X de-

fined by (3.18), (3.19) converges to a solution (ϑ, η1, η2, . . . , ηl) to (3.18)–(3.19) in X.
Moreover, (ϑ, η1, η2, . . . , ηl) is the unique solution to (3.15)–(3.16) in X that satisfies

‖ϑn − ϑ‖2
X1

+ sup
j

‖ηnj − ηj‖2
X2

≤ R2.

Furthermore the following convergence rate holds true:

(3.51) ‖ϑn − ϑ‖2
X1

+ sup
j

‖ηnj − ηj‖2
X2

≤ δn1
1 − δ1

,

where δ1 < 1 is given by (3.49).

4. Convergence of the method. In this part, we study the convergence of the
small eddy correction method presented in the previous section. We prove that the
method converges, and we estimate the rate of convergence with respect to the aspect
ratio δ.

Hereafter, we set ul = v+wl, ζ = u−ul, εj = wj −wj−1. In particular, ε1 = w1.
Using (2.18) and (3.5)–(3.6), it is clear that ul and ζ satisfy (see [13])

d

dt
(ul, θ) + a(ul, θ) + e(ul, θ) + γ(ul, θ) + b(ul, ul, θ) − (NB(εl, εl), θ)(4.1)

= (F, θ) ∀θ ∈ V, ul(0) = a,

d

dt
(ζ, θ) + a(ζ, θ) + e(ζ, θ) + γ(ζ, θ) + b(ζ, u, θ) + b(ul, ζ, θ)(4.2)

+ (NB(εl, εl), θ) = 0 ∀θ ∈ V, ζ(0) = 0.

Taking the vertical average of (4.2), we derive that the barotropic and baroclinic flows
ζ̄ and ζ� satisfy

d

dt
(ζ̄, θ̄) + a(ζ̄, θ̄) + e(ζ̄, θ̄) + b(ζ̄, ū, θ̄) + b(v, ζ̄, θ̄) + b(ζ�, u�, θ̄)(4.3)

+ b(wl, ζ
�, θ̄) = 0 ∀θ ∈ V, ζ̄(0) = 0,

(4.4)

d

dt
(ζ�, θ�) + a(ζ�, θ�) + e(ζ�, θ�) + γ(ζ̄ + ζ�, θ�) + b(ζ̄, u�, θ�) + b(ζ�, ū, θ�)

+ b(v, ζ�, θ�) + b(wl, ζ̄, θ
�) + b(ζ�, u�, θ�)

+ b(wl, ζ
�, θ�) + b(εl, εl, θ

�) = 0 ∀θ ∈ V, ζ�(0) = 0.

Note that

(4.5) |b(ζ̄, ū, Aζ̄)| ≤ c0|ζ̄|1/2L2 ‖ū‖|Aζ̄|3/2L2 ≤ 1

8
|Aζ̄|2L2 + c0|ζ̄|2L2‖ū‖4,
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(4.6) |b(ζ�, u�, Aζ̄)| ≤ c1δ
1/2‖u�‖|Aζ�|L2 |Aζ̄|L2 ≤ 1

8
|Aζ̄|2L2 + c1δ‖u�‖2|Aζ�|2L2 ,

(4.7) |b(wl, ζ
�, Aζ̄)| ≤ c1δ

1/2‖ζ�‖|Awl|L2 |Aζ̄|L2 ≤ 1

8
|Aζ̄|2L2 + c1δ‖ζ�‖2|Awl|2L2 ,

(4.8) |e(ζ̄, Aζ̄)| ≤ c0‖ζ̄‖|Aζ̄|L2 ≤ 1

8
|Aζ̄|2L2 + c0‖ζ̄‖2.

We also have

(4.9) |b(ζ̄, u�, Aζ�)| ≤ c1δ
k‖ζ̄‖|Au�|L2 |Aζ�|L2 ≤ 1

8
|Aζ�|2L2 + c1δ

2k‖ζ̄‖2|Au�|2L2 ,

(4.10) |b(ζ�, ū, Aζ�)| ≤ c1δ
1/2‖ū‖|Aζ�|2L2 ,

(4.11) |b(v, ζ�, Aζ�)| ≤ c1δ
k‖v‖|Aζ�|2L2 ,

(4.12) |b(wl, ζ̄, Aζ
�)| ≤ c1δ

1/2‖ζ̄‖|Awl|L2 |Aζ�|L2 ≤ 1

8
|Aζ�|2L2 + c1δ|Awl|2L2‖ζ̄‖2,

(4.13) |b(ζ�, u�, Aζ�)| ≤ c1δ
1/2‖u�‖|Aζ�|2L2 ,

(4.14) |b(wl, ζ
�, Aζ�)| ≤ c1δ

1/2‖ζ�‖|Awl|L2 |Aζ�|L2 ≤ 1

8
|Aζ�|2L2 + c1δ|Awl|2L2‖ζ�‖2,

(4.15) |b(εl, εl, Aζ�)| ≤ c1δ
1/2‖εl‖|Aεl|L2 |Aζ�|L2 ≤ 1

8
|Aζ�|2L2 + c1δ|Aεl|2L2‖εl‖2,

(4.16) |e(ζ�, Aζ�)| ≤ c1δ|Aζ�|2L2 ,

(4.17) |γ(ζ̄ + ζ�, Aζ�)| ≤ cδ|A(ζ̄ + ζ�)|L2 |Aζ�|L2 ≤ cδ(|Aζ̄|2L2 + |Aζ�|2L2).

Let

(4.18) β1 = 1− c1δ‖u�‖2 − c1δ
2k‖ζ̄‖2 − c1δ

1/2‖ū‖− c1δ
k‖v‖− c1δ

1/2‖u�‖− c1δ− cδ.

We choose k ∈ (1/4, 1/2) and δ small enough such that

(4.19) β1 >
1

2
.

This choice is possible since

(4.20)

‖ū‖2 ≤ 2σ(δR2
0(δ) + σR2

0(δ)),

‖v‖2 ≤ 2(R2 + α2
1),

‖ζ̄‖2 ≤ 2‖ū‖2 + 2‖v‖2 ≤ 4(R2 + α2
1 + σδR2

0(δ) + σR2
0(δ)),

‖u�‖2 ≤ σδ1/4R2
0(δ),
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and (2.19)–(2.20) are satisfied.
Therefore, multiplying (4.3) by Aζ̄, (4.4) by Aζ�, and using (4.5)–(4.19) yield

(4.21)

d

dt
(‖ζ̄‖2 + ‖ζ�‖2) +

1

2
(|Aζ̄|2L2 + |Aζ�|2L2)

≤ c1δ
2k‖ζ̄‖2|Au�|2L2 + c0‖ζ̄‖2 + c0‖ζ̄‖2‖ū‖4

+ c1δ(‖ζ�‖2|Awl|2L2 + ‖ζ̄‖2|Au�|2L2 + ‖εl‖2|Aεl|2L2 + |Awl|2L2‖ζ̄‖2),

which gives

(4.22) ‖ζ̄(t)‖2+‖ζ�(t)‖2+
1

2

∫ t

0

(|Aζ̄|2L2 + |Aζ�|2L2)ds ≤ c1δ sup
s

‖εl(s)‖2

∫ t

0

|Aεl|2L2ds.

The next step is to derive some a priori estimates on εk.
Note that εj satisfies (for 2 ≤ j ≤ l)

(4.23)
d

dt
(εj , θ

�) + a(εj , θ
�) + e(εj , θ

�) + γ(εj , θ
�) + b(v, εj , θ

�) + b(εj , v, θ
�)

+ b(wj−1, εj , θ
�) + b(εj , wj−1, θ

�) + b(εj−1, εj−1, θ
�) = 0 ∀θ ∈ V, εj(0) = 0.

We have

(4.24) |b(v, εj , Aεj)| ≤ c1δ
k‖v‖|Aεj |2L2 .

(4.25) |b(εj , v, Aεj)| ≤ c1δ
1/2‖v‖|Aεj |2L2 .

(4.26)

|b(wj−1, εj , Aεj)| ≤ c1δ
1/2‖εj‖|Awj−1|L2 |Aεj |L2

≤ 1

8
|Aεj |2L2 + c1δ‖εj‖2|Awj−1|2L2 ,

(4.27) |b(εj , wj−1, Aεj)| ≤ c1δ
1/2‖wj−1‖|Aεj |2L2 ,

(4.28)

|b(εj−1, εj−1, Aεj)| ≤ c1δ
1/2‖εj−1‖|Aεj−1|L2 |Aεj |L2

≤ 1

8
|Aεj |2L2 + c1δ‖εj−1‖2|Aεj−1|2L2 .

Let

(4.29) β2 = 1 − c1δ
1/2‖v‖ − c1δ

k‖v‖.

We choose δ small enough such that

(4.30) β2 >
1

2
.

This choice is possible since ‖v‖2 ≤ 2R2 + 2α2
1, which shows that δk‖v‖ and δ1/2‖v‖

go to zero as δ goes to zero for k ∈ (1/4, 1/2).
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Therefore, multiplying (4.23) by Aεj and using (4.25)–(4.28) yield

(4.31) ‖εj(t)‖2 +

∫ t

0

|Aεj |2L2ds ≤ c1δ sup
s

‖εj−1(s)‖2

∫ t

0

|Aεj−1|2L2ds.

Therefore

(4.32) sup
s

‖εj(s)‖2

∫ T

0

|Aεj |2L2ds ≤ c1δ
2

(
sup
s

‖εj−1(s)‖2

)2
(∫ T

0

|Aεj−1|2L2ds

)2

.

Theorem 4.1. We assume that the data satisfy (2.20). Then for δ small enough,
the error ζ(t) = u(t) − ul(t) satisfies

(4.33) ‖ζ̄(t)‖2 + ‖ζ�(t)‖2 +

∫ t

0

(|Aζ̄(s)|2L2 + |Aζ�(s)|2L2)ds ≤ c4(δ
1/2)2

l−1

,

where c4 is a constant that is independent of δ for δ small enough.
Proof. Let us set

(4.34)

E(t) = ‖ζ̄(t)‖2 + ‖ζ�(t)‖2 +

∫ t

0

(|Aζ̄(s)|2L2 + |Aζ�(s)|2L2)ds,

xj = sup
s

‖εj(s)‖2

∫ T

0

|Aεj |2L2ds.

It follows from (4.22) and (4.31) that

(4.35) E(t) ≤ cδxl, xj ≤ cδ2x2
j−1 = δ2

2x
2
j−1, δ2 =

√
cδ.

By iteration we derive that

(4.36) xj ≤ δ
(2j−1−1)2
2 x2j−1

1 .

Let us now estimate ε1 = w1 and x1. Note that (see (2.26))

|e(w1, Aw1)| ≤ cδ2|Aw1|2L2 ,

|γ(v + w1, Aw1)| ≤ c1δ|A(v + w1)|L2 |Aw1|L2

≤ 1

4
|Aw1|2L2 + c1δ

2|Av|2L2 + c1δ|Aw1|2L2 ,

|b(v, w1, Aw1)| ≤ c1δ
k‖v‖|Aw1|2L2 ,

|b(w1, v, Aw1)| ≤ c1δ
1/2‖v‖|Aw1|2L2 .

(4.37)

Let us set

(4.38) β3 = 1 − c1δ
2 − c1δ − c1δ

k‖v‖ − c1δ
1/2‖v‖.

Now we assume that δ is small enough (using an argument similar to that of β2) such
that

(4.39) β3 >
1

4
.
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Then using (3.9) and (4.37)–(4.39) we derive that

(4.40)
d

dt
‖w1‖2 + |Aw1|2L2 ≤ c1δ

2|Av|2L2 + c1|F �|2L2 ,

which gives

(4.41)
‖w1(t)‖2 +

∫ t

0

|Aw1|2L2 ≤ ‖a�‖2 + cδ2

∫ t

0

|Av|2L2ds + c1

∫ t

0

|F �|2L2ds

≤ c1(δ
1/4R2

0(δ) + δ2R2 + δ2α2
1)

and

(4.42) x1 ≤ c(δ1/4R2
0(δ) + δ2R2 + δ2α2

1)
2.

From (2.19)–(2.20), it is clear that
√
cδ1/2x1 goes to zero as δ goes to zero, where c is

the constant that appears in (4.22). Finally from (4.35)–(4.36), we have

(4.43) E(t) ≤ c4(δ
1/2)2

l−1

,

where c4 > 0 is a constant independent of δ for δ small enough.

5. Numerical results. In this section, we present some numerical simulations
obtained with the models (2.18) and (3.5)–(3.6). The goal is to compare the solution
obtained with (2.18) to that of the small eddy correction method. Hereafter we restrict
ourselves to l = 1, and (3.8)–(3.9) will be referred to hereafter as the reduced model.
More simulations for larger values of l will be presented elsewhere. To avoid dealing
with the divergence-free condition, we first rewrote the barotropic equations in the
vorticity streamfunction formulation.

In our experiments, the basin configuration is the (nondimensional) cube [0, 1] ×
[0, 1] × [−1, 0]. Let us simply recall that this is a two-gyre, wind-driven ocean-type
problem with steady sinusoidal wind stress (maximum τ0 = 1 dyne cm−4 ) in a basin
that is L1 × L1 × H1 km (east-west × north-south × bottom-surface extent). The
Coriolis parameter is given by f = f0+βy, f0 = 9.3×10−5s−1, β = 2.×10−11 m−1s−1.
The model does not include bottom topography. The ocean is forced by a steady
wind stress τ0 = (τx0 , τ

y
0 ) = (−10−4 cos(2πy/L1), 0). Other dimensional quantities are

given by U1 = 10−1m s−1, g = 9.8m s−2, L1 = 2.106 m, and H1 = 4000m, which
gives δ = H1/L1 = 2.10−3. The initial condition is given by u = 0 at t = 0. All
the operators in (2.18) and (3.8)–(3.9) are discretized using a second-order central
difference scheme. The Jacobian operator is approximated using Arakawa’s method
[30]. For the time integration, we use a fourth-order Adams–Bashforth method. For
the space discretization, we take 100 × 100 points in the x-y plane and 10 points on
the vertical direction. For the boundary conditions, we replace (2.2) by the following
physically more acceptable boundary conditions:

(5.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂z
= 0,

∂ρ

∂z
= −αT ρ at z = 0,

∂v

∂z
= 0,

∂ρ

∂z
= 0 at z = −δ,

v = 0,
∂ρ

∂n
= 0 on ∂ω × (−δ, 0).
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Fig. 1. Barotropic streamfunction at the steady state. Original model (2.18) on the left and
reduced model (3.8)–(3.9) on the right.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

9

8

7

6

5

4

3

2

1

0

y

z

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

9

8

7

6

5

4

3

2

1

0

y

z

Fig. 2. Snapshot at the (nondimensional) time t = 5 of the barotropic streamfunction and the
total density at x = 0.25. PEs on the left and reduced model (3.8)–(3.9) on the right.
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Fig. 3. Snapshot at the (nondimensional) time t = 5 of the surface density deviation and the
total density at (x, y) = (0.5, 0.5). PEs on the left and reduced model (3.8)–(3.9) on the right.

The forcing term F = (F1, F2) in (2.5) is defined by

(5.2) F1 = c(g(z)τ0, 0), F2(z) = c
∂2ρs
∂z2 /ρ0,

where g(z) and ρs are given by

(5.3) g(z) = 0.5(1 + tanh ((z/H1 + z1)/ε1)), ρs(z) = 1028 − 3 exp (10z/H1).

In (5.2)–(5.3), z1 and ε1 are very small constants chosen such that the forcing F1

is nonzero only on the first couple layers from the surface of the ocean and c is a
constant.

Simulation 1: Steady state solutions.
In this simulation, we compare the two models (2.18) and (3.8)–(3.9) when the so-

lution converges to a steady state. For Re1 = Re2 = 100, the solutions obtained with
the two models converge to a steady state. Figure 1 shows the barotropic streamfunc-
tions obtained with the two models. As one can see, model (3.8)–(3.9) approximates
very well the original model (2.18).
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Fig. 4. Snapshot at the (nondimensional) time t = 10 of the barotropic streamfunction and the
total density at x = 0.25. PEs on the left and reduced model (3.8)–(3.9) on the right.

Simulation 2: Time-dependent solutions.
For the two models (2.18) and (3.8)–(3.9), Figure 2 (resp., Figure 4) shows the

barotropic streamfunction and the total density ρ + ρs at x = 0.25 for the Reynolds
number Re1 = 2.103, Re2 = 102 and at the time t = 5 (resp., t = 10). For the same
values of the Reynolds number, Figure 3 (resp., Figure 5) shows the surface density
deviation ρ and the total density ρ + ρs at the point (x, y) = (0.5, 0.5) and at the
time t = 5 (resp., t = 10). For these values of the Reynolds number, the flow remains
time-dependent. From these figures, we observe that the solutions obtained with the
two models present some differences. However, Figure 6 shows that the time-averages
of the two flows are very similar. This seems to confirm what is already believed
in oceanography: from the climate point of view (where the main focus is on the
time-average of the flow), the interactions between the baroclinic and the barotropic
modes do not need to be accurately represented [10]. From an efficiency point of view,
it was noticed that the reduced model (3.8)–(3.9) allows a larger time step than the
original model (2.18). With 100 × 100 × 10 grid points, for instance, the maximum
time step allowed for (2.18) was around 10−4, while the reduced model was still stable
with �t = 3 × 10−4. This result is not surprising. In fact, since the equation for the
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Fig. 5. Snapshot at the (nondimensional) time t = 10 of the surface density deviation and the
total density at (x, y) = (0.5, 0.5). PEs on the left and reduced model (3.8)–(3.9) on the right.
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Fig. 6. Time-average (over [0, 10]) of the barotropic streamfunction. PEs on the left and
reduced model (3.8)–(3.9) on the right.
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small scales is (highly) nonlinear for the model (2.18) and linearized in the model
(3.8)–(3.9), it is expected that the small scales will greatly influence the time step in
(2.18) more than in (3.8)–(3.9), especially for turbulent flows.

6. Conclusion. The purpose of this article was to present a small eddy correc-
tion method for the numerical solution to (2.5). Considering the interaction between
the baroclinic and barotropic flows and using the idea of the Newton iteration, a
small eddy correction method was proposed for (2.5). We assume that the barotropic
approximation to the solution is known. Formally applying the Newton iterative pro-
cedure to the baroclinic flow equation, we then generate approximate systems. It was
shown that the initial step (l = 0) leads to the well-known quasi-geostrophic equations
and the next step (l = 1) yields an NLG-type approximation. Some numerical simu-
lations for l = 1 show that the method can accurately approximate the PEs system of
(2.18). For the simulation presented in this article, it was observed that with the same
time discretization, the reduced model allows a larger time step (about three times
larger) than the original model. An efficient time discretization of the model pre-
sented in this article may lead to even more considerable savings in calculation costs.
In fact, such method should take advantage of the time scale differences between the
barotropic and baroclinic modes. For instance,

• one can use different time steps for the small and large scales;
• one can use different schemes for the small and large scales;
• one can freeze the small scales over an interval of time.

These approaches, already used with success (considerable reduction in CPU cost)
in the context of the NLG method and the Navier–Stokes equations (see [9, 17]), are
currently under development by the author. Let us also recall that in climate research,
it would be extremely useful to be able to parameterize the nonlinear effects of the
small scales on big scales, using simplified models that do not require costly solutions
of the whole ocean model at high resolution. We believe that the research presented
in this article is a step in this direction.

Acknowledgment. The author would like to thank the anonymous referees
whose comments helped to greatly improve the content of this article.
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LINEAR INSTABILITY OF THE FIFTH-ORDER WENO METHOD∗

RONG WANG† AND RAYMOND J. SPITERI†

Abstract. The weighted essentially nonoscillatory (WENO) methods are popular spatial dis-
cretization methods for hyperbolic partial differential equations. In this paper we show that the
combination of the widely used fifth-order WENO spatial discretization (WENO5) and the forward
Euler time integration method is linearly unstable when numerically integrating hyperbolic conserva-
tion laws. Consequently it is not convergent. Furthermore we show that all two-stage, second-order
explicit Runge–Kutta (ERK) methods are linearly unstable (and hence do not converge) when cou-
pled with WENO5. We also show that all optimal first- and second-order strong-stability-preserving
(SSP) ERK methods are linearly unstable when coupled with WENO5. Moreover the popular three-
stage, third-order SSP(3,3) ERK method offers no linear stability advantage over non-SSP ERK
methods, including ones with negative coefficients, when coupled with WENO5. We give new linear
stability criteria for combinations of WENO5 with general ERK methods of any order. We find that
a sufficient condition for the combination of an ERK method and WENO5 to be linearly stable is
that the linear stability region of the ERK method should include the part of the imaginary axis
of the form [−ιμ, ιμ] for some μ > 0. The linear stability analysis also provides insight into the
behavior of ERK methods applied to nonlinear problems and problems with discontinuous solutions.
We confirm the assertions of our analysis by means of numerical tests.

Key words. stability analysis, Runge–Kutta methods, WENO method, strong-stability-
preserving
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1. Introduction. The method of lines (MOL) is a general approach for the
treatment of time-dependent partial differential equations (PDEs) [24]. The standard
MOL involves two steps. The first step is to discretize the spatial variables of the
PDE to obtain a large set of initial-value ordinary differential equations (ODEs). The
second step is to integrate the ODEs using a time integration method such as a linear
multistep or Runge–Kutta (RK) method [4, 5].

The essentially nonoscillatory (ENO) methods [6, 7] and the weighted essentially
nonoscillatory (WENO) methods [15, 11] are popular and effective nonlinear spatial
discretizations for hyperbolic PDEs. These methods are adept at handling the non-
smooth features that arise in the solutions to hyperbolic PDEs. For example, al-
though these methods are formally first-order accurate once a shock is present, they
still have uniform high-order accuracy right up to the location of the shock [11].
Specifically, the fifth-order WENO spatial discretization (WENO5) [11], which uses
a convex combination of three third-order ENO stencils, is a widely used and robust
spatial discretization for numerical solution of hyperbolic conservation laws.

The three-stage, third-order strong-stability-preserving (SSP) explicit RK (ERK)
method, which has most recently been referred to as SSP(3,3) [21], is generally viewed
as the time integration method of choice to couple with WENO5; see, e.g., [16] and
references therein. Numerical results are generically stable and satisfactory [11, 20].
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Because of this, it is generally believed that, when WENO5 is used as the spatial
discretization for hyperbolic PDEs, the SSP property is a necessary (or advantageous)
property for the time integration method to possess [16, 20]. However, for ERK
methods applied to hyperbolic conservation laws spatially discretized by WENO5,
our work shows that there is a different property, i.e., linear stability, that must be
considered.

In this paper we analyze the linear stability of some ERK methods when coupled
with WENO5 to solve hyperbolic conservation laws. First we show that the forward
Euler method is linearly unstable when coupled with WENO5; i.e., the corresponding
CFL number is 0. Consequently the numerical solution does not converge to the true
solution for any time step. This means that the stability of WENO5 in general is
a product of its nonlinear nature and the particular time integration method with
which it is coupled. Furthermore SSP ERK methods [18, 3] derived based on the
SSP property of forward Euler cannot be SSP when coupled with WENO5. In fact,
there is no guarantee for stability of any kind. In section 3 we show that any optimal
s-stage, first- or second-order SSP ERK method [21] is linearly unstable when coupled
with WENO5. This result is surprising and contrary to expectation based on existing
literature; see, e.g., [16, 20, 25] and references therein. Moreover, we show that, in
our analysis, the success of the SSP(3,3) method for the time integration of hyper-
bolic PDEs spatially discretized by WENO5 is not due to its SSP property; indeed
any three-stage, third-order ERK method (even with negative coefficients or that is
provably non-SSP) possesses the same linear stability properties. We demonstrate all
of these results by means of numerical experiments.

For linear spatial discretizations of linear, constant-coefficient PDE problems
posed on unbounded or periodic domains, linear instability guarantees global insta-
bility; the instability typically leads to spurious oscillations in the numerical solution
that ultimately become unbounded [23]. However, WENO methods are not linear
spatial discretizations; see, e.g., [9, p. 59] for a definition of linear spatial discretiza-
tions for periodic advection problems. Therefore, the behavior of a numerical solution
computed from linearly unstable combinations of WENO methods and certain time
integration methods for solving hyperbolic conservation laws is more subtle. Such
a combination arises, for example, when using the combination of WENO5 and the
forward Euler method; see Theorem 3.1 below. In such cases, the linear instability
again manifests itself as spurious oscillations in the numerical solution. However,
WENO methods attempt to adapt to the instability by changing the associated ENO
stencil weights; see section 2 below. The spurious oscillations may still grow to large
magnitudes; however, they do not necessarily become unbounded. In other words,
the nonlinear nature of WENO methods may be successful in controlling potential
instabilities, and this process may take a significant length of time to assert itself. It
is important to note that, because they are linearly unstable, these combined methods
are not convergent. Hence, although the discussions in this paper are phrased mainly
in terms of linear stability analysis, an immediate corollary of every result presented
regarding linear instability is the nonconvergence of the combined method. We offer
further discussion and illustration of this in section 4; see also Example 1.

The remainder of this paper proceeds as follows. In section 2 we give a brief
review of WENO5. In section 3 we prove that, when coupled with WENO5, the
forward Euler method and all two-stage, second-order ERK methods are linearly
unstable. We then provide criteria for the linear stability of general ERK methods of
orders 1 and 2. Immediate consequences of these criteria are that the optimal s-stage
(s ≥ 2), first-order or s-stage (s ≥ 3), second-order SSP ERK methods are linearly
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unstable when coupled with WENO5. It is also easy to show that all three-stage,
third-order ERK methods (including SSP(3,3)) and all four-stage, fourth-order ERK
methods (including the classical four-stage, fourth-order ERK method) are linearly
stable when coupled with WENO5. Finally we find that a sufficient condition for the
combination of any ERK time integration method with WENO5 to be linearly stable
is that the linear stability region of the ERK method must include the part of the
imaginary axis in the form [−ιμ, ιμ] for some μ > 0. In section 4 we confirm our
theoretical results by means of numerical experiments. We also derive and test four
new non-SSP ERK methods (a two-stage, first-order method; a three-stage, second-
order method; a three-stage, third-order method with negative coefficients; and a
low-storage five-stage, third-order method) that are stable according to our linear
stability analysis. Numerical results for both linear and nonlinear problems, as well
as problems with continuous and discontinuous solutions, demonstrate the relevance
of our analysis.

2. The WENO5 method. WENO methods are widely used for the spatial
discretization of hyperbolic conservation laws. They were first introduced in [15] as
an improvement to ENO methods. ENO methods are based on polynomial interpo-
lation of solution data to define numerical fluxes. They were originally designed to
suppress instabilities that lead to spurious oscillations in other commonly used spatial
discretizations. To achieve this, ENO methods choose stencils that are adapted to the
directions where the solution has an increased order of smoothness. WENO meth-
ods take a convex combination of r candidate ENO stencils of order r to produce a
method of order 2r−1 in regions where the solution is smooth while retaining the ENO
property in regions where the solution exhibits discontinuous behavior. Specifically,
for a given cell, the WENO5 method consists of a convex combination of the three
possible third-order ENO stencils containing that cell [11]. Although in practice ENO
or WENO methods are very robust, there are very few theoretical results for them
[20]. We note that no proof of the stability of either family of methods has yet been
given. The WENO5 method is perhaps the most commonly used of the WENO fam-
ily of methods. We now give a brief summary of some theoretical aspects of WENO
methods, with specific implementational details given for the WENO5 method.

Consider the one-dimensional scalar hyperbolic conservation law

(2.1) ut = −fx(u), 0 < x < 1, t > 0.

Assume a uniform spatial mesh, i.e., xj = jΔx, j = 0, 1, . . . , N , where Δx = 1
N , and

define cells by Ij = [xj−1, xj ], i = 1, 2, . . . , N . We use a conservative finite difference
scheme in a MOL approach to write

duj

dt
= − 1

Δx

(
f̂j+ 1

2
− f̂j− 1

2

)
,

where uj(t) ≈ u(xj , t), j = 0, 1, . . . , N . The term f̂j+ 1
2

= f̂ (uj−R, . . . , uj+S) is the

numerical flux. The numerical flux must be consistent with f(u); i.e., f̂(u, . . . , u) =

f(u). The specification of f̂(u) determines the particular numerical method and its

properties. We now derive the specific form of the numerical flux f̂(u) for WENO5.
We first split the flux into positive and negative parts

(2.2) f(u) = f+(u) + f−(u).
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This can be accomplished in different ways. In this paper we consider only the Lax–
Friedrichs flux splitting [20]

f+(u) =
1

2
(f(u) + mu) , f−(u) =

1

2
(f(u) −mu) ,

where m = max |f ′(u)|. It is easy to show that df+

du ≥ 0 and df−

du ≤ 0. However, we
note that the same analysis and conclusions apply to other flux-splitting methods.

As in [11], we now calculate the indicators of smoothness ISi, i = 0, 1, . . . , r − 1,
associated with the ith stencil. For IS+

i we use

IS+
i =

r−1∑
m=1

∫ x
j+ 1

2

x
j− 1

2

Δx2m−1

(
∂mpi(x)

∂xm

)2

dx, i = 0, 1, . . . , r − 1,

where pi(x) is the interpolating polynomial of order r to solution data on r cells; i.e.,
Ij+i−r+1, . . . , Ij+i. In the case of WENO5, r = 3, this leads to

IS+
0 =

13

12

(
f+
j−2 − 2f+

j−1 + f+
j

)2
+

1

4

(
f+
j−2 − 4f+

j−1 + 3f+
j

)2
,(2.3)

IS+
1 =

13

12

(
f+
j−1 − 2f+

j + f+
j+1

)2
+

1

4

(
f+
j−1 − f+

j+1

)2
,(2.4)

IS+
2 =

13

12

(
f+
j − 2f+

j+1 + f+
j+2

)2
+

1

4

(
3f+

j − 4f+
j+1 + f+

j+2

)2
,(2.5)

and, using an analagous formula for IS−
i , we have

IS−
0 =

13

12

(
f−
j+1 − 2f−

j+2 + f−
j+3

)2
+

1

4

(
3f−

j+1 − 4f−
j+2 + f−

j+3

)2
,

IS−
1 =

13

12

(
f−
j − 2f−

j+1 + f−
j+2

)2
+

1

4

(
f−
j − f−

j+2

)2
,

IS−
2 =

13

12

(
f−
j−1 − 2f−

j + f−
j+1

)2
+

1

4

(
f−
j−1 − 4f−

j + 3f−
j+1

)2
.

Next the (nonnormalized) stencil weights take the form

α±
i =

di
(ε + ISi)2

, i = 0, 1, . . . , r − 1,

where ε is a small positive number that is introduced to avoid the denominator be-
coming zero. In the numerical experiments of this paper, we choose ε = 10−6, which is
the value recommended in [11]. In the case of the WENO5 method, we have d0 = 1

10 ,
d1 = 6

10 , d2 = 3
10 (see, e.g., [11] for a derivation of the di), and

(2.6) α±
0 =

1

10

(
1

ε + IS±
0

)2

, α±
1 =

6

10

(
1

ε + IS±
1

)2

, α±
2 =

3

10

(
1

ε + IS±
2

)2

.

In order to a achieve a convex combination of ENO stencils, the WENO stencil
weights are normalized according to

w±
i =

αi∑r−1
m=0 αm

, i = 0, 1, . . . , r − 1,
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to give

(2.7) w±
0 =

α±
0

α±
0 + α±

1 + α±
2

, w±
1 =

α±
1

α±
0 + α±

1 + α±
2

, w±
2 =

α±
2

α±
0 + α±

1 + α±
2

.

We note that w±
j ∈ (0, 1), j = 0, 1, 2, and w±

0 + w±
1 + w±

2 = 1, as required.
The numerical fluxes for WENO5 are given by

f̂+
j+ 1

2

= w+
0

(
2

6
f+
j−2 −

7

6
f+
j−1 +

11

6
f+
j

)
+ w+

1

(
−1

6
f+
j−1 +

5

6
f+
j +

2

6
f+
j+1

)
+ w+

2

(
2

6
f+
j +

5

6
f+
j+1 −

1

6
f+
j+2

)
(2.8)

and

f̂−
j+ 1

2

= w−
2

(
−1

6
f−
j−1 +

5

6
f−
j +

2

6
f−
j+1

)
+ w−

1

(
2

6
f−
j +

5

6
f−
j+1 −

1

6
f−
j+2

)
+ w−

0

(
11

6
f−
j+1 −

7

6
f−
j+2 +

2

6
f−
j+3

)
.

Noting (2.2), the WENO5 method takes the final form

(2.9)
duj

dt
= − 1

Δx

[(
f̂+
j+ 1

2

− f̂+
j− 1

2

)
+
(
f̂−
j+ 1

2

− f̂−
j− 1

2

)]
.

We refer the interested reader to [20] and references therein for further details
and discussion of WENO methods.

3. Linear stability analysis. We consider the linear stability properties of
various ERK methods when coupled with WENO5 to solve hyperbolic conservation
laws (2.1). The CFL number associated with a uniform discretization in both space
and time of (2.1) is defined as σ = (max ∂f

∂u ) Δt
Δx . As is usual when performing linear

stability analysis, we linearize and freeze coefficients to write

ut = −λux.

The corresponding CFL number σ is then σ = λΔt
Δx . For the purposes of our analysis,

it is sufficient to consider the one-dimensional scalar advection equation

ut = −ux;

i.e., f(u) = u; any CFL number appearing in our analysis can then be scaled appro-
priately for more general interpretations.

We begin this section by showing that the combination of WENO5 and the for-
ward Euler ERK method is linearly unstable.

The Lax–Friedrichs flux splitting yields

f+(u) = u, f−(u) = 0;

i.e., the negative part of the flux is zero. Thus, (2.8) takes the form

f̂+
j+ 1

2

= w+
0

(
2

6
uj−2 −

7

6
uj−1 +

11

6
uj

)
+ w+

1

(
−1

6
uj−1 +

5

6
uj +

2

6
uj+1

)
+ w+

2

(
2

6
uj +

5

6
uj+1 −

1

6
uj+2

)
.(3.1)
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When the exact solution is smooth, it is well known that

(3.2) w+
0 =

1

10
+ ε1, w+

1 =
6

10
+ ε2, w+

2 =
3

10
+ ε3,

where ε1, ε2, ε3 are all O((Δx)2), and ε1+ε2+ε3 = 0 [11]. We now prove the following
theorem using von Neumann analysis.

Theorem 3.1. The combination of WENO 5 and forward Euler is linearly un-
stable.

Proof. Assuming periodic boundary conditions, we can expand the approximate
solution {uj}Nj=0 as a finite Fourier series

uj =

�N/2�∑
k=−�N/2�

ûke
ιjξk Δx,

where ι is the imaginary unit, i.e., ι2 = −1, and ξk is the spatial frequency associated
with ûk. Because the wave equation is linear and has constant coefficients, it is
sufficient to consider only one individual Fourier mode; i.e.,

uj = ûeιjξ Δx.

Defining φ = ξ Δx, we thus have

(3.3) uj = ûeιjφ.

By using (3.2), (3.1), and (3.3), we now obtain

f̂+
j+ 1

2

= uj

[
w+

0

(
2

6
e−2ιφ − 7

6
e−ιφ +

11

6

)
+ w+

1

(
−1

6
e−ιφ +

5

6
+

2

6
eιφ

)
+ w+

2

(
2

6
+

5

6
eιφ − 1

6
e2ιφ

)]
.(3.4)

When the forward Euler method is used, the WENO5 method becomes

(3.5) un+1
j = un

j − Δt

Δx
L
(
un
j−3, u

n
j−2, . . . , u

n
j+2

)
,

where

L
(
un
j−3, u

n
j−2, . . . , u

n
j+2

)
= f̂+,n

j+ 1
2

− f̂+,n

j− 1
2

.

From (3.4) we see that
f̂+,n

j+ 1
2

−f̂+,n

j− 1
2

un
j

is a function of φ. Thus we define z(φ) =
f̂+,n

j+ 1
2

−f̂+,n

j− 1
2

un
j

and obtain

L
(
un
j−3, u

n
j−2, . . . , u

n
j+2

)
= z(φ)un

j .

Defining the CFL number σ = Δt
Δx , (3.5) becomes

un+1
j = un

j − σz(φ)un
j

= un
j (1 − σz(φ)) .(3.6)
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Define the amplification factor g(σz(φ)) = 1− σz(φ). In order to prove the theorem,
we need to show that for any σ > 0, there exists a φ such that |g| > 1. Let φ be a
small positive number. Using the Taylor expansion of sinφ and cosφ in (2.3)–(2.5),
we obtain

IS+
0 = u2

jφ
2

(
−1 +

5

12
φ2 − 89

40
φ4 +

4889

4032
φ6 − 5

3
ιφ3 +

17

9
ιφ5 + O(φ7)

)
,

IS+
1 = u2

jφ
2

(
−1 +

17

12
φ2 − 9

40
φ4 +

337

20160
φ6 + O(φ7)

)
,

IS+
2 = u2

jφ
2

(
−1 +

5

12
φ2 − 89

40
φ4 +

4889

4032
φ6 +

5

3
ιφ3 − 17

9
ιφ5 + O(φ7)

)
.

For 0 < ε � 1, we can choose φ = φ(ε) = O(ε1/9) sufficiently small such that the α+
i ,

i = 0, 1, 2, in (2.6) can be estimated as follows:

α+
0 =

1

u4
jφ

4

(
1

10
+

1

12
φ2 − 943

2400
φ4 − 7879

4320
φ6 − 1

3
ιφ3 − 5

9
ιφ5 + O(φ7)

)
,

α+
1 =

1

u4
jφ

4

(
6

10
+

17

10
φ2 +

1337

400
φ4 +

19057

3600
φ6 + O(φ7)

)
,

α+
2 =

1

u4
jφ

4

(
3

10
+

1

4
φ2 − 943

800
φ4 − 7879

1440
φ6 + ιφ3 +

5

3
ιφ5 + O(φ7)

)
.

Substituting the above expressions into (2.7), we obtain

w+
0 =

1

10
− 3

25
φ2 − 163

500
φ4 − 30449

30000
φ6 − 2

5
ιφ3 +

17

75
ιφ5 + O(φ7),

w+
1 =

6

10
+

12

25
φ2 +

163

125
φ4 +

20449

7500
φ6 − 2

5
ιφ3 − 13

75
ιφ5 + O(φ7),

w+
2 =

3

10
− 9

25
φ2 − 489

500
φ4 − 51347

30000
φ6 +

4

5
ιφ3 − 4

75
ιφ5 + O(φ7).

Thus the real and imaginary parts of f̂+,n

j+ 1
2

are

Re f̂+,n

j+ 1
2

= un
j

(
1 − 1

12
φ2 − 1

720
φ4 +

241

21600
φ6 + O(φ8)

)
,(3.7)

Im f̂+,n

j+ 1
2

= un
j

(
1

2
φ− 7

60
φ5 + O(φ7)

)
.(3.8)

Similarly it can be shown that

Re f̂+,n

j− 1
2

= un
j

(
1 − 1

12
φ2 − 1

720
φ4 − 2279

21600
φ6 + O(φ8)

)
,(3.9)

Im f̂+,n

j− 1
2

= un
j

(
−1

2
φ− 7

60
φ5 + O(φ7)

)
.(3.10)

Using (3.7)–(3.10), we obtain

(3.11) z(φ) =
7

60
φ6 + O(φ8) + ι

(
φ + O(φ7)

)
.
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The amplification factor becomes

g = 1 − σ
(
O(φ6) + ι

(
φ + O(φ7)

))
.

A simple calculation now shows that

|g|2 =
(
1 − σO(φ6)

)2
+ σ2

(
φ + O(φ7)

)2
= 1 + σ2 φ2 + O(φ6)

> 1 ∀ σ > 0.

This completes the proof.
Remark 1. Equation (3.11) is valid only when φ is a small positive number. The

general form of z(φ) for any φ is given later in (3.21).
Remark 2. This form of analysis applies to any linear finite difference method for

duj

dt = − 1
ΔxL(uj−R, . . . , uj+S), where L(uj−R, . . . , uj+S) can be written in the form

L(uj−R, . . . , uj+S) = ujz(φ),

where z(φ) is uniquely determined by the spatial operator.
Remark 3. It should be noted that, although this instability argument applies

to the WENO spatial discretization, it does not necessarily apply to the ENO spatial
discretization. The reason is that this analysis needs to have a known stencil, and
ENO methods may choose any of a number of candidate stencils even if the solution is
smooth. Moreover, such a “randomly” chosen stencil may lead to an unstable method.
This is why a biased choice for choosing ENO stencils is suggested in [19], and this
strategy has been very successful for ENO methods in practice.

Remark 4. It follows immediately that, for the class of problems considered in
this analysis, the combination of the forward Euler method and the WENO5 spatial
discretization is not SSP for any step size Δt > 0. Because every ERK generates its
second stage by a forward Euler step, this second stage cannot be SSP, and hence
in this framework, no ERK method can be SSP.1 Hence the SSP property offers no
stability advantage.

Consider the general s-stage ERK method written in standard form:

y(1)
n = yn,

y(k)
n = yn + Δt

k−1∑
i=1

ak,if
(
tn + ciΔt, y(i)

n

)
, k = 2, . . . , s,

yn+1 = yn + Δt

s∑
i=1

bif
(
tn + ciΔt, y(i)

n

)
,

where the ck satisfy the conditions

ck = ak1 + ak2 + · · · + ak,k−1

for k = 1, . . . , s.
Its Butcher tableau is of the form given in Table 3.1.

1Recall that an ERK method written in Shu–Osher form is SSP if all of its stages i on step n of

the numerical solution Y
(i)
n satisfy ‖Y (i)

n ‖ ≤ ‖Yn‖, for all i = 1, 2, . . . , s and n ≥ 1, for some suitable

seminorm ‖ · ‖, where Y
(1)
n = Yn and Y

(s)
n = Yn+1; see, e.g., [2, 8].
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Table 3.1

Butcher tableau for s-stage ERK methods.

0
c2 a21

c3 a31 a32

c4 a41 a42 a43

...
...

...
...

. . .

cs as1 as2 as3 · · · as,s−1

b1 b2 b3 · · · bs−1 bs

We have the following theorem and corollary [12].
Theorem 3.2. The amplification factor for an s-stage ERK method is

g(ẑ) = 1 +
s∑

l=1

⎛⎝ s∑
j=l

bj

⎛⎝ ∑
j>m1>···>ml−1≥1

aj,m1am1,m2 . . . aml−2,ml−1

⎞⎠⎞⎠ ẑl(3.12)

= 1 + ẑbT (I − ẑA)−1e,(3.13)

where I is the unit matrix, A = (aij)1≤i,j≤s and b = (b1, b2, . . . , bs) are the coefficients
of the Butcher tableau, e = (1, 1, . . . , 1), z(φ) is determined by the spatial operator,
and ẑ = −σz.

Combining the order conditions for ERK methods with (3.12) or (3.13), we easily
obtain the following corollary [14, 22].

Corollary 3.3. The amplification factor of an s-stage, order-p ERK method is

g(ẑ) = 1 +

p∑
l=1

1

l!
ẑl(3.14)

+

s∑
l=p+1

⎛⎝ s∑
j=l

bj

⎛⎝ ∑
j>m1>···>ml−1≥1

aj,m1
am1,m2

. . . aml−2,ml−1

⎞⎠⎞⎠ ẑl

= 1 +

p∑
l=1

ẑl

l!
+

s∑
l=p+1

ẑlbTAl−1e.

Therefore, a spatial discretization scheme combined with a given ERK method is
linearly stable if and only if g in (3.12) satisfies |g| ≤ 1 for all φ ∈ [0, 2π].

We can now prove the following theorem for any two-stage, second-order ERK
method.

Theorem 3.4. The combination of WENO 5 with any two-stage, second-order
ERK method is linearly unstable.

Proof. From (3.14), the amplification factor is given by

g(ẑ) = 1 − σz +
1

2
(σz)2.

Choosing φ to be a small positive number and using (3.11), a simple calculation shows

|g|2 =

(
1 − 1

2
σ2φ2 + O(φ6)

)2

+
(
−σφ + O(φ7)

)2
= 1 +

1

4
σ4φ4 + O(φ6)

> 1.

This finishes the proof.
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Fig. 1. D2 for the upwind (circle) and central (line segment) spatial discretizations.

Before we derive the theorem for general ERK methods, we give a geometric
interpretation for the CFL number σ [1, 10, 14, 22].

Definition 3.5. Let D1 denote the classical (linear) stability domain of any ERK
method, and let D2 denote the region interior to the boundary {−z(φ) : 0 ≤ φ ≤ 2π}
in the complex domain. The CFL number σ is the largest nonnegative real number
such that the scaled region σD2 is contained in D1.

It is well known that (3.13) is the stability function for an ERK method; see,
e.g., [5]. Thus D1 = {ẑ : |g(ẑ)| ≤ 1}. Note that the set {ẑ = −σz(φ) : 0 ≤ φ ≤ 2π}
represents the boundary of the scaled region σD2. It is clear that, in order to have
ẑ ∈ D1, the scaled region σD2 must be contained in D1. We now give two simple
examples for the purposes of illustration. The first example is for the upwind spatial
discretization; i.e., duj/dt = L(uj−1, uj) = − 1

Δx (uj − uj−1). Using von Neumann
analysis, we obtain z(φ) = 1−e−ιφ. It is easy to see that the set {−z(φ) : 0 ≤ φ ≤ 2π}
represents a circle in the complex plane with center (−1, 0) and radius 1; i.e., D2 is
the shaded area shown in Figure 1.

If the forward Euler method is used for the time discretization, its classical linear
stability domain D1 is {z : |1 + z| ≤ 1}. In other words, D1 is exactly the same as
D2 in this case. It is trivial to conclude therefore that σ = 1 is the largest number
such that σD2 ⊆ D1. Hence the CFL number is 1.

The second example is for the central finite difference spatial discretization; i.e.,
duj/dt = L(uj−1, uj , uj+1) = − 1

Δx
uj+1−uj−1

2 . Using von Neumann analysis, we obtain
z(φ) = 1

2 (eιφ − e−ιφ) = ι sinφ. It is easy to see that the set {−z(φ) : 0 ≤ φ ≤ 2π} =
{(0, y) : −1 ≤ y ≤ 1}; i.e., D2 now represents a finite segment of the imaginary
axis. If the forward Euler method is used for the time discretization, σD2 	⊆ D1,
no matter how small σ > 0 is chosen. Therefore, the central finite difference spatial
discretization is linearly unstable when it is coupled with the forward Euler method.

We now derive the following lemma for any consistent ERK method. Lemma 3.6
is important for all of the theorems in this paper.

Lemma 3.6. The classical (linear) stability domain of any consistent ERK method
contains a rectangle [−η, 0] × [−ιμ̂, ιμ̂] for some η, μ̂ > 0 if and only if it has an
intersection with the imaginary axis of the form [−ιμ, ιμ] for some μ ≥ μ̂ > 0.

Proof. =⇒ If the rectangle [−η, 0]× [−μ̂, μ̂] is inside the classical (linear) stability
domain of any consistent ERK method, by definition the part of the imaginary axis
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Fig. 2. A schematic of the topology of the classical stability domain in a sufficiently small
neighborhood of the origin if a rectangle [−ν, 0] × [−μ̂, μ̂] is not contained in it. Shaded areas are
inside in the stability domain.

[−ιμ̂, ιμ̂] is also inside the stability domain. In other words, the stability domain of
the ERK method intersects the imaginary axis at [−ιμ, ιμ] for some μ ≥ μ̂ > 0.

⇐= Assume that the stability domain of the ERK method intersects the imaginary
axis at [−ιμ, ιμ] for some μ > 0. We first prove that the stability domain of the ERK
method intersects the part of the (negative) real axis at [−η̂, 0] for some η̂ > 0. Recall
that the stability function of any consistent ERK method is of the form

g(ẑ) = 1 + ẑ + higher-order terms.

Let ẑ = −γ, where γ is a small, positive real number. In other words, choose ẑ to be
close to the origin and on the negative real axis. It is easy to see g(−γ) = 1−γ+O(γ2).
It is obvious that 0 < |g(−γ)| < 1 as γ → 0+. That is, there is an intersection of the
stability domain with the negative real axis. Assume the intersection is of the form
[−η̂, 0] for some real η̂ > 0.

Now by contradiction assume that no rectangle [−η, 0]×[−μ̂, μ̂] is contained inside
the stability domain. Using the facts that the stability domain intersects the negative
real axis at [−η̂, 0] and that it intersects the imaginary axis at [−ιμ, ιμ], we give a
schematic representation of the topology of a sufficiently small neighborhood of the
origin in Figure 2. In the figure, areas inside the stability domain are shaded. For
simplicity we focus on the second quadrant in the complex plane, and we show only
one region not contained in the stability domain. Thus, if we define ẑ = x̂ + ιŷ,
where x̂, ŷ are sufficiently small real numbers, there are at least two numbers x̂1 and
x̂2 for each ŷ such that |g(x̂1 + ιŷ)| = |g(x̂2 + ιŷ)| = 1. Therefore, the equation
R(x̂, ŷ) = |g(x̂ + ιŷ)|2 − 1 = 0 must have more than one solution x̂ = x̂(ŷ) in the
neighborhood of (0, 0).

We now obtain a contradiction by using the implicit function theorem to prove
that, in fact, x̂(ŷ) is a unique solution to R(x̂, ŷ) = 0 in a small neighborhood of the
origin. It is easy to see that

(3.15) g(x̂ + ιŷ) = 1 + x̂ + ιŷ + Q1(x̂, ŷ) + ιQ2(x̂, ŷ),
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where Q1(x̂, ŷ) and Q2(x̂, ŷ) are two real polynomials of the form

Q1(x̂, ŷ) =
∑

l,k≥0,

l+k≥2

ξl,kx̂
lŷk,(3.16)

Q2(x̂, ŷ) =
∑

l,k≥0,

l+k≥2

ζl,kx̂
lŷk,(3.17)

with real coefficients ξl,k, ζl,k. Using (3.15)–(3.17), we obtain

R(x̂, ŷ) = (1 + x̂ + Q1(x̂, ŷ))
2

+ (ŷ + Q2(x̂, ŷ))
2 − 1.

A simple calculation shows that

∂R

∂x̂
(0, 0) = 2 	= 0.

From the implicit function theorem, we know that there is a unique solution x̂ = x̂(ŷ)
to R(x̂, ŷ) = 0 in a small neighborhood of the origin, yielding the desired contra-
diction.

Remark 5. The result of Lemma 3.6 can be generalized to any consistent one-step
method with very little modification of the proof.

Remark 6. Because of this result, the prospect that the spectra of the spatially
discretized system may contain negative real components is not problematic.

Remark 7. This result is the equivalent of the result of [13] for local stability. In
particular, the regions of stability described for ERK methods are equivalent.

Using Definition 3.5 and Lemma 3.6, we have the following theorem for first-order
ERK methods.

Theorem 3.7. There exists a CFL number σ such that the combination of
WENO 5 with a first-order ERK method is linearly stable for Δt/Δx ≤ σ provided the
first-order ERK method satisfies

(3.18)
∑

1≤i<j≤s

bjaji >
1

2
;

on the other hand, this combination is linearly unstable if∑
1≤i<j≤s

bjaji <
1

2
.

Note 1. When
∑

1≤i<j≤s bjaji = 1
2 , the ERK method is second order. The

corresponding results are given in Theorem 3.9.
Proof. We first prove the linearly unstable case. Let τ2 =

∑
1≤i<j≤s bjaji; i.e., τ2

is the coefficient of ẑ2 in (3.12). For φ > 0 sufficiently small, from (3.11) it is easy to
show that

zl = ιlφl + O(φ6) + ιO(φ6) if 2 ≤ l < 6,

zl = O(φ6) if l ≥ 6.

From (3.12), we obtain

g(−σz(φ)) = 1 − σz + τ2(σz)
2 + O(z3)

=
(
1 − τ2σ

2φ2 + O(φ4)
)
− ι

(
σφ + O(φ3)

)
.
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A simple calculation shows that

|g|2 =
(
1 − τ2σ

2φ2 + O(φ4)
)2

+
(
σφ + O(φ3)

)2
= 1 + (1 − 2τ2)σ

2φ2 + O(φ4)

> 1,

if τ2 < 1
2 . Therefore, the combined method is linearly unstable.

Now let us assume τ2 > 1
2 . We first show that the stability domain D1 of the

corresponding ERK intersects the imaginary axis. Later (in Theorem 3.14) we show
that, in fact, this is a sufficient condition for linear stability of any ERK method when
combined with WENO5. Recall that the stability function of the ERK method is of
the form

g(ẑ) = 1 + ẑ + τ2 ẑ
2 + · · · .

Let ẑ = ιγ, where γ is a small real number. In other words, choose ẑ to be close to
the origin and on the imaginary axis. It is easy to see

|g(ιγ)|2 =
(
1 − τ2γ

2 + O(γ4)
)2

+
(
γ + O(γ3)

)2
=

(
1 − 2τ2γ

2 + O(γ4)
)

+
(
γ2 + O(γ4)

)
= 1 + (1 − 2τ2)γ

2 + O(γ4).

Using the condition τ2 > 1
2 , we obtain that |g(ιγ)| < 1 as γ → 0+. That is, there

is an intersection of D1 with the imaginary axis. Assume the intersection is the
interval [−ιμ, ιμ] for some real μ > 0. Then from Lemma 3.6 there exists a rectangle
D3 = [−η, 0] × [−μ̂, μ̂] ⊆ D1 for some η > 0, 0 < μ̂ ≤ μ.

It is easy to derive the expression for f̂+
j+ 1

2

from (3.4) and (3.2):

f̂+
j+ 1

2

= uj

[(
2

60
e−2ιφ − 13

60
e−ιφ +

47

60
+

27

60
eιφ − 3

60
e2ιφ

)
+ε1

(
2

6
e−2ιφ − 7

6
e−ιφ +

11

6

)
+ ε2

(
−1

6
e−ιφ +

5

6
+

2

6
eιφ

)
+ ε3

(
2

6
+

5

6
eιφ − 1

6
e2ιφ

)]
.(3.19)

Similarly we obtain the expression for f̂+
j− 1

2

:

f̂+
j− 1

2

= uj

[(
2

60
e−3ιφ − 13

60
e−2ιφ +

47

60
e−ιφ +

27

60
− 3

60
eιφ

)
+ε4

(
2

6
e−3ιφ − 7

6
e−2ιφ +

11

6
e−ιφ

)
+ ε5

(
−1

6
e−2ιφ +

5

6
e−ιφ +

2

6

)
+ ε6

(
2

6
e−ιφ +

5

6
− 1

6
eιφ

)]
,(3.20)

where ε4, ε5, and ε6 are all O((Δx)2), and ε4 + ε5 + ε6 = 0.

Using (3.19), (3.20), and the definition z(φ) =
f̂+,n

j+ 1
2

−f̂+,n

j− 1
2

un
j

, we obtain

(3.21) z(φ) = z̃ + M(ε1, ε2, . . . , ε6, φ),
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where

(3.22) z̃ = − 1

30
e−3ιφ +

1

4
e−2ιφ − e−ιφ +

1

3
+

1

2
eιφ − 1

20
e2ιφ,

and

M(ε1, ε2, . . . , ε6, φ) = ε1

(
2

6
e−2ιφ − 7

6
e−ιφ +

11

6

)
+ ε2

(
−1

6
e−ιφ +

5

6
+

2

6
eιφ

)
+ ε3

(
2

6
+

5

6
eιφ − 1

6
e2ιφ

)
− ε4

(
2

6
e−3ιφ − 7

6
e−2ιφ +

11

6
e−ιφ

)
− ε5

(
−1

6
e−2ιφ +

5

6
e−ιφ +

2

6

)
− ε6

(
2

6
e−ιφ +

5

6
− 1

6
eιφ

)
.(3.23)

We note that M is made up of two pairs of three terms, corresponding to each of the
ENO stencils associated with each of the flux terms. We now bound each of the terms
that comprise M . Because Re

(
2
6e

−2ιφ − 7
6e

−ιφ + 11
6

)
= 2

6 cos 2φ − 7
6 cosφ + 11

6 , and
−1 ≤ cosφ ≤ 1 for all φ, we can write

1

3
≤ Re

(
2

6
e−2ιφ − 7

6
e−ιφ +

11

6

)
≤ 10

3
.

(In fact, the lower bound can be tightened to 95/96, but the proof is not sensitive to
this value.)

Thus

Re

∣∣∣∣ε1 (2

6
e−2ιφ − 7

6
e−ιφ +

11

6

)∣∣∣∣ ≤ 10

3
|ε1| .

Similarly we can bound the remaining terms of M(ε1, ε2, . . . , ε6, φ). Finally we can
obtain an expression of the form

(3.24) |ReM(ε1, ε2, . . . , ε6, φ)| ≤ Γ1 max
1≤m≤6

|εm| ,

where Γ1 is a positive constant that is determined by the stencils. Applying the same
analysis, we can write

(3.25) |Im M(ε1, ε2, . . . , ε6, φ)| ≤ Γ2 max
1≤m≤6

|εm| ,

where Γ2 is a positive constant that is determined by the stencils.
We now examine the real and imaginary parts of z̃:

Re z̃ = − 1

30
cos 3φ +

1

5
cos 2φ− 1

2
cosφ +

1

3

= − 1

30

(
4 cos3 φ− 3 cosφ

)
+

1

5

(
2 cos2 φ− 1

)
− 1

2
cosφ +

1

3

=
2

15
(1 − cosφ)3;(3.26)

Im z̃ =
1

30
sin 3φ− 3

10
sin 2φ +

3

2
sinφ.(3.27)

Let D4 = [− 31
15 , 0] × [− 17

6 , 17
6 ], and let σ0 > 0 be such that the rectangle σ0D4 ⊆

D3 = [−η, 0] × [−μ̂, μ̂] defined previously. We now use D3 and D4 to prove that
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σ0D2 ⊆ D1; i.e., the combination of an s-stage, first-order ERK method where τ2 > 1
2

with WENO5 is linearly stable if Δt
Δx ≤ σ0. (Note that σ0 may not be the same as

the CFL number σ; in fact, we know only that 0 < σ0 ≤ σ. However, this proves the
existence of σ > 0.)

Using a similar analysis to the first part of this theorem, we conclude that, given
σ0, we can choose φ small enough such that |g| < 1. In other words, ∃α > 0, such
that the scaled domain {−σ0z(φ) : 0 ≤ φ ≤ α or 2π − α ≤ φ ≤ 2π} ⊆ D1. We now
complete the proof by showing that D5 = {−σ0z(φ) : α ≤ φ ≤ 2π − α} ⊆ D1.

Using (3.24) and (3.26), we obtain

2

15
(1 − cosφ)3 − Γ1 max

1≤m≤6
|εm| ≤ Re z(φ) ≤ 2

15
(1 − cosφ)3 + Γ1 max

1≤m≤6
|εm| .

Because α ≤ φ ≤ 2π − α, we see

2

15
(1 − cosα)3 − Γ1 max

1≤m≤6
|εm| ≤ Re z(φ) ≤ 16

15
+ Γ1 max

1≤m≤6
|εm| .

Note the εm, m = 1, 2, . . . , 6, are O((Δx)2), and Γ1 is a constant. We can choose Δx
small enough such that Γ1 max1≤m≤6 |εm| ≤ min

(
2
15 (1 − cosα)3, 1

)
. Therefore,

(3.28) 0 ≤ Re z(φ) ≤ 16

15
+ 1 =

31

15
.

From (3.27), using the fact that −1 ≤ sinφ ≤ 1 for all φ, we see that − 11
6 ≤ Im z̃ ≤ 11

6 .
Again, we can choose Δx small enough such that Γ2 max1≤m≤6 |εm| ≤ 1. Using (3.25)
and (3.27), we have

(3.29) −17

6
= −11

6
− 1 ≤ Im z(φ) ≤ 11

6
+ 1 =

17

6
.

From (3.28) and (3.29), we conclude that D5 ⊆ D4. Because σ0D4 ⊆ D3 = [−η, 0] ×
[−μ̂, μ̂], and D3 ⊆ D1, we conclude that σ0D5 ⊆ D1.

This completes the proof.
Corollary 3.8. The combination of WENO 5 and any optimal, s-stage, first-

order SSP ERK method as in [21] is linearly unstable.
Proof. The Butcher tableau of the optimal, s-stage, first-order SSP ERK method

is of the form shown in Table 3.2.
The corresponding stability function is(

1 +
1

s
ẑ

)s

= 1 + ẑ +
s− 1

2s
ẑ2 + · · · .

Because s−1
2s < 1

2 for all s ≥ 1, linear instability follows from Theorem 3.7.

Table 3.2

Butcher tableau for optimal s-stage, order-1 SSP ERK methods.

0
1
s

1
s

2
s

1
s

1
s

3
s

1
s

1
s

1
s

..

.
..
.

..

.
..
.

. . .
s−1
s

1
s

1
s

1
s

· · · 1
s

1
s

1
s

1
s

· · · 1
s

1
s
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Using the same analysis of Theorem 3.7, we obtain the following theorem for
s-stage, second-order order ERK methods.

Theorem 3.9. Assume the ERK method is at least second order. Its stability
function is of the form

(3.30) 1 + ẑ +
1

2
ẑ2 + τ3ẑ

3 + τ4ẑ
4 + τ5ẑ

5 + τ6ẑ
6 + · · · .

Then there exists a CFL number σ such that the combination of this ERK method
and WENO 5 is linearly stable for Δt/Δx ≤ σ if the ERK method satisfies

(3.31) τ3 − τ4 >
1

8
;

on the other hand, the combination is linearly unstable if

τ3 − τ4 <
1

8
.

Proof. First we note that (3.30) is the amplification factor g if ẑ = −σz. Now
choosing φ to be a small positive number, we use (3.11) and have

z =

(
7

60
φ6 + O(φ8)

)
+ ι

(
φ + O(φ7)

)
,

z2 =
(
−φ2 + O(φ8)

)
+ ι O(φ7),

z3 = O(φ8) + ι
(
−φ3 + O(φ9)

)
,

z4 =
(
φ4 + O(φ10)

)
+ ι O(φ9),

z5 = O(φ10) + ι
(
φ5 + O(φ11)

)
,

z6 =
(
−φ6 + O(φ12)

)
+ ι O(φ11),

and zl = O(φ7), l ≥ 7. We now calculate |g|2:

|g|2 =

(
1 − 1

2
σ2φ2 + τ4σ

4φ4 − 7

60
σφ6 − τ6σ

6φ6 + O(φ8)

)2

+
(
−σφ + τ3σ

3φ3 − τ5σ
5φ5 + O(φ7)

)2
=

(
1 − σ2φ2 +

(
1

4
+ 2τ4

)
σ4φ4 − 7

30
σφ6 − (τ4 + 2τ6)σ

6φ6 + O(φ8)

)
+

(
σ2φ2 − 2τ3σ

4φ4 +
(
τ2
3 + 2τ5

)
σ6φ6 + O(φ8)

)
= 1 +

(
1

4
+ 2τ4 − 2τ3

)
σ4φ4 +

(
− 7

30
σ +

(
τ2
3 + 2τ5 − τ4 − 2τ6

)
σ6

)
φ6 + O(φ8).(3.32)

If (1
4 + 2τ4 − 2τ3) > 0, i.e., τ3 − τ4 < 1

8 , we have |g| > 1 as φ → 0+. Therefore, in this
case the combination is linearly unstable.

However, if ( 1
4 + 2τ4 − 2τ3) < 0, i.e., τ3 − τ4 > 1

8 , we have |g| < 1 as φ →
0+. Moreover, there is an intersection between the stability domain of the ERK
method and the imaginary axis. The rest of the proof of stability is similar to that of
Theorem 3.7.

Corollary 3.10. The combination of WENO 5 with any optimal s-stage, second-
order SSP ERK method as in [21] is linearly unstable.
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Table 3.3

Butcher tableau for optimal s-stage, second-order SSP ERK methods.

0
1

s−1
1

s−1
2

s−1
1

s−1
1

s−1
3

s−1
1

s−1
1

s−1
1

s−1

...
...

...
...

. . .
s−1
s−1

1
s−1

1
s−1

1
s−1

· · · 1
s−1

1
s

1
s

1
s

· · · 1
s

1
s

Proof. The Butcher tableau of the optimal s-stage, second-order SSP ERK
method is of the form given in Table 3.3.

The corresponding stability function is

1

s
+

s− 1

s

(
1 +

1

s− 1
ẑ

)s

= 1 + ẑ +
1

2
ẑ2 +

s− 2

6(s− 1)
ẑ3 +

(s− 2)(s− 3)

24(s− 1)2
ẑ4 + · · · .

Because τ3 − τ4 = s(s−2)
(s−1)2 ( 1

8 − 1
24s ) < 1

8 , the linear instability follows from Theo-
rem 3.9.

Note that the stability function of any three-stage, third-order ERK method is
1 + ẑ + 1

2 ẑ
2 + 1

6 ẑ
3. Because τ3 − τ4 = 1

6 > 1
8 , the combination of WENO 5 and

any three-stage, third-order ERK method is linearly stable. Furthermore, we have the
following theorem for s-stage, third-order ERK methods.

Theorem 3.11. Assume the ERK method is third order. Its stability function is
of the form

1 + ẑ +
1

2
ẑ2 +

1

6
ẑ3 + τ4ẑ

4 + · · · .

Then there exists a CFL number σ such that the combination of WENO 5 and the
ERK method is linearly stable for Δt/Δx ≤ σ if the ERK method satisfies

(3.33) τ4 <
1

24
;

on the other hand, the combination is linearly unstable if

τ4 >
1

24
.

When τ4 = 1
24 , the ERK method has the same linear stability as the fourth-order ERK

methods. The corresponding results are given in Theorem 3.12.
Proof. The proof is similar to that of Theorem 3.9.
Note that, if the ERK method is at least fourth order, we have τ3− τ4 = 1

8 . From
(3.32), we obtain the following.

Theorem 3.12. Assume that the ERK method is at least order 4. Its stability
function is of the form

1 + ẑ +
1

2
ẑ2 +

1

6
ẑ3 +

1

24
ẑ4 + τ5ẑ

5 + τ6ẑ
6 + · · · .

Then there exists a CFL number σ such that the combination of the ERK method and
WENO 5 is linearly stable for Δt/Δx ≤ σ if the ERK method satisfies

τ5 − τ6 <
1

144
.
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Proof. From (3.32) we conclude that − 7
30σ +

(
τ2
3 + 2τ5 − τ4 − 2τ6

)
σ6 < 0 for σ

sufficiently small. Therefore, |g|2 < 1 for φ sufficiently small and positive. In other
words, ∃σ0, α > 0, such that the scaled domain {−σ0z(φ) : 0 ≤ φ ≤ α or 2π − α ≤
φ ≤ 2π} is inside the stability domain D1 of the ERK method.

The stability function of the ERK method is now of the form

g(ẑ) = 1 + ẑ +
1

2
ẑ2 +

1

6
ẑ3 +

1

24
ẑ4 + τ5ẑ

5 + τ6ẑ
6 + · · · .

Let ẑ = ιγ, where γ is a small real number. In other words, choose ẑ to be close to
the origin and on the imaginary axis. It is easy to see

|g|2 = 1 + 2

(
τ5 − τ6 −

1

144

)
γ6 + O(γ8).

Using the condition τ5 − τ6 < 1
144 , we obtain that |g(ιγ)| < 1 as γ → 0+. In other

words, there is an intersection between the stability domain D1 of the ERK method
and the imaginary axis if τ5 − τ6 < 1

144 . The rest of the proof is similar to the proof
of linear stability for second-order ERK methods from Theorem 3.9.

From Theorem 3.12, we see that τ5 = τ6 = 0 for the classical four-stage, fourth-
order ERK method. Therefore, its combination with WENO5 is linearly stable.

Remark 8. There is no corresponding result for linear instability as in Theo-
rem 3.9 if the ERK method is fourth order. This is because, regardless of the values
of τ5 and τ6, |g|2 < 1 whenever φ is a small positive number, and σ is sufficiently
small. On the other hand, if the stability domain D1 of the ERK method does not
intersect the imaginary axis (i.e., τ5 − τ6 > 1

144 ), linear instability cannot be proved
as in Theorem 3.9.

Following immediately from Theorem 3.12 with τ5 = 1
120 , we have the following

theorem for s-stage, fifth-order ERK methods.
Theorem 3.13. Assume that the ERK method is at least order 5. Its stability

function is of the form

1 + ẑ +
1

2
ẑ2 +

1

6
ẑ3 +

1

24
ẑ4 +

1

120
ẑ5 + τ6ẑ

6 + · · · .

Then there exists a CFL number σ such that the combination of the ERK method and
WENO 5 is linearly stable for Δt/Δx ≤ σ if the ERK method satisfies

τ6 >
1

720
.

Finally we have the more general result for s-stage, order-p ≥ 4 ERK methods as
follows.

Theorem 3.14. Assume that the ERK method is at least order p ≥ 4. Its stability
function is of the form

1 + ẑ +
1

2
ẑ2 +

1

6
ẑ3 +

1

24
ẑ4 + · · · .

Then there exists a CFL number σ such that the combination of the ERK method and
WENO 5 is linearly stable for Δt/Δx ≤ σ if the stability domain of the ERK method
includes the part of the imaginary axis of the form [−ιμ, ιμ] for some μ > 0.

The proof is similar that of Theorem 3.12.
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Remark 9. We note that the presence of an intersection of the stability domain of
an ERK method with the imaginary axis of the form [−ιμ, ιμ] for some μ > 0 has been
used to prove stability of s-stage methods of orders 1, 2, and 3 already. Combining
this with the result in Theorem 3.14 allows us to conclude that the intersection of
the stability domain with the imaginary axis in the form [−ιμ, ιμ] for some μ > 0
is a sufficient condition for linear stability of any ERK method when coupled with
WENO5.

4. Numerical results. In this section, we study two classical scalar hyperbolic
conservation laws: the (linear) advection equation and the (nonlinear) inviscid Burgers
equation. In both cases, the problems are posed in one dimension, and WENO5
is employed as the spatial discretization. We use a uniform mesh with N spatial
subintervals. Both SSP and non-SSP ERK time integration methods are considered.
We illustrate the linear instability of some well-known first- and second-order SSP
ERK methods by plotting the solution at a given time Tout with a specified Courant
number σ = Δt

Δx . Extensive numerical tests have shown that smaller values of σ
require larger values of Tout for the effect of the instability to clearly manifest itself.

4.1. ERK methods. In order to illustrate our theory, we consider the following
four well-known ERK methods. Under appropriate assumptions, these methods can
be SSP. The first three are linearly unstable when coupled with WENO5 and are used
to solve hyperbolic conservation laws; the fourth is arguably the most widely used
time integration method used with WENO spatial discretizations.

(1) The forward Euler (FE) method.
(2) The optimal two-stage, second-order SSP ERK method (which we call SSP(2,2))

with Butcher tableau (cf. Table 3.1)

0 0 0
1 1 0

1
2

1
2

.

(3) The optimal three-stage, second-order SSP ERK method [21] (which we call
SSP(3,2)) with Butcher tableau

0 0 0 0
1
2

1
2 0 0

1 1
2

1
2 0

1
3

1
3

1
3

.

(4) The (optimal) three-stage, third-order SSP ERK method, SSP(3,3) [3, 21],
with Butcher tableau

0 0 0 0
1 1 0 0
1
2

1
4

1
4 0

1
6

1
6

2
3

.

We also consider four ERK methods that are linearly stable according to our
analysis when coupled with WENO5. These methods are provably not SSP for any
time step Δt > 0. Stated differently, these methods have a radius of contractivity of
0 (see, e.g., [12]); this fact is obvious because each method has a 0 in its b vector (or
quadrature weights) of the Butcher tableau.
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(5) A two-stage, order-1 non-SSP ERK method (which we call NSSP(2,1)) with
Butcher tableau

0 0 0
3
4

3
4 0

0 1

.

Because b2a21 = 3
4 , it is a stable ERK method for WENO5 according to

Theorem 3.7. Its CFL number can be directly estimated to be σ = 0.80; see,
e.g., [9, p. 150].

(6) A three-stage, second-order non-SSP ERK method (which we call NSSP(3,2))
with Butcher tableau

0 0 0 0
1
3

1
3 0 0

1 0 1 0
1
2 0 1

2

.

It is easy to show that the linear stability function (and hence the amplifi-
cation factor) of this ERK method is the same as SSP(3,3) and indeed all
three-stage, third-order ERK methods. According to our analysis, it has the
same linear stability properties, and in particular CFL number σ = 1.43, as
SSP(3,3); see [11].

(7) A three-stage, third-order non-SSP ERK method (which we call NSSP(3,3))
with Butcher tableau

0 0 0 0
− 4

9 − 4
9 0 0

2
3

7
6 − 1

2 0

1
4 0 3

4

.

This method has negative coefficients. It is sometimes necessary to specially
treat right-hand side function evaluations f̂(u) that correspond to negative
coefficients, e.g., by downwinding [18, 17]. However, according to our analy-
sis, the linear stability properties of NSSP(3,3) are identical to SSP(3,3) (and
all other three-stage, third-order ERK methods). We show that, even for
a nonlinear problem (Example 2), it has the same stability performance as
SSP(3,3).

(8) A five-stage, third-order non-SSP ERK method (which we call NSSP(5,3))
with Butcher tableau

0 0 0 0 0 0
1
7

1
7 0 0 0 0

3
16 0 3

16 0 0 0
1
3 0 0 1

3 0 0
2
3 0 0 0 2

3 0

1
4 0 0 0 3

4

.

This is a new, low-storage ERK method, whose stability function is 1 + ẑ +
1
2 ẑ

2 + 1
6 ẑ

3 + 1
32 ẑ

4 + 1
224 ẑ

5. It is a linearly stable ERK method for WENO5
according to Theorem 3.11. Its CFL number can be directly estimated to be
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Fig. 3. FE for u(x, 0) = sin(πx).
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Fig. 4. NSSP(2,1) for u(x, 0) = sin(πx).

σ = 2.56. Defining the effective CFL number to be σ
s , it is easy to see that

a larger effective CFL number leads to more efficient time integration. The
effective CFL number is 0.512 for NSSP(5,3), which is larger than 0.477 for
SSP(3,3). We choose this scheme to illustrate that the theoretical principles
described in this paper give us the ability to develop more efficient schemes
than the popular SSP(3,3). We report on the results for the optimal ERK
schemes for WENO5 elsewhere.

Example 1. The first example is the linear advection equation

ut + ux = 0, 0 < x < 2, t > 0,

with periodic boundary conditions. We consider three different initial conditions:
(a) the smooth initial condition u(x, 0) = sin(πx), (b) the smooth but more spatially
varying initial condition u(x, 0) = sin9(πx), and (c) the discontinuous initial condition

(4.1) u(x, 0) =

{
1 if 0 < x < 0.5 or 1.5 < x < 2,
0 if 0.5 ≤ x ≤ 1.5.

(a) Figures 3 and 4 show the performance of FE and NSSP(2,1) for the problem with
the smooth initial condition u(x, 0) = sin(πx). The solid lines in the figures are the
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Fig. 5. SSP(2,2) for u(x, 0) = sin(πx) at Tout = 16.
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Fig. 6. SSP(2,2) for u(x, 0) = sin(πx) at Tout = 25.

exact solutions, and the dashed lines are the computed solutions. Both solutions are
computed with N = 200, σ = 0.5, and they are plotted at Tout = 2.

As expected, spurious oscillations due to linear instability are present when the FE
method is used, whereas there is no instability exhibited for NSSP(2,1). Although we
show only the numerical result for σ = 0.5, we emphasize that the linear instability
of the FE method appears for every σ > 0, no matter how small. We observe the
linear instability of the FE method for any of the later problems, whereas NSSP(2,1)
is stable when σ ≤ 0.8, which agrees with our expectation. However, the dissipation
of NSSP(2,1) is very strong; this makes it unsuitable for computation in practice.

We now show an example of the nonconvergence effect of linear instability. Figures
5 and 6 show the result of the numerical integration using WENO5 coupled with
SSP(2,2) at two different output times. The solutions are computed with N = 200
and σ = 1.32. Figure 5 gives the solution at Tout = 16, while Figure 6 gives it at
Tout = 25. We note that oscillations are generated almost immediately at the start
of the integration. By Tout = 16, Figure 5 shows significant oscillation. However, the
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Fig. 7. SSP(3,3) with σ = 1.5 for u(x, 0) = sin(πx).
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Fig. 8. NSSP(5,3) with σ = 2.5 for u(x, 0) = sin(πx).

solution does not become unbounded, as can be seen in Figure 6 for Tout = 25; i.e.,
WENO5 has successfully adapted to the oscillations, not allowing them to become
unbounded. However, with N = 1000 and the same σ, the solution quickly becomes
unbounded. In other words, the spurious oscillations confirm the linear instability, but
due to the nonlinear nature of WENO5, the numerical solution does not necessarily
become unbounded. However, we point out that the linear instability of the combined
method precludes convergence to the true solution; i.e., irrespective of the long-term
boundedness, the error of the numerical solution in such cases can at best be expected
to be O(1).

We now compare the performance of SSP(3,3) and NSSP(5,3). Figure 7 shows
the performance of SSP(3,3) with σ = 1.5 for the problem just described, while Figure
8 shows the performance of NSSP(5,3) with σ = 2.5. The solid lines in the figures are
the exact solutions, and the dashed lines are the computed solutions. Both solutions
are computed with N = 200 and plotted at Tout = 30. We choose the two CFL
numbers to make the computational costs equal for both experiments. Note that
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Fig. 9. SSP(2,2) for u(x, 0) = sin9(πx).
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Fig. 10. SSP(3,2) for u(x, 0) = sin9(πx).

the difference between the computed solution by NSSP(5,3) and the exact solution is
negligible. On the other hand, spurious oscillations appear for SSP(3,3) because it is
linearly stable only for CFL numbers less than about 1.43. Once again we note that
the solution does not become unbounded. Another interesting observation is that,
when we choose σ = 1.4 for SSP(3,3), the difference between the computed solution
and the exact solution is also negligible. This means that the solution by SSP(3,3)
with σ = 1.5 is inaccurate due only to linear instability. The experiment clearly favors
NSSP(5,3) for its larger effective CFL number.

Our experiments show that when SSP(2,2) and SSP(3,2) are used for the above
problem with a small value for σ, the instability requires a long time to develop. In
many cases the oscillations are not conspicuous in a relatively short time.

(b) We can introduce more spatial difficulty by using u(x, 0) = sin9(πx). Fig-
ures 9–12 show the performance of SSP(2,2), SSP(3,2), NSSP(3,2), and NSSP(3,3),
respectively. The solid lines in the figures are the exact solutions, and the dashed
lines are the computed solutions. All solutions are computed with N = 200, σ = 0.5,
and they are plotted at Tout = 150.
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Fig. 11. NSSP(3,2) for u(x, 0) = sin9(πx).
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Fig. 12. NSSP(3,3) for u(x, 0) = sin9(πx).

The linear instability of WENO5 coupled with SSP(2,2) or SSP(3,2) takes a long
time to become conspicuous for this problem, whereas NSSP(3,2) and NSSP(3,3) are
stable. Moreover, smaller values of σ tend to delay the manifestation of the instability
even further. We also observe that the linear instability of the combination of WENO5
and SSP(3,2) develops more slowly than that of WENO5 and SSP(2,2). This can be
explained by the fact that the classical (linear) stability domain of SSP(3,2) includes
the classical stability domain of SSP(2,2).

(c) The final initial condition is the step function (4.1). As we know, WENO5
is widely used in the numerical simulations of discontinuous solutions of hyperbolic
PDEs. If the solution has only a few discontinuities and the wave speed is not zero,
i.e., there is no stationary shock, the WENO5 stencil weights at any given point
are the same as for the continuous case (3.2) for the majority of the time. That is,
only the points close to the discontinuity use different discretizations because some
stencil weights approach zero. However, the discretization at these points returns to
those of the continuous case after the discontinuity passes through. Therefore, we
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Fig. 13. SSP(2,2) for (4.1).
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Fig. 14. SSP(3,2) for (4.1).

expect that our analysis for the continuous case is also relevant to such discontinuous
problems. Figures 13–16 show the performance of SSP(2,2), SSP(3,2), NSSP(3,2),
and NSSP(3,3), respectively, for the discontinuous initial condition (4.1). The solid
lines in the figures are the exact solutions, and the dashed lines are the computed
solutions. All solutions are computed with N = 200, σ = 0.5, and they are plotted at
Tout = 50.

We again make the observation that NSSP(3,2) and NSSP(3,3) are stable, whereas
SSP(2,2) and SSP(3,2) exhibit oscillations.

We now compare SSP(3,3) with NSSP(5,3) for the discontinuous initial condi-
tion (4.1). Figures 17 and 18 show the performance of SSP(3,3) with σ = 1.11 and
NSSP(5,3) with σ = 1.85. We choose the two CFL numbers to make the computa-
tional costs equal for both experiments. The solid lines in the figures are the exact
solutions, and the dashed lines are the computed solutions. All solutions are computed
with N = 200, and they are plotted at Tout = 10. Spurious oscillations appear when
we use SSP(3,3) with σ = 1.11, whereas there is no problem with NSSP(5,3) with
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Fig. 15. NSSP(3,2) for (4.1).
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Fig. 16. NSSP(3,3) for (4.1).

σ = 1.85. These numerical experiments show that WENO5 coupled with SSP(3,3) is
stable when σ ≤ 1 for the discontinuous initial condition (4.1), whereas NSSP(5,3)
is stable when σ ≤ 1.9. This example shows that larger time steps can be used with
NSSP(5,3) than with SSP(3,3) even when the solutions have discontinuities.

Example 2. The second example is the inviscid Burgers equation

ut +

(
u2

2

)
x

= 0, 0 < x < 2, t > 0,

with periodic boundary conditions and the initial condition u(x, 0) = 2 + sin9(πx).
This is a nonlinear problem with f(u) = u2/2. Thus ∂f/∂u = u. For a given σ, Δt
is chosen as Δt = σΔx(maxj uj). Figures 19–22 show the performance of SSP(2,2),
SSP(3,2), NSSP(3,2), and NSSP(3,3), respectively. The solid lines in the figures
represent the reference solution, which is generated using WENO5 with SSP(3,3),
N = 1000, and σ = 0.5. The dashed lines are the computed solutions, all of which have
N = 100, σ = 0.5, and they are plotted at Tout = 40. Again we see that NSSP(3,2)
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Fig. 17. SSP(3,3) with σ = 1.11 for (4.1).
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Fig. 18. NSSP(5,3) with σ = 1.85 for (4.1).

and NSSP(3,3) are stable, whereas SSP(2,2) and SSP(3,3) exhibit oscillations. This
is a compelling illustration that our analysis accurately predicts the linear stability
of ERK methods even with negative coefficients and even when applied to a nonlinear
problem whose solution develops a discontinuity.

5. Conclusions. In this paper we employ a linear stability analysis for ERK
time integration methods coupled with the WENO5 spatial discretization. We prove
that the forward Euler method, all two-stage, second-order ERK methods, and all
optimal SSP ERK methods of up to second order are linearly unstable when coupled
with WENO5 and used for solving hyperbolic conservation laws. Hence all of these
combined methods are also not convergent. Moreover, we show that, in our analysis,
the success of the popular SSP(3,3) method is not due to the SSP property; indeed all
three-stage, third-order ERK methods, including those with negative coefficients or
those that are provably non-SSP, have precisely the same linear stability performance
according to our analysis, and this has translated to very similar performance in
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Fig. 19. SSP(2,2) for the Burgers equation.
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Fig. 20. SSP(3,2) for the Burgers equation.

the examples we have presented. New stability criteria are derived for general ERK
methods of any order. Numerical experiments demonstrate that, although the analysis
is strictly valid only for linear constant-coefficient problems with continuous initial
conditions and periodic boundary conditions, it is relevant to both linear and nonlinear
problems with continuous and discontinuous solutions. It is also relevant to ERK
methods with negative coefficients without a special treatment (downwinding) of the
spatial operator. For linear stability of an ERK time integration method coupled
with WENO5, we show that it is sufficient that the classical linear stability region
of the ERK method include a piece of the imaginary axis. The analysis techniques
described in this paper apply to other WENO methods such as the seventh- or higher-
order WENO methods. From this analysis it is also possible to derive optimal ERK
methods in terms of the CFL number for WENO5. In particular, it is possible to
derive methods such as NSSP(5,3) that are more efficient (i.e., have larger effective
CFL numbers) than the benchmark method SSP(3,3). We report on these results
elsewhere.
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Fig. 21. NSSP(3,2) for the Burgers equation.
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Fig. 22. NSSP(3,3) for the Burgers equation.
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WAVE EQUATION IN SECOND ORDER FORMULATION∗
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Abstract. We consider the three-dimensional elastic wave equation for an isotropic heteroge-
neous material subject to a stress-free boundary condition. Building on our recently developed theory
for difference methods for second order hyperbolic systems [H.-O. Kreiss, N. A. Petersson, J. Yström,
SIAM J. Numer. Anal., 40 (2002), pp. 1940–1967], we develop an explicit, second order accurate
technique which is stable for all ratios of longitudinal over transverse phase velocities. The spatial
discretization is self-adjoint, and the stability is obtained through an energy estimate. Seismic events
are often modeled using singular source terms, and we devise a technique to place sources indepen-
dently of the grid while retaining second order accuracy away from the source. Several numerical
examples are given.
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1. Introduction. As a model for seismic wave propagation, we consider the
elastic wave equation for an isotropic heterogeneous material in a three-dimensional
domain Ω:

ρ
∂2u

∂t2
= ∇ · T + f , x ∈ Ω, t ≥ 0,(1)

T = λ(∇ · u)I + μ
(
∇u + ∇uT

)
,

subject to initial data

u(x, 0) = U0(x), ut(x, 0) = U1(x), x ∈ Ω.

Here T is the stress tensor, u = u(x, t) is the displacement vector with Cartesian
components u = (u, v, w)T , where x = (x, y, z)T is the location, and t is time. f is
the external (volume) forcing, and the material properties are characterized by the
density ρ(x) > 0 and the Lamé parameters λ(x) > 0 and μ(x) ≥ 0. The degenerate
case μ = 0 corresponds to acoustic wave propagation and will not be discussed here.
We henceforth assume μ(x) > 0.

Common boundary conditions include a Dirichlet condition for u or a normal
stress condition

(2) T · n̂ = λ(∇ · u)n̂ + μ(∇u + ∇uT ) · n̂ = g,
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which prescribes the stresses on a boundary with unit normal n̂. When g = 0,
this boundary condition is often called a free surface or stress-free condition. The
system (1) admits longitudinal (P , or primary) and transverse (S, or secondary)
waves which propagate at phase velocities

cp =
√

(2μ + λ)/ρ and cs =
√
μ/ρ,

respectively. There can also be surface waves, which travel along a free surface, as
well as waves which travel along internal material discontinuities.

Finite difference approximations of the elastodynamic equations in second order
formulation have been around for a long time [2, 3]. Early methods, based on explicit
centered difference approximations, were initially very successful but suffered from
instability problems when a free surface boundary condition was imposed, and the
ratio between the P - and S-wave velocities

ν =
cp
cs

became too large [13] (note that ν >
√

2). Ilan [14] proposed a remedy which applied
only to materials with constant properties normal to the boundary, and an implicit
boundary update technique was suggested by Vidale and Clayton [25]. However,
no generally applicable, stable, explicit discretization was found for the second or-
der formulation which worked for high values of ν. Due to the instability problems,
alternative formulations were explored where the elastic wave equation was rewrit-
ten as a larger first order system for the three velocity and six stress components
and discretized on a staggered grid [21]. Most current finite difference methods for
seismic wave propagation are based on the staggered grid technique. It is, however,
difficult to handle complex geometry (e.g., topography) with these staggered grid
methods, so there has been recent interest in more expensive methods based on un-
structured meshes, such as the spectral element technique described by Komatitsch
and Tromp [15].

In this paper we revisit the problem of devising an explicit finite difference method
for the elastic wave equation in second order formulation, subject to a free surface
boundary condition. Building on our recently developed theory for difference meth-
ods for second order hyperbolic systems [18], we develop a technique which is stable
for all ratios cp/cs. We focus on the long-wave approximation where topography is
neglected, and the stress-free boundary condition is enforced on a flat surface which
is aligned with a grid surface. However, our longer term goal is to extend the embed-
ded boundary technique [19, 17, 16] to the elastic wave equation for handling general
domains. In seismic applications, the material parameters ρ, μ, and λ often vary on
a length scale which is significantly smaller than the wavelength of the elastic waves.
Hence the material parameters can vary rapidly on the computational grid, and to
guarantee stability it is desirable to develop a numerical method which satisfies an
energy estimate. For a hyperbolic system in second order formulation, the key to an
energy estimate is a spatial discretization which is self-adjoint, i.e., corresponds to a
symmetric or symmetrizable matrix. In this paper, we present a discretization which
makes the spatial approximation second order accurate, self-adjoint, and explicit. The
self-adjoint property also implies that the method is conservative.

In section 1.1 we introduce the basic ideas behind our spatial discretization by
studying the scalar wave equation with a cross term in two space dimensions. The
discretization technique is generalized to the elastic wave equation in section 2, where
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we present a theory proving that the method is second order accurate and stable for
all values of cp/cs. The stability and accuracy of the new method are also illustrated
with computational experiments. Seismic events (for example, earthquakes) are often
modeled using singular source terms applied at points, along lines, or over surfaces
in the three-dimensional domain. In section 3 we devise a technique to place sources
independently of the grid while retaining second order accuracy away from the source.
We also study how the temporal smoothness of a point source affects the spatial
smoothness of the solution. In section 4 we first study how the phase velocity of
surface waves depends on the number of grid points per wavelength. Thereafter,
we solve a benchmark problem for a simplified earthquake where the sources are
distributed along a plane. Some comments on our implementation of nonreflecting
boundary conditions for truncating unbounded domains are also given.

1.1. A model problem. We introduce our discretization technique on the half-
plane problem for the scalar wave equation with a cross term in two dimensions:

∂2u

∂t2
= ∇ · F, x ≥ 0, 0 ≤ y ≤ 2π, t ≥ 0,(3)

F =

(
ux + αuy

uy + αux

)
,

with 2π-periodic solutions in the y-direction, subject to the boundary condition

(4) F · n̂ = ux + αuy = 0, x = 0, 0 ≤ y ≤ 2π, t ≥ 0, when n̂ = (1, 0)T .

Here α is a real constant. Similar to the elastic wave equation, the problem
(3)–(4) conserves an energy:

‖ut‖2 + ‖ux‖2 + ‖uy‖2 + 2α(ux, uy) = const,

where (u, v) is the L2 scalar product and ‖u‖2 = (u, u). We have

‖ux‖2 + ‖uy‖2 + 2α(ux, uy) ≥ (1 − |α|)
(
‖ux‖2 + ‖uy‖2

)
> 0, |α| < 1.

Hence the conserved quantity is a norm, and the problem (3)–(4) is well-posed, when
|α| < 1. Conversely, it can be shown that the problem becomes ill-posed for |α| > 1.

We introduce a grid with points xi = (i − 1)h, yj = (j − 1)h, i = 0, 1, 2, . . . ,
j = 1, 2, . . . , Ny, where h = 2π/(Ny−1) is the grid size. We denote a two-dimensional
grid function by ui,j(t) = u(xi, yj , t). The time dependence will be suppressed when
the meaning is obvious. We use the usual definitions of divided difference operators

Dx
+vi,j =

1

h
(vi+1,j − vi,j), Dx

−vi,j = Dx
+vi−1,j , Dx

0 =
1

2

(
Dx

+ + Dx
−
)

and corresponding expressions in the y-direction.
A second order accurate centered spatial discretization of (3) is given by

(5)
d2ui,j

dt2
=
(
Dx

−D
x
+ + Dy

−D
y
+ + 2αDx

0D
y
0

)
ui,j , i ≥ 1, 1 ≤ j ≤ Ny − 1.
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There are several ways to discretize the boundary condition (4) to second order accu-
racy. As we shall see, a good choice is

(6) Dx
0u1,j + αDy

0

(
u2,j + u0,j

2

)
= 0, 1 ≤ j ≤ Ny − 1.

After Fourier transforming in the y-direction (with dual variable ω), using the bound-
ary condition (6) to eliminate the ghost point values at i = 0, and introducing the
vector notation û = (û1, û2, . . . )

T , we can write the Fourier-transformed semidiscrete
problem in matrix form

(7) h2 d
2û

dt2
= (A + B)û,

where

A =

⎛⎜⎝ −
(
2 + 4 sin2 ωh

2

)
2

1 −
(
2 + 4 sin2 ωh

2

)
1

. . .
. . .

. . .

⎞⎟⎠ ,

B = ıα sin(ωh)

⎛⎜⎝ 0 2
−1 0 1

. . .
. . .

. . .

⎞⎟⎠ ,

and ı =
√
−1. We can symmetrize (7) by the diagonal scaling

S =

⎛⎜⎝ 1/
√

2 0
0 1 0

. . .
. . .

. . .

⎞⎟⎠ , ŵ = Sû,

h2 d
2ŵ

dt2
= (Ã + B̃)ŵ, Ã + B̃ = S(A + B)S−1,

where Ã + B̃ is self-adjoint. As we shall see in section 2, the semidiscrete problem is
stable if Ã+ B̃ also is negative definite. Furthermore, when Ã+ B̃ is self-adjoint, it is
straightforward to discretize time such that the fully discrete problem becomes stable
and conserves a discrete energy which is a second order accurate approximation of
the conserved energy in the continuous case.

Note that it is not necessary to solve a linear system to update the ghost points.
Instead of (6), we can change the boundary condition to be

(8) Dx
0u1j + αDy

0u1j = 0, 1 ≤ j ≤ Ny − 1,

if we also modify the difference approximation on the boundary by taking the cross
term one-sided in the direction normal to the boundary

(9)
d2u1,j

dt2
=
(
Dx

−D
x
+ + Dy

−D
y
+ + 2αDx

+D
y
0

)
u1,j , 1 ≤ j ≤ Ny − 1.

After Fourier transforming (9) in the y-direction and eliminating the ghost point by
use of (8), we obtain the same matrix representation as before, showing that the two
formulations are equivalent.
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2. The elastic wave equation. In Cartesian component form, the system (1)
is

ρutt =
∂

∂x
((2μ + λ)ux + λvy + λwz) +

∂

∂y
(μvx + μuy) +

∂

∂z
(μuz + μwx) + f (x),

(10)

ρvtt =
∂

∂x
(μvx + μuy) +

∂

∂y
((2μ + λ)vy + λux + λwz) +

∂

∂z
(μvz + μwy) + f (y),

(11)

ρwtt =
∂

∂x
(μuz + μwx) +

∂

∂y
(μvz + μwy) +

∂

∂z
((2μ + λ)wz + λux + λvy) + f (z).

(12)

In this paper, we consider box-shaped domains 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c
and impose a normal stress boundary condition at z = 0. In component form, the
boundary condition (2) is

μuz + μwx = g(x),(13)

μvz + μwy = g(y), z = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b, t ≥ 0,(14)

(2μ + λ)wz + λux + λvy = g(z).(15)

For the purpose of discussing the stability properties of our method, we impose ho-
mogeneous Dirichlet conditions at z = c

(16) u(x, y, c, t) = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b, t ≥ 0,

and periodic boundary conditions in the x- and y-directions. Note that the stability
results can be extended to the case of Dirichlet conditions in the x- and y-directions.

To simplify our notation, we assume zero volume and boundary forcings (f = 0
and g = 0) throughout sections 2.1–2.3.

2.1. Spatial discretization. The conclusion from the model problem in sec-
tion 1.1 is that a stable second order accurate discretization of (3)–(4) can be obtained
by discretizing the differential equation with centered differences, except for the cross
terms on the boundary, which should be taken one-sided in the direction normal to
the boundary. The resulting approximation will be second order accurate, and the
ghost points can be updated explicitly if the tangential derivatives in the boundary
conditions are discretized by centered differences along the boundary. We shall use
these principles to define the difference scheme for the three-dimensional elastic wave
equation and proceed by verifying that the resulting approximation is stable and sec-
ond order accurate. The underlying ideas are the same as for the model problem,
even though the algebra gets more complicated.

We define a three-dimensional grid with points xi = (i − 1)h, yj = (j − 1)h,
zk = (k − 1)h, 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny, 0 ≤ k ≤ Nz, where h > 0 is the grid size,
xNx = a, yNy = b, and zNz = c. Time is discretized with step size δt > 0 on a grid
tn = nδt, n = 0, 1, . . . , and we denote a grid function by un

i,j,k = u(xi, yj , zk, tn). The
superscript for time will be supressed when the meaning is obvious. Apart from the
difference operators already defined, we also introduce

D̃z
0vi,j,k =

{
Dz

+vi,j,1, k = 1,
Dz

0vi,j,k, k ≥ 2,
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and the averaging operators

Ex
1/2(γi,j,k) = γi+1/2,j,k :=

γi+1,j,k + γi,j,k
2

,

Ey
1/2(γi,j,k) = γi,j+1/2,k :=

γi,j+1,k + γi,j,k
2

,

Ez
1/2(γi,j,k) = γi,j,k+1/2 :=

γi,j,k+1 + γi,j,k
2

.

We form the spatially discrete equations at the grid points 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤
Ny − 1, 1 ≤ k ≤ Nz − 1,

ρ
d2u

dt2
=Dx

−

(
Ex

1/2(2μ + λ)Dx
+u

)
+ Dy

−

(
Ey

1/2(μ)Dy
+u

)
+ Dz

−

(
Ez

1/2(μ)Dz
+u

)
+ Dx

0

(
λDy

0v + λD̃z
0w

)
+ Dy

0 (μDx
0v) + D̃z

0 (μDx
0w) =: L(u)(u, v, w),(17)

ρ
d2v

dt2
=Dx

−

(
Ex

1/2(μ)Dx
+v

)
+ Dy

−

(
Ey

1/2(2μ + λ)Dy
+v

)
+ Dz

−

(
Ez

1/2(μ)Dz
+v

)
+ Dx

0 (μDy
0u) + Dy

0

(
λDx

0u + λD̃z
0w

)
+ D̃z

0 (μDy
0w) =: L(v)(u, v, w),(18)

ρ
d2w

dt2
=Dx

−

(
Ex

1/2(μ)Dx
+w

)
+ Dy

−

(
Ey

1/2(μ)Dy
+w

)
+ Dz

−

(
Ez

1/2(2μ + λ)Dz
+w

)
+ Dx

0

(
μD̃z

0u
)

+ Dy
0

(
μD̃z

0v
)

+ D̃z
0 (λDx

0u + λDy
0v) =: L(w)(u, v, w),(19)

where grid point indices have been suppressed to improve readability. The free surface
boundary conditions (13)–(15) are discretized by

1

2

(
μi,j,3/2D

z
+ui,j,1 + μi,j,1/2D

z
+ui,j,0

)
+ μi,j,1D

x
0wi,j,1 = 0,(20)

1

2

(
μi,j,3/2D

z
+vi,j,1 + μi,j,1/2D

z
+vi,j,0

)
+ μi,j,1D

y
0wi,j,1 = 0,(21)

1

2

(
(2μ + λ)i,j,3/2D

z
+wi,j,1 + (2μ + λ)i,j,1/2D

z
+wi,j,0

)
+ λi,j,1 (Dx

0ui,j,1 + Dy
0vi,j,1) = 0

(22)

for 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1. The Dirichlet boundary condition (16) is
discretized by

(23) ui,j,Nz = 0, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny.

The discrete counterparts of the periodic boundary conditions are

uNx,j,k = u1,j,k, u0,j,k = uNx−1,j,k,(24)

ui,Ny,k = ui,1,k, ui,0,k = ui,Ny−1,k(25)

for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz.
In (17)–(19), z-derivatives in the cross terms are made one-sided at the grid

line k = 1. Nevertheless, the semidiscrete approximation is a second order accurate
approximation as demonstrated in the following theorem.

Theorem 1. The semidiscrete scheme (17)–(19) subject to the boundary condi-
tions (20)–(25) is a second order accurate approximation of the continuous equation
(10)–(12) subject to the boundary conditions (13)–(16).

Proof. See Appendix A.
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We will show that the above scheme satisfies an energy estimate. The energy
estimate relies on the spatial discretization being self-adjoint and negative definite
(elliptic). These properties are stated in three lemmas below. The main stability
estimate is stated after the lemmas.

The diagonal scaling S which was used to symmetrize the spatial discretization
for the model problem in section 1.1 is related to a weighted scalar product for the
unscaled problem. For the three-dimensional elastic wave equation, the appropriate
scalar product and norm are

(w, v)h = h2
Nx−1∑
i=1

Ny−1∑
j=1

(
h

2
wi,j,1vi,j,1 + h

Nz−1∑
k=2

wi,j,kvi,j,k

)
, ‖v‖2

h = (v, v)h.

The self-adjoint property is expressed in the following lemma.
Lemma 1. For all real-valued grid functions (u0, v0, w0), (u1, v1, w1) which satisfy

the discrete boundary conditions (20)–(25), the spatial operator (L(u), L(v), L(w)) is
self-adjoint; i.e.,

(26)
(
u0, L(u)(u1, v1, w1)

)
h

+
(
v0, L(v)(u1, v1, w1)

)
h

+
(
w0, L(w)(u1, v1, w1)

)
h

=
(
u1, L(u)(u0, v0, w0)

)
h

+
(
v1, L(v)(u0, v0, w0)

)
h

+
(
w1, L(w)(u0, v0, w0)

)
h
.

Proof. See Appendix B.
From the self-adjoint property it follows that there exists a conserved quantity.
Lemma 2. All real-valued solutions (u, v, w) of the semidiscrete scheme (17)–(19)

subject to the boundary conditions (20)–(25) satisfy

(27)

‖ρ1/2ut‖2
h + ‖ρ1/2vt‖2

h + ‖ρ1/2wt‖2
h − (u, L(u)(u, v, w))h − (v, L(v)(u, v, w))h

−(w,L(w)(u, v, w))h = C,

where C is a constant which depends on the initial data.
Proof. Lemma 1 gives

1

2

d

dt

(
‖ρ1/2ut‖2

h + ‖ρ1/2vt‖2
h + ‖ρ1/2wt‖2

h

)
= (ut, L

(u)(u, v, w))h + (vt, L
(v)(u, v, w))h + (wt, L

(w)(u, v, w))h

=
1

2

(
(ut, L

(u)(u, v, w))h + (vt, L
(v)(u, v, w))h + (wt, L

(w)(u, v, w))h

)
+

1

2

(
(u, L(u)(ut, vt, wt))h + (v, L(v)(ut, vt, wt))h + (w,L(w)(ut, vt, wt))h

)
=

1

2

d

dt

(
(u, L(u)(u, v, w))h + (v, L(v)(u, v, w))h + (w,L(w)(u, v, w))h

)
.

Integrating the above relation in time starting at t = 0 gives (27) and shows that the
constant C depends on the initial data.

To prove that the semidiscrete scheme is stable, we need to show that the con-
served quantity in (27) is a norm; i.e., we need to show that the spatial operator is
negative definite. In particular, we need to show that the sum of the mixed terms
in (u, L(u))h, (v, L(v))h, and (w,L(w))h (such as

(
Dx

0w, μD̃
z
0u
)
h
) is dominated by the

sum of the strictly positive terms (such as
(
Dx

+w,E
x
1/2(μ)Dx

+w
)
h
). This is straight-

forward in the corresponding continuous case and leads to the well-known formula for



DIFFERENCE METHOD FOR THE ELASTIC WAVE EQUATION 1909

the elastic energy. What makes the discrete case more challenging is that all deriva-
tives in the strictly positive terms are discretized by operators such as Dx

+D
x
−, while

they are discretized by centered differences (such as Dx
0D

y
0) in all mixed terms. We

have the following.
Lemma 3. For all real-valued grid functions (u, v, w) which satisfy the boundary

conditions (20)–(25), we have

(28)

(u, L(u)(u, v, w))h+(v, L(v)(u, v, w))h+(w,L(w)(u, v, w))h = −2‖(Ex
1/2(μ))1/2Dx

+u‖2
h

− 2‖(Ey
1/2(μ))1/2Dy

+v‖2
h − 2‖(Ez

1/2(μ))1/2Dz
+w‖2

h − ‖λ1/2(Dx
0u + Dy

0v + D̃z
0w)‖2

h

−‖μ1/2(Dx
0u+Dy

0v)‖2
h−‖μ1/2(D̃z

0v+Dy
0w)‖2

h−‖μ1/2(D̃z
0u+Dx

0w)‖2
h−

h2

4
R−B.

The operator
(
L(u), L(v), L(w)

)
is negative definite when μ > 0 and λ > 0. It is

semidefinite when μ = 0 and λ > 0. The remainder term R and the boundary term
B are both positive. They are given by

(29) R = ‖λ1/2Dx
+D

x
−u‖2

h + ‖μ1/2Dy
+D

y
−u‖2

h + ‖μ1/2Dz
+D

z
−u‖2

hr

+ ‖μ1/2Dx
+D

x
−v‖2

h + ‖λ1/2Dy
+D

y
−v‖2

h + ‖μ1/2Dz
+D

z
−v‖2

hr

+ ‖μ1/2Dx
+D

x
−w‖2

h + ‖μ1/2Dy
+D

y
−w‖2

h + ‖λ1/2Dz
+D

z
−w‖2

hr

and

(30)

B = h

Ny∑
j=1

Nx∑
i=1

(λi,j,Nz

2
w2

i,j,Nz−1+
μi,j,Nz

2
(u2

i,j,Nz−1+v2
i,j,Nz−1)+h2μi,j,3/2(D

z
+wi,j,1)

2
)
,

respectively.
Note: The reduced scalar product (u, v)hr is similar to the standard scalar prod-

uct, except that it starts the summation from k = 2:

(w, v)hr = h3
Nx−1∑
i=1

Ny−1∑
j=1

Nz−1∑
k=2

wi,j,kvi,j,k, ‖v‖2
hr = (v, v)hr.

Proof. The identity (28) is derived in Appendix C. All terms on the right-hand
side of (28) are nonpositive when the functions μ and λ are nonnegative. Therefore the
operator is at least negative semidefinite. Negative definiteness is proved by showing
that

(31) (u, L(u)(u, v, w))h + (v, L(v)(u, v, w))h + (w,L(w)(u, v, w))h = 0

implies ui,j,k = 0, vi,j,k = 0, and wi,j,k = 0 at all grid points.
Assume that μi,j,k > 0 and λi,j,k > 0 for all i, j, k and that (31) holds. The

right-hand side of (28) is a sum of nonpositive terms. Therefore, each term must be
zero to make the sum zero. Hence the third scalar product term on the right-hand
side of (28) gives

Dz
+wi,j,k = 0, 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1, 1 ≤ k ≤ Nz − 1.
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Together with the boundary condition wi,j,Nz
= 0, this gives

0 = wi,j,Nz
= wi,j,Nz−1 = · · · = wi,j,1.

Thus wi,j,k = 0 everywhere, except possibly at k = 0. Next we show that ui,j,k =
0 for all i, j, k except possibly for k = 0. The seventh scalar product term on the
right-hand side of (28) gives

(32) D̃z
0ui,j,k + Dx

0wi,j,k = 0, 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1, 1 ≤ k ≤ Nz − 1.

Because wi,j,k = 0, (32) gives

ui,j,Nz = ui,j,Nz−2 = ui,j,Nz−4 = . . . ,(33)

ui,j,Nz−1 = ui,j,Nz−3 = ui,j,Nz−5 = . . . .(34)

The boundary term B contains u2
i,j,Nz−1, which therefore must be zero. Hence, (33)

and (34) together with the boundary condition ui,j,Nz = 0 give

0 = ui,j,Nz
= ui,j,Nz−1 = . . . = ui,j,1.

We have shown that ui,j,k = 0 for all i, j, k except possibly for k = 0. The property
vi,j,k = 0, except possibly for k = 0, follows in exactly the same way as for ui,j,k by
studying the sixth term on the right-hand side of (28). The possibilities ui,j,0 �= 0,
vi,j,0 �= 0, or wi,j,0 �= 0 remain. However, when (u, v, w) is zero for 1 ≤ k ≤ Nz, the
boundary conditions (20)–(22) give ui,j,0 = vi,j,0 = wi,j,0 = 0. We have now proved
that the operator (L(u), L(v), L(w)) is negative definite when μ and λ are positive
functions.

If μ = 0 and λ > 0, the operator has a nontrivial null space. Take, for example,
ui,j,k = fj,k, vi,j,k = gi,k, and wi,j,k = 0, with fj,k, gi,k satisfying fj,Nz = gi,Nz = 0
and periodic in the j- and i-directions, respectively, but otherwise arbitrary. Because
μ = 0, these functions satisfy the free surface boundary conditions (20)–(22). It is
an easy exercise to show that these functions make (28) equal to zero when μ = 0
everywhere. Hence the operator (L(u), L(v), L(w)) is negative semidefinite when μ = 0
and λ > 0.

The findings in Lemmas 1–3 are summarized in the following main theorem,
showing that the semidiscrete problem is well-posed.

Theorem 2. The solution of the semidiscrete scheme (17)–(19) subject to the
boundary conditions (20)–(25) satisfies

‖ρ1/2ut‖2
h + ‖ρ1/2vt‖2

h + ‖ρ1/2wt‖2
h − (u, L(u)(u, v, w))h

− (v, L(v)(u, v, w))h − (w,L(w)(u, v, w))h = C,

where C is a constant that depends on the initial data. The quantity

−(u, L(u)(u, v, w))h − (v, L(v)(u, v, w))h − (w,L(w)(u, v, w))h

is positive definite when μ > 0 and λ > 0 and is therefore a norm.
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2.2. Fully discrete equations. Following the theory in [18], we discretize (17)–
(19) in time according to

ρ

(
un+1 − 2un + un−1

δ2
t

)
= L(u)(un, vn, wn),(35)

ρ

(
vn+1 − 2vn + vn−1

δ2
t

)
= L(v)(un, vn, wn),(36)

ρ

(
wn+1 − 2wn + wn−1

δ2
t

)
= L(w)(un, vn, wn).(37)

To simplify the notation, we introduce the weighted ρ-norm

(w, v)ρ = h2
Nx−1∑
i=1

Ny−1∑
j=1

(
h

2
ρi,j,1wi,j,1vi,j,1 + h

Nz−1∑
k=2

ρi,j,kwi,j,kvi,j,k

)
, ‖v‖2

ρ = (v, v)ρ .

Trivial calculations give

(38)
(
w, ρ−1v

)
ρ

= (w, v)h .

To show that the fully discrete scheme is energy conserving, we consider the
quantity

Ce(tn+1) =
∥∥Dt

+u
n
∥∥2

ρ
+
∥∥Dt

+v
n
∥∥2

ρ
+
∥∥Dt

+w
n
∥∥2

ρ
−
(
un+1, ρ−1L(u)(un, vn, wn)

)
ρ

−
(
vn+1, ρ−1L(v)(un, vn, wn)

)
ρ
−
(
wn+1, ρ−1L(w)(un, vn, wn)

)
ρ

(39)

=
∥∥Dt

+u
n
∥∥2

ρ
+
∥∥Dt

+v
n
∥∥2

ρ
+
∥∥Dt

+w
n
∥∥2

ρ

−
(
un+1, Dt

+D
t
−u

n
)
ρ
−
(
vn+1, Dt

+D
t
−v

n
)
ρ
−
(
wn+1, Dt

+D
t
−w

n
)
ρ
.

We have the following energy conservation result for the difference scheme.
Theorem 3. The solution computed by the difference scheme (35)–(37) together

with the boundary conditions (20)–(25) satisfies

Ce(tn+1) = Ce(tn);

i.e., Ce(tn) is a conserved quantity for the fully discrete scheme.
Proof. Expanding the square in the term ||Dt

+u
n||2ρ (and similarly for v and w)

gives the identity

(40) δ2
tCe(tn+1) = ‖un+1‖2

ρ + ‖un‖2
ρ −

(
un+1, 2un + δ2

t ρ
−1L(u)(un, vn, wn)

)
ρ

+ ‖vn+1‖2
ρ + ‖vn‖2

ρ −
(
vn+1, 2vn + δ2

t ρ
−1L(v)(un, vn, wn)

)
ρ

+ ‖wn+1‖2
ρ + ‖wn‖2

ρ −
(
wn+1, 2wn + δ2

t ρ
−1L(w)(un, vn, wn)

)
ρ
.

We have

un+1 + un−1 = 2un + δ2
t ρ

−1L(u)(un, vn, wn)
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and corresponding expressions for v and w. Hence,

δ2
tCe(tn+1) = ‖un+1‖2

ρ + ‖un‖2
ρ −

(
un+1, un+1 + un−1

)
ρ

+ ‖vn+1‖2
ρ + ‖vn‖2

ρ

−
(
vn+1, vn+1 + vn−1

)
ρ

+ ‖wn+1‖2
ρ + ‖wn‖2

ρ −
(
wn+1, wn+1 + wn−1

)
ρ

= ‖un‖2
ρ + ‖un−1‖2

ρ −
(
un−1, 2un + δ2

t ρ
−1L(u)(un, vn, wn)

)
ρ

+ ‖vn‖2
ρ + ‖vn−1‖2

ρ −
(
vn−1, 2vn + δ2

t ρ
−1L(v)(un, vn, wn)

)
ρ

+ ‖wn‖2
ρ + ‖wn−1‖2

ρ −
(
wn−1, 2wn + δ2

t ρ
−1L(w)(un, vn, wn)

)
ρ
.

The relation (38) gives(
un−1, δ2

t ρ
−1L(u)(un, vn, wn)

)
ρ

=
(
un−1, δ2

tL
(u)(un, vn, wn)

)
h
,

so Lemma 1 yields

(41)
(
un−1, δ2

t ρ
−1L(u)(un, vn, wn)

)
ρ

+
(
vn−1, δ2

t ρ
−1L(v)(un, vn, wn)

)
ρ

+
(
wn−1, δ2

t ρ
−1L(w)(un, vn, wn)

)
ρ

=
(
un, δ2

t ρ
−1L(u)(un−1, vn−1, wn−1)

)
ρ

+
(
vn, δ2

t ρ
−1L(v)(un−1, vn−1, wn−1)

)
ρ

+
(
wn, δ2

t ρ
−1L(w)(un−1, vn−1, wn−1)

)
ρ
.

We conclude that

Ce(tn+1) = Ce(tn);

i.e., Ce(tn) is a conserved quantity for the fully discrete scheme.
To obtain an energy estimate we need to show that Ce > 0. This was done in [18]

for approximations of the scalar wave equation. We here perform a similar analysis
for the scheme (35)–(37). To make the presentation more compact, we introduce the
vector notation

(42)

(un+1,L(un))h =: (un+1, L(u)(un, vn, wn))h + (vn+1, L(v)(un, vn, wn))h
+ (wn+1, L(w)(un, vn, wn))h.

As we shall see below, it is natural to study the scaled eigenvalue problem

(43) ρ−1L(w) = ζw,

where w satisfies the boundary conditions (20)–(25). We know from Lemma 1 that
L is self-adjoint with respect to (·, ·)h. Therefore, ρ−1L is self-adjoint with respect to
(·, ·)ρ because

(v, ρ−1L(w))ρ = (v,L(w))h = (L(v),w)h = (ρ−1L(v),w)ρ.

Hence, the eigenvalues of (43) are real and Lemma 3 implies that they are negative,
i.e.,

(44) −max
m

|ζm|‖w‖2
ρ ≤ (w, ρ−1L(w))ρ ≤ −min

m
|ζm|‖w‖2

ρ.

We have the following stability result.
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Theorem 4. If the eigenvalues ζm of (43) satisfy the CFL condition

(45)
δ2
t

4
max
m

|ζm| < 1,

then the conserved quantity Ce(tn+1) is a norm which is bounded from below by

(46) Ce(tn+1) ≥
(

1 − δ2
t

4
max
m

|ζm|
)
‖Dt

+un‖2
ρ +

minm |ζm|
4

‖un+1 + un‖2
ρ.

Proof. Using the vector notation (42), we can write the conserved quantity (39)
as follows:

Ce(tn+1) =
∥∥Dt

+un
∥∥2

ρ
−
(
un+1,L(un)

)
h
.

Because the operator L is self-adjoint (Lemma 1),

(un+1,L(un))h =
1

2
(un+1,L(un))h +

1

2
(un,L(un+1))h.

Furthermore,

(un+1 + un,L(un+1 + un))h − (un+1 − un,L(un+1 − un))h
= 2(un,L(un+1))h + 2(un+1,L(un))h,

and (w,L(w))h = (w, ρ−1L(w))ρ. Hence,

(47)

δ2
tCe(tn+1) = ||un+1 − un||2ρ −

δ2
t

4
(un+1 + un, ρ−1L(un+1 + un))ρ

+
δ2
t

4
(un+1 − un, ρ−1L(un+1 − un))ρ.

The eigenvalue bound (44) gives

(48) δ2
tCe(tn+1) ≥

(
1 − δ2

t

4
max
m

|ζm|
)
‖un+1 − un‖2

ρ +
δ2
t

4
min
m

|ζm|‖un+1 + un‖2
ρ.

Hence, Ce(tn+1) is a norm when

1 − δ2
t

4
max
m

|ζm| > 0,

i.e., when the CFL condition (45) is satisfied.

2.3. Time step restrictions. In the case of constant ρ, μ, λ, and periodic
boundary conditions in all three directions, a von Neumann analysis gives the maxi-
mum eigenvalue

(49) ζvN =

⎧⎪⎪⎨⎪⎪⎩
− 4

h2

4μ + λ

ρ
, λ < 2μ,

− 9

2h2

(2μ + λ)2

ρ(μ + λ)
, λ ≥ 2μ.

(We mention in passing that the largest eigenvalue occurs for the highest wave number
on the grid (ωh = π) when λ < 2μ, while it arises for ωh = 2π/3 when λ ≥ 2μ.
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Fig. 1. Magnitude of the two-dimensional discrete Fourier transform of w at t = 1.78, along
the z = 0 (stress-free) surface calculated with a time step allowed by the von Neumann analysis,
which underestimates the largest eigenvalue of the spatial operator. In this calculation, ρ = 1, μ = 1,
λ = 79, h = 0.04, δt = 0.95δtvN , and the initial data were given by (66). Note that all energy is
concentrated around the wave numbers ωxh ≈ ωyh ≈ 2π/3.

This behavior is different from the corresponding two-dimensional problem, where
the largest eigenvalue always happens when ωh = π.) If ζvN is used to estimate the
largest eigenvalue maxm |ζm|, we get the time step restriction δt < δtvN , where

(50) δtvN =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
h

√
ρ

4μ + λ
=

h√
c2p + 2c2s

, cp < 2cs,

√
8h

3

√
ρ(μ + λ)

2μ + λ
=

√
8h

3

√
c2p − c2s

c2p
, cp ≥ 2cs.

Unfortunately, numerical simulations using a time step smaller but close to the limit
(50) become unstable when a stress-free boundary is imposed and the ratio ν = cp/cs
is large; see Figure 1.

To estimate how the free-surface boundary condition modifies the time step re-
striction, we study the stability of the discrete half-plane problem with constant values
of ρ, μ, λ. In this approximation, we assume a 2π-periodic solution in the x- and y-
directions, expand the grid in the z-direction by taking Nz → ∞, and replace the
Dirichlet boundary condition (23) by

(51) lim
k→∞

|un
i,j,k| = 0.

Several stability definitions for difference approximations are possible, and we refer
to [11] for a discussion. Here we use a normal-mode approach and define the half-plane
problem to be stable if there are no solutions of the form

(52) u(xi, yj , zk, tn) = χneı(ωxxi+ωyyj)ûk,

∞∑
k=1

|ûk|2 < ∞, |χ| > 1,
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where ı =
√
−1. For simplicity we assume that Nx = Ny is odd. Then ωx, ωy =

0,±1,±2, . . . ,±(Nx − 1)/2.
It is straightforward to perform the stability analysis if we first rewrite our scheme

(17)–(19) into an equivalent form, where the one-sided discretization of the cross-
derivatives at k = 1 are replaced by the centered discretization used for k ≥ 2, i.e.,
replace D̃z

0 by Dz
0 in (17)–(19). We arrive at an equivalent problem by introducing

compensating terms in the boundary conditions; see Appendix A. In the case of
constant coefficients, the compensated stress-free boundary conditions are

Dz
0ui,j,1 + Dx

0

(
wi,j,1 + (ν2 − 1)

h2

4
Dz

+D
z
−wi,j,1

)
= 0,(53)

Dz
0vi,j,1 + Dy

0

(
wi,j,1 + (ν2 − 1)

h2

4
Dz

+D
z
−wi,j,1

)
= 0,(54)

ν2Dz
0wi,j,1 + Dx

0

(
(ν2 − 2)ui,j,1 + (ν2 − 1)

h2

4
Dz

+D
z
−ui,j,1

)
+Dy

0

(
(ν2 − 2)vi,j,1 + (ν2 − 1)

h2

4
Dz

+D
z
−vi,j,1

)
= 0.(55)

After inserting the ansatz (52) into the modified version of (17)–(19), we arrive
at the eigenvalue problem

(56)
ζhp
c2s

ûk :=
χ− 2 + χ−1

δ2
t c

2
s

ûk = − 4

h2

(
sin2 ξ

2
+ sin2 φ

2

)
ûk + Dz

+D
z
−ûk

+ (ν2 − 1)

⎛⎝ − 4
h2 sin2 ξ

2 − 1
h2 sin ξ sinφ ı

h sin ξDz
0

− 1
h2 sin ξ sinφ − 4

h2 sin2 φ
2

ı
h sinφDz

0
ı
h sin ξDz

0
ı
h sinφDz

0 Dz
+D

z
−

⎞⎠ ûk,

where ξ = ωxh and φ = ωyh satisfy −π ≤ ξ ≤ π, −π ≤ φ ≤ π. Inserting the ansatz
(52) into the boundary conditions (53)–(55) gives

Dz
0 û1 +

ı

h
sin ξ

(
ŵ1 + (ν2 − 1)

h2

4
Dz

+D
z
−ŵ1

)
= 0,(57)

Dz
0 v̂1 +

ı

h
sinφ

(
ŵ1 + (ν2 − 1)

h2

4
Dz

+D
z
−ŵ1

)
= 0,(58)

ν2Dz
0ŵ1 +

ı

h
sin ξ

(
(ν2 − 2)û1 + (ν2 − 1)

h2

4
Dz

+D
z
−û1

)
+

ı

h
sinφ

(
(ν2 − 2)v̂1 + (ν2 − 1)

h2

4
Dz

+D
z
−v̂1

)
= 0.(59)

The eigenvalue problem (56) can be solved using the ansatz

(60) ûk = Uκk, where |κ| < 1.

Lemma 1 is straightforward to generalize to the half-plane problem, so the spatial
operator is self-adjoint, and the generalization of Lemma 3 shows that the spatial op-
erator is negative semidefinite. All eigenvalues ζhp are therefore real and nonpositive.

Next we study the relation between ζhp and χ in (56). The roots of the quadratic
equation χ2 − (2 − |ζhp|δ2

t )χ + 1 = 0 are given by

χ1,2 = 1 − |ζhp|δ2
t

2
±
√

Δ, Δ = −|ζhp|δ2
t

(
1 − |ζhp|δ2

t

4

)
.
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If Δ < 0, the roots are complex conjugates. Since the product of the roots equals one,
both roots satisfy |χ1,2| = 1. If Δ = 0, χ1,2 = −1 is a double root. Finally, if Δ > 0,
both roots are real. One root will have magnitude greater than one and one less than
one. Hence, the condition |χ| > 1 in the normal-mode ansatz (52) is equivalent to
Δ > 0. Conversely, there are no solutions of the form (52) if all eigenvalues ζhp satisfy

−|ζhp|δ2
t

(
1 − |ζhp|δ2

t

4

)
≤ 0, i.e.,

δ2
t

4
|ζhp| ≤ 1.

Hence the normal-mode stability definition leads to the same type of time step re-
striction as in the energy method (Theorem 4), and we can use the most negative
eigenvalue ζhp to approximate the eigenvalue in (45). This approximation will lead
to a more restrictive time step limitation than in the von Neumann analysis if there
are any eigenvalues ζhp such that

|ζhp| > |ζvN |.

Inserting (60) into (56) gives

(61) QU = 0,

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−4(ν2 sin2 ξ
2 + sin2 φ

2 )+

κ− 2 + κ−1 − ζ̃
−(ν2 − 1) sin ξ sinφ (ν2 − 1)ı sin ξ(κ− κ−1)

−(ν2 − 1) sin ξ sinφ
−4(sin2 ξ

2 + ν2 sin2 φ
2 )+

κ− 2 + κ−1 − ζ̃
(ν2 − 1)ı sinφ(κ− κ−1)

(ν2 − 1)ı sin ξ(κ− κ−1) (ν2 − 1)ı sinφ(κ− κ−1)
−4(sin2 ξ

2 + sin2 φ
2 )+

ν2(κ− 2 + κ−1) − ζ̃

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where ζ̃ = ζhph
2/c2s. Multiply (61) by κ, and let

(62) P (ζ̃, κ, ξ, φ, ν) = 0

be the corresponding characteristic equation. Here P is a cubic polynomial in ζ̃ and
a polynomial of degree six in κ. For fixed ν, ξ, and φ there are six roots κ for each
ζ̃. The following lemma is a standard result (see, e.g., [12]), which we here formulate
for our discretization of the elastic wave equation.

Lemma 4. The characteristic equation P = 0 has six roots κl. For ζ̃ < −|ζ̃vN | =
−|ζvN |h2/c2s, three of these roots have |κ| < 1 and three have |κ| > 1.

Proof. A polynomial of degree six has six roots (counting multiplicity). If any
κ is such that |κ| = 1, then κ = eiα for some real α, and (62) becomes identical
to the relation obtained in the von Neumann analysis of the fully periodic problem.
We know that there are no eigenvalues with magnitude greater than |ζ̃vN | in this
case. Therefore there can be no κ on the unit circle when ζ̃ < −|ζ̃vN |. Second, take
φ = ξ = 0. It is not hard to see that the characteristic equation P = 0 becomes[

κ2 − (2 + ζ̃)κ + 1
] [

κ2 − (2 + ζ̃)κ + 1
] [

κ2 −
(

2 +
ζ̃

ν2

)
κ + 1

]
= 0.

Therefore the six roots κ satisfy the pairwise relations κ1κ4 = 1, κ2κ5 = 1, and
κ3κ6 = 1. Since no root can be on the unit circle when ζ̃ < −|ζ̃vN |, there must be
three roots inside the unit circle and three roots outside of it. Furthermore, the roots
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κ are smooth functions of φ, ξ, ν, and ζ̃. Because they cannot move across the unit
circle when ζ̃ < −|ζ̃vN |, the roots are always divided into these two groups for all
values of φ, ξ, ν, and for any ζ̃ such that ζ̃ < −|ζ̃vN |.

It follows from Lemma 4 that the general solution of (56) subject to the boundary
condition (51) is

(63) ûk = C1U1κ
k
1 + C2U2κ

k
2 + C3U3κ

k
3 , |κl| < 1, l = 1, 2, 3,

where Ul are the eigenvectors corresponding to κl, l = 1, 2, 3, respectively. For each
ζ̃ < −|ζ̃vN |, Ul is the null vector of the linear system (61) when the root κl is
substituted for κ.

Inserting the general solution (63) into the stress-free boundary conditions (57)–
(59) leads to a homogeneous linear system for the coefficients C1, C2, and C3:

(64) A

⎛⎝ C1

C2

C3

⎞⎠ = 0,

where A = A(ζ̃, ξ, φ, ν) is a three by three matrix. There are nontrivial solutions of
(64) if and only if detA = 0. If (64) has a nontrivial solution (C1, C2, C3)

T for some
ζ̃, then the corresponding ζhp is an eigenvalue of (56).

Since the algebra involved in forming detA is rather complicated, we have resolved
to calculate the roots of detA = 0 numerically. The determinant depends on four
parameters, where ν = cp/cs is a material constant and the angles ξ, φ satisfy −π ≤
ξ, φ ≤ π. For each fixed ν, we need to find the angles ξ, φ that give the most negative
solution ζ̃ of detA = 0. A straightforward approach is to discretize ξ, φ on a fine
mesh:

ξp = −π + p
2π

Nξ
, p = 0, 1, 2, . . . , Nξ,

φq = −π + q
2π

Nφ
, q = 0, 1, 2, . . . , Nφ.

At each mesh point detA is a complex-valued function of the real variable ζ̃, and we
need to consider only ζ̃ < −|ζ̃vN |, since only such eigenvalues can restrict the time
step beyond the von Neumann limit. At each point (ξp, ηq), we apply a numerical

root-finding routine to locate the most negative solution ζ̃p,q of detA = 0. We then

use minp,q ζ̃p,q as an approximation of the most negative solution ζ̃ corresponding to
ν. The fundamental operation when applying a numerical root-finding routine is to
evaluate detA at a given value of ζ̃, which can be broken down into the following
steps:

1. Solve the characteristic equation (62) for κ. Select the three roots with
|κl| < 1;

2. find the three eigenvectors Ul by solving (61) for each κl, l = 1, 2, 3;
3. form the matrix A by inserting (63) into (57)–(59);
4. compute the determinant of A.

Using the numerical root-finding procedure outlined above, we calculated the
ratio between the largest stable time step for the half-plane problem with a stress-free
boundary and the largest stable time step for the fully periodic case; see Figure 2. The
numerical root-finding procedure located the largest eigenvalue |ζhp| at φ = ξ = 2π/3.
Hence, the spatial frequencies ωxh = ωyh = 2π/3 should grow the fastest if the time
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Fig. 2. Ratio between the maximum stable time step for the half-plane problem with a free sur-
face and that of the fully periodic problem. The line with boxes corresponds to the three-dimensional
problem, and the two-dimensional case is shown with a solid line.

step exceeds the stability limit and ν is large. This prediction was confirmed by
spatially Fourier transforming an unstable numerical solution; see Figure 1.

For large ν, the solutions of detA = 0 corresponding to the largest |ζ̃| were
numerically found to occur when κ1 is real with −1 < κ1 < 0 and κ2 = κ̄3 with
−1 < Re(κ2,3) < 0. Thus, the eigenfunction corresponding to the largest eigenvalue
oscillates in the z-direction with two different frequencies: the fastest frequency on
the mesh |κ1|k(−1)k and more slowly |κ2|k(exp(±ı arg κ2))

k, where arg(κ2) ≈ 2π/3
for large ν. This boundary layer behavior has been observed in numerical solutions
when the time step exceeds the stability limit.

Note that the limitations imposed on the time step by the stress-free boundary
are very moderate even for extreme ν values (most solid materials occuring in na-
ture have cp/cs ≤ 3). As ν gets large, the largest stable time step for the half-plane
problem tends to a factor exceeding 0.91 of that for the fully periodic problem. Our
practical experience with the time-stepping algorithm on bounded domains with vari-
able coefficients and a free surface boundary condition on one side indicates that it
is stable when the half-plane problem with constant coefficients is stable, using the
smallest time step obtained by evaluating cp and cs at all grid points. Hence, we can
handle all values of cp/cs by reducing the time step by less than 9% compared to
the von Neumann value. This makes our method practically useful for all isotropic
materials.

The additional time-step restriction due to the free surface boundary condition
indicates that there are numerical surface waves which travel faster than any volume
waves on the grid. In the continuous problem, Rayleigh (surface) waves always have
a phase velocity which is smaller than cs. Hence, it is likely that the numerical phase
velocity for Rayleigh waves will depend on the grid resolution in terms of the number
of grid points per wavelength. Numerical experiments along these lines are presented
in section 4.1.



DIFFERENCE METHOD FOR THE ELASTIC WAVE EQUATION 1919

We also analyzed the two-dimensional version of the scheme by assuming that the
solution does not depend on y. Here a von Neumann analysis of the doubly periodic
case (ρ, μ, and λ constant) gives a time step restriction

(65) δt <
h
√
ρ√

3μ + λ
=

h√
c2p + c2s

.

The stability restriction on the time step with the free surface boundary condition
can be obtained using the above root-finding procedure with φ = 0. The results are
given in Figure 2 together with the three-dimensional case. When ν becomes large,
the largest stable time step for the half-plane problem tends to a factor exceeding
0.94 of that for the fully periodic case (i.e., 6% smaller). As in the three-dimensional
problem, the largest eigenvalue occurs for the spatial frequency ωxh = 2π/3.

2.4. Numerical tests of the scheme. In order to test the implementation of
our method we first ran a number of computations without forcing with decreasing
grid size h to evaluate the discrete energy Ce as a function of time. We took μ = 0.16,
λ = 0.49, ρ = 1, and started the computations with the initial data in spherical
coordinates:

(66)
U0(r) = ∇

(
P10(r)

r

)
, U1(r) = −cp∇

(
P ′

10(r)

r

)
,

r =
√

(x− 2)2 + (y − 1.5)2 + (z − 1.5)2,

where P10(ξ) is the four times continously differentiable function

(67) P10(ξ) =

⎧⎨⎩
0, ξ <= 0,
1024ξ5

(
1 − 5ξ + 10ξ2 − 10ξ3 + 5ξ4 − ξ5

)
, 0 < ξ < 1,

0, ξ ≥ 1.

(We note in passing that u(r, t) = ∇(P10(r− cpt)/r) is an analytic solution of the free
space problem.) We impose a stress-free boundary condition at z = 0 and enforce zero
displacement conditions on all other boundaries. The size of the computational do-
main was a = 4, b = 3, and c = 3. Since there is no forcing, the discrete energy Ce(tn)
should remain constant. The energy in the continuous problem is often decomposed
into its kinematic and potential components

E(t) = K(t) + U(t),

where

K(t) =
1

2

∫
Ω

ρ(u2
t + v2

t + w2
t ) dΩ,

U(t) =
1

2

∫
Ω

λ(ux + vy + wz)
2 + 2μ(u2

x + v2
y + w2

z)

+ μ
(
(uy + vx)2 + (uz + wx)2 + (vz + wy)

2
)
dΩ.

In the absence of forcing, E(t) = const. By dividing (47) by δ2
t it is straightforward

to see that

Ce(tn+1) = 2E(tn+1/2) + O(h2).
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Fig. 3. Time evolution of the relative error in the discrete energy (Ce(t) − 2E(t))/2E(t) for
different grid sizes. The discrete energy is conserved to within roundoff errors for all cases. As can
be seen, the discrete energy converges towards the continuous value at the expected O(h2) rate. Here
h = 0.04 (∗), 0.02 (·), 0.01 (−), and 0.005 (−·).

Hence, the discrete energy Ce should not only be conserved in time, but its value
should also converge to 2E(t) as the grid is refined. Both of these properties are
confirmed by our calculations; see Figure 3.

As a second test of our implementation, we check the order of accuracy of the
scheme using the method of analytical solutions (also known as twilight-zone forc-
ing [5]). The idea is to construct forcing functions f and g so that the solution of
the test problem becomes a known function utrue(x, t). We then solved the test prob-
lem using our implementation of the method and compared our numerical results to
the known solution on a succession of finer grids in order to check the convergence
properties. Our constructed solution was

utrue(x, t) = sin(ω(x− ct)) sin(ωy) sin(ωz),

vtrue(x, t) = sin(ωx) sin(ω(y − ct)) sin(ωz),

wtrue(x, t) = sin(ωx) sin(ωy) sin(ω(z − ct)),

where ω and c are constants. The material properties were chosen to vary smoothly
according to

μ(x) = 1 + cos2(πx) cos2(πy) cos2(πz),

λ(x) = 1 + sin2(πx) sin2(πy) sin2(πz),

ρ(x) = 1.

A normal stress condition was imposed on the z = 0 surface, and inhomogeneous
Dirichlet conditions were imposed on all other boundaries. The computational domain
had sizes a = 2, b = 2, and c = 2. A number of calculations with increasingly
fine grid spacing were run, and the errors were evaluated in the discrete max-norm.
(The discrete max-norm of a vector grid function vh = (uh, vh, wh) is defined as
||vh||∞ = max(maxi,j,k |uh|,maxi,j,k |vh|, maxi,j,k |wh|).) As expected we obtained
second order convergence when both the forcing and the solution are smooth; see
Table 1. Nonsmooth forcings and solutions will be discussed in section 3.
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Table 1

Errors in max-norm for decreasing h and smooth analytical solution utrue. Convergence rate
indicates second order convergence. Here c = 1 and ω = 2π.

t = 1
h ||vh − utrue||∞ Rate

0.04 0.04331
0.02 0.01062 4.079
0.01 0.002654 4.00
0.005 0.0006627 4.00

3. Singular source terms. In seismic wave propagation the source term is
often applied at a point, along a line, or over a surface in three-dimensional space.
Sources along lines or surfaces are commonly decomposed into a number of point
sources distributed along the corresponding line or surface:

(68) f(x, t) =
∑
r

f (F )
r (x, t) +

∑
r

f (M)
r (x, t).

Two types of point sources occur in seismic applications. Point forces (f
(F )
r ) are, for

example, used to model internal forcings due to volcanic eruptions or external forcings
applied to the free surface

(69) f (F )
r (x, t) = gr(t)Frδ(x − xr),

where δ(x) is the Dirac distribution and Fr is a constant vector. The second type of

point source is the point moment (or double couple), denoted by f
(M)
r in (68). Point

moments are often used to model earthquakes and explosions [4] and are of the form

(70) f (M)
r (x, t) = gr(t) Mr · ∇δ(x − xr),

where ∇δ(x) is the gradient of the Dirac distribution, and Mr is a constant symmetric
tensor.

Each term in (68) is applied at a location (xr, yr, zr), and it is desirable to make
this location independent of the grid so that the numerical modeling can be made
as accurate as possible and no artifacts are generated by “stair stepping” the point
sources along a smooth line or surface in three-dimensional space. Due to the singular
nature of point sources, we can only expect the numerical solution to converge away
from the location of the sources. Furthermore, we can expect that different numerical
techniques are necessary for handling the two types of sources, since the point force
depends on the Dirac distribution while the point moment depends on its gradient,
which is a more singular function.

The analyses of Waldén [26] and Tornberg and Engquist [24] demonstrate that
it is possible to derive regularized approximations of the Dirac distribution and its
gradient, which result in pointwise convergence of the solution away from the sources.
Based on these analyses, we define a hat function

(71) δhat(x) =
1

h

{
1 − |x|/h, |x| < h,
0, elsewhere,

and use δhat(x−xr)δhat(y−yr)δhat(z−zr) to approximate δ(x) in (69). To approximate
the gradient of a Dirac distribution, we start from the piecewise cubic function

(72) δcube(x) =
1

h

⎧⎨⎩
1 − |x/h|/2 − |x/h|2 + |x/h|3/2, |x| < h,
1 − 11|x/h|/6 + |x/h|2 − |x/h|3/6, h ≤ |x| < 2h,
0, elsewhere.
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We then use ⎛⎝ δ′cube(x− xr)δhat(y − yr)δhat(z − zr)
δhat(x− xr)δ

′
cube(y − yr)δhat(z − zr)

δhat(x− xr)δhat(y − yr)δ
′
cube(z − zr)

⎞⎠
to approximate the Cartesian components of ∇δ(x − xr) in (70). Note that neither
(71) nor (72) need to be aligned with the grid.

3.1. Spatial regularity. To study the relation between smoothness of the time
function g(t) in the source term and smoothness in the space of the solution, we
analyze the related problem of the scalar wave equation with a singular source term.
In particular, we study the problem on an infinite domain with the forcing term
applied at the point (0, 0, 0) with homogeneous initial data:

ptt = ∇2p + g(t)δ(x), x ∈ R3, t ≥ 0,

p(x, 0) = pt(x, 0) = 0.

The Fourier transform of this equation is

d2p̂

dt2
= −(k2

x + k2
y + k2

z)p̂ + g(t), t ≥ 0,(73)

p̂(kx, ky, kz, 0) = p̂t(kx, ky, kz, 0) = 0,(74)

where the Fourier transform is given by

p̂(kx, ky, kz, t) =

∫ ∫ ∫
p(x, y, z, t)e−i(xkx+yky+zkz) dx dy dz.

Equations (73)–(74) are solved by

(75)

p̂(kx, ky, kz, t) =

{∫ t

0

∫ τ

0
g(τ ′) dτ ′ dτ, k = 0,

1
k

(
sin(kt)

∫ t

0
cos(kτ)g(τ) dτ − cos(kt)

∫ t

0
sin(kτ)g(τ) dτ

)
, k > 0,

where k =
√
k2
x + k2

y + k2
z . If g(t) is continuously differentiable, we can integrate (75)

by parts:

p̂(kx, ky, kz, t) =
1

k2

(
g(t) − cos(kt)g(0) − sin(kt)

∫ t

0

sin(kτ)g′(τ)dτ

− cos(kt)

∫ t

0

cos(kτ)g′(τ)dτ

)
.

By assuming that g(t) has compact support, i.e., g(t) ≡ 0 for t ≤ 0 and t ≥ T , we get

p̂(kx, ky, kz, t) =
1

k2

(
− sin(kt)

∫ t

0

sin(kτ)g′(τ) dτ

− cos(kt)

∫ t

0

cos(kτ)g′(τ) dτ

)
, t ≥ T.

The Fourier transform decays as 1/k2. We can continue integrating by parts as long
as g(t) is sufficiently differentiable, gaining one order of k for each integration. This
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shows that the solution p(x, t) has a Fourier transform that decays as 1/kq for t > T
if g(t) has compact support and is q − 1 times differentiable in time. Furthermore, p̂
is bounded because the singularity at k = 0 is removable:

lim
k→0

p̂(kx, ky, kz, t) =

∫ t

0

(t− τ)g(τ) dτ =

∫ t

0

∫ τ

0

g(τ ′) dτ ′ dτ.

Therefore, ∫ ∫ ∫
(1 + k2q′)|p̂|2 dkx dky dkz < ∞

for q′ < q − 3/2. By the Sobolev lemma [10], p can be identified with a function that
has m continous derivatives for m < q′− 3/2 < q− 3. We conclude that for t > T the
solution p(x, t) will have m continuous derivatives if g is compactly supported and
smooth. Here m can be made arbitrarily large by choosing g(t) sufficiently smooth.

If g(t) does not tend to zero for large t, the solution will remain singular at the
location of the point source but will be smooth away from it.

3.2. Free space solutions. Let the free space Green’s (dyadic) function for
the elastic wave equation in a homogeneous material be G(x, t); see [4]. Assuming
homogeneous initial data, the analytical solution of the elastic wave equation due to a
source function f(x, t) follows as the space and time convolution between the Green’s
function and the source term

u(x, t) =

∫
t

∫
Ω

f(x′, t′) · G(x − x′, t− t′) dx′ dt′.

In the special case when the source is a point force, the spatial convolution becomes

trivial due to the Dirac distributions in f
(F )
r , and the expression reduces to a time

integral over t′. Near the source, the solution behaves like 1/|x − xr|. A closed form
solution can be obtained when the time integration can be performed analytically, for
instance, when g(t) is a polynomial function.

For a point moment source term f
(M)
r , the analytical solution can be written

u(x, t) =

∫ t

0

∫
Ω

gr(t
′) (Mr · ∇δ(x′ − xr)) · G(x − x′, t− t′) dx′ dt′

=

∫ t

0

gr(t
′) Mr : ∇G(x − xr, t− t′) dt′,

where the colon represents the tensor contraction over two indices. Near the point
moment, the solution behaves like 1/|x−xr|2, so it is more singular than in the point
force case.

To investigate how the numerical solution converges when the source function is
singular, we ran a number of tests with point forces and point moments using the
time function g(t) = P10(t) defined in (67). This function has compact support in
0 ≤ t ≤ 1 and is four times continuously differentiable. We took a computational
domain with a = 2, b = 2, c = 2, and used the material parameters ρ = 1, λ = 0.32,
μ = 0.16. Dirichlet boundary conditions were enforced on all boundaries, but the
boundaries have no influence on the solution until t > 1.25 since cp = 0.8 and the
point sources were centered at xr = (1, 1, 1). The errors were measured at two differ-
ent times in discrete max-, 2-, and 1-norms. Since the analytical solution is singular
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Table 2

Relative error in the numerical solution of the free space problem at time t = 0.5 (singular
solution) due to a point force (top) and a point moment (bottom), measured in max-, 2-, and 1-
norms. Here vh and u denote the numerical and analytical solutions, respectively.

Point force

h
||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1 Rate∞ Rate2 Rate1

0.04 0.04833 0.08293 0.1011
0.02 0.04108 0.05174 0.03248 1.176 1.602 3.113
0.01 0.03936 0.03525 0.009970 1.043 1.467 3.257
0.005 0.03894 0.02470 0.002955 1.010 1.427 3.373

Point moment

h
||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1 Rate∞ Rate2 Rate1

0.04 0.3051 0.2805 0.2272
0.02 0.3208 0.2760 0.1154 0.9509 1.016 1.969
0.01 0.3253 0.2769 0.05759 0.9871 0.9967 2.003
0.005 0.3264 0.2782 0.02872 0.9970 0.9953 2.005
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Fig. 4. The 2-logarithm of the error along a line going through the source point for a point force
(left) and a point moment source (right), both located at x = 1. Note that the error decays as O(h2)
away from the source but not near it. Near the source, the error is about 211 ≈ 2000 times larger
for the point moment than for the point force. The grid sizes were h = 0.04 (−·), 0.02 (·), 0.01 (−),
and 0.005 (∗).

at the point where the source applies, that point was excluded from the calculation
of the norms. (The 2- and 1-norms for a vector grid function u are defined as ||u||22 =
h3

∑
i,j,k(|ui,j,k|2+ |vi,j,k|2+ |wi,j,k|2) and ||u||1 = h3

∑
i,j,k(|ui,j,k|+ |vi,j,k|+ |wi,j,k|).)

First we evaluated the errors at t = 0.5 when g(t) > 0; see Table 2. As expected we did
not achieve second order convergence because the solution of the continuous problem
is singular. Also note that the convergence rate is slower for the point moment source
than in the less singular point force case. In Figure 4, we show the errors as a function
of the distance from the singularity. Away from the singularity, the errors are smooth
in space and decay like O(h2) as the grid size tends to zero. However, near the source
the errors do not decay as the grid is refined, and this explains the convergence num-
bers in Table 2. Second, we evaluated the errors at t = 1.2, when g(t) = 0; see Table 3.
After the source term has vanished the solution becomes smooth everywhere, and our
results show the proper second order convergence rate in accordance with theory.

We remark that in the point moment source case it is important to use the δ′cube

approximation in the gradient of the Dirac distribution, as opposed to δ′hat. Otherwise
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Table 3

Relative error in the numerical solution of the free space problem at time t = 1.2 (smooth
solution) due to a point force (top) and a point moment (bottom), measured in max-, 2-, and 1-
norms. Here vh and u denote the numerical and analytical solutions, respectively.

Point force

h
||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1 Rate∞ Rate2 Rate1

0.04 0.04516 0.03984 0.04122
0.02 0.01180 0.01001 0.01025 3.831 3.984 4.021
0.01 0.003023 0.002512 0.002560 3.907 3.988 4.004
0.005 0.0007592 0.0006287 0.0006400 3.983 4.000 4.00

Point moment

h
||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1 Rate∞ Rate2 Rate1

0.04 0.1170 0.1016 0.09981
0.02 0.03400 0.02762 0.02681 3.440 3.678 3.724
0.01 0.008872 0.007109 0.006855 3.833 3.885 3.908
0.005 0.002244 0.001793 0.001724 3.961 3.972 3.985

Table 4

Relative error in the numerical solution of Lamb’s problem at t = 0.5 (top) (when the solution
is singular) and at t = 1.1 (bottom) (when the solution is smooth), measured in max-, 2-, and 1-
norms. Here vh and u denote the numerical and analytical solutions, respectively.

t = 0.5

h
||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1 Rate∞ Rate2 Rate1

0.04 0.02797 0.08631 0.2007
0.02 0.01758 0.05312 0.1102 1.591 1.625 1.821
0.01 0.01547 0.04002 0.05028 1.136 1.327 2.192
0.005 0.01696 0.03696 0.02305 0.9121 1.083 2.181

t = 1.1

h
||vh−u||∞
||vh||∞

||vh−u||2
||vh||2

||vh−u||1
||vh||1 Rate∞ Rate2 Rate1

0.04 0.2892 0.3081 0.3686
0.02 0.1082 0.1186 0.1408 2.673 2.598 2.618
0.01 0.03138 0.03496 0.04175 3.448 3.392 3.372
0.005 0.008189 0.009194 0.01100 3.832 3.802 3.795

the convergence rate will be slower than second order in the grid size (example not
shown to conserve space).

3.3. Half spaces and Lamb’s problem. Point forcing on the boundary of a
half space is referred to as Lamb’s problem [20]. Analytical solutions for the three-
dimensional problem have been presented by a number of authors with different de-
grees of applicability. For the case of a point force directed normal to the free surface
z = 0, the general solution can be found in [22] or [9]. To test the accuracy of the
numerical solutions, we performed a grid refinement study on a computational domain
with sizes a = 4, b = 4, c = 2, enforcing a free surface boundary condition along z = 0
and Dirichlet conditions on all other boundaries. We assumed a Poisson material with
ρ = 1, μ = 1, and λ = 1, i.e., cp/cs =

√
3, and used the same time function g(t) as in

the free space case. In this experiment, the point force was applied at xr = (2, 2, 0),
so the Dirichlet boundaries should not affect the solution until t > 1.15. The error
in the numerical solution was evaluated both at t = 0.5, when the solution of the
continuous problem is singular, and at t = 1.1, when the solution is smooth. We
report only the error along the free surface, because the analytical solution is difficult
to evaluate in the interior of the domain. As in the free space problem, we observe
second order convergence only when the solution is smooth in space; see Table 4.
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4. Applications and extensions of the method.

4.1. Surface waves. The elastodynamic equations together with the stress-free
boundary condition admit solutions in the form of surface waves, i.e., waves propagat-
ing along the surface with amplitude decaying exponentially away from the surface.
For the homogeneous two-dimensional half-plane problem in z ≥ 0, these solutions
are commonly referred to as Rayleigh waves and have the form

u(x, z, t) = A

(
e−ηpωz −

(
1 − c2r

2c2s

)
e−ηsωz

)
sin(ω(crt− x)),(76)

w(x, z, t) = A

(
1 − c2r

c2p

)1/2
(
−e−ηpωz +

(
1 − c2r

2c2s

)−1

e−ηsωz

)
cos(ω(crt− x)),(77)

where

ηp =

(
1 − c2r

c2p

)1/2

, ηs =

(
1 − c2r

c2s

)1/2

.

Here cr is the phase velocity of the wave, which is the real root of the Rayleigh
equation (

2 − c2r
c2s

)2

− 4

(
1 − c2r

c2p

)1/2 (
1 − c2r

c2s

)1/2

= 0, 0 < cr < cs.

The waves described by (76)–(77) are nondispersive; i.e., cr is independent of ω.
However, the discretization introduces errors that can be interpreted as a numerical
dispersion relation where the phase velocity depends on the resolution on the grid.
The numerical dispersion relation for our interior difference stencil coincides with
previous central difference schemes which were analyzed by Cohen [7]. For surface
waves, the numerical dispersion relation provides the numerical phase velocity c∗r as
a function of the resolution ωh, which often is expressed in terms of the number of
grid points per wavelength

PPW =
2π

ωh
.

Since it is very complicated to analytically derive the numerical dispersion relation
for surface waves, we instead investigate the relation by numerical experiments using
a two-dimensional version of our method. A free surface condition was imposed at
z = 0, and periodic boundary conditions were used in the x-direction. We enforced
(76)–(77) as initial data, which contains only a single spatial frequency ω. Hence, the
numerical solution should essentially advect the initial data with a modified phase
velocity c∗r . We determined c∗r by visually inspecting the solution along the surface at
time t = 1/cr and comparing the positions of the numerical and analytical solutions;
see Table 5. Note that the visual inspection is not very precise when the solution
is poorly resolved on the grid (PPW < 5), so these results should be interpreted
accordingly. Despite this uncertainty, it is clear that the numerical phase velocity
increases rapidly as ωh approaches 2π/3 and ν ≥ 3. It is interesting to note that
this value of ωh coincides with the spatial frequency of the fast surface waves which
determine the stability limit of the time step; cf. section 2.3.
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Table 5

Numerical dispersion relation for the finite difference scheme applied to Rayleigh waves. The
table shows the ratio between the estimated phase velocity in the numerical solution and its contin-
uous value, using different number of grid points per wavelength (PPW) and ν.

c∗r/cr
PPW ν = 2 ν = 3 ν = 5 ν = 10

40 1.0028 1.0065 1.017 1.055
20 1.011 1.022 1.052 1.12
10 1.031 1.06 1.11 1.2
8 1.043 1.083 1.13 1.5
6 1.049 1.095 1.35 1.63
5 1.07 1.11 1.4 1.72
4 1.095 1.14 1.65 1.78

3.5 1.16 1.4 2.76 2.9

4.2. Nonreflecting boundary conditions. When modeling seismic events such
as the simplified earthquake in section 4.3, it is desirable to truncate the computational
domain without causing significant amounts of artificial reflections. Many different
methods, including absorbing, nonreflecting, and perfectly matching techniques have
been proposed in the literature. Here we will use the first order nonreflecting boundary
conditions developed by Clayton and Engquist [6]. The well-known idea behind these
boundary conditions is to impose a differential equation on the boundary which allows
wave propagation only in the outward direction. For boundaries with x = const, the
boundary conditions are

(78) ut = ±cpux, vt = ±csvx, wt = ±cswx,

where the positive signs are taken for the lower boundary x = 0 and the negative signs
for the upper boundary x = a. Similar advection equations are imposed at boundaries
with y = const or z = const.

Away from edges in the computational domain, we have found that the box scheme
discretization [6] of the boundary condition (78) works well. At the edges of the do-
main, i.e., where two nonreflecting boundaries meet, Clayton and Engquist suggested
applying the nonreflecting boundary condition in a diagonal direction. However, we
have found that imposing compatibility conditions along the edges results in a more
rubust method which also is easier to implement. We examplify the compatibility
conditions on the edge where x = 0 and y = 0. Along the boundary x = 0, we impose
(78) (with the positive sign). The corresponding boundary conditions along y = 0 are

ut = csuy, vt = cpvy, wt = cswy, y = 0, 0 ≤ x ≤ a, 0 ≤ z ≤ c, t ≥ 0.

Equating the time derivatives along the edge gives

cpux = csuy,

csvx = cpvy, y = 0, x = 0, 0 ≤ z ≤ c, t ≥ 0,

cswx = cswy.

Similar relations can easily be derived for the other edges.

4.3. A simplified earthquake. The Pacific Earthquake Engineering Center
and the Southern California Earthquake Center have defined a set of seismic model
problems in an effort to evaluate and validate wave propagation software [8]. We have
computed solutions to several of these problems, but in order to save space we report
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Fig. 5. The computational domain and fault surface for the simplified earthquake problem
LOH.2 (upper left). The • indicates the measurement station, and the magnified plane shows the
fault surface, where the slip starts at the hypocenter indicated by concentric circles. Our results are
shown with solid lines for the vertical (top right), radial (bottom left), and transverse (bottom right)
velocity components, and the dashed lines are the results from the UCSB code; see [8].

only our results for problem LOH.2, which models a simplified earthquake with slip
on an extended fault surface; see Figure 5. The material in this model consists of a
layer over a half-space, where the layer extends from depth z = 0 to z = 1000. The
velocities and density in the layer are cp = 4000, cs = 2000, ρ = 2600. The half-space
z ≥ 1000 has the material properties cp = 6000, cs = 3464, ρ = 2700.

The slip on the extended fault is modeled by distributing point moment sources
on a regular grid with size δs (which is independent of the grid size h) over the fault
surface x = 0, 0 ≤ y ≤ 8000, 2000 ≤ z ≤ 6000. In this case, the fault slips by a
constant amount in the y-direction, which means that the Cartesian components of
the moment tensor Mr in each source term (70) equal

Mr = δ2
sμS0

⎛⎝ 0 1 0
1 0 0
0 0 0

⎞⎠ , S0 = 1.

The modeled earthquake starts at the hypocenter xH = (0, 1000, 4000), and the rup-
ture propagates along the fault surface with a uniform rupture velocity of 3000. The
propagation of the rupture is modeled by letting the source time function gr(t) depend
on the distance between the hypocenter and the location of each source

Rr = |xr − xH |.
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The time dependence of source number r is

gr(t) =

⎧⎨⎩
0, t < Rr/3000,

1 −
(

1 +
τr(t)

T

)
e−τr(t)/T , t ≥ Rr/3000,

τr(t) = t−Rr/3000,

where T = 0.1 is related to the rise time of the slip, i.e., how quickly the fault slips
at each fixed point along the fault surface.

In our calculation, the extent of the computational domain was −15000 ≤ x ≤
15000, −15000 ≤ y ≤ 15000, 0 ≤ z ≤ 17000, and nonreflecting boundary conditions
were imposed on all boundaries except at z = 0, where a free surface condition was
enforced. The grid size was h = 50, corresponding to about 1.23×108 grid points, and
1742 time steps were taken to reach time t = 9. We discretized the fault surface with
δs = 100, giving 3200 point moment sources. Results for this problem are available
from a number of finite difference and finite element codes [8]. To compare our
results, we recorded the time evolution of the velocity (i.e., the time derivative of the
displacement) at a number of stations along a line on the free surface. Since all codes
predicted similar results, we show only the comparison with the UCSB code (using
notation from [8]). This code solves the elastic wave equation as a first order system in
velocity-stress formulation using a staggered grid finite difference method. Since the
source time functions gr(t) trigger high frequency motions which are not resolvable on
the mesh, the results from both our code and the UCSB code were low-pass filtered in
time using a Gaussian with filter width σ = 0.05. In Figure 5 we compare solutions at
a station located at x = (6000, 8000, 0). Velocities are given in a cylindrical coordinate
system (radial, transverse, up) with the origin at (0, 0, 0). Note that the nonreflecting
boundary conditions affects the solution only after t ≈ 5 and that our results compare
especially well with the other code before that time. One way of determining the
accuracy of the solution after t ≈ 5 would be to repeat the simulation on a larger
domain, but the computational cost was too great to perform that experiment.

5. Conclusions. We have described a stable, second order accurate finite dif-
ference method for the elastic wave equation in second order formulation subject to a
stress-free boundary condition on a flat surface. We have proven that the method is
stable even when the coefficients are discontinuous in space, as long as μ > 0, λ > 0,
and ρ > 0 at all grid points. The stability limit on the time step has been studied in
detail, and we have shown that all values of cp/cs >

√
2 can be handled if the time

step is reduced by 9% compared to the von Neumann value. We have also described a
way to discretize point forces and moments on the mesh so that the solution becomes
second order accurate away from the singularity in the solution.

In seismic applications it is common to have water (e.g., a lake or an ocean)
in parts of the domain. Only compressional (P ) waves can travel through water,
and the acoustic wave propagation can be modeled by setting μ = 0 in the elastic
wave equation. We have generalized our scheme to handle the mixed elastic/acoustic
case, and this scheme was used as part of a simulation effort coordinated by the
U.S. Geological Survey to model ground motions during the great 1906 San Francisco
earthquake [23]. Our results showed good agreement with other codes and measured
Mercalli intensities. More details will be described in a forthcoming paper [1].

Future plans include generalizing our embedded boundary technique for the scalar
wave equation [19, 17, 16] to the elastic wave equation. In the seismic application,
embedded boundaries will allow us to include effects of topography and more accu-
rately treat internal material discontinuities. We are also exploring generalizations to
fourth order accuracy and curvilinear coordinates.
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Appendix A. Accuracy (Theorem 1). We will prove the accuracy of the
semidiscrete equations by showing that they are equivalent to another approximation
which clearly is second order accurate. In particular, we want to analyze the accuracy
of the spatial discretization (17)–(19) at the z = 0 boundary, where the free surface

boundary condition is applied. At this boundary, the operator D̃z
0 simplifies to Dz

+,
which would appear to give only a first order accurate difference formula. However,
we proceed to show that this difference formula, in combination with the discrete free
surface boundary condition, indeed results in a second order approximation.

We start by eliminating the ghost points above the free surface from the semidis-
crete system (17)–(19), subject to the boundary conditions (20)–(22). To save space,
we go through only the details for (17) subject to (20). The terms in L(u) that contain
z-differences on the z = 0 grid line are

Ti,j =: Dz
−
(
μi,j,3/2D

z
+ui,j,1

)
+ Dx

0

(
λi,j,1D

z
+wi,j,1

)
+ Dz

+ (μi,j,1D
x
0wi,j,1) .

The free surface boundary condition (20) gives

μi,j,1/2D
z
+ui,j,0 = −μi,j,3/2D

z
+ui,j,1 − 2μi,j,1D

x
0wi,j,1.

Hence,
(79)

Ti,j =
2

h

[
μi,j,3/2D

z
+ui,j,1 + μi,j,1D

x
0wi,j,1

]
+Dx

0

(
λi,j,1D

z
+wi,j,1

)
+Dz

+ (μi,j,1D
x
0wi,j,1) .

We compare the spatial discretization to a fully centered scheme where the terms
in L(u) that contain z-differences on the z = 0 grid line:

(80) T̃i,j =: Dz
−
(
μi,j,3/2D

z
+ui,j,1

)
+ Dx

0 (λi,j,1D
z
0wi,j,1) + Dz

0 (μi,j,1D
x
0wi,j,1) .

We can perturb the free surface boundary condition (20) by a second order term

(81)
1

2

(
μi,j,3/2D

z
+ui,j,1 + μi,j,1/2D

z
+ui,j,0

)
+ μi,j,1D

x
0wi,j,1 = h2Ri,j .

The resulting spatial discretization will be second order accurate as long as R is a
difference operator which is bounded independently of h for smooth functions. We
will determine R such that (80) subject to (81) is equivalent to (79). The boundary
condition (81) gives

(82) μi,j,1/2D
z
+ui,j,0 = −μi,j,3/2D

z
+ui,j,1 − 2μi,j,1D

x
0wi,j,1 + 2h2Ri,j .

Using (82), (80) can be written

T̃i,j =
2

h

[
μi,j,3/2D

z
+ui,j,1 + μi,j,1D

x
0wi,j,1

]
+ Dx

0 (λi,j,1D
z
0wi,j,1)

+Dz
0 (μi,j,1D

x
0wi,j,1) + 2hRi,j .

Hence, T = T̃ if

Dx
0

(
λi,j,1D

z
+wi,j,1

)
+ Dz

+ (μi,j,1D
x
0wi,j,1)

= Dx
0 (λi,j,1D

z
0wi,j,1) + Dz

0 (μi,j,1D
x
0wi,j,1) + 2hRi,j .
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We have

Dz
0w = Dz

+w − h

2
Dz

+D
z
−w,

which gives

Ri,j =
1

4
Dx

0 (λi,j,1D
z
+D

z
−wi,j,1) +

1

4
Dz

+D
z
−(μi,j,1D

x
0wi,j,1).

Similar calculations show that the boundary conditions (21) and (22) can be perturbed
by second order terms to account for the difference between a fully centered and a
one-sided spatial discretization in L(v) and L(w), respectively.

This proves that the semidiscrete approximation (17)–(19) subject to the bound-
ary conditions (20)–(22) is second order accurate.

Note. Inserting the expression for Ri,j into (81) shows that the fully centered
approximation couples all ghost points (k = 0) along the free surface. Hence, using
this formulation would require a linear system to be solved to obtain the ghost point
values at each time step. As we have demonstrated, the same solution can be obtained
without solving a linear system by using our one-sided formula on the boundary.

Appendix B. Self-adjointness of the spatial operator (Lemma 1). It is
straightforward to show the following summation by parts identities:

(w,Dz
−v)h = −(Dz

+w, v)h − h2

2

∑
i,j

(wi,j,2vi,j,1 + wi,j,1vi,j,0) + h2
∑
i,j

wi,j,Nzvi,j,Nz−1,

(83)

(w, D̃z
0v)h = −(D̃z

0w, v)h − h2
∑
i,j

wi,j,1vi,j,1

(84)

+
h2

2

∑
i,j

(wi,j,Nz−1vi,j,Nz + wi,j,Nzvi,j,Nz−1) ,

where
∑

i,j =
∑Nx−1

i=1

∑Ny−1
j=1 . Since the solution satisfies periodic boundary condi-

tions in the x- and y-directions, we have

(w,Dx
−v)h = −(Dx

+w, v)h, (w,Dx
0v)h = −(Dx

0w, v)h,(85)

(w,Dy
−v)h = −(Dy

+w, v)h, (w,Dy
0v)h = −(Dy

0w, v)h.(86)

Consider the three terms in the left-hand side of (26): LHS := I + II + III,

I =
(
u0, L(u)(u1, v1, w1)

)
h
, II =

(
v0, L(v)(u1, v1, w1)

)
h
,

III =
(
w0, L(w)(u1, v1, w1)

)
h
.

Applying the summation by parts identities (83)–(86) on the first term gives

(87) I = −
(
Dx

+u
0, Ex

1/2(2μ + λ)Dx
+u

1
)
h
−
(
Dy

+u
0, Ey

1/2(μ)Dy
+u

1
)
h

−
(
Dz

+u
0, Ez

1/2(μ)Dz
+u

1
)
h
−
(
Dx

0u
0, λDy

0v
1 + λD̃z

0w
1
)
h

−
(
Dy

0u
0, μDx

0v
1
)
h
−
(
D̃z

0u
0, μDx

0w
1
)
h

+ B(u),
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where the boundary terms are

B(u) = − h2

2

∑
i,j

(
u0
i,j,2μi,j,3/2D

z
+u

1
i,j,1 + u0

i,j,1μi,j,1/2D
z
+u

1
i,j,0

)
− h2

∑
i,j

u0
i,j,1μi,j,1D

x
0w

1
i,j,1 + h2

∑
i,j

u0
i,j,Nz

μi,j,Nz−1/2D
z
+u

1
i,j,Nz−1

+
h2

2

∑
i,j

(
u0
i,j,Nz−1μi,j,NzD

x
0w

1
i,j,Nz

+ u0
i,j,Nz

μi,j,Nz−1D
x
0w

1
i,j,Nz−1

)
.

The homogeneous Dirichlet boundary condition (23) gives

u0
i,j,Nz

= 0, Dx
0w

1
i,j,Nz

= 0.

Hence, the third and fourth terms in B(u) vanish. To analyze the first term, we note
that

u0
i,j,2 = u0

i,j,1 + hDz
+u

0
i,j,1.

Therefore,

(88) B(u) = −h2

2

∑
i,j

u0
i,j,1

(
μi,j,3/2D

z
+u

1
i,j,1 + μi,j,1/2D

z
+u

1
i,j,0 + 2μi,j,1D

x
0w

1
i,j,1

)
− h3

2

∑
i,j

μi,j,3/2D
z
+u

0
i,j,1D

z
+u

1
i,j,1.

The first term in (88) vanishes because of the free surface boundary condition (20),
and we arrive at

B(u) = −h3

2

∑
i,j

μi,j,3/2D
z
+u

0
i,j,1D

z
+u

1
i,j,1.

The second term in LHS can be analyzed in the same way, giving

(89) II = −
(
Dx

+v
0, Ex

1/2(μ)Dx
+v

1
)
h
−
(
Dy

+v
0, Ey

1/2(2μ + λ)Dy
+v

1
)
h

−
(
Dz

+v
0, Ez

1/2(μ)Dz
+v

1
)
h
−
(
Dx

0v
0, μDy

0u
1
)
h

−
(
Dy

0v
0, λDx

0u
1 + λD̃z

0w
1
)
h
−
(
D̃z

0v
0, μDy

0w
1
)
h

+ B(v),

where

B(v) = −h3

2

∑
i,j

μi,j,3/2D
z
+v

0
i,j,1D

z
+v

1
i,j,1.

For the third term in LHS, we get

(90) III = −
(
Dx

+w
0, Ex

1/2(μ)Dx
+w

1
)
h
−
(
Dy

+w
0, Ey

1/2(μ)Dy
+w

1
)
h

−
(
Dz

+w
0, Ez

1/2(2μ + λ)Dz
+w

1
)
h
−
(
Dx

0w
0, μD̃z

0u
1
)
h

−
(
Dy

0w
0, μD̃z

0v
1
)
h
−
(
D̃z

0w
0, λDx

0u
1 + λDy

0v
1
)
h

+ B(w),
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where

B(w) = −h3

2

∑
i,j

(2μi,j,3/2 + λi,j,3/2)D
z
+w

0
i,j,1D

z
+w

1
i,j,1.

After applying the same summation by parts rules to the right-hand side of (26),
it is straightforward to verify that the right-hand side equals the left-hand side.

Appendix C. Ellipticity of the spatial operator (Lemma 3). We will
mimic the construction of the energy in the continuous case by exploring the identity

(91) Dx
−E

x
1/2(μ)Dx

+u = Dx
0 (μDx

0u) − h2

4
Dx

+D
x
−
(
μDx

+D
x
−u

)
in the periodic x- and y-directions. The problem is not periodic in the z-direction. We
will use the following summation-by-parts form of the above identity instead (N = Nz

in this appendix)

(92)
(
u,Dz

−E
z
1/2(μ)Dz

+u
)
h

= −
(
D̃z

0u, μD̃
z
0u
)
h
− h2

4

(
Dz

+D
z
−u, μD

z
+D

z
−u

)
hr

+ h2
∑
i,j

(
−1

2
μi,j,1/2ui,j,1D

z
+ui,j,0 −

1

2
μi,j,3/2ui,j,1D

z
+ui,j,1

+
μi,j,N

2
ui,j,N−1D

z
+ui,j,N−1 +

μi,j,N−1

2
ui,j,NDz

+ui,j,N−1

)
.

We obtain, by use of (91) in the periodic directions,

L(u)(u, v, w) = 2Dx
−

(
Ex

1/2(μ)Dx
+u

)
+ Dz

−

(
Ez

1/2(μ)Dz
+u

)
+ Dx

0

(
λ(Dx

0u + Dy
0v + D̃z

0w)
)

+ Dy
0 (μ(Dy

0u + Dx
0v)) + D̃z

0 (μDx
0w)

− h2

4

(
Dx

+D
x
−(λDx

+D
x
−u) + Dy

+D
y
−(μDy

+D
y
−u)

)
,

L(v)(u, v, w) = 2Dy
−

(
Ey

1/2(μ)Dy
+v

)
+ Dz

−

(
Ez

1/2(μ)Dz
+v

)
+ Dy

0

(
λ(Dx

0u + Dy
0v + D̃z

0w)
)

+ Dx
0 (μ(Dy

0u + Dx
0v)) + D̃z

0 (μDy
0w)

− h2

4

(
Dx

+D
x
−(μDx

+D
x
−v) + Dy

+D
y
−(λDy

+D
y
−v)

)
,

L(w)(u, v, w) = 2Dz
−

(
Ez

1/2(μ)Dz
+w

)
+ Dz

−

(
Ez

1/2(λ)Dz
+w

)
+ D̃z

0 (λ(Dx
0u + Dy

0v)) + Dx
0

(
μ(D̃z

0u + Dx
0w)

)
+ Dy

0

(
μ(D̃z

0v + Dy
0w)

)
− h2

4

(
Dx

+D
x
−(μDx

+D
x
−w) + Dy

+D
y
−(μDy

+D
y
−w)

)
.

Identities (92) and (84) give

(u, L(u))h = − 2(Dx
+u,E

x
1/2(μ)Dx

+u)h − (D̃z
0u, μD̃

z
0u)h

−
(
Dx

0u, λ(Dx
0u + Dy

0v + D̃z
0w)

)
h
− (Dy

0u, μ(Dy
0u + Dx

0v))h

−
(
D̃z

0u, μD
x
0w

)
h
− h2

4

[
(Dx

+D
x
−u, λD

x
+D

x
−u)h

+ (Dy
+D

y
−u, μD

y
+D

y
−u)h + (Dz

+D
z
−u, μD

z
+D

z
−u)hr

]
+ T

(u)
1 + T

(u)
N ,
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where T
(u)
1 and T

(u)
N are the boundary terms that correspond to the boundary at

k = 1 and at k = N , respectively. The periodic directions do not contribute with any
boundary terms as seen from (85) and (86). We have

T
(u)
1 = h2

∑
i,j

(
−1

2
μi,j,1/2ui,j,1D

z
+ui,j,0 −

1

2
μi,j,3/2ui,j,1D

z
+ui,j,1 − ui,j,1μi,j,1D

x
0wi,j,1

)
= h2

∑
i,j

ui,j,1

(
−1

2
μi,j,1/2D

z
+ui,j,0 −

1

2
μi,j,3/2D

z
+ui,j,1 − μi,j,1D

x
0wi,j,1

)
.

It follows directly from the free surface boundary condition (20) that T
(u)
1 = 0. The

boundary terms at k = N are given by

T
(u)
N = h2

∑
i,j

(μi,j,N−1

2
ui,j,NDx

0wi,j,N−1 +
μi,j,Nui,j,N−1

2
Dx

0wi,j,N

+
μi,j,N

2
ui,j,N−1D

z
−ui,j,N +

μi,j,N−1

2
ui,j,NDz

−ui,j,N

)
.

The Dirichlet boundary condition at k = N gives

T
(u)
N = −h

∑
i,j

μi,j,N

2
u2
i,j,N−1.

Similarly, we obtain

(v, L(v))h = − 2(Dy
+v,E

y
1/2(μ)Dy

+v)h − (D̃z
0v, μD̃

z
0v)h

−
(
Dy

0v, λ(Dx
0u + Dy

0v + D̃z
0w)

)
h
− (Dx

0v, μ(Dy
0u + Dx

0w))h

−
(
D̃z

0v, μD
y
0w

)
h
− h2

4

[
(Dx

+D
x
−v, μD

x
+D

x
−v)h

+ (Dy
+D

y
−v, λD

y
+D

y
−v)h + (Dz

+D
z
−v, μD

z
+D

z
−v)hr

]
− h

∑
i,j

μi,j,N

2
v2
i,j,N−1.

In the z-direction, we make use of (84) and (92) as well as(
w,Dz

+

(
Ez

1/2(μ)Dz
−w

))
h

= −
(
Dz

+w,E
z
1/2(μ)Dz

+w
)
h

+ h2
∑
i,j

−1

2
μi,j,1/2wi,j,1D

z
+wi,j,0 −

1

2
μi,j,3/2wi,j,1D

z
+wi,j,1 −

h

2
μi,j,3/2(D

z
+wi,j,1)

2

+ μi,j,N−1/2wi,j,NDz
+wi,j,N−1.

We have

(w,L(w))h = −2(Dz
+w,E

z
1/2(μ)Dz

+w)h − (D̃z
0w, λD̃

z
0w)h − (D̃z

0w, λ(Dx
0u + Dy

0v))h

− (Dx
0w, μ(Dx

0w + D̃z
0u))h − (Dy

0w, μ(Dy
0w + D̃z

0v))h

− h2

4

[
(Dx

+D
x
−w, μD

x
+D

x
−w)h + (Dy

+D
y
−w, μD

y
+D

y
−w)h + (Dz

+D
z
−w, λD

z
+D

z
−w)hr

]
+ T

(w)
1 + T

(w)
N ,



DIFFERENCE METHOD FOR THE ELASTIC WAVE EQUATION 1935

where T
(w)
1 are the boundary terms that belong to the free surface boundary, and

T
(w)
N are the boundary terms that belong to the Dirichlet boundary. We have

T
(w)
1 = h2

∑
i,j

−1

2
λi,j,1/2wi,j,1D

z
+wi,j,0 −

1

2
λi,j,3/2wi,j,1D

z
+wi,j,1

− wi,j,1λi,j,1(D
x
0ui,j,1 + Dy

0vi,j,1) − μi,j,1/2wi,j,1D
z
+wi,j,0

− μi,j,3/2wi,j,1D
z
+wi,j,1 − hμi,j,3/2(D

z
+wi,j,1)

2

= h2
∑
i,j

wi,j,1

(
−1

2
λi,j,1/2D

z
+wi,j,0 −

1

2
λi,j,3/2D

z
+wi,j,1

− λi,j,1(D
x
0ui,j,1 + Dy

0vi,j,1) − μi,j,1/2D
z
+wi,j,0

− μi,j,3/2D
z
+wi,j,1

)
− hμi,j,3/2(D

z
+wi,j,1)

2.

The free surface boundary condition (22) gives

T
(w)
1 = −h3

∑
i,j

μi,j,3/2(D
z
+wi,j,1)

2.

At the Dirichlet boundary we have

T
(w)
N = h2

∑
i,j

2μi,j,N−1/2wi,j,NDz
+wi,j,N−1 +

1

2
wi,j,N−1λi,j,N (Dx

0ui,j,N + Dy
0vi,j,N )

+
1

2
wi,j,Nλi,j,N−1(D

x
0ui,j,N−1 + Dy

0vi,j,N−1) +
λi,j,N

2
wi,j,N−1D

z
+wi,j,N−1

+
λi,j,N−1

2
wi,j,NDz

+wi,j,N−1 = −h
∑
i,j

λi,j,N

2
w2

i,j,N−1.

Adding the expressions for (u, L(u)), (v, L(v)), and (w,L(w)) results in (28)–(30).
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CONVERGENCE OF A FINITE ELEMENT APPROXIMATION TO A
STATE-CONSTRAINED ELLIPTIC CONTROL PROBLEM∗

KLAUS DECKELNICK† AND MICHAEL HINZE‡

Abstract. We consider an elliptic optimal control problem with pointwise state constraints.
The cost functional is approximated by a sequence of functionals which are obtained by discretizing
the state equation with the help of linear finite elements and enforcing the state constraints in the
nodes of the triangulation. The corresponding minima are shown to converge in L2 to the exact
control as the discretization parameter tends to zero. Furthermore, error bounds for the control
and the state are obtained in both two and three space dimensions. Finally, we present numerical
examples which confirm our analytical findings.
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1. Introduction. The aim of this paper is to analyze a finite element discretiza-
tion of a control problem with pointwise state constraints. Let Ω ⊂ R

d (d = 2, 3) be a
bounded domain with a smooth boundary. For a given function u ∈ L2(Ω) we denote
by y = G(u) the solution of the Neumann problem

−Δy + y = u in Ω,
∂νy = 0 on ∂Ω.

Here ν denotes the outward pointing unit normal to ∂Ω. It is well known that y ∈
H2(Ω) and

(1.1) ‖y‖H2 ≤ C‖u‖L2 .

We now consider the following control problem:

(1.2)

min
u∈L2(Ω)

J(u) =
1

2

∫
Ω

|y − y0|2 +
α

2

∫
Ω

|u− u0|2

subject to y = G(u) and y(x) ≤ b(x) in Ω.

Here α > 0 and y0, u0 ∈ H1(Ω) as well as b ∈ W 2,∞(Ω) are given functions. We
denote by M(Ω̄) the space of Radon measures, which is defined as the dual space of
C0(Ω̄) and endowed with the norm

‖μ‖M(Ω̄) = sup
f∈C0(Ω̄),|f |≤1

∫
Ω̄

fdμ.

The analysis of (1.2) is well understood and sketched in [16, section 6.2.1] for the
problem under consideration. Since the state constraints form a convex set and the
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cost functional is quadratic, it is not difficult to establish the existence of a unique so-
lution u ∈ L2(Ω) to this problem. Moreover, from [3, Theorem 5.2] we infer (compare
also [2, Theorem 2]) the following.

Theorem 1.1. A function u ∈ L2(Ω) is a solution of (1.2) if and only if there
exist μ ∈ M(Ω̄) and p ∈ L2(Ω) such that with y = G(u) there holds,∫

Ω

p
(
−Δv + v

)
=

∫
Ω

(y − y0)v +

∫
Ω̄

vdμ ∀v ∈ H2(Ω) with ∂νv = 0 on ∂Ω,(1.3)

p + α(u− u0) = 0 a.e. in Ω,(1.4)

μ ≥ 0, y(x) ≤ b(x) a.e. in Ω and

∫
Ω̄

(b− y)dμ = 0.(1.5)

The study of (1.2) is complicated by the presence of the measure μ on the right-
hand side of (1.3). As a consequence, the solution p of this problem is no longer in
H1(Ω) but only in W 1,s(Ω) for all 1 ≤ s < d

d−1 . This fact also accounts for the form
of the weak formulation (1.3).

The aim of the present paper is to develop a finite element approximation of
problem (1.2). The underlying idea consists in approximating the cost functional J
by a sequence of functionals Jh, where h is a mesh parameter related to a sequence of
triangulations. The definition of Jh involves the approximation of the state equation
by linear finite elements and enforces constraints on the state in the nodes of the
triangulation. We shall prove that the minima of Jh converge in L2 to the minimum
of J as h → 0 and that the states convergence strongly in H1 as well as uniformly
and derive corresponding error bounds.

To our knowledge only a few attempts have been made to develop a finite el-
ement analysis for state-constrained elliptic control problems. In [4] Casas proves
convergence of finite element approximations to optimal control problems for semilin-
ear elliptic equations with finitely many state constraints. Casas and Mateos extend
these results in [5] to a less regular setting for the states and prove convergence of finite
element approximations to semilinear distributed and boundary control problems.

Let us comment on further approaches that tackle optimization problems for
PDEs with state constraints. A Lavrentiev-type regularization of problem (1.2) is in-
vestigated in [11]. In this approach the state constraint y ≤ b in (1.2) is replaced by
the mixed constraint εu + y ≤ b, with ε > 0 denoting a regularization parameter. It
turns out that the associated Lagrange multiplier με belongs to L2(Ω). The resulting
optimization problems are solved by either interior-point methods or primal-dual ac-
tive set strategies; compare [10]. The development of numerical approaches to tackle
(1.2) is ongoing. An excellent overview can be found in [8, 9], where further references
are also given.

The paper is organized as follows: In section 2 we describe our discretization and
establish convergence of controls and states to their continuous counterparts for two-
and three-dimensional domains. An error analysis is carried out in section 3. We
obtain

‖u− uh‖L2 , ‖y − yh‖H1 =

{
O(h1−ε) if d = 2,

O(h
1
2−ε) if d = 3

(ε > 0 arbitrary), where uh and yh are the discrete control and state, respectively.
Roughly speaking, the idea is to insert the discrete solution into the continuous func-
tional and vice versa. An important tool in the analysis is the use of L∞-error esti-
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mates for finite element approximations of the Neumann problem developed in [13].
The need for uniform estimates is due to the presence of the measure μ in (1.3).

2. Finite element discretization. Let Th be a triangulation of Ω with maxi-
mum mesh size h := maxT∈Th

diam(T ) and vertices x1, . . . , xm. We suppose that Ω̄
is the union of the elements of Th; boundary elements are allowed to have one curved
face. In addition, we assume that the triangulation is quasi-uniform in the sense that
there exists a constant κ > 0 (independent of h) such that each T ∈ Th is contained
in a ball of radius κ−1h and contains a ball of radius κh. Let us define the space of
linear finite elements:

Xh := {vh ∈ C0(Ω̄) | vh is a linear polynomial on each T ∈ Th}.

We have the following approximation and inverse properties:
(a) There exists an interpolation operator Πh : W l,p(Ω) → Xh (l = 1, 2; 1 ≤ p ≤

∞) such that for T ∈ Th
(2.1) ‖v − Πhv‖Wm,p(T ) ≤ Chl−m‖v‖W l,p(ST ), 0 ≤ m ≤ l,

where ST = ∪{T̃ ∈ Th | T̃ ∩ T �= ∅}.
(b) If p > d, the usual nodal interpolate satisfies

(2.2) ‖v − Ihv‖W 1,∞(T ) ≤ Ch1− d
p ‖v‖W 2,p(T ), T ∈ Th.

(c) For vh ∈ Xh, m = 0, 1, l ≥ 0, and 1 ≤ q ≤ p ≤ ∞ we have

(2.3) ‖vh‖Wm,p(T ) ≤ Ch−( d
q−

d
p )−m−l‖vh‖W−l,q(T ), T ∈ Th,

where, for l ≥ 1, W−l,q(T ) is the dual of W l,q′

0 (T ), 1
q + 1

q′ = 1.

The interpolation operator Πh in (a) can be defined as in [15] using averages over
(d − 1)-simplices σi. Since boundary elements are allowed to have only one curved
face we can associate with a boundary node xi a straight (d− 1)-simplex σi such that
xi ∈ σi. It turns out that the arguments presented in [15] for a polydedral domain can
be used with small changes in order to derive (2.1) for boundary elements T . Note
that functions vh ∈ Xh do not have to satisfy boundary conditions. The estimates
(2.2) and (2.3) can be proved similarly as in [14, pp. 685–686].

In what follows it is convenient to introduce a discrete approximation of the
solution operator G. For a given function v ∈ L2(Ω) we denote by zh = Gh(v) ∈ Xh

the solution of the discrete Neumann problem∫
Ω

(
∇zh · ∇vh + zhvh

)
=

∫
Ω

vvh for all vh ∈ Xh.

It is well known that for all v ∈ L2(Ω)

‖G(v) − Gh(v)‖ ≤ Ch2‖v‖,(2.4)

‖G(v) − Gh(v)‖L∞ ≤ Ch2− d
2 ‖v‖.(2.5)

Here ‖·‖ denotes the L2-norm. We propose the following approximation of the control
problem (1.2):

(2.6)

min
u∈L2(Ω)

Jh(u) :=
1

2

∫
Ω

|yh − Phy0|2 +
α

2

∫
Ω

|u− Phu0|2

subject to yh = Gh(u) and yh(xj) ≤ b(xj) for j = 1, . . . ,m.
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Here Ph denotes the L2-projection, i.e.,

(2.7)

∫
Ω

Phz vh =

∫
Ω

z vh ∀vh ∈ Xh.

It is well known that

(2.8) ‖z − Phz‖ ≤ Ch‖z‖H1 ∀z ∈ H1(Ω).

Problem (2.6) represents a convex infinite-dimensional optimization problem of
similar structure as problem (1.2) but with only finitely many equality and inequality
constraints which form a convex admissible set. Again we can apply [3, Theorem 5.2]
which together with [2, Corollary 1] yields (compare also the analysis of problem (P)
in [4]) the following.

Lemma 2.1. Problem (2.6) has a unique solution uh ∈ L2(Ω). There exist
μ1, . . . , μm ∈ R and ph ∈ Xh such that with yh = Gh(uh) and μh =

∑m
j=1 μjδxj we

have ∫
Ω

(
∇ph · ∇vh + phvh

)
=

∫
Ω

(yh − Phy0)vh +

∫
Ω̄

vhdμh for all vh ∈ Xh,(2.9)

ph + α(uh − Phu0) = 0 in Ω,(2.10)

μj ≥ 0, yh(xj) ≤ b(xj), j = 1, . . . ,m, and

∫
Ω̄

(
Ihb− yh

)
dμh = 0.(2.11)

Here δx denotes the Dirac measure concentrated at x, and Ih is the usual Lagrange
interpolation operator.

Remark 2.2. From (2.10) we deduce that in problem (2.6) it is sufficient to
minimize over controls u ∈ Xh instead of u ∈ L2(Ω) in order to obtain the same
unique solution uh. For the resulting finite-dimensional optimization problem the
result of Lemma 2.1 then follows from, e.g., [12, Theorem 12.1].

We have the following convergence result.
Theorem 2.3. Let uh ∈ L2(Ω) be the optimal solution of (2.6) with corresponding

state yh ∈ Xh and adjoint variables ph ∈ Xh and μh ∈ M(Ω̄). Then as h → 0 we
have

uh → u in L2(Ω), yh → y in H1(Ω) and in C0(Ω̄),

where u is the solution of (1.2) with corresponding state y.
Proof. Let b := minx∈Ω̄ b(x). Since b = Gh(b) and b ≤ b(xj) for j = 1, . . . ,m we

have

1

2

∫
Ω

|yh − Phy0|2 +
α

2

∫
Ω

|uh − Phu0|2 = Jh(uh) ≤ Jh(b) ≤ C(y0, u0, b).

This implies that there exists a constant C which is independent of h such that

(2.12) ‖yh‖, ‖uh‖, ‖ph‖ ≤ C for all 0 < h ≤ 1.

Note that the bound on ph follows from (2.10). In order to estimate μh we use vh ≡ 1
in (2.9) and obtain for every f ∈ C0(Ω̄), |f | ≤ 1,∫

Ω̄

fdμh ≤
m∑
j=1

μj |f(xj)| ≤
m∑
j=1

μj =

∫
Ω̄

1dμh =

∫
Ω

(
ph + Phy0 − yh

)
≤ C
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by (2.12). This yields

(2.13) ‖μh‖M(Ω̄) ≤ C for all 0 < h ≤ 1.

In view of (2.12) and (2.13) there exists a sequence h → 0 and û, p̂ ∈ L2(Ω) as well
as μ̂ ∈ M(Ω̄) such that

(2.14) uh ⇀ û, ph ⇀ p̂ in L2(Ω), and μh ⇀ μ̂ in M(Ω̄).

Since G is compact as an operator from L2(Ω) into C0(Ω̄) we have, after passing to a
further subsequence if necessary,

(2.15) G(uh) → G(û) in C0(Ω̄)

and hence

‖yh − G(û)‖L∞ ≤ ‖Gh(uh) − G(uh)‖L∞ + ‖G(uh) − G(û)‖L∞

≤ Ch2− d
2 ‖uh‖ + ‖G(uh) − G(û)‖L∞

so that yh → G(û) =: ŷ in C0(Ω̄) as h → 0 by (2.12) and (2.15). A similar argument
shows that yh → ŷ in H1(Ω).

Let us now pass to the limit in (2.9)–(2.11). To begin, let v ∈ H2(Ω) with ∂νv = 0
on ∂Ω and denote by Rhv the Ritz projection of v. Recalling (2.14) and (2.9) and the
fact that Rhv → v in C0(Ω̄) we obtain∫

Ω

p̂
(
−Δv + v

)
←

∫
Ω

ph
(
−Δv + v

)
=

∫
Ω

(
∇ph · ∇v + phv

)
=

∫
Ω

(
∇ph · ∇Rhv + phRhv

)
=

∫
Ω

(yh − Phy0)Rhv +

∫
Ω̄

Rhvdμh

→
∫

Ω

(ŷ − y0)v +

∫
Ω̄

vdμ̂.

Using (2.14) we may pass to the limit in (2.10) and deduce p̂ + α(û− u0) = 0 a.e. in
Ω. Clearly, μ̂ ≥ 0; since yh ≤ Ihb in Ω̄ and yh → ŷ in C0(Ω̄) we have ŷ ≤ b in Ω̄.
Furthermore, recalling that

∫
Ω̄
(Ihb− yh)dμh = 0 we obtain in the limit∫

Ω̄

(b− ŷ)dμ̂ = 0.

Theorem 1.1 now implies that û is a solution of (1.2); as the solution of this problem
is unique we must have u = û and hence y = ŷ, and the whole sequence is convergent.

Let us finally prove that uh → u in L2(Ω). To begin, note that by (2.5)

Gh

(
u− γh2− d

2

)
= Gh(u) − G(u) + G(u) − γh2− d

2 ≤ Ch2− d
2 ‖u‖ + b− γh2− d

2 ≤ b

in Ω̄, provided that γ is large enough. Evaluating the above inequality at the nodes
x1, . . . , xm we see that Gh(u − γh2− d

2 ) is admissible for the discrete problem, and

hence Jh(uh) ≤ Jh(u− γh2− d
2 ) or

α

2
‖uh−Phu0‖2 ≤ α

2
‖u−γh2− d

2 −Phu0‖2+
1

2
‖Gh(u)−γh2− d

2 −Phy0‖2− 1

2
‖yh−Phy0‖2.
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Since yh → y, Gh(u) → G(u) = y in L2(Ω) we infer that

lim sup
h→0

‖uh − Phu0‖2 ≤ ‖u− u0‖2 ≤ lim inf
h→0

‖uh − Phu0‖2,

where the second inequality is a consequence of the weak convergence uh − Phu0 ⇀
u − u0. Thus, ‖uh − Phu0‖2 → ‖u − u0‖2, which implies uh − Phu0 → u − u0 in L2

and hence uh → u0 in L2.
Remark 2.4. The above convergence result also holds if Ω is assumed to be a

bounded, convex, and polyhedral domain in R
d. To see this we note that (1.1) still

holds in this case, and hence both Theorem 1.1 (see [2]) and the estimates (2.4),
(2.5) remain true. An inspection of the proof of Theorem 2.3 then shows that this is
sufficient in order to carry out the analysis.

3. Error analysis. Let us now turn to the error analysis and start with a couple
of auxiliary results.

Lemma 3.1. Suppose that u, uh ∈ L2(Ω) are the optimal solutions of (1.2) and
(2.6), respectively, with corresponding states y ∈ H2(Ω), yh ∈ Xh. Let v ∈ L2(Ω) and
z = G(v), zh = Gh(v). Then

J(u) +
1

2

∫
Ω

|z − y|2 +
α

2

∫
Ω

|v − u|2 +

∫
Ω̄

(b− z)dμ = J(v),(3.1)

Jh(uh) +
1

2

∫
Ω

|zh − yh|2 +
α

2

∫
Ω

|v − uh|2 +

∫
Ω̄

(
Ihb− zh

)
dμh = Jh(v).(3.2)

Proof. An elementary calculation using (1.3) shows

J(v) − J(u) =
1

2

∫
Ω

|z − y|2 +
α

2

∫
Ω

|v − u|2 +

∫
Ω

(z − y)(y − y0) + α

∫
Ω

(u− u0)(v − u)

=
1

2

∫
Ω

|z − y|2 +
α

2

∫
Ω

|v − u|2 +

∫
Ω

p
(
−Δ(z − y) + (z − y)

)
−
∫

Ω̄

(z − y)dμ + α

∫
Ω

(u− u0)(v − u).

Since z = G(v), y = G(u) we have∫
Ω

p
(
−Δ(z − y) + (z − y)

)
=

∫
Ω

p(v − u),

so that (1.4) and (1.5) finally imply

J(v) − J(u) =
1

2

∫
Ω

|z − y|2 +
α

2

∫
Ω

|v − u|2 +

∫
Ω̄

(b− z)dμ.

The second claim follows in a similar way.
Remark 3.2. Note that in the above z = G(v), zh = Gh(v) do not necessarily have

to be admissible for the minimization problems.
The next lemma examines in more detail the approximation of J by Jh.
Lemma 3.3. Suppose that v ∈ W 1,s(Ω) for some 2d

d+2 ≤ s ≤ 2. Then

|J(v) − Jh(v)| ≤ Ch2+ d
2−

d
s

(
‖u0‖H1‖v‖W 1,s + ‖v‖2 + ‖y0‖2

H1 + ‖u0‖2
H1

)
.

Proof. Let z = G(v), zh = Gh(v). Then

J(v) − Jh(v) =
1

2

∫
Ω

(
|z − y0|2 − |zh − Phy0|2

)
+

α

2

∫
Ω

(
|v − u0|2 − |v − Phu0|2

)
.
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Using (2.7), (2.8), (2.4), and (1.1) we obtain∣∣∣∣∫
Ω

(
|z − y0|2 − |zh − Phy0|2

)∣∣∣∣ =

∣∣∣∣∫
Ω

(z − y0 − zh + Phy0)(z − y0 + zh − Phy0)

∣∣∣∣
=

∣∣∣∣∫
Ω

(
(z − zh)(z − y0 + zh − Phy0) − (y0 − Phy0)(z − y0 − Ph(z − y0)

)∣∣∣∣
≤ C‖z − zh‖

(
‖z‖ + ‖zh‖ + ‖y0‖

)
+ Ch2‖y0‖H1

(
‖z‖H1 + ‖y0‖H1

)
≤ Ch2

(
‖v‖2 + ‖y0‖2

H1

)
.

For the second term we obtain in a similar way∫
Ω

(
|v − u0|2 − |v − Phu0|2

)
=

∫
Ω

(u0 − Phu0)w =

∫
Ω

(u0 − Phu0)(w − Phw),

where w = u0 + Phu0 − 2v and where we have used (2.7). Applying Lemma 5.1 from
the appendix we infer∣∣∣∣∫

Ω

(
|v − u0|2 − |v − Phu0|2

)∣∣∣∣ ≤ Ch2+ d
2−

d
s ‖u0‖H1‖w‖W 1,s

≤ Ch2+ d
2−

d
s ‖u0‖H1

(
‖u0‖H1 + ‖v‖W 1,s

)
.

This proves the lemma.
Lemma 3.4. Suppose that v ∈ W 1,s(Ω) for some 1 < s < d

d−1 . Then

‖G(v) − Gh(v)‖L∞ ≤ Ch3− d
s | log h| ‖v‖W 1,s .

Proof Let z = G(v), zh = Gh(v). From a well-known embedding theorem we
infer that v ∈ Lq(Ω), with q = ds

d−s . Hence, elliptic regularity theory implies that

z ∈ W 2,q(Ω) and

(3.3) ‖z‖W 2,q ≤ C‖v‖Lq ≤ C‖v‖W 1,s .

Using Theorem 2.2 and the ensuing Remark in [13] we have

(3.4) ‖z − zh‖L∞ ≤ C| log h| inf
χ∈Xh

‖z − χ‖L∞ .

The result in [13] holds under certain approximation and inverse properties (see A.1–
A.4 on pp. 883–884) on the finite element space Xh which follow from (2.1)–(2.3).
Combining (3.4) with a well-known interpolation estimate yields

‖z − zh‖L∞ ≤ Ch2− d
q | log h|‖z‖W 2,q ≤ Ch3− d

s | log h|‖v‖W 1,s

in view of (3.3) and the relation between s and q.
Our next aim is to derive a uniform bound on ‖uh‖W 1,s for s < d

d−1 .

Lemma 3.5. Let 1 < s < d
d−1 . Then there exists a constant c, which is indepen-

dent of h, such that

‖uh‖W 1,s ≤ c for all 0 < h ≤ 1.

Proof. In view of (2.10) we have

‖uh‖W 1,s ≤ 1

α
‖ph‖W 1,s + ‖Phu0‖H1 ≤ 1

α
‖ph‖W 1,s + c,

so that it is sufficient to bound ‖ph‖W 1,s .
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Let s′ be such that 1
s + 1

s′ = 1, and suppose that φ ∈ Ls′(Ω). Let us denote by

ψ ∈ W 2,s′(Ω) the unique solution of the Neumann problem

−Δψ + ψ = φ in Ω,
∂νψ = 0 on ∂Ω.

Integration by parts and (2.9) yield∫
Ω

ph φ =

∫
Ω

(
∇ph · ∇ψ + phψ

)
=

∫
Ω

(
∇ph · ∇Rhψ + phRhψ

)
=

∫
Ω

(yh − Phy0)Rhψ +

∫
Ω̄

Rhψdμh,(3.5)

where Rhψ is the Ritz projection of ψ. Arguing similarly as in Theorem 1 of [1] one
shows that there exists a unique solution ph ∈ W 1,s(Ω) of the problem

(3.6)∫
Ω

ph
(
−Δv + v

)
=

∫
Ω

(yh − Phy0)v +

∫
Ω̄

vdμh ∀v ∈ H2(Ω) with ∂νv = 0 on ∂Ω.

Furthermore, there exists a constant c = c(s) > 0 such that

(3.7) ‖ph‖W 1,s ≤ c
(
‖yh − Phy0‖ + ‖μh‖M(Ω̄)

)
≤ C

uniformly in h in view of (2.12) and (2.13). If we use v = ψ in (3.6) and combine it
with (3.5), we obtain∫

Ω

(ph − ph)φ =

∫
Ω

(yh − Phy0)(ψ −Rhψ) +

∫
Ω̄

(ψ −Rhψ)dμh

≤ Ch2‖ψ‖H2

(
‖yh‖ + ‖Phy0‖

)
+ ‖ψ −Rhψ‖L∞‖μh‖M(Ω̄)

≤ Ch2‖ψ‖H2 + ch2− d
s′ | log h|‖ψ‖W 2,s′

≤ Ch2− d
s′ | log h|‖φ‖Ls′ .

Note that we have again applied (3.4) in order to control ‖ψ − Rhψ‖L∞ . Since
φ ∈ Ls′(Ω) is arbitrary we infer

‖ph − ph‖Ls ≤ Ch2− d
s′ | log h|.

Interpolation and inverse estimates then give

‖∇ph‖Ls ≤ C‖∇ph‖Ls + ch1− d
s′ | log h| ≤ C

by (3.7) and since 1 − d
s′ = d−1

s

(
d

d−1 − s
)
> 0.

Let us finally turn to an error estimate for the optimal controls and the optimal
states.

Theorem 3.6. Let u and uh be the solutions of (1.2) and (2.6), respectively. For
every ε > 0 there exists Cε > 0 such that

‖u− uh‖ + ‖y − yh‖H1 ≤ Cεh
2− d

2−ε.

Proof. Let us define ỹh := G(uh) ∈ H2(Ω) and ỹh := Gh(u) ∈ Xh. Then Lemma
3.1 implies

J(u) +
1

2

∫
Ω

|ỹh − y|2 +
α

2

∫
Ω

|uh − u|2 +

∫
Ω̄

(b− ỹh)dμ = J(uh),

Jh(uh) +
1

2

∫
Ω

|ỹh − yh|2 +
α

2

∫
Ω

|u− uh|2 +

∫
Ω̄

(
Ihb− ỹh

)
dμh = Jh(u).
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Since u = u0 − 1
αp ∈ W 1,s(Ω) for all 2d

d+2 ≤ s < d
d−1 we obtain with the help of

Lemma 3.3

1

2

∫
Ω

|ỹh − y|2 +
1

2

∫
Ω

|ỹh − yh|2 + α

∫
Ω

|uh − u|2

= J(uh) − J(u) + Jh(u) − Jh(uh) −
∫

Ω̄

(b− ỹh)dμ−
∫

Ω̄

(
Ihb− ỹh

)
dμh

≤ Ch2+ d
2−

d
s

(
‖u0‖H1

(
‖u‖W 1,s + ‖uh‖W 1,s

)
+ ‖u‖2 + ‖uh‖2 + ‖y0‖2

H1 + ‖u0‖2
H1

)
+

∫
Ω̄

(ỹh − b)dμ +

∫
Ω̄

(ỹh − Ihb)dμh.(3.8)

Let us first consider the last two integrals. We have for x ∈ Ω̄

ỹh(x) − b(x) = (ỹh(x) − yh(x)) + (yh(x) − (Ihb)(x)) + ((Ihb)(x) − b(x))

≤ ‖G(uh) − Gh(uh)‖L∞ + ‖Ihb− b‖L∞ ,

since yh(xj) ≤ b(xj), j = 1, . . . ,m, implies that yh ≤ Ihb in Ω̄. If we combine Lemma
3.4 with Lemma 3.5 we infer∫

Ω̄

(ỹh − b)dμ ≤ Ch3− d
s | log h| ‖uh‖W 1,s + Ch2|b|W 2,∞ ≤ Ch3− d

s | log h|.

Similarly we have from (1.5)

ỹh(x) − (Ihb)(x) = (ỹh(x) − y(x)) + (y(x) − b(x)) + (b(x) − (Ihb)(x))

≤ ‖Gh(u) − G(u)‖L∞ + ‖b− Ihb‖L∞ ,

so that (2.13) and Lemma 3.4 give∫
Ω̄

(
yh − Ihb

)
dμh ≤ Ch3− d

s | log h| ‖u‖W 1,s + Ch2|b|W 2,∞ ≤ Ch3− d
s | log h|.

Inserting these estimates into (3.8) and applying again Lemma 3.5 we derive

‖u− uh‖2 + ‖y − yh‖2 ≤ Ch3− d
s | log h|.

If we now choose s sufficiently close to d
d−1 we obtain

‖u− uh‖2 + ‖y − yh‖2 ≤ Cεh
4−d−2ε.

Finally, in order to obtain the error bound for y in H1 we note that∫
Ω

(
∇(y − yh) · ∇vh + (y − yh)vh

)
=

∫
Ω

(u− uh)vh

for all vh ∈ Xh, from which one derives the desired estimate using standard finite
element techniques and the bound on ‖u− uh‖.

In general we expect only weak convergence of μh to μ. Nevertheless, we have
the following partial result.

Corollary 3.7. Let K ⊂ Ω̄ be compact with K ∩ suppμ = ∅. For every ε > 0
there exists a constant Cε such that

μh(K) ≤ Cεh
2− d

2−ε.
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Proof. By Lemma 5.2 in the appendix there exists a nonnegative function φ ∈
C2(Ω̄) which satisfies

φ ≥ 1 on K, φ = 0 on suppμ, ∂νφ = 0 on ∂Ω.

Since μh ≥ 0 we obtain from (2.9)

μh(K) ≤
∫

Ω̄

φdμh =

∫
Ω̄

(φ−Rhφ)dμh +

∫
Ω̄

Rhφdμh

=

∫
Ω̄

(φ−Rhφ)dμh +

∫
Ω

(
∇ph · ∇Rhφ + phRhφ

)
−
∫

Ω

(yh − Phy0)Rhφ

=

∫
Ω̄

(φ−Rhφ)dμh +

∫
Ω

(
∇ph · ∇φ + phφ

)
−
∫

Ω

(yh − Phy0)Rhφ

=

∫
Ω̄

(φ−Rhφ)dμh +

∫
Ω

ph(−Δφ + φ) −
∫

Ω

(yh − Phy0)Rhφ,

where Rh is again the Ritz projection. On the other hand, (1.3) and the fact that
φ = 0 on suppμ imply ∫

Ω

(y − y0)φ−
∫

Ω

p(−Δφ + φ) = 0.

Combining this relation with the first estimate we derive

μh(K) ≤
∫

Ω̄

(φ−Rhφ)dμh +

∫
Ω

(ph − p)(−Δφ + φ) +

∫
Ω

(yh − Phy0)(φ−Rhφ)

+

∫
Ω

(y − yh − y0 + Phy0)φ

≤ ‖φ−Rhφ‖L∞‖μh‖M(Ω̄) + ‖p− ph‖‖φ‖H2 +
(
‖yh‖ + ‖Phy0‖

)
‖φ−Rhφ‖

+
(
‖y − yh‖ + ‖y0 − Phy0‖

)
‖φ‖

≤ C‖φ−Rhφ‖L∞ + Cεh
2− d

2−ε ≤ Cεh
2− d

2−ε

in view of (1.4), (2.10), and Theorem 3.6.
Remark 3.8. We mention here a second approach that differs from the one

discussed above in the way in which the inequality constraints are realized. Denote
by D1, . . . , Dm the cells of the dual mesh. Each cell Di is associated with a vertex xi

of Th, and we have

Ω̄ = ∪m
i=1Di, int(Di) ∩ int(Dj) = ∅, i �= j.

In (2.6), we now impose the constraints

(3.9) −
∫
Dj

(yh − Ihb) ≤ 0 for j = 1, . . . ,m

on the discrete solution yh = Gh(u). Here we have abbreviated −
∫
Dj

f = 1
|Dj |

∫
Dj

f .

The measure μh that appears in Lemma 2.1 now has the form μh =
∑m

j=1 μj−
∫
Dj

· dx,

and the pointwise constraints in (2.11) are replaced by those of (3.9). The error
analysis for the resulting numerical method can be carried out in the same way as



FEM FOR A STATE-CONSTRAINED CONTROL PROBLEM 1947

shown above with the exception of Theorem 3.6, where the bounds on ỹ − b and
ỹh − Ihb require a different argument. In this case, additional terms of the form∥∥∥∥∥f −−

∫
Dj

f

∥∥∥∥∥
L∞(Dj)

have to be estimated. Since these will, in general, be only of order O(h), this analysis
would only give ‖u−uh‖, ‖y−yh‖H1 = O(

√
h). The numerical test example in section

4 suggests that at least ‖u− uh‖ = O(h), but we are presently unable to prove such
an estimate.

4. Numerical examples.
Example 4.1. The following test problem is taken—in a slightly modified form—

from [10, Example 6.2]. Let Ω := B1(0), α > 0,

y0(x) := 4 +
1

π
− 1

4π
|x|2 +

1

2π
log |x|, u0(x) := 4 +

1

4απ
|x|2 − 1

2απ
log |x|,

and b(x) := |x|2 + 4. We consider the cost functional

J(u) :=
1

2

∫
Ω

|y − y0|2 +
α

2

∫
Ω

|u− u0|2,

where y = G(u). By checking the optimality conditions of first order, one verifies that
u ≡ 4 is the unique solution of (1.2) with corresponding state y ≡ 4 and adjoint states

p(x) =
1

4π
|x|2 − 1

2π
log |x| and μ = δ0.

The finite element counterparts of y, u, p, and μ are denoted by yh, uh, ph, and μh,
respectively.

For an error functional E(h) we define the experimental order of convergence as

EOC =
lnE(h1) − lnE(h2)

lnh1 − lnh2
.

To investigate EOCs for our model problem we choose a sequence of uniform
partitions of Ω containing five refinement levels, starting with eight triangles forming
a uniform octagon as the initial triangulation of the unit disc. The corresponding
grid sizes are hi = 2−i for i = 1, . . . , 5. As error functionals we take E(h) = ‖(u, y)−
(uh, yh)‖ and E(h) = ‖(u, y) − (uh, yh)‖H1 and note that the error p − ph is related
to u− uh via (2.10). We solve problems (2.6) using the QUADPROG routine of the
MATLAB OPTIMIZATION TOOLBOX. The required finite element matrices for the
discrete state and adjoint systems are generated with the help of the MATLAB PDE
TOOLBOX. Furthermore, for discontinuous functions f we use the quadrature rule∫

Ω

f(x)dx ≈
∑
T∈Th

f
(
xs(T )

)
|T |,

where xs(T ) denotes the barycenter of T . In all computations we set α = 1.
In Table 1, we present EOCs for problem (2.6) (case S = D) and the approach

sketched in Remark 3.8 (case S = M). As one can see, the error ‖u − uh‖ behaves
in the case S = D as predicted by Theorem 3.6, whereas the errors ‖y − yh‖ and
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Table 1

Experimental order of convergence.

(S = D) (S = M) (S = D) (S = M) (S = D) (S = M)
Level ‖u− uh‖ ‖u− uh‖ ‖y − yh‖ ‖y − yh‖ ‖y − yh‖H1 ‖y − yh‖H1

1 0.97615 0.65403 0.53646 0.69030 0.86051 0.68853
2 0.82724 1.97278 1.14786 2.01783 1.27240 2.01560
3 0.95585 1.96219 1.38937 2.00438 1.45709 2.00428
4 0.98378 1.85668 1.51838 1.98972 1.56420 1.99056
5 0.99544 1.58872 1.59842 1.97908 1.63277 1.97994
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Fig. 1. Numerically computed state yh (left) and control uh (right) for h = 2−5 in the case
S = D.
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Fig. 2. Numerically computed state yh (left) and control uh (right) for h = 2−5 in the case
S = M .

‖y−yh‖H1 show a better convergence behavior. On the finest level we have ‖u−uh‖ =
0.003117033, ‖y − yh‖ = 0.000123186, and |y − yh|H1 = 0.000083757. Furthermore,
all coefficients of μh are equal to zero, except the one in front of δ0, whose value
is 0.99946494. The errors ‖u − uh‖, ‖y − yh‖, and ‖y − yh‖H1 in the case S = M
show a better EOC than in the case S = D. This can be explained by the facts
that the exact solutions y and u are very smooth and that the relaxed form of the
state constraints introduce a smearing effect on the numerical solutions at the origin.
On the finest level we have ‖u − uh‖ = 0.001020918, ‖y − yh‖ = 0.000652006, and
|y − yh|H1 = 0.000037656. Furthermore, the coefficient of μh corresponding to the
patch containing the origin has the value 0.66505911271141.

Figures 1 and 2 present the numerical solutions yh and uh for h = 2−5 in the case
S = D and S = M , respectively. We note that using equal scales on all axes would
give completely flat graphs in all four figures.
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Fig. 3. Numerically computed state yh (left) and control uh (right) for h =
√

2
36

in the case S = D.

Example 4.2. The second test problem is taken from [11, Example 2]. It reads

min
u∈L2(Ω)

J(u) =
1

2

∫
Ω

|y − y0|2 +
1

2

∫
Ω

|u− u0|2

subject to y = G(u) and y(x) ≥ b(x) in Ω.

Here Ω denotes the unit square,

b(x) =

{
2x1 + 1, x1 < 1

2 ,

2, x1 ≥ 1
2 ,

y0(x) =

⎧⎪⎨⎪⎩
x2

1 − 1
2 , x1 < 1

2 ,

1
4 , x1 = 1

2 ,

3
4 , x1 > 1

2 ,

and

u0(x) =

{
5
2 − x2

1, x1 < 1
2 ,

9
4 , x1 ≥ 1

2 .

We remark that the inequality sign in the state constraint has been reversed in order
to construct the example. The exact solution is given by y ≡ 2 and u ≡ 2 in Ω. The
corresponding Lagrange multiplier p ∈ H1(Ω) is given by

p(x) =

{
1
2 − x2

1, x1 < 1
2 ,

1
4 , x1 ≥ 1

2 .

The multiplier μ has the form

(4.1)

∫
Ω̄

fdμ =

∫
{x1=

1
2}

fds +

∫
{x1>

1
2}

fdx, f ∈ C0(Ω̄).

In our numerical computations we use uniform grids generated with the POIMESH
function of the MATLAB PDE TOOLBOX. Integrals containing y0, u0 are numerically
evaluated by substituting y0, u0 by their piecewise linear, continuous finite element
interpolations Ihy0, Ihu0. The grid size of a grid containing l horizontal and l vertical

lines is given by hl =
√

2
l+1 . Figure 3 presents the numerical results for a grid with

h =
√

2
36 in the case (S = D). The corresponding values of μh on the same grid are

presented in Figure 4. They reflect the fact that the measure consists of a lower
dimensional part which is concentrated on the line {x ∈ Ω |x1 = 1

2} and a regular
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Fig. 4. Numerically computed multiplier μh for h =
√

2
36

in the case S = D.

Table 2

Experimental order of convergence, x1 = 1
2

grid line.

(S = D) (S = M) (S = D) (S = M) (S = D) (S = M)
Level ‖u− uh‖ ‖u− uh‖ ‖y − yh‖ ‖y − yh‖ ‖y − yh‖H1 ‖y − yh‖H1

1 1.669586 0.448124 1.417368 0.544284 1.594104 0.384950
2 1.922925 1.184104 1.990906 1.473143 1.992097 1.239771
3 2.000250 1.456908 2.101633 1.871948 2.080739 1.745422
4 2.029556 1.530303 2.125168 2.427634 2.108241 2.348036
5 2.041913 1.260744 2.124773 2.743918 2.116684 2.563363
6 2.047106 1.142668 2.117184 1.430239 2.117739 1.318617
7 2.048926 1.177724 2.107828 1.503463 2.115633 1.409563
8 2.049055 1.194893 2.098597 1.578342 2.112152 1.497715
9 2.048312 1.194802 2.090123 1.622459 2.108124 1.549495

Table 3

Experimental order of convergence, x1 = 1
2

not a grid line.

(S = D) (S = M) (S = D) (S = M) (S = D) (S = M)
Level ‖u− uh‖ ‖u− uh‖ ‖y − yh‖ ‖y − yh‖ ‖y − yh‖H1 ‖y − yh‖H1

1 0.812598 0.460528 1.160789 2.154570 0.885731 1.473561
2 1.361946 0.406917 2.042731 0.597846 1.918942 0.405390
3 1.228268 1.031763 1.832573 1.392796 1.700124 1.088595
4 1.245030 1.262257 1.678233 1.621110 1.570580 1.392408
5 1.252221 1.416990 1.646124 1.844165 1.554434 1.686808
6 1.256861 1.505759 1.696309 2.128776 1.620231 2.021210
7 1.264456 1.489061 1.627539 2.507863 1.559065 2.415552
8 1.260157 1.316627 1.640964 2.989867 1.580113 2.818148
9 1.265599 1.169109 1.686579 1.601263 1.635084 1.460153

part with a density χ|{x1>
1
2}. We again note that using equal scales on all axes would

give completely flat graphs for yh as well as for uh.
We compute EOCs for the two different sequences of grid sizes so = {h1, h3, . . . , h19}

and se = {h0, h2, . . . , h18}. We note that the grids corresponding to so contain the
line x1 = 1

2 . Table 2 presents EOCs for so, and Table 3 presents EOCs for se. For the
sequence so we observe superconvergence in the case (S = D), although the discon-
tinuous function y0 for the quadrature is replaced by its piecewise linear, continuous
finite element interpolant Ihy0. Let us note that further numerical experiments show
that the use of the quadrature rule (4.1) for integrals containing the function y0 de-
creases the EOC for ‖u−uh‖ to 3

2 , whereas EOCs remain close to 2 for the other two
errors ‖y − yh‖ and ‖y − yh‖H1 . For this sequence also the case (S = M) behaves
twice as good as expected by our arguments in Remark 3.8. For the sequence se the
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Table 4

Approximation of the multiplier in the case (S = D), x1 = 1
2

grid line.

Level
∑

xi∈{x1=1/2} μi
∑

xi∈{x1>1/2} μi

1 1.13331662624081 0.36552954225441
2 1.06315278164899 0.43644163287114
3 1.03989323182608 0.45990635060758
4 1.02893022155910 0.47095098878247
5 1.02265064139378 0.47727091447291
6 1.01855129775903 0.48139306499280
7 1.01569011772403 0.48426838085822
8 1.01359012331610 0.48637773715316
9 1.01198410389649 0.48799027450619

error ‖u−uh‖ in the case (S = D) approximately behaves as predicted by our theory;
in the case (S = M) it behaves as for the sequence so. The errors ‖y − yh‖ and
‖y − yh‖H1 behave that well, since the the exact solutions y and u are very smooth.
For h19 we have in the case (S = D) ‖u−uh‖ = 0.000103428, ‖y−yh‖ = 0.000003233,
and |y − yh|H1 = 0.000015155, and in the case (S = M) ‖u − uh‖ = 0.011177577,
‖y − yh‖ = 0.000504815, and |y − yh|H1 = 0.001547907. We observe that the errors
in the case S = M are two magnitudes larger than in the case (S = D). This can be
explained by the fact that an ansatz for the multiplier μ with a linear combination of
Dirac measures is better suited to approximate measures concentrated on singular sets
than a piecewise constant ansatz as in the case (S = M). Finally, Table 4 presents∑

xi∈{x1=1/2} μi and
∑

xi∈{x1>1/2} μi for so in the case (S = D). As one can see∑
xi∈{x1=1/2} μi tends to 1, the length of {x1 = 1/2}, and

∑
xi∈{x1>1/2} μi tends to

1/2, the area of {x1 > 1/2}. These numerical findings indicate that μh =
∑m

i=1 μiδxi

well approximates μ, since
∫
Ω̄
dμh =

∑m
i=1 μi, and that μh also well resolves the struc-

ture of μ; see (4.1). For all numerical computations of this example we have μi = 0
for xi ∈ {x1 < 1/2}.

5. Appendix.
Lemma 5.1. Let 2d

d+2 ≤ s ≤ 2 and v ∈ W 1,s(Ω). Then

‖v − Phv‖ ≤ Ch1+ d
2−

d
s ‖v‖W 1,s .

Proof. The assertion is clear if s = 2d
d+2 or if s = 2 so that we may assume

2d
d+2 < s < 2. Let us write∫

Ω

|v − Phv|2 =

∫
Ω

|v − Phv|
sd−2d+2s

s |v − Phv|
d(2−s)

s

and apply Hölder’s inequality with p = s2

sd−2d+2s , q = s2

(d−s)(2−s) , which implies

‖v − Phv‖2 ≤ ‖v − Phv‖
sd−2d+2s

s

Ls ‖v − Phv‖
d(2−s)

s

L
ds

d−s

≤ ‖v − Phv‖
sd−2d+2s

s

Ls

(
‖v‖

L
ds

d−s
+ ‖Phv‖

L
ds

d−s

) d(2−s)
s .

We infer from [6] that

‖v − Phv‖Ls ≤ Ch‖v‖W 1,s , ‖Phv‖
L

ds
d−s

≤ C‖v‖
L

ds
d−s

,
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which, together with the continuous embedding W 1,s(Ω) ↪→ L
ds

d−s (Ω), gives

‖v − Phv‖2 ≤ Ch
sd−2d+2s

s ‖v‖2
W 1,s

so that the assertion follows.
Lemma 5.2. Suppose that K and K̃ are two disjoint compact subsets of Ω̄. Then

there exists a nonnegative function φ ∈ C2(Ω̄) which satisfies

∂νφ = 0 on ∂Ω, φ ≥ 1 on K, φ = 0 on K̃.

Proof. For r > 0 let us define Ωr := {x ∈ Ω̄ |dist(x, ∂Ω) < r}. In view of the
smoothness of ∂Ω there exists δ > 0 such that for each x ∈ Ωδ there exists a unique
point y = y(x) ∈ ∂Ω, with

x = y − dist(x, ∂Ω)ν(y)

(see [7, Section 14.6]). Since K ∩ K̃ = ∅ we may assume that dist(K, K̃) > δ. Let us
define

ΓK := {y(x) |x ∈ K ∩ Ω δ
2
}, ΓK̃ := {y(x) |x ∈ K̃ ∩ Ω δ

2
}.

ΓK and ΓK̃ are disjoint, compact subsets of ∂Ω, since dist(K, K̃) > δ and x �→ y(x)
is continuous. Let φ1 ∈ C2(∂Ω) be a nonnegative function satisfying φ1 ≥ 1 on ΓK ,
φ1 = 0 on ΓK̃ . By setting φ1(x) = φ1(y(x)) we extend φ1 as a C2 function to Ωδ.
Clearly, ∂νφ1 = 0 on ∂Ω. Let ψ ∈ C2(Ω̄) be a nonnegative cutoff function, with ψ = 1
in Ω δ

4
and ψ = 0 in Ω̄ \ Ω δ

2
. Then φ2 := ψφ1 satisfies

∂νφ2 = 0 on ∂Ω, φ2 ≥ 1 on K ∩ Ω δ
4
, φ2 = 0 on K̃.

Finally, choose a nonnegative function φ3 ∈ C2(Ω̄), with

φ3 ≥ 1 on K ∩ (Ω̄ \ Ω δ
4
), φ3(x) = 0 if dist(x,K ∩ (Ω̄ \ Ω δ

4
)) ≥ δ

8
.

Then ∂νφ3 = 0 on ∂Ω, φ3 = 0 on K̃, and φ := φ2 + φ3 has the required
properties.

Acknowledgments. We thank Ulrich Matthes (TU Dresden) for coding the
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[10] C. Meyer, U. Prüfert, and F. Tröltzsch, On two numerical methods for state-constrained
elliptic control problems, Optimization Methods and Software, to appear.
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[16] F. Tröltzsch, Optimale Steuerung mit partiellen Differentialgleichungen, Wiesbaden, Vieweg,
2005.



SIAM J. NUMER. ANAL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 45, No. 5, pp. 1954–1978

ANALYSIS OF A SPECTRAL-GALERKIN APPROXIMATION TO
THE HELMHOLTZ EQUATION IN EXTERIOR DOMAINS∗
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Abstract. An error analysis is presented for the spectral-Galerkin method to the Helmholtz
equation in 2- and 3-dimensional exterior domains. The problem in unbounded domains is first
reduced to a problem on a bounded domain via the Dirichlet-to-Neumann operator, and then a
spectral-Galerkin method is employed to approximate the reduced problem. The error analysis is
based on exploring delicate asymptotic behaviors of the Hankel functions and on deriving a priori
estimates with explicit dependence on the wave number for both the continuous and the discrete
problems. Explicit error bounds with respect to the wave number are derived, and some illustrative
numerical examples are also presented.
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1. Introduction. We consider in this paper the acoustic wave scattering from
a bounded obstacle D ⊂ R

d, d = 2, 3. In this case, the scattered wave satisfies the
Helmholtz equation

(1.1) −ΔU − k2U = F in R
d\D̄,

along with the Sommerfeld radiation condition at infinity

(1.2) ∂rU − ikU = o
(
r

1−d
2

)
as r → ∞, d = 2, 3,

which ensures that waves do not reflect from the far field. On the surface of the
scatterer D, a Dirichlet (sound soft) or Neumann (sound hard) condition is assumed.

Although the Helmholtz equation with (1.2) is linear, its numerical approximation
and associated analysis are notoriously difficult due to the following: (i) the domain
is unbounded; (ii) the system is not positive definite; and (iii) when the wave number
k � 1, the solution is highly oscillatory. In particular, it remains a challenge to
design numerical algorithms which are robust and efficient for moderate to high wave
numbers.

There has been extensive research work devoted to overcoming these difficulties
(see, for instance, [16, 23, 22] and the references therein). In particular, it has been
shown, at least for some simple cases, that errors of pth order numerical methods for
the Helmholtz equation behave like O(kp+1hp) (see, for instance, [18, 4, 30]). Hence,
high-order methods are particularly preferable for this type of problem over low-order
methods. We note also that some very detailed analyses were carried out in [2, 3]
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on the discrete dispersive relation by the hp version of finite element method (FEM)
and by the high-order discontinuous Galerkin method. These results indicate, once
again, that high-order methods are preferable, if not necessary, for highly oscillatory
problems.

On the other hand, the linear system from a discretization of the Helmholtz equa-
tion with moderate to high wave numbers is usually highly indefinite and difficult to
solve. It is with these considerations in mind that we choose to use the transformed
field expansion (TFE) method (cf. [26]), which improves over the classical field expan-
sion method [27, 5, 6], coupled with a fast spectral-Galerkin solution (cf. [28, 29, 24]).

There are a few recent works on wave number independent boundary element
methods and on error estimates with explicit dependence on wave numbers for acous-
tic scattering problems. In [19, 8], the authors introduced a novel Galerkin bound-
ary element method using a graded mesh and special basis functions and derived a
quasi-optimal error estimate which is independent of wave number for the Helmholtz
equation in a half-plane and exterior of a convex polygon.

We now briefly describe the TFE method for a 2-dimensional (2-D) obstacle
enclosed by {r = a+ g(θ) : 0 ≤ θ < 2π}. The TFE algorithm consists of the following
steps:

• Assuming F is compactly supported and choosing b such that b > a +
max0≤θ<2π |g(θ)| and suppF ⊂ Ωg := {(r, θ) : a + g(θ) < r < b}, we then use
the Dirichlet-to-Neumann operator T (see [15, 13] and the next section) to
reduce the problem in the unbounded domain to

− ΔU − k2U = F in Ωg,

U |r=a+g(θ) = ξ, (∂rU + T (U))|r=b = 0.
(1.3)

• Make a change of variables

(1.4) r′ =
(b− a)r − bg(θ)

(b− a) − g(θ)
, θ′ = θ,

which maps Ωg to an annulus Ω0. To simplify the notation, we still use (r, θ)
to denote (r′, θ′) and U, F, ξ to denote the functions U, F, ξ after the change
of variables. Then the problem (1.3) becomes

− ΔU − k2U = F + J(g, U) in Ω0,

U(a, θ) = ξ(θ), (∂rU + TU)|r=b = η(g, U),
(1.5)

where J(g, U) and η(g, U) contain differential operators with nonconstant
coefficients for which a fast direct/iterative solution is not available.

• Consider the obstacle {(r, θ) : r < a + g(θ)} as a perturbation of the disk
{r < a}; i.e., write g = εh and expand u as

U(r, θ; ε) =

∞∑
n=0

Un(r, θ) εn.

Plugging the above expansion into (1.5) and collecting terms with εn, we find
that [24]

− ΔUn − k2Un = δn,0F + J̃(g, Un−4, . . . , Un−1) in Ω0,

Un(a, θ) = δn,0ξ(θ), (∂rUn + TUn)|r=b = η̃(g, Un−1).
(1.6)
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• Solve (1.6) for n = 0, 1, 2, . . . , and sum up the series by using a Padé approx-
imation.

It is shown in [25, 26] that this TFE method is stable and robust at high order, and
it is demonstrated in [24] that this method, coupled with a spectral-Galerkin solution
for (1.6), is very efficient and capable of providing very accurate results for bounded
obstacle scattering with moderate to high wave numbers.

Notice that the whole algorithm boils down to solving a sequence of the following
nonhomogeneous Helmholtz equation in an annulus (2-D) or a spherical shell (3-D):

− ΔU − k2U = F in Ω0,

U(a, θ) = ξ(θ), (∂rU + TU)|r=b = η(θ).
(1.7)

The purpose of this paper is to present a detailed error analysis of the spectral-
Galerkin method for (1.7). The main difficulty here is to obtain error estimates with
explicit dependence on the wave number. Among the very few results available in this
regard are those in [18, 30], where the Helmholtz equation in bounded domains with
a first-order approximation to the radiation boundary condition was considered and
error estimates with explicit dependence on the wave numbers were derived. To the
authors’ best knowledge, there seems to be no rigorous error estimate available with
explicit dependence on the wave number for a numerical scheme to bounded obstacle
scattering.

We now introduce some notations to be used throughout this paper. Let 	 be a
given positive weight function in I := (a, b). We denote by L2

�(I) a Hilbert space of
real or complex functions with inner product and norm

(u, v)� =

∫
I

u(r)v(r)	(r)dr, ‖u‖� =
√

(u, u)�,

respectively, where v̄ is the complex conjugate of v. Then the weighted Sobolev
spaces Hs

�(I) (s = 0, 1, 2, . . . ) can be defined as usual with inner products, norms,
and seminorms denoted by (·, ·)s,�, ‖ · ‖s,�, and | · |s,�, respectively. For real s > 0,
Hs

�(I) is defined by space interpolation (cf. [20]). The subscript 	 will be omitted

from the notations in the case of 	 ≡ 1. For simplicity, we denote ∂l
rv = dlv

drl
, l ≥ 1.

We shall also use (·, ·)ω and ‖ · ‖ω to denote the weighted inner product and the
weighted L2-norm, respectively, in two and three dimensions.

Let S be the unit circle in 2-D and the unit sphere in 3-D; we also use the
nonisotropic periodic-type Sobolev space on Ω = S × I: Hs′

p

(
S;Hs

�(I)
)
, s′ ≥ 0

(subscript p stands for periodicity in the θ-direction) with the norm

(1.8) ‖U‖Hs′
p (S;Hs

�(I)) =

⎧⎪⎨⎪⎩
(∑∞

|m|=0(1 + m2)s
′‖ûm‖2

s,�

)1/2

if d = 2,(∑∞
m=0

∑m
l=−m(1 + m)2s

′‖ûlm‖2
s,�

)1/2

if d = 3,

where {ûm} (resp., {ûlm}) are the expansion coefficients of U in terms of Fourier
(resp., spherical harmonic) basis, i.e.,

(1.9) U =

∞∑
|m|=0

ûmeimθ or U =

∞∑
m=0

m∑
l=−m

ûlmY l
m(θ, φ).

The norm of the Sobolev space Hs′

p (S) on S can be defined in the same fashion by
replacing the norm ‖ · ‖s,� by the absolute value | · |. In particular, we have

L2
p(Ω) = H0

p (S,H0
�(I)) with 	 = rd−1, d = 2, 3.
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We assume that a > 0 is a fixed parameter representing the radius of the scatterer.
Throughout this paper, we denote by c a generic positive constant which depends only
on a and possibly on a fixed k0 > 0. We use the expression A � B to mean that
A ≤ cB.

2. Dirichlet-to-Neumann (DtN) map. The error analysis relies heavily on
the properties of the DtN map which we investigate below.

2.1. Formulation of the DtN operator. We start with the 3-D case and
consider an “auxiliary” exterior problem

(2.1)

{
−ΔU − k2U = 0 in Ωext := R

3 \ B̄,

U = Ψ on ∂B,

where B is a ball of radius b. This problem can be solved analytically via separation
of variables; namely, we can express its solution as

(2.2) U(r, θ, φ) =

∞∑
m=0

h(1)
m (kr)

m∑
l=−m

ûlmY l
m(θ, φ),

where (r, θ, φ) ∈ [b,∞)× [0, 2π)× [0, π), h
(1)
m (z) is the spherical Hankel function of the

first kind of order m, and {Y l
m} are the spherical harmonic functions. To determine

the coefficients {ûlm}, we expand the Dirichlet boundary value Ψ on the sphere ∂B
as

(2.3) U(b, θ, φ) = Ψ(θ, φ) =

∞∑
m=0

m∑
l=−m

ψ̂lmY l
m(θ, φ).

Letting r = b in (2.2) and comparing the coefficients of the two expansions yield that

(2.4) ûlm =
ψ̂lm

h
(1)
m (kb)

for m ≥ |l| ≥ 0.

Plugging it into (2.2) leads to the exact solution of (2.1):

U(r, θ, φ) =

∞∑
m=0

h
(1)
m (kr)

h
(1)
m (kb)

m∑
l=−m

ψ̂lmY l
m(θ, φ).(2.5)

Differentiating (2.5) with respect to r and setting r = b, we find

(2.6) ∂rU(b, θ, φ) =

∞∑
m=0

k
h

(1)
m

′
(kb)

h
(1)
m (kb)

m∑
l=−m

ψ̂lmY l
m(θ, φ).

Hence, the DtN map is defined explicitly as

T (U) =
∂U

∂n

∣∣∣
∂B

= −∂U

∂r

∣∣∣
r=b

= −
∞∑

m=0

k
h

(1)
m

′
(kb)

h
(1)
m (kb)

m∑
l=−m

ψ̂lmY l
m(θ, φ),(2.7)

where n is the outward normal of Ωext.
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The counterpart of (2.1) in 2-D is

(2.8)

{
−ΔU − k2U = 0 in Ωext := R

2 \ B̄,

U = Φ on ∂B,

where B is a circle of radius b which can be solved analytically with the exact solution

(2.9) U(r, θ) =

∞∑
|m|=0

ûmH(1)
m (kr)eimθ ∀(r, θ) ∈ [b,∞) × [0, 2π).

Here H
(1)
m (z) is the Hankel function of the first kind of order m. The coefficients

{
ûm

}
are determined by the boundary value Φ(θ) with the expansion

(2.10) U(b, θ) = Φ(θ) =
∞∑

|m|=0

φ̂meimθ.

Hence, letting r = b in (2.9) and comparing the coefficients of the above two expansions

lead to ûm = φ̂m/H
(1)
m (kb). As a consequence, the exact solution of (2.8) is

(2.11) U(r, θ) =

∞∑
|m|=0

H
(1)
m (kr)

H
(1)
m (kb)

φ̂meimθ ∀(r, θ) ∈ [b,∞) × [0, 2π).

The 2-D DtN map is given by

T (U) =
∂U

∂n

∣∣∣
∂B

= −∂U

∂r

∣∣∣
r=b

= −
∞∑

|m|=0

k
H

(1)
m

′
(kb)

H
(1)
m (kb)

φ̂meimθ.(2.12)

By using the DtN map T and choosing b sufficiently large so that B contains both
D and suppF , the original problem (1.1)–(1.2) with a Dirichlet boundary condition
is reduced to:

(2.13)

⎧⎪⎨⎪⎩
−ΔU − k2U = F in Ω := B ∩ R

d \ D̄, d = 2, 3,

U = ξ on ∂D,

∂rU + TU = 0 on ∂B.

To fix the idea, we prescribed a Dirichlet boundary condition on the scatterer D;
other types of boundary conditions can be used as well.

2.2. Properties of the DtN kernel. In order to carry out a rigorous mathe-
matical analysis for the problem (2.13), we need to study carefully the properties of
the DtN kernel associated with (2.7) and (2.12), i.e., the properties of the coefficients:

(2.14) Tm,κ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
H

(1)
m

′
(κ)

H
(1)
m (κ)

if d = 2,

h
(1)
m

′
(κ)

h
(1)
m (κ)

if d = 3.
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2.2.1. Behavior of the 3-D kernel. In this case, we have κ > 0 and m ≥ 0.
We recall that

(2.15) h(1)
m (κ) = jm(κ) + iym(κ) =

√
π

2κ
Jm+1/2(κ) + i

√
π

2κ
Ym+1/2(κ),

where Jν and Yν (resp., jν and yν) are the Bessel (resp., spherical Bessel) functions
of the first and second kinds, respectively, of order ν. Using the relevant properties of
the Bessel functions (cf. [31]), one verifies that

Re(Tm,κ) =
m

κ
− jm(κ)jm+1(κ) + ym(κ)ym+1(κ)∣∣h(1)

m (κ)
∣∣2

=
m

κ
−

Jm+1/2(κ)Jm+3/2(κ) + Ym+1/2(κ)Ym+3/2(κ)

J2
m+1/2(κ) + Y 2

m+1/2(κ)
;

(2.16a)

Im(Tm,κ) =
1

κ2
∣∣h(1)

m (κ)
∣∣2 =

2

πκ

1

J2
m+1/2(κ) + Y 2

m+1/2(κ)
.(2.16b)

An explicit expression of Tm,κ is given by Theorem 2.6.1 of [23]:

(2.17) Tm,κ = Re(Tm,κ) + i Im(Tm,κ) = − Pm(κ)

κQm(κ)
+

i

Qm(κ)
,

where

Pm(κ) = 1 + 2am1
1

κ2
+ · · · + (m + 1)amm

1

κ2m
,

Qm(κ) = 1 + am1
1

κ2
+ · · · + amm

1

κ2m
,

(2.18)

with

(2.19) amj =
(m + j)!(2j)!

4j(j!)2(m− j)!
.

We now study the monotonic property of Im(Tm,κ) with respect to m and κ.
We observe from (2.17)–(2.19) that, for a fixed m ≥ 0, Im(Tm,κ) is an increasing
function of κ, as illustrated by Figure 2.1(b). However, for a given κ > 0, Im(Tm,κ) is
a decreasing function of m, which follows from Nicholson’s formula (see p. 444 of [31])

(2.20) J2
m+1/2(κ) + Y 2

m+1/2(κ) =
8

π2

∫ +∞

0

K0(2κsinht)cosh
(
(2m + 1)t

)
dt,

where K0(ξ) > 0 is Kelvin’s function defined by (A.2) in the appendix.
We next consider the bounds and asymptotic behavior of Tm,κ. An immediate

consequence of (2.17)–(2.19) is that

(2.21) Re(Tm,κ) < 0, Im(Tm,κ) > 0,

which ensures the well-posedness of the problem (2.13) (cf. [11]). Moreover, we have
the following bounds (see, e.g., p. 87 of [23]):

(2.22) −m + 1

κ
≤ Re(Tm,κ) ≤ − 1

κ
, 0 < Im(Tm,κ) ≤ 1,
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Fig. 2.1. Graphs of Re(Tm,κ) and Im(Tm,κ), with (κ,m) ∈ [1,100] × [0,120], in the 3-D case.
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Fig. 2.2. (a) Im(Tm,m+1/2) (�) against Em,m+1/2 (◦) with m ∈ [1, 200]; (b) Im(Tm,κ) (solid
line) against Em,κ (+ for κ > m + 1/2, (◦) for k = m + 1/2, and (�) for κ < m + 1/2), with
κ = 20, 30, 40, 50.

in particular, by (2.17)–(2.19),

(2.23) Re(T0,κ) = − 1

κ
, Im(T0,κ) = 1.

We now seek more precise estimates of Im(Tm,κ) and proceed separately with
three cases:

(i) κ > m + 1/2. We first recall the estimate (see p. 447 of [31])

(2.24)
2

πκ
< J2

ν (κ) + Y 2
ν (κ) <

2

π
√
κ2 − ν2

if
1

2
≤ ν < κ,

which, together with (2.16b), implies that

(2.25) Em,κ :=

√
κ2 − (m + 1/2)2

κ
< Im(Tm,κ) < 1 if κ > m +

1

2
.

We observe from Figure 2.2 that the lower bound Em,κ provides an acceptable
approximation to Im(Tm,κ).

(ii) κ = m + 1/2. Using the formulas (see p. 232 of [31])

Jν(ν) = C1ν
−1/3 + O(ν−5/3), Yν(ν) = −C2ν

−1/3 + O(ν−5/3),(2.26)

with

C1 =
Γ(1/3)

22/331/6π
≈ 0.4473, C2 =

31/3Γ(1/3)

22/3π
≈ 0.7748,
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we obtain from (2.16b) that

(2.27) Im
(
Tm,m+1/2

)
∼ C◦

(
m + 1/2

)−1/3
:= Em,m+1/2,

with C◦ = 2/
(
π(C2

1 + C2
2 )
)
≈ 0.7954.

In Figure 2.2(a), we plot Im(Tm,m+1/2) against Em,m+1/2 for 1 ≤ m ≤ 200,

which shows that, even for small m, the asymptotic estimate C◦
(
m + 1/2

)−1/3

provides a very good approximation to Im
(
Tm,m+1/2

)
.

(iii) κ < m + 1/2. By the asymptotic formulas (see p. 243 of [31])

Jν(νsechα) ∼ eν(tanhα−α)

√
2πνtanhα

, Yν(νsechα) ∼ − eν(α−tanhα)√
1
2πνtanhα

,(2.28)

one verifies that for m + 1/2 = κcoshα, with α > 0,

(2.29) Im(Tm,κ) ∼ 2(2m + 1)tanhα

κ
[
e(2m+1)(tanhα−α) + 4e(2m+1)(α−tanhα)

] := Em,κ.

Hence, Im(Tm,κ) becomes exponentially small for large m. The exponential
decay of Im(Tm,κ) is shown more clearly from the asymptotic estimate

(2.30) Im(Tm,κ) ∼
( eκ

2m + 1

)2m

, m � κ,

which follows from formula 9.3.1 of [1]:

(2.31) Jν(κ) ∼ 1√
2πν

(eκ
2ν

)ν

, Yν(κ) ∼ − 2√
πν

(eκ
2ν

)−ν

, ν � κ.

We plot in Figure 2.2(b) the estimate Em,κ (defined in (2.25), (2.27), and (2.29))
versus Im(Tm,κ), with κ = 20, 30, 40, 50 and various m, which indicates that Em,κ

provides an accurate picture of Im(Tm,κ).

2.2.2. Behavior of the 2-D kernel. The identity H
(1)
−ν (z) = eνπiH

(1)
ν (z) and

the definition (2.14) imply that

(2.32) T−m,κ =
H

(1)
−m

′
(κ)

H
(1)
−m(κ)

=
(−1)mH

(1)
m

′
(κ)

(−1)mH
(1)
m (κ)

= Tm,κ.

Hence, it suffices to consider Tm,κ with m ≥ 0. Using the recursion formulas of the
Bessel functions, one verifies that

Re(Tm,κ) =
m

κ
− Jm(κ)Jm+1(κ) + Ym(κ)Ym+1(κ)

J2
m(κ) + Y 2

m(κ)
;(2.33a)

Im(Tm,κ) =
2

πκ

1

|H(1)
m (κ)|2

=
2

πκ

1

J2
m(κ) + Y 2

m(κ)
.(2.33b)

We observe that the 2-D kernel has an expression similar to that of the 3-D kernel
(cf. (2.16)). In fact, they share similar properties and asymptotic behaviors except
for m = 0 (comparison: Figure 2.1(a) versus Figure 2.3(a) and Figure 2.2(b) versus
Figure 2.3(b)).

Indeed, we notice that the same monotonic property holds for the 2-D Im(Tm,κ) :
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Fig. 2.3. (a) Graph of 2-D Re
(
Tm,κ

)
, with (κ,m) ∈ [1,100] × [1,120]; (b) 2-D Im(Tm,κ) (solid

line) against Em,κ defined in (2.35) (+ for κ > m+1/2, ◦ for κ = m+1/2, and (�) for κ < m+1/2),
with κ = 20, 30, 40, 50.

(i) For a given m ≥ 1, Im(Tm,κ) is a strictly increasing function of κ, which

follows from (2.33b) and the fact that κ|H(1)
m (κ)|2 is a strictly decreasing

function of κ (cf. p. 446 of [31]);
(ii) for a fixed κ > 0, Im(Tm,κ) is a strictly decreasing function of m, which is a

direct consequence of Nicholson’s formula (A.3a).
As in (2.22), we have the following bound for the 2-D kernel (see the appendix

for the proof):

0 < Im(Tm,κ) < 1, m ≥ 1;(2.34a)

−m

κ
≤ Re(Tm,κ) ≤ − 1

2κ
, m ≥ 1; − 1

2κ
≤ Re(T0,κ) < 0;(2.34b)

Im(T0,κ) > 1 ∀κ > 0.(2.34c)

As in the 3-D case, applying the general formulas (2.24), (2.26), and (2.28) to the
2-D Im(Tm,κ), we find that an accurate approximation for Im(Tm,κ) is

(2.35) Em,κ :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

1 −m2/κ2 if κ > m ≥ 1,

C◦m
−1/3 if κ = m,

4m tanhα

κ
[
e2m(tanhα−α) + 4e2m(α−tanhα)

] if κ = m sechα, α > 0,

where the constant C◦ is defined by (2.27).
In Figure 2.3(b), we plot Em,κ against Im(Tm,κ), which indicates that the estimate

Em,κ gives an accurate picture of the behavior of Im(Tm,κ).

3. A priori estimates. In order to carry out error analysis for the spectral-
Galerkin approximation to (1.7), we need to establish some a priori estimates for the
solution of (1.7). Without loss of generality, we shall set ξ = 0 since the nonhomo-
geneous boundary condition at r = a can be simply converted to a homogeneous one
by subtracting a suitable function from the solution.

3.1. Dimension reduction. We now rewrite (1.7) with ξ = 0 in polar coordi-
nates (r, θ) or spherical coordinates (r, θ, φ):

(3.1)

⎧⎨⎩ −
( 1

rd−1
∂r
(
rd−1∂rU

)
+

1

r2
ΔSU

)
− k2U = F in Ω = (a, b) × S,

U
∣∣
r=a

= 0,
[
∂rU + T (U)

]∣∣
r=b

= η,
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where

(3.2) ΔSU =

⎧⎨⎩∂2
θU if d = 2,

1
sin2 φ

∂2
θU + 1

sinφ∂φ
(
sinφ∂φU

)
if d = 3,

and its eigenfunctions are the Fourier basis
{
eimθ

}
(in 2-D) or the spherical harmonic

functions
{
Y l
m(θ, φ)

}
(in 3-D), i.e.,

(3.3) −ΔSe
imθ = m2eimθ (d = 2); −ΔSY

l
m(θ, φ) = m(m + 1)Y l

m(θ, φ) (d = 3).

We shall denote

(3.4) βm =

{
m2, m = 0,±1,±2, . . . , if d = 2,

m(m + 1), m = 0, 1, 2, . . . , if d = 3.

Expanding the solution and given data in terms of the eigenfunctions of ΔS :

(3.5)
(
U, F, η

)
=

⎧⎨⎩
∑∞

|m|=0

(
ûm(r), f̂m(r), ĥm

)
eimθ if d = 2,∑∞

m=0

∑m
l=−m

(
ûlm(r), f̂lm(r), ĥlm

)
Y l
m(θ, φ) if d = 3,

we find from (3.3) that the problem (3.1)–(3.2) is reduced to the following sequence
of 1-dimensional equations (for brevity, we use u to denote ûm or ûlm and likewise
for f and h below):

(3.6)

⎧⎨⎩ − 1

rd−1

d

dr

[
rd−1 du

dr

]
+ βm

u

r2
− k2u = f, r ∈ (a, b), d = 2, 3,

u(a) = 0, u′(b) − kTm,ku(b) = h,

where Tm,k is derived from (2.7) and (2.12):

(3.7) Tm,k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
H

(1)
m

′
(kb)

H
(1)
m (kb)

if d = 2,

h
(1)
m

′
(kb)

h
(1)
m (kb)

if d = 3.

Notice that Tm,k = Tm,kb (defined by (2.14)).

3.2. Variational formulation and a priori estimates. We denote the weight
functions ωα(r) = rα and ω(r) = r. Define the 1-D weighted space

(3.8) X := X(d) =
{
u ∈ H1

ωd−1(I) ∩ L2
ωd−3(I) : u(a) = 0

}
.

We define a bilinear form on H1
p (S;X) ×H1

p (S;X) :

B(U, V ) =
(
∂rU, ∂rV

)
ωd−1 +

(
∇SU,∇SV

)
ωd−3 − k2

(
U, V

)
ωd−1

+ bd−1
〈
T (U)(·), V (b, ·)

〉
S
,

(3.9)

where 〈·, ·〉S is the L2(S)-inner product (cf. the appendix), and the gradient operator
∇S is defined by

(3.10) ∇SU =

⎧⎨⎩∂θU if d = 2,(
1

sin θ∂θU
)
�eθ +

(
∂φU

)
�eφ if d = 3.
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The variational formulation of (3.1) is as follows: Given F ∈ L2
ωd−1(Ω) and η ∈

L2(S), find U ∈ H1
p (S;X) such that

(3.11) B(U, V ) = (F, V )ωd−1 + bd−1
〈
η, V (b, ·)

〉
S

∀ V ∈ H1
p (S;X), d = 2, 3,

which admits a unique solution (see, e.g., [23]). The first main result of this paper is
the following a priori estimates.

Theorem 3.1. Let U be the solution of (3.11). If F ∈ L2(Ω) and η ∈ L2(S),
then we have

‖∇U‖ + k‖U‖Ω �
(√

bd +
√
b|I|(kb)1/3

)
‖η‖L2(S) + (kb)1/3|I|‖F‖,(3.12)

where |I| = b− a.
The rest of this section is devoted to the proof of this estimate. Observe that, for

each mode m or (l,m), the expansion coefficient u = ûm or ûlm (cf. (3.5)) satisfies
the following reduced problem (i.e., the variational formulation of (3.6)–(3.7)):

Given f ∈ L2
ωd−1(I) and h ∈ C, find u ∈ X such that

Bm(u, v) = (f, v)ωd−1 + bd−1hv(b) ∀v ∈ X, d = 2, 3,
(3.13)

where f = f̂m or f̂lm, h = ĥm or ĥlm, and the sesquilinear form

Bm(u, v) := (∂ru, ∂rv)ωd−1 + βm(u, v)ωd−3 − k2(u, v)ωd−1 − kbd−1Tm,ku(b)v(b),

(3.14)

where βm is defined in (3.4).
An essential step is to derive a priori estimates for each u = ûm or ûlm and then

combine these estimates to get the desired result for the original problem (3.11).
We have the following a priori estimate for the solution of (3.13)–(3.14).
Lemma 3.1. Let |I| = b−a be the length of the interval I = (a, b). If f ∈ L2

ωd−1(I),
then given k0 > 0, we have that, for k ≥ k0 and d = 2, 3,

‖∂ru‖ωd−1 +
√
βm‖u‖ωd−3 + k‖u‖ωd−1

�
(√

bd +
√
b|I|Cm,k

)
|h| + Cm,k|I|‖f‖ωd−1 ,

(3.15)

where

(3.16) Cm,k =

{
(kb)

1
3 if |m| ≤ kb,

1 if |m| > kb.

Proof. Some early work (cf. [12, 17, 18]) in this direction relies on the explicit
form of Green’s function which is very difficult, if not possible, to extend to more
general cases. Our proof is based on an argument in [21, 10] (see also [30, 9]). More
precisely, we take two test functions v = u, (r − a)∂ru ∈ X in (3.13) successively
to obtain a priori estimates without using Green’s functions. In the following, εj >
0 (j = 1, . . . , 5) are some suitable real numbers.

We first take v = u in (3.13). The imaginary and real parts are, respectively,

−kbd−1Im(Tm,k)|u(b)|2 = bd−1Im(hu(b)) + Im(f, u)ωd−1 ,(3.17a)

‖∂ru‖2
ωd−1 + βm‖u‖2

ωd−3 − k2‖u‖2
ωd−1 − kbd−1Re(Tm,k)|u(b)|2

= bd−1Re(hu(b)) + Re(f, u)ωd−1 .
(3.17b)
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In order to derive an upper bound for ‖∂ru‖2
ωd−1 +βm‖u‖2

ωd−3 , we proceed separately
with two cases: (i) d = 2, |m| > 0 or d = 3, m ≥ 0 and (ii) d = 2, m = 0. In the
first case, we have from (2.22) and (2.34b) with |m| ≥ 1 (note that κ = kb) that

(3.18)
1

k|Re(Tm,k)|
≤ b for d = 2, |m| > 0 or d = 3, m ≥ 0.

In what follows, we shall repeatedly use the inequality 2AB ≤ εA2 + B2

ε for all
A,B, ε > 0.

Applying the Cauchy–Schwarz inequality to (3.17b) leads to

‖∂ru‖2
ωd−1 + βm‖u‖2

ωd−3 − kbd−1Re(Tm,k)|u(b)|2

≤ k2‖u‖2
ωd−1 +

kbd−1|Re(Tm,k)|
2

|u(b)|2 +
bd−1

2k|Re(Tm,k)|
|h|2

+ ε1k
2‖u‖2

ωd−1 +
1

4ε1k2
‖f‖2

ωd−1 .

(3.19)

Thus, by (3.18), the estimate (3.19) becomes (for d = 2, |m| > 0 or d = 3, m ≥ 0)

‖∂ru‖2
ωd−1 + βm‖u‖2

ωd−3 −
kbd−1Re(Tm,k)

2
|u(b)|2

≤ (1 + ε1)k
2‖u‖2

ωd−1 +
bd

2
|h|2 +

1

4ε1k2
‖f‖2

ωd−1 .

(3.20)

To treat the only remaining case, (ii) d = 2 and m = 0, we apply the Cauchy–Schwarz
inequality to (3.17a) and get that

kbIm(T0,k)|u(b)|2 ≤ kbIm(T0,k)

2
|u(b)|2 +

b

2kIm(T0,k)
|h|2

+
ε2kIm(T0,k)

2
‖u‖2

ω +
1

2ε2kIm(T0,k)
‖f‖2

ω,

(3.21)

which implies that

(3.22) k2b|u(b)|2 ≤ ε2k
2‖u‖2

ω +
b

|Im(T0,k)|2
|h|2 +

1

ε2|Im(T0,k)|2
‖f‖2

ω.

Thanks to (2.34c), we can rewrite the inequality (3.22) as

(3.23) k2b|u(b)|2 ≤ ε2k
2‖u‖2

ω + b|h|2 +
1

ε2
‖f‖2

ω.

We now apply the Cauchy–Schwarz inequality to (3.17b) (with d = 2 and m = 0) and
use (3.23) to bound the term involving |u(b)|2 to get

‖∂ru‖2
ω + β0‖u‖2

ω−1 − kbRe(T0,k)|u(b)|2

≤ k2‖u‖2
ω + k2b|u(b)|2 +

b

4k2
|h|2 +

ε1k
2

2
‖u‖2

ω +
1

2ε1k2
‖f‖2

ω

≤ (1 + ε1)k
2‖u‖2

ω + cb|h|2 +
1

ε1
‖f‖2

ω,

(3.24)
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where we took ε2 = ε1/2 in (3.23). In view of (3.20) and (3.24), we have the following
estimate which is valid for all cases:

‖∂ru‖2
ωd−1 + βm‖u‖2

ωd−3 ≤ (1 + ε1)k
2‖u‖2

ωd−1 + cbd|h|2 + c‖f‖2
ωd−1 .(3.25)

Now the main difficulty is how to bound the term k2‖u‖2
ωd−1 . To do this, we need

to derive further estimates by testing (3.13) with another function. Using a standard
regularity argument, one can easily verify that for f ∈ L2

ωd−1(I) the weak solution of
(3.13) satisfies (r − a)∂ru ∈ X. Hence, we can take v = 2(r − a)∂ru in (3.13), and
after integration by parts and thanks to the identity

(3.26) (u, v)ω + (v, u)ω = 2Re(u, v)ω,

we find that the first three terms of the real part of (3.13) with v = 2(r − a)∂ru are

2Re
(
∂ru, ∂r((r − a)∂ru)

)
ωd−1 = bd−1|I||∂ru(b)|2

+

∫ b

a

[
(2 − d) + (d− 1)

a

r

]
|∂ru|2rd−1dr;

(3.27a)

2βmRe
(
u, (r − a)∂ru

)
ωd−3 = βmbd−3|I||u(b)|2

− βm

∫ b

a

[
(d− 2) − (d− 3)

a

r

]
|u|2rd−3dr;

(3.27b)

−2k2Re(u, (r − a)∂ru)ωd−1 = −k2bd−1|I||u(b)|2

+ k2

∫ b

a

[
d− (d− 1)

a

r

]
|u|2rd−1dr.

(3.27c)

Accordingly, we find that the real part of (3.13) with v = 2(r − a)∂ru becomes

bd−1|I|
(
|∂ru(b)|2 + βmb−2|u(b)|2

)
+ a(d− 1)‖∂ru‖2

ωd−2

+ k2

∫ b

a

[
d− (d− 1)

a

r

]
|u|2rd−1dr

≤ k2bd−1|I||u(b)|2 + (d− 2)‖∂ru‖2
ωd−1 + βm

∫ b

a

[
(d− 2) + (3 − d)

a

r

]
|u|2rd−3dr

+ 2bd−1|I|
∣∣Re(h∂ru(b))

∣∣ + 2
∣∣Re(f, (r − a)∂ru)ωd−1

∣∣.

(3.28)

Note that in the third term the factor d − (d − 1)ar > 1 for all r ∈ (a, b), so we can
use this term to bound k2‖u‖2

ωd−1 in (3.25).
By the Cauchy–Schwarz inequality, we can treat the last two terms at the right-

hand side of (3.28) as, respectively,

(3.29) 2bd−1|I|
∣∣Re

(
h∂ru(b)

)∣∣ ≤ bd−1|I|
2

|∂ru(b)|2 + 2bd−1|I||h|2,

and

2
∣∣Re(f, (r − a)∂ru)ωd−1

∣∣ ≤ ε3‖∂ru‖2
ωd−1 +

|I|2
ε3

‖f‖2
ωd−1 .(3.30)

We now proceed separately for d = 2 and d = 3.
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Case I: d = 2. In this case, a combination of (3.28)–(3.30) leads to

b|I|
(
|∂ru(b)|2 + βmb−2|u(b)|2

)
+ a‖∂ru‖2 + k2

∫ b

a

[
2 − a

r

]
|u|2rdr

≤ k2b|I||u(b)|2 +
(
ε3‖∂ru‖2

ω + aβm‖u‖2
ω−2

)
+

b|I|
2

|∂ru(b)|2

+ 2b|I||h|2 +
|I|2
ε3

‖f‖2
ω.

(3.31)

Using (3.25) with d = 2, we have that, for ε3 < 1 and for certain ξ1 ∈ (a, b),

ε3‖∂ru‖2
ω + aβm‖u‖2

ω−2 ≤ max
{
ε3,

a

ξ1

}(
‖∂ru‖2

ω + βm‖u‖2
ω−1

)
≤ (1 + ε1)k

2‖u‖2
ω + cb2|h|2 + c‖f‖2

ω.
(3.32)

Hence, it remains to bound the term k2b|I||u(b)|2 in (3.31).
(i) |m| > kb. In this case, the term b|I|k2|u(b)|2 can be absorbed by

b−1|I|βm|u(b)|2 at the left-hand side of (3.31). Hence, a combination of
(3.31)–(3.32) leads to the desired result:

b|I|
(1

2
|∂ru(b)|2 + (βmb−2 − k2)|u(b)|2

)
+ a‖∂ru‖2 + Ck2‖u‖2

ω

� b2|h|2 + (1 + |I|2)‖f‖2
ω,

(3.33)

where, with a suitable choice of ε1, the constant

(3.34) C = 1 − a

ξ2
− ε1 > 0 for certain ξ2 ∈ (a, b).

(ii) |m| ≤ kb. Similar to the derivation of (3.22), we apply the Cauchy–Schwarz
inequality to (3.17a):

(3.35) k2b|I||u(b)|2 ≤ ε3|I|k2‖u‖2
ω +

b|I|
|Im(Tm,k)|2

|h|2 +
|I|

ε3|Im(Tm,k)|2
‖f‖2

ω.

Then a combination of the estimates (3.31), (3.32), and (3.35) leads to

b|I|
(1

2
|∂ru(b)|2 + βmb−2|u(b)|2

)
+ a‖∂ru‖2 + C̃k2‖u‖2

ω

� C
(1)
m,k|h|2 + C

(2)
m,k‖f‖2

ω,

(3.36)

where, with a suitable choice of ε1 and ε3 and using the fact that Im(Tm,k) <
1, the constants are

C̃ = 1 − a

ξ3
− ε1 − ε3|I| > 0 for certain ξ3 ∈ (a, b),

C
(1)
m,k = b2 +

b|I|
|Im(Tm,k)|2

,

C
(2)
m,k = |I|2 +

|I|
ε3|Im(Tm,k)|2

� |I|2
(
1 +

1

|Im(Tm,k)|2
)
.

(3.37)

Notice that we have

(3.38) Im(Tm,k) ≥ c(kb)−
1
3 for |m| ≤ kb,

since Im(Tm,k) is a decreasing function of m and the estimate (2.35).
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Therefore, the desired result (3.15) with d = 2 follows from (3.25), (3.33), and
(3.36).

Case II: d = 3. In this case, a combination of (3.28)–(3.30) leads to

b2|I|
(
|∂ru(b)|2 + βmb−2|u(b)|2

)
+ 2a‖∂ru‖2

ω + k2

∫ b

a

[
3 − 2a

r

]
|u|2rdr

≤ k2b2|I||u(b)|2 +
b2|I|

2
|∂ru(b)|2 +

(
‖∂ru‖2

ω2 + βm‖u‖2
)

+ 2b2|I||h|2 +
|I|2
ε3

‖f‖2
ω2 .

(3.39)

By (3.25),

‖∂ru‖2
ω2 + βm‖u‖2 ≤ (1 + ε1)k

2‖u‖2
ω2 + cb3|h|2 + c‖f‖2

ω2 .(3.40)

The rest of the proof is essentially the same as that in the 2-D case. More precisely, we
can derive the 3-D version of inequalities (3.33)–(3.38) with slightly different constants

C = 2 − 2a

ξ3
− ε1 > 0, ξ3 ∈ (a, b), if m ≥ kb,

C̃ = 2 − 2a

ξ3
− ε1 − 2ε3|I|, ξ3 ∈ (a, b), if m < kb.

(3.41)

Finally, since Im(Tm,k) is a decreasing function of m and Im(Tm,k) = Im(Tm,kb)
(cf. (2.14) and (3.7)), the desired bound follows from (2.27) and (2.35).

The proof of Theorem 3.1. Since the proof of the 2-D and 3-D cases is essentially
the same, we prove only (3.12) with d = 3. Thanks to the orthogonality of the spherical
harmonic functions, we deduce from Lemma 3.1 that

‖∇U‖2 + k2‖U‖2 � ‖∂rU‖2
ω2 + ‖∇SU‖2 + k2‖U‖2

ω2

�
∞∑

m=0

m∑
l=−m

(
‖∂rûlm‖2

ω2 + βm‖ûlm‖2 + k2‖ûlm‖2
ω2

)
�

∞∑
m=0

m∑
l=−m

((√
b3 +

√
b|I|Cm,k

)2|ĥlm|2 + C2
m,k|I|2‖f̂lm‖2

ω2

)
�

∞∑
m=0

m∑
l=−m

((√
b3 +

√
b|I|(kb)1/3

)2
ĥ2
lm + (kb)2/3|I|2‖f̂lm‖2

ω2

)
�

(√
b3 +

√
b|I|(kb)1/3

)2‖η‖L2(S) + (kb)2/3|I|2‖F‖2.

This ends the proof.

4. Spectral-Galerkin approximation.

4.1. The spectral-Galerkin method and its well-posedness. Let PN be
the space of all complex polynomials of degree at most N on Ī . Define XN :=

{
u ∈

PN : u(a) = 0
}

and

(4.1) YM :=

⎧⎨⎩span
{
eimθ : −M ≤ m ≤ M

}
if d = 2,

span
{
Y l
m(θ, φ) : 0 ≤ |l| ≤ m ≤ M

}
if d = 3,

where B(·, ·) is defined in (3.9).
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The spectral-Galerkin approximation to (3.11) is as follows:

Find UMN ∈ VMN := XN × YM such that

B(UMN , VMN ) = (F, VMN )ωd−1 + bd−1
〈
η, VMN (b, ·)

〉
S

∀ VMN ∈ VMN .
(4.2)

Since the sesquilinear form B(·, ·) is not coercive in VMN × VMN even for small wave
number k, an important issue is to prove the well-posedness of the discrete scheme
(4.4).

Expanding the numerical solution and test function as

(4.3)
(
UMN , VMN

)
=

⎧⎨⎩
∑M

|m|=0

(
ûN
m(r), v̂Nm(r)

)
eimθ if d = 2,∑M

m=0

∑m
l=−m

(
ûN
lm(r), v̂Nlm(r)

)
Y l
m(θ, φ) if d = 3,

one verifies that uN := ûN
m or ûN

lm satisfies the reduced problem

(4.4)

{
Find uN ∈ XN such that

Bm(uN , vN ) = (f, vN )ωd−1 + bd−1hvN (b) ∀vN ∈ XN , d = 2, 3,

where Bm(·, ·) is defined in (3.14); for brevity, we denote vN := v̂Nm or vNlm, and f and
h are the same as those in (3.13).

It is important to note that, unlike in the Galerkin finite-element method, the
spectral-Galerkin approximation space XN has the following property: For uN ∈ XN ,
we have (r − a)∂ruN ∈ XN . Hence, the proof of Lemma 3.1 is also valid for the
discrete system (4.4). In particular, Theorem 3.1 holds with uN in the place of u.
As a consequence, the problem (4.4) has at most one solution. Since (4.4) is finite-
dimensional, we then derive from a simple fact in linear algebra that the problem
(4.4) admits a unique solution.

Therefore, following the same procedure as in the proof of Theorem 3.1 leads to
the following result.

Theorem 4.1. If F ∈ L2(Ω) and η ∈ L2(S), the problem (4.2) admits a unique
solution satisfying

‖∇UMN‖ + k‖UMN‖ �
(√

bd +
√
b|I|(kb)1/3

)
‖η‖L2(S) + (kb)1/3|I|‖F‖.(4.5)

4.2. Error estimates. In this part, we shall estimate the error between U (so-
lution of (3.11)) and UMN (solution of (4.2)). Our starting point is to analyze the
error of 1-dimensional approximation (4.4).

4.2.1. Analysis of the 1-D scheme. In order to carry out the error analysis,
we define the orthogonal projection 0π

1
N : X → XN by

(4.6)
(
∂r(u−

0
π1
Nu), ∂rvN

)
= 0 ∀vN ∈ XN .

For s ≥ 1 and s ∈ N, we introduce the weighted Sobolev space

Bs(I) :=
{
u ∈ L2(I) : [(r − a)(b− r)]

l−1
2 ∂l

ru ∈ L2(I), 1 ≤ l ≤ s
}
,

with the norm and seminorm

‖u‖Bs =
(
‖u‖2 +

s∑
l=1

∥∥[(r − a)(b− r)]
l−1
2 ∂l

ru
∥∥2

) 1
2

,

|u|Bs =
∥∥[(r − a)(b− r)]

s−1
2 ∂s

ru
∥∥.
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Lemma 4.1. For any u ∈ X ∩Bs(I), with s ≥ 1 and s ∈ N,

(4.7) ‖∂r(0
π1
Nu− u)‖ + N |I|−1‖

0
π1
Nu− u‖ � N1−s|u|Bs .

Proof. This result is a direct consequence of the Legendre polynomial approxi-
mation (with a scaling and a direct extension to complex functions), which can be
found, for instance, in [7], with an improvement of the weighted seminorm in the
upper bound given by [14].

With the aid of Lemmas 3.1 and 4.1, we are able to obtain the following error
estimates.

Theorem 4.2. Let u and uN be, respectively, the solutions of (3.13) and (4.4).
If u ∈ X ∩Bs(I), with integer s ≥ 1, then for d = 2, 3

‖∂r(u− uN )‖ωd−1 +
√
βm‖u− uN‖ωd−3 + k‖u− uN‖ωd−1

� C�(m,N, k; a, b, d)N1−s|u|Bs ,
(4.8)

where

C�(m,N, k; a, b, d) : = (1 +
√
βm)b(d−1)/2 +

√
βma

d−3
2 |I|N−1

+ k1/3(
√
βmb3d/2−2

√
|I|N−1/2 + |I|2bd/2k2N−1).

(4.9)

Proof. Let eN = uN − 0π
1
Nu and ẽN = u−

0π
1
Nu. By (3.13) and (4.4),

(4.10) Bm(u− uN , vN ) = 0 ∀vN ∈ XN .

Then we derive from (3.14), (4.6), and (4.10) that for any vN ∈ XN

Bm(eN , vN ) =Bm(ẽN , vN ) = βm(ẽN , vN )ωd−3

− k2(ẽN , vN )ωd−1 − kbd−1Tm,kẽN (b)vN (b).
(4.11)

Hence, we can view (4.11) in the form of (3.13) with u = eN , h = −kbd−1Tm,kẽN (b),
f = −k2ẽN , and an additional term βm(ẽN , vN )ωd−3 . As with the proof of Theorem
3.1, we take two different test functions vN = eN , 2(r − a)∂reN ∈ XN and treat the
extra term as

(4.12) βm|(ẽN , eN )ωd−3 | ≤ ε6βm‖eN‖2
ωd−3 +

βm

4ε6
‖ẽN‖2

ωd−3

and

2βm|
(
ẽN , (r − a)∂reN

)
ωd−3 | ≤ 2βm

{
bd−3|I|

∣∣ẽN (b)eN (b)
∣∣

+
∣∣(∂r ẽN , (1 − ar−1)eN

)
ωd−2

∣∣ +
∣∣(ẽN , ((d− 2) − a(d− 3)r−1)eN

)
ωd−3

∣∣}
≤ ε7βmbd−3|I||eN (b)|2 +

βmbd−3|I|
ε7

|ẽN (b)|2 + ε8βm‖eN‖2
ωd−3

+
cβm

ε8

(
‖∂r ẽN‖2

ωd−1 + ‖ẽN‖2
ωd−3

)
.

(4.13)

Thus, choosing suitable constants {εj}8
j=6 and following the same lines as for the

proof of Theorem 3.1 (with u = eN , h = −kbd−1Tm,kẽN (b), and f = −k2ẽN ), we can
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derive that

‖∂reN‖2
ωd−1 + βm‖eN‖2

ωd−3 + k2‖eN‖2
ωd−1

� βm

(
‖∂r ẽN‖2

ωd−1 + ‖ẽN‖2
ωd−3

)
+ βmbd−3|I||ẽN (b)|2

+ k2b2(d−1)|Tm,k|2
(√

bd +
√
b|I|Cm,k

)2|ẽN (b)|2

+ k4|I|2C2
m,k‖ẽN‖2

ωd−1 .

(4.14)

To estimate the term |ẽN (b)|, we use the Sobolev inequality and Lemma 4.1 to obtain
that

(4.15) |ẽN (b)|2 �
(
2 + |I|−1

)
‖ẽN‖‖ẽN‖1 � N1−2s|I||u|2Bs .

Next, using the inequality ‖v‖2
ωα ≤ max{bα, aα}‖v‖2 and Lemma 4.1 leads to

‖∂μ
r ẽN‖2

ωd−1 ≤ bd−1‖∂μ
r ẽN‖2 � bd−1|I|2−2μN2μ−2s|u|2Bs , μ = 0, 1,

‖ẽN‖2
ωd−3 ≤ ad−3‖ẽN‖2 � ad−3|I|2N−2s|u|2Bs .

(4.16)

Hence, by the triangle inequality, (4.14)–(4.16), and Lemma 4.1, we have that

‖∂r(u− uN )‖2
ωd−1 + βm‖u− uN‖2

ωd−3 + k2‖u− uN‖2
ωd−1

≤
(
‖∂reN‖2

ωd−1 + βm‖eN‖2
ωd−3 + k2‖eN‖2

ωd−1

)
+
(
‖∂r ẽN‖2

ωd−1 + βm‖ẽN‖2
ωd−3 + k2‖ẽN‖2

ωd−1

)
� (1 + βm)‖∂r ẽN‖2

ωd−1 + βm‖ẽN‖2
ωd−3 + βmbd−3|I||ẽN (b)|2

+ k2b2(d−1)|Tm,k|2
(√

bd +
√
b|I|Cm,k

)2|ẽN (b)|2

+ k4|I|2C2
m,k‖ẽN‖2

ωd−1

� C∗(m,N, k; a, b, d)N2−2s|u|2Bs ,

(4.17)

where

C∗(m,N, k; a, b, d) := (1 + βm)bd−1 + βmad−3|I|2N−2

+ βmbd−3|I|2N−1 + k2b2(d−1)|Tm,k|2
(√

bd +
√
b|I|Cm,k

)2|I|N−1

+ k4|I|4bd−1C2
m,kN

−2.

(4.18)

We now derive an upper bound for C∗(m,N, k; a, b, d). Since by (2.22) and (2.34)

|Tm,k|2 ≤ 1 +
(m + 1)2

(kb)2

and by (3.16) Cm,k � (kb)1/3, we deduce that for N � 1

C∗(m,N, k; a, b, d) � (1 + βm)bd−1 + βmad−3|I|2N−2

+ βmb3d−4|I|k2/3N−1 + |I|4bdk4+2/3N−2.

This implies the desired result.
Remark 4.1. Note that, in the error estimate (4.8), N1−s|u|Bs is the best approx-

imation error, and k2N−1 in C∗ is the so-called “pollution error” which is typical for
the numerical approximations to the Helmholtz equation (cf. [4]). The extra term
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k1/3 in C∗ is due to the asymptotic behavior of the DtN kernel (see section 2), and it
is unlikely that this extra term can be removed.

Remark 4.2. To illustrate how the error behaves with respect to N , k, and b with
a > 0 being fixed, we consider a typical oscillatory function u(r) = eikr − eika. Then,
for any s > 0, we have

|u|2Bs =

∫ b

a

|∂s
ru|2

(
(r − a)(b− r)

)s−1
dr

≤ k2s

∫ b

a

(
(r − a)(b− r)

)s−1
dr � k

(
k
b− a

2

)2s−1

.

(4.19)

Plugging this into (4.8), we find that for this particular but typical solution we have
that for any s ≥ 1

‖∂r(u− uN )‖ωd−1 +
√
βm‖u− uN‖ωd−3 + k‖u− uN‖ωd−1

� C�(m,N, k; a, b, d)k

√
b− a

2

(k(b− a)

2N

)1−s

.
(4.20)

Hence, the error will decay exponentially as soon as k(b−a)
2N < 1, as opposed to the

usual condition kb
2N < 1. Hence, we can significantly reduce the computational cost by

choosing b as close to a as we wish (note, however, that, for scattering from a general
obstacle D = r > a + g(θ) in 2-D or D = r > a + g(θ, φ) in 3-D, we have to make
sure that b > a + ‖g‖L∞).

With the above preparations, we are ready to perform the error analysis of the
full scheme (4.2).

4.2.2. Multidimensional cases. To describe the error, we introduce the fol-
lowing nonisotropic Sobolev space:
(4.21)

Hs,s′

p,ωd−1(Ω) = L2
p

(
S;Bs(I)

)
∩Hs′−1

p

(
S;H1

ωd−1(I)
)
∩Hs′

p

(
S;L2

ωd−3(I) ∩ L2
ωd−1(I)

)
,

with d = 2, 3, s, s′ ≥ 1, and the norm

∥∥U∥∥
Hs,s′

p,ω (Ω)
=
( ∞∑

|m|=0

[
|ûm|2Bs + (1 + m2)s

′−1‖∂rûm‖2
ω

+ (1 + m2)s
′(‖ûm‖2

ω−1 + ‖ûm‖2
ω

)]) 1
2

;∥∥U∥∥
Hs,s′

p,ω2 (Ω)
=
( ∞∑

m=0

m∑
l=−m

[
|ûlm|2Bs + (1 + m)2s

′−s‖∂rûlm‖2
ω2

+ (1 + m)2s
′(‖ûlm‖2 + ‖ûlm‖2

ω2

)]) 1
2

.

(4.22)

Theorem 4.3. Let U and UMN be the solutions of (3.11) and (4.2), respectively.

If U ∈ L2
p(S;X) ∩Hs,s′

p,ωd−1(Ω), with d = 2, 3 and s, s′ ≥ 1, then we have

‖∇(U − UMN )‖ + k‖U − UMN‖

�
(
C∗(M,N, k; a, b, d)N1−s + (1 + kM−1)M1−s′

)∥∥U∥∥
Hs,s′

p,ωd−1 (Ω)
,

(4.23)
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where

C�(M,N, k; a, b, d) : = (1 + M)b(d−1)/2 + Ma
d−3
2 |I|N−1

+ k1/3(Mb3d/2−2
√
|I|N−1/2 + |I|2bd/2k2N−1).

(4.24)

Proof. Since the proof of d = 2, 3 is quite similar, we shall prove only the case
d = 2. For notational convenience, let EMN = U −UMN and êm = ûm − ûN

m. Thanks
to the orthogonality of the Fourier series, we have that

‖∇EMN‖2 + k2‖EMN‖2 �
M∑

|m|=0

(
‖∂r êm‖2

ω + m2‖êm‖2
ω−1

+ k2‖êm‖2
ω

)
+

∑
|m|>M

(
‖∂rûm‖2

ω + m2‖ûm‖2
ω−1 + k2‖ûm‖2

ω

)
:= S2

1 + S2
2 .

(4.25)

Using Theorem 4.2 leads to

S1 �
(

max
0≤|m|≤M

{
C�(m, . . . )

})
N1−s

( M∑
|m|=0

|ûm|2Bs

) 1
2

� C�(M,N, k; a, b, d)N1−s
∥∥U∥∥

Hs,s′
p,ω (Ω)

.

(4.26)

We treat S2 as

S2 � M1−s′
( ∑

|m|>M

m2s′−2
(
‖∂rûm‖2

ω + m2‖ûm‖2
ω−1

)) 1
2

+ kM−s′
( ∑

|m|>M

m2s′‖ûm‖2
ω

) 1
2

�
(
1 + kM−1

)
M1−s′

∥∥U∥∥
Hs,s′

p,ω (Ω)
.

(4.27)

Hence, a combination of (4.25)–(4.27) yields the desired result.

5. Numerical results and discussions. We now present some numerical re-
sults to complement our error estimates for the spectral-Galerkin scheme (4.2). We
consider the problem (3.1) in 2-D and take

(5.1) F (r, θ) = 0, η(θ) = 0, ξ(θ) = H(1)
m (ka)eimθ.

In this case the exact solution is U(r, θ) = H
(1)
m (kr)eimθ. Since for a given m, eimθ can

be exactly determined with the number of mode M = Nθ ≥ 2m, we will concentrate
on the approximation behavior of our scheme with respect to the frequency k and the
thickness of the annulus b− a.

In the first set of tests, we take a = 1 and b = 2. In Figure 5.1, we present
the relative L2-error versus the number of mode N = Nr for a wide range of wave
numbers. We note that, as soon as Nr > k(b − a)/2, the errors start to decay, for
moderate to large wave numbers, the errors decay slowly until about Nr ∼ k(b− a),
and finally, for Nr > k(b− a), all errors converge to zero at an exponential rate.

In the second set of tests, we take a = 1 and b = 1.25. The results are plotted in
Figure 5.2. We observe similar behaviors as in the first set except that now we have
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Fig. 5.1. Relative L2-error versus Nr as compared to an exact solution: a = 1, b = 2.
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Fig. 5.2. Relative L2-error versus Nr as compared to an exact solution: a = 1, b = 1.25.

b− a = 1
4 and only about 1/4 of the modes are needed to achieve a similar accuracy.

These behaviors are consistent with our error estimates (cf. Remark 4.2).
These results indicate that (i) the approximate solution UNr,Nθ

will converge to
the exact solution U(r, θ) exponentially fast as Nr, Nθ → +∞ provided that all F (r, θ),
ξ(θ), and η(θ) are analytic in Ω, and (ii) our numerical scheme is stable for large Nr

and capable of providing accurate results for moderate to large wave numbers.
To summarize, we have presented a complete analysis for the spectral-Galerkin

method to the Helmholtz equation in exterior domains. We first studied asymptotic
behaviors of the Hankel functions which play essential roles for our error analysis.
Using these asymptotic estimates, we then derived a priori estimates with explicit
dependence on the wave number for both the continuous and the discrete problems.
Finally, we performed an error analysis and derived error bounds with explicit de-
pendence on the wave number. To the authors’ best knowledge, our error estimates
seem to be the first of their kind, i.e., with explicit dependence on the wave number
for a numerical method on bounded obstacle scattering via the DtN map. A particu-
lar advantage of this approach, verified by our error estimates and numerical results,
is that we can choose the artificial boundary very close to the scatterer while still
maintaining the spectral accuracy.

Appendix A. The proof of (2.34). We first prove (2.34a). It is clear that,
by (2.33b), Im(Tm,κ) > 0. On the other hand, since Im(Tm,κ) is a strictly increasing
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(resp., decreasing) function of κ (resp., m), we have

Im(Tm,κ) ≤ Im(T1,κ) < Im(T1,∞) = 1,

due to the asymptotic formula |H(1)
1 (κ)|2 ∼ 2

πκ for κ � 1 (see Formula 9.2.3 of [1]).
We now turn to the proof of (2.34b). Recall that the modified Bessel function of

the second kind of order ν is defined by

(A.1) Kν(z) =

∫ ∞

0

e−z cosh t cosh(νt)dt.

In particular, we have

(A.2) K0(z) =

∫ ∞

0

e−z cosh tdt, K1(z) = −K′
0(z).

By Formula (4) on p. 445 of [31],

J2
m(κ) + Y 2

m(κ) =
8

π2

∫ ∞

0

K0(2κ sinh t) cosh(2mt)dt,(A.3a)

[
JmJm+1 + YmYm+1

]
(κ) =

8

π2

∫ ∞

0

K1(2κ sinh t) sinh
(
(2m + 1)t

)
dt.(A.3b)

Using the identity K1(z) = −K′
0(z) and integration by parts leads to

[
JmJm+1 + YmYm+1

]
(κ) = − 8

π2

∫ ∞

0

sinh
(
(2m + 1)t

)
2κ(sinh t)′

d
(
K0(2κ sinh t)

)
= − 4

κπ2

sinh
(
(2m + 1)t

)
cosh t

K0(2κ sinh t)
∣∣∣∞
0

+
4

κπ2

∫ ∞

0

K0(2κ sinh t)
( sinh

(
(2m + 1)t

)
cosh t

)′
dt

=
4

κπ2

∫ ∞

0

K0(2κ sinh t) cosh(2mt)Wm(t)dt,

where

Wm(t) =
1

cosh(2mt)

( sinh
(
(2m + 1)t

)
cosh t

)′
.

Note that in the last step we used the asymptotic formula (see Formula 9.7. 2 of [1])

(A.4) K0(2κ sinh t) ∼
√

π

2κ sinh t
e−2κ sinh t ∼ e−κet−t/2, t � 1,

to claim that

sinh
(
(2m + 1)t

)
cosh t

K0(2κ sinh t) → 0 as t → ∞.

Using the identities of the hyperbolic functions, Wm(t) can be written as

(A.5) Wm(t) = 2m
(
1 + (tanh t) tanh(2mt)

)
+ sech2t, 0 ≤ t < ∞.
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We now seek the maximum and minimum values of Wm(t). Taking the derivative of
Wm(t) yields

W ′
m(t) = 2m

(
(sech2t) tanh(2mt) + 2m(tanh t)sech2(2mt)

)
− 2(tanh t)sech2t

= 2
(
m tanh(2mt) − tanh t

)
sech2t + 4m2(tanh t)sech2(2mt).

It is obvious that

m tanh(2mt) − tanh t > 0 ∀t > 0, ∀m ≥ 1.

Hence, Wm(t) is an increasing function of t, and consequently,

(A.6) 2m + 1 = Wm(0) ≤ Wm(t) ≤ Wm(∞) = 4m ∀t ≥ 0, ∀m ≥ 1.

Therefore, for m ≥ 1,

(A.7)
2m + 1

2κ
≤ Jm(κ)Jm+1(κ) + Ym(κ)Ym+1(κ)

J2
m(κ) + Y 2

m(κ)
≤ 2m

κ
,

which, together with (2.33a), yields the bounds

−m

κ
≤ Re(Tm,κ) ≤ − 1

2κ
for m ≥ 1.

Finally, for m = 0, (A.5) implies that 0 < W0(t) ≤ 1. Accordingly, we find that

− 1

2κ
≤ Re(T0,κ) < 0.

It remains to prove (2.34c).
Let us first show that Im(T0,κ) is a strictly decreasing function of κ. By (2.33b),

it suffices to show that

f(x) := x|H(1)
0 (x)|2 = x

(
J2

0 (x) + Y 2
0 (x)

)
, x > 0,

is a strictly increasing function of x. Indeed, by (A.3a),

f(x) =
8

π2

∫ ∞

0

xK0(2x sinh t)dt.

Differentiating it gives

f ′(x) =
8

π2

∫ ∞

0

{
K0(2x sinh t) + 2x sinh t K′

0(2x sinh t)
}
dt.

Integrating the second term by parts leads to

f ′(x) =
8

π2
K0(2x sinh t) tanh t

∣∣∞
0

+
8

π2

∫ ∞

0

K0(2x sinh t) tanh2 tdt.

Notice that the first term is zero due to the decay property of K0 (cf. (A.4)). Therefore,
we have

f ′(x) > 0 ∀x > 0.

Finally, (2.34c) follows immediately from (2.33b) and the facts that Im(T0,κ) is a

strictly decreasing function of κ and κ|H(1)
0 (κ)|2 → 2

π as κ → ∞.
This ends the proof of (2.34).
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Abstract. We introduce and analyze a fast version of the semi-Lagrangian algorithm for front
propagation originally proposed in [M. Falcone, “The minimum time problem and its applications to
front propagation,” in Motion by Mean Curvature and Related Topics, A. Visintin and G. Buttazzo,
eds., de Gruyter, Berlin, 1994, pp. 70–88]. The new algorithm is obtained using the local definition
of the approximate solution typical of semi-Lagrangian schemes and redefining the set of “neighbor-
ing nodes” necessary for fast marching schemes. A new proof of convergence is needed since that
definition produces a new narrow band centered at the interphase which is larger than the one used
in fast marching methods based on finite differences. We show that the new algorithm converges to
the viscosity solution of the problem and that its complexity is O(N logNnb), as it is for the fast
marching method based on finite difference (N and Nnb being, respectively, the total number of nodes
and the number of nodes in the narrow band). A new sufficient condition for the convergence of the
standard finite difference fast marching method is also given. We present several tests comparing the
two algorithms and other fast methods (e.g., fast sweeping) on a series of benchmarks which include
the minimum time problem and the shape-from-shading problem.
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fast marching methods
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1. Introduction. The level set method is a clever and rather simple way to
describe an interface separating two or more regions with different physical phases.
As is well known, the method describes the evolution of the front by a continuous
representation function u(x, t) which is negative in the domain Ωt corresponding to
one of the phases, positive outside that domain, and changes sign across the interfaces.
A comprehensive introduction to the level set method as well as to several applications
and references can be found in [19] and [32].

The level set method leads to a nonlinear first order PDE whenever the interface
evolution is simply driven by a normal velocity and (possibly) a given advection term.
More complicated types of evolution consider the normal velocity as a function of the
curvature and/or of other geometric parameters of the interface, and this leads to
second order nonlinear PDEs (or integrodifferential equations).

The typical model problem for an interface which evolves in the normal direction
driven by a given scalar velocity c(x) : R

n → R leads to the first order Hamilton–
Jacobi equation{

ut(x, t) + c(x)|∇u(x, t)| = 0 for x ∈ R
n , t ∈ (0,+∞),

u(x, 0) = u0(x) for x ∈ R
n,

(1)
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where the initial condition u0 must be a representation function of the initial position
of the front Γ0 = ∂Ω0. Note that u0 is unknown since Γ0 is the only initial datum,
so that the first step is usually to compute u0. The above problem can be simplified
when the evolution is monotone (increasing or decreasing), i.e., when either Ωt ⊂ Ωt+s

or the reverse inclusion are satisfied for any t, s > 0. For monotone types of evolution,
it has been proved in [17] (see also [26]) that (1) can be replaced by the stationary
equation {

c(x)|∇T (x)| = 1 for x ∈ R
n\Ω0,

T (x) = 0 for x ∈ ∂Ω0,
(2)

where we assume

c > 0(3)

and T represents the time needed to transfer a point x ∈ R
n\Ω0 to Ω0 by appropriate

dynamics (see below). In fact, the link between the two equations is simple: if T is
the viscosity solution of (2), then u(x, t) = T (x) − t is the viscosity solution of (1). It
is worth noting that the second problem is easier to solve since it does not require the
additional computation of u0, which requires the solution of another Hamilton–Jacobi
equation of type (2) to compute the (signed) distance function to Ω0. Moreover, the
knowledge of T gives a description of the interface for every time t using the fact
that Γt = ∂Ωt = {x ∈ R

n : T (x) = t}. On the other hand, (1) is preferable to its
stationary version whenever it is needed to derive a high order scheme that has the
same efficiency as the formally first order one (see, e.g., [1]). However, some results
on high order methods for stationary first order Hamilton–Jacobi equations including
(2) are available, e.g., in [15].

Note that the above stationary approach relies on the link between the propaga-
tions of fronts and the minimum time problem of control theory. In fact, as shown in
[17], by the change of variable (Kružkov transform)

v(x) = 1 − e−T (x)(4)

we can transform (2) into the equation⎧⎨⎩
v(x) + max

a∈B(0,1)
{c(x)a · ∇v(x)} = 1 for x ∈ R

n\Ω0,

v(x) = 0 for x ∈ ∂Ω0,
(5)

where B(0, 1) is the unit ball centered in 0. This is the Hamilton–Jacobi–Bellman
equation of a minimum time problem for the dynamics{

ẏ(t) = −c(y)α(t), t ∈ (0,+∞),

y(0) = x,
(6)

where α(·) ∈ A =
{
α(·) : [0,+∞) → B(0, 1) ⊂ R

n, measurable
}
. We will denote by

y(t;α, x) the solution of the system corresponding to the control α and to the initial
condition x. The usual requirement in order to have existence and uniqueness for the
trajectories under the Carathéodory conditions is

c(x) Lipschitz continuous and bounded.(7)
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Let us define the cost functional

Jx(α(·)) = inf
{
t : y(t;α, x) ∈ Ω0

}
≤ +∞.

It is well known that the minimum time function

T (x) = inf
α(·)∈A

Jx(α(·))(8)

is the unique viscosity solution of (2) (see, e.g., [2, 4]).
We will focus our attention on the numerical solution of (2). It should be noted

that a fast marching method has a lower cost with respect to the corresponding
classical iterative method (or fixed point method), which computes the solution on
the whole grid at every iteration. The classical fast marching method based on finite
differences (FM-FD) was proposed in [33] as an acceleration method for a monotone
first order iterative finite difference scheme (see [7] for a second order version of the
scheme and [8] for a general convergence result). Since semi-Lagrangian schemes have
shown to be more accurate than the finite difference schemes corresponding to the
same order, it is natural to extend the ideas behind the FM-FD method to this class
of schemes. In the framework of semi-Lagrangian schemes several convergence results
and a priori error estimates have been obtained via control arguments since these
schemes correspond to a discrete version of the dynamic programming principle; see
[2] and [13]. Moreover, these schemes do not require an explicit and restrictive CFL
condition for stability (see [16]). It is interesting to note that the first tentative steps
in this direction can be found in [38] using a different approximation scheme. More
recently, a semi-Lagrangian scheme has been proposed by Sethian and Vladimirsky
in [34] in a more general framework which includes anisotropic front propagation on
unstructured grids.

Our main contribution here is to introduce and analyze a new fast marching ver-
sion of a semi-Lagrangian scheme, for which a priori error estimates are available in
[12], and to prove an upper bound on its computational cost. We will also review
the basic features of the FM-FD method and give a complete proof of its convergence
under an explicit CFL condition which guarantees that the scheme is always mean-
ingful and there are no complex solutions. To our knowledge this condition appears
for the first time in the literature; our proof is presented in the appendix. Lastly we
will recall the fast sweeping method studied by Zhao [39] (see also [37, 20, 21, 27, 28]
for other sweeping methods and extensions) and also provide a sweeping version of
our algorithm. Further extensions and new applications of the scheme presented in
this paper can be found in [9].

The paper is organized as follows. In section 2 we recall the basic features of
the FM-FD method introduced in [33] to solve (2) when c(x) has a constant sign
in its domain of definition. An example which shows that the FM-FD scheme can
produce complex solutions is given in the same section, and the proof of convergence
under a new CFL condition which always guarantees real solutions is presented in
the appendix. Section 3 is devoted to the presentation of the fast marching semi-
Lagrangian method (FM-SL) for (5). Section 4 contains some properties of the FM-
SL scheme that will be useful in establishing its convergence, which will be proved
in section 5. In the same section we analyze the computational complexity, showing
that the FM-SL scheme has a complexity of order O(N ln(Nnb)), where N is the total
number of nodes of our computational grid and Nnb is the number of nodes in the
narrow band (bounded by N). In section 6 we also present other fast algorithms and
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give the sweeping version of our method. Finally, section 7 is devoted to numerical
tests and to comparisons between several FM schemes on a number of benchmarks.

2. The fast marching methods based on finite differences. The fast march-
ing method has been introduced to reduce the computational effort needed to solve (2).
The basic level set algorithm is based on a finite difference discretization and on an
iterative procedure Tn+1 = F (Tn) which computes the approximate solution every-
where in R

n \ Ω0 at every iteration. The FM-FD method instead follows the front
concentrating the computational effort where it is needed, i.e., in a small neighbor-
hood of the front, and it updates that neighborhood at every iteration to avoid useless
computations. This is done by dividing the grid nodes into three subsets: far nodes,
accepted nodes, and narrow band nodes. The narrow band nodes are the nodes where
the computation actually takes place and their value can still change at the following
iterations. The accepted nodes are those where the solution has been already com-
puted and where the value cannot change in the following iterations. Finally, the far
nodes are the remaining nodes where an approximate solution has never been com-
puted. In physical terms, the far nodes are those in the space region which has never
been touched by the front, the accepted nodes are those where the front has already
passed through, and the narrow band nodes are, iteration by iteration, those lying in
a neighborhood of the front.

The algorithm starts labeling as accepted only the nodes belonging to the initial
front, i.e., belonging to Γ0 = ∂Ω0, and ends only when all the nodes have been
accepted. In this section, we will briefly sketch the FM-FD scheme for (2). In order
to avoid cumbersome notation we will restrict the presentation to the case n = 2. In
what follows, we will always consider the case of a positive normal velocity; i.e., we
assume c(x) > 0 to guarantee a monotone (increasing) evolution of the front. The
results in this section can be easily generalized to the n-dimensional case and to the
case c(x) < 0.

We will take a square Q large enough to contain Ω0; this is the domain where
we want to compute T . Boundary conditions will be given on ∂Q and Γ0 but, as a
first step, we will consider the algorithm without boundary conditions on ∂Q. The
implementation of boundary conditions in the scheme will be discussed in section 5.

We will assume that we are working on a structured grid of M ×N nodes (xi, yj),
i = 1, . . . , N and j = 1, . . . ,M . Δx and Δy will denote the (uniform) discretization
steps, respectively, on the x and y axes. We will denote by Ti,j and ci,j , respectively,
the values of T and c at (xi, yj).

Let us write (2) as

T 2
x + T 2

y =
1

c2(x, y)
.(9)

We replace the partial derivatives Tx and Ty by first order finite differences, and we
choose for simplicity M = N and Δx = Δy. It is well known that in order to obtain
an approximation of the viscosity solution, an up-wind correction must be introduced.
This leads to the equation(

max

{
max

{
Ti,j − Ti−1,j

Δx
, 0

}
,−min

{
Ti+1,j − Ti,j

Δx
, 0

}})2

+

(
max

{
max

{
Ti,j − Ti,j−1

Δx
, 0

}
,−min

{
Ti,j+1 − Ti,j

Δx
, 0

}})2

=
1

c2i,j
.(10)
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2.1. The FM-FD algorithm. Let us briefly recall the main definitions and
steps of the FM-FD method.

Definition 2.1 (neighboring nodes for the finite difference scheme). Let X =
(xi, yj) be a node. We define the set of neighboring nodes to X as

NFD(X) =
{

(xi+1, yj), (xi−1, yj), (xi, yj+1), (xi, yj−1)
}
.

These are the nodes appearing in the stencil of the first order finite difference
discretization. The definition can be easily extended to the n-dimensional case.

Sketch of the FM-FD algorithm.
Initialization.
1. The nodes belonging to the initial front Γ0 are located and labeled as accepted.

Their value is set to T = 0 (they form the set Γ̃0).

2. The initial narrow band is defined taking the nodes belonging to NFD(Γ̃0),
external to Γ0. These nodes are labeled as narrow band, setting the value to
T = Δx

c .
3. The remaining nodes are labeled as far, and their value is set to T = +∞ (in

practice, the maximum floating point number).
Main cycle.
1. Among all the nodes in the narrow band we search for the minimum value of

T . Let us denote this node by A.
2. A is labeled as accepted and is removed from the narrow band.
3. The nodes in NFD(A) which are not accepted are labeled as active. If among

these nodes there are nodes labeled as far, they are transferred to the narrow
band.

4. The value of T in the active nodes is computed (or recomputed), solving the
second order equation (10) and taking the largest root.

5. If the narrow band is not empty, go back to 1.
Note that the narrow band is a reasonable approximation of the level set of T (x, y).

The main interest in the FM-FD method is that its computational cost is bounded.
In fact, every node cannot be accepted more than one time and every node has just
four neighbors, so the bound on the maximum number of times a single node can be
recomputed is four. This corresponds to a computational cost of O(N), where N is the
total number of nodes. We should add to that cost the search for the minimum value
of T among the nodes in the narrow band, which costs O(ln(Nnb)), where Nnb is the
number of nodes in the narrow band. In conclusion, the algorithm has a global cost
of O(N ln(Nnb)) operations (see [38, 32, 33] for further details on the computational
cost). This is not the case for the usual iterative/fixed point algorithm since in that
case the approximate solution is obtained in the limit and, in practice, no one knows
when the stopping criterion will apply; i.e., the maximum number of iterations is
virtually unbounded.

Let us observe that it is necessary to introduce some conditions or to modify the
scheme in order to avoid inconsistencies due to the appearance of imaginary solutions.
In fact, let us consider the discretization (10) and suppose that

Ti,j < Ti+1,j , Ti,j < Ti,j−1, Ti,j > Ti−1,j , Ti,j > Ti,j+1.

It is easy to check that (10) corresponds to(
Ti,j − Ti−1,j

Δx

)2

+

(
Ti,j+1 − Ti,j

Δx

)2

=
1

c2i,j
,



1984 EMILIANO CRISTIANI AND MAURIZIO FALCONE

��
��
��
��

��

x

y

0 Δ Δ2 xx Δx3

i i+1i−1

Δ

Δ

Δ

Δ y

y

y

y

2

3

4

j

j+1

j−1

8 8

Q

A X

B

P

8
8

8

8
8

Fig. 1. A configuration with complex roots.

which gives

Ti,j =
Ti−1,j + Ti,j+1 ±

√
2
(

Δx
ci,j

)2

− (Ti−1,j − Ti,j+1)
2

2
.(11)

We already noted that the term under the square root can be negative. Obviously this
must be avoided since complex roots have no physical meaning. A situation where
this occurs is the following example.

Consider the case where the initial front is the union of two points, i.e., Γ0 =
P ∪ Q, Q = (Δx,Δy) and P = (2Δx, 4Δy) (see Figure 1). Let us consider the
following velocity:

c(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε, y ≤ Δy,

ε + 1−ε
Δy (y − Δy), Δy ≤ y ≤ 2Δy,

1 − 1−ε
Δy (y − 2Δy), 2Δy ≤ y ≤ 3Δy,

ε, y ≥ 3Δy.

(12)

In this case the algorithm initializes the narrow band, computing a large value
for B when ε is small and a small value for the node A which will be the first node
accepted (after Γ0). When the node X has to be computed, its value depends on
T (A) and T (B). Since c(X) = 1 and T (A)− T (B) is large (for ε small) the radicand
in (11) will be negative (as numerical tests confirm).

This difficulty can be solved by either choosing the positive part of the radicand
(as suggested in [22]) or changing discretization, as in [39]. However, both choices
lead to a modification of the scheme, which can be difficult to handle when looking
for theoretical results. We prefer to avoid changing the scheme, and we prove that
under the CFL-like condition

Δx ≤ (
√

2 − 1)
cmin

Lc
(13)

the algorithm always computes real solutions at every node (here cmin is the minimum
value of c, Lc is its Lipschitz constant, and again Δx = Δy). Condition (13) has a
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clear meaning and allows us to give a proof of convergence to the viscosity solution. To
our knowledge this is the first time this condition appears in the literature; a complete
proof of the convergence result (Proposition 2.1) will be given in the appendix.

Let us denote by A the node in the narrow band where the minimum value of T is
attained. The algorithm labels A as accepted and starts to compute the neighboring
nodes which are not accepted.

Proposition 2.1. Let X = (xi, yj) ∈ NFD(A) be the node where the FM-FD
method computes a solution. Let us assume that

cmin = min
Q\Ω0

c(x) > 0(14)

and that the following CFL-like condition holds true:

Δx ≤ (
√

2 − 1)
cmin

Lc
,(15)

where Lc denotes the Lipschitz constant of c. Then we have

T (A) ≤ T (X) ≤ T (A) + fX ,(16)

where fX := Δx/c(X).
The above result is crucial in order to obtain convergence in a finite number of

steps. In fact, it shows that the minimum value of the nodes in the narrow band (which
is actually the only value accepted at every iteration) is exact within the consistency
error of the scheme. An approximate value is considered to be exact if the algorithm
cannot replace it with a strictly lower value at any of the following iterations.

3. The fast marching method based on the semi-Lagrangian scheme.
We will study a fast marching version of the semi-Lagrangian scheme studied in [12]
under the assumptions (3) and (7) that we will keep here. It was proved in [3] that the
numerical scheme stems from a discrete version of the dynamic programming principle
applied to (6); this leads to the equation⎧⎨⎩

w(x) = min
a∈B(0,1)

{βw(x− hc(x)a)} + 1 − β for x ∈ R
n\Ω0,

w(x) = 0 for x ∈ ∂Ω0,
(17)

where β = e−h, h is the time step for the (hidden) dynamics, and w is an approxi-
mation of v. We will consider for simplicity a structured grid G, denoting its nodes
by xi , i = 1, . . . , N , i.e., G = {xi, i = 1, . . . , N}. Note that the same scheme can
be implemented on an unstructured grid as in [31]. We write (17) at every node,
obtaining⎧⎨⎩

w(xi) = min
a∈B(0,1)

{βw(xi − hc(xi)a)} + 1 − β for xi ∈ G\Ω0,

w(xi) = 0 for xi ∈ G ∩ Ω0,
(18)

where we defined w = 0 also in the internal nodes of Γ0. It has been shown in [12]
that under our assumptions (3) and (7), equation (18) has a unique solution w in the
class of piecewise linear functions (P1 in the finite element notation) defined on the
grid. Let us note that by applying the Kružkov transform (4) to the equation, one
can also treat the case when c = 0 since in that case the minimum time function to
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the target (i.e., the initial configuration of the front in the front propagation problem)
will have infinite value at some points, whereas v will always stay bounded by 1. This
allows us to run the computations also for c = 0 and to treat problems with state
constraints (as we will see in the last section).

We will always approximate the v variable and use the fact that the Kružkov
transform is monotone. In fact, since T1 > T2 if and only if v1 > v2 we can work on
the v variable without changing the rules for the update of the narrow band because
the crucial point is to label as accepted the node in the narrow band, where T (or v)
attains its minimum. The above rule guarantees that we will process the nodes in an
ordering which corresponds to increasing values of v.

The idea which is behind the FM-SL method is rather simple: we follow the
initialization and all the steps of the classical FM-FD method except the step where
the value at the node xi is actually computed. That step would require us to iterate
until convergence the scheme

w(xi) = min
a∈B(0,1)

{βw(xi − hc(xi)a)} + 1 − β,(19)

so that the typical fixed point iteration is applied “locally” at every single node
following the order indicated by the FM-FD method. We will prove that for a semi-
Lagrangian scheme based on a piecewise linear space reconstruction, just a single
iteration is needed to compute the exact (within the accuracy of the scheme) value at
every node so that the computational effort is very limited and of the same order as
the FM-FD method.

3.1. Fast minimum search in B(0, 1). We will start improving the minimum
search which is typical of the semi-Lagrangian schemes. The search for a minimum
in the unit ball B(0, 1) will be solved algebraically for a linear interpolation, which
allows us to compute the values w(xi−hc(xi)a) using the known values at the nodes.
Clearly, a new algebraic solution must be obtained (if possible) for other high order
interpolations. Let us just recall that for the standard semi-Lagrangian scheme the
search for the minimum is usually restricted to a discretization of the unit ball B(0, 1)
which takes into account r points (or controls in the minimum time terminology)
a1, a2, . . . , ak, . . . , ar ∈ B(0, 1).

For example, one can construct a uniform grid on ∂B(0, 1) with step Δθ = 2π/r.
To find the minimum, for every ak the value w(xi − hc(xi)ak) is actually computed
by interpolation. Although the choice of the type and order of the interpolation is
completely free, the most popular choices are linear, using the three values at the
nodes which are closer to xi−hc(xi)ak, and bilinear, using the four values of w at the
vertices of the cell containing xi − hc(xi)ak.

Once all the values for ak, k = 1, . . . , r, are computed the minimum is obtained
by comparison. It is worth noting that this algorithm is quite slow and requires a
high computational cost; however, it can be applied to every high order interpola-
tion. Moreover, it should be noted that this minimization problem is quite difficult
since we expect to have nondifferentiable or even discontinuous solutions (if state
constraints/obstacles are present in the domain) and that the comparison algorithm
is very simple to implement and reasonably fast in low dimension especially when
the search for the minimum can be restricted to the boundary of B(0, 1) (as will be
the case in many examples). However, other algorithms for the minimization of non-
smooth functions can be applied, and the interested reader can find in [6] and [14]
recent improvements on the solution of this problem. These algorithms converge to



FAST SEMI-LAGRANGIAN SCHEMES FOR THE EIKONAL EQUATION 1987

Fig. 2. Search for optimal control.

the minimum in the limit, so they cannot be applied here since we want to have an
exact evaluation of the computational cost.

It is important to note that the time step h in (19) can vary at every node. We
will denote by hi = h(xi) the time step corresponding to the node xi, by ci = c(xi)
the velocity at xi, and by βi = e−hi . When ci > 0 it is always possible to choose

hi =
Δx

ci
.(20)

In this way (19) can be written as

w(xi) = min
a∈B(0,1)

{βiw(xi − Δx a)} + 1 − βi.(21)

In this situation, the nodes where ci = 0 are actually treated apart from the other
nodes: we just assign them the value w = 1 (which corresponds to T = +∞) without
any additional computation.

The method we propose here for the minimization problem has a low dimensional
cost since for linear interpolation the search is restricted to the boundary of the unit
ball. This is not a real restriction since, for our applications, the minimum in the unit
ball is attained at the boundary. Later in this section we will show how this algorithm
can be applied as a building block of our FM-SL scheme.

For simplicity, let us examine the situation in R
2 considering a set of four cells

each of side length Δx centered at the origin (see Figure 2). We want to compute
the minimum of the function w((0, 0) − Δx a) for a = (cos θ, sin θ) and θ ∈ [0, 2π).
Let us introduce a vector m = (m1,m2, . . . ,m8); the values of its components will
be defined below. The minimum value for which we search will be given by p =
min{m1,m2, . . . ,m8}.

Let us define the first four components of m,

m1 = w(Δx, 0) , m2 = w(0,Δx) , m3 = w(−Δx, 0) , m4 = w(0,−Δx),

and let us search for the minimum in every orthant.

Orthant I. Let w1, w2, and w3 be the values of w corresponding, respectively, to
the nodes (Δx, 0), (Δx,Δx), and (0,Δx). The unique linear function f(x, y) satisfying
the conditions

f(Δx, 0) = w1 , f(Δx,Δx) = w2 , f(0,Δx) = w3
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is

f(x, y) = ax + by + c,(22)

where

a =

(
w2 − w3

Δx

)
, b =

(
w2 − w1

Δx

)
, c = w1 − w2 + w3.

Let us define the real function

F (θ) = f(Δx cos θ,Δx sin θ) = aΔx cos θ + bΔx sin θ + c , θ ∈ [0, 2π)(23)

and look for the minimum of F (θ) in the interval (0, π/2). Note that the extreme
values θ = 0 and θ = π/2 are not included since the values at the extrema of that
interval have already been included in m (they are m1 and m2). By differentiating
with respect to θ we obtain

F ′(θ) = 0 ⇔ θ = arctan(b/a).

The interesting case is when w2 < w1 and w2 < w3; otherwise the minimum is w1 or
w3.

In this case, we get

a 
= 0 , b 
= 0 , b/a > 0 , arctan(b/a) ∈ (0, π/2),

which means that the relative minimum is at θ∗1 = arctan(b/a) and we set m5 = F (θ∗1).
If w2 ≥ w1 or w2 ≥ w3, we set m5 = +∞ (or the highest machine number).

Orthant II. Let w3, w4, and w5 be the values of w, respectively, at the nodes
(0,Δx), (−Δx,Δx), and (−Δx, 0). The unique linear function f(x, y) such that

f(0,Δx) = w3 , f(−Δx,Δx) = w4 , f(−Δx, 0) = w5

is

f(x, y) = ax + by + c,

where

a =

(
w3 − w4

Δx

)
, b =

(
w4 − w5

Δx

)
, c = w3 − w4 + w5.

Again we will consider the composite function F (θ) defined in (23), and we observe
that it has a relative minimum in (π/2, π) if and only if w4 < w3 and w4 < w5. In
this case we have

a 
= 0 , b 
= 0 , b/a < 0 , arctan(b/a) ∈ (−π/2, 0).(24)

Since we are in the second orthant the value of θ where the minimum for F is attained
is θ∗2 = arctan(b/a) + π. Proceeding as in the first orthant we set m6 = F (θ∗2).

If w4 ≥ w3 or w4 ≥ w5, we set m6 = +∞.
The analysis of the third and fourth orthants follows in the same way and will be

skipped.
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Once all the components of m have been set, we just compute p = min{m1,m2, . . . ,
m8} and substitute it in the expression

w(0, 0) = βp + 1 − β.(25)

This is done at every fixed point iteration until convergence. It is important to note
that the above linear interpolation has a great advantage: the computation of the
correct value of w(0, 0) does not require more than one iteration given the values at
the neighboring nodes (along the axis directions and the diagonals) since F (θ) will not
depend on w(0, 0). This property will not hold for other high-order interpolations,
e.g., quadratic interpolation. Another advantage of linear interpolation with respect
to the comparison of the values in a discrete unit ball is that it gives the exact value
of the optimal direction at the cost corresponding to a discretization of B(0, 1) by
just 8 directions.

3.2. The FM-SL scheme. This section is devoted to the presentation of the
fast marching version of the SL-algorithm. For simplicity the presentation is given
in R

2, but the algorithm can be easily extended to R
n. Let us start introducing the

following definitions.
Definition 3.1 (neighboring nodes for the SL scheme). Let X = (xi, yj) be a

node of the grid. We define

NFD(X) =
{

(xi, yj+1), (xi, yj−1), (xi−1, yj), (xi+1, yj)
}
,

D(X) =
{

(xi+1, yj+1), (xi+1, yj−1), (xi−1, yj+1), (xi−1, yj−1)
}
,

NSL(X) = NFD(X) ∪D(X).

The above definition is a natural extension of Definition 2.1 for the semi-Lagrangian
scheme. According to the new definition, the nodes in the narrow band will also in-
clude the diagonal directions and not only the four directions N, S, E, W, as in the
FM-FD method of section 2.

Sketch of the FM-SL algorithm.
Initialization (see Figure 3).
1. The nodes belonging to the initial front Γ0 are located and labeled as accepted.

Their value is set to w = 0. We will denote this set of nodes by Γ̃0.
2. The initial narrow band is defined according to the Definition 3.1, taking

the nodes belonging to NSL(Γ̃0) external to Γ0. These nodes are labeled as
narrow band. Their value is set to w = 1 − e−

Δx
c (which corresponds to T =

Δx/c) if they belong to NFD(Γ̃0), or to w = 1 − e−
√

2Δx
c (which corresponds

to T =
√

2Δx/c) if they belong to D(Γ̃0).
3. We label as far all the remaining nodes of the grid; their value is set to w = 1

(which corresponds to the value T = +∞).
Main cycle.
1. Among all the nodes in the narrow band we search for the minimum value of

w. Let us denote this node by A.
2. The node A is labeled as accepted and is removed from the narrow band.
3. We label as active the nodes in NSL(A) which are not accepted. If there are

far nodes, they are moved into the narrow band.
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Fig. 3. Initialization for FM-SL method, case c > 0.

4. We compute (or recompute) the value w at the nodes belonging to NFD(A)
which are active, iterating the fixed point operator

w(xi) = min
a∈B(0,1)

{βiw(xi − hicia)} + 1 − βi ,(26)

where hici = Δx. Note that just one iteration is needed, as we will see in the
following sections. Then we compute by the same formula the value at the
remaining active nodes in NSL(A) \NFD(A).

5. If the narrow band is empty, the algorithm stops; otherwise it goes back to
step 1.

Although the algorithm advances the narrow band also in the diagonal directions,
according to the new definition, it computes first the values at the neighboring nodes
in the directions N, S, E, W (i.e., the finite difference directions) and then passes to
the diagonal directions.

Some extensions: Obstacles, infinite velocity. We have seen that one can use
our algorithm to deal with a front propagation with obstacles, i.e., regions where
c vanishes. In [36, 18] the problem has been analyzed and several tests have been
presented for a semi-Lagrangian method based on the linear interpolation, which
treats the obstacle in a very simple way. The algorithm just assigns to the nodes
belonging to an obstacle the value w = 1 in order to impose (indirectly and easily) a
state constraints boundary conditions. In order to use the fast marching technique we
just have to be careful and distinguish between nodes initialized to the value w = 1
because they are far and the ones to which was assigned the value w = 1 because they
belong to an obstacle. In section 7 (Test 5) we will show a front propagating in the
presence of obstacles.

Another interesting extension for applications to image processing is when the
domain of computation contains points with infinite velocity. This is the case, for
example, in the shape-from-shading problem when we have a point of maximal light
intensity in the image (see, e.g., [29, 24]). Let us illustrate the idea which is behind
our solution. Let xi0 be a node such that

lim
x→xi0

c(x) = +∞.

Our equation c(x)|∇T (x)| = 1 can be written as

|∇T (x)| = g(x),(27)
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where g(x) = 1/c(x). Clearly, (27) is a degenerate eikonal equation since g vanishes
at xi0 .

In order to compute w(xi0), we can set, according to (20), hi0 = 0 and βi0 = 1
and proceed as before, setting in (26)

hi0ci0 = Δx.(28)

Let us extend the function h(x) outside the nodes in the domain Q\Ω0. Our choice
(28) can be justified by the fact that we would expect in our algorithm

lim
x→xi0

c(x) = +∞ , lim
x→xi0

h(x) = 0, and lim
x→xi0

c(x)h(x) = Δx.

Note that even if this argument is heuristic, it assigns to the node xi0 the exact value
for w. In fact, by (26), we get

w(xi0) = min
a∈B(0,1)

{1w(xi0 − Δx a)} + 1 − 1 = w(xi0 − Δxa∗),

where a∗ is the optimal control. Since the front has an infinite velocity at xi0 the
minimum time of arrival on it coincides with the minimum time of arrival on the
circle of radius Δx centered at xi0 . In section 7 (Tests 6 and 7) we will show an
application to a front propagation problem and to the shape-from-shading problem.
It is interesting to note that theoretical results on discontinuous Hamiltonians can be
found in [35] and [5].

4. Properties of the FM-SL scheme. We start with the following easy result
on the semi-Lagrangian discretization.

Proposition 4.1. Let X be a node and assume that w(X), defined by (26), is
computed by interpolation using the three values w(1), w(2), w(3). Then

w(X) ≥ min
{
w(1), w(2), w(3)

}
.(29)

Proof. Let β = e−h, h > 0, and a∗ be the optimal direction/control at X. The
inequality

βw(X − hicia
∗) + 1 − β ≥ w(X − hicia

∗)

is satisfied if and only if w(X − hicia
∗) ≤ 1. Since w is always less than or equal to 1

(due to the Kružkov transform) we have proved that

w(X) ≥ w(X − hicia
∗).(30)

Since a simple property of linear interpolation guarantees that

max
{
w(1), w(2), w(3)

}
≥ w(X − hicia

∗) ≥ min
{
w(1), w(2), w(3)

}
(31)

by (30) and (31) we end the proof.
In order to prove that the fast marching version of our semi-Lagrangian scheme

converges to the viscosity solution in a finite number of steps we have to prove first that
the fast method for the minimum analyzed in section 3.1 matches the fast marching
technique. This is necessary since the narrow band of the FM-SL method is larger
than the narrow band of the FM-FD method as a consequence of the new definition
of neighboring nodes. In particular we will show that the algorithm automatically
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Fig. 4. Analysis of the minimum in orthant I.

rejects far nodes from the computation as in the standard up-wind finite difference
discretization.

Let X be the node where we want to compute w(X). Without loss of generality,
we will assume that the optimal value is attained at a direction θ∗ ∈ [0, π/2], i.e.,

a∗ = (cos θ, sin θ) , θ ∈ [0, π/2].(32)

We will examine in detail all the possible configurations for this situation, which will
be referred to in the following as the “minimum in orthant I” case (see Figure 4). For
simplicity, let us assume c > 0 so that a node is labeled as far if and only if its value
is w = 1.

Proposition 4.2. Let X be a node and let w(X) be defined by (26). The value
w(X) will not be computed by interpolation using nodes labeled as far.

Proof. Let us give the proof for the minimum in orthant I. The analysis for the
other orthants is similar and can be easily obtained by symmetry arguments.

1. w1 = w2 = w3 = 1: This configuration cannot occur. In fact, since the
minimum is attained in orthant I we should have w4 = w5 = w6 = w7 =
w8 = 1. But this is not possible since we compute at X only when at least
one of the nodes belonging to NSL(X) has been labeled as accepted in one of
the previous iterations, and an accepted node must have a value lower than 1.

2. Among w1, w2, and w3 there are two values equal to 1.
(a) w1 = w3 = 1: this case cannot occur. In fact, since the minimum is

attained in orthant I we must have w2 ≤ w1, w3, w4, . . . , w8. The node
that must be labeled as accepted is the one corresponding to the value
w2. This implies that the values w1 and w3 must be computed before
X (see the sketch of the algorithm).

(b) w1 = w2 = 1: the minimum value is w3. A new iteration to compute
w(X) would not give a lower value, so the optimal value is obtained in
just one iteration.

(c) w2 = w3 = 1: the minimum value is w1. Again, we will not get a lower
value iterating, and the optimal value is obtained in just one iteration.

3. Among w1, w2, and w3 only one value is equal to 1.
(a) w2 = 1: since f is linear the minimum will be attained by w1 or w3.

The optimal value is obtained in just one iteration.
(b) w1 = 1, w3 ≤ w2: the minimum is w3.
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(c) w1 = 1, w3 > w2: this is the most delicate case since w2 < w1, w3. The
minimum for F will be attained at some θ∗ ∈ (0, π/2). The value w(X),
obtained by linear interpolation, will not be correct since it depends
on w1 = 1, which is a conventional value. Moreover, note that a new
iteration of the fixed point map at X will not make w(X) decrease since
w1 is frozen and so is w(X). If this case could occur, we would not
get convergence to the correct value even in the limit on the number
of iterations. Note that this difficulty can occur neither for the global
semi-Lagrangian scheme where all the nodes are computed at the same
iteration nor for the FM-FD method where the values corresponding to
far nodes are not used in the stencil. The following argument shows
that this case also cannot occur for the FM-SL scheme. Since w1 = 1,
the corresponding node is labeled as far at the current iteration. This
implies that the nodes labeled as accepted at the previous iteration do
not belong to NSL(w1). As a consequence, w2 belongs to the narrow
band. By Proposition 4.1 we have w(X) > w2. This implies that X
cannot be labeled as accepted before the nodes corresponding to w2.
Once w2 becomes accepted the algorithm computes w1 and w3 before
computing w(X) so that the values at nodes labeled as far will not
contribute.

(d) w3 = 1, w1 ≤ w2: the minimum is w1. The optimal value is obtained in
just one iteration.

(e) w3 = 1, w1 > w2: analogous to case (3c).

5. Convergence of the FM-SL scheme in a finite number of steps. As
for the FM-FD method we have to prove that the minimal value of the nodes of the
narrow band cannot decrease if we iterate the fixed point operator; i.e., it coincides
with the value obtained by the discrete operator working on all the nodes. As we
have seen, the values at the nodes belonging to the narrow band are not accepted
all together. Only the minimal value is accepted at every iteration (this is a very
pessimistic choice which simplifies the theoretical result). The following proposition
shows the bounds on the number of times that one node can be recomputed, and it
is a building block for the convergence of the scheme.

Proposition 5.1. Let X be a node in the narrow band such that w(X) =
wold(X). Let us assume that at the current iteration the algorithm needs to compute
a new value wnew(X) for X. Moreover, let us assume that at the current iteration
the following property holds true:

If A belongs to the narrow band and B is accepted, then w(A) ≥ w(B).(33)

The following properties hold:
1. If the value wold(X) was computed at an iteration in which a grid point

A1 ∈ NFD(X) was labeled as accepted, then it is impossible that wnew(X) <
wold(X).

2. If the value wold(X) was computed at an iteration in which a grid point A2 ∈
D(X) was labeled as accepted, then to the node X a new value wnew(X) <
wold(X) can be assigned but it will always satisfy the inequality wnew(X) ≥
w(A2).

Proof. Let us start with the first statement.
1. Let us assume that when the value wold was assigned to X the node A1 was

the (unique) node belonging to NFD(X), which had been labeled as accepted.
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When the algorithm computed w(X) = wold(X) we certainly had

min
a∈∂B(0,1)

w(X − Δx a) = w∗ ≤ w(A1)

since there is a direction/control ā ∈
{
(1, 0), (0, 1), (−1, 0), (0,−1)

}
such that

w(X−Δx ā) = w(A1). The only possibility of having at X a value lower than
wold(X) in the following iterations of the algorithm is that a value assigned to
a node belonging to NSL(X) was lower than w∗. However, by Proposition 4.1
we know that this value cannot be computed using in the stencil the values
at the nodes of the actual narrow band because they are all greater than
w(A1) ≥ w∗, which has been accepted (as (33) assures). A lower value could
be computed only using a stencil which contains nodes already accepted in
one of the previous iterations since they all have values lower than w(A1).
This is not possible since all the nodes which are neighbors of those accepted
nodes have been computed already and they have a value greater than or
equal to w(A1) since they have not been labeled as accepted.

2. Let us assume, for simplicity, that the node A2 is the unique node belonging
to D(X) which has been labeled as accepted and let wold(X) be the value
assigned at X at the same iteration. When a node A1 ∈ NFD(X) has been
labeled as accepted before A2, the result holds true by the arguments of the
above case 1.
Let us assume that A2 is the unique neighbor of X which has been labeled
as accepted. Then we have

min
a∈∂B(0,1)

w(X − Δx a) = w∗ ≥ w(A2).

It is always possible that using w(A2) one can obtain a new value wnew(X)
lower than wold(X). However, by (33) and Proposition 4.1 all the new values
will be greater than or equal to w(A2); therefore wnew(X) ≥ w(A2).

Remark 5.1. Note that the previous proposition allows us to accelerate the al-
gorithm. In fact, one can save CPU time by avoiding recomputing the values at the
nodes corresponding to case 1. However, they cannot be labeled as accepted before
their value is the minimum in the narrow band. An important consequence of Propo-
sition 5.1 and the above observation is that every node can be computed at most
5 times; this is one of the reasons why the CPU time for FM-SL is slightly larger
than that for the FM-FD method, where a node can be computed at most 4 times.
We will see in the last section that the FM-SL method produces a more accurate
approximation of the viscosity solution, which justifies a small increment in the CPU
time.

The following result is an analogue of Proposition 2.1, and it is crucial to prove
convergence in a finite number of steps.

Proposition 5.2. Let w be defined in (26) and let w(X) be the value assigned
at X at the same iteration when a node Z ∈ NSL(X) is labeled as accepted. Assume
that

c(x) ≥ 0 for any x ∈ Q\Ω0.

Then we have

w(X) ≥ w(Z).(34)
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Fig. 5. Four different configurations for Case 2.

Proof. We examine all the cases corresponding to a minimum in orthant I (see
Figure 4). The proof will be obtained by induction on the number of iterations of the
algorithm.

At the first step the result holds true by our initialization.
Let us consider the nth step of the algorithm. The induction hypothesis implies

that at the current iteration the values of nodes in the narrow band are greater than
values of nodes labeled as accepted. Therefore (33) holds true, so we can apply
Proposition 5.1. Our proof will be divided into three parts.

Case 1. w1, . . . , w8 are narrow band or far (before Z is labeled as accepted).
If Z belongs to orthant I, we have seen by Proposition 4.1 that

w(X) ≥ min
{
w1, w2, w3

}
= w(Z).

If Z does not belong to orthant I, we have

w(X) ≥ min
{
w1, w2, w3

}
≥ w(Z)

since Z as been labeled as accepted.
Case 2. One node w1, . . . , w8 is accepted (before Z is labeled as accepted).
Let us denote by P this node. When P was accepted the value at X was wold(X).

Now the value at X has to be recomputed. We can only have one of the following
situations:

1. P belongs to orthant I.
(a) Z belongs to orthant I

i. See Figure 5(a). By Proposition 5.1, Z and B cannot be assigned
to a lower value after P became accepted, so wnew(X) = wold(X)
and wold(X) ≥ w(Z) since Z is the node chosen to be labeled as
accepted.

ii. See Figure 5(b). When Z is accepted the minimum is attained at
P , and this implies again wnew(X) = wold(X).

(b) Z does not belong to orthant I
i. See Figure 5(c). In the iterations between the acceptance of P and

that of Z the values w(A) and w(B) cannot be changed. More-
over, the minimum is attained in orthant I so we have wnew(X) =
wold(X).

ii. See Figure 5(d). We know that the value w(A) has not been re-
placed, w(B) cannot be lower than w(P ), and the minimum is
attained in orthant I. Then the minimum is attained at P and
wnew(X) = wold(X).
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2. P does not belong to orthant I.
Since the minimum is attained in orthant I this means that P has no effect
on the computation at X and we are back to Case 1.

Case 3. More than one value among w1, . . . , w8 has been labeled as accepted
(before Z is labeled as accepted).

This case can be solved by the arguments in Case 2.
As for the FM-FD method (see [33]) we can now conclude that the value of the

node which is labeled as accepted at every iteration cannot be decreased if we iterate
the fixed point operator. In fact, let us denote this value wmin. Since all the nodes in
the narrow band have values greater than wmin, the previous result implies that using
those nodes we cannot assign to a node a value lower than wmin. In conclusion, the
up-winding is respected and the value wmin can be considered exact since it cannot be
improved on the same grid (of course it can be improved if we reduce the discretization
steps).

Remark 5.2. The FM-SL scheme does not require a stability CFL-like condition,
as required by the FM-FD scheme.

5.1. Convergence to the viscosity solution and conclusions. The semi-
Lagrangian scheme is consistent, as has been proved, e.g., in [16]. Moreover, choosing
Δx = Δy, we get that the local truncation error is O(Δx).

We will prove that the solution computed by the FM-SL method is identical to the
solution computed by the standard semi-Lagrangian scheme where the computation
is repeated on every node of the grid until convergence. Naturally, if the two schemes
compute the same values, convergence of the FM-SL method to the viscosity solution
is just a consequence of that of the standard semi-Lagrangian scheme.

Theorem 1. Let (Vi)i=1,...,N be the matrix containing the final values on the
n-dimensional grid and let

Vi = F (Vi−k, . . . , Vi+l)(35)

be the iteration corresponding to the numerical scheme. Let V̂ be the matrix of the
approximate solution corresponding to the fixed point iteration (35) and let V be the
matrix containing the final values of the approximate solution corresponding to the
fast marching technique applied to the same scheme (i.e., the result obtained when the

narrow band is empty). Then V = V̂ .
Proof. The two matrices coincide if and only if

V i = F (V i−k, . . . , V i+l) for any i = 1, . . . , N.(36)

Assume the narrow band is empty and take V as initial guess for the fixed point
technique; this will not change the solution since the value is computed by the same
scheme. When all the nodes are accepted the equality (36) must hold for every i.
In fact, if the equality is not true at one node, then its value can still be improved,
implying that the list of narrow band or far nodes is not empty, which gives us a
contradiction.

The above results allow us to draw some conclusions about the order of complexity
of the FM-SL scheme. The values w(X) computed by (26) are an approximation of
v(X), which has been computed at most 5 times for every nodes. This means that
the computational cost can be estimated as in the FM-FD scheme. One component is
given by the cost of the heap-sort method to select the minimum value in the narrow
band, and the other component is given by the computational cost at every node.
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This globally gives a cost O(N log(Nnb)), where N is the total number of nodes and
Nnb the number of nodes in the narrow band (see [33]).

Since the values which have been labeled as accepted at every iteration cannot be
improved by the global fixed point iteration, i.e., they coincide with the same values
obtained by the global fixed point operator, the a priori error estimates in [12] are
still valid for the solution obtained by the FM-SL method. In the last section we will
present several tests which confirm these theoretical results.

Boundary conditions on ∂Q. We define outside Q a strip of ghost nodes where
we set w = 1. If they enter the narrow band, at the end of the iteration, their value
is set back to w = 1 to avoid their contributing to the computation of other internal
nodes. When the minimal value on the nodes of the narrow band is 1, the ghost nodes
will be the only nonaccepted nodes and we can stop the computation. In general, any
constant larger than the maximum of the solution in Q can be used to assign the
value at the ghost nodes (a typical choice is to set the solution to +∞ if there is no
a priori estimate on the solution).

Note that in our case, the normal velocity has always the same (positive) sign,
so in the case of a constant velocity the front propagation starting from Γ0 ⊂ Q will
hit the boundary of Q and both T and w are increasing approaching ∂Q. The values
computed by the algorithm on the nodes of the boundary will always be lower than 1,
and the choice of the above boundary condition is then well adapted to this situation.
However, when c is variable or when there are obstacles in the domain we can also
have a different situation: the front propagates more rapidly in some directions, and
this could require enlarging the domain to get a correct solution to our problem.
Finally, let us observe that the use of homogeneous Neumann boundary conditions is
less appealing because it strongly affects the fronts near the boundary because all the
level curves must be orthogonal to the boundary to satisfy ∇v(x) · η(x) = 0 for any
x ∈ ∂Q (here η(x) denotes the exterior normal to Q).

6. Other fast schemes. As some authors have remarked, it is possible to
improve the finite difference method. In the paper by Tsitsiklis [38] one can find
an algorithm which can be parallelized directly with a complexity O(N). There are
at least two ways to accelerate convergence and/or reduce the CPU time:

1. Reduce the computational effort for the minimum search by accepting more
than one node in the narrow band at every iteration (group marching method).

2. Avoid searching for the minimum value in the narrow band (fast sweeping
method), obtaining convergence in more than one iteration.

We will briefly illustrate these two techniques.

Group marching. The group marching (GM) method has been introduced by
Kim [22] to solve the eikonal equation on a structured grid by a discretization as that
of FM-FD. Although we do not compare this algorithm with the others studied in the
previous section, we will give a brief presentation of its main features for completeness.
Let us denote by Γ the set of nodes belonging to the narrow band, and let us choose
Δx = Δy. Define

TΓ,min = min{Ti,j | (xi, yj) ∈ Γ} and cΓ,max = max{ci,j | (xi, yj) ∈ Γ}.

The GM method labels as accepted, all at once, the nodes belonging to the set G
defined by

G :=

{
(xi, yj) ∈ Γ : Ti,j ≤ TΓ,min +

Δx√
2

1

cΓ,max

}
.(37)
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At every iteration the update of the narrow band is obtained as in the FM-FD method,
including the four neighbors of every node that have been labeled as accepted. It
is clear that if the set G is large, the GM method can be much faster than the
FM-FD method because more than one node at a time in accepted. On the other
hand, it is rather difficult to give an estimate of the acceleration parameter since the
cardinality of G depends on the values {Ti,j : (xi, yj) ∈ Γ} and on the velocity of
propagation. It could be that G = {TΓ,min}, and this would imply a computational
cost of O(N ln(Nnb)) instead of getting O(N), as one would expect by some tests
in [22].

Fast sweeping. The fast sweeping (FS) method is based on an idea first in-
troduced in [11] and was extensively analyzed in [39] and [37]. The crucial idea is
that the algorithm sweeps the whole (two-dimensional) domain with four alternating
orderings repeatedly,

(1) i = 1, . . . , N , j = 1, . . . ,M ; (2) i = N, . . . , 1 , j = 1, . . . ,M ;(38)

(3) i = N, . . . , 1 , j = M, . . . , 1; (4) i = 1, . . . , N , j = M, . . . , 1(39)

(where N and M are the number of nodes in each dimension), and it updates the
value at a grid point only if the new value is smaller than the current one. This idea
can be easily extended to n-dimensional domains.

Computing the values in this special ordering, the algorithm is able to follow
simultaneously a family of characteristics in a certain direction. As proved in [39],
the FS method converges in 2n iterations, where n is the dimension of the problem if
the initial front Γ0 is just a point on the grid and the function c is constant. If those
assumptions do not hold, the FS method has been shown to be of complexity O(N)
and to converge in a finite number of iterations although the bound for the number of
iterations is not explicitly written out. See [27] for an extension on triangular meshes
and an upper bound to the number of iterations needed by the FS method to reach
convergence.

Let us note that the discretization used in [39] is the same as that used in the FM-
FD method described in section 2, and that in any case the numerical evidence shows
that the convergence is more rapid with respect to the classical iterative method.

The FS method has an easy extension to the semi-Lagrangian case. In fact,
we can easily substitute the finite difference discretization by the semi-Lagrangian
discretization maintaining the ordering in which nodes are visited. Obviously, we
expect that at least in the case c(x) ≡ const. the FS semi-Lagrangian scheme (FS-SL)
can compute in four iterations exactly the same solution as FM-SL.

In the next section we run this algorithm in the case c(x) ≡ 1 with two different
initial fronts and see that this intuition is actually true.

7. Numerical experiments. In this section we present some numerical experi-
ments performed with MATLAB 7 on a PC equipped with a Pentium IV 2.80 GHz
processor, 512 MB RAM.

The main goal is to compare the FM-FD method and the FM-SL method de-
scribed in previous sections. We also compare these methods with the semi-Lagrangian
iterative method and FS method based on a semi-Lagrangian discretization described
in section 6. First, two tests are devoted to approximate the solution of model prob-
lems where we know the exact solution, so we can compute the L∞ error and L1

error. Other tests are devoted to solving more complicated problems and applications
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Fig. 6. Level sets of T (x) computed by the FM-SL method, 51 × 51 grid.

in which the velocity function c(x) does not satisfy standard assumptions such as
Lipschitz continuity and boundedness.

If not specified otherwise, we choose Q = [−2, 2]2 as our computational domain.

7.1. Tests on model problems. In the following tests we compare the exact
solution T with the solution T̂ computed by the FM-FD method and the FM-SL
method described above. Note that in the implementation of the FM-SL algorithm
we have used the observation in Remark 5.1 to speed up the computation.

We compute

E∞,Δx = max
i,j

|Ti,j − T̂i,j | , E1,Δx = (Δx)2
∑
i,j

|Ti,j − T̂i,j |(40)

and the rate of convergence r in some model problems in R
2. We consider 51 × 51,

101×101, and 201×201 grids1 corresponding, respectively, to Δx = 0.08, Δx = 0.04,
and Δx = 0.02.

Since we know that there is a constant C such that

Ep,Δx ≤ CΔxr and Ep,Δx/2 ≤ C

(
Δx

2

)r

, p = 1,∞,

we obtain that the numerical rate of convergence is

r = log2

(
Ep,Δx

Ep,Δx/2

)
, p = 1,∞.

Moreover, we compare these algorithms with the classical iterative semi-Lagrangian

method in which we choose maxi,j |w(k)
i,j − w

(k−1)
i,j | < ε, ε = 10−7, as the stopping

criterion and with the FS-SL method performing just four iterations in different order.
Let us finally remark that in all cases condition (15) holds.

Test 1. Γ0 = (0, 0), c(x, y) ≡ 1. Exact solution: T (x, y) =
√

(x2 + y2).
Results are summarized in Figure 6 and Table 1. As expected, in all cases errors

reduce as Δx decreases. The numerical rate of convergence (Table 2) is in the interval
[0.5, 1] for both methods.

1In these grids there is a node corresponding to the point (0, 0).



2000 EMILIANO CRISTIANI AND MAURIZIO FALCONE

Table 1

Errors for Test 1.

Method Δx L∞ error L1 error CPU time (sec)

FM-FD 0.08 0.0875 0.7807 0.5

FM-SL 0.08 0.0329 0.3757 0.7

SL (46 it) 0.08 0.0329 0.3757 8.4

FS-SL 0.08 0.0329 0.3757 0.8

FM-FD 0.04 0.0526 0.4762 2.1

FM-SL 0.04 0.0204 0.2340 3.1

SL (86 it) 0.04 0.0204 0.2340 60

FS-SL 0.04 0.0204 0.2340 3.2

FM-FD 0.02 0.0309 0.2834 9.4

FM-SL 0.02 0.0122 0.1406 14

SL (162 it) 0.02 0.0122 0.1406 443.7

FS-SL 0.02 0.0122 0.1406 12.5

Table 2

Rate of convergence in L∞ and L1 norms computed by errors in Table 1.

Method L∞ (0.08 → 0.04) L∞ (0.04 → 0.02) L1 (0.08 → 0.04) L1 (0.04 → 0.02)

FM-FD 0.7342 0.7675 0.7132 0.7487

FM-SL 0.6895 0.7417 0.6831 0.7349

The FM-SL and semi-Lagrangian methods give exactly the same errors in accor-
dance with Theorem 1, and they are also equal to the errors of FS-SL, as expected,
since FS-SL converges in four iterations in the case c is constant. These errors number
about half that of the FM-FD method, although both are first order methods. This
is due to the fact that semi-Lagrangian discretization is able to follow every direction
of the characteristic flow.

Both methods based on the fast marching technique are dramatically faster than
the iterative semi-Lagrangian method. Nevertheless we want to note that only one
iteration of the iterative scheme is less expensive with respect to the single iteration
needed by fast marching–based algorithms. This is due to the fact that the narrow
band technique requires that we (1) compute a minimum over nodes in the narrow
band and (2) access the data in an almost random manner rather than in a systematic
way along the loop indices (see [22]). Finally we note that the CPU time needed by the
FM-SL method is slightly larger than the CPU time needed by the FM-FD method.
This due to the fact that (1) the narrow band is bigger in the first method; and
therefore the search for the minimum in the narrow band is more expensive; and (2)
in the FM-SL method we need to compute the minimum over the unit ball B(0, 1).

Test 2. Γ0 = unit square centered in (−1, 1) and rotated by 11.25◦ ∪ circle
with radius R = 0.5 centered in (0,−1) ∪ square with side 0.4 centered in (1.4, 1.4),
c(x, y) ≡ 1. Exact solution: T (x, y) = minimum between the distance function of the
square rotated, the circle, and the square.

Results are summarized in Figure 7 and Table 3. In this test the shape of the
initial front is much more complicated, but errors have the same behavior as in the
previous simple Test 1, although the difference between errors is smaller.
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Fig. 7. Level sets of T (x) computed by the FM-SL method, 101 × 101 grid.

Table 3

Errors for Test 2.

Method Δx L∞ error L1 error CPU time (sec)

FM-FD 0.08 0.0625 0.2154 0.5

FM-SL 0.08 0.0440 0.1849 0.7

SL (30 it) 0.08 0.0440 0.1849 4.9

FS-SL 0.08 0.0440 0.1849 0.7

FM-FD 0.04 0.0393 0.1120 2.2

FM-SL 0.04 0.0215 0.1044 3.1

SL (55 it) 0.04 0.0215 0.1044 34.1

FS-SL 0.04 0.0215 0.1044 2.9

FM-FD 0.02 0.0248 0.0669 10.2

FM-SL 0.02 0.0135 0.0633 14.5

SL (102 it) 0.02 0.0135 0.0633 246.6

FS-SL 0.02 0.0135 0.0633 11.4

Table 4

Rate of convergence in L∞ and L1 norms computed by errors in Table 3.

Method L∞ (0.08 → 0.04) L∞ (0.04 → 0.02) L1 (0.08 → 0.04) L1 (0.04 → 0.02)

FM-FD 0.6693 0.6642 0.9435 0.7434

FM-SL 1.0332 0.6714 0.8246 0.7218

FS-SL seems to be the best method. It has the smallest error and the CPU time is
slightly larger than that of FM-FD. This is probably due to the fact that the structure
of the narrow band is very complicated and is very large in terms of nodes.

Also in this case the rate of convergence (Table 4) is greater than 0.5.

7.2. Applications. In the following we try to use the FM-SL method in some
classical applications of the eikonal equation such as the minimum time problem and
shape-from-shading. We consider some cases not covered by the theory in which c(x, y)
is discontinuous, c(x, y) vanishes in some regions (state constraints), and c(x, y) has
infinite values. We also consider the anisotropic case in which the velocity field c
depends on (x, y) and on the control a. The results we obtained are very satisfactory
even in these cases.
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Fig. 8. Value function T (left) and level sets of T (right).
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Fig. 9. Value function T (left) and level sets of T with some optimal trajectories (right).

Test 3: Nonconstant velocity. Γ0 = ∂B(0, Δx
2 ), c(x, y) = |x+ y|. In this case

the velocity field is nonconstant. Figure 8 shows the value function T (x, y) and level
sets of T . On the line x = −y the solution T is not defined since its correct value is
T = +∞. The FS-SL method needs 12 iterations to reach convergence and is more
than three times slower than the FM-SL method on a 101 × 101 grid.

Test 4: Discontinuous vector field. Γ0 = (−1, 0).

c(x, y) =

{
0.4, (x, y) ∈ [0.5, 1] × [0, 0.5],

1 elsewhere.

In this case the velocity field is discontinuous. Figure 9 shows the value function
T (x, y) and level sets of T . Figure 9 (right) also shows some optimal trajectories
which start from four different points and reach the target Γ0 in the minimum time
with speed c(x, y). The FS-SL method converges in 8 iterations.

Test 5: State constraint problem. Γ0 = (−1,−1).

c(x, y) =

{
0, (x, y) ∈ ([0, 0.5] × [−2, 1.5]) ∪ ([1, 1.5] × [−1.5, 2]),

1 elsewhere.

In this test the velocity field vanishes in two different regions (the obstacles). Fig-
ure 10 shows the computational domain, the value function T (x, y), and level sets of
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Fig. 10. Domain of the equation (left), value function T (center), and level sets of T with one
optimal trajectory (right).
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Fig. 11. Domain of the equation (left) and value function T (right).

T . Figure 10 (right) also shows one optimal trajectory which starts from the point
(1.8, 1.5) and reaches Γ0 in the minimum time avoiding obstacles. We remark that
since we use the Kružkov transform and compute v, we do not need to modify the
numerical scheme to deal with state constraints. Also in this case the FS-SL method
converges in 8 iterations.

Test 6: Infinite velocity. Γ0,= (−1, 0).

c(x, y) =

{
+∞, x ≥ 1,

1 elsewhere.

In this case the front can propagate instantaneously in the region R = {x ≥ 1}. It
corresponds to the case of the following degenerate eikonal equation (see [30]):

|∇T (x, y)| = f(x, y) with f = 0 in R.

Figure 11 shows the computational domain and value function T (x, y). In this test
we used the technique described in section 3.2 in order to deal with this kind of vector
field.

This technique allows us to reconstruct a perfect flat surface on R as the theory
and the physical sense require. This technique can be very useful in shape-from-
shading problems.
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Fig. 12. Initial image (left) and reconstructed surface (right).
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Fig. 13. Domain of the equation (left), value function T (center), and level sets of T with some
optimal trajectories (right).

Test 7: Shape-from-shading. Q = [−1, 1]2, Γ0 = silhouette of a vase.

c(x, y) =

(√
1

I(x, y)2
− 1

)−1

, I(x, y) = intensity light function.

In this test we solve the shape-from-shading problem in the simple case of a vase.
Figure 12 (left) shows the initial image and Figure 12 (right) shows the reconstructed
surface. By the symmetry of the problem we guess that all characteristic curves
start from the right and left sides of the image, so we can impose Dirichlet boundary
condition just on the right and left sides of the domain and state constraints elsewhere
as in [10] (see also [29, 24], where different boundary conditions are applied).

Test 8: Poincaré model. Q = [−1, 1]2, Γ0 = (−0.65,−0.65).

c(x, y) =

{
1 − (x2 + y2) , x2 + y2 < 1,

0 elsewhere.

This example is an interesting application of the eikonal equation to the Poincaré
model of the hyperbolic geometry. Figure 13 shows the computational domain, the
value function T (x, y), and level sets of T . The FS-SL method converges in 8 itera-
tions.

As result of the particular choice of the velocity field (see [25]), the optimal
trajectories of the associated minimum time problem correspond to the hyperbolic
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Fig. 14. Level sets of T (left) and an optimal trajectory on the surface z (right).

straight lines. Moreover, the level sets of T are hyperbolic circles with center Γ0 (i.e.,
the sets of points which have the same hyperbolic distance from Γ0).

Test 9: Geodesics on a nonsmooth surface. Q = [−1.5, 1.5]2, Γ0 = (0,−0.6).

Surface : z(x, y) =

{
1 − (|x| + |y|) , |x| + |y| < 1,

0 elsewhere.

In this case we want to solve a minimum time problem on a surface z = z(x, y).
The three-dimensional problem can be easily reduced to a two-dimensional problem
modifying the velocity field according to the function z. In fact, if the intrinsic velocity
on the surface in equal to 1, it can be shown (see [32, 23]) that the velocity of the
corresponding two-dimensional problem becomes

c(x, y, a) =
1√

1 + (∇z · a)2
.

Figure 14 shows the level sets of T and the surface with an optimal trajectory on it.
The starting point is (0, 0.5).

We remark that the dependence of c on a changes the properties of the solution
of the equation. In fact the equation for anisotropic front propagation is⎧⎨⎩

v(x) + max
a∈B(0,1)

{c(x, a)a · ∇v(x)} = 1, x ∈ R
n\Ω0,

v(x) = 0, x ∈ ∂Ω0.
(41)

In this case the fast marching technique is no longer directly applicable (there is no
guarantee that convergence is reached in just one iteration; see [34]). This is true for
the FM-SL method too, but we stress that scheme (26) requires tiny modifications to
deal with this kind of velocity field. Moreover, if we use the function w computed by
the FM-SL method as a starting point of the iterative semi-Lagrangian scheme, we
can reach convergence in very few iterations.

Appendix. Convergence of the FM-FD method in a finite number of
steps.

Proof of Proposition 2.1. We will assume that B, C, and D are the neighbors
of X which can have a label accepted, narrow band, or far (see Figure 15). We will
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Fig. 15. The neighboring nodes of X.

prove the result by induction on the number of iterations of the algorithm. We will
always assume

T (B) ≤ T (D),(42)

which is not restrictive since we can always switch the B and D.
In the first iteration we simply have T (X) = 0 + fX and (16) is satisfied. Let

us consider the nth step of the algorithm. The induction hypothesis implies that at
each iteration the values of nodes in the narrow band are greater than values of nodes
labeled as accepted at the same iteration. Therefore, by construction we have that,
given two nodes Y and Z,

if Y has become accepted before Z, then T (Y ) ≤ T (Z).

The proof will be divided into four cases.
Case 1. B is far. C and D are narrow band or far.
By assumption T (B) = +∞, and since T (B) ≤ T (D) this implies that D must

be far. Moreover, we have

T (C) ≥ T (A)

since A has been chosen among all the nodes of the narrow band to become accepted.
Also X must be far, since it has never been computed. Then by (10) we get

T (X) = T (A) + fX .(43)

Since fX > 0, (43) implies

T (A) ≤ T (X) ≤ T (A) + fX .

Case 2. B is narrow band. C and D are narrow band or far.
Also in this case X is far. We have

T (A) ≤ T (B) , T (A) ≤ T (C)

since A is the minimal node in narrow band. Moreover, the assumption (42) implies
that T (X) will be computed by the values at A and B. From (10) we get

T (X) =
T (A) + T (B) +

√
2f2

X − (T (A) − T (B))
2

2
(44)

and then

T (X) ≥ T (A) + T (B)

2
≥ T (A) + T (A)

2
= T (A).(45)
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Since T (X) solves

(T (X) − T (A))2 + (T (X) − T (B))2 = f2
X

we have

(T (X) − T (A))2 ≤ f2
X .

Since all the terms in the above equation are positive we conclude that

T (X) − T (A) ≤ fX .(46)

Case 3. B is accepted. C and D are narrow band or far.
This situation occurs when X has been already computed once (when B has been

labeled as accepted). Let us denote its value by Told(X). The node X is then in the
narrow band and has to be recomputed because A has just been labeled as accepted.
Let us note that in the previous computation Told(X) has been computed according
to the rules examined in Case 1 or 2. Then we have

T (B) ≤ Told(X) ≤ T (B) + fX .

Moreover T (A) ≤ Told(X) because A just became accepted and T (B) ≤ T (A) since
B became accepted before A (induction).

These inequalities imply

T (B) ≤ T (A) ≤ Told(X) ≤ T (B) + fX(47)

and

0 ≤ T (A) − T (B) ≤ fX .(48)

The value at X, which will be denoted by Tnew(X), will depend on T (A) and T (B).
By (48) and (47) we derive

Tnew(X) =
T (A) + T (B) +

√
2f2

X − (T (A) − T (B))
2

2
(49)

≥ T (A) + (T (B) + fX)

2
≥ T (A) + T (A)

2
= T (A)

and

Tnew(X) ≤ T (A) + T (B) +
√

2fX
2

≤ T (A) +

√
2

2
fX ≤ T (A) + fX .

Case 4. B is narrow band or far. C is accepted. D is narrow band or far.
In this case X has already been computed because it is a neighbor of C. It belongs

to the narrow band and has a value Told(X). Besides

T (A) ≤ Told(X)(50)

since on the contrary X would have been chosen instead of A as the node to be
accepted and

T (A) ≤ T (B)(51)



2008 EMILIANO CRISTIANI AND MAURIZIO FALCONE

for the same reason. Moreover we have T (C) ≤ T (A) by induction and T (B) ≤ T (D)
by assumption. In conclusion, the nodes contributing to the computation of T (X)
are C and B or only C. The fact that A has been labeled as accepted has no effect
on the computation so we are again in Case 1 or 2. This implies,

T (C) ≤ Tnew(X) ≤ T (C) + fX ≤ T (A) + fX .

Now we prove that Tnew ≥ T (A). When Told(X) was computed the algorithm was in
the Case 1 or 2, so

T (C) ≤ Told(X) ≤ T (C) + fX .(52)

Moreover we have

T (C) ≤ T (B)(53)

by induction.
If T (B) > Told(X), then the node contributing to the computation of T (X) is

only C, so we have

Tnew(X) = T (C) + fX ≥ Told(X) ≥ T (A).

Otherwise, if T (B) ≤ Told(X), the nodes contributing to the computation of T (X)
are C and B.

Using this last assumption, (52), and (53) we have

T (C) ≤ T (B) ≤ Told(X) ≤ T (C) + fX ⇒ 0 ≤ T (B) − T (C) ≤ fX

⇒ (T (B) − T (C))2 ≤ f2
X .(54)

Moreover, by (50) and (52) we have

T (C) + fX ≥ T (A).(55)

Computation of X leads to

Tnew(X) =
T (C) + T (B) +

√
2f2

X − (T (C) − T (B))2

2

=
(T (C) + fX) − fX + T (B) +

√
2f2

X − (T (C) − T (B))2

2
.(56)

Using (55), (54), and (51) we obtain

Tnew(X) ≥ T (A) − fX + T (B) +
√

2f2
X − (T (C) − T (B))2

2

≥ T (A) − fX + T (B) +
√
f2
X

2
≥ T (A) + T (A)

2
= T (A).(57)

Finally, let us remark that the cases when two or more nodes among B, C, and
D are accepted can be treated as in the previous cases. Note that if D is accepted,
then B must also be accepted since T (B) ≤ T (D).

To complete the proof, it is necessary to show that the expression appearing
under the square root in the computation of T (X) expressed as a function of its two
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A X
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B

D
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E
ACC

NB or FAR

NB or FAR

NB

Fig. 16. Proof that radicand is positive under the CFL-like condition (15).

neighbors is nonnegative. Let us start by proving that the hypothesis (15) guarantees
that

c(Z)

c(Z ′)
≤

√
2(58)

for any couple of nodes Z and Z ′ such that

|Z − Z ′| = Δx.

In fact, by assumption we have

|c(Z) − c(Z ′)| ≤ Lc|Z − Z ′|.

If |Z − Z ′| = Δx, we have that

|c(Z) − c(Z ′)| ≤ LcΔx ≤ (
√

2 − 1)cmin ≤ (
√

2 − 1)c(Z ′),

which implies

c(Z) − c(Z ′) ≤ (
√

2 − 1)c(Z ′)

and then

c(Z) ≤
√

2 c(Z ′).

Let us examine the three cases where we need to show that the radicand is nonnegative.
Case 2. Since B is in the narrow band, there must be at least one neighbor

belonging to accepted. Let E be this node (see Figures 16 and 1). Moreover, T (A) ≤
T (B) since A has been chosen to be labeled as accepted and T (E) ≤ T (A) because E
became accepted before A. By the previous results, we get

T (E) ≤ T (B) ≤ T (E) + fB ,

which implies

T (A) ≤ T (B) ≤ T (E) + fB ≤ T (A) + fB

and

0 ≤ T (B) − T (A) ≤ fB .(59)
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Choosing Z = X and Z ′ = B in (58), we get

c(X)

c(B)
≤

√
2

and then
√

2fX ≥ fB .(60)

Finally (59) and (60) imply
√

2fX ≥ T (B) − T (A) ≥ 0,

so we can conclude that

2f2
X − (T (B) − T (A))2 ≥ 0.

Case 3 and 4. In these cases, (48) and (54) guarantee, respectively, that the
expression appearing under the radicand is always positive.

Let us show now that the value at the node which is labeled as accepted at every
iteration is exact. Let us denote this value by Tmin. Since all the nodes in the
narrow band have values greater than Tmin, the previous result implies that using
those nodes we cannot assign to a node a value lower than Tmin. In conclusion (see
[33]), the up-winding is respected and the value Tmin can be considered exact since it
cannot be improved on the same grid (of course it can be improved if we reduce the
discretization steps).

Note that Theorem 1 is valid also for the FM-FD method.

Acknowledgment. The authors wish to thank M. Sagona for helpful discussions
on the FM-FD and FM-SL methods.
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COULOMB FRICTION APPROXIMATED BY FINITE ELEMENTS∗
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Abstract. The present paper is concerned with the unilateral contact model and the Coulomb
friction law in linear elastostatics. We consider a mixed formulation in which the unknowns are
the displacement field and the normal and tangential constraints on the contact area. The chosen
finite element method involves continuous elements of degree one and continuous piecewise affine
multipliers on the contact zone. A convenient discrete contact and friction condition is introduced
in order to perform a convergence study. We finally obtain a first a priori error estimate under the
assumptions ensuring the uniqueness of the solution to the continuous problem.
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Introduction. This study deals with the unilateral contact problem governed by
the Coulomb friction law in linear elasticity. We consider a simplified model, the so-
called static friction problem, which roughly corresponds to an incremental problem
in the time discretized quasi-static model and whose solutions are also some particular
equilibrium configurations of the dynamic problem.

From a mathematical point of view the early progress made on the static problem
was accomplished in [15, 17]. These studies concerned the weak formulation of the
problem. The first existence results were obtained in [39] for an infinite elastic strip.
Thereafter, many existence results followed for general domains, in particular in [18]
(see also the references quoted therein). These existence results hold for small friction
coefficients, and uniqueness is not discussed. In fact, uniqueness does not hold in
the general case, at least for large friction coefficients; see [26, 27]. More recently a
first uniqueness result has been obtained in [41] with the assumption that a “regu-
lar” solution exists and that the friction coefficient is sufficiently small. Additionally,
the so-called nonlocal Coulomb frictional models mollifying the normal stresses were
introduced in [16] and developed in [14, 11, 31]. The smoothing map used in the non-
local friction model allows one to obtain existence results for any friction coefficient.
Moreover, uniqueness of a solution can also be established if the friction coefficient is
small enough (see [16, 14, 11, 31]). The same type of result (existence for any friction
coefficient and uniqueness for small friction coefficients) was obtained in [32, 33] for
the normal compliance model, introduced in [40, 37].

From a numerical point of view, the finite element method is commonly used
when approximating such frictional contact problems (see, e.g., [31, 24, 21, 35, 43]).
It is well known that the finite element problem, associated with the continuous static
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Coulomb friction model, always admits a solution and that the solution is unique if
the friction coefficient is small enough. (Unfortunately the definition of small depends
on the discretization parameter, and the bound ensuring uniqueness vanishes as the
mesh is refined; see, e.g., [24].) The former result holds for any reasonable choice of the
approximated contact and friction conditions (see [30]). Moreover, a first convergence
study of the finite element problem towards the continuous model was accomplished
in [22], where convergence was obtained under the assumptions ensuring the existence
of a solution in [39] (i.e., small friction coefficient). This result proves the existence
of a subsequence of discrete solutions converging towards a solution to the continuous
problem. A similar result is obtained in [42] for the quasi-static model.

Our purpose is to carry out a convergence analysis and to obtain an a priori error
estimate for a finite element discretization of the frictional contact conditions under
the assumptions ensuring the uniqueness of a solution to the continuous problem
obtained in [41]. As far as we know, this work presents the first error estimate with
a convergence rate for this model.

Our paper is outlined as follows. Section 1 is concerned with the setting of
the continuous problem, several equivalent weak formulations, and a presentation of
the tools and techniques leading to the uniqueness result. In section 2 we consider
a discretization of the problem with finite elements of degree one and continuous
piecewise affine multipliers on the contact zone. We introduce a convenient discrete
contact and friction condition which allows us to perform a convergence analysis and to
obtain an a priori estimate of the discretization error with a quasi-optimal convergence
rate of order h1/2 in the energy norm under H(3/2)+ε-regularity assumptions on the
displacements.

1. The Signorini problem with Coulomb friction. Let Ω ⊂ Rd (d = 2 or
3) be a polygonal domain representing the reference configuration of a linearly elastic
body whose boundary ∂Ω consists of three nonoverlapping open parts Γ

N
, Γ

D
, and

Γ
C

with Γ
N
∪Γ

D
∪Γ

C
= ∂Ω. We assume that the measures of Γ

C
and Γ

D
are positive

and, in order to simplify that Γ
C

is a straight line segment when d = 2 or a plane
surface when d = 3. The body is submitted to a Neumann condition on Γ

N
with a

density of loads F ∈ (L2(Γ
N

))d, a Dirichlet condition on Γ
D

(the body is assumed
to be clamped on Γ

D
to simplify), and to volume loads denoted f ∈ (L2(Ω))d in Ω.

Finally, a unilateral contact condition with static Coulomb friction between the body
and a flat rigid foundation holds on Γ

C
(see Figure 1.1).

.
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Fig. 1.1. Elastic body Ω in frictional contact.
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The problem consists of finding the displacement field u : Ω → Rd satisfying

− div σ(u) = f in Ω,(1.1)

σ(u) = Aε(u) in Ω,(1.2)

σ(u)n = F on Γ
N
,(1.3)

u = 0 on Γ
D
,(1.4)

where σ(u) represents the stress tensor field, ε(u) = (∇u + (∇u)T )/2 denotes the
linearized strain tensor field, n stands for the outward unit normal to Ω on ∂Ω, and
A is the fourth order elastic coefficient tensor which satisfies the usual symmetry and
ellipticity conditions and whose components are in L∞(Ω).

On Γ
C
, we decompose the displacement and the stress vector fields in normal and

tangential components as follows:

u
N

= u.n, u
T

= u− u
N

n,

σ
N

(u) = (σ(u)n).n, σ
T
(u) = σ(u)n − σ

N
(u)n.

The unilateral contact condition on Γ
C

is expressed by the following complementary
condition:

(1.5) u
N
≤ 0, σ

N
(u) ≤ 0, u

N
σ

N
(u) = 0,

where a vanishing gap between the elastic solid and the rigid foundation has been
chosen in the reference configuration.

Denoting by F ≥ 0 the given friction coefficient on Γ
C

(which is supposed constant
for the sake of simplicity), the static Coulomb friction condition reads as

if u
T

= 0, then |σ
T
(u)| ≤ −Fσ

N
(u),(1.6)

if u
T
	= 0, then σ

T
(u) = Fσ

N
(u)

u
T

|u
T
| .(1.7)

When F = 0 the friction conditions (1.6)–(1.7) merely reduce to σ
T
(u) = 0 on Γ

C
.

1.1. Classical weak formulations. This section is devoted to the presentation
of different and equivalent weak formulations of the Coulomb friction problem. Let
us introduce the following Hilbert spaces:

V =
{
v ∈ (H1(Ω))d, v = 0 on Γ

D

}
,

X =
{
v|

Γ
C

: v ∈ V
}
⊂ (H1/2(Γ

C
))d,

X
N

=
{
v
N |Γ

C

: v ∈ V
}
, X

T
=

{
v
T |Γ

C

: v ∈ V
}
,

and their topological dual spaces V ′, X ′, X ′
N

, and X ′
T
, endowed with their usual

norms. Since Γ
C

is a straight line segment (d = 2) or a plane surface (d = 3), we have
H1/2

00
(Γ

C
) ⊂ X

N
⊂ H1/2(Γ

C
), (H1/2

00
(Γ

C
))d−1,⊂ X

T
⊂ (H1/2(Γ

C
))d−1, which implies

X ′
N

⊂ H−1/2(Γ
C
) and X ′

T
⊂ (H−1/2(Γ

C
))d−1, where we denote by Hs the standard

Sobolev spaces (see [1]). Classically, H1/2(Γ
C
) is the space of the restrictions on Γ

C
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of traces on ∂Ω of functions in H1(Ω), and H−1/2(Γ
C
) is the dual space of H1/2

00
(Γ

C
),

which is the space of the restrictions on Γ
C

of functions in H1/2(∂Ω) vanishing outside
Γ

C
. We refer to [36, 1, 31] for a detailed presentation of trace operators and/or trace

spaces.
The set of admissible displacements satisfying the noninterpenetration conditions

on the contact zone is

K = {v ∈ V, v
N
≤ 0 a.e. on Γ

C
} .

Take as given the following forms for any u and v in V :

a(u, v) =

∫
Ω

Aε(u) : ε(v) dΩ,

l(v) =

∫
Ω

f.v dΩ +

∫
Γ
N

F.v dΓ,

which represent the virtual work of the elastic forces and of the external loads, re-
spectively. If 〈·, ·〉

X′
N

,X
N

stands for the duality pairing between X ′
N

and X
N

, then the

“virtual work” of the friction forces is given by

j(Fλ
N
, v

T
) = −〈Fλ

N
, |v

T
|〉

X′
N

,X
N

for any λ
N
∈ X ′

N
and v

T
∈ X

T
. From the previous assumptions it follows that

a(·, ·) is a bilinear symmetric V -elliptic and continuous form on V × V :

∃ α > 0,∃ M > 0, a(v, v) ≥ α‖v‖2
V
, a(u, v) ≤ M‖u‖

V
‖v‖

V
∀u, v ∈ V,

l(·) linear continuous form on V, i.e., ∃ L > 0, |l(v)| ≤ L‖v‖
V

∀v ∈ V.

Moreover, j(Fλ
N
, v

T
) is linear continuous with respect to λ

N
and convex lower semi-

continuous with regard to v
T

if λ
N

is a nonpositive element of X ′
N

(see, for instance,
[2]).

Clearly a(·, ·) is an inner product on V , and the associated norm,

‖v‖a = (a(v, v))1/2,

is equivalent to the usual norm of V :

√
α‖v‖

V
≤ ‖v‖a ≤

√
M‖v‖

V
∀v ∈ V.

The continuity constant of l(·) can also be given with respect to ‖ · ‖a:

∃ La > 0, |l(v)| ≤ La‖v‖a ∀v ∈ V.

Constants L and La can be chosen such that

√
αLa ≤ L ≤

√
MLa.

The weak formulation of problem (1.1)–(1.7) (written as an inequality), introduced
in [15] (see also [17]), is

(1.8)

{
Find u ∈ K satisfying
a(u, v − u) + j(Fσ

N
(u), v

T
) − j(Fσ

N
(u), u

T
) ≥ l(v − u) ∀ v ∈ K.
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Introducing the stresses on the contact boundary as an unknown in the previous
formulation, one obtains the following equivalent formulation (see [30]):

(1.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V, λ
N
∈ X

N
, and λ

T
∈ X

T
satisfying

a(u, v) = l(v) + 〈λ
N
, v

N
〉
X′

N
,X

N

+ 〈λ
T
, v

T
〉
X′

T
,X

T

∀v ∈ V,

u
N
≤ 0, 〈λ

N
, v

N
− u

N
〉
X′

N
,X

N

≥ 0 ∀v
N
∈ X

N
, v

N
≤ 0,

〈λ
T
, v

T
− u

T
〉
X′

T
,X

T

+ j(Fλ
N
, v

T
) − j(Fλ

N
, u

T
) ≥ 0 ∀v

T
∈ X

T
.

Inverting contact and friction relations, one also obtains the classical equivalent hybrid
formulation (see [30]):

(1.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V, λ
N
∈ X

N
, and λ

T
∈ X

T
satisfying

a(u, v) = l(v) + 〈λ
N
, v

N
〉
X′

N
,X

N

+ 〈λ
T
, v

T
〉
X′

T
,X

T

∀v ∈ V,

λ
N
∈ Λ

N
, 〈μ

N
− λ

N
, u

N
〉
X′

N
,X

N

≥ 0 ∀μ
N
∈ Λ

N
,

λ
T
∈ Λ

T
(Fλ

N
), 〈μ

T
− λ

T
, u

T
〉
X′

T
,X

T

≥ 0 ∀μ
T
∈ Λ

T
(Fλ

N
),

where Λ
N

and Λ
T
(Fλ

N
) denote the sets of admissible normal and tangential stresses:

Λ
N

=

{
λ

N
∈ X ′

N
: 〈λ

N
, v

N
〉
X′

N
,X

N

≥ 0 ∀v
N
≤ 0

}
,

Λ
T
(Fλ

N
) =

{
λ

T
∈ X ′

T
: 〈λ

T
, v

T
〉
X′

T
,X

T

+ j(Fλ
N
, v

T
) ≥ 0, ∀v

T
∈ X

T

}
.

It is easy to check that the multipliers λ
N

and λ
T

solving (1.9) and (1.10) satisfy
λ

N
= σ

N
(u) and λ

T
= σ

T
(u) at least in a weak sense. The main difficulty in the

existence and uniqueness analysis of (1.8), (1.9), or (1.10) comes from the coupling
between the friction threshold Fσ

N
(u) and the contact pressure σ

N
(u).

Remark 1. The equivalence between problems (1.8) and (1.9) is easy to obtain
here since the assumption f ∈ L2(Ω)d implies that a generalized Green formula holds
(see [31], for instance). The proof can also be made directly as follows. A solution
to problem (1.9) is obviously a solution to problem (1.8). Conversely, if u is solution
to problem (1.8), then the map X � v �−→ a(u,Π(v)) − l(Π(v)) is linear continuous
for any continuous lifting operator Π : X → V . Thus there exists λ ∈ X ′ such
that 〈λ, v〉

X′,X
= a(u,Π(v)) − l(Π(v)) for all v ∈ X. It is easy to state that in fact

〈λ, v〉
X′,X

= a(u, v)− l(v) for all v ∈ V , proving a(u,Π(v|Γ
C

)−v)− l(Π(v|Γ
C

)−v) = 0

for all v ∈ V . Indeed, Π(v|Γ
C

) − v has a vanishing trace on Γ
C
, and replacing

successively v − u by (Π(v|Γ
C

) − v + u) − u and by (v − Π(v|Γ
C

) + u) − u in the
inequality of (1.8) leads to this result. The two inequalities of (1.9) result then from
the replacement of a(u, v − u) − l(v − u) by 〈λ, v − u〉

X′,X
in the inequality of (1.8),

separating normal and tangential components (Γ
C

is straight here), and remarking
that applying a Green formula, one has σ

N
(u) = λ

N
. The equivalence between (1.9)

and (1.10) is developed in [30] by computing the Fenchel conjugate of j(Fσ
N
, ·) and

inverting the normal cone to K.



ERROR ESTIMATE FOR DISCRETIZED COULOMB FRICTION 2017

1.2. Neumann to Dirichlet operator. We introduce the Neumann to Dirich-
let operator on Γ

C
and its basic properties. This will allow us to restrict the contact

and friction problem on Γ
C

and obtain useful estimates.
Let λ = (λ

N
, λ

T
) ∈ X ′. The solution u to

(1.11)

{
Find u ∈ V satisfying
a(u, v) = l(v) + 〈λ, v〉

X′,X
∀ v ∈ V

is unique (see [17]). So it is possible to define the operator

E : X ′ −→ X

λ �−→ u|Γ
C

.

It is easy to check that the operator E is affine and continuous. We define the following
norms on Γ

C
relative to a(·, ·):

‖v‖a,Γ
C

= inf
w∈V, w|Γ

C

=v

‖w‖a,

‖v
N
‖a,Γ

C
= inf

w∈V,
w

N
=v

N
on Γ

C

‖w‖a = inf
w∈V,

w
N

=v
N

on Γ
C

‖w‖a,Γ
C
,

‖v
T
‖a,Γ

C
= inf

w∈V,
w

T
=v

T
on Γ

C

‖w‖a = inf
w∈V,

w
T

=v
T

on Γ
C

‖w‖a,Γ
C
,

‖λ‖−a,Γ
C

= sup
v∈X
v �=0

〈λ, v〉
X′,X

‖v‖a,Γ
C

= sup
v∈V
v �=0

〈λ, v〉
X′,X

‖v‖a
,

‖λ
N
‖−a,Γ

C
= sup

v
N

∈X
N

v
N

�=0

〈λ
N
, v

N
〉
X′

N
,X

N

‖v
N
‖a,Γ

C

= ‖(λ
N
, 0)‖−a,Γ

C
,

‖λ
T
‖−a,Γ

C
= sup

v
T

∈X
T

v
T

�=0

〈λ
T
, v

T
〉
X′

T
,X

T

‖v
T
‖a,Γ

C

= ‖(0, λ
T
)‖−a,Γ

C
,

which are equivalent, respectively, to the norms in X and X ′:

√
α

C1
‖v‖

X
≤ ‖v‖a,Γ

C
≤

√
Mγ‖v‖

X
,

√
α

C1
‖v

N
‖

X
N

≤ ‖v
N
‖a,Γ

C
≤

√
Mγ‖v

N
‖

X
N
,

√
α

C1
‖v

T
‖

X
T
≤ ‖v

T
‖a,Γ

C
≤

√
Mγ‖v

T
‖

X
T
,
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1√
Mγ

‖λ‖
X′ ≤ ‖λ‖−a,Γ

C
≤ C1√

α
‖λ‖

X′ .

One also has

‖v
N
‖a,Γ

C
≤ ‖v‖a,Γ

C

and

‖λ
N
‖−a,Γ

C
≤ Cα‖λ‖−a,Γ

C

with a constant Cα ≤ C1γ
√
M/α. (But a better estimate should be possible: follow-

ing [19], Cα is close to 1 when the Poisson ratio is close to 0.)
With the previous norms, it is possible to state (see [41]) the following equalities,

when u = E(λ) and u = E(λ) are the solutions to problem (1.11):

(1.12) ‖u− u‖a = ‖E(λ) − E(λ)‖a,Γ
C

= ‖λ− λ‖−a,Γ
C
.

1.3. Direct weak inclusion formulation. Let

K
N

= {v
N
∈ X

N
: v

N
≤ 0 a.e. on Γ

C
}

be the set of admissible normal displacements on Γ
C
. The normal cone in X ′

N
to K

N

at v
N
∈ X

N
is defined as

NK
N

(v
N

) =

{
μ

N
∈ X ′

N
: 〈μ

N
, w

N
− v

N
〉
X′

N
,X

N

≤ 0 ∀w
N
∈ K

N

}
if v

N
∈ K

N
,

and NK
N

(v
N

) = ∅ if v
N

/∈ K
N

. The subdifferential of j(Fλ
N
, .) (i.e., with respect to

the second variable) at u
T

is given by

∂2j(Fλ
N
, u

T
)

=

{
μ

T
∈ X ′

T
: j(Fλ

N
, v

T
) ≥ j(Fλ

N
, u

T
) + 〈μ

T
, v

T
− u

T
〉
X′

T
,X

T

∀v
T
∈ X

T

}
.

With this notation, problem (1.8) can be written

(1.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find u ∈ V, λ
N
∈ X ′

N
, and λ

T
∈ X ′

T
satisfying

(u
N
, u

T
) = E(λ

N
, λ

T
),

−λ
N
∈ NK

N
(u

N
) in X ′

N
,

−λ
T
∈ ∂2j(Fλ

N
, u

T
) in X ′

T
.

More details resulting from this equivalence can be found in [34].

1.4. A uniqueness criterion. In [26, 27] some multisolutions of the problem
(1.1)–(1.7) are exhibited for triangular or quadrangular domains. These multiple
solutions involve either an infinite set of slipping solutions or two isolated (stick and
separation) configurations. Note that these examples of nonuniqueness involve large
friction coefficients (i.e., F > 1) and tangential displacements with a constant sign
on Γ

C
. Actually, it seems that no multisolution has been detected for an arbitrary
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small friction coefficient in the continuous case, although such a result exists for finite
element approximations in [25], but for a variable geometry. The forthcoming partial
uniqueness result is obtained in [41]: it defines some cases where it is possible to affirm
that a solution to the Coulomb friction problem is in fact the unique solution. More
precisely, if a regular solution to the Coulomb friction problem exists (here the term
regular means, roughly speaking, that the transition is smooth when the slip direction
changes) and if the friction coefficient is small enough, then this solution is the only
one. We recall the main useful tools leading to that result.

Lemma 1.1. Let u and u be two solutions to problem (1.8), and let λ and λ be
the corresponding contact stresses on Γ

C
. Then the following estimate holds:

‖u− u‖2
a = ‖λ− λ‖2

−a,Γ
C
≤ 〈ζ − λ

T
, u

T
− u

T
〉
X′

T
,X

T

∀ζ ∈ −∂2j(Fλ
N
, u

T
).

Proof. From (1.12), the Green formula, and (1.5), we get

‖u− u‖2
a = ‖λ− λ‖2

−a,Γ
C

=
〈
λ

N
− λ

N
, u

N
− u

N

〉
X′

N
,X

N

+
〈
λ

T
− λ

T
, u

T
− u

T

〉
X′

T
,X

T

≤
〈
λ

T
− λ

T
, u

T
− u

T

〉
X′

T
,X

T

.

Thus

‖u− u‖2
a ≤

〈
(λ

T
− ζ) + (ζ − λ

T
), u

T
− u

T

〉
X′

T
,X

T

∀ζ ∈ −∂2j(Fλ
N
, u

T
).

The conclusion follows from (1.13) and the fact that −∂2j(Fλ
N
, .) is a monotone

set-valued mapping.
We now introduce the space of multipliers M(X

T
→ X

N
) of the functions ξ :

Γ
C
→ Rd satisfying ξ.n = 0 a.e. on Γ

C
and such that the following equivalent norms

are finite:

‖ξ‖
M(X

T
→X

N
)
= sup

v
T

∈X
T

v
T

�=0

‖ξ.v
T
‖

X
N

‖v
T
‖

X
T

, and ‖ξ‖a = sup
v
T

∈X
T

v
T

�=0

‖ξ.v
T
‖a,Γ

C

‖v
T
‖a,Γ

C

.

Since Γ
C

is assumed to be straight, M(X
T
→ X

N
) contains for any ε > 0 the space

H1/2+ε(Γ
C
) when d = 2. When d = 3, M(X

T
→ X

N
) contains H1(Γ

C
) ∩ L∞(Γ

C
).

(See [38] for a complete discussion on the theory of multipliers in a pair of Hilbert
spaces.)

The partial uniqueness result is given assuming that λ
T

= Fλ
N
ξ, with

ξ ∈ M(X
T

→ X
N

). The product λ
N
ξ has to be understood in the sense that

〈λ
N
ξ, v

T
〉
X′

T
,X

T

= 〈λ
N
, ξ.v

T
〉
X′

N
,X

N

for all v
T
∈ X

T
. It is easy to see that this implies

|ξ| ≤ 1 a.e. on the support of λ
N

. More precisely, this implies that ξ ∈ Dir
T
(u

T
)

a.e. on the support of λ
N

, where Dir
T
(.) is the subdifferential of the convex map

Rd � x �−→ |xT |. This means that it is possible to assume that ξ ∈ Dir
T
(u

T
) a.e.

on Γ
C
.

Proposition 1.2. Let u be a solution to problem (1.8) such that λ
T

= Fλ
N
ξ,

with ξ ∈ M(X
T
→ X

N
), ξ ∈ Dir

T
(u

T
) a.e. on Γ

C
, and F < (Cα‖ξ‖a)−1. Then u is

the unique solution to problem (1.8).
Proof. Let u be another solution to problem (1.8), where λ

N
and λ

T
denote the

corresponding contact stresses on Γ
C
. According to Lemma 1.1, we write

‖u− u‖2
a ≤ 〈ζ − λ

T
, u

T
− u

T
〉
X′

T
,X

T

∀ζ ∈ −∂2j(Fλ
N
, u

T
).
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.

-1

0

+1
ξ

Γ
C

0

u
T

Γ
C

.

Fig. 1.2. Example of a tangential displacement uT and a possible corresponding multiplier ξ
when d = 2.

It is easy to see that a possible choice is ζ = Fλ
N
ξ. Therefore

‖u− u‖2
a ≤ 〈Fξ(λ

N
− λ

N
), u

T
− u

T
〉
X′

T
,X

T

≤ F‖λ
N
− λ

N
‖−a,Γ

C
‖ξ.(u

T
− u

T
)‖a,Γ

C

≤ CαF‖ξ‖a‖λ− λ‖−a,Γ
C
‖u− u‖a

= CαF‖ξ‖a‖u− u‖2
a,

which implies that u = u when F < (Cα‖ξ‖a)−1.
In two space dimensions (d = 2), the case ξ ≡ 1 corresponds to a homogeneous

sliding direction, and the previous result is complementary to the nonuniqueness re-
sults obtained in [26, 27].

As illustrated in Figure 1.2, when d = 2 the multiplier ξ has to vary from −1
to +1 each time the sign of the tangential displacement changes from negative to
positive. The set M(X

T
→ X

N
) does not contain any multiplier having a singularity

of the first kind. Consequently, in order to satisfy the assumptions of Proposition 1.2,
the tangential displacement of the solution u cannot pass from a negative value to a
positive value and be zero at only a single point of Γ

C
.

Remark 2. This remark deals with a more precise discussion concerning the
assumption λ

T
= Fλ

N
ξ, ξ ∈ M(X

T
→ X

N
), ξ ∈ Dir

T
(u

T
) and the cases where the

assumption cannot be fulfilled independently of the regularity of the solution when
d = 2. On the one hand, it is easy to show that the choice of ξ is unique at any
point where λ

N
	= 0 or u

T
	= 0. In the first case ξ = λ

T
/(Fλ

N
), in the second case

ξ = u
T
/|u

T
|, and both expressions coincide when λ

N
	= 0 and u

T
	= 0. On the other

hand, any ξ ∈ [−1, 1] can be chosen at the points where λ
N

= u
T

= 0. So it remains to
determine when ξ lies in M(X

T
→ X

N
). If there are no points such that λ

N
= u

T
= 0

on Γ
C
, then the condition ξ ∈ M(X

T
→ X

N
) is linked to the regularity of u (in other

words, if u is regular enough, then ξ ∈ M(X
T

→ X
N

)). If there are some points
such that λ

N
= u

T
= 0, then it is easy to show that the continuity of ξ can be lost

(whatever the regularity of u is) only if some of these points are isolated. A discussion
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shows then that ξ 	∈ M(X
T
→ X

N
) in three cases. The first one is when u

T
passes

from a negative to a positive value at such a point (note that this could also occur
at a point which is separated from the foundation). The second case corresponds to
a stick area surrounding such an isolated point and where the right and left limits of
λ

T
/(Fλ

N
) differ at this point (where λ

T
= λ

N
= u

T
= u

N
= 0). The third case is a

combination of both previous cases: a side where u
T
	= 0, the other one with u

T
= 0

and λ
N

	= 0, and a limit of λ
T
/(Fλ

N
) which differs from u

T
/|u

T
|. If the solution is

less regular, then other cases of nonfulfillment could appear, but we think that this
assumption (which is needed to obtain the uniqueness of a solution to the continuous
problem) takes into account many frictional contact configurations.

2. Finite element approximation. Let V h ⊂ V be a family of finite dimen-
sional vector spaces indexed by h coming from a regular family T h (see [9]) of tri-
angulations of the domain Ω (h represents the largest diameter among all elements).
We choose standard continuous and piecewise affine functions, i.e.,

(2.1) V h =
{
vh ∈ (C(Ω))d, vh|

T

∈ P1(T ) ∀T ∈ T h, vh = 0 on Γ
D

}
.

Define

Xh
N

=
{
vh
N |

Γ
C

: vh ∈ V h
}
,

Xh
T

=
{
vh
T |Γ

C

: vh ∈ V h
}
,

(2.2) Xh =
{
vh|Γ

C

: vh ∈ V h
}

= Xh
N
×Xh

T
.

Identifying Xh
N

and Xh
T

with their dual spaces using the L2 scalar product, we con-
sider that Xh

N
and Xh

T
are also the finite-dimensional approximations of X ′

N
and X ′

T
,

respectively.
The finite element discretization of problem (1.10) becomes

(2.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find uh ∈ V h, λh
N
∈ Xh

N
, and λh

T
∈ Xh

T
satisfying

a(uh, vh) = l(vh) +

∫
Γ
C

λh
N
vh
N
dΓ +

∫
Γ
C

λh
T
.vh

T
dΓ ∀vh ∈ V h,

λh
N
∈ Λh

N
,

∫
Γ
C

(μh
N
− λh

N
)uh

N
dΓ ≥ 0 ∀μh

N
∈ Λh

N
,

λh
T
∈ Λh

T
(Fλh

N
),

∫
Γ
C

(μh
T
− λh

T
).uh

T
dΓ ≥ 0 ∀μh

T
∈ Λh

T
(Fλh

N
),

where the approximations of Λ
N

and Λ
T
(Fλ

N
) have been chosen in the following way:

(2.4) Λh
N

= Λ
N
∩Xh

N
,

(2.5) Λh
T
(Fλh

N
) =

{
λh

T
∈ Xh

T
:

∫
Γ
C

λh
T
.vh

T
dΓ + j(Fλh

N
, vh

T
) ≥ 0 ∀vh

T
∈ Xh

T

}
.
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To simplify our discussion, we assume afterwards that the mesh inherited on the con-
tact zone is quasi-uniform (although there exist some less restrictive assumptions; see,
e.g., [13]) of size h (to simplify). Another simplification is that we restrict ourselves
to the two-dimensional case (d = 2), and we assume that the end points of Γ

C
do not

belong to Γ
D

(in other words, Γ
C
∩ Γ

D
= ∅). More general cases will be discussed in

some remarks at the end of the paper.
With this choice of discretization, the following discrete Babuška–Brezzi inf-sup

condition holds (see, e.g., [12, 6]):

(2.6) inf
λh∈Xh

sup
vh∈V h

∫
Γ
C
λh.vhdΓ

‖vh‖a‖λh‖−a,Γ
C

≥ cis > 0,

where cis ≤ 1 is independent of h. As a consequence, problem (2.3) admits a solution
for any friction coefficient, and the solution is unique for a sufficiently small friction
coefficient (where the label “small” may depend on h) (see [30]).

The following lemma shows the relation between the hybrid formulation and the
direct formulation of the friction condition in the discrete framework.

Lemma 2.1. For λh
N
∈ Λh

N
, a pair (λh

T
, uh

T
) ∈ Xh

T
×Xh

T
satisfies

(2.7) λh
T
∈ Λh

T
(Fλh

N
),

∫
Γ
C

(μh
T
− λh

T
).uh

T
dΓ ≥ 0 ∀μh

T
∈ Λh

T
(Fλh

N
)

if and only if the pair satisfies

(2.8)

∫
Γ
C

λh
T
.(vh

T
− uh

T
)dΓ + j(Fλh

N
, vh

T
) − j(Fλh

N
, uh

T
) ≥ 0 ∀vh

T
∈ Xh

T
.

Proof. Let us first assume that (λh
T
, uh

T
) satisfies (2.7). For an arbitrary choice

ξ ∈ Fλh
N

Dir
T
(uh

T
) the map vh

T
�−→

∫
Γ
C
ξ.vh

T
dΓ is a linear form on Xh

T
, and thus by

the Riesz representation theorem there exists μh
T

∈ Xh
T

such that
∫
Γ
C
μh

T
.vh

T
dΓ =∫

Γ
C
ξ.vh

T
dΓ for all vh

T
∈ Xh

T
. This μh

T
satisfies

∫
Γ
C
μh

T
.uh

T
dΓ =

∫
Γ
C
Fλh

N
|uh

T
|dΓ =

−j(Fλh
N
, uh

T
), and μh

T
is an element of Λh

T
(Fλh

N
). Now considering this particular μh

T

in (2.7) leads to ∫
Γ
C

λh
T
.uh

T
dΓ + j(Fλh

N
, uh

T
) ≤ 0.

Together with the fact that λh
T

is in Λh
T
(Fλh

N
) this leads to the complementarity

relation ∫
Γ
C

λh
T
.uh

T
dΓ + j(Fλh

N
, uh

T
) = 0,

which straightforwardly implies (2.8).
Conversely, let us assume that (λh

T
, uh

T
) satisfies (2.8). Then choosing vh

T
=

0 in (2.8) gives −
∫
Γ
C
λh

T
.uh

T
dΓ − j(Fλh

N
, uh

T
) ≥ 0, and choosing vh

T
= 2uh

T
gives∫

Γ
C
λh

T
.uh

T
dΓ + j(Fλh

N
, uh

T
) ≥ 0, which implies the complementarity relation∫

Γ
C

λh
T
.uh

T
dΓ + j(Fλh

N
, uh

T
) = 0.
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Taking this into account in (2.8) leads to∫
Γ
C

λh
T
.vh

T
dΓ + j(Fλh

N
, vh

T
) ≥ 0 ∀vh

T
∈ Xh

T
,

which implies λh
T
∈ Λh

T
(Fλh

N
). Now, from the complementarity relation and for all

μh
T
∈ Λh

T
(Fλh

N
) one has∫

Γ
C

(μh
T
− λh

T
).uh

T
dΓ =

∫
Γ
C

μh
T
.uh

T
dΓ + j(Fλh

N
, uh

T
) ≥ 0,

which implies (2.7).
Remark 3. The equivalence given by this lemma is a classical result when it

deals with the continuous problem. With the particular finite element discretization
considered in this section, the result is still valid in the finite-dimensional case. One
of the reasons is that the space of the multipliers has been chosen in such a way that
it can represent the dual space of the discrete trace space Xh

T
. But this result does

not remain valid when a smaller space for the multipliers is chosen.

3. The error estimate.
Theorem 3.1. Let (u, λ) be the solution to problem (1.8) (for d = 2) such

that λ
T

= Fλ
N
ξ, with ξ ∈ M(X

T
→ X

N
), ξ ∈ Dir

T
(u

T
) a.e. on Γ

C
, and F <

cis(Cα‖ξ‖a)−1. Assume that u ∈ (H(3/2)+ε(Ω))2 with ε > 0, and let (uh, λh) be a
solution to the discrete problem (2.3). Then there exists a constant C > 0 independent
of h and u such that

(3.1) ‖u− uh‖a + ‖λ− λh‖−a,Γ
C
≤ Ch1/2‖u‖(H(3/2)+ε(Ω))2 .

Proof. Let vh ∈ V h. Then

‖u− uh‖2
a = a(u− uh, u− uh)

= a(u− uh, u− vh) + a(u, vh − uh) − a(uh, vh − uh)

= a(u− uh, u− vh) +

∫
Γ
C

λ
N

(vh
N
− uh

N
) dΓ +

∫
Γ
C

λ
T
.(vh

T
− uh

T
) dΓ

−
∫

Γ
C

λh
N

(vh
N
− uh

N
) dΓ −

∫
Γ
C

λh
T
.(vh

T
− uh

T
) dΓ

= a(u− uh, u− vh)

+

∫
Γ
C

(λ
N
− λh

N
)(vh

N
− u

N
) dΓ +

∫
Γ
C

(λ
T
− λh

T
).(vh

T
− u

T
) dΓ

+

∫
Γ
C

(λ
N
− λh

N
)(u

N
− uh

N
) dΓ +

∫
Γ
C

(λ
T
− λh

T
).(u

T
− uh

T
) dΓ.

The continuous and discrete complementary conditions imply∫
Γ
C

λ
N
u

N
dΓ =

∫
Γ
C

λh
N
uh

N
dΓ = 0.
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Hence

‖u− uh‖2
a = a(u− uh, u− vh)

+

∫
Γ
C

(λ
N
− λh

N
)(vh

N
− u

N
) dΓ +

∫
Γ
C

(λ
T
− λh

T
).(vh

T
− u

T
) dΓ

−
∫

Γ
C

λ
N
uh

N
+ λh

N
u

N
dΓ +

∫
Γ
C

(λ
T
− λh

T
).(u

T
− uh

T
) dΓ.

Using the continuity of the bilinear form, we obtain

‖u− uh‖2
a ≤ ‖u− uh‖a‖u− vh‖a + ‖λ− λh‖−a,Γ

C
‖u− vh‖a,Γ

C

−
∫

Γ
C

λ
N
uh

N
+ λh

N
u

N
dΓ +

∫
Γ
C

(λ
T
− λh

T
).(u

T
− uh

T
) dΓ.(3.2)

Additionally, we consider the equilibrium equation. From V h ⊂ V , we get

a(u, vh) = l(vh) +

∫
Γ
C

λ.vh dΓ ∀ vh ∈ V h.

Since

a(uh, vh) = l(vh) +

∫
Γ
C

λh.vh dΓ ∀ vh ∈ V h,

we deduce by subtraction that

a(u− uh, vh) =

∫
Γ
C

(λ− λh).vh dΓ ∀ vh ∈ V h.

Consequently, for any vh ∈ V h and any μh ∈ Xh∫
Γ
C

(λh − μh).vh dΓ = a(uh − u, vh) +

∫
Γ
C

(λ− μh).vh dΓ

≤ (‖u− uh‖a + ‖λ− μh‖−a,Γ
C

)‖vh‖a.

The mesh independent inf-sup condition (2.6) implies, for any μh ∈ Xh,

cis‖λh − μh‖−a,Γ
C
≤ sup

vh∈V h

∫
Γ
C

(λh − μh).vh dΓ

‖vh‖a
≤ ‖u− uh‖a + ‖λ− μh‖−a,Γ

C
.

By the triangular inequality we come to the conclusion that

‖λ− λh‖−a,Γ
C
≤ 1

cis
‖u− uh‖a +

(
1 +

1

cis

)
inf

μh∈Xh
‖λ− μh‖−a,Γ

C
.(3.3)

Keeping in mind that u ∈ (H(3/2)+ε(Ω))2 with ε > 0, so that λ ∈ (L2(Γ
C
))2 ac-

cording to the trace theorem, we choose vh = Ihu, where Ih denotes the Lagrange
interpolation operator mapping onto V h, and μh = πhλ, where πh represents the
(L2(Γ

C
))2-projection operator mapping onto Xh. As a consequence (see [7, 9, 13]) if

ε > 0 is small enough, we have

inf
vh∈V h

‖u− vh‖a ≤ Ch(1/2)+ε‖u‖(H(3/2)+ε(Ω))2(3.4)
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and

inf
μh∈Xh

‖λ− μh‖−a,Γ
C
≤ Ch(1/2)+ε‖u‖(H(3/2)+ε(Ω))2 ,(3.5)

where C denotes here and afterwards a positive constant independent of h. We now
estimate the terms in (3.2) coming from the contact approximation. Since u

N
≤ 0

and λh
N
≤ 0 on Γ

C
, we deduce that the first term is nonpositive:

−
∫

Γ
C

λh
N
u

N
dΓ ≤ 0.(3.6)

In order to estimate the second term in (3.2) coming from the contact approximation
we introduce a specific operator. Namely, rh : L1(Γ

C
) �→ Xh

N
is the quasi-interpolation

operator defined for any function v in L1(Γ
C
) by

rhv =
∑

x∈Nh

αx(v)ψx,

where Nh represents the set of nodes of Γ
C
, ψx is the scalar basis function of Xh

N

(defined on Γ
C
) at node x verifying ψx(x′) = δx,x′ for all x′ ∈ Nh, and

αx(v) =

( ∫
Γ
C

vψx dΓ

)( ∫
Γ
C

ψx dΓ

)−1

.

Remark 4. It is straightforward to check that rh is linear and that it preserves
nonpositivity. It is also obvious that rhvh 	= vh when vh ∈ Xh

N
. This operator is

different from Clément’s (which consists of making local projections onto P1 functions;
see [10]), from Chen–Nochetto’s (which uses local projections onto P0 functions; see
[8]), and from Ben Belgacem–Renard’s (which consists of making local projections
onto the convex cone of nonpositive P1 functions; see [6]). The main particularity
of the operator rh, which directly follows from its definition, is that rhvh ≤ 0 when
vh ∈ Xh

N
satisfies only “weak nonpositivity conditions”; i.e.,

(3.7)

∫
Γ
C

μh
N
vhdΓ ≥ 0 ∀μh

N
∈ Λh

N
.

This property is not satisfied by the operators in [8] and [10]. Moreover, as we
see hereafter, the approximation properties of rh hold for any function without sign
condition, contrary to the operator in [6].

The approximation properties of rh are established in [28]. We recall them to
render the proof of Theorem 3.1 self-contained. We first show the L2-stability property
of rh.

Lemma 3.2. There is a positive constant C independent of h such that for any
v ∈ L2(Γ

C
) and any E ∈ Eh

C
(Eh

C
denotes the set of closed edges lying in Γ

C
)

‖rhv‖L2(E) ≤ C‖v‖L2(γE),

where γE = ∪{F∈Eh
C

: F∩E �=∅}F .

Proof. Let γx be the support of the basis function ψx in Γ
C
. Using the definition

of αx(v), the Cauchy–Schwarz inequality, and the uniform regularity of the mesh, we
get

|αx(v)| ≤ ‖v‖L2(γx)‖ψx‖L2(γx)‖ψx‖−1
L1(γx) ≤ Ch− 1

2 ‖v‖L2(γx).
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We obtain by a triangular inequality

‖rhv‖L2(E) =

∥∥∥∥∥∥
∑

x∈Nh∩E

αx(v)ψx

∥∥∥∥∥∥
L2(E)

≤ C‖v‖L2(γE).

The next lemma is concerned with the L2-approximation properties of rh.
Lemma 3.3. There is a positive constant C independent of h such that for any

v ∈ Hη(Γ
C
), 0 ≤ η ≤ 1, and any E ∈ Eh

C
(Eh

C
denotes the set of closed edges lying in

Γ
C
)

‖v − rhv‖L2(E) ≤ Chη‖v‖Hη(γE),(3.8)

where γE = ∪{F∈Eh
C

: F∩E �=∅}F .

Proof. When η = 0 the bound results from the previous lemma. Note that rh

preserves the constant functions on Γ
C
. Let be given an arbitrary constant function

c(x) = c, for all x ∈ Γ
C
. From the definition of rh, we may write, for any v ∈ Hη(Γ

C
),

v − rhv = v − c− rh(v − c).

Therefore by Lemma 3.2 we get

‖v − rhv‖L2(E) ≤ C
(
‖v − c‖L2(E) + ‖v − c‖L2(γE)

)
≤ C‖v − c‖L2(γE) ∀c ∈ R.

(3.9)

We then choose c =
∫
γE

v(x) dx/|γE | in (3.9), where |γE | denotes the length of
γE . Then if x ∈ γE and 0 < η < 1, we have

v(x) − c = |γE |−1

∫
γE

v(x) − v(y) dy

= |γE |−1

∫
γE

v(x) − v(y)

|x− y| 1+2η
2

|x− y|
1+2η

2 dy.

Using the Cauchy–Schwarz inequality, we deduce∫
γE

(v(x) − c)2dx = |γE |−2

∫
γE

(∫
γE

v(x) − v(y)

|x− y| 1+2η
2

|x− y|
1+2η

2 dy

)2

dx

≤ |γE |−2

∫
γE

(∫
γE

(v(x) − v(y))2

|x− y|1+2η
dy

∫
γE

|x− y|1+2ηdy

)
dx

≤ |γE |2η
∫
γE

∫
γE

(v(x) − v(y))2

|x− y|1+2η
dydx

≤ Ch2η‖v‖2
Hη(γE).

Hence the result.
If x ∈ γE and η = 1, we have

v(x) − c = |γE |−1

∫
γE

v(x) − v(y) dy = |γE |−1

∫
γE

∫ x

y

v′(t) dtdy.

Hence

|v(x) − c| ≤ |γE |
1
2 ‖v′‖L2(γE).
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The result is then straightforward.
End of the proof of Theorem 3.1. The second term coming from the contact

approximation in (3.2) is handled as follows:

−
∫

Γ
C

λ
N
uh

N
dΓ = −

∫
Γ
C

λ
N

(uh
N
− rhuh

N
) dΓ −

∫
Γ
C

λ
N
rhuh

N
dΓ.

According to (2.3), uh
N

satisfies a weak nonnegativity condition as in (3.7). From
Remark 4 we deduce that rhuh

N
≤ 0. Hence we have, for any small ε > 0,

−
∫

Γ
C

λ
N
uh

N
dΓ ≤ −

∫
Γ
C

λ
N

(uh
N
− rhuh

N
) dΓ

≤ ‖λ
N
‖L2(Γ

C
)‖uh

N
− rhuh

N
‖L2(Γ

C
)

≤ ‖λ
N
‖L2(Γ

C
)‖(uh

N
− u

N
) − rh(uh

N
− u

N
)‖L2(Γ

C
)

+ ‖λ
N
‖L2(Γ

C
)‖uN

− rhu
N
‖L2(Γ

C
)

≤ Ch1/2‖u‖(H(3/2)+ε(Ω))2‖uh
N
− u

N
‖H1/2(Γ

C
)

+Ch‖u‖(H(3/2)+ε(Ω))2‖uN
‖H1(Γ

C
),(3.10)

where the trace theorem ‖λ
N
‖L2(Γ

C
) ≤ C‖u‖(H(3/2)+ε(Ω))2 (see [20]) and the estimates

in Lemma 3.3 have been used. Putting together estimates (3.6) and (3.10) yields for
any small ε > 0

−
∫

Γ
C

λh
N
u

N
+ λ

N
uh

N
dΓ ≤ Ch1/2‖u‖(H(3/2)+ε(Ω))2(

‖u− uh‖a + h1/2‖u‖(H(3/2)+ε(Ω))2

)
.(3.11)

We now estimate the terms corresponding to the friction approximation in (3.2).
From the assumptions in the theorem we write∫

Γ
C

(λ
T
− λh

T
).(u

T
− uh

T
) dΓ =

∫
Γ
C

(λ
T
−Fλh

N
ξ).(u

T
− uh

T
) dΓ

+

∫
Γ
C

(Fλh
N
ξ − λh

T
).(u

T
− uh

T
) dΓ

=

∫
Γ
C

F(λ
N
− λh

N
)ξ.(u

T
− uh

T
) dΓ

+

∫
Γ
C

(Fλh
N
ξ − λh

T
).(u

T
− uh

T
) dΓ.(3.12)

The estimate of the first integral term in (3.12) gives∫
Γ
C

F(λ
N
− λh

N
)ξ.(u

T
− uh

T
) dΓ ≤ CαF‖ξ‖a‖λ− λh‖−a,Γ

C
‖u− uh‖a.

The second integral term in (3.12) is written as follows:∫
Γ
C

(Fλh
N
ξ − λh

T
).(u

T
− uh

T
) dΓ =

∫
Γ
C

Fλh
N
ξ.(u

T
− uh

T
) dΓ −

∫
Γ
C

λh
T
.u

T
dΓ

+

∫
Γ
C

λh
T
.uh

T
dΓ.
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Using the equivalent discrete friction conditions in (2.8), we obtain for any vh ∈ V h∫
Γ
C

(Fλh
N
ξ − λh

T
).(u

T
− uh

T
) dΓ ≤

∫
Γ
C

Fλh
N
ξ.(u

T
− uh

T
) dΓ −

∫
Γ
C

λh
T
.u

T
dΓ

+

∫
Γ
C

λh
T
.vh

T
dΓ −

∫
Γ
C

Fλh
N
|vh

T
| dΓ +

∫
Γ
C

Fλh
N
|uh

T
| dΓ.

Choosing vh
T

= Ihu
T

and since ξ.u
T

= |u
T
|, we obtain∫

Γ
C

(Fλh
N
ξ − λh

T
).(u

T
− uh

T
) dΓ ≤

∫
Γ
C

λh
T
.(Ihu

T
− u

T
) dΓ +

∫
Γ
C

Fλh
N

(|uh
T
| − ξ.uh

T
) dΓ

+

∫
Γ
C

Fλh
N

(|u
T
| − |Ihu

T
|) dΓ.(3.13)

The estimate of the first term in (3.13) is achieved as follows by using the error
estimates in [9]:∫

Γ
C

λh
T
.(Ihu

T
− u

T
) dΓ =

∫
Γ
C

(λh
T
− λ

T
).(Ihu

T
− u

T
) dΓ +

∫
Γ
C

λ
T
.(Ihu

T
− u

T
) dΓ

≤ Ch1/2‖u‖(H3/2(Ω))2

(
‖λ− λh‖−a,Γ

C
+ h1/2‖u‖(H(3/2)+ε(Ω))2

)
.

The estimate of the second term in (3.13) uses the fact that λh
N

≤ 0 and |uh
T
| −

ξ.uh
T
≥ 0 so that ∫

Γ
C

Fλh
N

(|uh
T
| − ξ.uh

T
) dΓ ≤ 0.

Finally, the third term in (3.13) yields∫
Γ
C

Fλh
N

(|u
T
| − |Ihu

T
|) dΓ ≤ F‖λh

N
‖L2(Γ

C
)‖|uT

| − |Ihu
T
|‖L2(Γ

C
)

≤ F‖λh
N
‖L2(Γ

C
)‖uT

− Ihu
T
‖L2(Γ

C
)

≤ CF‖λh
N
‖L2(Γ

C
)h‖u‖(H3/2(Ω))2 .

Further, using the (global) L2(Γ
C
)-projection operator πh

N
onto Xh

N
(the notation πh

stands for the (L2(Γ
C
))2-projection operator onto Xh) and an inverse inequality (see,

e.g., [7, 9, 13]), we write

‖λh
N
‖L2(Γ

C
) ≤ ‖λh

N
− πh

N
λ

N
‖L2(Γ

C
) + ‖πh

N
λ

N
− λ

N
‖L2(Γ

C
) + ‖λ

N
‖L2(Γ

C
)

≤ C
(
h−1/2‖λh − πhλ‖−a,Γ

C
+ ‖λ

N
‖L2(Γ

C
)

)
≤ C

(
h−1/2‖λ− λh‖−a,Γ

C
+ ‖u‖(H(3/2)+ε(Ω))2

)
.

Therefore, ∫
Γ
C

Fλh
N

(|u
T
| − |Ihu

T
|) dΓ ≤ CFh1/2‖u‖(H3/2(Ω))2(

‖λ− λh‖−a,Γ
C

+ h1/2‖u‖(H(3/2)+ε(Ω))2

)
.
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We come to the conclusion that the term dealing with the friction approximation in
(3.2) is bounded as follows:∫

Γ
C

(λ
T
− λh

T
).(u

T
− uh

T
) dΓ ≤ CαF‖ξ‖a‖λ− λh‖−a,Γ

C
‖u− uh‖a

+C(1 + F)h‖u‖2
(H(3/2)+ε(Ω))2

+C(1 + F)h1/2‖u‖(H3/2(Ω))2‖λ− λh‖−a,Γ
C
.(3.14)

Finally, the result is obtained by using (3.4)–(3.5) and putting together (3.2), (3.3),
(3.11), and (3.14).

Remark 5. The quasi-optimal rate of convergence of order 1/2 in the theorem
does not depend on ε > 0. Actually we are not able to obtain a better convergence
rate even if ε increases. A bit more regularity than H3/2 is needed to apply the
trace theorem, when writing ‖λ

N
‖L2(Γ

C
) ≤ C‖u‖(H(3/2)+ε(Ω))2 (see [20]). The choice

of the regularity assumptions u ∈ (H(3/2)+ε(Ω))2 in the numerical analysis of contact
problems is discussed in [4, Remark 2.4(i)] and [5, Remark 4.4]. If u is less regular
than H3/2, then the normal and tangential constraints cannot be expressed pointwise,
and the frictional contact conditions cannot be simply written as in (1.5)–(1.7). In
the frictionless case, when u ∈ (Hν(Ω))2 with 1 < ν < 3/2, the error analysis of a
finite element approximation is achieved in [4]. Actually we are not able to extend
these results to the frictional case.

Remark 6. If one (or both) end points of Γ
C

= [x0, xn] is subjected to Dirichlet
conditions, then the previous study can be extended with some modifications. Sup-
pose, for instance, that Γ

C
∩Γ

D
= {x0} and that the definition of V h in (2.1) remains

unchanged. If we still keep the same definition of Xh as in (2.2), then the estimate
(3.5), does not hold in the general case. Thus we use a mortar approach introduced
in [7]: denoting by xi, 0 ≤ i ≤ n, the nodes on Γ

C
, we set

Xh
N

=
{
μh

N
∈ C(Γ

C
), μh

N |
[xi,xi+1]

∈ P1([xi, xi+1]) ∀1 ≤ i ≤ n− 1, μh
N |

[x0,x1]

∈ P0([x0, x1])
}
.

The particularity of this space is that the functions are constant on the extreme
segment [x0, x1]. We choose the same kind of approximation for Xh

T
, and we set

Xh = Xh
N

× Xh
T
. In this case the discrete Babuška–Brezzi inf-sup condition (2.6)

still holds (see [3]). Moreover, estimate (3.5) remains valid (see [7, Lemma 4.1]).
Keeping the same definitions of Λh

N
and Λh

T
(Fλh

N
) as in (2.4) and (2.5), we note

that the equivalence in Lemma 2.1 still holds in this case since the dimensions of the
multiplier and tangential displacement spaces are the same (see also Remark 1) and
the inf-sup condition is satisfied. According to [30], problem (2.3) admits a solution
for any friction coefficient, and the solution is unique for a sufficiently small friction
coefficient. The following result is then obtained: if (uh, λh) is a solution to (2.3),
then estimate (3.1) is recovered.

Remark 7. In the three-dimensional case, the convergence result should hold (at
least when Γ

C
∩ Γ

D
= ∅), and the main task would be to generalize the estimate

(3.8).
Remark 8. If F = 0, then the continuous problem admits a unique solution.

Choosing then the same approximation method as in (2.3) (therefore λh
T

= 0 and the
discrete solution is unique) and accomplishing the convergence analysis has led to an
upper bound of the error of order h1/2 under H2-regularity hypotheses (see [6]). The
estimate obtained in the present paper improves the bound in [6], since we obtain the
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same convergence rate with fewer regularity assumptions (H(3/2)+ε with ε arbitrary
small instead of H2). Moreover, we observe that there is no loss of convergence
when the friction terms are added. Nevertheless we mention that there exists in the
frictionless case a standard finite element approximation, which leads to an upper
bound of the error of order h3/4 under H2-regularity hypotheses (see [24, 23]) and
of order h with some additional assumptions concerning the finiteness of transition
points between contact and separation (see [29]). Actually we are not able to extend
these results to the frictional case.

Remark 9. Note that we do not prove that the solution to the discrete problem
is unique under the assumptions of Theorem 3.1. This seems to be an open question
which is actually under investigation. Note also that this possible loss of uniqueness
would not be embarrassing in the a priori error analysis of Theorem 3.1. As a matter of
fact, even if there are multiple solutions to the discrete problem, any solution would
converge towards the unique solution of the continuous model. Additionally, the
bound ensuring uniqueness in Proposition 1.2 is F < (Cα‖ξ‖a)−1, and we establish the
error estimate only for F < cis(Cα‖ξ‖a)−1. It should be interesting to see whether or
not it is possible to prove an error estimate for all the uniqueness cases of Proposition
1.2.

Conclusion. This work is a contribution to the numerical analysis of the uni-
lateral contact problem governed by Coulomb’s law of friction in elastostatics. As far
as we know, this study establishes a first error estimate with a convergence rate for
this model. From the previous remarks we can reasonably conclude that the present
convergence analysis could be generalized in many directions.
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GRIDS∗
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Abstract. In this paper, we develop a postprocessing derivative recovery scheme for the finite el-
ement solution uh on general unstructured but shape regular triangulations. In the case of continuous
piecewise polynomials of degree p ≥ 1, by applying the global L2 projection (Qh) and a smoothing
operator (Sh), the recovered pth derivatives (Sm

h Qh∂
puh) superconverge to the exact derivatives

(∂pu). Based on this technique we are able to derive a local error indicator depending only on the
geometry of corresponding element and the (p+ 1)st derivatives approximated by ∂Sm

h Qh∂
puh. We

provide several numerical examples illustrating the effectiveness of our schemes. We also observe that
higher order elements are likely to require more conservative refinement strategies to create meshes
corresponding to optimal orders of convergence.
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1. Introduction. In this work we introduce a derivative recovery scheme for
Lagrange triangular elements of degree p. It is an extension of the gradient recovery
scheme for linear elements proposed by Bank and Xu [3]. The recovered pth derivatives
are shown to be superconvergent to the exact ones for general shape regular meshes.
Due to the superconvergent property of this scheme, some a posteriori error estimates
and local error indicators can be derived for mesh adaptation.

The recovery techniques for finite element analysis have been studied extensively
in the literature [6, 7, 10, 12, 13, 16, 17]. The main goal of the recovery techniques is
to construct better approximations of the solution function or derivative using certain
postprocessing procedures. Typically these techniques involve some kind of local or
global averaging, including local or global L2 projection. Due to the superconvergence
property, recovery techniques are often used to construct a posteriori error estimators
(see, e.g., [5, 11, 14, 15, 18]) which are asymptotically exact. For the literature
regarding superconvergence analysis of recovery techniques, we refer to [3] and the
references therein.

Most recovery schemes are concerned only with the recovery of the gradient, the
finite element solution itself, and the second order derivatives. There was also some
work on the recovery of higher order derivatives on uniform grids (see, e.g., [4]). It is
the purpose of the current work to recover (p+1)st derivatives for Lagrange elements
of degree p ≥ 1 on unstructured grids.
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Our development has two major components. First, we develop a postprocessing
derivative recovery scheme for the finite element solution uh on general shape regular
triangulations. In particular, in section 2 of this paper we compute Sm

h Qh∂
puh,

where Sh is an appropriate smoothing operator, m ∈ {1, 2, . . . } is the number of
smoothing steps, and Qh is the L2 projection operator. The recovered pth derivatives
superconverge to the exact ones. In the case of a small number of smoothing steps
(the most interesting case), Theorem 2.5 shows that

||∂pu− Sm
h Qh∂

puh||0,Ω � h

(
mh1/2 +

[
κ− 1

κ

]m)
(||u||p+2,Ω + |u|p+1,∞,Ω) .

Here κ > 1 is a constant independent of h and u.
The second major component, presented in section 3 of this paper, is the devel-

opment of a posteriori error estimates based on the derivative recovery scheme. As
an example, we discuss quadratic finite elements in detail. For the case of quadratic
elements, we define our local error indicator as

ετ =
1

12

3∏
k=1

(�k+1∂k+1 − �k−1∂k−1) ū3φ0 +
1

12

3∑
k=1

�3k∂
3
kū3φk,

where ū3 is any cubic polynomial with third derivatives equal to ∂Sm
h Qh∂

2uh, �k are
the edge lengths of the triangular element, and φk’s are hierarchical basis functions
for the 4-dimensional space of cubic polynomials that are zero at the vertices and
midpoints of the element. Note that the above local error indicator depends only on
the geometry of the corresponding element and the gradients of the recovered second
order derivatives.

The rest of this paper is organized as follows: In section 2, we describe our deriva-
tive scheme and give superconvergence estimates of the pth derivatives for shape reg-
ular meshes. In section 3, we develop and analyze our a posteriori error estimate.
Finally, in section 4, we present several numerical examples, involving both uniform
and adaptively refined (nonuniform) meshes, with some solutions that satisfy our
smoothness assumptions and some that do not. In the latter case, we observe that
high order elements require conservative refinement strategies to create meshes cor-
responding to optimal orders of convergence.

2. A derivative recovery scheme for shape regular triangulations. Let
Ω ⊂ R

2 be a bounded domain with Lipschitz boundary ∂Ω.1 For simplicity of ex-

position, we assume that Ω is a polygon. Let V(p)
h denote the finite element space

consisting of C0 piecewise polynomials of degree p associated with a shape regular

triangulation Th, and let uh ∈ V(p)
h be the finite element approximation to a (possibly

nonlinear) second order elliptic boundary value problem.
We analyze a superconvergent approximation to the pth order derivatives of u.

This approximation is generated by applying the global L2 projection operator Qh

and a multigrid smoothing operator Sh to the discrete pth order derivatives of the
finite element solution uh, and it can be represented as Sm

h Qh∂
p
huh.

We first recall that the L2 projection Qhu ∈ V(1)
h of a given function u ∈ L2(Ω)

is defined by solving the variational problem

(Qhu, vh) = (u, vh) ∀ vh ∈ V(1)
h .(2.1)

Here (·, ·) denotes the inner product on L2(Ω).

1It is easy to see that our theory in this paper is also valid for domains with cracks, such as the
slit domain in the third example of section 4.
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Consider the following bilinear form:

a(u, v) = (∇u,∇v) + (u, v).(2.2)

By the Riesz representation theorem, a(·, ·) induces a bounded linear operator Ah :

V(1)
h → V(1)

h uniquely determined by

(Ahuh, vh) = a(uh, vh) ∀ uh, vh ∈ V(1)
h ,

and it follows that the operator Ah is symmetric with respect to the L2-inner product.
We further notice that the discrete operator Ah is symmetric positive definite on the

finite dimensional space V(1)
h and

λ ≡ ρ(Ah) 	 O(h−2).

Using Ah, we introduce the smoothing operator Sh defined by

Sh = I − λ−1Ah.

The usual multigrid convergence function

f(α, β) =
ααββ

(α + β)(α+β)
= sup

x∈[0,1]

xα(1 − x)β ,

α, β > 0, plays an important role [3].
For convenience in notation, we let ∂pu denote some pth order derivative of u

and ∂puh denote some discrete pth order derivative of uh. We also use the notation
|| · ||′p,Ω to indicate the discrete norm

∑
K∈Th

|| · ||p.K . We now state and prove some
preliminary lemmas leading to the main Theorem 2.5 in this section.

Lemma 2.1. For any z ∈ V(1)
h , u ∈ Hp+2(Ω),

||(I − Sm
h )z||0,Ω � mh(||z − ∂pu||1,Ω + h||u||p+2,Ω + h1/2|u|p+1,∂Ω).

Proof. We note, from the definition of Sh, that

||(I − Sm
h )z||0,Ω = λ−1||(I − Sm

h )(I − Sh)−1Ahz||0,Ω
≤ λ−1 max

s∈[0,1]
[(1 − sm)(1 − s)−1]||Ahz||0,Ω

≤ λ−1m||Ahz||0,Ω
� mh2||Ahz||0,Ω.

Let w = Ahz. By definition,

(w,ϕ) = (∇z,∇ϕ) + (z, ϕ)(2.3)

for all ϕ ∈ V(1)
h . We take ϕ = w in (2.3),

||w||20,Ω = (w,w) = (∇z,∇w) + (z, w).

We estimate the terms on the right-hand side

(∇z,∇w) = (∇(z − ∂pu),∇w) + (∇∂pu,∇w)

� ||∇(z − ∂pu)||0,Ω||∇w||0,Ω − (�∂pu,w) +

∫
∂Ω

∇∂pu · nwds

� h−1||∇(z − ∂pu)||0,Ω||w||0,Ω + ||u||p+2,Ω||w||0,Ω + |u|p+1,∂Ω||w||0,∂Ω

� (h−1||z − ∂pu||1,Ω + ||u||p+2,Ω + h−1/2|u|p+1,∂Ω)||w||0,Ω.
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Also

(z, w) = (z − ∂pu,w) + (∂pu,w)

� (||z − ∂pu||0,Ω + ||u||p,Ω)||w||0,Ω.

Thus for z ∈ V(1)
h ,

||Ahz||0,Ω = ||w||0,Ω � h−1||z − ∂pu||1,Ω + ||u||p+2,Ω + h−1/2|u|p+1,∂Ω,

completing the proof.

Lemma 2.2 ([3]). Suppose that for v ∈ V(1)
h and some 0 < α ≤ 1 we have

||v|| ≤ ω(h, v),

||v||−α ≡ ||A−α/2
h v|| ≤ (Ch)αω(h, v).

Then

||Sm
h v|| ≤ εm ω(h, v),

where

εm =

⎧⎨⎩ κα/2f(m,α/2) � m−α/2 for m > (κ− 1)α/2,

[(κ− 1)/κ]
m

for m ≤ (κ− 1)α/2,

and κ = (Ch)2λ.
Proof. See Lemma 2.3 of [3].
Lemma 2.3. Let w|K ∈ Hp(K) ∩W p−1,∞(K) for all K ∈ Th. Then, for 1/2 <

α ≤ 1,

||Sm
h Qh∂

pw||0,Ω � εm(h−1||w||′p−1,Ω + ||w||′p,Ω + h−α||w||′p−1,∞,Ω),

with εm defined as in Lemma 2.2.
Proof. Our plan is to apply Lemma 2.2 to v = Qh∂

pw. Note that

||v||−α = ||Qh∂
pw||−α = sup

φ∈V(1)
h

(Qh∂
pw, φ)

||φ||α
= sup

φ∈V(1)
h

(∂pw, φ)

||φ||α
.

Here ‖φ‖α ≡ ‖Aα/2
h φ‖. Using integration by parts,

(∂pw, φ) = −(∂p−1w, ∂φ) +
∑

K∈Th

∫
∂K

∂p−1wφnids

≤ ||w||′p−1,Ω||φ||1,Ω + ||w||′p−1,∞,Ω||φ||α,Ω
� (hα−1||w||′p−1,Ω + ||w||′p−1,∞,Ω)||φ||α,Ω.

Thus

||v||−α � hαω(h, v),

with ω(h, v) = h−1||w||′p−1,Ω + ||w||′p,Ω + h−α||w||′p−1,∞,Ω.
Since

||v||0,Ω ≤ ||∂pw||′0,Ω ≤ ω(h, v),

the desired estimate now follows from Lemma 2.2.
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Lemma 2.4. Let u ∈ Hp+2(Ω) ∩ W p+1,∞(Ω). Then for any vh ∈ V(p)
h and

1/2 < α ≤ 1 we have

||∂pu− Sm
h Qh∂

pvh||0,Ω � mh3/2(h1/2||u||p+2,Ω + |u|p+1,∂Ω)

+ εm(h−1||u− vh||′p−1,Ω + h−α||u− vh||′p−1,∞,Ω),

with εm defined as in Lemma 2.2.
Proof. By the triangle inequality,

||∂pu− Sm
h Qh∂

pvh||0,Ω ≤ ||(I −Qh)∂pu||0,Ω + ||(I − Sm
h )Qh∂

pu||0,Ω
+ ||Sm

h Qh∂
p(u− vh)||0,Ω.

By standard arguments, the first term

||(I −Qh)∂pu||0,Ω � h2||u||p+2,Ω.

The second term is estimated by Lemma 2.1. For the third term, we apply Lemma
2.3.

In the case in which vh = uh ∈ V(p)
h ∩H1

0 (Ω) is the finite element approximation
to u ∈ H1

0 (Ω), the boundary terms vanish and

||∂pu− Sm
h Qh∂

puh||0,Ω � h(mh + εm)||u||p+2,Ω.

In the more general case, we have the following theorem based on the results developed
in this section.

Theorem 2.5. Let u ∈ Hp+2(Ω)∩W p+1,∞(Ω) and uh ∈ V(p)
h be an approximation

of u satisfying

||u− uh||′p−1,Ω � h2|u|p+1,Ω,

||u− uh||′p−1,∞,Ω � h2| log h||u|p+1,∞,Ω.

Then

||∂pu− Sm
h Qh∂

puh||0,Ω � h(mh1/2 + εm)(||u||p+2,Ω + |u|p+1,∞,Ω),

where εm is defined as in Lemma 2.2 and 1/2 < α < 1.
We can easily derive the following estimate for (p + 1)st order derivatives with

the help of Theorem 2.5.
Theorem 2.6. Assume the hypotheses of Theorem 2.5 are satisfied. Then

||∂(∂pu− Sm
h Qh∂

puh)||0,Ω � (mh1/2 + εm)(||u||p+2,Ω + |u|p+1,∞,Ω),

where εm is defined as in Lemma 2.2 and 1/2 < α < 1.

Proof. Let z = Ih∂
pu ∈ V(1)

h . Then

||∂(∂pu− Sm
h Qh∂

puh)||0,Ω ≤ ||∂(∂pu− z)||0,Ω + ||∂(z − Sm
h Qh∂

puh||)0,Ω
� h||u||p+2,Ω + h−1||z − Sm

h Qh∂
puh||0,Ω

� h||u||p+2,Ω + h−1(||z − ∂pu||0,Ω + ||∂pu− Sm
h Qh∂

puh||0,Ω)

� (mh1/2 + εm)(||u||p+2,Ω + |u|p+1,∞,Ω).
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Fig. 3.1. Parameters associated with the triangle τ .

3. A posteriori error estimates. We begin with a description of our a pos-
teriori error estimator. Our approach follows the development in [3] for the case of
piecewise linear finite elements. For the general case of Lagrange elements of degree p,
our goal is to find an expression for the error that involves only (approximate) deriva-
tives of order p + 1 of u and known parameters describing the geometry of a given
element τ . Let a canonical element τ ∈ Th have vertices pt

k = (xk, yk), 1 ≤ k ≤ 3,
oriented counterclockwise, and corresponding linear nodal basis functions (barycen-
tric coordinates) {ψk}3

k=1. Let {ek}3
k=1 denote the edges of element τ , {nk}3

k=1 the
unit outward normal vectors, {tk}3

k=1 the unit tangent vectors with counterclockwise
orientation, and {�k}3

k=1 the edge lengths (see Figure 3.1).
As an example, we now restrict attention to quadratic finite elements, since it

is the quadratic space that is used in the numerical illustrations. We first seek an
expression for û3 − u2 on τ , where u2 is the quadratic Lagrange interpolant and û3

is the cubic hierarchical extension. Thus û3 − u2 is a cubic polynomial vanishing at
vertices and edge midpoints of τ . A hierarchical basis for this 4-dimensional space is
given by

φ0 = ψ1ψ2ψ3,

φk = ψk−1ψk+1(ψk+1 − ψk−1),

for 1 ≤ k ≤ 3, and (k− 1, k, k + 1) is a cyclic permutation of (1, 2, 3). Let ∂ku denote
the directional derivative in the direction tk. Then

û3 − u2 =
1

12

3∏
k=1

(�k+1∂k+1 − �k−1∂k−1) û3φ0 +
1

12

3∑
k=1

�3k∂
3
kû3φk.(3.1)

Equation (3.1) can be verified using the identities

ψ1 + ψ2 + ψ3 = 1,

∇ψ1 + ∇ψ2 + ∇ψ3 = 0,

�1t1 + �2t2 + �3t3 = 0,⎛⎝�1t
t
1

�2t
t
2

�3t
t
3

⎞⎠(
∇ψ1 ∇ψ2 ∇ψ3

)
=

⎛⎝ 0 −1 1
1 0 −1
−1 1 0

⎞⎠ .
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In our local error indicator, we simply approximate the third derivatives needed
to compute the directional derivatives appearing in (3.1) by

∂xxxû3 ≈ ατ∂xS
m
h Qh∂xxuh,

∂xxyû3 ≈ ατ

2
(∂yS

m
h Qh∂xxuh + ∂xS

m
h Qh∂xyuh),(3.2)

∂xyyû3 ≈ ατ

2
(∂yS

m
h Qh∂xyuh + ∂xS

m
h Qh∂yyuh),

∂yyyû3 ≈ ατ∂yS
m
h Qh∂yyuh,

where ατ > 0 is a constant described below. Let ū3 be any cubic polynomial with
third derivatives given by the right-hand sides of (3.2). Then our local error indicator
is given by

ετ =
1

12

3∏
k=1

(�k+1∂k+1 − �k−1∂k−1) ū3φ0 +
1

12

3∑
k=1

�3k∂
3
kū3φk.(3.3)

The normalization constant ατ is chosen such that

|ετ |22,τ = ||(I − Sm
h Qh)∂2

xxuh||20,τ + 2||(I − Sm
h Qh)∂2

xyuh||20,τ

+ ||(I − Sm
h Qh)∂2

yyuh||20,τ ≡ |uh −R(uh)|22,τ .

Normally we expect that ατ ≈ 1, which is likely to be the case in regions where
the third derivatives of the true solution are well defined. Near singularities, u is
not smooth, and we anticipate difficulties in estimating the third derivatives. For
elements near such singularities, ατ provides a heuristic for partly compensating for
poor approximation. Note that ετ is a cubic polynomial on each element depending
only on the geometry of τ and the approximate third derivatives derived from our
superconvergent approximations.

In the general case, ûp+1 −up on element τ is a polynomial of degree p+1 that is
zero at the degrees of freedom defining up. One can express this polynomial in terms
of hierarchical basis functions depending on the geometry of τ and the derivatives of
order p + 1 of ûp+1. The derivatives can be approximated by ∂Sm

h Qh∂
puh as in the

example above. This yields a polynomial ετ of degree p + 1 for each element. The
local error indicator ητ is given by

ητ = ||∇ετ ||0,τ .(3.4)

Since ετ is a discontinuous piecewise polynomial on all of Ω, we can also formally
approximate errors in global norms and other functionals using ετ . For example,

||u− uh||20,Ω ≈
∑
τ

||ετ ||20,τ ,

|u− uh|21,Ω ≈
∑
τ

|ετ |21,τ =
∑
τ

η2
τ .
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In the case of | · |1,Ω there is a bit of theory. In particular,

|u− uh|1,Ω ≤ |u− ûp+1|1,Ω + |up − uh|1,Ω + |up − ûp+1|1,Ω,(3.5)

|up − ûp+1|1,Ω ≤ |u− ûp+1|1,Ω + |up − uh|1,Ω + |u− uh|1,Ω.(3.6)

Suppose |u − uh|1,Ω ≥ chp, and |u − ûp+1|1,Ω ≤ Chp+1. Then if |up − uh|1,Ω is also
higher order, estimates (3.5)–(3.6) show |up − ûp+1|1,Ω to be an asymptotically exact
estimate for |u−uh|1,Ω. Such superapproximation results for |up−uh|1,Ω are known for
p = 1, 2; see [2, 3, 8]. However, superapproximation estimates for |up −uh|1,Ω are not
yet known to hold for p ≥ 3; see [9]. For general p, estimate (3.5) can be replaced by

|u− uh|1,Ω ≤ C (|u− ûp+1|1,Ω + |ûp+1 − up|1,Ω)(3.7)

due to the best approximation property for the energy norm and norm comparability
of ||| · |||Ω and | · |1,Ω. Here we may lose asymptotic exactness but still have a useful
upper bound for the error. Insofar as we know, the lower bound for p > 2 is still
an open question, as are general norms and functionals. Nonetheless, this informal
analysis suggests that the error indicators ητ will provide a useful and reliable basis
for adaptive meshing algorithms.

4. Numerical experiments. We now present some numerical illustrations of
our recovery scheme in the cases of uniform and adaptively refined (nonuniform)
meshes. The gradient recovery scheme and a posteriori error estimate described
above for the case of continuous piecewise quadratic elements were implemented in
the PLTMG package [1], which was then used for our numerical experiments. The
experiments were done on a dual Opteron Linux workstation, using the g77 compiler
and double precision arithmetic. We reprise some experiments given in [3] for the case
of continuous piecewise linear finite elements.

In our first example, we consider the solution of the problem

−Δu = f in Ω = (0, 1) × (0, 1),

u = g on ∂Ω,

where f and g are chosen such that u = ex+y is the exact solution. This is a very
smooth solution that satisfies all of the assumptions of our theory. Here we will
compare the recovery scheme with m = 2 smoothing steps for the case of uniform
and adaptive meshes. We begin with a uniform 3 × 3 mesh consisting of eight right
triangles as shown in Figure 4.1. Elements in Figure 4.1 are colored according to size;
this allows one to obtain some impression of the structure of highly refined meshes
with many elements, even if individual elements can no longer be resolved.

In Tables 4.1–4.2, we record the results of the computation. We give the error
as a function of the number of elements, choosing targets for the adaptive refinement
procedure to produce adaptive meshes with similar numbers of elements to the uniform
refinement case. Note that the dimension of the quadratic finite element space is
approximately 2nt, where nt is the number of elements reported in the tables. Other
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Fig. 4.1. Top left: 3 × 3 initial mesh. Top right: Uniform refinement with nt = 128. Bottom
left: Adaptive refinement with nt = 137. Bottom right: Adaptive refinement with nt = 131105.
Elements are colored according to size.

Table 4.1

Error estimates for uniform refinement.

nt L2 L̃2 EF0 H1 H̃1 EF1 H2 H̃2 EF2

8 8.8e-3 1.0e-2 1.1 0.1 0.2 1.6 1.3 2.1 1.7
32 1.0e-3 1.8e-3 1.8 3.0e-2 0.1 1.8 0.7 1.2 2.0

128 1.2e-4 2.0e-4 1.6 7.5e-3 1.2e-2 1.6 0.3 0.5 1.7
512 1.6e-5 2.4e-5 1.6 1.9e-3 2.9e-3 1.5 0.2 0.2 1.5

2048 1.9e-6 2.7e-6 1.4 4.7e-4 6.5e-4 1.4 0.1 0.1 1.4
8192 2.4e-7 3.1e-7 1.3 1.2e-4 1.5e-4 1.3 4.2e-2 3.4e-2 1.3

32768 3.0e-8 3.5e-8 1.2 3.0e-5 3.4e-5 1.2 2.1e-2 1.3e-2 1.2
131072 3.8e-9 4.1e-9 1.1 7.4e-6 8.0e-6 1.1 1.0e-2 4.7e-3 1.1
Order 3.04 3.15 2.02 2.13 1.01 1.43

Table 4.2

Error estimates for adaptive refinement.

nt L2 L̃2 EF0 H1 H̃1 EF1 H2 H̃2 EF2

8 6.9e-4 3.7e-4 0.5 1.0e-2 5.6e-3 0.6 0.2 0.2 0.5
33 2.5e-4 1.8e-4 0.7 5.1e-3 4.8e-3 0.9 0.1 0.2 1.0

137 1.6e-5 2.2e-5 1.4 8.9e-4 1.5e-3 1.6 0.1 0.1 1.7
523 1.8e-6 2.2e-6 1.2 1.8e-4 2.6e-4 1.4 2.2e-2 3.1e-2 1.6

2063 2.0e-7 2.0e-7 1.0 3.7e-5 4.4e-5 1.2 1.0e-2 1.0e-2 1.3
8207 1.8e-8 1.6e-8 0.9 7.9e-6 7.9e-6 1.0 4.7e-3 2.6e-3 1.1

32775 2.2e-9 1.7e-9 0.8 1.9e-6 1.7e-6 0.9 2.3e-3 7.3e-4 1.0
131105 2.6e-1 2.0e-1 0.8 4.5e-7 4.1e-7 0.9 1.1e-3 2.1e-4 1.0
Order 3.15 3.24 2.12 2.20 1.06 1.83
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values are defined as follows:

L2 = ||u− uh||0,Ω,

L̃2 = ||εh||0,Ω,

EF0 =
||εh||0,Ω

||u− uh||0,Ω
,

H1 = |u− uh|1,Ω,

H̃1 = |εh|1,Ω,

EF1 =
|εh|1,Ω

|u− uh|1,Ω
,

H2 = |u− uh|2,Ω,

H̃2 = |u−R(uh)|2,Ω,

EF2 =
|R(uh) − uh|2,Ω

|u− uh|2,Ω
.

For each type of norm, we made a least squares fit of the data to a function of the
form F (N) = CN−p/2 to estimate the order of convergence p. All integrals were
approximated using a 12-point order 7 quadrature formula applied to each triangle.

We note here the superconvergence of the second derivatives and effectivity ratios
that are close to one. Despite the lack of a complete theory, error estimates L̃2 and
H̃1 are also quite accurate, and the orders of convergence are optimal in all three
norms (and superconvergent for the recovered second derivatives).

In our second example, we consider the nonlinear problem

−∇ · (a∇u) + eu = f in Ω = (0, 1) × (0, 1),

u = 0 on ∂Ω,

where a is the 2 × 2 diagonal matrix

a =

(
.01

1

)
.

The function f is chosen such that u = x(1 − x)3y5(1 − y) is the exact solution. We
repeat the same computations as in the first example, with uniform and adaptive
meshes. The uniform meshes are identical to those of the first example. Some of the
adaptive meshes are shown in Figure 4.2. The numerical results are summarized in
Tables 4.3–4.4.

This problem is more difficult than the first in several respects. The diffusion is
anisotropic, and the operator is nonlinear. The solution is smooth but generally has
larger derivatives than the first example. Nonetheless, we see a similar behavior of
the gradient recovery scheme and a posteriori error estimate.

In our third example, we consider the problem

−Δu = 0 in Ω,

u = g on ∂Ω1,

un = 0 on ∂Ω2,
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Fig. 4.2. Left: Adaptive refinement with nt = 135. Right: Adaptive refinement with nt =
129345. Elements are colored according to size.

Table 4.3

Error estimates for uniform refinement.

nt L2 L̃2 EF0 H1 H̃1 EF1 H2 H̃2 EF2

8 6.9e-4 3.7e-4 0.5 1.0e-2 5.6e-3 0.6 0.2 0.2 0.5
32 2.2e-4 1.3e-4 0.6 4.7e-3 3.9e-3 0.8 0.1 0.2 1.0

128 4.3e-5 3.1e-5 0.7 2.0e-3 2.0e-3 1.0 0.1 0.1 1.4
512 6.1e-6 5.3e-6 0.9 6.2e-4 7.0e-4 1.1 4.4e-2 0.1 1.5

2048 6.7e-7 7.4e-7 1.1 1.5e-4 2.0e-4 1.3 2.1e-2 3.7e-2 1.6
8192 6.4e-8 8.9e-8 1.4 3.0e-5 4.7e-5 1.6 1.0e-2 1.6e-2 1.7

32768 6.4e-9 1.0e-8 1.5 6.4e-6 1.0e-5 1.6 4.5e-3 6.3e-3 1.6
131072 7.1e-1 1.0e-9 1.5 1.5e-6 2.2e-6 1.5 2.2e-3 2.4e-3 1.4
Order 3.26 3.21 2.18 2.20 1.08 1.35

Table 4.4

Error estimates for adaptive refinement.

nt L2 L̃2 EF0 H1 H̃1 EF1 H2 H̃2 EF2

8 6.9e-4 2.0e-4 0.3 1.0e-2 3.0e-3 0.3 0.2 0.2 0.5
32 2.2e-4 8.2e-5 0.4 4.7e-3 2.5e-3 0.5 0.1 0.2 1.0

135 1.5e-5 1.9e-5 1.2 8.6e-4 1.5e-3 1.7 0.1 0.1 1.8
524 2.0e-6 2.8e-6 1.4 1.7e-4 5.2e-4 3.0 2.1e-2 3.0e-2 1.6

2060 3.4e-7 4.1e-7 1.2 4.5e-5 1.4e-4 3.0 1.0e-2 9.1e-3 1.3
8119 4.6e-8 4.8e-8 1.1 1.2e-5 3.2e-5 2.6 5.2e-3 2.2e-3 1.1

32333 5.4e-9 5.2e-9 1.0 2.9e-6 6.4e-6 2.2 2.7e-3 4.9e-4 1.0
129345 5.8e-1 5.4e-1 0.9 7.0e-7 1.3e-6 1.8 1.3e-3 1.5e-4 1.0
Order 3.16 3.25 2.07 2.30 0.99 1.86

where Ω is a circle of radius one centered at the origin, and with a crack along the
positive x-axis 0 ≤ x ≤ 1. The boundary ∂Ω2 is the bottom edge of the crack,
and ∂Ω1 = ∂Ω \ ∂Ω2. The function g is chosen such that the exact solution is
u = r1/4 sin(θ/4), the leading term of the singularity associated with the interior angle
of 2π and change in boundary conditions at the origin. In Figure 4.3 we illustrate the
initial mesh and several of the uniformly and adaptively refined meshes.

Convergence results for uniform and adaptive refinement are reported in Tables
4.5–4.6. The solution u is not smooth in this case (u ∈ H5/4−ε(Ω)), and this is

reflected in the results. In particular, both H2 and H̃2 should be infinite and are
computed as finite only because of numerical quadrature. Despite this singularity,
the resulting error approximations ετ still provided useful information and formed a
reliable basis for adaptive refinement.
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Fig. 4.3. Top left: Initial mesh with nt = 8. Top right: Uniform refinement with nt = 128.
Bottom left: Adaptive refinement with nt = 133. Bottom right: Adaptive refinement with nt =
133890. Elements are colored according to size.

Table 4.5

Error estimates for uniform refinement.

nt L2 L̃2 EF0 H1 H̃1 EF1 H2 H̃2 EF2

8 0.1 3.9e-2 0.3 0.6 0.3 0.5 4.1 4.3 0.4
32 0.1 8.6e-3 0.1 0.5 0.1 0.3 6.6 6.7 0.5

128 0.1 2.9e-3 4.9e-2 0.4 0.1 0.3 11.0 11.0 0.5
512 4.0e-2 1.2e-3 2.9e-2 0.3 0.1 0.3 18.0 19.0 0.5

2048 2.7e-2 4.7e-4 1.7e-2 0.2 0.1 0.3 31.0 32.0 0.5
8192 1.9e-2 2.0e-4 1.0e-2 0.2 0.1 0.3 52.0 53.0 0.5

32768 1.3e-2 8.1e-5 6.1e-3 0.2 4.6e-2 0.3 87.0 90.0 0.5
131072 9.3e-3 3.4e-5 3.7e-3 0.1 3.8e-2 0.3 1.5e2 1.5e2 0.5
Order 0.53 1.29 0.27 0.27 -0.76 -0.76

Table 4.6

Error estimates for adaptive refinement.

nt L2 L̃2 EF0 H1 H̃1 EF1 H2 H̃2 EF2

8 0.1 3.9e-2 0.3 0.6 0.3 0.5 4.1 4.3 0.4
31 0.1 8.9e-3 0.1 0.5 0.1 0.3 6.4 6.5 0.5

133 4.5e-2 2.3e-3 5.0e-2 0.3 0.1 0.3 14.0 14.0 0.5
533 2.3e-2 4.4e-4 1.9e-2 0.2 0.1 0.3 34.0 35.0 0.5

2078 8.5e-3 5.7e-5 6.7e-3 0.1 0.1 0.4 1.5e2 1.6e2 0.5
8237 2.3e-3 4.6e-6 2.0e-3 0.1 2.7e-2 0.4 1.0e3 1.1e3 0.5

32796 6.0e-4 5.8e-7 1.0e-3 3.5e-2 1.2e-2 0.3 7.7e3 8.1e3 0.5
130890 1.1e-4 7.4e-8 6.6e-4 1.5e-2 7.6e-3 0.5 9.8e4 1.1e5 0.6
Order 2.18 3.07 1.12 0.83 -3.29 -3.30
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Fig. 4.4. Left: Adaptive refinement with nt = 136. Right: Adaptive refinement with nt =
130586. Elements are colored according to size.

For the case of uniform refinement, the 0.25 order of convergence of the gradient
coincides with the smoothness of the solution. The effectivity ratios for all cases show
a lack of asymptotic exactness. EF1, although not approaching unity, still seems
under control, reflecting the analysis (3.5)–(3.7). On the other hand, EF0 seems very
poorly controlled, indicating that ||ετ ||0,Ω is not a very reliable estimate for ||u−uh||0,Ω.

For the adaptive meshes, the order of convergence improves and seems to be
approaching order one for the gradient and order two for the solution. This is sub-
optimal for quadratic elements. This was not due to poor error indicators but rather
to an overly aggressive refinement strategy. In the adaptive refinement procedure
implemented in PLTMG, all elements are placed on a heap with the element having
the largest error at the root. The root element is then selected for refinement. When
an element is refined, it is removed from the heap, and its child elements are added to
the heap. This of course requires the child elements to have error indicators. These
are constructed using derivative values inherited from the parent and their own ge-
ometry information. Thus a single element might undergo several levels of refinement
during a given adaptive step. Using old derivative information for new elements will
generally fail to be optimal after sufficiently many levels of refinement.

In PLTMG, the amount of refinement allowed in a given refinement step is gov-
erned by the user by specifying a target number of vertices in the refined mesh. In
this example, we chose a strategy that increased the number of vertices by roughly a
factor of four in each refinement step in order to closely match the size of problems
generated by uniform refinement. If there are too many levels of refinement of in-
dividual elements before the problem is resolved, the resulting mesh might be lower
quality, as was the case in this example. On the other hand, frequently assembling and
resolving the global finite element equations results in higher quality adaptive meshes
but at a much greater cost. Since the appropriate compromise is likely to be highly
problem-dependent, in PLTMG it is up to the user to choose the proper balance.

For this example, we solved this problem adaptively a second time, this time
specifying that the number of vertices should be increased by a factor of roughly two
between resolves rather than four. We report the results in Table 4.7. Here we see the
near optimal rate of convergence for both L2 and H1. In other respects, the data are
quite similar to Table 4.6. Meshes corresponding to the adaptive meshes in Figure 4.3
are shown in Figure 4.4.

It is interesting to note that a refinement factor of four caused no problems in
the case of a similar experiment performed in the case p = 1 in [3]. For p = 2 the
refinement is much sharper in the region of the singularity, and it was this increase
in sharpness that required a less aggressive refinement strategy. Even higher order
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Table 4.7

Error estimates for adaptive refinement.

nt L2 L̃2 EF0 H1 H̃1 EF1 H2 H̃2 EF2

8 0.1 3.9e-2 0.3 0.6 0.3 0.5 4.1 4.3 0.4
31 0.1 8.9e-3 0.1 0.5 0.1 0.3 6.4 6.5 0.5
74 0.1 4.9e-3 0.1 0.4 0.1 0.4 9.5 9.8 0.5

136 4.5e-2 1.8e-3 4.1e-2 0.3 0.1 0.3 14.0 15.0 0.5
302 2.5e-2 5.6e-4 2.2e-2 0.3 0.1 0.3 34.0 35.0 0.4
534 1.3e-2 2.7e-4 2.1e-2 0.2 0.1 0.4 87.0 89.0 0.4

1179 5.8e-3 7.8e-5 1.4e-2 0.1 4.1e-2 0.3 2.5e2 2.6e2 0.5
2077 2.8e-3 3.5e-5 1.3e-2 0.1 2.7e-2 0.3 7.0e2 7.3e2 0.5
4617 1.1e-3 1.2e-5 1.1e-2 5.0e-2 1.9e-2 0.4 3.1e3 3.3e3 0.5
8204 3.7e-4 5.1e-6 1.4e-2 3.0e-2 1.1e-2 0.4 1.4e4 1.4e4 0.5

18388 1.4e-4 1.5e-6 1.1e-2 1.8e-2 6.2e-3 0.4 6.4e4 6.7e4 0.5
32669 4.0e-5 6.7e-7 1.7e-2 9.5e-3 4.2e-3 0.4 3.8e5 4.0e5 0.6
73439 1.1e-5 2.0e-7 1.8e-2 5.0e-3 1.9e-3 0.4 2.6e6 2.7e6 0.5

130586 2.6e-6 8.5e-8 3.2e-2 2.5e-3 1.0e-3 0.4 2.0e7 2.2e7 0.5
Order 3.56 2.96 1.77 1.73 -5.21 -5.22

elements are likely to require even more conservative refinement strategies to create
meshes corresponding to optimal orders of convergence. Perhaps this adds another
dimension to already complex general discussions evaluating the relative merits of
higher order methods.
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1. Introduction. A conforming finite element method for the Kirchhoff plate-
bending problem requires a C1-continuity and hence leads to methods that are rarely
used in practice. Instead, either a nonconforming method is used or the model is
abandoned in favor of the Reissner–Mindlin model. For the latter, there exist several
families of methods that have rigorously been shown to be free from locking and
optimally convergent.

A natural idea is to consider the Kirchhoff model as the limit of the Reissner–
Mindlin model when the plate thickness approaches zero and to use a good Reissner–
Mindlin element with the thickness (after a scaling, see below) representing the pa-
rameter when penalizing the Kirchhoff constraint. In this approach, there are two
obstacles. First, for a free boundary, this leads to a method which is not consistent.
This inconsistency significantly reduces the convergence rate of the method. In the
literature, this point is often ignored since mostly the clamped case is considered. A
remedy to this was developed by Destuynder and Nevers, who showed that the con-
sistency is obtained by adding a term penalizing the tangential Kirchhoff condition
along the free boundary [7]. Even if this modification has been done, there remains
a second drawback. In order for the solution to the penalized formulation to be close
to the exact solution, the penalty parameter should be large. This, however, leads to
an ill-conditioned discrete system.

The free boundary inconsistency of the limit problem is closely related to the
strong boundary layer of the Reissner–Mindlin plate problem with free boundaries.
For Reissner–Mindlin plates, the presence of free boundaries significantly reduces the
regularity of the solution and hence decreases the convergence rate of finite element
approximations [1, 10, 5]. In [5, 2], the regularity of the solution has been improved by
modifying the boundary conditions for free boundaries. These modifications imitate
the boundary conditions of the Kirchhoff model as well as couple the variational
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spaces for the deflection and the rotation through the tangential Kirchhoff constraint
along free boundaries. Adopting the modified boundary conditions on the discrete
level it has been proved in [5, 2] that a set of finite element methods maintain their
optimal order of convergence in the free boundary case. However, it can be seen as
a drawback that all of these methods follow the mixed formulation with the shear
force as an additional unknown. For positive values of the thickness parameter t, as
usual, the corresponding displacement formulations can be achieved by condensing the
shear force from the formulation. For the limit case t = 0, however, this possibility is
excluded due to the nominator t2 of the factor penalizing the Kirchhoff condition. For
this reason, applying these methods for Kirchhoff plates requires a mixed formulation
with the additional shear force degrees of freedom.

Our aim in the present paper is to present a family of Kirchhoff plate-bending
elements which follows the displacement formulation and for which the convergence
rate is optimal even in the presence of free boundaries. The method is a formula-
tion combining the ideas from the stabilized method for Reissner–Mindlin plates pre-
sented in [13] and the treatment of the free boundary presented in [7]. Altough the
method resembles the one with the linked interpolation technique in [2] for Reissner–
Mindlin plates, it has been independently derived for the Kirchhoff plate problem
with free boundaries. The family includes “simple low-order” elements, and it is well-
conditioned. In the second part [3] of this paper, we give the results of numerical tests
and a more detailed and constructive motivation for the method (cf. [4] as well).

The paper is organized as follows. In the next section, we describe the plate-
bending problem, and in section 3, we introduce the new family of finite elements. In
section 4, an a priori error analysis is derived. This analysis leads to optimal results,
with respect both to the regularity of the solution and to the polynomial degree used.
In section 5, an a posteriori error analysis is performed. We derive a local error
indicator which is shown to be both reliable and efficient.

2. The Kirchhoff plate-bending problem. We consider the problem of bend-
ing of an isotropic linearly elastic plate and assume that the undeformed plate mid-
surface is described by a given convex polygonal domain Ω ⊂ R

2. The plate is
considered to be clamped on the part ΓC of its boundary ∂Ω, simply supported on
the part ΓS ⊂ ∂Ω, and free on ΓF ⊂ ∂Ω. The deflection and transversal load are
denoted by w and g, respectively.

In what follows, we indicate with V the set of all corner points in ΓF. Moreover,
n and s represent the unit outward normal and the unit counterclockwise tangent
to the boundary, respectively. Finally, for points x ∈ V, we introduce the following
notation. We indicate with n1 and s1 the unit vectors corresponding, respectively, to
n and s on one of the two edges forming the boundary angle at x; with n2 and s2 we
indicate the ones corresponding to the other edge. Note that which of the two edges
correspond to the subscript 1 or 2 is not relevant.

The classical Kirchhoff plate-bending model is then given by the biharmonic par-
tial differential equation

(2.1) DΔ2w = g in Ω,

the boundary conditions

(2.2)

w = 0,
∂w

∂n
= 0 on ΓC,

w = 0, n · Mn = 0 on ΓS,

n · Mn = 0,
∂

∂s

(
s · Mn

)
+ (div M) · n = 0 on ΓF,
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and the corner conditions

(2.3)
(
s1 · Mn1

)
(x) =

(
s2 · Mn2

)
(x) ∀x ∈ V.

Here

(2.4) D =
Et3

12(1 − ν2)

is the bending rigidity, with E, ν being the Young modulus and the Poisson ratio for
the material, respectively. Note that for the shear modulus G it holds that

(2.5) G =
E

2(1 + ν)
.

The moment tensor is given by

(2.6) M(∇w) = D
(
(1 − ν)ε(∇w) + νdiv(∇w)I

)
,

with the symmetric gradient ε, and the shear force by

(2.7) Q = −div M .

Note that the independence of the Poisson ratio ν in the differential equation (2.1) is
a consequence of cancellations when substituting (2.6) and (2.7) into the equilibrium
equation

(2.8) −div Q = g.

For the analysis below, it will be convenient to perform a scaling of the problem by
assuming that the load is given by g = Gt3f , with f fixed. Then the differential
equation (2.1) becomes independent of the plate thickness:

(2.9)
1

6(1 − ν)
Δ2w = f in Ω.

Furthermore, we use the following scaled moment tensor m:

(2.10) M(∇w) = Gt3m(∇w),

and the shear force q is defined by

(2.11) Q = Gt3q.

The unknowns in our finite element method will be the approximations to the
deflection and its gradient, the rotation β = ∇w. With this as a new unknown, our
problem can be written as the system of partial differential equations

∇w − β = 0,(2.12)

−div q = f,(2.13)

Lβ + q = 0 in Ω,(2.14)

the boundary conditions

(2.15) w = 0, β = 0 on ΓC,
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(2.16) w = 0, β · s = 0, n · m(β)n = 0 on ΓS,

(2.17)
∂w

∂s
− β · s = 0, n · m(β)n = 0,

∂

∂s

(
s · m(β)n

)
− q · n = 0 on ΓF,

and the corner conditions

(2.18)
(
s1 · m(β)n1

)
(x) =

(
s2 · m(β)n2

)
(x) ∀x ∈ V.

The operator L is defined as

(2.19) Lβ = div m(β),

and the scaled bending moment is considered as a function of the rotation:

(2.20) m(β) =
1

6

(
ε(β) +

ν

1 − ν
div β I

)
.

In what follows, we will often write m instead of m(β). We further denote

(2.21) a(β,η) = (m(β), ε(η)).

In order to neglect plate rigid movements and the related technicalities, we will
in what follows assume that the one-dimensional measure of ΓC is positive.

3. The finite element formulation. In this section, we will introduce our finite
element method. Even if our method is stable for all choices of finite element spaces,
we will, for simplicity, present it for triangular elements and for the polynomial degrees
that yield an optimal convergence rate. Hence, let a regular family of triangular
meshes on Ω be given. For the integer k ≥ 1, we then define the discrete spaces

Wh = {v ∈ W | v|K ∈ Pk+1(K) ∀K ∈ Ch},(3.1)

Vh = {η ∈ V | η|K ∈ [Pk(K)]2 ∀K ∈ Ch},(3.2)

with

W =
{
v ∈ H1(Ω) | v = 0 on ΓC ∪ ΓS

}
,(3.3)

V =
{
η ∈ [H1(Ω)]2 | η = 0 on ΓC , η · s = 0 on ΓS

}
.(3.4)

Here Ch represents the set of all triangles K of the mesh, and Pk(K) is the space of
polynomials of degree k on K. In what follows, we will indicate with hK the diameter
of each element K, while h will indicate the maximum size of all of the elements in
the mesh. Furthermore, we will indicate with E a general edge of the triangulation
and with hE the length of E. The set of all edges lying on the free boundary ΓF we
denote by Fh.

Before introducing the method, we state the following result which trivially follows
from classical scaling arguments and the coercivity of the form a.

Lemma 3.1. There exist positive constants CI and C ′
I such that

CI

∑
K∈Ch

h2
K‖Lφ‖2

0,K ≤ a(φ,φ) ∀φ ∈ Vh,(3.5)

C ′
I

∑
E∈Fh

hE ‖mns(φ)‖2
0,E ≤ a(φ,φ) ∀φ ∈ Vh,(3.6)
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where the operator mns(φ) = s · m(φ)n, with n, s, being the unit outward normal
and the unit counterclockwise tangent to the edge E, respectively, and with m defined
in (2.20).

Let two real numbers γ and α be assigned: γ > 2/C ′
I and 0 < α < CI/4. Then

the discrete problem reads as follows.
Method 3.1. Find (wh,βh) ∈ Wh × Vh, such that

(3.7) Ah(wh,βh; v,η) = (f, v) ∀(v,η) ∈ Wh × Vh,

where the form Ah is defined as

Ah(z,φ; v,η) = Bh(z,φ; v,η) + Dh(z,φ; v,η),(3.8)

with

Bh(z,φ; v,η) = a(φ,η) −
∑

K∈Ch

αh2
K(Lφ,Lη)K

+
∑

K∈Ch

1

αh2
K

(∇z − φ − αh2
KLφ,∇v − η − αh2

KLη)K(3.9)

and

Dh(z,φ; v,η) = 〈mns(φ), [∇v − η] · s〉ΓF + 〈[∇z − φ] · s,mns(η)〉ΓF

+
∑

E∈Fh

γ

hE
〈[∇z − φ] · s, [∇v − η] · s〉E(3.10)

for all (z,φ), (v,η) ∈ Wh × Vh. Here 〈·, ·〉ΓF and 〈·, ·〉E denote the L2-inner products
on ΓF and E, respectively.

The bilinear form Bh constitutes the Reissner–Mindlin method of [13] with the
thickness t set equal to zero, while the additional form Dh is introduced in order to
avoid the convergence deterioration in the presence of free boundaries.

Furthermore, we introduce the discrete shear force

(3.11) qh|K =
1

αh2
K

(∇wh − βh − αh2
KLβh)|K ∀K ∈ Ch.

We note that, due to (2.14) and (2.12), it holds that

(3.12) q|K =
1

αh2
K

(∇w − β − αh2
KLβ)|K ∀K ∈ Ch,

and hence it follows that the definition (3.11) is consistent with the exact shear force.
For simplicity, in the rest of this section we assume that the deflection w belongs to

H3(Ω); this is a very reasonable assumption, as discussed at the end of this section.
Note as well that, with some additional technical work involving the appropriate
Sobolev spaces and their duals, such an assumption could probably be avoided. The
following result states the consistency of the method.

Theorem 3.2. The solution (w,β) of the problem (2.14)–(2.18) satisfies

(3.13) Ah(w,β; v,η) = (f, v) ∀(v,η) ∈ Wh × Vh.
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Proof. The definition of the bilinear forms in Method 3.1, recalling (2.14) and the
expression (3.12), give

Bh(w,β; v,η) = a(β,η) −
∑

K∈Ch

αh2
K(Lβ,Lη)K

+
∑

K∈Ch

1

αh2
K

(∇w − β − αh2
KLβ,∇v − η − αh2

KLη)K

= a(β,η) +
∑

K∈Ch

αh2
K(q,Lη)K +

∑
K∈Ch

(q,∇v − η − αh2
KLη)K

= a(β,η) + (q,∇v − η).(3.14)

First, by the definition (2.21), then integrating by parts on each triangle, and finally
using the regularity of the functions involved, and the boundary conditions (2.15),
(2.16) on ΓC, ΓS, respectively, we get

a(β,η) + (q,∇v − η) = (m(β), ε(η)) + (q,∇v − η)

= −(Lβ + q,η) + 〈m(β) · n,η〉ΓF − (div q, v) + 〈q · n, v〉ΓF .(3.15)

Recalling (2.14) and (2.13), the identity above becomes

a(β,η) + (q,∇v − η) = (f, v) + 〈m(β) · n,η〉ΓF + 〈q · n, v〉ΓF ,(3.16)

while using the boundary conditions of (2.17) on ΓF and integration by parts along
the boundary finally leads to

a(β,η) + (q,∇v − η) = (f, v) − 〈mns(β), [∇v − η] · s〉ΓF .(3.17)

Due to (2.17), we have

Dh(w,β; v,η) = 〈mns(β), [∇v − η] · s〉ΓF + 〈[∇w − β] · s,mns(η)〉ΓF

+
∑

E∈Fh

γ

hE
〈[∇w − β] · s, [∇v − η] · s〉E

= 〈mns(β), [∇v − η] · s〉ΓF .(3.18)

The result now directly follows from (3.14), (3.17), and (3.18).
Remark 3.1. If the Reissner–Mindlin method of [13] without the additional form

Dh is employed by setting t = 0, then in the presence of a free boundary we obtain

(3.19) Bh(w,β; v,η) = (f, v) + 〈mns(β), [∇v − η] · s〉ΓF ∀(v,η) ∈ Wh × Vh.

Therefore, this would lead to an inconsistent method. We return to this in Remark
4.1 below.

4. Stability and a priori error estimates. For (v,η) ∈ Wh×Vh, we introduce
the following mesh-dependent norms:

|(v,η)|2h =
∑

K∈Ch

h−2
K ‖∇v − η‖2

0,K ,(4.1)

‖v‖2
2,h = ‖v‖2

1 +
∑

K∈Ch

|v|22,K +
∑
E∈Ih

h−1
E

∥∥∥∥� ∂v

∂n�
∥∥∥∥2

0,E

+
∑

E⊂ΓC

h−1
E

∥∥∥∥ ∂v

∂n

∥∥∥∥2

0,E

,(4.2)

|‖(v,η)‖|h = ‖η‖1 + ‖v‖2,h + |(v,η)|h,(4.3)
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where �·� represents the jump operator and Ih denotes the edges lying in the interior
of the domain Ω.

In [12], the following lemma is proved.
Lemma 4.1. There exists a positive constant C such that

‖v‖2,h ≤ C
(
‖η‖1 + ‖v‖1 + |(v,η)|h

)
∀(v,η) ∈ Wh × Vh.(4.4)

Using the Poincaré inequality and the previous lemma, the following equivalence
easily follows.

Lemma 4.2. There exists a positive constant C such that

(4.5) C|‖(v,η)‖|h ≤ ‖η‖1 + |(v,η)|h ≤ |‖(v,η)‖|h ∀(v,η) ∈ Wh × Vh.

We now have the following stability estimate.
Theorem 4.3. Let 0 < α < CI/4 and γ > 2/C ′

I . Then there exists a positive
constant C such that

(4.6) Ah(v,η; v,η) ≥ C|‖(v,η)‖|2h ∀(v,η) ∈ Wh × Vh.

Proof. Using the first inverse estimate of Lemma 3.1 we get

Bh(v,η; v,η)

= a(η,η) −
∑

K∈Ch

αh2
K‖Lη‖2

0,K +
∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K

≥
(

1 − α

CI

)
a(η,η) +

∑
K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K .(4.7)

Next, using locally the arithmetic-geometric mean inequality with the constant γ/hE

then the second inverse inequality of Lemma 3.1, we get

Dh(v,η; v,η)

=
∑

E∈Fh

(
2〈mns(η), [∇v − η] · s〉E +

γ

hE
‖[∇v − η] · s‖2

0,E

)
≥

∑
E∈Fh

(
− γ

hE
‖[∇v − η] · s‖2

0,E − γ−1hE ‖mns(η)‖2
0,E +

γ

hE
‖[∇v − η] · s‖2

0,E

)
= −

∑
E∈Fh

γ−1hE ‖mns(η)‖2
0,E

≥ −γ−1

C ′
I

a(η,η) ≥ −1

2
a(η,η).(4.8)

Joining (4.7) with (4.8) and using Korn’s inequality we then obtain

Bh(v,η; v,η) + Dh(v,η; v,η)

≥
(

1

2
− α

CI

)
a(η,η) +

∑
K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K

≥ C
(
‖η‖2

1 +
∑

K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K

)
.(4.9)
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From the triangle inequality, again the inverse estimate of Lemma 3.1, and the bound-
edness of the bilinear form a, it follows that∑

K∈Ch

1

αh2
K

‖∇v − η‖2
0,K

≤ 2

( ∑
K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K +
∑

K∈Ch

1

αh2
K

‖αh2
KLη‖2

0,K

)

≤ 2

( ∑
K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K +
∑

K∈Ch

αh2
K‖Lη‖2

0,K

)

≤ C

( ∑
K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K + a(η,η)

)

≤ C

( ∑
K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K + ‖η‖2
1

)
,(4.10)

which combined with (4.9) gives

(4.11) Ah(v,η; v,η) ≥ C
(
‖η‖2

1 + |(v,η)|2h
)
.

The result then follows from the norm equivalence of Lemma 4.2.
We can now derive the error estimates for the method. We note that the assump-

tions of the theorem are supposed to be valid for the further results below as well and
hence are not repeated in what follows.

Theorem 4.4. Let 0 < α < CI/4 and γ > 2/C ′
I . Let (w,β) be the exact solution

of the problem, and let (wh,βh) be the approximate solution obtained with Method
3.1. Suppose that w ∈ Hs+2(Ω), with 1 ≤ s ≤ k. Then it holds that

|‖(w − wh,β − βh)‖|h ≤ Chs‖w‖s+2.(4.12)

Proof. Step 1. Let (wI ,βI) ∈ Wh × Vh be the usual Lagrange interpolants to
w and β, respectively. Using first the stability result of Theorem 4.3 and then the
consistency result of Theorem 3.2, one has the existence of a pair

(4.13) (v,η) ∈ Wh × Vh, |‖(v,η)‖|h ≤ C

such that

|‖(wh − wI ,βh − βI)‖|h ≤ Ah(wh − wI ,βh − βI ; v,η)

= Ah(w − wI ,β − βI ; v,η),(4.14)

where we recall that Ah = Bh + Dh.
Step 2. For the Bh-part, we have

Bh(w − wI ,β − βI ; v,η) = a(β − βI ,η) −
∑

K∈Ch

αh2
K(L(β − βI),Lη)K

+
∑

K∈Ch

1

αh2
K

(∇(w − wI) − (β − βI) − αh2
KL(β − βI),∇v − η − αh2

KLη)K .(4.15)
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Due to the first inverse inequality of Lemma 3.1, we get

(4.16)

( ∑
K∈Ch

h2
K‖Lη‖2

0,K

)1/2

≤ C|‖(v,η)‖|h

and

(4.17)

( ∑
K∈Ch

1

αh2
K

‖∇v − η − αh2
KLη‖2

0,K

)1/2

≤ C|‖(v,η)‖|h.

Using these bounds in (4.15) and recalling (4.13), we obtain

Bh(w − wI ,β − βI ; v,η)

≤ C

⎛⎝|‖(w − wI ,β − βI)‖|h +

( ∑
K∈Ch

h2
K |β − βI |22,K

)1/2
⎞⎠ .(4.18)

Substituting the definition of the norm (4.3) in (4.18), using the triangle inequality,
and finally applying the classical interpolation estimates, it easily follows that

Bh(w − wI ,β − βI ; v,η) ≤ Chs
(
‖w‖s+2 + ‖β‖s+1

)
.(4.19)

Step 3. For the Dh-part in (4.14), we have, by the definition (3.10),

Dh(w − wI ,β − βI ; v,η) = 〈mns(β − βI), [∇v − η] · s〉ΓF

+〈[∇(w − wI) − (β − βI)] · s,mns(η)〉ΓF

+
∑

E∈Fh

γ

hE
〈[∇(w − wI) − (β − βI)] · s, [∇v − η] · s〉E

=: T1 + T2 + T3.(4.20)

Scaling arguments give

‖[∇v − η] · s‖2
0,E ≤ ‖∇v − η‖2

0,E ≤ Ch−1
K(E)‖∇v − η‖2

0,K(E)(4.21)

for all E ∈ Fh, where K(E) is the triangle with E as an edge. The l2-Cauchy–Schwarz
inequality, the bound (4.21), and the norm definition (4.3) now give

T1 ≤
( ∑

E∈Fh

hK(E)‖mns(β − βI)‖2
0,E

)1/2 ( ∑
E∈Fh

h−1
K(E)‖[∇v − η] · s‖2

0,E

)1/2

≤ C

( ∑
E∈Fh

hK(E)‖mns(β − βI)‖2
0,E

)1/2

|‖(v,η)‖|h.(4.22)

Recalling the bound (4.13), classical polynomial interpolation properties give

T1 ≤ C

( ∑
E∈Fh

hK(E)‖mns(β − βI)‖2
0,E

)1/2

≤ Chs‖β‖s+1.(4.23)
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Again, by scaling we have

‖mns(η)‖2
0,E ≤ h−1

K(E)|η|
2
1,K(E) ∀E ∈ Fh.(4.24)

The l2-Cauchy–Schwarz inequality, this bound, and the norm definition (4.3) give

T2 ≤
( ∑

E∈Fh

h−1
K(E)‖∇(w − wI) − (β − βI)‖2

0,E

)1/2 ( ∑
E∈Fh

hK(E)‖mns(η)‖2
0,E

)1/2

≤ C

( ∑
E∈Fh

h−1
K(E)‖∇(w − wI) − (β − βI)‖2

0,E

)1/2

|‖(v,η)‖|h.(4.25)

Recalling the bound (4.13), classical polynomial interpolation estimates give

T2 ≤ C

( ∑
E∈Fh

h−1
K(E)‖∇(w − wI) − (β − βI)‖2

0,E

)1/2

≤ Chs
(
‖β‖s+1 + ‖w‖s+2

)
.(4.26)

The bound for T3 follows by combining the same techniques used for T1 and T2;
we get

T3 ≤ Chs
(
‖β‖s+1 + ‖w‖s+2

)
.(4.27)

Now, joining all of the bounds (4.14), (4.19), (4.20), (4.23), (4.26), and (4.27) we
obtain

|‖(wh − wI ,βh − βI)‖|h ≤ Chs
(
‖β‖s+1 + ‖w‖s+2

)
.(4.28)

The triangle inequality and the classical polynomial interpolation estimates (recalling
that β = ∇w) then yield

(4.29) |‖(w − wh,β − βh)‖|h ≤ Chs
(
‖β‖s+1 + ‖w‖s+2

)
≤ Chs‖w‖s+2.

Note that the result holds for real values of the regularity parameter s since the
interpolation results used above are valid for real values of s.

Remark 4.1. As noted in Remark 3.1, the limiting Reissner–Mindlin method
(i.e., without the additional correction Dh) is inconsistent. Regardless of the solution
regularity and the polynomial degree k, the inconsistency term can be bounded only
with the order O(h1/2). As is well known (see, for example, [10]), the inconsistency
error is a lower bound for the error of finite element methods. As a consequence,
the numerical scheme will not converge with a rate better than h1/2 if ΓF �= ∅. This
observation is also confirmed by the numerical tests shown in [3]. See [6] for other
numerical tests regarding this issue. Note further that this boundary inconsistency
term is connected not only to the formulation in [13] but is common to any other
Kirchhoff method which follows a “Reissner–Mindlin limit” approach.

For the shear force, the practical norm to use is the discrete negative norm

(4.30) ‖r‖−1,h =

( ∑
K∈Ch

h2
K‖r‖2

0,K

)1/2

.
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Since we assume that w ∈ Hs+2(Ω), with s ≥ 1, we have q ∈ [L2(Ω)]2, and from the
estimates above the lemma immediately follows.

Lemma 4.5. It holds that

‖q − qh‖−1,h ≤ Chs‖w‖s+2.(4.31)

From this follows a norm estimate in the dual to the space

(4.32) V∗ =
{
η ∈ [H1(Ω)]2 | η = 0 on ΓC, η · s = 0 on ΓF ∪ ΓS

}
,

i.e., in the norm

(4.33) ‖r‖−1,∗ = sup
η∈V∗

〈r,η〉
‖η‖1

.

We have the following result.
Lemma 4.6. It holds that

(4.34) ‖q − qh‖−1,∗ ≤ Chs‖w‖s+2.

Proof. The proof is essentially an application of the “Pitkäranta–Verfürth trick”
(see [11, 14]). By the definition of the norm ‖ · ‖−1,∗ there exists a function η ∈ V∗
such that

(4.35) ‖q − qh‖−1,∗ ≤ (q − qh,η), ‖η‖1 ≤ C.

Using a Clément-type interpolant we can find a piecewise linear function ηI ∈ V∗
such that it holds that

(4.36) hs−1
K ‖η − ηI‖s,K ≤ C‖η‖1,K ≤ C ′, s = 0, 1,

for all K ∈ Ch. Using the Cauchy–Schwarz inequality, the bound (4.36) with s = 0,
and the definition (4.30), it follows that

(q − qh,η) = (q − qh,η − ηI) + (q − qh,ηI)

≤ C‖q − qh‖−1,h + (q − qh,ηI).(4.37)

Note that ηI is in both Vh and V∗; moreover, LηI = 0 on each element K of Ch. As
a consequence, using (3.7), (3.11), (3.12), and Theorem 3.2, it follows that

(q − qh,ηI) = a(β − βh,ηI) + 〈[∇wh − βh)] · s,Mns(ηI)〉ΓF

=: T1 + T2.(4.38)

Due to the continuity of the bilinear form and using bound (4.36) with s = 1, it
immediately follows that

(4.39) T1 ≤ C‖β − βh‖1 ≤ C|‖(w − wh,β − βh)‖|h.

Using first the Cauchy–Schwarz inequality, then the Agmon inequality, and finally the
bound (4.36) with s = 1, Lemma 3.1, and the definition (4.3), we get

T2 ≤
( ∑

E∈Fh

h−1
E ‖∇wh − βh)‖2

0,E

)1/2 ( ∑
E∈Fh

hE‖Mns(ηI)‖2
0,E

)1/2

≤
( ∑

K∈Ch

h−2
K ‖∇wh − βh)‖2

0,K

)1/2

‖ηI‖1

≤ C|‖(w − wh,β − βh)‖|h,(4.40)
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where in the last inequality we implicitly used the relation ∇w − β = 0. Combining
(4.35), (4.37) with (4.38), (4.39), and (4.40), it follows that

(4.41) ‖q − qh‖−1,∗ ≤ C
(
‖q − qh‖−1,h + |‖(w − wh,β − βh)‖|h

)
.

Joining (4.41) and (4.31) and using Theorem 4.4 the proposition immediately
follows.

The regularity of the solution to the Kirchhoff plate problems for convex polygonal
domains, with all three main types of boundary conditions, is very case-dependent. We
refer, for example, to the work [9], in which a rather complete study is accomplished.
Note that if f ∈ H−1(Ω), in most cases of interest, the regularity condition w ∈ H3(Ω)
is indeed achieved.

Note further that with classical duality arguments and technical calculations it is
possible to derive the error bound

‖w − wh‖1 ≤ Chs+1‖w‖s+2,(4.42)

if the regularity estimate

‖w‖3 ≤ C‖f‖−1(4.43)

holds. Moreover, if k ≥ 2 and the regularity estimate

‖w‖4 ≤ C‖f‖0(4.44)

is satisfied, then it holds that

‖w − wh‖0 ≤ Chs+2‖w‖s+2.(4.45)

5. A posteriori error estimates. In this section, we prove the reliability and
the efficiency for an a posteriori error estimator for our method. To this end, we
introduce

η̃2
K := h4

K‖f + div qh‖2
0,K + h−2

K ‖∇wh − βh‖2
0,K ,(5.1)

η2
E := h3

E‖�qh · n�‖2
0,E + hE‖�m(βh)n�‖2

0,E ,(5.2)

η2
S,E := hE‖mnn(βh)‖2

0,E ,(5.3)

η2
F,E := hE‖mnn(βh)‖2

0,E + h3
E

∥∥∥∥ ∂

∂s
mns(βh) − qh · n

∥∥∥∥2

0,E

,(5.4)

where hE denotes the length of the edge E and �·� represents the jump operator
(which is assumed to be equal to the function value on boundary edges). Further, for
a triangle K ∈ Ch we denote the sets of edges lying in the interior of Ω, on ΓS, and
on ΓF, by I(K), S(K), and F (K), respectively. By Sh we denote the set of all edges
on ΓS and by Ih the ones lying in the interior of the domain.

Given any element K ∈ Ch, let the local error indicator be

ηK :=

⎛⎝η̃2
K +

1

2

∑
E∈I(K)

η2
E +

∑
E∈S(K)

η2
S,E +

∑
E∈F (K)

η2
F,E

⎞⎠1/2

.(5.5)

Finally, the global error indicator is defined as

η :=

( ∑
K∈Ch

η2
K

)1/2

.(5.6)
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Remark 5.1. It is worth noting that, by the definition (3.11),

(qh + Lβh)|K =
1

αh2
K

(∇wh − βh)|K ∀K ∈ Ch,(5.7)

which is the reason why there appear no terms of the kind ‖qh+Lβh‖0,K in the error
estimator. We note as well that scaling arguments give∑

E∈Fh

h−1
E ‖∇wh − βh‖2

0,E ≤ C
∑

K∈Ch

h−2
K ‖∇wh − βh‖2

0,K ,(5.8)

which is the reason why there appear no boundary terms of the kind ‖∇wh−βh‖0,E .

5.1. Upper bound. In order to derive the reliability of the method we need the
following saturation assumption.

Assumption 5.1. Given a mesh Ch, let Ch/2 be the mesh obtained by splitting each
triangle K ∈ Ch into four triangles connecting the edge midpoints. Let (wh/2,βh/2)
be the discrete solution corresponding to the mesh Ch/2. We assume that there exists
a constant ρ, 0 < ρ < 1, such that

|‖(w − wh/2,β − βh/2)‖|h/2 + ‖q − qh/2‖−1,∗

≤ ρ
(
|‖(w − wh,β − βh)‖|h + ‖q − qh‖−1,∗

)
,(5.9)

where by ‖|·‖|h/2 we indicate the mesh-dependent norm with respect to the new mesh
Ch/2.

In what follows, we will need the following result.
Lemma 5.1. Let, for v ∈ Wh/2, the local seminorm be

|v|2,h/2,K =

⎛⎝ ∑
K′∈Ch/2, K′⊂K

|v|22,K′

⎞⎠1/2

.(5.10)

Then there is a positive constant C such that for all v ∈ Wh/2 there exists vI ∈ Wh

with the bound

‖v − vI‖0,K + h
1/2
K ‖v − vI‖0,∂K ≤ Ch2

K |v|2,h/2,K ∀K ∈ Ch.(5.11)

Moreover, vI interpolates v at all of the vertices of the triangulation Ch/2.
Proof. We choose vI as the only function in H1(Ω) such that

vI|K ∈ P2(K) ∀K ∈ Ch,
vI(x) = v(x) ∀x ∈ Vh/2,(5.12)

where Vh/2 represents the set of all of the vertices of Ch/2. Note that it is trivial to
check that vI ∈ Wh for all k ≥ 1. Observing that

|v|2,h/2,K +
∑

x∈Vh/2∩K

|v(x)|, v ∈ Wh/2,K ∈ Ch,(5.13)

is indeed a norm on the finite-dimensional space of the functions v ∈ Wh/2 restricted
to K, the result follows applying the classical scaling argument.
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For simplicity, in what follows we will treat the case ΓS = ∅, the general case
following with identical arguments as the ones that follow. We have the following
preliminary result.

Theorem 5.2. It holds that

|‖(wh/2 − wh,βh/2 − βh)‖|h/2 ≤ Cη.(5.14)

Proof. Step 1. Due to the stability of the discrete formulation, proved in Theorem
4.3, there exists a couple (v,η) ∈ Wh/2 × Vh/2 such that

|‖(v,η)‖|h/2 ≤ C(5.15)

and

|‖(wh/2 − wh,βh/2 − βh)‖|h/2 ≤ Ah/2(wh/2 − wh,βh/2 − βh; v,η).(5.16)

Furthermore, we have

Ah/2(wh/2,βh/2; v,η) = (f, v).(5.17)

Step 2. Simple calculations and the definition (3.11) give

Bh/2(wh,βh; v,η) = a(βh,η) −
∑

K∈Ch/2

αh2
K(Lβh,Lη)K

+
∑

K∈Ch/2

1

αh2
K

(∇wh − βh − αh2
KLβh,∇v − η − αh2

KLη)K

= a(βh,η) −
∑

K∈Ch/2

(∇wh − βh,Lη)K +
∑

K∈Ch/2

(qh,∇v − η)K

+R1(wh,βh; v,η)

= Bh(wh,βh; v,η) + R1(wh,βh; v,η),(5.18)

where qh is defined as in (3.11), i.e., based on the coarser mesh, and

R1(wh,βh; v,η) =
∑

K∈Ch/2

1

αh2
K

(∇wh − βh,∇v − η)K

−
∑

K∈Ch

1

αh2
K

(∇wh − βh,∇v − η)K .(5.19)

The last term on the right-hand side is well defined since ∇v − η is piecewise L2-
regular.

Let now Fh/2 indicate the set of all edges of Ch/2 lying on ΓF. Adding and
subtracting the difference between the two forms, it then follows that

Dh/2(wh,βh; v,η) = Dh(wh,βh; v,η) + R2(wh,βh; v,η),(5.20)

where

R2(wh,βh; v,η) =
∑

E∈Fh/2

γ

hE
〈[∇wh − βh] · s, [∇v − η] · s〉E

−
∑

E∈Fh

γ

hE
〈[∇wh − βh] · s, [∇v − η] · s〉E(5.21)
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and where the first member on the right-hand side is indeed well defined due to the
piecewise regularity of (v,η). We will denote

(5.22) R(wh,βh; v,η) = R1(wh,βh; v,η) + R2(wh,βh; v,η).

Joining (5.17)–(5.21) then yields

(5.23) Ah/2(wh,βh; v,η) = Ah(wh,βh; v,η) + R(wh,βh; v,η).

Step 3. Let vI ∈ Wh be the interpolant defined in Lemma 5.1, and let ηI ∈ Vh

be the piecewise linear interpolant to η. First, we have

(5.24) Ah(wh,βh; vI ,ηI) = (f, vI).

This, together with (5.17) and (5.23), gives

Ah/2(wh/2 − wh,βh/2 − βh; v,η)

= Ah/2(wh/2,βh/2; v,η) −Ah/2(wh,βh; v,η)

= Ah/2(wh/2,βh/2; v,η) −Ah(wh,βh; v,η) −R(wh,βh; v,η)

= (f, v − vI) −Ah(wh,βh; v − vI ,η − ηI) −R(wh,βh; v,η).(5.25)

Step 4. Next, we bound the last terms above. Recalling that Ch/2 is a subdivision
of Ch, the Cauchy–Schwarz inequality, (4.3), and (5.15) give

|R1(wh,βh; v,η)| ≤ 2

∣∣∣∣∣∣
∑

K∈Ch/2

1

αh2
K

(∇wh − βh,∇v − η)K

∣∣∣∣∣∣
≤ 2

⎛⎝ ∑
K∈Ch/2

1

h2
K

‖∇wh − βh‖2
0,K

⎞⎠1/2 ⎛⎝ ∑
K∈Ch/2

1

h2
K

‖∇v − η‖2
0,K

⎞⎠1/2

≤ C

⎛⎝ ∑
K∈Ch/2

1

h2
K

‖∇wh − βh‖2
0,K

⎞⎠1/2

.(5.26)

Using scaling and arguments similar to those already adopted in (5.26) it can be
checked that

|R2(wh,βh; v,η)| ≤ C

⎛⎝ ∑
K∈Ch/2

1

h2
K

‖∇wh − βh‖2
0,K

⎞⎠1/2

.(5.27)

Combining (5.26) and (5.27) we get

|R(wh,βh; v,η)| ≤ |R1(wh,βh; v,η)| + |R2(wh,βh; v,η)| ≤ Cη.(5.28)
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Step 5. Next, we expand, substitute the expression (3.11) for qh, and regroup the
terms:

(f, v − vI) −Ah(wh,βh; v − vI ,η − ηI)

= (f, v − vI) −
{
a(βh,η − ηI) −

∑
K∈Ch

αh2
K

(
Lβh,L(η − ηI)

)
K

+
∑

K∈Ch

1

αh2
K

(
∇wh − βh − αh2

KLβh,∇(v − vI) − (η − ηI) − αh2
KL(η − ηI)

)
K

+
〈
mns(βh), [∇(v − vI) − (η − ηI)] · s

〉
ΓF

+
〈
[∇wh − βh] · s,mns(η − ηI)

〉
ΓF

+
∑

E∈Fh

γ

hE

〈
[∇wh − βh] · s, [∇(v − vI) − (η − ηI)] · s

〉
E

}
= (f, v − vI) −

{
a(βh,η − ηI) −

∑
K∈Ch

αh2
K

(
Lβh + qh,L(η − ηI)

)
K

+
(
qh,∇(v − vI) − (η − ηI)

)
+
〈
mns(βh), [∇(v − vI) − (η − ηI)] · s

〉
ΓF

+
〈
[∇wh − βh] · s,mns(η − ηI)

〉
ΓF

+
∑

E∈Fh

γ

hE

〈
[∇wh − βh] · s, [∇(v − vI) − (η − ηI)] · s

〉
E

}
=

{
(f, v − vI) −

(
qh,∇(v − vI)

)
−
〈
mns(βh), [∇(v − vI)] · s

〉
ΓF

−
∑

E∈Fh

γ

hE

〈
[∇wh − βh] · s, [∇(v − vI)] · s

〉
E

}
−
{
a(βh,η − ηI) −

∑
K∈Ch

αh2
K

(
Lβh + qh,L(η − ηI)

)
K
−
(
qh,η − ηI

)
−
〈
mns(βh), [η − ηI ] · s

〉
ΓF

+
〈
[∇wh − βh] · s,mns(η − ηI)

〉
ΓF

−
∑

E∈Fh

γ

hE

〈
[∇wh − βh] · s, [η − ηI ] · s

〉
E

}
=: A−B.

(5.29)

Step 6. In the part A above, integration by parts and using the fact that v(x) =
vI(x) at the corner points x ∈ V yields

(f, v − vI) −
(
qh,∇(v − vI)

)
−
〈
mns(βh), [∇(v − vI)] · s

〉
ΓF

= (f + div qh, v − vI) +

〈
∂

∂s
mns(βh) − qh · n, v − vI

〉
ΓF

.(5.30)

The separate terms are then estimated as follows, using the Cauchy–Schwarz inequal-
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ity and Lemma 5.1:

∣∣(f + div qh, v − vI)
∣∣ =

∣∣∣∣∣ ∑
K∈Ch

(fh + div qh, v − vI)K

∣∣∣∣∣
≤

( ∑
K∈Ch

h4
K‖f + div qh‖2

0,K

)1/2 ( ∑
K∈Ch

h−4
K ‖v − vI‖2

0,K

)1/2

≤ C

( ∑
K∈Ch

h4
K‖f + div qh‖0,K

)1/2 ( ∑
K∈Ch

|v|22,h/2,K

)1/2

≤ C

( ∑
K∈Ch

η̃2
K

)1/2

(5.31)

and ∣∣∣∣∣
〈

∂

∂s
mns(βh) − qh · n, v − vI

〉
ΓF

∣∣∣∣∣ =

∣∣∣∣∣ ∑
E∈Fh

〈
∂

∂s
mns(βh) − qh · n, v − vI

〉
E

∣∣∣∣∣
≤

( ∑
E∈Fh

h3
E

∥∥∥∥ ∂

∂s
mns(βh) − qh · n

∥∥∥∥2

0,E

)1/2 ( ∑
E∈Fh

h−3
E ‖v − vI‖2

0,E

)1/2

≤ C

( ∑
E∈Fh

η2
F,E

)1/2 ( ∑
K∈Ch

|v|22,h/2,K

)1/2

≤ C

( ∑
E∈Fh

η2
F,E

)1/2

.(5.32)

The last term in A is readily estimated by scaling estimates and Lemma 5.1:∣∣∣∣∣ ∑
E∈Fh

γ

hE

〈
[∇wh − βh] · s, [∇(v − vI)] · s

〉
E

∣∣∣∣∣
≤

( ∑
E∈Fh

h−1
E ‖∇wh − βh‖2

0,E

)1/2 ( ∑
E∈Fh

h−1
E ‖∇(v − vI)‖2

0,E

)1/2

≤ C

( ∑
K∈Ch

h−2
K ‖∇wh − βh‖2

0,K

)1/2 ( ∑
E∈Fh

h−3
E ‖v − vI‖2

0,E

)1/2

≤ C

( ∑
K∈Ch

η̃2
K

)1/2 ( ∑
K∈Ch

|v|22,h/2,K

)1/2

≤ C

( ∑
K∈Ch

η̃2
K

)1/2

.(5.33)

Collecting (5.30)–(5.33) we obtain

(5.34)
∣∣A∣∣ ≤ Cη.
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Step 7. We will now estimate the term B. The following terms are directly
estimated as the similar terms above:∣∣∣〈[∇wh − βh] · s,mns(η − ηI)

〉
ΓF

∣∣∣ +

∣∣∣∣∣ ∑
E∈Fh

γ

hE

〈
[∇wh − βh] · s, [η − ηI ] · s

〉
E

∣∣∣∣∣
≤ Cη.(5.35)

Since ηI is piecewise linear, it holds that LηI|K = 0. The inverse estimate then gives∣∣∣∣∣ ∑
K∈Ch

αh2
K

(
Lβh + qh,L(η − ηI)

)
K

∣∣∣∣∣ =

∣∣∣∣∣ ∑
K∈Ch

αh2
K

(
Lβh + qh,Lη

)
K

∣∣∣∣∣
≤ C

( ∑
K∈Ch

αh2
K‖Lβh + qh‖2

0,K

)1/2

‖η‖1

≤ Cη,(5.36)

where we in the last step used (5.7). The final step in estimating the term B is to
integrate by parts, use the Cauchy–Schwarz inequality, interpolation estimates, and
again (5.7):∣∣a(βh,η − ηI) −

(
qh,η − ηI

)
−
〈
mns(βh), [η − ηI ] · s

〉
ΓF

∣∣
=

∣∣∣∣∣− ∑
K∈Ch

(Lβh + qh,η − ηI) +
∑
E∈Ih

〈�m(βh)n�,η − ηI〉E

+〈mnn(βh), [η − ηI ] · n〉ΓS∪ΓF

∣∣∣∣∣
≤

∑
K∈Ch

‖Lβh + qh‖0,K‖η − ηI‖0,K +
∑
E∈Ih

‖�m(βh)n�‖0,E‖η − ηI‖0,E

+
∑

E∈Sh∪Fh

‖mnn(βh)‖0,E‖η − ηI‖0,E

≤ Cη.(5.37)

Collecting (5.35)–(5.37) we obtain

(5.38)
∣∣B∣∣ ≤ Cη.

Step 8. The asserted estimate now follows from (5.16), (5.25), (5.28), (5.29),
(5.34), and (5.38).

We also have the following lemma for the shear force.
Lemma 5.3. It holds that

(5.39) ‖qh/2 − qh‖−1,∗ ≤ C
(
|‖(wh/2 − wh,βh/2 − βh)‖|h/2 + η

)
.

Proof. We start by observing that, referring to the definition (3.11) and its “h/2”
counterpart, qh and qh/2 are defined on different meshes and therefore with different

h2
K coefficients. However, recalling that the size ratio between the two meshes is

bounded, it is easy to check that an opportune splitting and the triangle inequality
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give

‖qh/2 − qh‖2
−1,h ≤ C

⎛⎝ ∑
K∈Ch/2

‖∇(wh/2 − wh) − (βh/2 − βh)‖2
0,K

+
∑

K∈Ch

‖∇wh − βh‖2
0,K +

∑
K∈Ch/2

h2
K‖Lβh/2 − Lβh‖2

0,K

⎞⎠ .(5.40)

The first and the last term in (5.40) can be bounded in terms of the |‖ · ‖|h/2 norm,
simply using the definition (4.3) and the inverse inequality

(5.41) h2
K‖Lβh/2 − Lβh‖2

0,K ≤ C‖βh/2 − βh‖2
1,K .

Therefore, recalling the definition (5.1), we get

‖qh/2 − qh‖−1,h ≤ C
(
|‖(wh/2 − wh,βh/2 − βh)‖|h/2 + η

)
.(5.42)

The transition from the ‖qh/2 − qh‖−1,h norm to the ‖qh/2 − qh‖−1,∗ norm is accom-
plished by using the “Pitkäranta–Verfürth trick” with steps almost identical to those
used in Lemma 4.5, which are therefore omitted.

Joining Theorem 5.2 and Lemma 5.3 gives the following a posteriori upper bound
for the method.

Theorem 5.4. It holds that

(5.43) |‖(w − wh,β − βh)‖|h + ‖q − qh‖−1,∗ ≤ Cη.

Proof. Theorem 5.2 combined with Lemma 5.3 trivially gives

(5.44) |‖(wh/2 − wh,βh/2 − βh)‖|h/2 + ‖qh/2 − qh‖−1,∗ ≤ Cη.

From the saturation assumption it follows that

|‖(w − wh,β − βh)‖|h/2 + ‖q − qh‖−1,∗

≤ 1

1 − ρ

(
|‖(wh/2 − wh,βh/2 − βh)‖|h/2 + ‖qh/2 − qh‖−1,∗

)
,(5.45)

and hence the assertion follows from (5.44).

5.2. Lower bound. In this section, we prove the efficiency of the error esti-
mator. Given any edge E of the triangulation, we define ωE as the set of all of the
triangles K ∈ Ch that have E as an edge. Given any K ∈ Ch, we define ωK as the set
of all of the triangles in Ch that share an edge with K. We then have the following
lemma [8].

Lemma 5.5. Given any edge E of the triangulation Ch, let Pk(E) be the space of
polynomials of degree at most k on E. There exists a linear operator

(5.46) ΠE : Pk(E) −→ H2
0 (ωE)

such that for all pk ∈ Pk(E) it holds that

C1‖pk‖2
0,E ≤ 〈pk,ΠE(pk)〉E ≤ ‖pk‖2

0,E ,(5.47)

‖ΠE(pk)‖0,ωE
≤ C2h

1/2
E ‖pk‖0,E ,(5.48)
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where the positive constants Ci above depend only on k and the minimum angle of the
triangles in Ch.

Next, we define a local counterpart of the negative norm defined in (4.33) for the
shear force.

(5.49) ‖r‖−1,∗,ωK
= sup

η∈V∗
η=0 in Ω\ωK

〈r,η〉
‖η‖1

.

We then have the following reliability result.
Theorem 5.6. It holds that

(5.50) ηK ≤ C
(
|‖(w − wh,β − βh)‖|h,ωK

+ ‖q − qh‖−1,∗,ωK
+ h2

K‖f − fh‖0,ωK

)
,

where fh is some approximation of the load f . Here |‖ · ‖|h,ωK
and ‖ · ‖0,ωK

represent,
respectively, the standard restrictions of the norms |‖ · ‖|h and ‖ · ‖0 to the domain
ωK .

Proof. The proof of the theorem consists of bounding separately all of the addenda
of ηK in (5.5).

Step 1. We first bound the terms of η̃2
K in (5.1). Considering the right-hand side

of (5.50), the triangle inequality immediately shows that it is sufficient to bound the
term h2

K‖fh + div qh‖0,K .
Given any K ∈ Ch, let bK indicate the standard third-order polynomial bubble

function on K, scaled such that ‖bK‖L∞(K) = 1. Given K ∈ Ch, let now ϕK ∈ H2
0 (K)

be defined as

(5.51) ϕK = (fh + div qh) b2K .

The standard scaling arguments then easily show that

‖fh + div qh‖2
0,K ≤ C(fh + div qh, ϕK)K ,(5.52)

‖ϕK‖0,K ≤ C‖fh + div qh‖0,K .(5.53)

For the first term in η̃2
K , the equilibrium equation (2.13) and integration by parts

give

h2
K‖fh + div qh‖2

0,K ≤ Ch2
K(fh + div qh, ϕK)K

= Ch2
K

(
(f + div qh, ϕK)K + (fh − f, ϕK)K

)
= Ch2

K

(
(−div q + div qh, ϕK)K + (fh − f, ϕK)K

)
= Ch2

K

(
(qh − q,∇ϕK)K + (fh − f, ϕK)K

)
.(5.54)

We note, in particular, that ∇ϕK ∈ V∗ and ∇ϕK = 0 in Ω\K. Therefore, the duality
inequality and the Cauchy–Schwarz inequality followed by the inverse inequality and
the bound (5.53) lead to the estimate

Ch2
K

(
(qh − q,∇ϕK)K + (fh − f, ϕK)

)
≤ C‖q − qh‖−1,∗,K h2

K‖∇ϕK‖1,K + Ch2
K‖f − fh‖0,K‖ϕK‖0,K

≤ C
(
‖q − qh‖−1,∗,K + h2

K‖f − fh‖0,K

)
‖fh + div qh‖0,K .(5.55)

Combining now (5.54) with (5.55) gives

(5.56) h2
K‖fh + div qh‖0,K ≤ C

(
‖q − qh‖−1,∗,K + h2

K‖f − fh‖0,K

)
.
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The second term of η̃2
K in (5.1) can be directly bounded by using the Kirchhoff

condition (2.12) with the definitions (4.1)–(4.3):

h−1
K ‖∇wh − βh‖0,K = h−1

K ‖∇(w − wh) − (β − βh)‖2
0,K

≤ |‖(w − wh,β − βh)‖|h,K .(5.57)

Step 2. We next bound the terms of η2
E in (5.2). Given now E ∈ I(K), an edge

of the element K lying in the interior of Ω, let

(5.58) ϕE = ΠE(�m(βh)n�),

where, with a little abuse of notation, the operator ΠE is intended as applied on each
single component. Then, from (5.47) with integration by parts, it follows that

h
1/2
E ‖�m(βh)n�‖2

0,E ≤ Ch
1/2
E 〈�m(βh)n�,ϕE〉E

= Ch
1/2
E

(
(Lβh,ϕE)ωE

+ (m(βh),∇ϕE)ωE

)
,(5.59)

where we recall that ωE was defined at the start of this section. Integration by parts
and the equation (2.14) immediately lead to the identity

(5.60) (m(β),∇ϕE)ωE
= −(Lβ,ϕE)ωE

= (q,ϕE)ωE
,

which, applied to (5.59), gives

h
1/2
E ‖�m(βh)n�‖2

0,E

≤ Ch
1/2
E

(
(Lβh + q,ϕE)ωE

+ (m(βh) − m(β),∇ϕE)ωE

)
= Ch

1/2
E

(
(Lβh + qh,ϕE)ωE

+ (q − qh,ϕE)ωE

+(m(βh) − m(β),∇ϕE)ωE

)
.(5.61)

Next, we bound the three terms on the right-hand side of (5.61). For the first
term, the identity (5.7), the Cauchy–Schwarz inequality, the definition (5.58), and the
bound (5.48) give

h
1/2
E (Lβh + qh,ϕE)ωE

≤ C

( ∑
K⊂ ωE

h−2
K ‖∇wh − βh‖2

0,K

)1/2

‖�m(βh)n�‖0,E

≤ C |‖(w − wh,β − βh)‖|h,ωE
‖�m(βh)n�‖0,E .(5.62)

For the second term on the right-hand side of (5.61), we note that ϕE ∈ V∗ and
ϕE = 0 in Ω\ωE . Therefore, the duality inequality and the definition (5.58) combined
with the bound (5.48) give

h
1/2
E (q − qh,ϕE)ωE

≤ h
1/2
E ‖q − qh‖−1,∗,ωE

‖ϕE‖1,ωE

≤ C‖q − qh‖−1,∗,ωE
‖�m(βh)n�‖0,E .(5.63)

For the third term of (5.61), the Cauchy–Schwarz inequality, then the inverse inequal-
ity, and finally (5.58) combined with the bound (5.48) lead to the estimate

h
1/2
E (m(βh) − m(β),∇ϕE)ωE

≤ C‖β − βh‖1,ωE
h
−1/2
K ‖ϕE‖0,ωE

≤ C‖β − βh‖1,ωE
‖�m(βh)n�‖0,E .(5.64)
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Now, by combining (5.62), (5.63), and (5.64) with (5.61) it follows that

(5.65) h
1/2
E ‖�m(βh)n�‖0,E ≤ C

(
|‖(w − wh,β − βh)‖|h,ωE

+ ‖q − qh‖−1,∗,ωE

)
.

The remaining term of η2
E is bounded with similar arguments; with the notation

(5.66) ϕE = ΠE(�qh · n�),

the identity

(5.67) −(div q, ϕE)ωE
= (q,∇ϕE)ωE

with (5.54) implies

h
1/2
E ‖�q · n�‖2

0,E ≤ Ch
1/2
E 〈�q · n�, ϕE〉E

≤ Ch
1/2
E

(
(f − fh, ϕE)ωE

+ (qh − q,∇ϕE)ωE

)
.(5.68)

Finally, we note that ∇ϕE ∈ V∗ and ∇ϕE = 0 in Ω\ωE . Therefore,

(5.69) h
3/2
E ‖�qh · n�‖0,E ≤ C

(
‖q − qh‖−1,∗,ωE

+ h2
K‖f − fh‖0,ωE

)
.

Step 3. Third, we bound the only term of η2
S,E in (5.3) which appears in η2

F,E as
well. Given now a triangulation edge E in S(K) ∪ F (K), let

(5.70) ϕE = ΠE(mnn(βh)).

Due to (5.47) and (2.19), integration by parts gives (here ∇ denotes the tensor-valued
gradient applied to a vector-valued function)

h
1/2
E ‖mnn(βh)‖2

0,E ≤ h
1/2
E 〈mnn(βh − β), ϕE〉E

= h
1/2
E 〈mn(βh − β), ϕEn〉E

= h
1/2
E

(
(m(βh − β),∇(ϕEn))ωE

+ (L(βh − β), ϕEn)ωE

)
,(5.71)

where n is, as usual, the chosen normal unit vector to E. For the first term, using the
Cauchy–Schwarz inequality, then the inverse inequality, and finally the bound (5.48),
we easily get

h
1/2
E (m(βh − β),∇(ϕEn))ωE

≤ h
1/2
E ‖β − βh‖1,ωE

‖∇(ϕEn)‖0,ωE

≤ C‖β − βh‖1,ωE
‖mnn(βh)‖0,E .(5.72)

For the second term in (5.71), recalling (2.14) we have

h
1/2
E (L(βh − β), ϕEn)ωE

= h
1/2
E (Lβh + qh, ϕEn)ωE

+ h
1/2
E (q − qh, ϕEn)ωE

.(5.73)

Observing now that ϕEn ∈ V∗ and ϕEn = 0 in Ω\ωE , the two terms on the right-
hand side of (5.73) can be bounded with the same arguments used above, respectively,
in (5.62) and (5.63). Omitting the details, we therefore get

h
1/2
E (L(βh − β), ϕEn)ωE

≤ C
(
|‖(w − wh,β − βh)‖|h,ωE

+‖q − qh‖−1,∗,ωE

)
‖mnn(βh)‖0,E .(5.74)
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From (5.71), (5.72), and (5.74) we get

(5.75) h
1/2
E ‖mnn(βh)‖0,E ≤ C

(
|‖(w − wh,β − βh)‖|h,ωE

+ ‖q − qh‖−1,∗,ωE

)
.

Step 4. Finally, we bound the last term of η2
F,E in (5.4). Given now a triangulation

edge E in F (K), let

(5.76) ϕE = ΠE

(
∂

∂s
mns(βh) − qh · n

)
.

Using (5.47) and recalling (2.17), we obtain

h
3/2
E

∥∥∥∥ ∂

∂s
mns(βh) − qh · n

∥∥∥∥2

0,E

≤ h
3/2
E

(〈
∂

∂s
mns(βh − β), ϕE

〉
E

+ 〈[q − qh] · n, ϕE〉E
)
.(5.77)

For the first term, integration by parts on the edge and simple algebra give

h
3/2
E

〈
∂

∂s
mns(βh − β), ϕE

〉
E

= h
3/2
E 〈mns(β − βh),∇ϕE · s〉E

= h
3/2
E

(
〈m(β − βh)n,∇ϕE〉E − 〈mnn(β − βh),∇ϕE · n〉E

)
.(5.78)

Using again integration by parts, the first term in (5.78) can be written as

h
3/2
E 〈m(β − βh)n,∇ϕE〉E
= h

3/2
E

(
L(β − βh),∇ϕE)ωE

+ 〈m(β − βh),∇∇ϕE)ωE

)
.(5.79)

The second term in (5.77), again due to integration by parts and recalling (2.13), is
instead equivalent to

h
3/2
E 〈[q − qh] · n, ϕE〉E = h

3/2
E

(
q − qh,∇ϕE)ωE

−(fh + div qh, ϕE)ωE
− (f − fh, ϕE)ωE

)
.(5.80)

For the first term, due to (2.14) and (3.11), we now have

h
3/2
E (q − qh,∇ϕE)ωE

= h
3/2
E

(
L(βh − β),∇ϕE)ωE

− 1

αh2
ωE

(∇wh − βh,∇ϕE

)
ωE

,(5.81)

where hωE
is the size of the triangle ωE . Combining all of the identities from (5.77)

to (5.81), it follows that

h
3/2
E

∥∥∥∥ ∂

∂s
mns(βh) − qh · n

∥∥∥∥2

0,E

≤ h
3/2
E

(
(m(β − βh),∇∇ϕE)ωE

− (mnn(β − βh),∇ϕE · n〉E

− 1

αh2
ωE

(∇wh − βh,∇ϕE)ωE
− (fh + div qh, ϕE)ωE

− (f − fh, ϕE)ωE

)
.(5.82)
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For the second term on the right-hand side of (5.82), recalling (2.17), using the
Cauchy–Schwarz inequality and the bound (5.75), we have

h
3/2
E 〈mnn(β − βh),∇ϕE · n〉E ≤ h

1/2
E ‖mnn(βh)‖0,E hE‖∇ϕE‖0,E

≤ C
(
|‖(w − wh,β − βh)‖|h,ωE

+ ‖q − qh‖−1,∗,ωE

)
hE‖∇ϕE‖0,E ,(5.83)

which, using the inverse inequality and the bound (5.48), gives

h
3/2
E 〈mnn(β − βh),∇ϕE · n〉E ≤ C

(
|‖(w − wh,β − βh)‖|h,ωE

+‖q − qh‖−1,∗,ωE

) ∥∥∥∥ ∂

∂s
mns(βh) − qh · n

∥∥∥∥
0,E

.(5.84)

The remaining terms on the right-hand side of (5.82) can all be bounded using the
Cauchy–Schwarz inequality, the inverse inequality, and the bounds (5.56), (5.48) as
already shown for the similar previous cases. Without showing all of the details, we
finally get

h
3/2
E

∥∥∥∥ ∂

∂s
mns(βh) − qh · n

∥∥∥∥2

0,E

≤ C
(
|‖(w − wh,β − βh)‖|h,ωE

+ ‖q − qh‖−1,∗,ωE

+h2
K‖f − fh‖0,K

) ∥∥∥∥ ∂

∂s
mns(βh) − qh · n

∥∥∥∥
0,E

(5.85)

or, trivially,

h
3/2
E

∥∥∥∥ ∂

∂s
mns(βh) − qh · n

∥∥∥∥
0,E

≤ C
(
|‖(w − wh,β − βh)‖|h,ωE

+ ‖q − qh‖−1,∗,ωE
+ h2

K‖f − fh‖0,K

)
.(5.86)

Recalling now the definitions for ηK in (5.1) and the local negative norm in (5.49),
the proposition is proved.
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ANALYSIS OF THE COUPLING OF PRIMAL AND DUAL-MIXED
FINITE ELEMENT METHODS FOR A TWO-DIMENSIONAL

FLUID-SOLID INTERACTION PROBLEM∗

GABRIEL N. GATICA† , ANTONIO MÁRQUEZ‡ , AND SALIM MEDDAHI§

Abstract. This paper deals with a time-harmonic fluid-solid interaction problem posed in the
plane. More precisely, we apply the coupling of primal and dual-mixed finite element methods to
compute both the pressure of the scattered wave in the linearized fluid and the elastic vibrations
that take place in the solid elastic body. To this end, we solve a transmission problem holding be-
tween the cross-section of the infinitely long cylinder representing the obstacle and an annular region
surrounding it. The novelty of our method lies in the use of a dual-mixed variational formulation
in the obstacle, while maintaining the usual primal formulation in the fluid. In other words, we in-
troduce a stress-pressure formulation of the problem instead of the traditional displacement-pressure
encountered in the literature. As a consequence, one of the transmission conditions becomes essen-
tial, and hence we enforce it weakly by means of a Lagrange multiplier. Next, we apply the abstract
framework developed in a recent work by A. Buffa, prove that our coupled variational formulation is
well posed, and define the corresponding discrete scheme by using PEERS in the solid domain and
standard Lagrange finite elements in the fluid domain. Then we show that the resulting Galerkin
scheme is uniquely solvable and convergent and derive optimal error estimates. Finally, we illustrate
our analysis with some results from computational experiments.

Key words. mixed finite elements, Helmholtz equation, elastodynamic equation

AMS subject classification. 65N30, 65N12, 65N15, 74F10, 74B05, 35J05

DOI. 10.1137/060660370

1. Introduction. In this paper we develop a coupled primal/dual-mixed finite
element method for a time-harmonic fluid-solid interaction problem in the plane. We
consider an elastic body occupying a region Ωs and assume that it is subject to a
given incident wave that travels in the fluid surrounding it. Actually, we suppose here
that the fluid occupies an annular region Ωf whose exterior boundary Γ is located
far from the obstacle (the solid body) and impose on this artificial closed curve a
boundary condition that imitates the behavior of the scattered field at infinity. Thus,
our model problem is posed in a bounded region. Concerning the numerical solution
of this kind of fluid-solid interaction problem, we remark that they have deserved
some attention recently from the FEM and BEM-FEM communities. However, to
the best of our knowledge, all the methods rely on a displacement formulation of the
linear elasticity equation posed in Ωs (see, e.g., [8, 24, 27, 28] and the references cited
therein). However, it is also known that the stress in the solid and the pressure in
the fluid usually have more physical interest than the displacement and the velocity,
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respectively. Therefore, instead of that classical approach, our goal in this paper is to
employ a dual-mixed variational formulation for plane elasticity in the obstacle and
keep the usual primal formulation in the linearized fluid region. In this way, the stress
tensor in Ωs and the linearized fluid pressure p, which solves the Helmholtz equation
in Ωf , constitute our main unknowns. In addition, since one of the transmission
conditions becomes essential, we enforce it weakly by means of a Lagrange multiplier.
We remark that, as compared with the stress-velocity formulation, this turns out to
be an advantageous feature of the present approach. In fact, if that formulation were
employed, both transmission conditions would be essential and then two Lagrange
multipliers would be required.

Now, it is important to point out that in the Helmholtz and elastodynamics equa-
tions there is a zero order term with a “wrong” sign that causes the loss of ellipticity
of the operators arising from the corresponding primal formulations. Nevertheless,
the compactness of the embedding H1(Ωs) ↪→ L2(Ωs) allows one to use successfully
a Fredholm alternative to analyze its solvability. On the other hand, the usual dual-
mixed formulation is more intricate since it does not fit in any classical theory for
proving well-posedness. In particular, a strategy based on elaborated duality argu-
ments is developed in [16] for dealing with this difficulty in the case of the Helmholtz
equation. In the present paper we apply a different approach. First of all, in contrast
to the usual dual-mixed formulation, the elastodynamic equation is used here to elim-
inate the original unknown given by the displacement field u. This leads to a method
that is equivalent (both at the continuous and the discrete levels) to the standard
dual-mixed formulation (see [1]), which has the advantage of reducing the number of
unknowns. However, the elimination of u yields to a formulation that, though having
the typical mixed structure, does not satisfy the hypotheses of the Babuška–Brezzi
theory. In addition, since the canonical embedding H(div; Ωs) ↪→ [L2(Ωs)]

2 is not
compact, it is not possible to employ a Fredholm alternative, at least for the original
form of the resulting variational formulation.

In order to circumvent the above difficulties, we take advantage of a recent tech-
nique essentially developed for electromagnetism (see [11] and the references cited
therein). In fact, a successful strategy has been developed there to deal with a similar
noncoercive bilinear form arising in the study of Maxwell equations. Actually, Buffa
[11] succeeded in setting up this technique in a general framework. We extend here
the range of application of this methodology by using it for the dual-mixed formu-
lation described above. More precisely, we show that a judicious decomposition of
H(div; Ωs) renders suitable the application of a Fredholm alternative for the analysis
of the whole coupled problem. The corresponding discrete scheme is defined with
PEERS elements in the obstacle and the traditional first order Lagrange finite ele-
ments in the fluid domain. The stability and convergence of this Galerkin method
also relies on a stable decomposition of the finite element space used to approximate
the stress variable. Now, if the stress-velocity formulation were applied then, besides
the second Lagrange multiplier on the interface, the discrete system would employ the
Raviart–Thomas subspace in the fluid, which involves many more degrees of freedom
than the first order Lagrange finite elements. Therefore, since the pressure and not
the velocity is the variable of interest in the acoustic medium (fluid), this additional
computational effort does not seem to be worthy at all.

The remainder of the paper is organized as follows. In sections 2 and 3 we give
a brief description of the fluid-solid interaction problem and derive its coupled varia-
tional formulation. In section 4, we show that the resulting saddle point problem is
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well posed. The corresponding Galerkin scheme is analyzed in section 5. Finally, in
section 6 we provide results from numerical experiments that confirm our theoretical
assertions. We end this section with some notation to be used below. Since in what
follows we deal with complex valued functions, we let C be the set of complex num-
bers, use the symbol ı for

√
−1, and denote by z and |z| the conjugate and modulus,

respectively, of each z ∈ C. In addition, given any Hilbert space U , U2 and U2×2

denote, respectively, the space of vectors and tensors of order 2 with entries in U . In
particular, I is the identity matrix of C

2×2, and given τ := (τij), ζ := (ζij) ∈ C
2×2,

we define as usual the transpose tensor τ t := (τji) , the trace tr(τ ) :=
∑2

i=1 τii, the

deviator tensor τ d := τ − 1
2 tr(τ ) I, the tensor product τ : ζ :=

∑2
i,j=1 τij ζij , and

the conjugate tensor τ := (τ ij). Finally, in what follows we utilize the standard ter-
minology for Sobolev spaces and norms, employ 0 to denote a generic null vector, and
use C and c, with or without subscripts, bars, tildes or hats, to denote generic con-
stants independent of the discretization parameters, which may take different values
at different places.

2. The fluid-solid interaction problem. We consider an incident acoustic
wave upon a bounded elastic body (obstacle) fully surrounded by a fluid, and are
interested in determining both the response of both the body and the scattered wave.
The obstacle is supposed to be an infinitely long cylinder parallel to the x3-axis
whose cross-section is Ωs. The boundary of Ωs is denoted by Σ. We assume that
the incident wave and the volume force acting on the body exhibit a time-harmonic
behavior with e−ı ω t ansatz and phasors pi and f , respectively, so that pi satisfies
the Helmholtz equation in R

2\Ωs. Hence, as we assume that the phenomenon is
invariant under a translation in the x3-direction, we may consider a bidimensional
interaction problem posed in the frequency domain. In this way, and since we plan
to employ a mixed variational formulation in the solid, our main unknowns become
the phasor σ : Ωs → C

2×2 of the Cauchy stress tensor, the phasor u : Ωs → C
2 of

the displacement field, and the phasor of the total (incident + scattered) pressure
p : R

2\Ωs → C.
The fluid is assumed to be perfect, compressible, and homogeneous, with mass

density ρf and wave number κf := ω
v0

, where v0 is the speed of sound in the linearized
fluid. In addition, the solid is supposed to be isotropic and linearly elastic with
mass density ρs and Lamé constants μ and λ, which means, in particular, that the
corresponding constitutive equation is given by

(2.1) σ = C ε(u) in Ωs ,

where ε(u) := 1
2 (∇u + (∇u)t) is the strain tensor of small deformations, ∇ is the

gradient tensor, and C is the elasticity operator given by Hooke’s law, that is,

(2.2) C ζ := λ tr(ζ) I + 2μ ζ ∀ ζ ∈ [L2(Ωs)]
2×2 , ζ = ζt .

Consequently, under the hypotheses of small oscillations, in both the solid and the
fluid, the unknowns σ, u, and p satisfy the following equations:

(2.3)

σ = C ε(u) in Ωs ,

div(σ) + ρs ω
2 u = − f in Ωs ,

Δp + κ2
f p = 0 in R

2\Ωs ,
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together with the transmission conditions

(2.4)

σν = − pν on Σ ,

ρf ω
2 u · ν =

∂p

∂ν
on Σ

and the behavior at infinity given by

(2.5) p− pi = O(r−1/2)

and

(2.6)
∂(p− pi)

∂r
− ı κf (p− pi) = o(r−1/2) ,

as r := ‖x‖ → +∞, uniformly for all directions x
‖x‖ . Hereafter, div stands for the

usual divergence operator div acting on each row of the tensor, ‖x‖ is the euclidean
norm of a vector x := (x1, x2)

t ∈ R
2, and ν denotes the unit outward normal on Σ.

The second and third equations of (2.3) correspond to the elastodynamic and acoustic
equations in time-harmonic regime, respectively, whereas the transmission conditions
given in (2.4) represent the equilibrium of forces and the equality of the normal dis-
placements of the solid and fluid. Equation (2.6) is known as the Sommerfeld radiation
condition.

On the other hand, it is important to remark, as a consequence of (2.5) and (2.6),
that the outgoing waves are absorbed by the far field. Motivated by this fact, and
aiming to obtain a suitable simplification of our model problem, we now introduce
a sufficiently large circle Γ centered at the origin, define Ωf as the annular domain
bounded by Σ and Γ (see Figure 2.1), and consider the Robin boundary condition:

(2.7)
∂p

∂ν
− ı κf p = g :=

∂pi
∂ν

− ı κf pi on Γ ,

where ν denotes also the unit outward normal on Γ. Actually, in order to avoid
introducing later a nonconforming Galerkin scheme, we may simply think of Γ as the
polygonal curve resulting after joining with straight lines the points defining a uniform
partition of the given circle. Alternatively, we could take Γ as an arbitrary closed curve
sufficiently far away from Σ and consider the Dirichlet boundary condition

(2.8) p = pi on Γ .

It is worth mentioning here that, irrespectively of the boundary condition chosen on
Γ, the main idea is to reduce the original problem posed in R

2 to an interaction
problem on the bounded domain Ωs ∪Σ ∪Ωf . Nevertheless, we also remark that the
Sommerfeld condition seems to be the most suitable choice since it shows a higher
order of approximation (as r → +∞) and constitutes the right condition guaranteeing
the uniqueness of the exterior Helmholtz problem. Another possibility, which will be
reported in a separate work, is to employ the boundary integral equation method in the
unbounded region R

2\Ωs ∪ Ωf . Further techniques, including Dirichlet-to-Neumann
mappings, infinite elements, and PML approaches, are also available in the literature
(see, e.g., [3, 7, 12, 13, 18, 19, 22] and the references therein).

Therefore, throughout the rest of the paper we assume the Robin boundary condi-
tion (2.7) and, given f ∈ [L2(Ωs)]

2 and g ∈ H−1/2(Γ), consider the following fluid-solid
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Ω
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s
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Fig. 2.1. Geometry of the interaction problem.

interaction problem: Find σ ∈ H(div; Ωs), u ∈ [L2(Ωs)]
2, and p ∈ H1(Ωf ) such

that the following hold in the distributional sense:

(2.9)

σ = C ε(u) in Ωs ,

div(σ) + κ2
s u = − f in Ωs ,

Δp + κ2
f p = 0 in Ωf ,

σν = − pν on Σ ,

ρf ω
2 u · ν =

∂p

∂ν
on Σ ,

∂p

∂ν
− ı κf p = g on Γ ,

where the wave number κs of the solid is defined by
√
ρs ω.

3. The continuous variational formulation. In this section we employ pri-
mal and dual-mixed approaches in the fluid Ωf and the solid Ωs, respectively, to
derive the full continuous variational formulation of (2.9). In fact, we first multiply
the acoustic equation by q ∈ H1(Ωf ), integrate by parts, and use the Robin boundary
condition, to obtain

(3.1)

∫
Ωf

∇p · ∇q − κ2
f

∫
Ωf

pq +

〈
∂p

∂ν
, q

〉
Σ

− ı κf

∫
Γ

pq = 〈g, q〉Γ ,

where, given S ∈ {Σ,Γ}, 〈 ·, · 〉S stands for the duality pairing of H−1/2(S) and
H1/2(S) with respect to the L2(S)-inner product. Next, we use the second transmis-
sion condition and replace ∂p

∂ν by ρf ω
2 u · ν on Σ, introduce the auxiliary unknown

ϕ := u|Σ ∈ [H1/2(Σ)]2 ,



COUPLING OF PRIMAL AND DUAL-MIXED FEM 2077

and divide by ρf ω
2, whence (3.1) becomes

(3.2)

1

ρf ω2

∫
Ωf

∇p · ∇q −
κ2
f

ρf ω2

∫
Ωf

pq + 〈qν,ϕ〉Σ − ı
κf

ρf ω2

∫
Γ

pq

=
1

ρf ω2
〈g, q〉Γ ,

where 〈 ·, · 〉Σ denotes, from now on, the duality pairing of [H−1/2(Σ)]2 and [H1/2(Σ)]2

with respect to the [L2(Σ)]2-inner product.
On the other hand, in order to derive the mixed variational formulation in the

solid Ωs, we follow the usual procedure (see [1] and [31]) and introduce the rotation

γ :=
1

2
(∇u − (∇u)t) ∈ [L2(Ωs)]

2×2
asym

as a further unknown, where [L2(Ωs)]
2×2
asym denotes the space of asymmetric tensors

with entries in L2(Ωs). In this way, the constitutive equation can be rewritten in the
form

C−1 σ = ε(u) = ∇u − γ ,

which, multiplying by τ ∈ H(div; Ωs) and integrating by parts, yields

(3.3)

∫
Ωs

C−1 σ : τ +

∫
Ωs

u · div(τ ) − 〈τν,ϕ〉Σ +

∫
Ωs

τ : γ = 0 .

Then from the elastodynamic equation we get

(3.4) u = − 1

κ2
s

(
f + div(σ)

)
,

which, replaced back into (3.3), gives∫
Ωs

C−1 σ : τ − 1

κ2
s

∫
Ωs

div(σ) · div(τ ) − 〈τν,ϕ〉Σ +

∫
Ωs

τ : γ(3.5)

=
1

κ2
s

∫
Ωs

f · div(τ ) .

Finally, the symmetry of σ and the first transmission condition on Σ (see (2.4) or
(2.9)) are imposed weakly through the relations

(3.6)

∫
Ωs

σ : η = 0 ∀η ∈ [L2(Ωs)]
2×2
asym

and

(3.7) 〈pν + σν,ψ〉Σ = 0 ∀ψ ∈ [H1/2(Σ)]2 .

It is clear from (3.2) and (3.7), as already announced in the introduction, that the
transmission conditions on Σ, say ∂p

∂ν = ρf ω
2 u · ν and pν = −σν, are natural and

essential, respectively. In particular, the trace ϕ := u|Σ ∈ [H1/2(Σ)]2 constitutes the
Lagrange multiplier associated with (3.7). If dual-mixed formulations were employed
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in the solid and in the fluid, then both transmission conditions would be essential
and therefore, besides u|Σ, the trace p|Σ would be required as a second Lagrange
multiplier.

Now, adding (3.2) and (3.5), and subtracting (3.7) from (3.6), we arrive at the
following variational formulation of (2.9): Find ((σ, p), (ϕ,γ)) ∈ H × Q such that

(3.8)
A((σ, p), (τ , q)) + B1((τ , q), (ϕ,γ)) = F (τ , q) ∀ (τ , q) ∈ H ,

B2((σ, p), (ψ,η)) = 0 ∀ (ψ,η) ∈ Q ,

where H and Q are the product spaces

(3.9) H := H(div; Ωs) ×H1(Ωf ) , Q := [H1/2(Σ)]2 × [L2(Ωs)]
2×2
asym ,

F : H → C is the linear functional

(3.10) F (τ , q) :=
1

κ2
s

∫
Ωs

f · div(τ ) +
1

ρf ω2
〈g, q〉Γ ∀ (τ , q) ∈ H ,

and A : H × H → C, B1 : H × Q → C, and B2 : H × Q → C are the bilinear forms
defined by

A((ζ, r), (τ , q)) :=

∫
Ωs

C−1 ζ : τ − 1

κ2
s

∫
Ωs

div(ζ) · div(τ ) +
1

ρf ω2

∫
Ωf

∇r · ∇q

−
κ2
f

ρf ω2

∫
Ωf

rq − ı
κf

ρf ω2

∫
Γ

rq ∀ (ζ, r), (τ , q) ∈ H ,(3.11)

(3.12) B1((τ , q), (ψ,η)) := 〈qν − τν,ψ〉Σ +

∫
Ωs

τ : η ,

and

(3.13) B2((τ , q), (ψ,η)) := −〈qν + τν,ψ〉Σ +

∫
Ωs

τ : η

for all (τ , q) ∈ H, (ψ,η) ∈ Q. It is easy to see that F , A, B1, and B2 are all bounded
with constants depending on ω, ρf , ρs, κf , and κs, in the case of F and A, and
constants independent of the physical parameters for B1 and B2. Concerning the
form A, we also observe from (2.2) that the inverse operator C−1 reduces to

(3.14) C−1 ζ :=
1

2μ
ζ − λ

4μ (λ + μ)
tr(ζ) I ∀ ζ ∈ [L2(Ωs)]

2×2 ,

which implies that

(3.15)

∫
Ωs

C−1 ζ : τ =
1

2μ

∫
Ωs

ζd : τ d +
1

4 (λ + μ)

∫
Ωs

tr(ζ) tr(τ )

for all ζ, τ ∈ [L2(Ωs)]
2×2, and hence

(3.16)

∫
Ωs

C−1 ζ : ζ ≥ 1

2μ
‖ζd‖2

[L2(Ωs)]2×2 ∀ ζ ∈ [L2(Ωs)]
2×2 .
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This estimate will be useful for our analysis below.
We end this section by commenting that, instead of eliminating the displacement

u by means of (3.4), the classical method for the mixed formulation of the elasticity
problem keeps this unknown in (3.3) and incorporates the equation∫

Ωs

v · div(σ) + κ2
s

∫
Ωs

u · v = −
∫

Ωs

f · v ,

which arises after multiplying the elastodynamic equation by a test function v ∈
[L2(Ωs]

2. However, the resulting variational formulation does not fit into the frame-
work of any of the available theories for proving well-posedness, and hence a different
approach, such as the one proposed in the present paper, must be adopted. An al-
ternative technique, which makes extensive use of duality arguments, was developed
in [16] for the coupling of a mixed variational formulation and the boundary integral
equation method when applied to an exterior Helmholtz problem in the plane.

4. Analysis of the continuous variational formulation. In this section we
proceed analogously to [11] and employ a suitable decomposition of H(div; Ωs) to
show that (3.8) becomes a compact perturbation of a well-posed problem. First, we
need to consider an elasticity problem in Ωs with Neumann boundary conditions.
Then this auxiliary problem yields the definition of an associated operator, which is
employed to obtain the above-mentioned decomposition.

4.1. Preliminaries. Let RM(Ωs) be the space of rigid body motions in Ωs, that
is,

RM(Ωs) :=

{
v : Ωs → C

2 : v(x) =

(
a
b

)
+ c

(
x2

−x1

)

∀x :=

(
x1

x2

)
∈ Ωs , a, b , c ∈ C

}
,

and let M : [L2(Ωs)]
2 → RM(Ωs) be the [L2(Ωs)]

2-orthogonal projector. Then, given
τ ∈ H(div; Ωs), we let (σ̃, ũ, γ̃) ∈ H(div; Ωs)× (I−M)([L2(Ωs)]

2)× [L2(Ωs)]
2×2
asym be

the unique solution (see [1], [9, Theorem 9.2.30], [15]) of the dual-mixed variational
formulation of the boundary value problem

(4.1) σ̃ = C ε(ũ) , div σ̃ = (I − M)(div (τ )) in Ωs , σ̃ ν = 0 on Σ ,

where γ̃ := 1
2 (∇ũ− (∇ũ)t) denotes the auxiliary unknown named rotation, C ε(ũ) is

defined according to (2.2), and I stands for a generic identity operator. Owing to the
regularity result for the elasticity problem with Neumann boundary conditions (see,
e.g., [20, 21]), we know that there exists ε > 0 such that

(4.2) (σ̃, ũ, γ̃) ∈ [Hε(Ωs)]
2×2 × [H1+ε(Ωs)]

2 × [Hε(Ωs)]
2×2

and

(4.3) ‖σ̃‖[Hε(Ωs)]2×2 + ‖ũ‖[H1+ε(Ωs)]2 + ‖γ̃‖[Hε(Ωs)]2×2 ≤ C ‖div(τ )‖[L2(Ωs)]2 .

We now introduce the linear operator

(4.4)
P : H(div; Ωs) → H(div; Ωs),

τ → P(τ ) := σ̃
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and observe from (4.1) that

(4.5)
divP(τ ) = (I − M)(div (τ )) in Ωs ,

div (I − P)(τ ) = M(div (τ )) in Ωs ,

and

(4.6) P(τ )ν = 0 on Σ .

Then, using the continuous dependence result for (4.1), we find that

‖P(τ )‖H(div; Ωs) ≤ C ‖div(τ )‖[L2(Ωs)]2 ∀ τ ∈ H(div; Ωs) ,

which shows that P is bounded. Moreover, it is easy to see that P is actually a linear
projection, and hence

(4.7) H(div; Ωs) = P(H(div; Ωs)) ⊕ (I − P)(H(div; Ωs)) .

Finally, it is clear from (4.2) and (4.3) that P(τ ) ∈ [Hε(Ωs)]
2×2 and

(4.8) ‖P(τ )‖[Hε(Ωs)]2×2 ≤ C ‖div(τ )‖[L2(Ωs)]2 ∀ τ ∈ H(div; Ωs) .

4.2. Well-posedness of the continuous formulation. In order to show that
our coupled problem (3.8) is well posed, we now employ the stable decomposition
(4.7) to reformulate (3.8) in a more suitable form. We begin by observing, according
to (4.5), (4.6), the symmetry of P(τ ), and the fact that ∇v ∈ [L2(Ωs)]

2×2
asym for all

v ∈ RM(Ωs), that for all ζ, τ ∈ H(div; Ωs) there holds

(4.9)

∫
Ωs

div (I − P)(ζ) · divP(τ ) =

∫
Ωs

M(div(ζ)) · divP(τ )

= −
∫

Ωs

∇M(div(ζ)) : P(τ ) + 〈P(τ )ν,M(div(ζ)) 〉Σ = 0 .

Then, writing ζ = P(ζ) + (I − P)(ζ) and τ = P(τ ) + (I − P)(τ ) in (3.11), using
the identity (4.9), and adding and subtracting the terms∫

Ωs

C−1 P(ζ) : P(τ ) ,

∫
Ωs

div (I − P)(ζ) · div (I − P)(τ ) , and
1

ρf ω2

∫
Ωf

rq ,

we find that A can be decomposed as

(4.10) A((ζ, r), (τ , q)) = A0((ζ, r), (τ , q)) + K0((ζ, r), (τ , q))

for all (ζ, r) , (τ , q) ∈ H, where A0 : H × H → C and K0 : H × H → C are the
bounded and symmetric bilinear forms given by
(4.11)

A0((ζ, r), (τ , q)) := −
∫

Ωs

C−1 P(ζ) : P(τ ) − 1

κ2
s

∫
Ωs

divP(ζ) · divP(τ )

+

∫
Ωs

C−1 (I − P)(ζ) : (I − P)(τ ) +

∫
Ωs

div (I − P)(ζ) · div (I − P)(τ )

+
1

ρf ω2

∫
Ωf

∇r · ∇ +
1

ρf ω2

∫
Ωf

rq − ı
κf

ρf ω2

∫
Γ

rq ,
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and
(4.12)

K0((ζ, r), (τ , q)) := 2

∫
Ωs

C−1 P(ζ) : P(τ ) +

∫
Ωs

C−1 P(ζ) : (I − P)(τ )

+

∫
Ωs

C−1 (I − P)(ζ) : P(τ ) −
(

1 +
1

κ2
s

) ∫
Ωs

div (I − P)(ζ) · div (I − P)(τ )

−
(1 + κ2

f )

ρf ω2

∫
Ωf

rq .

On the other hand, we easily deduce from (3.12) and (3.13) that B1 and B2 can be
decomposed as

(4.13) B1((τ , q), (ψ,η)) = B0((τ , q), (ψ,η)) + K1((τ , q), (ψ,η))

and

(4.14) B2((τ , q), (ψ,η)) = B0((τ , q), (ψ,η)) − K1((τ , q), (ψ,η))

for all (τ , q) ∈ H, (ψ,η) ∈ Q, where B0 : H × H → C and K1 : H × H → C are the
bounded bilinear forms defined by

(4.15) B0((τ , q), (ψ,η)) := −〈τ ν,ψ〉Σ +

∫
Ωs

τ : η

and

(4.16) K1((τ , q), (ψ,η)) := 〈qν,ψ〉Σ .

Next, we let A0 : H → H, B0 : H → Q, K0 : H → H, and K1 : H → Q be the linear
and bounded operators induced by the corresponding bilinear forms. In addition, we
let B∗

0 : Q → H and K∗
1 : Q → H be the associated adjoint operators and denote by

F the Riesz representant of F . Hence, using these notations and taking into account
the decompositions (4.10), (4.13), and (4.14), our variational formulation (3.8) can
be rewritten as the following operator equation: Find ((σ, p), (ϕ,γ)) ∈ H × Q such
that

(4.17)

(
A0 B∗

0

B0 0

) (
(σ, p)
(ϕ,γ)

)
+

(
K0 K∗

1

−K1 0

) (
(σ, p)
(ϕ,γ)

)
=

(
F
0

)
.

Throughout the rest of this section we prove that the matrix operators on the left-hand
side of (4.17) become invertible and compact, respectively.

The following two lemmas are needed to prove the continuous inf-sup condition
for B0. In particular, we notice that Lemma 4.1 provides a right inverse of the normal
traces of functions in H(div; Ωs).

Lemma 4.1. There exists a bounded and linear operator S : [H−1/2(Σ)]2 →
H(div; Ωs) such that

S(ξ)ν = − ξ on Σ ∀ ξ ∈ [H−1/2(Σ)]2 .

Proof. Given ξ := (ξ1, ξ2)
t ∈ [H−1/2(Σ)]2, we let S(ξ) := ∇z where z ∈ [H1(Ωs)]

2

is the unique weak solution, up to a constant vector in C
2, of the boundary value

problem with Neumann boundary conditions

(4.18) −Δ z =
1

|Ωs|
(〈ξ1, 1〉Σ, 〈ξ2, 1〉Σ)

t
in Ωs , ∇zν = − ξ on Σ .
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It follows easily that S(ξ) belongs to H(div; Ωs) and satisfies the required condi-
tions. In particular, the fact that div(S(ξ)) = − 1

|Ωs| (〈ξ1, 1〉Σ, 〈ξ2, 1〉Σ)
t

in Ωs and

the continuous dependence result for (4.18) imply the boundedness of S.
Lemma 4.2. There exists a bounded and linear operator T : [L2(Ωs)]

2×2
asym →

H(div; Ωs) such that

T(η)ν = 0 on Σ and
1

2

(
T(η) − T(η)t

)
= η ∀η ∈ [L2(Ωs)]

2×2
asym .

Proof. The proof is a slight variation of the proof of Lemma 4.4 in [17] (see also
Lemma 4.2 in [6]).

We are now in a position to prove that B0 satisfies the continuous inf-sup condi-
tion.

Lemma 4.3. There exists C1 > 0 such that

(4.19) sup
(τ,q)∈H
(τ,q)�=0

|B0((τ , q), (ψ,η)) |
‖(τ , q)‖H

≥ C1 ‖(ψ,η)‖Q ∀ (ψ,η) ∈ Q .

Proof. Given (ψ,η) ∈ Q, we consider the linear operators S and T defined in
the previous lemmas and observe from the definition of B0 (cf. (4.15)) that

B0((S(ξ), 0), (ψ,η)) := 〈ξ,ψ〉Σ +

∫
Ωs

S(ξ) : η ∀ ξ ∈ [H−1/2(Σ)]2

and

B0((T(η), 0), (ψ,η)) :=

∫
Ωs

T(η) : η =

∫
Ωs

1

2

(
T(η)−T(η)t

)
: η = ‖η‖2

[L2(Ωs)]2×2 .

Then, employing the boundedness of S and T, respectively, we find that
(4.20)

sup
(τ,q)∈H
(τ,q)�=0

|B0((τ , q), (ψ,η)) |
‖(τ , q)‖H

≥ sup
ξ∈[H−1/2(Σ)]2

ξ�=0

|B0((S(ξ), 0), (ψ,η)) |
‖(S(ξ), 0)‖H

= sup
ξ∈[H−1/2(Σ)]2

ξ�=0

∣∣∣∣ 〈ξ,ψ〉Σ +

∫
Ωs

S(ξ) : η

∣∣∣∣
‖S(ξ)‖H(div; Ωs)

≥ 1

‖S‖ ‖ψ‖[H1/2(Σ)]2 − ‖η‖[L2(Ωs)]2×2

and

(4.21)

sup
(τ,q)∈H
(τ,q)�=0

|B0((τ , q), (ψ,η)) |
‖(τ , q)‖H

≥ |B0((T(η), 0), (ψ,η)) |
‖(T(η), 0)‖H

=
‖η‖2

[L2(Ωs)]2×2

‖T(η)‖H(div; Ωs)
≥ 1

‖T‖ ‖η‖[L2(Ωs)]2×2 .

The estimates (4.20) and (4.21) imply (4.19) and complete the proof.
Our next goal, according to the well-known Babuška–Brezzi theory, is to prove

that A0 is an isomorphism on the kernel of B0. To this end, we now introduce the
decomposition

(4.22) H(div; Ωs) = H0(div; Ωs) ⊕ C I ,
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where

(4.23) H0(div; Ωs) :=

{
τ ∈ H(div; Ωs) :

∫
Ωs

tr(τ ) = 0

}
.

This means that for any τ ∈ H(div; Ωs) there exist unique τ 0 ∈ H0(div; Ωs) and
d ∈ C given by d := 1

2 |Ωs|
∫
Ωs

tr(τ ), where |Ωs| denotes the measure of Ωs, such that
τ = τ 0 + d I.

The inequalities provided by the following three lemmas will be crucial in our
subsequent analysis. We notice that Lemma 4.5 corresponds to Lemma 2.2 in [14],
whose proof, being short and simple, is recalled here for the sake of completeness.

Lemma 4.4. There exists c1 > 0, depending only on Ωs, such that
(4.24)

c1 ‖τ 0‖2
[L2(Ωs)]2×2 ≤ ‖τ d‖2

[L2(Ωs)]2×2 + ‖div(τ )‖2
[L2(Ωs)]2

∀ τ ∈ H(div; Ωs) .

Proof. See Lemma 3.1 in [2] or Proposition 3.1 of Chapter IV in [10].
Lemma 4.5. There exists c2 > 0, depending only on Ωs, such that

(4.25)
c2 ‖τ‖2

H(div; Ωs)
≤ ‖τ 0‖2

H(div; Ωs)
∀ τ ∈ H(div; Ωs) such that τν = 0 on Σ .

Proof. Given τ = τ 0 +d I ∈ H(div; Ωs), with τ 0 ∈ H0(div; Ωs) and d ∈ C, and
such that τν = 0 on Σ, we note that dν = − τ 0 ν on Σ, and hence, using the trace
theorem of H(div; Ωs),

|d| ‖ν‖[H−1/2(Σ)]2 = ‖τ 0ν‖[H−1/2(Σ)]2 ≤ c̃2 ‖τ 0‖H(div; Ωs) .

This inequality and the fact that ‖τ‖2
H(div; Ωs)

= ‖τ 0‖2
H(div; Ωs)

+ 2 d2 |Ωs| imply

(4.25).
Lemma 4.6. Let Ξ := (I − 2P) : H(div; Ωs) → H(div; Ωs). Then there exists

C > 0, depending on μ, c1, c2, κs, ρf , and ω2, such that for each (ζ, r) ∈ H there
holds

(4.26)
Re

{
A0((ζ, r), (Ξ(ζ), r))

}
≥ C

{
‖P(ζ)‖2

H(div; Ωs)
+ ‖(I − P)(ζ)0‖2

H(div; Ωs)
+ ‖r‖2

H1(Ωf )

}
,

where (I − P)(ζ)0 is the H0(div; Ωs)-component of (I − P)(ζ).
Proof. Using that P is a projector, we easily observe that

(4.27)
PΞ(ζ) = −P(ζ) and (I − P) Ξ(ζ) = (I − P)(ζ) ∀ ζ ∈ H(div; Ωs) ,

and hence, according to the definition of A0 (cf. (4.11)), we obtain
(4.28)

A0((ζ, r), (Ξ(ζ), r)) :=

∫
Ωs

C−1 P(ζ) : P(ζ) +
1

κ2
s

∫
Ωs

divP(ζ) · divP(ζ)

+

∫
Ωs

C−1 (I − P)(ζ) : (I − P)(ζ) +

∫
Ωs

div (I − P)(ζ) · div (I − P)(ζ)

+
1

ρf ω2

∫
Ωf

‖∇r‖2 +
1

ρf ω2

∫
Ωf

|r|2 − ı
κf

ρf ω2

∫
Γ

|r|2
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for all (ζ, r) ∈ H. It follows that

Re
{
A0((ζ, r), (Ξ(ζ), r))

}
:=

∫
Ωs

C−1 P(ζ) : P(ζ) +
1

κ2
s

∫
Ωs

divP(ζ) · divP(ζ)

+

∫
Ωs

C−1 (I − P)(ζ) : (I − P)(ζ) +

∫
Ωs

div (I − P)(ζ) · div (I − P)(ζ)

+
1

ρf ω2
‖r‖2

H1(Ωf ) ,

which, applying (3.16) and Lemmas 4.4 and 4.5, yields (4.26). Note that Lemma 4.5
cannot be applied to (I−P)(ζ) since its normal trace does not necessarily vanish on
Σ.

The weak coercivity of A0 is established next.
Lemma 4.7. Let V be the kernel of B0, that is,

V := { (τ , q) ∈ H : B0((τ , q), (ψ,η)) = 0 ∀ (ψ,η) ∈ Q } .

Then there exists C > 0 such that

(4.29) sup
(τ,q)∈V
(τ,q)�=0

|A0((ζ, r), (τ , q)) |
‖(τ , q)‖H

≥ C ‖(ζ, r)‖H ∀ (ζ, r) ∈ V .

In addition, there holds

(4.30) sup
(ζ,r)∈V

|A0((ζ, r), (τ , q)) | > 0 ∀ (τ , q) ∈ V , (τ , q) �= 0 .

Proof. From the definition of B0 (cf. (4.15)) we find that V = V × H1(Ωf ),
where

V := { ζ ∈ H(div; Ωs) : ζ = ζt in Ωs and ζ ν = 0 on Σ } .

In addition, it is easy to see that Ξ(ζ) ∈ V for each ζ ∈ V . In fact, the symmetry of
Ξ(ζ) follows from that of ζ and P(ζ) (cf. (4.4)), whereas the identity (4.6) guarantees
that Ξ(ζ)ν = 0 on Σ. Then, applying Lemma 4.5 to (I − P)(ζ), we deduce from
(4.26) that there exists C > 0, depending on μ, c1, c2, κs, ρf , and ω2, such that

(4.31)
Re

{
A0((ζ, r), (Ξ(ζ), r))

}
≥ C

{
‖P(ζ)‖2

H(div; Ωs)
+ ‖(I − P)(ζ)‖2

H(div; Ωs)
+ ‖r‖2

H1(Ωf )

}
for each (ζ, r) ∈ V. Therefore, using the stability of the decomposition (4.7), the
fact that ‖(ζ, r)‖H = ‖(ζ, r)‖H, and the boundedness of Ξ, we deduce from (4.31)
that

(4.32) Re
{
A0((ζ, r), (Ξ(ζ), r))

}
≥ C ‖(ζ, r)‖2

H ≥ C ‖(Ξ(ζ), r)‖H ‖(ζ, r)‖H

for each (ζ, r) ∈ V, which implies the inf-sup condition (4.29). Finally, the symmetry
of A0 and the estimate (4.32) yield the inf-sup condition (4.30) and complete the
proof.

Lemma 4.8. The operators K0 : H → H and K1 : H → Q are compact.
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Proof. We begin by recalling (cf. (4.8)) that there exists ε > 0 such that P(τ ) ∈
[Hε(Ωs)]

2×2 for all τ ∈ H(div; Ωs), which, according to the compact imbedding

Hε(Ωs)
c
↪→ L2(Ωs), yields the compactness of P : H(div; Ωs) → [L2(Ωs)]

2×2. It fol-
lows that P∗ : [L2(Ωs)]

2×2 → H(div; Ωs), P∗ C−1 P, (I−P)∗ C−1 P, and P∗ C−1 (I−
P) are all compact, which shows that the operator associated to the first three terms
defining K0 (cf. (4.12)) becomes compact as well. Certainly, we have also used here
that C−1 : [L2(Ωs)]

2×2 → [L2(Ωs)]
2×2 (cf. (3.14)) is continuous. Next, because of

the second identity in (4.5), the fourth term on the right-hand side of (4.12) consti-
tutes a finite rank operator, whereas for the last one it suffices to apply the compact
imbedding of H1(Ωf ) into L2(Ωf ).

Finally, the continuous mapping q ∈ H1(Ωf ) → qν ∈ [L2(Σ)]2 and the compact

imbedding H1/2(Σ)
c
↪→ L2(Σ) imply the compactness of K1 : H → Q (cf. (4.16)).

We are able now to establish the main result of this section.
Theorem 4.1. Assume that the homogeneous problem associated to (3.8) has

only the trivial solution. Then, given f ∈ [L2(Ωs)]
2 and g ∈ H−1/2(Γ), there exists a

unique solution ((σ, p), (ϕ,γ)) ∈ H × Q to (3.8) (equivalently (4.17)). In addition,
there exists C > 0 such that

(4.33) ‖((σ, p), (ϕ,γ))‖H×Q ≤ C
{
‖f‖[L2(Ωs)]2 + ‖g‖H−1/2(Γ)

}
.

Proof. It suffices to observe that the left-hand side of (4.17) constitutes a Fredholm
operator of index zero. In fact, Lemmas 4.3 and 4.7 imply that

(
A0 B∗

0

B0 0

)
is an isomor-

phism, and Lemma 4.8 yields the compactness of
(

K0 K∗
1

−K1 0

)
.

5. Analysis of the primal/dual-mixed finite element method. In this
section we introduce a Galerkin approximation of (3.8) and prove its well-posedness.

5.1. Preliminaries. We first let {Th}h>0 := {Ths}hs>0 ∪ {Thf
}hf>0, where

{Ths}hs>0 and {Thf
}hf>0 are regular families of triangulations of the polygonal regions

Ω̄s and Ω̄f , respectively, by triangles T of diameter hT with mesh sizes hs := max{hT :
T ∈ Ths

}, hf := max{hT : T ∈ Thf
}, and h := max{hs, hf}, and such that the

vertices of {Ths}hs>0 and {Thf
}hf>0 coincide on Σ. Also, for reasons that will become

clear below, we introduce an independent partition {Σ̂1, Σ̂2, . . . , Σ̂m} of the interface

Σ and denote ĥ := max{ |Σ̂j | : j ∈ {1, . . . ,m} }. Then we define the finite element
subspaces Hσ

h , Hp
h, Qϕ

ĥ
, and Qγ

h for the unknowns σ, p, ϕ, and γ of (3.8), respectively,
as follows:

(5.1)
Hσ

h :=
{
τh ∈ H(div; Ωs) : τh,i|T ∈ RT0(T )t ⊕ P0(T ) curlt bT

∀ i ∈ {1, 2} , ∀T ∈ Ths

}
,

(5.2) Hp
h :=

{
qh ∈ C(Ω̄f ) : qh|T ∈ P1(T ) ∀T ∈ Thf

}
,

(5.3) Qϕ

ĥ
:=

{
ψĥ ∈ [C(Σ)]2 : ψĥ|Σ̂j

∈ [P1(Σ̂j)]
2 ∀ j ∈ {1, . . . ,m}

}
,

(5.4) Qγ
h :=

{(
0 ηh

−ηh 0

)
: ηh ∈ C(Ω̄s) , ηh|T ∈ P1(T ) ∀T ∈ Ths

}
,
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where τh,i is the ith row of τh, RT0(T ) is the local Raviart–Thomas space of or-
der 0 (cf. [10, 30]), bT is the usual cubic bubble function on T ∈ Ths , curlt bT :=
(∂bT∂x2

,−∂bT
∂x1

), C(·) stands for the space of continuous functions on the corresponding

domain, and, given an integer 
 ≥ 0 and a subset K of R
2, P�(K) denotes the space

of polynomials defined in K of total degree ≤ 
. In addition, in what follows we will
also need the following spaces:

(5.5) H̃σ
h := {τ̃h ∈ Hσ

h : τ̃h ν = 0 on Σ } ,

(5.6)
Eσ

h := {τh ∈ H(div; Ωs) : τh,i|T ∈ RT0(T )t ∀ i ∈ {1, 2} , ∀T ∈ Ths} ,

and

(5.7) Qu
h :=

{
vh ∈ [L2(Ωs)]

2 : vh|T ∈ [P0(T )]2 ∀T ∈ Ths

}
.

We remark that Hσ
h ×Qu

h ×Qγ
h constitutes the well-known PEERS introduced in [1]

for a mixed finite element approximation of the linear elasticity problem in the plane.
Next, given δ ∈ (0, 1], we let Eh : [Hδ(Ωs)]

2×2 ∩ H(div; Ωs) → Eσ
h be the usual

equilibrium interpolation operator (see [10, 30]), which is characterized by the identi-
ties
(5.8)

div(Eh(τ )) = Ph(div(τ )) and

∫
e

Eh(τ )ν =

∫
e

τν for every edge e of Ths
,

where Ph : [L2(Ωs)]
2 → Qu

h is the [L2(Ωs)]
2-orthogonal projector. Since Eσ

h ⊆ Hσ
h ,

we note that Eh can also be considered as acting from [Hδ(Ωs)]
2 ∩ H(div; Ωs) into

Hσ
h . In particular, the second identity in (5.8) implies that Eh(τ ) ∈ H̃σ

h for each
τ ∈ [Hδ(Ωs)]

2 ∩ H(div; Ωs) such that τ ν = 0 on Σ. On the other hand, it is well
known (see, e.g., Theorem 3.16 of [23]) that Eh satisfies
(5.9)

‖τ − Eh(τ )‖[L2(Ωs)]2×2

≤ C hδ
{
|τ |[Hδ(Ωs)]2×2 + ‖div(τ )‖[L2(Ωs)]2

}
∀ τ ∈ [Hδ(Ωs)]

2×2 ∩ H(div; Ωs).

Moreover, in order to establish the global approximation properties of our finite el-
ement subspaces, we now let Πh : H1(Ωf ) → Hp

h, Qĥ : [H1/2(Σ)]2 → Qϕ

ĥ
, and

Rh : [L2(Ωs)]
2×2 → Qγ

h be the corresponding orthogonal projectors with respect to
the natural norms of each space. Then we have (see [4, 10, 30]) the following:
(APσ

h ) For each δ ∈ (0, 1] and for each τ ∈ [Hδ(Ωs)]
2×2, with div(τ ) ∈ [Hδ(Ωs)]

2,
there holds

‖τ − Eh(τ )‖H(div; Ωs) ≤ C hδ
{
‖τ‖[Hδ(Ωs)]2×2 + ‖div(τ )‖[Hδ(Ωs)]2

}
.

(APp
h) For each s ∈ [1, 2] and for each q ∈ Hs(Ωf ), there holds

‖q − Πh(q)‖H1(Ωf ) ≤ C hs−1 ‖q‖Hs(Ωf ) .

(APϕ

ĥ
) For each t ∈

[
1
2 ,

3
2

]
and for each ψ ∈ [Ht(Σ)]2, there holds

‖ψ −Qĥ(ψ)‖[H1/2(Σ)]2 ≤ C ĥt−1/2 ‖ψ‖[Ht(Σ)]2 .
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(APγ
h) For each s ∈ [0, 1] and for each η ∈ [Hs(Ωs)]

2×2 ∩ [L2(Ωs)]
2×2
asym, there holds

‖η −Rh(η)‖[L2(Ωs)]2×2 ≤ C hs ‖η‖[Hs(Ωs)]2×2 .

(APu
h) For each t ∈ [0, 1] and for each v ∈ [Ht(Ωs)]

2, there holds

‖v − Ph(v)‖[L2(Ωs)]2 ≤ C ht ‖v‖[Ht(Ωs)]2 .

Note that (APσ
h ) is actually a straightforward consequence of (5.8), (5.9), and (APu

h).
We now let

(5.10) Hh := Hσ
h ×Hp

h , Qĥ,h := Qϕ

ĥ
×Qγ

h

and define the primal/dual-mixed finite element scheme associated to our coupled
problem (3.8) as follows: Find ((σh, ph), (ϕĥ,γh)) ∈ Hh × Qĥ,h such that

(5.11)
A((σh, ph), (τh, qh)) + B1((τh, qh), (ϕĥ,γh)) = F (τh, qh) ∀ (τh, qh) ∈ Hh ,

B2((σh, ph), (ψĥ,ηh)) = 0 ∀ (ψĥ,ηh) ∈ Qĥ,h .

5.2. Well-posedness of the primal/dual-mixed finite element method.
In this section we prove the well-posedness of our primal/dual-mixed finite element
scheme (5.11). To this end, as established by a classical result on projection methods
for Fredholm operators of index zero (see, e.g., Theorem 13.7 in [25]), it suffices

to show that the Galerkin scheme associated to the isomorphism
(

A0 B∗
0

B0 0

)
is well

posed. Therefore, in what follows we prove that A0 and B0 (cf. (4.11), (4.15)) satisfy
the corresponding inf-sup conditions on the finite element subspace Hh × Qĥ,h, thus
providing the discrete analogues of Lemmas 4.3 and 4.7.

We begin with the following preliminary estimate.
Lemma 5.1. There exists C1 > 0, independent of h and ĥ, such that for each

(ψĥ,ηh) ∈ Qĥ,h there holds

(5.12) sup
(τh,qh)∈Hh
(τh,qh)�=0

|B0((τh, qh), (ψĥ,ηh)) |
‖(τh, qh)‖H

≥ C1 ‖ηh‖[L2(Ωs)]2×2 .

Proof. Given (ψĥ,ηh) ∈ Qĥ,h, we apply Theorem 4.5 in [26] (see also Lemma 4.4

in [1]) and deduce the existence of ζh ∈ Hσ
h such that ζh ν = 0 on Σ, div(ζh) = 0

in Ωs, and∣∣B0((ζh, 0), (ψĥ,ηh))
∣∣ =

∣∣∣∣ ∫
Ωs

ζh : ηh

∣∣∣∣ ≥ C ‖ζh‖[L2(Ωs)]2×2 ‖ηh‖[L2(Ωs)]2×2 ,

which yields (5.12) and finishes the proof.
Next, we follow the analysis in [5] and introduce the subspace of [H−1/2(Σ)]2

given by the piecewise constant functions. In other words, if {Σ1,Σ2, . . . ,Σn} is the
partition on Σ induced by the triangulation Th, we define

Qξ
h :=

{
ξh ∈ [L2(Σ)]2 : ξh|Σj ∈ [P0(Σj)]

2 ∀j ∈ {1, . . . , n}
}
,

which satisfies the following approximation property (see [4, 29]):

(APξ
h) For each s ∈ (− 1

2 ,
1
2 ] and for each ξ ∈ [Hs(Σ)]2 there exists ξh ∈ Qξ

h such that

‖ξ − ξh‖[H−1/2(Σ)]2 ≤ C hs+1/2 ‖ξ‖[Hs(Σ)]2 .
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Also, we assume that {Σ1,Σ2, . . . ,Σn} and {Σ̂1, Σ̂2, . . . , Σ̂m} are uniformly regular,

which means that there exist C, Ĉ > 0, independent of h and ĥ, such that |Σj | ≥
C h for all j ∈ {1, . . . , n} and |Σ̂j | ≥ Ĉ ĥ for all j ∈ {1, . . . ,m}, for all h, ĥ > 0.

These conditions yield the inverse inequalities for the spaces Qξ
h and Qϕ

ĥ
(see [4, 29]),

respectively; that is, for any real numbers s and t with − 1
2 ≤ s ≤ t ≤ 0, there exists

c > 0 such that

(5.13) ‖ξh‖[Ht(Σ)]2 ≤ c hs−t ‖ξh‖[Hs(Σ)]2 ∀ ξh ∈ Qξ
h ,

and for any real numbers s and t with 0 ≤ s ≤ t ≤ 1, there exists c > 0 such that

(5.14) ‖ψĥ‖[Ht(Σ)]2 ≤ c ĥs−t ‖ψĥ‖[Hs(Σ)]2 ∀ψĥ ∈ Qϕ

ĥ
.

The following lemma establishes a second preliminary estimate.
Lemma 5.2. There exist C0 ∈ ]0, 1[ and C2 > 0, independent of h and ĥ, such

that for all h ≤ C0 ĥ and for each (ψĥ,ηh) ∈ Qĥ,h, there holds

(5.15) sup
(τh,qh)∈Hh
(τh,qh)�=0

|B0((τh, qh), (ψĥ,ηh)) |
‖(τh, qh)‖H

≥ C2 ‖ψĥ‖[H1/2(Σ)]2 − ‖ηh‖[L2(Ωs)]2×2 .

Proof. Given ξh ∈ Qξ
h, we consider the discrete analogue of (4.18) (cf. proof of

Lemma 4.1) and let z ∈ [H1(Ωs)]
2 be the unique weak solution, up to an element in

[P0(Ωs)]
2, of the boundary value problem with Neumann boundary conditions:

−Δz =
1

|Ωs|

∫
Σ

ξh in Ωs , ∇zν = − ξh on Σ .

Since Qξ
h ⊆ [L2(Σ)]2, the corresponding regularity result (see, e.g., [20, 21]) implies

that z ∈ [H1+δ(Ωs)]
2 for each δ ∈

[
0, 1

2

]
, and

(5.16) ‖z‖[H1+δ(Ωs)]2 ≤ C ‖ξh‖[H−1/2+δ(Σ)]2 .

Then we let ζ := ∇z in Ωs and observe that

(5.17) div(ζ) = − 1

|Ωs|

∫
Σ

ξh in Ωs and ζν = − ξh on Σ .

In addition, using (5.16) and (5.17), we obtain
(5.18)

‖ζ‖H(div; Ωs) ≤ C‖ξh‖[H−1/2(Σ)]2 and ‖ζ‖[Hδ(Ωs)]2×2 ≤ C‖ξh‖[H−1/2+δ(Σ)]2 .

Now, according to the characterization (5.8), there holds div(Eh(ζ)) = div(ζ) =
− 1

|Ωs|
∫
Σ
ξh in Ωs and Eh(ζ)ν = ζν = − ξh on Σ. It follows from (5.9) and (5.18)

that

‖Eh(ζ)‖H(div; Ωs) ≤ ‖ζ − Eh(ζ)‖[L2(Ωs)]2×2 + ‖ζ‖H(div; Ωs)

≤ C
{
hδ |ζ|[Hδ(Ωs)]2×2 + ‖ξh‖[H−1/2(Σ)]2

}
≤ C

{
hδ ‖ξh‖[H−1/2+δ(Σ)]2 + ‖ξh‖[H−1/2(Σ)]2

}
,

which, applying the inverse inequality (5.13), yields

‖Eh(ζ)‖H(div; Ωs) ≤ Ĉ ‖ξh‖[H−1/2(Σ)]2 .
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Therefore, given (ψĥ,ηh) ∈ Qĥ,h, we find that

sup
(τh,qh)∈Hh
(τh,qh)�=0

|B0((τh, qh), (ψĥ,ηh)) |
‖(τh, qh)‖H

≥
|B0((Eh(ζ), 0), (ψĥ,ηh)) |

‖Eh(ζ)‖H(div; Ωs)

=

∣∣∣ 〈ξh , ψĥ〉Σ +

∫
Ω

Eh(ζ) : ηh

∣∣∣
‖Eh(ζ)‖H(div; Ωs)

≥ 1

Ĉ

| 〈ξh,ψĥ〉Σ |
‖ξh‖[H−1/2(Σ)]2

− ‖ηh‖[L2(Ωs)]2×2

for all ξh ∈ Qξ
h, and hence

(5.19)

sup
(τh,qh)∈Hh
(τh,qh)�=0

|B0((τh, qh), (ψĥ,ηh)) |
‖(τh, qh)‖H

≥ 1

Ĉ
sup

ξh∈Q
ξ
h

ξh �=0

| 〈ξh,ψĥ〉Σ |
‖ξh‖[H−1/2(Σ)]2

− ‖ηh‖[L2(Ωs)]2×2 .

Since the normal trace on Σ is well defined and continuous from [Hδ(Ωs)]
2×2 ∩

H(div; Ωs) onto [H−1/2+δ(Σ)]2 for δ �= 1
2 , we now apply the vector version of

Lemma 3.3 in [5], making use of the approximation property (APξ
h) and the inverse

inequality (5.14), and deduce that there exist C0 ∈ ]0, 1[ and C̃2 > 0, independent

of h and ĥ, such that for all h ≤ C0 ĥ there holds

(5.20) sup
ξh∈Q

ξ
h

ξh �=0

| 〈ξh,ψĥ〉Σ |
‖ξh‖[H−1/2(Σ)]2

≥ C̃2 ‖ψĥ‖[H1/2(Σ)]2 .

In this way, (5.19) and (5.20) yield the required estimate and complete the proof.
The discrete inf-sup condition for B0 can be established now as a straightforward

consequence of Lemmas 5.1 and 5.2.
Lemma 5.3. Let C0 ∈ ]0, 1[ be the constant provided by Lemma 5.2. Then there

exists β > 0, independent of h and ĥ, such that for all h ≤ C0 ĥ and for each
(ψĥ,ηh) ∈ Qĥ,h, there holds

sup
(τh,qh)∈Hh
(τh,qh)�=0

|B0((τh, qh), (ψĥ,ηh)) |
‖(τh, qh)‖H

≥ β ‖(ψĥ,ηh)‖H .

Proof. It suffices to add (5.12) and (5.15), the latter multiplied by C1/2.
It remains to establish the discrete weak coercivity of A0. To this end, we now

introduce the following discrete approximation of the operator P (cf. (4.4)):

(5.21)
Ph : H(div; Ωs) → H̃σ

h ,

τ → Ph(τ ) := σ̃h ,

where (σ̃h, ũh, γ̃h) ∈ H̃σ
h × (Qu

h ∩ RM(Ωs)
⊥) × Qγ

h is the mixed finite element ap-
proximation of (σ̃, ũ, γ̃) (cf. section 4.1) (see also [15] for details). In particular, we
easily find that for each τ ∈ H(div; Ωs) there holds

(5.22) Ph(τ )ν = 0 on Σ and

∫
Ωs

Ph(τ ) : η̃h = 0 ∀ η̃h ∈ Qγ
h .
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In addition, one can show that there exist C > 0, independent of h, such that

(5.23)

‖σ̃ − σ̃h‖H(div; Ωs) + ‖ũ − ũh‖[L2(Ωs)]2 + ‖γ̃ − γ̃h‖[L2(Ωs)]2×2

≤ C̃
{
‖(I − Eh)(σ̃)‖H(div; Ωs) + ‖(I − Ph)(ũ)‖[L2(Ωs)]2

+ ‖(I −Rh)(γ̃)‖[L2(Ωs)]2×2

}
.

Hence, we are in a position to estimate

‖P(τh) − Ph(τh)‖H(div; Ωs) = ‖σ̃ − σ̃h‖H(div; Ωs) for each τh ∈ Hσ
h .

More precisely, we have the following result.
Lemma 5.4. Let ε > 0 be the parameter defining the regularity of the solution of

(4.1). Then there exists C > 0, independent of h, such that

(5.24) ‖P(τh) − Ph(τh)‖H(div; Ωs) ≤ C hε ‖div(τh)‖[L2(Ωs)]2 ∀ τh ∈ Hσ
h .

Proof. It suffices to show that the right-hand side of (5.23) is bounded by
C hε ‖div(τh)‖[L2(Ωs)]2 . Indeed, using (APu

h), (APγ
h), and the regularity estimate

(4.3), we easily find that

(5.25)

‖(I − Ph)(ũ)‖[L2(Ωs)]2 + ‖(I −Rh)(γ̃)‖[L2(Ωs)]2×2

≤ C
{
h ‖ũ‖[H1(Ωs)]2 + hε ‖γ̃‖[Hε(Ωs)]2×2

}
≤ C hε ‖div(τh)‖[L2(Ωs)]2 .

Now, we observe that a straight application of (APσ
h ) to ‖(I−Eh)(σ̃)‖H(div; Ωs) yields

the expression hδ ‖div(σ̃)‖[Hδ(Ωs)]2 , which does not provide the expected estimate,
and hence a different procedure must be employed. In fact, it is clear from (4.1), with
τh instead of τ , that

(5.26) div(σ̃) = (I − M)(div(τh)) in Ωs ,

which, applying (5.9), (4.3), and the boundedness of M, leads to

(5.27)

‖(I − Eh)(σ̃)‖[L2(Ωs)]2×2

≤ C hε
{
|σ̃|[Hε(Ωs)]2×2 + ‖div(σ̃)‖[L2(Ωs)]2

}
≤ C hε ‖div(τh)‖[L2(Ωs)]2 .

Next, it follows from (5.8) and (5.26) that

‖div(σ̃) − div(Eh(σ̃))‖[L2(Ωs)]2

= ‖(I − Ph)(div(σ̃))‖[L2(Ωs)]2 = ‖(I − Ph)(M(div(τh)))‖[L2(Ωs)]2 ,

whence (APu
h), the fact that all the norms in RM(Ωs) are equivalent (with constants

certainly independent of h), and the boundedness of M imply that

(5.28)
‖div(σ̃) − div(Eh(σ̃))‖[L2(Ωs)]2 ≤ C h ‖M(div(τh))‖[H1(Ωs)]2

≤ C h ‖M(div(τh))‖[L2(Ωs)]2 ≤ C h ‖div(τh)‖[L2(Ωs)]2 .

In this way, (5.27) and (5.28) give the required estimate for ‖(I − Eh)(σ̃)‖H(div; Ωs),
which, together with (5.25) and (5.23), yields (5.24) and finishes the proof.
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We now recall from [14] the following result, which is the discrete analogue of
Lemma 4.5, and whose proof applies the decomposition (4.22)–(4.23) and the approx-
imation property (APϕ

ĥ
).

Lemma 5.5. Let Vĥ := { τ ∈ H(div; Ωs) : 〈τν,ψĥ〉Σ = 0 for all ψĥ ∈ Qϕ

ĥ
}.

Then there exist positive constants C, h0, independent of ĥ, such that for each ĥ ≤ h0

there holds

(5.29) C ‖τ‖2
H(div; Ωs)

≤ ‖τ 0‖2
H(div; Ωs)

∀ τ ∈ Vĥ ,

where τ = τ 0 + d I , with τ 0 ∈ H0(div; Ωs) and d ∈ C.
Proof. See Lemma 4.4 in [14].
Actually, Lemma 4.4 in [14] establishes the estimate (5.29) for the subspace

Vĥ := { τh ∈ Hσ
h : 〈τhν,ψĥ〉Σ = 0 ∀ψĥ ∈ Qϕ

ĥ
} .

Nevertheless, it is easy to see that the same proof is valid for Vĥ as defined here in
Lemma 5.5.

The discrete weak coercivity of A0 can be proved now.
Lemma 5.6. Let Vh,ĥ be the discrete kernel of B0, that is,

Vh,ĥ :=
{

(τh, qh) ∈ Hh : B0((τh, qh), (ψĥ,ηh)) = 0 ∀ (ψĥ,ηh) ∈ Qĥ,h

}
,

and let h0 > 0 be the constant provided by Lemma 5.5. Then there exist C, h1 > 0,
independent of h and ĥ, such that for each ĥ ≤ h0 and for each h ≤ h1 there holds

(5.30) sup
(τh,qh)∈V

h,ĥ
(τh,qh)�=0

|A0((ζh, rh), (τh, qh)) |
‖(τh, qh)‖H

≥ C ‖(ζh, rh)‖H ∀ (ζh, rh) ∈ Vh,ĥ .

In addition, for each ĥ ≤ h0 and for each h ≤ h1 there holds
(5.31)

sup
(ζh,rh)∈Vh,ĥ

|A0((ζh, rh), (τh, qh)) | > 0 ∀ (τh, qh) ∈ Vh,ĥ , (τh, qh) �= 0 .

Proof. Let us introduce the linear and bounded operator Ξh := (I − 2Ph) :
Hσ

h → Hσ
h . It follows from Lemma 5.4 that

‖Ξ(ζh) − Ξh(ζh)‖H(div; Ωs) ≤ C hε ‖div(ζh)‖[L2(Ωs)]2 ≤ C hε ‖ζh‖H(div; Ωs)

for all ζh ∈ Hσ
h , and hence, using the boundedness of A0 and the inequality (4.26)

(cf. Lemma 4.6), we find that for each (ζh, rh) ∈ Hh there holds

(5.32)

∣∣∣Re
{
A0((ζh, rh), (Ξh(ζh), rh))

} ∣∣∣
≥

∣∣∣Re
{
A0((ζh, rh), (Ξ(ζh), rh))

} ∣∣∣ − C hε ‖(ζh, rh)‖2
H

≥ C
{
‖P(ζh)‖2

H(div; Ωs)
+ ‖(I − P)(ζh)0‖2

H(div; Ωs)
+ ‖rh‖2

H1(Ωf )

}
−C hε ‖(ζh, rh)‖2

H .

Now, from the definition of B0 (cf. (4.15)) we see that Vh,ĥ = Vh,ĥ ×Hp
h, where

Vh,ĥ := Vĥ ∩
{
τh ∈ Hσ

h :

∫
Ωs

τh : ηh = 0 ∀ηh ∈ Qγ
h

}
.
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Then it is clear that (I−P)(ζh) ∈ Vĥ for each ζh ∈ Vh,ĥ, and therefore Lemma 5.5
implies that for each ĥ ≤ h0 there holds

‖(I − P)(ζh)0‖2
H(div; Ωs)

≥ c ‖(I − P)(ζh)‖2
H(div; Ωs)

.

Thus, replacing the above estimate back into (5.32), and using the stability of the

decomposition (4.7), we deduce the existence of h1 > 0 such that for each ĥ ≤ h0 and
for each h ≤ h1 there holds

(5.33)

∣∣∣Re
{
A0((ζh, rh), (Ξh(ζh), rh))

} ∣∣∣
≥ C ‖(ζh, rh)‖2

H ≥ C ‖(Ξh(ζh), rh)‖H ‖(ζh, rh)‖H

for each (ζh, rh) ∈ Vh,ĥ, where the boundedness of Ξh has also been used in the last

inequality. In this way, since (5.22) implies that Ξh(τh) ∈ Vh,ĥ for each τh ∈ Vh,ĥ,

the discrete inf-sup condition (5.30) follows straightforwardly from (5.33). In addition,
the symmetry of A0 and the estimate (5.33) yield the discrete inf-sup condition (5.31)
and complete the proof.

The following theorem establishes the well-posedness and convergence of the dis-
crete scheme (5.11).

Theorem 5.1. Assume that the homogeneous problem associated to (3.8) has
only the trivial solution. Let C0 ∈ ]0, 1[ and h0, h1 > 0 be the constants provided by
Lemmas 5.2, 5.5, and 5.6, respectively. Then there exist h̃0 ∈ ]0, h0] and h̃1 ∈ ]0, h1]

such that for each ĥ ≤ h̃0 and for each h ≤ min{h̃1, C0 ĥ}, the primal/dual-mixed
finite element scheme (5.11) has a unique solution ((σh, ph), (ϕĥ,γh)) ∈ Hh ×Qĥ,h.
In addition, there exist C1, C2 > 0, independent of h and ĥ, such that

(5.34)

‖((σh, ph), (ϕĥ,γh))‖H×Q

≤ C1 sup
(τh,qh)∈Hh
(τh,qh)�=0

|F (τh, qh)|
‖(τh, qh)‖H

≤ C1

{
‖f‖[L2(Ωs)]2 + ‖g‖H−1/2(Γ)

}
and
(5.35)

‖((σ, p), (ϕ,γ)) − ((σh, ph), (ϕĥ,γh))‖H×Q

≤ C2 inf
((τh,qh),(ψĥ,ηh))∈Hh×Qĥ,h

‖((σ, p), (ϕ,γ)) − ((τh, qh), (ψĥ,ηh))‖H×Q .

Furthermore, if there exists δ ∈ (0, 1] such that σ ∈ [Hδ(Ωs)]
2×2, div(σ) ∈ [Hδ(Ωs)]

2,
p ∈ H1+δ(Ωf ), ϕ ∈ [H1/2+δ(Σ)]2, and γ ∈ [Hδ(Ωs)]

2×2, then there holds
(5.36)

‖((σ, p), (ϕ,γ)) − ((σh, ph), (ϕĥ,γh))‖H×Q ≤ C3 ĥ
δ ‖ϕ‖[H1/2+δ(Σ)]2

+C3 h
δ
{
‖σ‖[Hδ(Ωs)]2×2 + ‖div(σ)‖[Hδ(Ωs)]2 + ‖p‖H1+δ(Ωf ) + ‖γ‖[Hδ(Ωs)]2×2

}
,

with a constant C3 > 0, independent of h and ĥ.
Proof. Thanks to Lemmas 5.3 and 5.6, the proof of the first part is a direct

application of Theorem 13.7 in [25], whereas the rate of convergence (5.36) follows
directly from the Cea estimate (5.35) and the approximation properties (APσ

h ), (APp
h),

(APϕ

ĥ
), and (APγ

h) (cf. section 5.1).
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6. Numerical results. In this section we present an example illustrating the
performance of the primal/dual-mixed finite element scheme (5.11) on a finite se-
quence of uniform triangulations of the domain. We begin by introducing additional
notation. The variable N stands for the number of degrees of freedom defining the
finite element subspaces Hh and Qĥ,h, and the individual errors are denoted by

e(σ) := ‖σ − σh‖H(div; Ωs) , e(p) := ‖p− ph‖H1(Ωf ) ,

e(ϕ) := ‖ϕ−ϕĥ‖[H1/2(Σ)]2 , and e(γ) := ‖γ − γh‖[L2(Ωs)]2×2 .

Also, we let r(σ), r(p), r(ϕ), and r(γ) be the experimental rates of convergence given
by

r(σ) :=
log(e(σ)/e′(σ))

log(h/h′)
, r(p) :=

log(e(p)/e′(p))

log(h/h′)
,

r(ϕ) :=
log(e(ϕ)/e′(ϕ))

log(h/h′)
, and r(γ) :=

log(e(γ)/e′(γ))

log(h/h′)
,

where h and h′ denote two consecutive mesh sizes with corresponding errors e and e′.
We consider the domains Ωs := ]−0.3, 0.3[2 and Ωf := B(0, 1) \Ωs, where B(0, 1)

is the unit circle, and take the parameters ω = 10, ρs = ρf = λ = μ = 1, whence
κf = 1 and κs = 10. On the other hand, let K0, K1, and K2 be the modified Bessel

functions of the second kind and order 0, 1, and 2, respectively, and let H
(1)
0 be the

Hankel function of the first kind and order 0. Then we choose the data f and g so
that the exact solution of (2.9) is given by

u(x) =

⎛⎜⎜⎜⎝
1

2π
ψ(x) − (x1 − 1)2

r2
1

χ(x)

− (x1 − 1)x2

r2
1

χ(x)

⎞⎟⎟⎟⎠ ∀x ∈ Ωs , p(x) = H
(1)
0 (ω |x|) ∀x ∈ Ωf ,

where

ψ(x) := K0(ı ω r1) +
1

ı ω r1

(
K1(ı ω r1) − 1√

3
K1

(
ı ω r1√

3

))
,

r1 :=
√

(x1 − 1)2 + x2
2 , and χ(x) := K2(ı ω r1) − 1

3
K2

(
ı ω r1√

3

)
.

Actually, u is the fundamental solution, centered at (1, 0), of the elastodynamic equa-
tion, which yields f = 0 in Ωs, and p is the fundamental solution, centered at the
origin, of the Helmholtz equation in Ωf . In this way, (u, p) is the solution of (2.9)
with nonhomogeneous transmission conditions on Σ and suitable boundary conditions
on Γ.

The numerical results shown below were obtained on a Pentium Xeon computer
with dual processors, using a MATLAB code. According to the requirements estab-
lished in our main theorem, Theorem 5.1, for the mesh sizes h and ĥ, and since the
constant C0 mentioned there is not explicitly known, we simply put a vertex of the
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Fig. 6.1. Zoom around Σ (dashed line) of a sample coarse mesh.

Table 6.1

Mesh sizes h, degrees of freedom N , individual errors, and rates of convergence.

h N e(σ) r(σ) e(p) r(p) e(ϕ) r(ϕ) e(γ) r(γ)

0.0982 1297 0.220E-00 — 0.103E-00 — 0.253E-01 — 0.942E-02 —

0.0654 2763 0.145E-00 1.02 0.654E-01 1.12 0.121E-01 1.81 0.556E-02 1.30

0.0490 4885 0.109E-00 0.99 0.464E-01 1.18 0.702E-02 1.90 0.320E-02 1.91

0.0321 11506 0.693E-01 1.06 0.288E-01 1.11 0.286E-02 2.10 0.159E-02 1.63

0.0245 19616 0.530E-01 1.00 0.223E-01 0.95 0.197E-02 1.39 0.119E-02 1.09

0.0164 43140 0.357E-01 0.97 0.143E-01 1.10 0.981E-03 1.72 0.664E-03 1.44

0.0123 78271 0.259E-01 1.11 0.108E-01 0.97 0.592E-03 1.75 0.440E-03 1.43

0.0082 175630 0.173E-01 0.99 0.710E-02 1.03 0.296E-03 1.70 0.255E-03 1.34

0.0061 310084 0.131E-01 0.96 0.530E-02 1.01 0.187E-03 1.59 0.181E-03 1.18

independent partition {Σ̂1, Σ̂2, . . . , Σ̂m} every two vertices of Th on Σ (see Figure 6.1,
where the vertices of {Σ̂1, Σ̂2, . . . , Σ̂m} are marked with bullets). As we will see below,
this choice works out well in the present example. In addition, there is no need to
take sufficiently small values of ĥ and h (as technically suggested by the inequalities

ĥ ≤ h̃0 and h ≤ h̃1 in Theorem 5.1) since the resulting discrete schemes all become
well posed for the degrees of freedom employed.

In Table 6.1 we present the convergence history of our example for a sequence of
quasi-uniform triangulations of the computational domain Ω̄s ∪Ω̄f . We see there that
the dominant error is given by e(σ), which is actually a quite frequent fact in many
mixed finite element schemes. We also remark that the rate of convergence O(h) pre-
dicted by Theorem 5.1 (when δ = 1) is attained for all the unknowns. Moreover, we
observe that at some stages the convergence of e(ϕ) and e(γ) is even faster than O(h),
which could mean either a superconvergence phenomenon of these unknowns or a spe-
cial feature of this particular example. Finally, we display real and imaginary parts of
some components of the exact and approximate solutions (for N = 43, 140) in Figures
6.2 and 6.3, from which we notice that they are indistinguishable from each other.
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Fig. 6.2. Approximate (left) and exact (right) real and imaginary parts of σ11.
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Fig. 6.3. Approximate (dots) and exact (solid line) real and imaginary parts of ϕ1.
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Abstract. Several relaxation approximations to partial differential equations have been recently
proposed. Examples include conservation laws, Hamilton–Jacobi equations, convection-diffusion
problems, and gas dynamics problems. The present paper focuses on diffusive relaxation schemes
for the numerical approximation of nonlinear parabolic equations. These schemes are based on a
suitable semilinear hyperbolic system with relaxation terms. High-order methods are obtained by
coupling ENO and weighted essentially nonoscillatory (WENO) schemes for space discretization with
implicit-explicit (IMEX) schemes for time integration. Error estimates and a convergence analysis
are developed for semidiscrete schemes with a numerical analysis for fully discrete relaxed schemes.
Various numerical results in one and two dimensions illustrate the high accuracy and good properties
of the proposed numerical schemes, also in the degenerate case. These schemes can be easily imple-
mented on parallel computers and applied to more general systems of nonlinear parabolic equations
in two- and three-dimensional cases.
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tion, WENO reconstruction
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1. Introduction. Relaxation approximations to nonlinear partial differential
equations have been introduced in [22] (conservation laws) and [28] (degenerate diffu-
sion) and later studied also in [2, 1, 21, 25, 29, 27]. The main idea is to approximate
the original partial differential equation with a suitable semilinear hyperbolic system
with stiff relaxation terms. As the relaxation parameter ε → 0, the solution of the
system converges to the solution of the original partial differential equation.

Moreover, appropriate numerical schemes for the relaxation system yield accu-
rate numerical approximations to the original equation or system when the relaxation
rate ε is sufficiently small. Numerically, the main advantage of solving the relaxation
model over the original conservation law lies in the simple linear structure of char-
acteristic fields and in the fact that the lower-order term is localized. In particular,
the semilinear nature of the relaxation system gives a new way to develop numerical
schemes that are simple, general, and Riemann solver free [20, 22].

The aim of this work is to analyze, from both a theoretical and a computational
point of view, relaxation schemes for the numerical approximation of the following
nonlinear degenerate diffusion problem:

∂u

∂t
= DΔ(p(u)), x ∈ R

d, t > 0,(1.1)

with initial data u(x, 0) = u0(x) ∈ L1(Rd). D > 0 is a diffusivity coefficient. As
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usual, we will assume p : R → R to be nondecreasing and Lipschitz continuous [36].
The equation is degenerate if p(0) = 0, and the set of points where u(x) becomes 0 is
called the interface.

In the case p(u) = um, m > 1, the previous equation is the porous media equa-
tion, which describes the flow of a gas through a porous interface according to some
constitutive relation like Darcy’s law in order to link the velocity of the gas and its
pressure. With this choice of p, the diffusion coefficient mum−1 vanishes at the points
where u = 0. Thus the porous media equation is necessarily degenerate for compactly
supported initial data [3], and the interfaces exhibit a finite speed of propagation.
The degeneracy of the diffusion terms makes the dynamics of the interfaces difficult
to study from both the theoretical and the numerical point of view. In general the
numerical analysis of (1.2) is difficult for at least two reasons: the appearance of sin-
gularities for compactly supported solutions and the growth of the size of the support
as time increases (retention property).

A common numerical technique to approximate (1.1) involves implicit discretiza-
tion in time: It requires, at each time step, the solution of a nonlinear algebraic
system, which can be singular on the interface. Another possibility is to linearize the
nonlinear problem in order to take advantage of efficient linear solvers. For exam-
ple, linear approximation schemes based on the so-called nonlinear Chernoff formula
with a suitable relaxation parameter have been studied in [6, 26, 30, 31]. Other lin-
ear approximation schemes have been introduced by Jäger, Kačur, and Handlovičová
[19, 23]. Also, a new scheme based on the maximum principle and on a perturbation
and regularization approach was proposed by Pop and Yong in [33]. In the more
general convection-diffusion case other approaches were investigated in the work of
Evje and Karlsen [16], based on a suitable splitting of the convection and the diffusion
operators, with a front tracking method for the advection term and implicit numerical
integration of the latter. This approach limits the achievable order of accuracy and
requires nonlinear solvers for the elliptic part.

A relaxation system to approximate degenerate parabolic equations was proposed
originally in [28], inspired by kinetic schemes for the Carleman model. The conver-
gence of the analytical solutions of the relaxation system to those of the partial differ-
ential equation is proven in [25], for the ut− (um)xx = 0 equation with m > 0 (porous
media and fast-diffusion equations). The numerical integration of the relaxation sys-
tem is performed at the macroscopic level, leading to the schemes proposed in [29, 27],
where the kinetic derivation of the relaxation system is not relevant any more.

Natalini and coworkers proposed a kinetic approach to the numerical integration
of conservation laws [2] and of convection-diffusion problems [7, 1]. Their work is based
on a Bhatnagar–Gross–Krook (BGK) approximation which, despite being inspired by
the work of Kurz and McKean as [28], is different at the kinetic level, as detailed in [24].

The aim of the present work is to obtain high-order numerical schemes in time
and space for the integration of (1.1), following and developing the ideas of [27]. While
in [27], the main focus is the development of suitable relaxation systems for several
partial differential equations, here we will concentrate on the numerical analysis of the
schemes resulting from the relaxation system. In particular we prove the convergence
of the semidiscrete scheme, study the stability (linear and nonlinear) of the fully
discrete scheme, and propose the construction of high-order extensions. In order to
obtain higher-order methods, we couple ENO and weighted essentially nonoscillatory
(WENO) schemes for space discretization and implicit-explicit (IMEX) schemes for
time advancement. The schemes we obtain avoid both operator splitting techniques
and implicit nonlinear solvers.
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We point out that, despite the fact that high-order schemes may not reach their
order of convergence due to the loss of regularity of the solution during the evolution,
they are nevertheless interesting for error reduction when the number of grid points
is fixed or until discontinuities develop (both cases arise, for example, in nonlinear
filtering in image analysis [37]).

Note that the relaxation system we consider, following [27], can be obtained also
as a three velocity model in the BGK approach of [24]. However, in the present case
we are interested in the relaxed scheme, i.e., the ε = 0 limit of a numerical scheme for
the relaxation system. For this reason, the numerical scheme we propose is different
from those of [1], as described in the following section.

Our approach allows us to obtain numerical schemes for (1.1) that are easy to
implement and suited for parallel coding, even in the multidimensional case and for
more general and complex problems, such as oil recovery problems [15].

Equation (1.1) is a particular case of the more general convection diffusion equa-
tion

∂u

∂t
+ divf(u) = DΔ(p(u)), x ∈ R

d, t > 0.(1.2)

The approach described in this paper can be extended to this more general case,
introducing an additional equation to allow the relaxation of the convective term.
However, this can be achieved in several ways, leading to different numerical schemes
for the partial differential equation (1.2). The stability and efficiency of these schemes
can differ wildly and will be the subject of further work [11].

The paper is organized as follows. Section 2 is devoted to the introduction of our
relaxation schemes. The stability and error estimates of the semidiscrete scheme are
provided in section 3. In section 4 we consider the fully discrete relaxed scheme with
a nonlinear stability analysis and the extension to the multidimensional case. We also
study parabolic problems in a bounded domain Ω ⊂ R

d with Neumann boundary
conditions. Finally, the implementation of the method as well as the results of several
numerical experiments are discussed in section 5.

2. Relaxation approximation of nonlinear diffusion. The schemes pro-
posed in the present work are based on the idea at the basis of the well-known re-
laxation schemes for hyperbolic conservation laws [22]. In the case of the nonlinear
diffusion operator, an additional variable �v(x, t) ∈ R

d and a positive parameter ε are
introduced, obtaining the following relaxation system:⎧⎪⎪⎨⎪⎪⎩

∂u

∂t
+ div(�v) = 0,

∂�v

∂t
+

D

ε
∇p(u) = −1

ε
�v.

(2.1)

Formally, in the small relaxation limit, ε → 0+, system (2.1) approximates to leading
order (1.1). Next, we remove the nonlinear term from the second equation, as in
standard relaxation schemes, introducing a variable w(x, t) ∈ R and rewriting the
system as: ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
+ div(�v) = 0,

∂�v

∂t
+

D

ε
∇w = −1

ε
�v,

∂w

∂t
+ div(�v) = −1

ε
(w − p(u)).

(2.2)
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Formally, as ε → 0+, w → p(u), v → −D∇p(u), and the original diffusion
equation (1.1) is recovered. As a matter of fact, this convergence can be justified
rigorously by the results of section 3 of [7], since the relaxation system (2.2) can be
seen as a particular case of the BGK system in [7]. Hence we are guaranteed that the
solutions of (2.2) converge to the solutions of the degenerate parabolic equation when
ε → 0+.

For the numerical integration of (2.2) one has to deal with the stiff characteristic
velocities due to the term ∇(w)/ε. In [1], the authors propose two possible methods:
either choose ε dependent of the space discretization h or consider ε = 0 and use
a splitting technique. Instead, we introduce a suitable parameter ϕ and rewrite the
system (2.2) as

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
+ div(�v) = 0,

∂�v

∂t
+ ϕ2∇w = −1

ε
�v +

(
ϕ2 − D

ε

)
∇w,

∂w

∂t
+ div(�v) = −1

ε
(w − p(u)).

(2.3)

We anticipate here that we intend to integrate implicitly the terms on the right-hand
side of system (2.3), so that we can consider the case ε = 0 without being limited
by the stiffness of the problem. In particular, in the relaxed case (i.e., ε = 0), the
stiff source terms can be integrated by solving a system that is already in a suitable
triangular form and does not require iterative solvers.

In the previous system the parameter ε has physical dimensions of time and
represents the so-called relaxation time. Furthermore, w has the same dimensions
as u, while each component of �v has the dimension of u times a velocity; finally ϕ
is a velocity. The inverse of ε gives the rate at which v decays onto −∇p(u) in the
evolution of the variable �v governed by the stiff second equation of (2.3).

Equations (2.3) form a semilinear hyperbolic system with a stiff source term. The
characteristic velocities of the hyperbolic part are given by 0,±ϕ. The parameter ϕ
allows one to “move” the stiff terms D

ε ∇p(u) to the right-hand side, without losing
the hyperbolicity of the system.

We point out that degenerate parabolic equations often model physical situations
with free boundaries or discontinuities: We expect that schemes for hyperbolic sys-
tems will be able to reproduce faithfully these details of the solution. One of the
main properties of (2.3) consists in the semilinearity of the system; that is, all of the
nonlinearities are in the (stiff) source terms, while the differential operator is linear.
Hence, the solution of the convective part requires neither Riemann solvers nor the
computation of the characteristic structure at each time step, since the eigenstructure
of the system is constant in time. Moreover, the relaxation approximation does not
exploit the form of the nonlinear function p, and hence it gives rise to a numerical
scheme that, to a large extent, is independent of it, resulting in a very versatile tool.

3. The semidiscrete scheme. System (2.3) can be written in the form:

zt + divf(z) =
1

ε
g(z),(3.1)
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where

z =

⎛⎝ u
v
w

⎞⎠ , f(z) =

⎡⎣ vT

Φ2w
vT

⎤⎦ , g(z) =

⎛⎝ 0
−v + (ϕ2ε−D)∇w

p(u) − w

⎞⎠ ,(3.2)

and Φ2 is the d × d identity matrix times the scalar ϕ2. We start discretizing the
system in time using, for simplicity, a uniform time step Δt. Let zn(x) = z(x, tn),
with tn = nΔt. Since (3.1) involves both stiff and nonstiff terms, it is a natural idea
to employ different time-discretization strategies for each of them, as in [4, 32]. In
this work we integrate (3.1) with a Runge–Kutta IMEX scheme [32], obtaining the
following semidiscrete formulation:

zn+1 = zn − Δt

ν∑
i=1

b̃idivf(z(i)) +
Δt

ε

ν∑
i=1

big(z
(i)),(3.3)

where the z(i)’s are the stage values of the Runge–Kutta scheme which are given by

z(i) = zn − Δt

i−1∑
k=1

ãi,kdivf(z(k)) +
Δt

ε

i∑
k=1

ai,kg(z
(k)),(3.4)

where b̃i, ãij and bi, aij denote the coefficients of the explicit and implicit Runge–
Kutta schemes, respectively. We assume that the implicit scheme is of the diagonally
implicit type. To find the z(i)’s it is necessary in principle to solve a nonlinear system
of equations which, however, can be easily decoupled. The system for the first stage
z(1) at time tn is⎛⎝ u(1)

v(1)

w(1)

⎞⎠ =

⎛⎝ un

vn

wn

⎞⎠ +
Δt

ε
a11

⎛⎝ 0
−v(1) + (ϕ2ε−D)∇w(1)

p(u(1)) − w(1)

⎞⎠ .(3.5)

The first equation yields u(1) = un; substituting in the third equation, we immediately
find w(1); and finally, substituting w(1) in the second equation, we compute v(1). In
other words, the system can be written in triangular form. For the following stage
values, by grouping the already computed terms in the vector B(i) given by

B(i) = zn − Δt

i−1∑
k=1

ãi,kdivf(z(k)) +
Δt

ε

i−1∑
k=1

ai,kg(z
(k)),(3.6)

the new stage values are given by⎛⎝ u(i)

v(i)

w(i)

⎞⎠ = B(i) +
Δt

ε
aii

⎛⎝ 0
−v(i) + (ϕ2ε−D)∇w(i)

p(u(i)) − w(i)

⎞⎠ ,(3.7)

which is again a triangular system. In the numerical tests, we will apply IMEX
schemes of order 1, 2, and 3.

Following [22] we set ε = 0, thus obtaining the so-called relaxed scheme. The
computation of the first stage reduces to

u(1) = un,
w(1) = p(u(1)),
v(1) = −D∇w(1).

(3.8)
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For the following stages the first equation is

u(i) = un − Δt

i−1∑
k=1

ãi,kdivv(k).(3.9)

In the other equations the convective terms are dominated by the source terms, and
thus v(i) and w(i) are given by

v(i) = −D∇w(i),
w(i) = p(u(i)).

(3.10)

We see that only the explicit part of the Runge–Kutta method is involved in the
updating of the solution. Then, in the relaxed schemes we use only the explicit part
of the tableaux. In particular we consider second- and third-order strongly stable
Runge–Kutta (SSRK) schemes [17], namely,

IMEX1 (1st order) IMEX2 (2nd order) IMEX3 (3rd order)

0

1

0 0
1 0
1
2

1
2

0 0 0
1 0 0
1
4

1
4 0

1
6

1
6

2
3

In [10] we studied the increase in efficiency obtained by using suitable strongly stable
Runge–Kutta schemes.

3.1. Convergence of the semidiscrete relaxed scheme. The aim of this
section is to show the L1 convergence of the solution of the semidiscrete in time
relaxed scheme defined by (3.8), (3.9), and (3.10). We will extend the theorem proved
in [6], where only the case of forward Euler time stepping was considered. In this
section, for the sake of simplicity, we set D = 1.

Theorem 3.1 proves that the numerical solution of the relaxed scheme converges
to the solution of (1.1). The proof does not make explicit use of the convergence of
the solutions of the relaxation system (2.3) to the solutions of (1.1).

Eliminating v from (3.8) and (3.9) using (3.10), we rewrite the relaxed scheme as

u(1) = un,
w(1) = p(un)

(3.11)

for the first stage, and

u(i) = un + Δt

i−1∑
k=1

ãi,kΔw(k),

w(i) = p(u(i))

(3.12)

for subsequent stages. We recall that a Runge–Kutta scheme for the ordinary differ-
ential equation y′ = R(y) can also be written in the form [17]

y(1) = yn,

y(i) =

i−1∑
k=1

αik

(
y(k) + Δt

βik

αik
R(y(k))

)
, i = 2, . . . , ν,

(3.13)
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where yn+1 = y(ν). For consistency,
∑i−1

k=1 αik = 1 for every i = 1, . . . , ν. Moreover
we assumed that αik ≥ 0 and βik ≥ 0 and that αik = 0 implies βik = 0. Under these
assumptions, each stage value y(i) can be written as a convex combination of forward
Euler steps. This remark allows us to study the convergence of the Runge–Kutta
scheme in terms of the convergence of the explicit forward Euler scheme applied to
the nonlinear diffusion problem.

This latter was studied in [6] via a nonlinear semigroup argument. In the following
we review the approach of [6], and next we extend the proof to the case of a ν-stages
explicit Runge–Kutta scheme.

3.1.1. The forward Euler case. We wish to solve the evolution equation

du

dt
+ Lp(u) = 0, u(·, t = 0) = u0,(3.14)

on the domain Ω, where L = −Δ and p : R → R is a nondecreasing locally Lipschitz
function such that p(0) = 0. Under these hypotheses, the nonlinear operator Au =
Lp(u) with domain D(A) = {u ∈ L1(Ω) : p(u) ∈ D(L)} is m-accretive in L1(Ω); that
is, for all ϕ ∈ L1(Ω) and for all λ > 0 there exists a unique solution u ∈ D(A) such
that u + λLp(u) = ϕ and the application defined by ϕ �→ u is a contraction [14].

Moreover D(A) is dense in L1(Ω), so it follows that

SA(t)u0 = lim
m→∞

(
I +

t

m
A

)−m

u0(3.15)

is a contraction semigroup on L1(Ω) and SA(t)u0 is the generalized solution of (3.14)
in the sense of Crandall–Liggett [14]. Let S(t) be the linear contraction semigroup
generated by −L; that is, u(t) = S(t)u0 is the solution of the initial value problem
ut = −L(u) and u(·, t = 0) = u0. The algorithm proposed in [6] is

un+1 − un

τ
+

[
I − S(στ )

στ

]
p(un) = 0,(3.16)

where τ is the time step and στ ↓ 0. This can be written as

un+1 = FE(τ)un, where FE(τ)ϕ = ϕ +
τ

στ
[S(στ ) − I] p(ϕ).(3.17)

Hence

un = (FE(τ))nu0.(3.18)

The proof in [6] is based on the following argument. Note that formally S(στ )ϕ ∼
e−στLϕ. Let t = τn and

u(t) =

[
I +

t

nστ
(S(στ ) − I) ◦ p

]n
u0

=

[
I +

t

nστ

(
e−στL − I

)
◦ p

]n
u0 if στ → 0

=

[
I − t

n
L ◦ p

]n
u0

→ SA(u0) when n → ∞.

(3.19)

The convergence proof requires that μ τ
στ

≤ 1, where μ is the Lipschitz constant of
p(u). We point out that στ is linked to the spatial approximation of the operator L,
and in our scheme this requirement is reflected in the stability condition of the fully
discrete scheme (see section 4).
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3.1.2. Runge–Kutta schemes. Now we are going to prove convergence for the
case of a ν-stages Runge–Kutta scheme.

Let t > 0 and τ = t/n, with n ≥ 1; let στ : (0,∞) → (0,∞) be a function such
that limτ→0 στ = 0.

u(1) = un,

u(i) =

i−1∑
k=1

αik

[
u(k) + τ

βik

αik
A(u(k))

]
, i = 2, . . . , ν,

(3.20)

and proceeding as in (3.19), this becomes

u(1) = un,

u(i) =

i−1∑
k=1

αik

[
u(k) + τ

βik

αik
(S(στ ) − I) ◦ p(u(k))

]
, i = 2, . . . , ν,

un+1 = u(ν).

(3.21)

We now extend (3.17) to the Runge–Kutta scheme defined by (3.21). Define, for
φ ∈ L1(Ω),

F (1)(τ)φ = φ,

F (i)(τ)φ =

i−1∑
k=1

αikF
(k)(τ)φ +

τβik

στ
[S(στ ) − I] p(F (k)(τ)φ),

F (τ)φ = F (ν)(τ)φ,

(3.22)

and therefore

un(t) = [F (τ)]
n
u0.(3.23)

Let u(t) be the generalized solution of (3.14). The following theorem proves the
convergence of the semidiscrete solution to u(t).

Theorem 3.1. Assume u0 ∈ L∞(Ω), and ‖u0‖∞ = M ; let p be a nondecreasing
Lipschitz continuous function on [−M,M ] with Lipschitz constant μ. Assume that
the following conditions hold:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αik ≥ 0,

βik ≥ 0,

αik = 0 ⇒ βik = 0,
i−1∑
k=1

αik = 1 (consistency),

μτ

στ
≤ min

αik

βik
for τ > 0, αik �= 0 (stability),

(3.24)

and then limn→∞ un(t) = u(t) in L1. Moreover the convergence is uniform for t in
any given bounded interval.

The proof follows the steps of [6]: First we show that un verifies a maximum
principle (Lemma 3.2) and that F is a contraction (Lemma 3.3), and finally we apply
the nonlinear Chernoff formula [8].
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Lemma 3.2. If (3.24) is verified, then −M ≤ un ≤ M for all n.
Proof. We argue by induction on n: We assume that −M ≤ un ≤ M , and we

show that −M ≤ un+1 ≤ M . Let

u(i) = F (i)(τ)un.(3.25)

Since un+1 = u(ν), it suffices to prove that −M ≤ u(i) ≤ M for i = 1, . . . , ν. We prove
this by induction on i. When i = 1, the statement is true thanks to the induction
hypothesis on n and being F (1) = I. Let’s assume that −M ≤ u(i−1) ≤ M holds; we
are going to show that

−M ≤ u(i) = F (i)(τ)un ≤ M.(3.26)

The function s �→ αiks − τβik

στ
p(s) is nondecreasing thanks to (3.24) and the

hypotheses on the function p. By the induction hypothesis on i, we have that for
k = 1, . . . , i− 1

−αikM − τβik

στ
p(−M) ≤ αiku

(k) − τβik

στ
p(u(k)) ≤ αikM − τβik

στ
p(M).(3.27)

Using again the induction hypothesis on i and recalling that p is nondecreasing, since
S is a contraction in L∞ [6] and p(−M) ≤ p(u(k)) ≤ p(M),

p(−M) ≤ S
(
p(u(k))

)
≤ p(M).(3.28)

Multiplying the last equation by τβik

στ
and summing it to (3.27), we get

−αikM ≤ αiku
(k) +

τβik

στ
(S − I)p(u(k)) ≤ αikM, k = 1, . . . , i− 1.(3.29)

Summing for k = 1, . . . , i− 1 and using the consistency relation of (3.24):

−M ≤
i−1∑
k=1

αiku
(k) +

τβik

στ
(S − I)p(u(k)) ≤ M.(3.30)

In particular this is valid when i = ν, proving that −M ≤ u(n+1) ≤ M .
Now we can replace p by p, where p = p in −M ≤ x ≤ M, p = p(M) for x ≥ M ,

and p = p(−M) for x ≤ −M : The algorithm is the same, and in what follows we can
assume that p is Lipschitz continuous with constant μ on all R.

Lemma 3.3. If the hypotheses of Theorem 3.1 hold, then F (τ) is a contraction
on L1(Ω), i.e.,

‖F (τ)φ− F (τ)ψ‖1 ≤ ‖φ− ψ‖1 ∀ψ, φ ∈ L1.(3.31)

Proof. We start showing that the result holds for a single forward Euler step.
Recalling the definition of FE from (3.17)

‖FE(τ)φ− FE(τ)ψ‖1 ≤ τ

στ
‖S(στ )[p(φ) − p(ψ)]‖1 +

∥∥∥∥(φ− ψ) − τ

στ
[p(φ) − p(ψ)]

∥∥∥∥
1

≤ τ

στ
‖p(φ) − p(ψ)‖1 +

∥∥∥∥(φ− τ

στ
p(φ)

)
−

(
ψ − τ

στ
p(ψ)

)∥∥∥∥
1

(3.32)

= ‖φ− ψ‖1 ,
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where we used the contractivity of S. The last equality relies on the fact that p and
the function x �→ x − τ

στ
p(x) are nondecreasing, which in turn is guaranteed by the

stability condition, which in this case reduces to μτ/στ ≤ 1 [6].
In the general case we have

‖F (i)(τ)φ− F (i)(τ)ψ‖1 ≤
i−1∑
k=1

αik

∥∥∥∥FE

(
τβik

αik

)
F (k)(τ)φ− FE

(
τβik

αik

)
F (k)(τ)ψ

∥∥∥∥
1

≤
i−1∑
k=1

αik

∥∥∥F (k)(τ)φ− F (k)(τ)ψ
∥∥∥

1
(3.33)

≤ ‖φ− ψ‖1 .

In the second inequality we used the contractivity of FE and the stability condition,
while in the third one we apply an induction argument on the contractivity of F (k), the
positivity constraint on αik and βik, as well as the consistency condition

∑
k αik = 1.

Setting i = ν yields the result.
Proof of Theorem 3.1. Let ψτ and ψ be, respectively,

ψτ =

(
I +

λ

τ
(I − F (τ))

)−1

φ and ψ = (I + λA)
−1

φ.(3.34)

The function ψ exists since the operator A is m-accretive, whereas the existence of
the function ψτ is guaranteed by the following fixed-point argument. Let

G(y) =
1

1 + η
φ +

η

η + 1
F (τ)y,

where φ ∈ L1, y ∈ D(A), and η ≥ 0. We have

‖G(y) −G(x)‖ =
η

η + 1
‖F (τ)y − F (τ)x‖ ≤ η

η + 1
‖y − x‖

since F is a contraction, as proved in Lemma 3.3. Thus G is also a contraction, and
therefore it possesses a unique fixed point which coincides with ψτ .

We want to show that

ψτ → ψ in L1

as τ → 0 for each fixed λ > 0. Let

φτ = ψ +
λ

τ
(I − F (τ))ψ.

We want to estimate ψτ − ψ in terms of φτ − φ.

φτ − φ =

(
1 +

λ

τ

)
(ψ − ψτ ) −

λ

τ
(F (τ)ψ − F (τ)ψτ ),

Therefore (
1 +

λ

τ

)
(ψ − ψτ ) − (φτ − φ) =

λ

τ
(F (τ)ψ − F (τ)ψτ ),
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and, by taking norms and using the fact that F is a contraction, we have∣∣∣∣(1 +
λ

τ

)
‖ψ − ψτ‖ − ‖φτ − φ‖

∣∣∣∣ ≤ ∥∥∥∥(1 +
λ

τ

)
(ψ − ψτ ) − (φτ − φ)

∥∥∥∥ ≤ λ

τ
‖ψ − ψτ‖.

In particular (
1 +

λ

τ

)
‖ψ − ψτ‖ − ‖φτ − φ‖ ≤ λ

τ
‖ψ − ψτ‖,

and therefore ‖ψ − ψτ‖ ≤ ‖φ− φτ‖.
Now we estimate ‖φ − φτ‖ in the simple case of a forward Euler scheme. Note

that

φ− φτ = λAψ − λ

τ
(I − F (τ))ψ,

and thus ‖φ − φτ‖ measures a sort of consistency error. For a single forward Euler
step, F = FE , where FE is defined in (3.17). Thus

‖φ− φτ‖ = λ

∥∥∥∥Aψ − 1

στ
(I − S(στ ))p(ψ)

∥∥∥∥ → 0(3.35)

as τ → 0 since I−S(στ )
στ

p(ψ) → Lp(ψ) = Aψ.
The more general case of a ν-stages Runge–Kutta scheme can be carried out

by induction following the procedure already applied in the proofs of the previous
lemmas.

We now use Theorem 3.2 of [8], which, specialized to our case, can be written
as follows. Assume that F (τ) : L1 → L1 for τ > 0 is a family of contractions.
Assume further that an m-accretive operator A is given, and let S(t) be the semigroup
generated by A. Assume further that the family F (τ) and the operator A are linked
by the following formula:

ψτ =

(
I +

λ

τ
(I − F (τ))

)−1

φ → ψ = (I + λA)
−1

φ(3.36)

for each φ ∈ L1. Then

lim
n→∞

F

(
t

n

)n

φ = S(t)φ ∀φ ∈ L1.

4. Fully discrete relaxed scheme. In order to complete the description of the
scheme, we need to specify the space discretization. We will use discretizations based
on finite differences, in order to avoid cell coupling due to the source terms.

Note that the IMEX technique reduces the integration to a cascade of relaxation
and transport steps. The former are the implicit parts of (3.5) and (3.7), while the
transport steps appear in the evaluation of the explicit terms B(i) in (3.6). Since (3.5)
and (3.7) involve only local operations, the main task of the space discretization is
the evaluation of div(f), where we will exploit the linearity of f in its arguments.

4.1. One-dimensional scheme. Let us introduce a uniform grid on [a, b] ⊂ R,
xj = a − h

2 + jh for j = 1, . . . , n, where h = (b − a)/n is the grid spacing and n the
number of cells. The fully discrete scheme may be written as

zn+1
j = znj − Δt

ν∑
i=1

b̃i

(
F

(i)
j+1/2 − F

(i)
j−1/2

)
+

Δt

ε

ν∑
i=1

big(z
(i)
j ),(4.1)
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where F
(i)
j+1/2 are the numerical fluxes, which are the only items we still need to

specify. For convergence it is necessary to write the scheme in conservation form.
Thus, following [34], we introduce the function F̂ such that

f(z(x, t)) =
1

h

∫ x+h/2

x−h/2

F̂ (s, t)ds ⇒ ∂f

∂x
(z(xj , t)) =

1

h

(
F̂ (xj+1/2, t) − F̂ (xj−1/2, t)

)
.

The numerical flux function Fj+1/2 must approximate F̂ (xj+1/2).
In order to compute the numerical fluxes, for each stage value, we reconstruct

boundary extrapolated data z
(i)±
j+1/2 with a nonoscillatory interpolation method from

the point values z
(i)
j of the variables at the center of the cells. Next we apply a

monotone numerical flux to these boundary-extrapolated data.
To minimize numerical viscosity we choose the Godunov flux, which in the present

case of a linear system of equations reduces to the upwind flux. In order to select
the upwind direction we write the system in characteristic form. The characteristic
variables relative to the eigenvalues ϕ,−ϕ, 0 (in one space dimension ϕ reduces to a
scalar parameter) are, respectively,

U =
ϕw + v

2ϕ
, V =

ϕw − v

2ϕ
, W = u− w.(4.2)

Note that u = U + V +W . Therefore the numerical flux in characteristic variables is
Fj+1/2 = (ϕU−

j+1/2,−ϕV +
j+1/2, 0).

The accuracy of the scheme depends on the accuracy of the reconstruction of the
boundary-extrapolated data. For a first-order scheme we use a piecewise constant
reconstruction such that U−

j+1/2 = Uj and V +
j+1/2 = Vj+1. For higher-order schemes,

we use ENO or WENO reconstructions of appropriate accuracy [35].
For ε → 0 we obtain the relaxed scheme. Recall from (3.10) that the relaxation

steps reduce to

w
(i)
j = p(u

(i)
j ), v

(i)
j = −D∇̂w

(i)
j ,(4.3)

where ∇̂ is a suitable approximation of the one-dimensional gradient operator. Thus
the transport steps need to be applied only to u(i)

u
(i)
j = un

j − λ

i−1∑
k=1

ãi,k

[
ϕ
(
U

(k)−
j+1/2 − U

(k)−
j−1/2

)
− ϕ

(
V

(k)+
j+1/2 − V

(k)+
j−1/2

)]
.(4.4)

Finally, taking the last stage value and going back to conservative variables,

un+1
j = un

j − λ

2

ν∑
i=1

b̃i

(
[v

(i)−
j+1/2 + v

(i)+
j+1/2 − (v

(i)−
j−1/2 + v

(i)+
j−1/2)]

+ ϕ[w
(i)−
j+1/2 − w

(i)+
j+1/2 − (w

(i)−
j−1/2 − w

(i)+
j−1/2)]

)
.

(4.5)

We wish to emphasize that the scheme reduces to the time advancement of the
single variable u. Although the scheme is based on a system of three equations, the
construction is used only to select the correct upwinding for the fluxes of the relaxed
scheme, and the computational cost of each time step remains moderate.
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4.2. Nonlinear stability for the first-order scheme. The relaxed scheme in
the first-order case reduces to:

un+1
j = un

j +
λ

2
(∂xp(u

n)|j+1 − ∂xp(u
n)|j−1) +

λ

2
ϕ
(
p(un

j+1) − 2p(un
j ) + p(un

j−1)
)
.

(4.6)

We wish to compute the restrictions on λ and ϕ so that the scheme is total varia-
tion nonincreasing. We select the centered finite difference formula to approximate
the partial derivatives of p(u); we drop the index n and write pj for p(un

j ). Define

Δj+1/2 =
pj+1−pj

uj+1−uj
, and observe that these quantities are always nonnegative since p

is nondecreasing. We obtain

TV(un+1) =
∑
j

|un+1
j − un+1

j−1 |

≤
∑
j

{
λ

4h
Δj+3/2|uj+2 − uj+1| +

λ

2
ϕΔj+1/2|uj+1 − uj |

+

(
1 − λ

(
1

2h
+ ϕ

)
Δj−1/2

)
|uj − uj−1|

+
λ

2
ϕΔj−3/2|uj−1 − uj−2| +

λ

4h
Δj−5/2|uj−2 − uj−3|

}
(4.7)

provided that (
1 − λ

(
1

2h
+ ϕ

)
Δj−1/2

)
≥ 0 ∀j.(4.8)

Assuming that the data have compact support, we can rescale all sums and finally get
TV(un+1) ≤ TV(un). Taking into account the Lipschitz condition on p, the scheme
is total variation stable provided that (4.8) is satisfied, i.e., that

Δt ≤ 2h2

μ

1

1 + 2hϕ
� (2 − δ)

μ
h2,(4.9)

where δ vanishes as h does. We point out that the stability condition is of the
parabolic type. Finally, we observe that, using one-sided approximations for the
partial derivatives of p in the scheme (4.6), one gets a stability condition involving
the relation ϕ > 1/h. This would reintroduce in the scheme the constraint due to the
stiffness in the convective term that prompted the introduction of ϕ in (2.3).

4.3. Linear stability. We study the linear stability of the schemes based on
(4.3), (4.4), and (4.5) in the case when p(u) = u, by von Neumann analysis. We
substitute the discrete Fourier modes un

j = ρnei(jk/N) into the scheme, where k is
the wave number and N the number of cells. We set ξ = k/N and compute the
amplification factor Z(ξ) such that un+1

j = Z(ξ)un
j . We can consider ξ as a continuous

variable, since the amplification factors for various choices of N all lie on the curves
obtained considering the variable ξ ∈ [0, 2π].

First we consider the same scheme studied in the previous section, for comparison
purposes. Using piecewise constant reconstructions in space and forward Euler time
integration, the amplification factor is Z(ξ) = 1 + M(ξ), where

M(ξ) =
λ

h
(cos(ξ) − 1) (cos(ξ) + 1 + hϕ) .
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Fig. 4.1. Amplification factor for upwind spatial reconstruction coupled with forward Euler
(left) and for upwind second-order spatial reconstruction coupled with second-order time integration
(right).

M(ξ) takes maximum value 0 and attains its minimum at the point ξ∗ such that
cos(ξ∗) = −ϕh/2. Stability requires that M(ξ∗) ≥ −2, i.e.,

1 +
λ

h

(
ϕ2h2

4
− 1

)
− λϕ

(
ϕh

2
+ 1

)
≥ −1,

and, recalling that λ = Δt/h,

Δt ≤ 2h2(
1 + ϕh

2

)2 � 2 (1 − ϕh)h2.(4.10)

This gives a CFL condition of the form Δt ≤ 2(1−δ)h2, where δ = O(hϕ) (see Figure
4.1). These results are in very good agreement with those of the nonlinear analysis
performed in the previous section.

Now we consider higher-order spatial reconstructions coupled with forward Euler
time stepping. M takes the form

M(ξ, γ) =
λ

h
[f1(cos(ξ)) + γf2(cos(ξ))] ,

where γ = hϕ. Since γ is small, we compute the critical points ξ∗ of M(ξ, 0). For
stability we thus require that −2 ≤ M(ξ∗, γ) ≤ 0.

We consider a piecewise linear and a WENO reconstruction. The first one is
computed along characteristic variables using the upwind slope, while the gradient of
p(u) is computed with centered differences. The WENO reconstruction is fifth-order
accurate and is obtained by setting to 1 the smoothness indicators, and the gradient
of p(u) is computed with the fourth-order centered difference formula.

For the piecewise linear reconstruction, we have that

M(ξ) = −λ

h

[
(cos2(ξ) − 1)(cos(ξ) − 2) + hϕ(cos(ξ) − 1)2

]
,

and therefore

Δt ≤ 2h2

20+14
√

7
27 + 8+2

√
7

9 ϕh
� 0.94(1 − 1.44ϕh)h2.
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Table 4.1

RK1 RK2 RK3
P-wise constant 2 2 2.51
P-wise linear 0.94 0.94

WENO5 0.79 0.79 1

For the WENO reconstruction M(ξ, γ) can be easily computed, and we get

Δt ≤ 0.79(1 − 0.13ϕh)h2.

Now we wish to extend our results to the case of higher-order Runge–Kutta
schemes. Since both the equation and the scheme are linear, the amplification factors
for the Runge–Kutta schemes of orders 2 and 3 used here are, respectively,

Z(2)(ξ) = 1 + M(ξ) +
M(ξ)2

2
,

Z(3)(ξ) = 1 + M(ξ) +
M(ξ)2

2
+

M(ξ)3

6
,

where M(ξ) is the function appearing in the amplification factor relevant to the chosen
spatial reconstruction. We have that

Z ′
(2)(ξ) = M ′(ξ)(1 + M(ξ)),

Z ′
(3)(ξ) = M ′(ξ)

(
1 + M(ξ) +

M(ξ)2

2

)
,

and therefore the critical points are the points ξ∗ such that M ′(ξ∗) = 0.
In the Runge–Kutta 2 case the stability constraint ‖Z(2)(ξ

∗)‖ ≤ 1 reduces to the
CFL condition for the forward Euler scheme. For Runge–Kutta 3, ‖Z(3)(ξ

∗)‖ ≤ 1,
provided that

M(ξ∗) ≥ s̃ � −2.51.

Notice that this is less restrictive than the Euler and second-order Runge–Kutta
schemes for which the stability requirement is M(ξ∗) ≥ −2.

For the third-order Runge–Kutta scheme with linearized WENO of order 5, we
have

Δt ≤ −s̃h2

2.51 + 0.33ϕh
� (1 − .1325ϕh)h2.

Table 4.1 summarizes the stability results obtained in this section by listing the
values of the constant C that appears in the stability restriction Δt ≤ C(1−C1ϕh)h2.
Figures 4.1 and 4.2 contain the amplification factors Z(ξ) for ϕ = 1 and h = 10−2

for various choices of spatial reconstructions and time integration schemes. Each of
them contains the curve corresponding to the value of C reported in Table 4.1 and
two other close-by values.

4.4. Boundary conditions. Different boundary conditions can be implemented.
Here we describe how to implement Neumann boundary conditions, considering for
simplicity the one-dimensional case.

We first add g ghost points on each side of the computational domain [a, b], where
g depends on the order of the spatial reconstruction. We find a polynomial q(x) of
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Fig. 4.2. Amplification factors Z for WENO reconstructions of order 5 coupled with first-order
(left) and third-order (right) time integration.

degree d passing through the points (xi, ui) for i = 1, . . . , d and having a prescribed
derivative at the boundary point x1/2 = a. (The degree d is determined by the
accuracy of the scheme that one wants to obtain and should match the degree of the
reconstruction procedures used to obtain U±

j and V ±
j .) This polynomial is then used

to set the values u−i = q(x−i) of the ghost points for i = 0, 1, g − 1. One operates
similarly at the right edge of the computational domain.

We also used periodic boundary conditions, which can be implemented with an
obvious choice of the values ui at the ghost points.

4.5. Multidimensional scheme. An appropriate numerical approximation of
(2.3) in R

d that generalizes the scheme described in section 4.1 can be obtained by
additive dimensional splitting. We consider the relaxed scheme, i.e., ε = 0, and for
the sake of simplicity, let us focus on the square domain [a, b] × [a, b] ⊂ R

2. Here we
shall describe the generalization of the scheme defined by (4.3), (4.2), (4.4), and (4.5)
to the case of two space dimensions.

Without loss of generality, we consider a uniform grid in [a, b] × [a, b] ⊂ R
2 such

that �xi,j = (xi, yj) = (a − h/2, a − h/2) + i(h, 0) + j(0, h) for i, j = 1, 2, . . . , n and
h = (b− a)/n.

In the present case, u and w are one-dimensional variables, while �v = (v(1), v(2)) is
now a field in R

2. First we observe that the relaxation steps (4.3) are easily generalized
for d > 1. For the transport steps, one has to evolve in time the system

∂

∂t

⎛⎜⎜⎝
u
v(1)

v(2)

w

⎞⎟⎟⎠ +
∂

∂x

⎡⎢⎢⎣
0 1 0 0
0 0 0 ϕ2

0 0 0 0
0 1 0 0

⎤⎥⎥⎦
⎛⎜⎜⎝

u
v(1)

v(2)

w

⎞⎟⎟⎠ +
∂

∂y

⎡⎢⎢⎣
0 0 1 0
0 0 0 0
0 0 0 ϕ2

0 0 1 0

⎤⎥⎥⎦
⎛⎜⎜⎝

u
v(1)

v(2)

w

⎞⎟⎟⎠ = 0.(4.11)

The semidiscretization in space of the above equation can be written as

∂zi,j
∂t

= − 1

h

(
Fi+1/2,j − Fi−1/2,j

)
− 1

h

(
Gi,j+1/2 −Gi,j−1/2

)
,

where F and G are the numerical fluxes in the x and the y direction, respectively,
and can be written as

Fi+1/2,j = F (z+
i+1/2,j , z

−
i+1/2,j), Gi,j+1/2 = G(z+

i,j+1/2, z
−
i,j+1/2).

The fluxes in the two directions are computed separately. We illustrate the computa-
tion of the flux F along the x direction. We note that only the field v(1) appears in
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the differential operator along this direction. The third component of the flux is zero,
and thus we have three independent characteristic variables, namely,

U(1) =
ϕw + v1

2ϕ
, V(1) =

ϕw − v1

2ϕ
, W = u− w,

which correspond, respectively, to the eigenvalues ϕ,−ϕ, 0. At this point the nu-
merical fluxes can be easily evaluated by upwinding. We proceed similarly for the
numerical flux G that depends on the characteristic variables U(2), V(2),W .

Denote by U±
i+1/2,j the reconstructions of U(1)(·, yj) at the point (xi + h/2, yj).

This involves a reconstruction of the restriction of U(1) to the line y = yi and can
be obtained with any of the one-dimensional techniques mentioned in section 4.1.
Similarly, denote by U±

i,j+1/2 the reconstructions of U(2)(xi, ·) at the point (xi, yj +

h/2). Now, (4.4) and (4.5) become, respectively,

u
(l)
i,j = un

i,j − λ

l−1∑
m=1

ãl,m

[
ϕ
(
U

(m)−
i+1/2,j − U

(m)−
i−1/2,j

)
− ϕ

(
V

(m)+
i+1/2,j − V

(m)+
i−1/2,j

)
ϕ
(
U

(m)−
i,j+1/2 − U

(m)−
i,j−1/2

)
− ϕ

(
V

(m)+
i,j+1/2 − V

(m)+
i,j−1/2

)](4.12)

and

un+1
i,j = un

i,j − λ

ν∑
l=1

ϕb̃l

[(
U

(l)−
i+1/2,j − V

(l)+
i+1/2,j

)
−

(
U

(l)−
i−1/2,j − V

(l)+
i−1/2,j

)
(
U

(l)−
i,j+1/2 − V

(l)+
i,j+1/2

)
−

(
U

(l)−
i,j−1/2 − V

(l)+
i,j−1/2

)]
.

(4.13)

The generalization to d > 2 and rectangular domains is now trivial. We stress once
again that no two-dimensional reconstruction is used, but only d one-dimensional re-
constructions are needed. Finally, boundary conditions can be implemented direction-
wise with the same techniques used in the one-dimensional case.

5. Numerical results. We performed several numerical tests of our relaxed
schemes. First we tested convergence for a linear diffusion equation with periodic
and Neumann boundary conditions for initial data giving rise to smooth solutions.
Next, numerical tests were also performed on the porous media equation ut = (um)xx,
m = 2, 3, in both one and two dimensions.

5.1. Linear diffusion. For the first test we considered the linear problem⎧⎪⎨⎪⎩
∂u

∂t
(x, t) =

∂2u

∂x2
u(x, t), x ∈ [0, 1],

u(x, 0) = u0(x), x ∈ [0, 1].

First we used periodic boundary conditions with u0(x) = cos(2πx), so that u(x, t) =

cos(2πx)e−4π2t is an exact solution. Then we used Neumann boundary conditions
ux(0) = ux(1) = 1 with initial data u0(x) = x + cos(2πx), so that u(x, t) = x +

cos(2πx)e−4π2t is an exact solution.
We tested the numerical schemes defined by (4.2), (4.3), (4.4), and (4.5) with

various degrees of accuracy for the spatial reconstructions and time-stepping oper-
ators. We used ENO spatial reconstructions of degrees from 2 to 6 and WENO
reconstructions of degrees 3 and 5. The time-stepping procedures chosen are IMEX
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Table 5.1

L1 norms of the error and convergence rates for the linear diffusion equation with periodic
boundary conditions, with smooth initial data.

N = 40 N = 80 N = 160 N = 320 N = 640
ENO2, RK1 2.012e-03 5.6378e-04 1.0736e-04 1.5539e-05 2.5065e-06
ENO3, RK2 1.9066e-06 2.3057e-07 5.6115e-08 8.6904e-09 1.1905e-09
ENO4, RK2 7.7517e-06 5.7082e-07 3.3507e-08 1.4978e-09 7.0725e-11
ENO5, RK3 1.3864e-08 6.0259e-10 2.2121e-11 7.4454e-13 2.3803e-14
ENO6, RK3 1.5538e-08 8.5661e-10 1.446e-11 1.7111e-13 1.5311e-15

WENO3, RK2 1.9799e-03 5.1278e0-4 1.4332e-04 2.1488e-05 7.512e-08
WENO5, RK3 1.5892e-07 4.8069e-09 1.59e-10 5.2337e-12 1.6758e-13

N = 40 N = 80 N = 160 N = 320 N = 640
ENO2, RK1 1.3973 1.8354 2.3926 2.7886 2.6322
ENO3, RK2 5.9501 3.0477 2.0388 2.6909 2.8678
ENO4, RK2 3.8987 3.7634 4.0905 4.4836 4.4045
ENO5, RK3 6.8124 4.524 4.7677 4.8929 4.9671
ENO6, RK3 5.9907 4.181 5.8885 6.401 6.8043

WENO3, RK2 0.56648 1.949 1.8391 2.7376 8.1601
WENO5, RK3 2.9595 5.0471 4.918 4.925 4.9649

Table 5.2

L1 norms of the error and convergence rates for the linear diffusion equation with Neumann
boundary conditions, with smooth initial data.

N = 40 N = 80 N = 160 N = 320 N = 640
ENO2, RK1 2.1965e-03 5.7152e-04 1.4301e-04 2.32e-05 4.743e-06
ENO3, RK2 2.0621e-06 2.2641e-07 6.7935e-08 8.8255e-09 1.2339e-09
ENO4, RK2 8.1764e-06 5.4431e-07 3.6974e-08 1.3686e-09 8.335e-11
ENO5, RK3 1.5484e-07 4.4163e-09 1.2405e-10 3.7803e-12 1.1669e-13

WENO3, RK2 1.9092e-03 4.4225e-04 1.2914e-04 4.5037e-06 7.4526e-08
WENO5, RK3 2.5048e-07 4.9279e-09 1.4776e-10 4.7482e-12 1.4948e-13

N = 40 N = 80 N = 160 N = 320 N = 640
ENO2, RK1 1.4361 1.9424 1.9987 2.624 2.2902
ENO3, RK2 6.1004 3.1871 1.7367 2.9444 2.8385
ENO4, RK2 3.9763 3.909 3.8798 4.7558 4.0373
ENO5, RK3 5.6626 5.1317 5.1539 5.0362 5.0178

WENO3, RK2 1.2624 2.11 1.7759 4.8417 5.9172
WENO5, RK3 4.9122 5.6676 5.0597 4.9597 4.9893

Runge–Kutta schemes of section 3 of accuracy chosen to match the accuracy of the
spatial reconstruction. Since stability forces the parabolic restriction Δt ≤ Ch2, an
IMEX scheme of order m was coupled with a spatial ENO/WENO reconstruction of
accuracy p such that p ≤ 2m, obtaining a scheme of order p.

We computed the numerical solution of the diffusion equation with final time
t = 0.05 with N = 40, 80, 160, 320, 640 grid points and computed the L1 norm of the
difference between the numerical and the exact solution. The results are in Table 5.1
for the periodic boundary conditions and Table 5.2 for the Neumann boundary con-
ditions. One can see that the expected convergence rates are reached, even if the
combination of the WENO reconstruction of accuracy 3 and the IMEX scheme of
second order reach the predicted error reduction only on very fine grids.

5.2. Porous media equation. On the porous media equation (1.1) with p(u) =
um we performed a test proposed in [18]. We took m = 2, 3 and initial data of class
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Table 5.3

L1 norms of the error and convergence rates for the porous media equation periodic boundary
conditions, with initial data of class C1.

N = 60 N = 180 N = 540 N = 1620
ENO2, RK1 2.6365e-04 1.9898e-05 2.049e-06 2.076e-07
ENO3, RK2 1.9605e-05 6.0423e-07 2.4141e-08 8.9729e-10
ENO4, RK2 1.2127e-05 2.967e-07 9.9925e-09 3.5781e-10
ENO5, RK3 4.694e-06 1.719e-07 6.3248e-09 2.4447e-10
ENO6, RK3 4.1099e-06 1.4711e-07 5.3992e-09 2.0849e-10

WENO3, RK2 1.5871e-04 1.0448e-05 4.3463e-07 8.8767e-09
WENO5, RK3 7.5662e-06 4.6049e-07 7.4746e-09 2.7985e-10

N = 60 N = 180 N = 540 N = 1620
ENO2, RK1 2.8243 2.352 2.0692 2.084
ENO3, RK2 5.1899 3.1672 2.931 2.9968
ENO4, RK2 5.6271 3.3774 3.0865 3.0307
ENO5, RK3 6.491 3.0103 3.006 2.9611
ENO6, RK3 6.612 3.0311 3.0083 2.962

WENO3, RK2 3.2863 2.4765 2.8942 3.5418
WENO5, RK3 6.0565 2.5479 3.7509 2.9902

C1 as follows:

u(x, 0) =

{
cos2(πx/2), |x| ≤ 1,
0, |x| > 1.

(5.1)

The computational domain is {|x| ≤ 3} ⊂ R, and the boundary conditions are peri-
odic; the CFL constant is taken as C = 0.25.

Since the initial data have compact support and are Lipschitz continuous, the
solution will be of compact support for every t ≥ 0 but will develop a discontinuity
in ux at some finite time τ > 0 (see [3]).

As was shown in [3], the solution with the initial condition we chose has a front
that does not move for t < 0.034. We therefore chose a final time of the simulation
tfin = 0.03 to prevent the formation of the singularity of ux from affecting the order
of convergence. We used as a reference solution the one obtained numerically with
N = 4860 grid points and computed the L1 norms of the errors of the solutions with
N = 60, 180, 540, 1620 grid points. The results are presented in Table 5.3.

First of all one verifies that the degree of regularity of the solution poses a limit
on the order of convergence of the schemes: Therefore the schemes we tested perform
at best as third-order schemes, as confirmed by the data in Table 5.3. Still, high-order
schemes yield a smaller error on a given grid. This can be of practical importance
in problems where one does not have the freedom of choosing the number of grid
points, as in digital image analysis, where nonlinear degenerate diffusion equations
are sometimes used as filters for contour enhancement (see [5]).

In Figure 5.1 we show the numerical solution for the porous media equation with
p(u) = u2 and p(u) = u3, with the initial data (5.1) and t ∈ [0, 2]. It can be
appreciated that a front (i.e., a discontinuity of ∂u

∂x ) develops at a finite time and then
it travels at finite speed.

We present a numerical simulation for the two-dimensional porous media equation
(1.1) with p(u) = u2. We chose an initial data u0(x, y) given by two bumps with
periodic boundary conditions on [−10, 10]× [−10, 10]. The large domain ensures that
the compact support of the solution is still contained in the computational domain
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Fig. 5.1. Snapshots of the numerical solutions for the porous media equation with p(u) = u2

(left) and p(u) = u3 (right). Initial data are chosen according to (5.1), and the numerical solutions
are represented at times t = 0, 0.2, . . . , 2.0. The solutions are obtained with the spatial WENO
reconstruction of order 5 and the RK3 time integrator.

Fig. 5.2. The numerical solution of the porous media equation on a square regular grid with
compactly supported initial data. From top left to bottom right, we show the numerical solution at
times t = 0, 0.5, 1.0, 4.0.

at the final time of the calculation. The numerical approximation at different time
levels is shown in Figure 5.2.

We can note that the symmetries of the initial data are preserved and the solution
seems to be unaffected by the dimensional splitting of the two-dimensional scheme.

6. Conclusions. We have proposed and analyzed relaxed schemes for nonlinear
degenerate parabolic equations.

We considered a relaxation system similar to the one used in [29, 27] but focused
on the relaxed schemes that are obtained by taking the relaxation parameter ε = 0.
By using suitable discretizations in space and time, namely, ENO/WENO nonoscil-
latory reconstructions for numerical fluxes and IMEX Runge–Kutta schemes for time
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integration, we have obtained a class of high-order schemes. We proved a convergence
theorem for the semidiscrete scheme using the nonlinear Chernoff formula; further-
more we obtained stability results for the fully discrete schemes. Our computational
tests suggest that our schemes converge with the predicted rate and exhibit a high
resolution of propagating fronts.

Finally, we point out that these schemes can be easily implemented on parallel
computers. Some preliminary results and details are reported in [12]. In particular the
schemes involve only linear matrix-vector operations, and the execution time scales
linearly when increasing the number of processors.

Our numerical approach can be easily extended to more general problems. The
case of degenerate reaction-diffusion equations will appear in [13]. The treatment of
convection-diffusion equations requires the introduction of an additional equation to
relax the convection terms. A preliminary study appears in [9], while some of these
applications will appear in a forthcoming paper [11].
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[8] H. Brézis and A. Pazy, Convergence and approximation of semigroups of nonlinear operators
in Banach spaces, J. Funct. Anal., 9 (1972), pp. 63–74.

[9] F. Cavalli, G. Naldi, G. Puppo, and M. Semplice, A comparison between relaxation and
Kurganov-Tadmor schemes, in Progress in Industrial Mathematics at ECMI 2006, L. L.
Bonilla, M. Moscoso, G. Platero, and J. M. Vega, eds., Mathematics in Industry 12,
Springer, 2007.

[10] F. Cavalli, G. Naldi, G. Puppo, and M. Semplice, Increasing efficiency through optimal
RK time integration of diffusion equations, in Proceedings of the HYP2006 Conference,
2006, to appear.

[11] F. Cavalli, G. Naldi, G. Puppo, and M. Semplice, High Order Relaxation Approximation
of Convection Diffusion Equations, manuscript.

[12] F. Cavalli, G. Naldi, and M. Semplice, Parallel algorithms for nonlinear diffusion by using
relaxation approximation, in ENUMATH 2005, A. Bermúdez de Castro, D. Gómez, P.
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[23] J. Kačur, A. Handlovičová, and M. Kačurová, Solution of nonlinear diffusion problems
by linear approximation schemes, SIAM J. Numer. Anal., 30 (1993), pp. 1703–1722.

[24] C. Lattanzio and R. Natalini, Convergence of diffusive BGK approximations for nonlinear
strongly parabolic systems, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), pp. 341–358.

[25] P. Lions and G. Toscani, Diffusive limit for two-velocity Boltzmann kinetic models, Rev.
Mat. Iberoamericana, 13 (1997), pp. 473–513.

[26] E. Magenes, R. H. Nochetto, and C. Verdi, Energy error estimates for a linear scheme to
approximate nonlinear parabolic problems, RAIRO Modél. Math. Anal. Numér., 21 (1987),
pp. 655–678.

[27] G. Naldi, L. Pareschi, and G. Toscani, Relaxation schemes for partial differential equations
and applications to degenerate diffusion problems, Surv. Math. Indust., 10 (2002), pp. 315–
343.

[28] G. Naldi and L. Pareschi, Numerical schemes for kinetic equations in diffusive regimes,
Appl. Math. Lett., 11 (1998), pp. 29–35.

[29] G. Naldi and L. Pareschi, Numerical schemes for hyperbolic systems of conservation laws
with stiff diffusive relaxation, SIAM J. Numer. Anal., 37 (2000), pp. 1246–1270.

[30] R. H. Nochetto, A. Schmidt, and C. Verdi, A posteriori error estimation and adaptivity
for degenerate parabolic problems, Math. Comp., 69 (2000), pp. 1–24.

[31] R. H. Nochetto and C. Verdi, Approximation of degenerate parabolic problems using nu-
merical integration, SIAM J. Numer. Anal., 25 (1988), pp. 784–814.

[32] L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes and applications to hyper-
bolic systems with relaxation, J. Sci. Comput., 25 (2005), pp. 129–155.

[33] I. S. Pop and W. Yong, A numerical approach to degenerate parabolic equations, Numer.
Math., 92 (2002), pp. 357–381.

[34] C. Shu and S. Osher, Efficient implementation of essentially nonoscillatory shock-capturing
schemes. II, J. Comput. Phys., 83 (1989), pp. 32–78.

[35] C. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyper-
bolic conservation laws, in Advanced Numerical Approximation of Nonlinear Hyperbolic
Equations (Cetraro, 1997), Lecture Notes in Math. 1697, Springer, Berlin, 1998, pp. 325–
432.

[36] J. L. Vázquez, An introduction to the mathematical theory of the porous medium equation, in
Shape Optimization and Free Boundaries (Montreal, PQ, 1990), NATO Sci. Ser. C Math.
Phys. Sci. 380, Kluwer Academic Publishers, Dordrecht, 1992, pp. 347–389.

[37] J. Weickert, Anisotropic Diffusion in Image Processing, European Consortium for Mathe-
matics in Industry, B. G. Teubner, Stuttgart, 1998.



SIAM J. NUMER. ANAL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 45, No. 5, pp. 2120–2140

NUMERICAL APPROXIMATION OF A QUASI-NEWTONIAN
STOKES FLOW PROBLEM WITH DEFECTIVE BOUNDARY

CONDITIONS∗

VINCENT J. ERVIN† AND HYESUK LEE†

Abstract. In this article we study the numerical approximation of a quasi-Newtonian Stokes flow
problem where only the flow rates are specified at the inflow and outflow boundaries. A variational
formulation of the problem, using Lagrange multipliers to enforce the stated flow rates, is given. The
existence and the uniqueness to the continuous, and discrete, variational formulations of the solution
are shown. An error analysis for the numerical approximation is also given. Numerical computations
are included which demonstrate the approximation scheme studied.
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1. Introduction. In this paper we investigate the numerical approximation of
a quasi-Newtonian Stokes flow problem with defective boundary conditions. Such
problems arise in modeling viscoelastic fluid flow. Several examples are given in
section 2.1. For well-posedness of a Newtonian fluid flow problem suitable boundary
conditions are required to uniquely define the solution. Perhaps the simplest of these
is to specify the velocity at each point on the boundary of the domain. Often what
is assumed is that the flow is fully developed at the inflow and outflow boundaries,
which justifies a parabolic flow profile at these boundaries. Typically a no slip (i.e.,
velocity = 0) is assumed along the other portions of the boundary of the domain.
However, in many physical problems the assumption of fully developed flow at the
inflow and outflow is either unreasonable or highly questionable. Usually what is
known in physical fluid flow problems are the various inflow and outflow flow rates.

In [6] Formaggia et al. discuss the defective boundary condition problem for the
time-dependent Navier–Stokes equation. They introduce a Lagrange multiplier ap-
proach to enforce flow constraints at the inflow and outflow portions of the boundary.
For the steady-state Stokes problem, they show the existence and the uniqueness of
the solution for flow rates imposed using the Lagrange multiplier formulation. Herein
we extend this work to analyze a quasi-Newtonian Stokes flow problem subject to
specified inflow and outflow flow rates. We establish the existence and the uniqueness
of the solution for the continuous and discrete variational problems and present an
error analysis for the numerical approximation.

Initially it is, perhaps, somewhat perplexing to note that, for the uniqueness
of the solution to the variational problem for (i) the Dirichlet problem, we require

that d́ (the dimension of the space) conditions be specified at each point on the
boundary, whereas (ii) the defective boundary condition problem requires only that

a single scalar be specified at inflow and outflow boundaries (and d́ conditions at

∗Received by the editors September 4, 2006; accepted for publication (in revised form) May 14,
2007; published electronically September 28, 2007. This work was partially supported by the NSF
under grant DMS-0410792.

http://www.siam.org/journals/sinum/45-5/66901.html
†Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975 (vjervin@

clemson.edu, hklee@clemson.edu).

2120



STOKES FLOW WITH DEFECTIVE BOUNDARY CONDITIONS 2121

other boundary points). This seeming anomaly is explained in Lemma 2.1 (see also
[6, Proposition 2.1] and [12, p. 341]). Specifically, the variational formulation for the
defective boundary condition problem implicity imposes that across each of the inflow
and outflow boundaries the total stress normal to the boundaries is a constant, and
the extra stress lying in the surface of the inflow and outflow boundaries is zero.

In [12] Heywood, Rannacher, and Turek also investigated the defective boundary
condition problem for the time-dependent Navier–Stokes equations. They considered
both the case of specified flow rates at the inflow and outflow boundaries and also
the case of the mean specified pressure at the inflow and outflow boundaries. For the
specified flow-rate problem, the formulation they considered (and proved the existence
of a steady-state solution) involved the construction of suitable flux-carrier vector
functions.

The numerical approximation of the quasi-Newtonian Stokes flow problem with
homogeneous boundary conditions has been previously studied in several papers [2,
5, 8, 14, 17].

This paper is organized as follows. In sections 2.1 and 2.2 we describe the model
problem, state our assumptions on the model, and introduce appropriate mathemat-
ical notation. We show in section 2.3 that the corresponding variational formulation,
in which the flow rate boundary conditions are weakly imposed using Lagrange multi-
pliers, is well-posed. A numerical approximation scheme is presented in section 3, and
its solution shown to exist. A priori error estimates for the numerical approximation
are derived in section 4. Numerical results are presented in section 5.

2. Mathematical model. Motivated by physical considerations we consider the
numerical approximation of a three-field, quasi-Newtonian Stokes flow problem with
fixed flow-rate boundary conditions.

2.1. Problem specification. Let Ω denote a bounded domain in R
d́, d́ = 2 or

3, whose boundary ∂Ω is decomposed into the union of Γ and several disjoint sections
S1, S2, . . . , Sm, m ≥ 2. See Figure 2.1.

Gamma

Omega

mS

3S

2S

1S

Fig. 2.1. Illustration of the flow domain.
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We are interested in the numerical approximation of

σ = g(u) in Ω,(2.1)

−∇ · σ + ∇p = f in Ω,(2.2)

∇ · u = 0 in Ω,(2.3)

u = 0 on Γ,(2.4)

subject to the specified flow rates across the surfaces Si:∫
Si

u · n ds = Qi for i = 1, . . . ,m.(2.5)

We use n to denote the outward (from Ω) normal to the surface.
Because of the incompressibility condition (2.3) it follows that

m∑
i=1

Qi = 0.(2.6)

Note that (2.1)–(2.5) can only determine the pressure p up to an arbitrary con-
stant. Below, we fix this constant by requiring p to have mean value 0 over Ω.

The general form of the (algebraic) constitutive equation we assume in our analy-
sis (see A1, A2, A3, in section 2.2) is motivated by the study of fluids having a power
law constitutive equation, i.e.,

σ = ν0|d(u)|r−2d(u), ν0 > 0, 1 < r < 2,(2.7)

where σ denotes the extra stress tensor, u the fluid velocity, and d(u) := (∇u+∇uT )/2
the rate of deformation tensor.

The power law model has been used to model the viscosity of many polymeric
solutions and melts over a considerable range of shear rates [11].

Other constitutive equations having a similar form to the power law model include
[3, 14, 15]:

(i) Ladyzhenskaya law [13]

σ = ν0 + ν1|∇u|r−2d(u), ν0 ≥ 0, ν1 > 0, r > 1,(2.8)

used in modeling fluids with large stresses; and
(ii) Carreau law

σ = ν0

(
1 + |d(u)|2

)(r−2)/2
d(u), ν0 > 0, r ≥ 1,(2.9)

used in modeling viscoplastic flows and creeping flow of metals.

2.2. Notation/assumptions. We made the following assumptions regarding
the constitutive equation (2.1) for the stress σ:

A1. g(u) is (formally) uniquely invertible to obtain

d(u) = ğ(σ)σ, ( or ∇u = ǧ(σ)σ)

and the inverse is continuous. For G(σ) := ğ(σ)σ,
A2.

(G(s) −G(t)) : (s− t) ≥ c|s− t|r′ ∀s, t ∈ R
d́×d́,(2.10)
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A3.

|G(s) −G(t)| ≤ M (|s| + |t|)r
′−2 |s− t|, ∀s, t ∈ R

d́×d́.(2.11)

For r ∈ R, r > 1, we denote its unitary conjugate by r′, satisfying r−1 + r′−1 = 1.
For problems of physical interest, 1 < r ≤ 2, e.g., shear thinning fluids. We

therefore assume that 1 < r ≤ 2 and, consequently, 2 ≤ r′ < ∞.
Properties A2 and A3 imply that G(·) is strongly monotone and Lipschitz con-

tinuous for bounded arguments [4].
We remark that differential constitutive models for viscoelastic fluids, such as the

Oldroyd-B or Giesekus models, do not satisfy A1–A3.
Used in the analysis below are the following function spaces and norms:

T :=
(
Lr′(Ω)

)d́×d́

sym
=

{
τ = (τij); τij = τji; τij ∈ Lr′(Ω); i, j = 1, . . . , d́

}
,

with norm ‖τ‖T := (
∫
Ω
|τ |r′dΩ)1/r

′
, and

X :=

{
v ∈

(
W 1,r(Ω)

)d́
: v|Γ = 0

}
,

with W k,p(Ω) denoting the usual Sobolev space notation. We take for the norm on

X, ‖v‖X :=
(∫

Ω
|d(v)|rdΩ

)1/r
, which is equivalent to the usual ‖ · ‖W 1,r norm by the

Poincaré–Friedrichs lemma:

P := Lr′

0 (Ω) =

{
q ∈ Lr′(Ω) :

∫
Ω

qdΩ = 0

}
,

with norm ‖q‖P := (
∫
Ω
|q|r′dΩ)1/r

′
.

We use VX to denote the subspace of X defined by

VX :=

{
v ∈ X :

∫
Ω

q∇ · vdΩ +

m∑
i=1

βi

∫
Si

v · nds = 0 ∀(q, β) ∈ P × R
m

}
and let

VT :=

{
τ ∈ T :

∫
Ω

τ : d(v)dΩ = 0 ∀v ∈ VX

}
.

For a Banach space Y , Y ′ denotes its dual space with associated norm ‖ · ‖Y ′ .
For σ, τ tensors and u, v vectors, we use : and · to denote the scalar quantities

σ : τ :=
∑d́

i=1

∑d́
j=1 σijτij and u · v :=

∑d́
i=1 uivi, respectively. We use (·, ·) to

denote the L2 inner product for functions (scalar, vector, or tensor) over Ω and 〈·, ·〉
to denote the duality pairing between a function space and its dual space.

2.3. Lagrange multiplier approach. We consider the following variational
formulation to (2.1)–(2.5): Given f ∈ X ′, Q ∈ R

m, determine (σ,u, p, λ) ∈ T ×X ×
P × R

m, such that

a(σ, τ) − b(τ,u) = 0 ∀τ ∈ T,(2.12)

b(σ,v) − s(v, (p, λ)) = 〈f ,v〉 ∀v ∈ X,(2.13)

s(u, (q, β)) =

m∑
i=1

Qiβi ∀(q, β) ∈ P × R
m,(2.14)
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where

a(σ, τ) :=

∫
Ω

ğ(σ)σ : τdΩ,(2.15)

b(τ,u) :=

∫
Ω

τ : d(u)dΩ,(2.16)

s(v, (p, λ)) :=

∫
Ω

p∇ · vdΩ +

m∑
i=1

λi

∫
Si

v · nds.(2.17)

The Lagrange multiplier λ ∈ R
m is introduced to include the flow constraints

(2.5) in the variational formulation, see [1, 6, 10].

Equivalence of the differential equations and variational formulations.
The variational formulation is obtained by multiplying the differential equations by
sufficiently smooth functions, integrating over the domain, and, where appropriate,
applying Green’s theorem. The constraint equations are imposed weakly using La-
grange multipliers. For a smooth solution the steps used in deriving the variational
equations can be reversed to show that (2.1)–(2.5) are satisfied. In addition we have
that a smooth solution of (2.12)–(2.14) satisfies the following additional boundary
conditions (see [6]).

For n the outward normal on Si, express the extra stress vector on Si, σ · n, as

σ · n = snn + sT ,

where sn = (σ · n) · n and sT = σ · n − snn. The scalar sn represents the magnitude
of the extra stress in the outward normal direction to Si, and sT is the component of
the extra stress vector which lies in the plane of Si.

Lemma 2.1. Any smooth solution of (2.12)–(2.14) satisfies the additional bound-
ary conditions

−p + sn|Si
= λi and sT |Si

= 0, i = 1, . . . ,m.(2.18)

Proof. The proof follows as in [6].
Remark. The equations (2.1)–(2.5) do not uniquely define a solution but rather

a set of solutions. The variational formulation (2.12)–(2.14) chooses a solution from
the solution set. Specifically, (2.12)–(2.14) chooses the solution which satisfies (2.18).
A different variational formulation may result in a different selection for the solution
from the solution set. (See, for example, [6].)

Unique solvability of (2.12)–(2.14). There are two main steps in showing
that (2.12)–(2.14) is uniquely solvable. Step 1 involves showing that the (2.12)–(2.14)
can be reduced to an equivalent problem involving only σ. Step 2 demonstrates that
the stress is uniquely solvable. Used in step 1 is the following lemma.

Lemma 2.2 (see [9, Remark 4.2, p. 61]). Let (X, ‖ · ‖X) and (M, ‖ · ‖M ) be two
reflexive Banach spaces. Let (X ′, ‖ · ‖X′) and (M ′, ‖ · ‖M ′) be their corresponding dual
spaces. Let B : X → M ′ be a linear continuous operator and B′ : M ′′ → X ′ the
dual operator of B. Let V = ker(B) be the kernel of B; we denote by V o ⊂ X ′ the
polar set of V : V o = {x′ ∈ X ′, 〈x′, v〉 = 0 ∀v ∈ V } and Ḃ : X/V → M ′ the quotient
operator associated with B. The following three properties are equivalent:

(i) ∃c > 0 such that

inf
q∈M

sup
v∈X

〈Bv, q〉
‖q‖M‖v‖X

≥ c;
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(ii) B′ is an isomorphism from M ′′ onto V o and

‖B′q‖X′ ≥ CB‖q‖M ′′ ∀q ∈ M ′′;

(iii) Ḃ is an isomorphism from X/V onto M ′ and

‖Ḃv̇‖M ′ ≥ CB‖v̇‖X/V ∀v̇ ∈ X/V.

As the first part of step 1, we show that (p, λ) can be eliminated from (2.12)–
(2.14). To do this we use the following inf-sup condition. (See also [18].)

Lemma 2.3. There exists CPRX > 0 such that

inf
(q,β)∈P×Rm

sup
u∈X

s(u, (q, β))

‖u‖X‖(q, β)‖P×Rm

≥ CPRX ,(2.19)

where ‖(q, β)‖P×Rm := ‖q‖P + ‖β‖Rm .
Proof. Fix (q, β) ∈ P × R

m, and let

q̂ =
|q|r′/r−1q

‖q‖r′−1
P

, β̂ =
β

‖β‖Rm

.(2.20)

Note that (q, q̂) = ‖q‖P , ‖q̂‖P ′ = 1, β̂ · β = ‖β‖Rm , and ‖β̂‖Rm = 1.
Next, we introduce δ ∈ R and h ∈ W 1−1/r,r(∂Ω), a piecewise constant function,

defined by

h =

{
β̂i/meas(Si) on Si, i = 1, . . . ,m,

0 on Γ,
(2.21)

δ =

(∫
∂Ω

hds−
∫

Ω

q̂dΩ

)
/meas(Ω).(2.22)

From [7, p. 127], given f ∈ Lr(Ω),a ∈ W 1−1/r,r(∂Ω), 1 < r < ∞, satisfying∫
Ω

fdΩ =

∫
∂Ω

a · nds,(2.23)

there exists v ∈ W 1,r(Ω) such that

∇ · v = f in Ω,(2.24)

v = a on ∂Ω,(2.25)

with ‖v‖W 1,r(Ω) ≤ C
(
‖f‖Lr(Ω) + ‖a‖W 1−1/r,r(∂Ω)

)
.(2.26)

Let f = q̂+ δ, and, for {n, ti, i = 1, . . . d́− 1} denoting an orthonormal system on
∂Ω, let a be defined by {

a · n = h,

a · ti = 0, i = 1, . . . d́− 1.

Remark. The choice of the constant δ guarantees that the compatibility condition∫
Ω
fdΩ =

∫
∂Ω

a · nds is satisfied.
We have that

‖q̂‖W 0,r(Ω) = 1 (by construction),(2.27)

‖a‖W 1−1/r,r(∂Ω) ≤ C1‖β̂‖Rm = C1(2.28)

(by the equivalence of finite dimensional norms).
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Also, ∫
Ω

q̂dΩ ≤ ‖q̂‖P ′‖1‖P = C2,(2.29) ∫
∂Ω

hds ≤ ‖β̂‖Rm‖1‖Rm = C3,(2.30)

and thus ‖δ‖W 0,r(Ω) ≤ C4.
With u denoting the solution of (2.24)–(2.26), we have that u ∈ X and satisfies

‖u‖W 1,r(Ω) ≤ C(1 + C4 + C1) ≤ C5.(2.31)

Hence,

s(u, (q, β)) = (∇ · u, q) +
m∑
i=1

βi

∫
Si

u · nds

= (q̂ + δ, q) + β̂ · β
= ‖q‖P + ‖β‖Rm

= ‖(q, β)‖P×Rm ,

as (δ, q) = 0 for q ∈ P (= Lr′

0 (Ω)). Thus,

sup
u∈X

s(u, (q, β))

‖(q, β)‖P×Rm‖u‖W 1,r(Ω)
≥ 1

C5
,

from which (2.19) directly follows.
We now state and prove the existence and the uniqueness of the solution to

(2.12)–(2.14).
Theorem 2.1. Given f ∈ X ′ and Q ∈ R

m, there exists a unique (σ,u, p, λ) ∈
T ×X × P × R

m satisfying (2.12)–(2.14).
Proof. From Lemmas 2.3 and 2.2(i), (iii), with the associations X = X, M =

P × R
m, B : X → (P × R

m)′ defined by

B(v) := s(v, (·, ·)),

V = ker(B), we have that there exists u̇ ∈ X/V such that

s(u̇, (q, β)) =

m∑
i=1

Qiβi ∀(q, β) ∈ P × R
m,

with ‖u̇‖X/V ≤ 1/Cs‖Q‖Rm .
Note: ‖u̇‖X/V := infv∈u̇ ‖v‖X .
As the cosets in X/V are closed, we can choose us ∈ u̇ such that

‖us‖X = ‖u̇‖X/V ≤ 1/Cs‖Q‖Rm .(2.32)

Let u = ũ+us. Then, solving (2.12)–(2.14) is equivalent to: Find σ ∈ X, ũ ∈ VX ,
such that

a(σ, τ) − b(τ, ũ) = b(τ,us) ∀τ ∈ T,(2.33)

b(σ,v) = 〈f ,v〉 ∀v ∈ VX .(2.34)
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Now note that, for v ∈ X and τ = |d(v)|r−2d(v) ∈ T , ‖τ‖T = ‖v‖r/r
′

X and

b(τ,v)

‖τ‖T
=

‖v‖rX
‖v‖r/r

′

X

= ‖v‖X .

Thus

inf
v∈X

sup
τ∈T

b(τ,v)

‖τ‖T ‖v‖X
≥ 1,(2.35)

i.e., b(τ,v) satisfies an inf-sup condition over X × T .
As above, there exists σb ∈ T such that

b(σb,v) = 〈f ,v〉 ∀v ∈ X,

with ‖σb‖T ≤ 1

Cb
‖f‖X′ .(2.36)

Let σ = σ̃ + σb. Then, solving (2.33), (2.34) is equivalent to: Find σ̃ ∈ VT , such
that

a(σ̃ + σb, τ) = b(τ,us) ∀τ ∈ VT .(2.37)

From assumptions A2 and A3 we have that G(τ) : VT → V ′
T is a continuous,

coercive, strictly monotone operator on a real, separable, reflexive Banach space [16].
Hence, there exists a unique σ̃ ∈ VT satisfying (2.37). This then also uniquely deter-
mines σ ∈ T .

The inf-sup condition (2.35), together with (2.33), uniquely determines ũ ∈ VX

and hence also u = ũ + us ∈ X.
Finally, the inf-sup condition (2.19) and the equation (2.13) uniquely determine

p ∈ P and λ ∈ R
m.

We now establish a bound for ‖σ‖T , which we use below in section 4 in deriving a
priori estimates for the numerical approximation. Estimates for u, p, and λ can also
be derived.

Corollary 2.1. For σ ∈ T satisfying (2.12)–(2.14) we have that there exists
C > 0 such that

‖σ‖T ≤ C(‖f‖X′ + ‖Q‖r/r
′

Rm ).(2.38)

Proof. From (2.37), with the choice τ = σ̃, we have

a(σ̃ + σb, σ̃) = b(σ̃,us)

≤ 2−r′ε‖σ̃‖r′T + C‖us‖rX
≤ 2−r′ε (‖σ̃ + σb‖T + ‖σb‖T )

r′
+ C‖us‖rX

≤ ε‖σ̃ + σb‖r
′

T + ε‖σb‖r
′

T + C‖us‖rX .(2.39)

Using assumption (2.10),

a(σ̃ + σb, σ̃) =

∫
Ω

ğ(σ̃ + σb)(σ̃ + σb) : σ̃dΩ

=

∫
Ω

ğ(σ̃ + σb)(σ̃ + σb) : (σ̃ + σb) −
∫

Ω

ğ(σ̃ + σb)(σ̃ + σb) : σbdΩ

≥
∫

Ω

c|σ̃ + σb|r
′
dΩ − ‖G(σ̃ + σb)‖Lr‖σb‖T

≥ c‖σ̃ + σb‖r
′

T − c

2Mr
‖G(σ̃ + σb)‖rLr − C‖σb‖r

′

T .(2.40)
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We use (2.11) to estimate the second term on the right-hand side (RHS) of (2.40):

‖G(σ̃ + σb)‖rLr =

∫
Ω

|G(σ̃ + σb)|rdΩ ≤ Mr

∫
Ω

(
(|σ̃ + σb| + 0)r

′−2|σ̃ + σb − 0|
)r

dΩ

= Mr

∫
Ω

|σ̃ + σb|(r
′−1)rdΩ

= Mr

∫
Ω

|σ̃ + σb|r
′
dΩ

= Mr‖σ̃ + σb‖r
′

T .(2.41)

Combining (2.39)–(2.41) we have that( c

2
− ε

)
‖σ̃ + σb‖r

′

T ≤ C
(
‖σb‖r

′

T + ‖us‖rX
)
.

As σ = σ̃ + σb, and using the estimates (2.32) and (2.36), we obtain (2.38).

3. Discrete approximation. We now describe the discrete approximation prob-
lem corresponding to (2.12)–(2.14) and show that the problem is well-defined. Anal-
ogous to the continuous problem the existence and the uniqueness for the discrete
problem rely on the approximating spaces satisfying suitable inf-sup conditions.

We begin by describing the finite element approximation framework used in the
analysis.

Let Ω ⊂ R
d́(d́ = 2, 3) be a polygonal domain, and let Th be a triangulation of Ω

made of triangles (in R
2) or tetrahedrals (in R

3). Thus, the computational domain is
defined by

Ω = ∪K; K ∈ Th.

We assume that there exist constants c1, c2 such that

c1h ≤ hK ≤ c2ρK ,

where hK is the diameter of triangle (tetrahedral) K, ρK is the diameter of the
greatest ball (sphere) included in K, and h = maxK∈Th

hK . Let Pk(A) denote the
space of polynomials on A of degree no greater than k. Then we define the finite
element spaces as follows:

Th :=
{
τ ∈ T ∩ C(Ω̄)2×2 : τ |K ∈ Pl(K) ∀K ∈ Th

}
,(3.1)

Xh :=
{
v ∈ X ∩ C(Ω̄)2 : v|K ∈ Pk(K) ∀K ∈ Th

}
,(3.2)

Ph :=
{
q ∈ P ∩ C(Ω̄) : q|K ∈ Pn(K) ∀K ∈ Th

}
.(3.3)

We assume that the velocity-stress and the pressure-velocity spaces satisfy the
following (typical) discrete inf-sup condition: There exist constants CXTh, CPXh > 0
such that

inf
v∈Xh

sup
τ∈Th

b(τ,v)

‖τ‖T ‖v‖X
≥ CXTh,(3.4)

inf
q∈Ph

sup
v∈Xh

∫
Ω
q∇ · vdA

‖q‖P ‖v‖X
≥ CPXh.(3.5)
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Fig. 3.1. Plot of gi/βi.

Discrete approximation problem. Given f ∈ X ′, and Q ∈ R
m, determine (σh,

uh, ph, λh) ∈ Th ×Xh × Ph × R
m such that

a(σh, τh) − b(τh,uh) = 0 ∀τh ∈ Th,(3.6)

b(σh,vh) − s(vh, (ph, λh)) = 〈f ,vh〉 ∀vh ∈ Xh,(3.7)

s(uh, (qh, βh)) =

m∑
i=1

Qiβi ∀(qh, βh) ∈ Ph × R
m.(3.8)

For the analysis a more general inf-sup condition than that given in (3.5) is needed.
This is established using the following two lemmas. (See also [18].)

Lemma 3.1. There exists CRXh > 0 such that

inf
β∈Rm

sup
vh∈Xh

∑m
i=1 βi

∫
Si

vh · nds
‖vh‖X‖β‖Rm

≥ CRXh.(3.9)

Outline of proof. From inspection of (3.9) we see that we would like to choose
vh ∈ Xh such that vh · n = βi on each Si, and ‖vh‖X ≤ c‖β‖Rm . This is done by
constructing a suitable vh,i, with vh,i|Sj = 0, j �= i, and then letting vh =

∑
i vh,i.

We focus our attention on a single Si. We will assume that on Si, n(x) · n(y) ≥
c > 0 at all points x, y ∈ Si for which n is defined. (That is, on Si the normal n does
not vary by more than 90 degrees. If the normal does vary by more than 90 degrees,
consider the surface as two surfaces.)

For ease of explanation, consider Si as a straight line segment from (0, 0) to
(|Si|, 0). Fix a depth di such that the rectangle R with vertices (|Si|/6, 0), (5|Si|/6, 0),
(5|Si|/6, di), (|Si|/6, di) lies in Ω. Introduce the labeling of the following points: A :=
(|Si|/6, 0), B := (5|Si|/6, 0), C := (5|Si|/6, di), D := (|Si|/6, di), E := (|Si|/3, 0),
F := (2|Si|/3, 0), G := (2|Si|/3, di), and H := (|Si|/3, di).

Let ñ = n|(|Si|/2,0) and gi be the continuous, piecewise bilinear, function defined
by gi|E,F = βi, and gi|A,B,C,D,G,H = 0. (See Figure 3.1. In Figure 3.1, xi = x/|Si|,
and eta = y/d.).
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We define the function ṽi as ṽi|Ω\R = 0, and ṽi|R = giñ. Then

βi

∫
Si

ṽi · nds = βi

∫ F

E

(βiñ) · nds ≥ ciβ
2
i |Si|/3.

Also,

‖ṽi‖X =

(∫
R
|ṽi|rdA +

∫
R
|∇ṽi|rdA

)1/r

= |βi|
(
(r + 2)di|Si|/(3(r + 1)2) + 6r−22di/(|Si|r−1(r + 1))

+ (6r + 7)|Si|/(18(r + 1)dr−1
i )

)1/r
.

Now there exists h0 such that for all h ≤ h0 there exists vh,i ∈ Th such that
‖ṽi − vh,i‖∞ ≤ ciβi/6 and ‖ṽi − vh,i‖X ≤ |βi|. Then

∑m
i=1 βi

∫
Si

vh · nds
‖vh‖X

≥
∑m

i=1 βi

∫
Si

vh,i · nds∑m
i=1 ‖vh,i‖X

≥

∑m
i=1

(
βi

∫
Si

ṽi · nds− ciβ
2
i |Si|/6

)
∑m

i=1 (‖ṽi‖X + ‖ṽi − vh,i‖X)

≥
∑m

i=1 ciβ
2
i |Si|/6∑m

i=1 ĉi|βi|
≥ C‖β‖,

from which (3.9) then follows.
Lemma 3.2. For h sufficiently small, there exists CPRXh > 0 such that

inf
(qh,β)∈Ph×Rm

sup
vh∈Xh

s(vh, (qh, β))

‖vh‖X‖(q, β)‖P×Rm

≥ CPRXh.(3.10)

Proof. Let (ph, β) ∈ Ph × R
m. From Lemma 3.1, there exists ûh ∈ Xh such that

‖ûh‖X = ‖β‖Rm and

∑m
i=1 βi

∫
Si

ûh · nds
‖ûh‖X

≥ c1‖β‖Rm .(3.11)

Let X0
h := {vh ∈ Xh : vh|∂Ω = 0}, and consider the (discrete) power law problem:

Determine ũh ∈ X0
h, p̃h ∈ Ph such that

(|d(ũh)|r−2d(ũh), d(v)) − (p̃h,∇ · v) = 0 ∀v ∈ X0
h,(3.12)

(q,∇ · ũh) = (q, ‖ph‖1−r′/r
P |ph|r

′/r−1ph −∇ · ûh) ∀q ∈ Ph.(3.13)

Note that ‖ph‖1−r′/r
P |ph|r

′/r−1ph −∇ · ûh ∈ Lr(Ω).
The existence and the uniqueness of ũh ∈ X0

h, p̃h ∈ Ph satisfying (3.12), (3.13)
follow analogous to the proof of Theorem 2.1. (See also [9, 2]).

From (3.12), (3.13) with the choices v = ũh and q = p̃h,

‖ũh‖rX = (|d(ũh)|r−2d(ũh), d(ũh)) = (p̃h,∇ · ũh)

= (p̃h, ‖ph‖1−r′/r
P |ph|r

′/r−1
P ph −∇ · ûh)

≤ ‖p̃h‖P
(
‖ph‖1−r′/r

P ‖|ph|r
′/r−1

P ph‖Lr + ‖∇ · ûh‖Lr

)
≤ ‖p̃h‖P (‖ph‖P + C‖ûh‖X)

= ‖p̃h‖P (‖ph‖P + ‖β‖Rm) .(3.14)
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Also, from the inf-sup condition for spaces X0
h and Ph we have

c‖p̃h‖P ≤ sup
v∈X0

h

(p̃h,∇ · v)

‖v‖X

= sup
v∈X0

h

(|d(ũh)|r−2d(ũh), d(v))

‖v‖X

≤ sup
v∈X0

h

(‖|d(ũh)|r−2d(ũh)‖Lr′ ‖d(v)‖Lr

‖v‖X
= ‖|d(ũh)|r−2d(ũh)‖Lr′

= ‖ũh‖r/r
′

X .(3.15)

Combining (3.14) and (3.15) we have the estimate

‖ũh‖X ≤ (‖ph‖P + C‖β‖Rm) .(3.16)

Let uh = ũh + ûh. Then, using (3.13) and (3.11),

s(uh, (ph, β)) =

∫
Ω

ph∇ · ũhdΩ +

∫
Ω

ph∇ · ûhdΩ +

m∑
i=1

βi

∫
Si

ũh · nds

+

m∑
i=1

βi

∫
Si

ûh · nds

=

∫
Ω

ph‖ph‖1−r′/r
P |ph|r

′/r−1phdΩ +

m∑
i=1

βi

∫
Si

ûh · nds

≥ c
(
‖ph‖2

P + ‖β‖2
Rm

)
.(3.17)

Thus, using (3.11), (3.16), we have

sup
vh∈Xh

s(vh, (ph, β))

‖vh‖X
≥ s(uh, (ph, β))

‖uh‖X
≥ C (‖ph‖P + ‖β‖Rm) ,

from which (3.10) immediately follows.
We now state and prove the existence and the uniqueness of solutions to (3.6)–

(3.8).
Theorem 3.1. Given f ∈ X ′ and Q ∈ R

m, there exists a unique (σh,uh, ph, λh) ∈
Th ×Xh × Ph × R

m satisfying (3.6)–(3.8). In addition,

‖σh‖T ≤ C(‖f‖X′ + ‖Q‖r/r
′

Rm ).(3.18)

Proof. With the inf-sup conditions given in (3.4) and (3.10) the proof of existence
follows exactly as for the continuous problem in Theorem 2.1. Similarly, the norm
estimate for σh follows as that for σ given in Corollary 2.1.

4. A priori error estimate. In this section we derive an error estimate for
the error in the approximation (σh,uh, ph, λh) satisfying (3.6)–(3.8) and (σ,u, p, λ)
satisfying (2.12)–(2.14).

The proof of the estimates gives in Theorem 4.1 follows along the same lines as
the proofs for the existence and uniqueness, except for the error estimates we work
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backwards. The procedure to establish the existence and uniqueness was to reduce the
problem to an equivalent problem for σ (or σh) on a subspace of the solution space. To
obtain the error estimates we begin by considering the determining equations for σh,
uh, over a subspace. Using the coercivity and continuity assumptions (2.10), (2.11),
an error estimate for ‖σ − σh‖ over the subspace is constructed. We then show that
the estimate over the subspace can be extended to the entire solution space.

Useful in the analysis below is the following inf-sup condition which follows from
(3.4) and (3.10).

Lemma 4.1. For h sufficiently small, there exists a constant CXTPRh > 0 such
that

inf
v∈Xh

sup
(τ,q,β)∈Th×Ph×Rm

b(τ,v) − s(v, (q, β))

‖(τ, q, β)‖T×P×Rm‖v‖X
≥ CXTPRh,(4.1)

where ‖(τ, q, β)‖T×P×Rm := ‖τ‖T + ‖q‖P + ‖β‖Rm .
Proof. For v ∈ Xh, from (3.4) there exists τv such that

b(τv,v) ≥ CXTh

2
‖τv‖T ‖v‖X .(4.2)

We now consider two cases. First, if s(v, (q, β)) = 0 for all (q, β) ∈ Ph×R
m, then (4.1)

follows immediately from (4.2). Otherwise, from the definition of s(v, (q, β)), there
exists (qv, βv) ∈ Ph × R

m such that s(v, (qv, βv)) < 0 and ‖(qv, βv)‖Ph×Rm = ‖τv‖T .
Thus,

sup
(τ,q,β)∈Th×Ph×Rm

b(τ,v) − s(v, (q, β))

‖(τ, q, β)‖T×P×Rm

≥ b(τv,v) − s(v, (qv, βv))

‖(τv, qv, βv)‖T×P×Rm

≥ CXTh‖τv‖T ‖v‖X
2(‖τv‖T + ‖τv‖T )

,

from which (4.2) then follows.
Theorem 4.1. For (σ,u, p, λ) satisfying (2.12)–(2.14) and (σh,uh, ph, λh) satis-

fying (3.6)–(3.8), for h sufficiently small, we have that there exists a constant C > 0
such that

‖σ − σh‖r
′

T ≤ C

(
inf

τh∈Th

(
‖σ − τh‖rT + ‖σ − τh‖r

′

T

)
+ inf

vh∈Xh

‖u − vh‖rX + inf
qh∈Ph

‖p− qh‖r
′

P

)
,(4.3)

‖u − uh‖X ≤ C

(
‖σ − σh‖T + inf

vh∈Xh

‖u − vh‖X
)
,(4.4)

‖p− ph‖P + ‖λ− λh‖R
m ≤ C

(
‖σ − σh‖T + inf

qh∈Ph

‖p− qh‖P
)
.(4.5)

Proof. We have that (σh,uh, ph, λh) satisfies

a(σh, τh) − b(τh,uh) = 0 ∀τh ∈ Th,(4.6)

b(σh,vh) − s(vh, (ph, λh)) = 〈f ,vh〉 ∀vh ∈ Xh,(4.7)

s(uh, (qh, βh)) =

m∑
i=1

Qiβi ∀(qh, β) ∈ Ph × R
m.(4.8)
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Introduce the affine subspaces X̃h ⊂ Xh, K̃h defined by

X̃h :=

{
vh ∈ Xh : s(vh, (qh, β)) =

m∑
i=1

Qiβi ∀(qh, βh) ∈ Ph × R
m

}
,(4.9)

K̃h := {τh ∈ Th : b(τh,vh) − s(vh, (ph, λh)) = 〈f ,vh〉 ∀vh ∈ X̃h}.(4.10)

Note that σh ∈ K̃h and uh ∈ X̃h.
From (2.10), (2.11) we have

c‖σ − σh‖r
′

T ≤ a(σ, σ − σh) − a(σh, σ − σh)

= a(σ, σ − τh) − a(σh, σ − τh) + a(σ, τh − σh) − a(σh, τh − σh)

≤
∫

Ω

M(|σ| + |σh|)r
′−2|σ − σh||σ − τh|dΩ + a(σ, τh − σh) − a(σh, τh − σh).(4.11)

Now, noting that 1 < r ≤ 2, and hence r′/r ≥ 1,∫
Ω

M(|σ| + |σh|)r
′−2|σ − σh||σ − τh|dΩ

≤
(∫

Ω

Mr(|σ| + |σh|)(r
′−2)r|σ − τh|rdΩ

)1/r

‖σ − σh‖T

≤ ε‖σ − σh‖r
′

T + CMr

∫
Ω

2(r′−2)r
(
|σ|(r′−2)r + |σh|(r

′−2)r
)
|σ − τh|rdΩ

≤ ε‖σ − σh‖r
′

T

+ C

(∫
Ω

(
|σ|(r′−2)r + |σh|(r

′−2)r
)r′/(r′−r)

dΩ

)(r′−r)/r′ (∫
Ω

|σ − τh|r
′
dΩ

)r/r′

≤ ε‖σ − σh‖r
′

T + C
(
‖σ‖r′T + ‖σh‖r

′

T

)(r′−r)/r′

‖σ − τh‖rT
≤ ε‖σ − σh‖r

′

T + C‖σ − τh‖rT .
(4.12)

With the choice τh ∈ K̃h, using (2.12) and (4.6),

a(σ, τh − σh) − a(σh, τh − σh) = b(τh − σh,u) − b(τh − σh,uh)

= b(τh − σh,u) (since τh and σh are in K̃h)

= b(τh − σh,u − vh) (for vh ∈ X̃h)

=

∫
Ω

(τh − σh) : d(u − vh)dΩ

=

∫
Ω

(σ − σh) : d(u − vh)dΩ

+

∫
Ω

(τh − σ) : d(u − vh)dΩ

≤ ‖σ − σh‖T ‖u − vh‖X + ‖σ − τh‖T ‖u − vh‖X
≤ ε‖σ − σh‖r

′

T + C
(
‖σ − τh‖r

′

T + ‖u − vh‖rX
)
.(4.13)

Combining (4.11)–(4.13) gives an error bound for ‖σ − σh‖T in terms of the best
approximations of σ and u in the sets K̃h and X̃h, respectively. Next we show that
we can lift these best approximations from K̃h and X̃h to Th ×Xh. This is done in
two steps: first, lifting from K̃h to W̃h and then using the discrete inf-sup condition
to go from W̃h to Th ×Xh.



2134 VINCENT J. ERVIN AND HYESUK LEE

Let

W̃h := {(τh, qh) ∈ Th × Ph : b(τh,vh) − s(vh, (qh, λh))

= 〈f ,vh〉 ∀vh ∈ Xh}.(4.14)

Note that if (τh, qh) is in W̃h, then τh is in K̃h. Hence,

inf
τh∈Kh

‖σ − τh‖T ≤ inf
(τh,qh)∈W̃h

‖(σ, p) − (τh, qh)‖T×P .(4.15)

From the inf-sup conditions (4.1) we have that there exist operators Π1 : T → Th

and Π2 : P → Ph such that

b(τ − Π1τ,vh) − s(vh, (q − Π2q, λh)) = 0 ∀vh ∈ Xh(4.16)

and

‖(Π1τ,Π2q)‖T×P ≤ C̃‖(τ, q)‖T×P ∀(τ, q) ∈ T × P.(4.17)

Consider (τh, qh) ∈ Th × Ph, and introduce σ̃ := τh − Π1(τh − σ) and p̃ :=
qh − Π2(qh − p). Then for all vh ∈ Xh

b(σ̃,vh) − s(vh, (p̃, λh)) = b(σ,vh) − s(vh, (p, λh))

= 〈f ,vh〉,

which implies (σ̃, p̃) ∈ W̃h.
Also, using (4.17),

‖(σ̃, p̃) − (τh, qh)‖T×P = ‖(Π1(σ − τh),Π2(p− qh)‖T×P

≤ C̃‖(σ − τh, p− qh)‖T×P .(4.18)

With (σ̃, p̃) as defined above, using (4.17), (4.18), and the triangle inequality,

inf
(τh,qh)∈W̃h

‖(σ, p) − (τh, qh)‖T×P ≤ inf
(τh,qh)∈Th×Ph

‖(σ, p) − (σ̃, p̃)‖T×P

≤ inf
(τh,qh)∈Th×Ph

(‖(σ, p) − (τh, qh)‖T×P + ‖(σ̃, p̃) − (τh, qh)‖T×P )

≤ (1 + C̃) inf
(τh,qh)∈Th×Ph

‖(σ, p) − (τh, qh)‖T×P .(4.19)

Using an analogous argument with the inf-sup condition (3.10) it is straightfor-
ward to show that

inf
vh∈X̃h

‖u − vh‖X ≤ C inf
vh∈Xh

‖u − vh‖X .(4.20)

Combining (4.11)–(4.13), (4.15), (4.19), and (4.20), we then have

‖σ − σh‖r
′

T ≤ C

(
inf

τh∈Th

(
‖σ − τh‖rT + ‖σ − τh‖r

′

T

)
+ inf

vh∈Xh

‖u − vh‖rX

+ inf
qh∈Ph

‖p− qh‖r
′

P

)
.
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To obtain the error estimate for the velocity we use (3.4). We have that

CXTh‖uh − vh‖X ≤ sup
τh∈Th

b(τh,uh − vh)

‖τh‖T

= sup
τh∈Th

b(τh,uh − u) + b(τh,u − vh)

‖τh‖T

≤ sup
τh∈Th

a(σh, τh) − a(σ, τh)

‖τh‖T
+ ‖u − vh‖X .(4.21)

Proceeding as in the estimate (4.12), we have that

a(σh, τh) − a(σ, τh) =

∫
Ω

(ğ(σh)σh − ğ(σ)σ) : τhdΩ

≤
∫

Ω

M (|σh| + |σ|)r
′−2 |σ − σh| : τhdΩ

≤ C‖σ − σh‖T ‖τh‖T .(4.22)

Combining (4.21) and (4.22) yields

‖uh − vh‖X ≤ C (‖σ − σh‖T + ‖u − vh‖X) .

An application of the triangle inequality then establishes (4.4).
The error estimate for the pressure and the “Lagrange multipliers” is obtained

using the inf-sup condition (3.10), the trace theorem, and the equivalence of norms
in R

m. We have that

CPRXh (‖ph − qh‖P + ‖λh − βh‖Rm) ≤ sup
vh∈Xh

s(vh, (ph − qh, λh − βh))

‖vh‖X

= sup
vh∈Xh

s(vh, (ph − p, λh − λ)) + s(vh, (p− qh, λ− βh))

‖vh‖X

≤ sup
vh∈Xh

b(σ,vh) − b(σh,vh)

‖vh‖X

+ sup
vh∈Xh

∫
Ω
(p− qh)∇ · vhdΩ +

∑m
i=1(λi − βh,i)

∫
Si

vh · nds
‖vh‖X

≤ sup
vh∈Xh

∫
Ω
(σ − σh) : d(vh)dΩ

‖vh‖X
+ C (‖p− qh‖P + ‖λ− βh‖Rm)

≤ ‖σ − σh‖T + C (‖p− qh‖P + ‖λ− βh‖Rm) .

Estimate (4.5) then follows using the triangle inequality.
Remark. As uh exactly satisfies the specified flow rates, the error in the Lagrange

multipliers does not appear in the error estimate for ‖u − uh‖X .

Corollary 4.1. For (σ,u, p, λ) ∈ (W l+1,r′)d́×d́×
(
W k+1,r

)d́×Wn+1,r′×R
m sat-

isfying (2.12)–(2.14) and (σh,uh, ph, λh) satisfying (3.6)–(3.8) (with Th, Xh, Ph defined
in (3.1)–(3.3)), for h sufficiently small, we have with l̃ := min{(l+1)r/r′, kr/r′, n+1}
that

‖σ − σh‖T + ‖u − uh‖X + ‖p− qh‖P + ‖λ− βh‖Rm ≤ Chl̃.(4.23)

Proof. Estimate (4.23) follows from (4.3)–(4.5) and the approximating properties
of continuous piecewise polynomials. (Note that, by assumption, r ≤ r′.)
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Fig. 5.1. The flow problem.
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Fig. 5.2. The second computational mesh, h = 1/2.

5. Numerical computations. In this section we present numerical results, ob-
tained using MATLAB, for a flow problem subject (only) to specified flow-rate condi-
tions at the inflow and outflow boundaries. Along the other boundaries we impose the
usual nonslip condition for the fluid velocity. In order to demonstrate the theoretical
results derived in section 4 we consider a simple model problem of flow in a square
domain (0 5) × (0 5), with inflow boundaries x = 0, 1 < y < 2 and x = 0, 3 < y < 4
and an outflow boundary at x = 5, 2 < y < 3. The inflow rates were specified to be
4/3 and 2/3, respectively, with the outflow rate corresponding given as 2. (See Figure
5.1.)

Computations were performed on a sequence of four meshes, with each mesh a
uniform refinement (each triangle subdivided into four similar/smaller triangles) of the
preceding mesh. The second computational mesh is shown in Figure 5.2. The approx-
imating nonlinear system was solved using a Newton method. For the approximation
of the velocity and pressure we used continuous piecewise quadratic and continuous
piecewise linear finite elements, respectively (i.e., the Taylor–Hood pair). For the
approximation of the stress we used continuous piecewise linear finite elements.
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Table 5.1

Norms of the velocity and stress for r = 2.

‖∇uh‖L2 ‖∇(uh − u2h)‖L2 α̃u ‖σh‖L2 ‖σh − σ2h‖L2 α̃σ

h = 1 6.014 2.920
h = 1/2 5.763 3.192 3.836 2.601
h = 1/4 5.662 1.880 0.76 3.889 1.565 0.73
h = 1/8 5.614 1.213 0.63 3.902 1.026 0.61
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Fig. 5.3. Plot of the magnitude of the velocity and streamlines for r = 2.

Table 5.2

Norms of the velocity and stress for r = 3/2.

‖∇uh‖L3/2 ‖∇(uh − u2h)‖L3/2 α̃u ‖σh‖L3 ‖σh − σ2h‖L3 α̃σ

h = 1 8.680 1.758
h = 1/2 8.664 4.710 1.995 1.279
h = 1/4 8.531 2.607 0.85 2.063 0.871 0.55
h = 1/8 8.526 1.469 0.83 2.249 0.697 0.32

For the constitutive equation of the fluid we considered the power law equation
(2.7), which, in the notation of (2.15), is rewritten as

d(u) = ν1−r′

0 |σ|r′−2σ = ğ(σ)σ.(5.1)

Presented in Table 5.1 and Figure 5.3 are the results of the computations for the
parameter r = 2 (r′ = 2), and in Table 5.2 and Figure 5.4 are the results of the
computations for the parameter r = 3/2 (r′ = 3).

Assuming the convergence rate for the velocity is αu, i.e., ‖∇(u−uh)‖Lr ∼ Chαu ,
we compute the experimental convergence rate for the velocity using

‖∇(uh − u2h)‖Lr ≤ ‖∇(u − uh)‖Lr + ‖∇(u − u2h)‖Lr ∼ C̃hαu .

Therefore α̃u = log (‖∇(uh − u2h)‖Lr/‖∇(u2h − u4h)‖Lr ) / log(2).(5.2)

Similarly α̃σ = log (‖σh − σ2h‖Lr′ /‖σ2h − σ4h‖Lr′ ) / log(2).(5.3)
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Fig. 5.4. Plot of the magnitude of the velocity and streamlines for r = 3/2.

The case r = 2 (r′ = 2). For the case r = 2 (r′ = 2) the constitutive equation
describes a “Newtonian” fluid and the problem becomes a (linear) three-field Stokes
problem with defective boundary conditions. As in this case σ = ν0d(u) = ν0/2(∇u+
(∇u)T ), and we are constructing a piecewise linear approximation for the σ and a
piecewise quadratic approximation for u, we expect that α̃u ≈ α̃σ, as observed in
Table 5.1. The fact that α̃u ≈ α̃σ �= 2 is due to the lack of regularity of u and σ,
attributable to the singular behavior of ∇u and σ at the corners of the inflow and
outflow boundaries.

The case r = 3/2 (r′ = 3). Note that for this case the velocity is in (W 1,3/2(Ω))2

and the stress in (L3(Ω))4sym. Also, we have that σ = ν0|d(u)|−0.5d(u).
The a priori error estimates presented in Theorem 4.1 are dominated by the term

‖σ−τh‖rT on the RHS of (4.3). If this term was not present, the a priori estimate would
represent the best approximation error (for appropriately chosen approximation spaces
for σh,uh, ph). The computations in Table 5.2 are consistent with the approximations
being best approximations (see below). This may be due to the fact that the behavior
of the computational results are preasymptotic or that the estimates in Theorem 4.1
are not optimal.

At the end points of the inflow/outflow boundaries ∇u will be singular. Assuming
that at these points ∇u has a point singularity of the form ρ−s, 0 < s < 1, where
ρ denotes the distance from the singular point, and uI is a continuous piecewise
quadratic interpolant of u, then we expect that

‖∇(u − uI)‖Lr ∼
(∫

B(0,h)

(ρ−s)rdA +

∫
B(0,R)\B(0,h)

(h2ρ−s−2)rdA

)1/r

=

(∫ π

θ=0

∫ h

ρ=0

ρρ−srdρdθ +

∫ π

θ=0

∫ R

ρ=h

ρh2rρ−(s+2)rdρdθ

)1/r

∼ Ch(2−rs)/r,

i.e., αu = (2 − rs)/r.(5.4)
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Fig. 5.5. Plot of the magnitude of the velocity and streamlines for r = 3/2 with parabolic inflow
boundary conditions and a “do nothing” outflow boundary condition.

From (2.7), and for σI a continuous piecewise linear interpolant of σ, we would
expect that

‖σ − σI‖Lr′ ∼
(∫

B(0,h)

(
(ρ−s)r−2ρ−s

)r′
dA

+

∫
B(0,R)\B(0,h)

(
h2(ρ−s)r−2ρ−s−2)

)r′
dA

)1/r′

∼ Ch(2−rs)/r′ ,

i.e., ασ = (2 − rs)/r′.(5.5)

For r = 3/2, r′ = 3, from (5.4),(5.5) we have that αu/ασ = r′/r = 2, which is
consistent with the computations in Table 5.2.

Comparing Figures 5.3 and 5.4, the flow fields corresponding to r = 2 and r = 3/2,
respectively, we observe (as expected) the larger vortices in the upper and lower right-
hand corners of Ω for the case r = 3/2. The magnitude of u(x, y) = [u1(x, y), u2(x, y)]
plotted in Figures 5.3 and 5.4 was calculated via |u(x, y)| = (u1(x, y)

r +u2(x, y)
r)1/r.

For comparison, in Figure 5.5 is the flow field for the case r = 3/2, where we
specify parabolic velocity inflow profiles (with inflow rates 4/3 and 2/3, respectively)
and a “do nothing” (i.e., σ − pI = 0) outflow boundary condition. The flow field
looks very similar to that in Figure 5.4 where the flow rates were imposed using the
Lagrange multiplier approach. The values for the velocity seminorm and the stress
norm in Figure 5.5 are 8.718 and 2.081, respectively, compared to 8.531 and 2.063 in
Figure 5.4.
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Abstract. In this paper, we give explicit constructions of point sets in the s-dimensional unit
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1. Introduction. Korobov [11] and independently Hlawka [9] introduced a quadra-
ture formula which is suited for numerically integrating high-dimensional periodic
functions. More precisely, we want to approximate the high-dimensional integral∫
[0,1]s

f(x) dx (where f is assumed to be periodic with period 1 in each coordi-

nate) by a quasi-Monte Carlo rule, i.e., an equal weight quadrature rule QN,s(f) =

N−1
∑N−1

n=0 f(xn), where x0, . . . ,xN−1 ∈ [0, 1]s are the quadrature points. Specifi-
cally, Korobov and Hlawka suggested using a quadrature rule of the form QN,g,s(f) =

N−1
∑N−1

n=0 f({ng/N}), where for a vector of real numbers x = (x1, . . . , xs) we define
{x} as the fractional part of each component of x, i.e., {xj} = xj−�xj� = xj ( mod 1),
and where g ∈ Z

s is an integer vector. The quadrature rule QN,g,s is called lattice
rule, and g is called the generating vector (of the lattice rule). The monographs
[10, 12, 17, 25] deal partly or entirely with the approximation of such integrals. (Note
that the assumption that the integrand f is periodic is not really a restriction since
there are transformations which transform nonperiodic functions into periodic ones
such that the smoothness of the integrand is preserved; see, for example, [25].)

To analyze the properties of a quadrature rule, one considers then the worst-case
error supf∈BH |

∫
[0,1]s

f(x) dx−QN,s(f)|, where BH denotes some class of functions.

In the classical theory, the class εsα of periodic functions has been considered where
one demands that the absolute values of the Fourier coefficients of the function decay
sufficiently fast (see [10, 12, 25, 17]). This leads us to the classical measure of the

quality of lattice rules Pα = supf∈εsα

∣∣∣∫[0,1]s f(x) dx−QN,s(f)
∣∣∣, which then for a
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lattice rule with generating vector g = (g1, . . . , gs) can also be written as

Pα = Pα(g, N) =
∑

h∈Zs\{0}
h·g≡0 ( mod N)

|h̄|−α,

where h = (h1, . . . , hs), h ·g = h1g1 + · · ·+hsgs, and |h̄| =
∏s

j=1 max(1, |hj |). (Later
on in this paper, we prefer to use the more contemporary notation of reproducing
kernel Hilbert spaces, in our case so-called Korobov spaces (see section 2.3), but as
is well understood (and as is also shown in section 2.3) the results also apply to the
classical problem.)

By averaging over all generating vectors g, several existence results for good
lattice rules which achieve Pα = O(N−α(logN)αs) have been shown; see [10, 11, 12,
18, 17, 25]. By a lower bound of Sharygin [24], this convergence is also known to be
essentially the best possible, as he showed that the worst-case error is at least of order
N−α(logN)s−1. But, except for dimension s = 2, no explicit generating vectors g
which yield a small worst-case error are known. For s ≥ 3, one relies on a computer
search to find good generating vectors g, and many such search algorithms have been
introduced and analyzed, especially recently; see [11, 26, 27, 32].

On the other hand, one can of course also use some other quadrature rule QN,s(f) =∑N−1
n=0 ωnf(xn) to numerically integrate functions in the class εsα. In this case, the

worst-case error in the class εsα for a quadrature rule with weights ω0, . . . , ωN−1 and
points {x0, . . . ,xN−1} ⊂ [0, 1)s is given by

(1.1) Pα({x0, . . . ,xN−1}) =

N−1∑
n,m=0

ωnωm

∑
h∈Zs\{0}

e2πih·(xn−xm)

|h̄|α
.

An explicit construction of such point sets was introduced by Niederreiter (see
[14, Theorem 5.3]) and is called Kronecker sequence. Here the idea is to choose the
quadrature points of the form {zk}, k = 1, 2, . . . , where z is an s-dimensional vector
of certain irrational numbers (for example, one can choose z = (

√
p1, . . . ,

√
ps), where

p1, . . . , ps are distinct prime numbers). Depending on the smoothness α, certain points
will be used more than once; see [14]. In practice, problems can occur because of the
finite precision of computers making it impossible to use points whose coordinates are
all irrational numbers.

Another construction of quadrature rules is due to Smolyak [29] and is nowadays
called a sparse grid; see also [7]. Those quadrature rules are sums over certain products
of differences of one-dimensional quadrature rules. In principle, any one-dimensional
quadrature rule can be chosen as a basis, leading to different quadrature rules. In
many cases, the weights ωn of such quadrature rules are not known explicitly but can
be precomputed. But even if the underlying one-dimensional quadrature rule has only
positive weights, it is possible that some weights in Smolyak’s quadrature rules are
negative, which can have a negative impact on the stability of the quadrature formula.
In general, quadrature formulas for which all weights are equal and

∑N−1
n=0 ωn = 1,

that is, ωn = N−1 for all n = 0, . . . , N − 1, are to be preferred. As mentioned above,
such quadrature rules are called quasi-Monte Carlo rules, to which we now switch for
the remainder of the paper.

As the weights for quasi-Monte Carlo rules are given by N−1, the focus lies on
the choice of the quadrature points. Constructions of quadrature points have been
introduced with the aim to distribute the points as evenly as possible over the unit
cube. An explicit construction of well-distributed point sets in the unit cube has been
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introduced by Sobol [30]. A similar construction was established by Faure [6] before
Niederreiter [16] (see also [17]) introduced the general concept of (t,m, s)-nets and
(t, s)-sequences and the construction scheme of digital (t,m, s)-nets and digital (t, s)-
sequences. For such point sets, it has been shown that the star discrepancy (which is
a measure of the distribution properties of a point set) is O(N−1(logN)s−1); see [17].
From this result, it follows that those point sets yield quasi-Monte Carlo algorithms
which achieve a convergence of O(N−2(logN)2s−2) for functions in the class εsα for
all α ≥ 2. This result holds in the deterministic and randomized setting.

For smoother functions, though, i.e., larger values of α in the class εsα, one
can expect higher order convergence. For example, if the partial derivatives up
to order two are square integrable, then one would expect an integration error of
O(N−4(logN)c(s)), for some c(s) > 0 depending only on s, in the function class εsα,
and, in general, if the mixed partial derivatives up to order α/2 exist and are square
integrable, then one would expect an integration error in εsα of O(N−α(logN)c(s,α)),
for some c(s, α) > 0 depending only on s and α. But until now (t,m, s)-nets and (t, s)-
sequences have only been shown to yield a convergence of at best O(N−2(logN)2s−2)
(or O(N−3+δ) for any δ > 0 if one uses a randomization method called scrambling;
see [22]) in εsα, even if the integrands satisfy stronger smoothness assumptions.

In this paper, we show that a modification of digital (t,m, s)-nets and digital
(t, s)-sequences introduced by Niederreiter [16, 17] yields point sets which achieve the
optimal rate of convergence of the worst-case error P2α = O(N−2 min(α,d)(logN)2sα−2)
for any integer α ≥ 1 and where d ∈ N is a parameter of the construction which can
be chosen arbitrarily large. We, too, use the digital construction scheme introduced
by Niederreiter [16, 17] for the construction of (t,m, s)-nets and (t, s)-sequences, but
our analysis of the worst-case error shows that the t-value does not provide enough
information about the point set. Hence we generalize the definition of digital (t,m, s)-
nets and digital (t, s)-sequences to suit our needs. This leads us to the definition of
digital (t, α, β,m, s)-nets and digital (t, α, β, s)-sequences. For α = β = 1, those def-
initions reduce to the case introduced by Niederreiter but are different for α > 1.
Subsequently, we prove that quasi-Monte Carlo rules based on digital (t, α, β,m, s)-
nets and digital (t, α, β, s)-sequences achieve the optimal rate of convergence. Fur-
ther we give explicit constructions of digital (t, α,min(α, d),m, s)-nets and digital
(t, α,min(α, d), s)-sequences, where d ∈ N is a parameter of the construction which
can be chosen arbitrarily large.

Digital (t, 2, 2,m, s)-nets and digital (t, 2, 2, s)-sequences over Zb (i.e., where α =
β = 2) can also be used for nonperiodic function spaces where one uses randomly
shifted and then folded point sets using the baker’s transformation (see [3]). Our
analysis and error bounds for α = 2 here also apply for the case considered in [3] (with
different constants though), hence yielding useful constructions also for nonperiodic
function spaces where one uses the baker’s transformation. Using a digital (t, α,m, s)-
net with a scrambling algorithm (see [22]), on the other hand, does not improve the
performance in nonperiodic spaces compared to (t,m, s)-nets.

In the following we summarize some properties of the quadrature rules:
• The quadrature rules introduced in this paper are equal weight quadrature

rules which achieve the optimal rate of convergence up to some logN fac-
tors, and we show the result for deterministic and randomly digitally shifted
quadrature rules. The upper bound for the randomized quadrature rules even
improves upon the best known upper bound (more precisely, the power of the
logN factor) for lattice rules for the worst-case error in εsα for all dimensions
s ≥ 2 and even integers α ≥ 2 (compare Corollary 6.5 to Theorem 2 in [18]).
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• The construction of the underlying point set is explicit.
• They automatically adjust themselves to the optimal rate of convergence in

the class εs2α as long as α is an integer such that α ≤ d, where d is a parameter
of the construction which can be chosen arbitrarily large.

• The underlying point set is extensible in the dimension as well as in the
number of points; i.e., one can always add some coordinates or points to an
existing point set such that the quality of the point set is preserved.

• Tractability and strong tractability results (see [28]) can be obtained for
weighted Korobov spaces.

The outline of the paper is as follows. In the next section we introduce the nec-
essary tools, namely, Walsh functions, the digital construction scheme upon which
the construction of the point set is based on and Korobov spaces. Further we also
introduce the worst-case error in those Korobov spaces, and we give a representa-
tion of this worst-case error for digital nets in terms of the Walsh coefficients of the
reproducing kernel. In section 3, we give the definition of digital (t, α, β,m, s)-nets
and digital (t, α, β, s)-sequences. Further we prove some propagation rules for those
digital nets and sequences. In section 4, we give explicit constructions of digital
(t, α, β,m, s)-nets and digital (t, α, β, s)-sequences, and we prove some upper bounds
on the t-value. We then show, in section 5, that quasi-Monte Carlo rules based on
those digital nets and sequences achieve the optimal rate of convergence of the worst-
case error in the Korobov spaces. The results are based on entirely deterministic point
sets. Section 6 finally deals with randomly digitally shifted digital (t, α, β,m, s)-nets
and (t, α, β, s)-sequences, and we show similar results for the mean square worst-case
error in the Korobov space for this setting. The appendix is devoted to the analysis of
the Walsh coefficients of the Walsh series representation of B2α(|x− y|), where B2α is
the Bernoulli polynomial of degree 2α. In the last section, we give a concrete example
of a digital (t, α, α,m, s)-net where we compute the t-value by hand.

2. Preliminaries. In this section we introduce the necessary tools for the anal-
ysis of the worst-case error and the construction of the point sets. In the following,
let N denote the set of natural numbers, and let N0 denote the set of nonnegative
integers.

2.1. Walsh functions. In the following, we define Walsh functions in base b ≥ 2
which are the main tool of analyzing the worst-case error. First we give the definition
for the one-dimensional case.

Definition 2.1. Let b ≥ 2 be an integer and represent k ∈ N0 in base b, k =
κa−1b

a−1 + · · · + κ0, with κi ∈ {0, . . . , b − 1}. Further let ωb = e2πi/b. Then the kth
Walsh function bwalk : [0, 1) → {1, ωb, . . . , ω

b−1
b } in base b is given by

bwalk(x) = ω
x1κ0+···+xaκa−1

b ,

for x ∈ [0, 1) with base b representation x = x1b
−1 + x2b

−2 + · · · (unique in the sense
that infinitely many of the xi are different from b− 1).

Definition 2.2. For dimension s ≥ 2, x = (x1, . . . , xs) ∈ [0, 1)s, and k =
(k1, . . . , ks) ∈ N

s
0, we define bwalk : [0, 1)s → {1, ωb, . . . , ω

b−1
b } by

bwalk(x) =

s∏
j=1

bwalkj (xj).

As we will always use Walsh functions in base b, we will in the following often
write wal instead of bwal.
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We introduce some notation. By ⊕ we denote the digitwise addition modulo b;
i.e., for x =

∑∞
i=w xib

−i and y =
∑∞

i=w yib
−i we define

x⊕ y =

∞∑
i=w

zib
−i,

where zi ∈ {0, . . . , b−1} is given by zi ≡ xi+yi (mod b), and let � denote the digitwise
subtraction modulo b. In the same manner we also define a digitwise addition and
digitwise subtraction for nonnegative integers based on the b-adic expansion. For
vectors in [0, 1)s or N

s
0, the operations ⊕ and � are carried out componentwise.

Throughout the paper, we always use base b for the operations ⊕ and �. Further we
call x ∈ [0, 1) a b-adic rational if it can be written in a finite base b expansion.

In the following proposition we summarize some basic properties of Walsh func-
tions.

Proposition 2.3.

1. For all k, l ∈ N0 and all x, y ∈ [0, 1), with the restriction that if x, y are not
b-adic rationals, then x⊕ y is not allowed to be a b-adic rational, we have

walk(x) · wall(x) = walk⊕l(x), walk(x) · walk(y) = walk(x⊕ y).

2. We have ∫ 1

0

wal0(x) dx = 1 and

∫ 1

0

walk(x) = 0 if k > 0.

3. For all k, l ∈ N
s
0 we have the following orthogonality properties:∫

[0,1)s
walk(x)wall(x) dx =

{
1 if k = l,
0 otherwise.

4. For any f ∈ L2([0, 1)s) and any σ ∈ [0, 1)s we have∫
[0,1)s

f(x⊕ σ) dx =

∫
[0,1)s

f(x) dx.

5. For any integer s ≥ 1 the system {walk : k = (k1, . . . , ks), k1, . . . , ks ≥ 0} is
a complete orthonormal system in L2([0, 1)s).

The proofs of 1–3 are straightforward, and for a proof of the remaining items see
[2] or [31] for more information.

2.2. The digital construction scheme. The construction of the point set used
here is based on the digital construction scheme introduced by Niederreiter; see [17].

Definition 2.4. Let integers m, s ≥ 1 and b ≥ 2 be given. Let Rb be a com-
mutative ring with identity such that |Rb| = b, and let Zb = {0, . . . , b − 1}. Let
C1, . . . , Cs ∈ Rm×m

b , with Cj = (cj,k,l)1≤k,l≤m. Further, let ψl : Zb → Rb for
l = 0, . . . ,m − 1 and μj,k : Rb → Zb for j = 1, . . . , s and k = 1, . . . ,m be bijec-
tions.

For n = 0, . . . , bm − 1 let n =
∑m−1

l=0 al(n)bl, with all al(n) ∈ Zb, be the base
b digit expansion of n. Let 	n = (ψ0(a0(n)), . . . , ψm−1(am−1(n)))T , and let 	yj =
(yj,1, . . . , yj,m)T = Cj	n for j = 1, . . . , s. Then we define xj,n = μj,1(yj,1)b

−1 + · · · +
μj,m(yj,m)b−m for j = 1, . . . , s and n = 0, . . . , bm − 1, and the nth point xn is then
given by xn = (x1,n, . . . , xs,n). The point set {x0, . . . ,xbm−1} is called a digital net
(over Rb) (with generating matrices C1, . . . , Cs).
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For m = ∞ we obtain a sequence {x0,x1, . . . }, which is called a digital sequence
(over Rb) (with generating matrices C1, . . . , Cs).

Niederreiter’s concept of a digital (t,m, s)-net and a digital (t, s)-sequence will
appear as a special case in section 3. Apart from sections 3 and 4, where we state
the results using Definition 2.4 in the general form, we use only a special case of
Definiton 2.4, where we assume that b is a prime number, we choose Rb the finite field
Zb, and the bijections ψl and μj,k from Zb to Zb are all chosen to be the identity map.

We remark that, throughout the paper when Walsh functions wal, digitwise ad-
dition ⊕, digitwise subtraction �, or digital nets are used in conjunction with each
other, we always use the same base b for each of those operations.

2.3. Korobov space. Historically the function class εsα has been used. In this
paper, we use a more contemporary notation by replacing the function class εsα with
a reproducing kernel Hilbert space Hα called the Korobov space. The worst-case
error expression (1.1) will almost be the same for both function classes, and hence the
results apply for both cases.

A reproducing kernel Hilbert space H over [0, 1)s is a Hilbert space with inner
product 〈·, ·〉 which allows a function K : [0, 1)s → R such that K(·,y) ∈ H, K(x,y) =
K(y,x), and 〈f,K(·,y)〉 = f(y) for all x,y ∈ [0, 1)s and all f ∈ H. For more
information on reproducing kernel Hilbert spaces, see [1]; for more information on
reproducing kernel Hilbert spaces in the context of numerical integration, see, for
example, [4, 28].

The Korobov space Hα is a reproducing kernel Hilbert space of periodic functions.
Its reproducing kernel is given by

Kα(x,y) =
∑

h∈Zs

e2πih·(x−y)

|h̄|2α
,

where α > 1/2 and |h̄| =
∏s

j=1 max(1, |hj |). The inner product in the space Hα is
given by

(2.1) 〈f, g〉α =
∑

h∈Zs

|h̄|2αf̂(h)ĝ(h),

where

f̂(h) =

∫
[0,1)s

f(x)e−2πih·x dx

are the Fourier coefficients of f . The norm is given by ‖f‖α = 〈f, f〉1/2α .
Note that for α a natural number and any x ∈ (0, 1) we have

B2α(x) =
(−1)α+1(2α)!

(2π)2α

∑
h�=0

e2πihx

|h|2α ,

where B2α is the Bernoulli polynomial of degree 2α. Hence, for α a natural number
we can write

Kα(x,y) =

s∏
j=1

⎛⎝1 +
∑
h�=0

e2πih(xj−yj)

|h|2α

⎞⎠ =

s∏
j=1

(
1 − (−1)α

(2π)2α

(2α)!
B2α(|xj − yj |)

)
.
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Let now

(2.2) Kα(x, y) = 1 +
∑
h�=0

e2πih(x−y)

|h|2α = 1 − (−1)α
(2π)2α

(2α)!
B2α(|x− y|).

Then we have

Kα(x,y) =

s∏
j=1

Kα(xj , yj),

where x = (x1, . . . , xs) and y = (y1, . . . , ys). Hence the Korobov space is a tensor
product of one-dimensional reproducing kernel Hilbert spaces.

Though α > 1/2 can in general be any real number, we restrict ourselves to
integers α ≥ 1 for most of this paper. The bounds on the integration error for Hα,
with α ≥ 1 a real number, still apply when one replaces α with �α�, as in this case
the unit ball of Hα given by {f ∈ Hα : ‖f‖α ≤ 1} is contained in the unit ball
{f ∈ H	α
 : ‖f‖	α
 ≤ 1} of H	α
 as ‖f‖	α
 ≤ ‖f‖α. Hence it follows that integration
in the space Hα is easier than integration in the space H	α
.

In general, the worst-case error e(P,H) for multivariate integration in a normed
space H over [0, 1]s with norm ‖ · ‖ using a point set P is given by

e(P,H) = sup
f∈H,‖f‖≤1

∣∣∣∣∣
∫

[0,1]s
f(x) dx−QP (f)

∣∣∣∣∣ ,
where QP (f) = N−1

∑
x∈P f(x) and N = |P | is the number of points in P . If H is

a reproducing kernel Hilbert space with reproducing kernel K, we will write e(P,K)
instead of e(P,H). It is known that (see, for example, [28])
(2.3)

e2(P,K) =

∫
[0,1)2s

K(x,y) dxdy − 2

N

N−1∑
n=0

∫
[0,1)s

K(xn,y) dy +
1

N2

N−1∑
n,l=0

K(xn,xl),

where P = {x0, . . . ,xN−1}. Hence for the Korobov space Hα we obtain

(2.4) e2(P,Kα) = −1 +
1

N2

N−1∑
n,h=0

Kα(xn,xh).

Therefore it follows that e2(P,Kα) = P2α, and hence our results also apply to the
classical setting introduced by Korobov [11].

It follows from Proposition 2.3 that Kα can be represented by a Walsh series, i.e.,
let

(2.5) Kα(x,y) =
∑

k,l∈Ns
0

rb,α(k, l)walk(x)wall(y),

where

rb,α(k, l) =

∫
[0,1)2s

Kα(x,y)walk(x)wall(y) dxdy.

As the kernel Kα is a product of one-dimensional kernels, it follows that rb,α(k, l) =∏s
j=1 rb,α(kj , lj), where k = (k1, . . . , ks) and l = (l1, . . . , ls) and

rb,α(k, l) =

∫ 1

0

∫ 1

0

Kα(x, y)walk(x)wall(y) dxdy.
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For a digital net with generating matrices C1, . . . , Cs, let D = D(C1, . . . , Cs) be
the dual net given by

D = {k ∈ N
s
0 \ {0} : CT

1
	k1 + · · · + CT

s
	ks = 	0},

where for k = (k1, . . . , ks), with kj = κj,0+κj,1b+· · · , we set 	kj = (κj,0, . . . , κj,m−1)
T .

Further, for ∅ �= u ⊆ {1, . . . , s} let Du = D((Cj)j∈u). We have the following theorem.
Theorem 2.5. Let C1, . . . , Cs ∈ Z

m×m
b be the generating matrices of a digital

net Pbm , and let D denote the dual net. Then for any α > 1/2 the square worst-case
error in Hα is given by

e2(Pbm ,Kα) =
∑

k,l∈D
rb,α(k, l).

Proof. From (2.4) and (2.5) it follows that

e2(Pbm ,Kα) = −1 +
∑

k,l∈Ns
0

rb,α(k, l)
1

b2m

∑
x,y∈Pbm

walk(x)wall(y).

In [4] it was shown that

1

bm

∑
x∈Pbm

walk(x) =

{
1 if k ∈ D ∪ {0},
0 otherwise.

Hence we have

e2(Pbm ,Kα) = −1 +
∑

k,l∈D∪{0}
rb,α(k, l).

In the following we will show that rb,α(0,0) = 1 and rb,α(0,k) = rb,α(k,0) = 0
if k �= 0 from which the result then follows. Note that it is enough to show those
identities for the one-dimensional case. We have wal0(x) = 1 for all x ∈ [0, 1), and
hence

rb,α(0, k) =

∫ 1

0

∫ 1

0

⎛⎝1 +
∑

h∈Z\{0}
|h|−2αe2πih(x−y)

⎞⎠walk(y) dxdy

=

∫ 1

0

walk(y) dy +

∫ 1

0

∑
h∈Z\{0}

|h|−2α

∫ 1

0

e2πihx dx e−2πihywalk(y) dy

=

∫ 1

0

walk(y) dy.

It now follows from Proposition 2.3 that rb,α(0, 0) = 1 and rb,α(0, k) = 0 for k >
0. The result for rb,α(k, 0) can be obtained in the same manner. Hence the result
follows.

In the following lemma we obtain a formula for the Walsh coefficients rb,α.
Lemma 2.6. Let b ≥ 2 be an integer, and let α > 1/2 be a real number. The

Walsh coefficients rb,α(k, l) for k, l ∈ N are given by

rb,α(k, l) =
∑

h∈Z\{0}

βh,kβh,l

|h|2α ,

where βh,k =
∫ 1

0
e−2πihxwalk(x) dx.
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Proof. We have

rb,α(k, l) =

∫ 1

0

∫ 1

0

∑
h∈Z\{0}

|h|−2αe2πih(x−y)walk(x)wall(y) dxdy

=
∑

h∈Z\{0}
|h|−2α

∫ 1

0

e2πihxwalk(x) dx

∫ 1

0

e−2πihywall(y) dy.

The result follows.
It is difficult to calculate the exact value of rb,α(k, l) in general, but for our

purposes it is enough to obtain an upper bound. Note that rb,α(k, k) is a nonnegative
real number.

Lemma 2.7. Let b ≥ 2 be an integer, and let α > 1/2 be a real number. The
Walsh coefficients rb,α(k, l) for k, l ∈ N are bounded by

|rb,α(k, l)|2 ≤ rb,α(k, k)rb,α(l, l).

Proof. Using Lemma 2.6 we obtain

|rb,α(k, l)|2 ≤

⎛⎝ ∑
h∈Z\{0}

|βh,k||βh,l|
|h|2α

⎞⎠2

≤
∑

h∈Z\{0}

|βh,k|2
|h|2α

∑
h∈Z\{0}

|βh,l|2
|h|2α

= rb,α(k, k)rb,α(l, l).

The result follows.
In the following we will write rb,α(k) instead of rb,α(k, k) and also rb,α(k) instead

of rb,α(k,k).
Lemma 2.8. Let C1, . . . , Cs ∈ Z

m×m
b be the generating matrices of a digital net

Pbm , and let D denote the dual net. Then for any natural number α the worst-case
error in Hα is bounded by

e(Pbm ,Kα) ≤
∑
k∈D

√
rb,α(k).

Proof. From Theorem 2.5 and Lemma 2.7 it follows that

e2(Pbm ,Kα) ≤
∑

k,l∈D
|rb,α(k, l)| ≤

(∑
k∈D

√
rb,α(k,k)

)2

,

and hence the result follows.
For α ≥ 1 a natural number we can write the reproducing kernel in terms of

Bernoulli polynomials of degree 2α. Then for k ≥ 1 we have

rb,α(k) = (−1)α+1 (2π)2α

(2α)!

∫ 1

0

∫ 1

0

B2α(|x− y|)walk(x)walk(y) dxdy.

Note that the Bernoulli polynomials of even degree 2α are of the form

B2α(x) = cαx
2α + cα−1x

2(α−1) + · · · + c0 + cx2α−1

for some rational numbers cα, . . . , c0, c, with cα, c �= 0. Let

(2.6) Ij(k) =

∫ 1

0

∫ 1

0

|x− y|jwalk(x)walk(y) dxdy.
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As mentioned above, rb,α(k) is a real number such that rb,α(k) ≥ 0 for all k ≥ 1 and
α > 1/2; hence, it follows that for any natural number α we have

rb,α(k) ≤ (2π)2α

(2α)!

(
|cαI2α(k)| + |cα−1I2(α−1)(k)| + · · · + |c0I0(k)| + |cI2α−1|

)
.

Using Lemmas 8.2 and 8.5 from the appendix we obtain the following lemma.
Lemma 2.9. Let b, α ∈ N, with b ≥ 2. For k ∈ N, with k = κ1b

a1−1+· · ·+κνb
aν−1,

where ν ≥ 1, κ1, . . . , κν ∈ {1, . . . , b − 1}, and 1 ≤ aν < · · · < a1, let qb,α(k) =
b−a1−···−amin(ν,α) . Then for any natural number α and any natural number b ≥ 2 there
exists a constant Cb,α > 0 which depends only on b and α such that

rb,α(k) ≤ C2
b,α q2

b,α(k) for all k ≥ 1.

Let now qb,α(0) = 1. For k = (k1, . . . , ks) ∈ N
s
0 we define qb,α(k) =

∏s
j=1 qb,α(kj).

We have the following lemma.
Lemma 2.10. Let m ≥ 1, b ≥ 2, and α ≥ 2 be natural numbers, and let D∗

bm,u =

Du ∩ {1, . . . , bm − 1}|u|. Then we have∑
k∈D

√
rb,α(k)

≤
∑

∅�=u⊆{1,...,s}
(1 + b−αmCb,α(α + b−2))s−|u|C

|u|
b,α(1 + α + b−2)|u|Q∗

b,m,u,α(C1, . . . , Cs)

+(1 + b−αmCb,α(α + b−2))s − 1,

where Cb,α is the constant from Lemma 2.9 and where

Q∗
b,m,u,α(C1, . . . , Cs) =

∑
k∈D∗

bm,u

qb,α(k).

Proof. Every k ∈ N
s
0 can be uniquely written in the form k = h + bml, with

h ∈ {0, . . . , bm − 1}s and l ∈ N
s
0. Let Dbm = D ∩ {0, . . . , bm − 1}s. Then we have∑

k∈D

√
rb,α(k) =

∑
l∈Ns

0\{0}

√
rb,α(bml) +

∑
h∈Dbm

∑
l∈Ns

0

√
rb,α(h + bml).

For the first sum we have∑
l∈Ns

0\{0}

√
rb,α(bml) = −1 +

∑
l∈Ns

0

√
rb,α(bml) = −1 +

( ∞∑
l=0

√
rb,α(bml)

)s

.

By using Lemma 8.8 from the appendix and Lemma 2.9 we obtain that

∞∑
l=0

√
rb,α(bml) = 1 + b−αm

∞∑
l=1

√
rb,α(l) ≤ 1 + b−αmCb,α

∞∑
l=1

qb,α(l).

We need to show that
∑∞

l=1 qb,α(l) ≤ α+ b−2. Let l = l1b
c1−1 + · · ·+ lνb

cν−1 for some
ν ≥ 1, with 1 ≤ cν < · · · < c1 and l1, . . . , lν ∈ {1, . . . , b − 1}. First we consider the
sum over all those l for which 1 ≤ ν ≤ α. This part of the sum is bounded by

α∑
ν=1

(b− 1)ν
∞∑

c1=ν

c1−1∑
c2=ν−1

· · ·
cν−1−1∑
cν=1

b−c1−···−cν ≤
α∑

ν=1

(b− 1)ν

( ∞∑
c=1

b−c

)ν

= α.
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If ν > α, we have qb,α(l) = qb,α(l′) for l = l1b
c1−1 + · · ·+ lνb

cν−1 and where l′ = l′(l) =
l1b

c1−1 + · · · + lαb
cα−1. Thus we only need to sum over all l′ (i.e., natural numbers

with exactly α digits) and for given l′ multiply it with the number of l which yield
the same l′, which is bcα−1 − 1 (and which we bound in the following by bcα−1). We
have

(b− 1)α
∞∑

c1=α+1

c1−1∑
c2=α

· · ·
cα−1−1∑
cα=2

b−c1−···−cαbcα−1

= b−1(b− 1)α
∞∑

c1=α+1

c1−1∑
c2=α

· · ·
cα−2−2∑
cα−1=3

(cα−1 − 2)b−c1−···−cα−1

≤ b−3(b− 1)α

( ∞∑
c=1

b−c

)α−2 ∞∑
c=1

cb−c

=
1

b2
.

Thus we obtain
∑∞

l=1 qb,α(l) ≤ α + b−2.
Further we have∑

h∈Dbm

∑
l∈Ns

0

√
rb,α(h + bml) =

∑
h∈Dbm

s∏
j=1

∞∑
l=0

√
rb,α(hj + bml),

where h = (h1, . . . , hs). By using Lemma 8.8 from the appendix and Lemma 2.9 we
obtain

∞∑
l=0

√
rb,α(bml) = 1 + b−αmCb,α

∞∑
l=1

qb,α(l) ≤ 1 + b−αmCb,α(α + b−2).

Let now 0 < hj < bm. From Lemma 2.9 we obtain√
rb,α(hj + bml) ≤ Cb,αqb,α(hj + bml) ≤ Cb,αqb,α(hj)qb,α(l).

From above we have
∑∞

l=0 qb,α(l) ≤ 1 + α + b−2 and hence

∞∑
l=0

√
rb,α(hj + bml) ≤ qb,α(hj)Cb,α

∞∑
l=0

qb,α(l) ≤ Cb,α(1 + α + b−2)qb,α(hj).

Thus we obtain∑
h∈Dbm

∑
l∈Ns

0

√
rb,α(h + bml)

=
∑

∅�=u⊆{1,...,s}

∑
hu∈D∗

bm,u

∏
j∈u

∞∑
l=0

√
rb,α(hj + bml)

∏
j �∈u

∞∑
l=0

√
rb,α(bml)

≤
∑

∅�=u⊆{1,...,s}
(1 + b−αmCb,α(α + b−2))s−|u|C

|u|
b,α(1 + α + b−2)|u|

∑
hu∈D∗

bm,u

∏
j∈u

qb,α(hj),

where hu = (hj)j∈u. The result follows.
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In [24] it was shown that the square worst-case error for numerical integration
in the Korobov space can at best be of O(N−2α(logN)s−1), where N is the number
of quadrature points. Hence Lemma 2.10 shows that it is enough to consider only
Q∗

b,m,u,α(C1, . . . , Cs) in order to investigate the convergence rate of digitally shifted
digital nets.

3. (t, α, β,m, s)-nets and (t, α, β, s)-sequences. The t-value of a (t,m, s)-
net is a quality parameter for the distribution properties of the net. A low t-value
yields well-distributed point sets, and it has been shown (see, for example, [5, 17])
that a small t-value also guarantees a small worst-case error for integration in Sobolev
spaces for which the partial first derivatives are square integrable.

In the following we will show how the definition of the t-value needs to be modified
in order to obtain faster convergence rates for periodic Sobolev spaces for which the
partial derivatives up to order α are square integrable. It is the aim of this definition to
translate the problem of minimizing the worst-case error into an algebraical problem
concerning the generating matrices. (This definition can therefore also be used in a
computer search algorithm, where one could, for example, search for the polynomial
lattice with the smallest t(α)-value which, in turn, yields a small worst-case error for
integration of periodic functions.)

For natural numbers α ≥ 1, Lemma 2.9 suggests defining the following metric
μb,α(k, l) = μb,α(k � l) on N

s
0 which is an extension of the metric introduced in [15];

see also [23] (for α = 1 we basically obtain the metric in [15, 23]). Here μb,α(0) = 0
and for k ∈ N, with k = κνb

aν−1 + · · · + κ1b
a1−1, where 1 ≤ aν < · · · < a1 and κi ∈

{1, . . . , b− 1}, let μb,α(k) = a1 + · · · + amin(α,ν). For a k ∈ N
s
0, with k = (k1, . . . , ks),

let μb,α(k) = μb,α(k1) + · · · + μb,α(ks). Then we have qb,α(k) = b−μb,α(k). Hence in
order to obtain a small worst-case error in the Korobov space Hα, we need digital nets
for which min{μb,α(k) : k ∈ D} is large. We can translate this property into a linear
independence property of the row vectors of the generating matrices C1, . . . , Cs. We
have the following definition.

Definition 3.1. Let m,α ≥ 1 be natural numbers, let 0 < β ≤ α be a real
number, and let 0 ≤ t ≤ βm be a natural number. Let Rb be a ring with b elements,
and let C1, . . . , Cs ∈ Rm×m

b , with Cj = (cj,1, . . . , cj,m)T . If for all 1 ≤ ij,νj
< · · · <

ij,1 ≤ m, where 0 ≤ νj ≤ m for all j = 1, . . . , s, with

i1,1 + · · · + i1,min(ν1,α) + · · · + is,1 + · · · + is,min(νs,α) ≤ βm− t,

the vectors

c1,i1,ν1 , . . . , c1,i1,1 , . . . , cs,is,νs , . . . , cs,is,1

are linearly independent over Rb, then the digital net which has generating matri-
ces C1, . . . , Cs is called a digital (t, α, β,m, s)-net over Rb. Further we call a digital
(t, α, α,m, s)-net over Rb a digital (t, α,m, s)-net over Rb.

If t is the smallest nonnegative integer such that the digital net generated by
C1, . . . , Cs is a digital (t, α, β,m, s)-net, then we call the digital net a strict digital
(t, α, β,m, s)-net or a strict digital (t, α,m, s)-net if α = β.

A concrete example of a digital (t, α, β,m, s)-net, where we also calculate the
exact t-value by hand, is given in section 7.

Remark 1. Using duality theory (see [19]) it follows that for every digital
(t, α, β,m, s)-net we have mink∈D μb,α(k) > βm−t, and for a strict digital (t, α, β,m, s)-
net we have mink∈D μb,α(k) = βm− t+ 1. Hence digital (t, α, β,m, s)-nets with high
quality have a large value of βm− t.
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Definition 3.2. Let α ≥ 1 and t ≥ 0 be integers, and let 0 < β ≤ α be a
real number. Let Rb be a ring with b elements, and let C1, . . . , Cs ∈ R∞×∞

b , with
Cj = (cj,1, cj,2, . . . )

T . Further let Cj,m denote the left upper m × m submatrix of
Cj. If for all m > t/β the matrices C1,m, . . . , Cs,m generate a digital (t, α, β,m, s)-
net, then the digital sequence with generating matrices C1, . . . , Cs is called a digital
(t, α, β, s)-sequence over Rb. Further we call a digital (t, α, α, s)-sequence over Rb a
digital (t, α, s)-sequence over Rb.

If t is the smallest nonnegative integer such that the digital sequence generated by
C1, . . . , Cs is a digital (t, α, β, s)-sequence, then we call the digital sequence a strict
digital (t, α, β, s)-sequence or a strict digital (t, α, s)-sequence if α = β.

Remark 2. Note that the definition of a digital (t, 1,m, s)-net coincides with
the definition of a digital (t,m, s)-net and the definition of a digital (t, 1, s)-sequence
coincides with the definition of a digital (t, s)-sequence as defined by Niederreiter [17].
Further note that the t-value depends on α and β, i.e., t = t(α, β) or t = t(α) if α = β.

In the following theorem we establish some propagation rules.
Theorem 3.3. Let P be a digital (t, α, β,m, s)-net over a ring Rb, and let S be

a digital (t, α, β, s)-sequence over a ring Rb. Then we have the following:
(i) P is a digital (t′, α, β′,m, s)-net for all 1 ≤ β′ ≤ β and all t ≤ t′ ≤ β′m, and

S is a digital (t′, α, β′, s)-sequence for all 1 ≤ β′ ≤ β and all t ≤ t′.
(ii) P is a digital (t′, α′, β′,m, s)-net for all 1 ≤ α′ ≤ m, and S is a digital

(t′, α′, β′, s)-sequence for all α′ ≥ 1, where β′ = β min(α, α′)/α and t′ =
�tmin(α, α′)/α�.

(iii) Any digital (t, α,m, s)-net is a digital (�tα′/α�, α′,m, s)-net for all 1 ≤ α′ ≤
α, and every digital (t, α, s)-sequence is a digital (�tα′/α�, α′, s)-sequence for
all 1 ≤ α′ ≤ α.

Proof. Note that it follows from Definition 3.2 that we need to prove the result
only for digital nets.

The first part follows trivially. To prove the second part choose an α′ such that
α′ ≥ 1. Then choose arbitrary 1 ≤ ij,νj < · · · < ij,1 ≤ m, with 0 ≤ νj ≤ m, such that

i1,1 + · · ·+ i1,min(ν1,α′) + · · ·+ is,1 + · · ·+ is,min(νs,α′) ≤ mβ
min(α, α′)

α
−
⌈
t
min(α, α′)

α

⌉
.

We need to show that the vectors

c1,i1,ν1 , . . . , c1,i1,1 , . . . , cs,is,νs , . . . , cs,is,1

are linearly independent over Rb. This is certainly the case as long as

i1,1 + · · · + i1,min(ν1,α) + · · · + is,1 + · · · + is,min(νs,α) ≤ βm− t.

Indeed we have

i1,1 + · · · + i1,min(ν1,α) + · · · + is,1 + · · · + is,min(νs,α)

≤ α

min(α, α′)
(i1,1 + · · · + i1,min(ν1,α′) + · · · + is,1 + · · · + is,min(νs,α′))

≤ mβ − α

min(α, α′)

⌈
t
min(α, α′)

α

⌉
≤ mβ − t,

and hence the second part follows. The third part is just a special case of the second
part.
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Remark 3. Note that by choosing α′ = 1 in part (iii) of Theorem 3.3 it follows
that digital (t, α,m, s)-nets and digital (t, α, s)-sequences are also well-distributed
point sets if the value of t is small; see [17].

4. Explicit constructions of digital (t, α, β,m, s)-nets and digital (t, α,
β, s)-sequences. In this section we show how suitable digital (t, α, β,m, s)-nets and
digital (t, α, β, s)-sequences can be constructed.

Let d ≥ 1, and let C1, . . . , Csd be the generating matrices of a digital (t,m, sd)-
net. Note that many explicit examples of such generating matrices are known; see,
for example, [6, 17, 20, 30] and the references therein. For the construction of a
(t, α, β,m, s)-net any of the above mentioned explicit constructions can be used, but,
as will be shown below, the quality of the (t, α, β,m, s)-net obtained depends on the
quality of the underlying digital (t,m, sd)-net on which our construction is based.

Let Cj = (cj,1, . . . , cj,m)T for j = 1, . . . , sd; i.e., cj,l are the row vectors of Cj .

Now let the matrix C
(d)
j be made of the first rows of the matrices C(j−1)d+1, . . . , Cjd,

then the second rows of C(j−1)d+1, . . . , Cjd, and so on, until C
(d)
j is an m×m matrix,

i.e., C
(d)
j = (c

(d)
j,1 , . . . , c

(d)
j,m)T , where c

(d)
j,l = cu,v, with l = (v − j)d + u, 1 ≤ v ≤ m,

and (j − 1)d < u ≤ jd for l = 1, . . . ,m and j = 1, . . . , s. In the following we

will show that the matrices C
(d)
1 , . . . , C

(d)
s are the generating matrices of a digital

(t, α,min(α, d),m, s)-net.
Theorem 4.1. Let d ≥ 1 be a natural number, and let C1, . . . , Csd be the gen-

erating matrices of a digital (t′,m, sd)-net over some ring Rb with b elements. Let

C
(d)
1 , . . . , C

(d)
s be defined as above. Then for any α ≥ 1 the matrices C

(d)
1 , . . . , C

(d)
s

are generating matrices of a digital (t, α,min(α, d),m, s)-net over Rb, with

t = min(α, d) t′ +

⌈
s(d− 1) min(α, d)

2

⌉
.

Proof. Let C
(d)
j = (c

(d)
j,1 , . . . , c

(d)
j,m)T for j = 1, . . . , s, and further let the integers

i1,1, . . . , i1,ν1 , . . . , is,1, . . . , is,νs be such that 1 ≤ ij,νj < · · · < ij,1 ≤ m and

i1,1 + · · · + i1,min(ν1,α) + · · · + is,1 + · · · + is,min(νs,α) ≤ min(α, d)m− t.

We need to show that the vectors

c
(d)
1,i1,1

, . . . , c
(d)
1,i1,ν1

, . . . , c
(d)
s,is,1

, . . . , c
(d)
s,is,νs

are linearly independent over Rb. For j = 1, . . . , s let Uj = {c(d)j,ij,νj
, . . . , c

(d)
j,ij,1

}. The

vectors in the set Uj stem from the matrices C(j−1)d+1, . . . , Cjd. For j = 1, . . . , s and
dj = (j − 1)d + 1, . . . , jd let edj

denote the largest index such that (edj
− j)d + dj ∈

{ij,νj , . . . , ij,1}, and if for some dj there is no such edj , we set edj = 0 (basically this
means edj is the largest integer such that cdj ,edj

∈ Uj).

Let d ≤ α; then we have d((e(j−1)d+1 − 1)+ + · · · + (ejd − 1)+) +
∑Lj

l=1 l ≤ ij,1 +
· · ·+ij,min(νj ,d), where (x)+ = max(x, 0) and Lj = |{(j−1)d+1 ≤ dj ≤ jd : edj > 0}|.
Hence we have

d((e(j−1)d+1 − 1)+ + · · · + (ejd − 1)+) +

Lj∑
l=1

l

= d(e(j−1)d+1 + · · · + ejd) − Ljd + Lj(Lj + 1)/2

≥ d(e(j−1)d+1 + · · · + ejd) −
d(d− 1)

2
.(4.1)
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Thus it follows that

d(e1 + · · · + esd) ≤
s∑

j=1

(ij,1 + · · · + ij,min(νj ,α)) + s
d(d− 1)

2
≤ dm− t + s

d(d− 1)

2
,

and therefore

e1 + · · · + esd ≤ m− t

d
+ s

d− 1

2
≤ m− t′.

Thus it follows from the (t′,m, sd)-net property of the digital net generated by

C1, . . . , Csd that the vectors c
(d)
1,i1,1

, . . . , c
(d)
1,i1,ν1

, . . . , c
(d)
s,is,1

, . . . , c
(d)
s,is,νs

are linearly in-

dependent.

Let now d > α. Then we have d((e(j−1)d+1 − 1)+ + · · · + (ejd − 1)+) +
∑Lj

l=1 l ≤
ij,1 + · · · + ij,min(νj ,α) + (d − α)ij,min(νj ,α), where again Lj = |{(j − 1)d + 1 ≤ dj ≤
jd : edj

> 0}|. Hence we can use inequality (4.1) again. Note that i1,min(ν1,α) + · · · +
is,min(νs,α) ≤ m− t/α, and hence we have

s∑
j=1

(ij,1+· · ·+ij,min(νj ,α)+(d−α)ij,min(νj ,α)) ≤ αm−t+(d−α)(m−t/α) = dm−dt/α.

Thus it follows that

d(e1 + · · · + esd) ≤
s∑

j=1

(ij,1 + · · · + ij,min(νj ,α) + (d− α)ij,min(νj ,α)) + s
d(d− 1)

2

≤ dm− dt

α
+ s

d(d− 1)

2
,

and therefore

e1 + · · · + esd ≤ m− t

α
+ s

d− 1

2
≤ m− t′.

Thus it follows from the (t′,m, sd)-net property of the digital net generated by

C1, . . . , Csd that the vectors c
(d)
1,i1,1

, . . . , c
(d)
1,i1,ν1

, . . . , c
(d)
s,is,1

, . . . , c
(d)
s,is,νs

are linearly in-

dependent, and hence the result follows.
In section 7 we use this construction method to construct a digital (3, 2, 4, 2)-net

over Z2.
Note that the construction and Theorem 4.1 can easily be extended to (t, α, β, s)-

sequences. Indeed, let d ≥ 1, and let C1, . . . , Csd be the generating matrices of a
digital (t, sd)-sequence. Again many explicit generating matrices are known; see, for
example, [6, 17, 20, 30]. Let Cj = (cj,1, cj,2, . . . )

T for j = 1, . . . , sd; i.e., cj,l are the

row vectors of Cj . Now let the matrix C
(d)
j be made of the first rows of the matrices

C(j−1)d+1, . . . , Cjd, then the second rows of C(j−1)d+1, . . . , Cjd, and so on, i.e.,

C
(d)
j = (c(j−1)d+1,1, . . . , cjd,1, c(j−1)d+1,2, . . . , cjd,2, . . . )

T .

The following theorem states that the matrices C
(d)
1 , . . . , C

(d)
s are the generating ma-

trices of a digital (t, α,min(α, d), s)-sequence.
Theorem 4.2. Let d ≥ 1 be a natural number, and let C1, . . . , Csd be the gen-

erating matrices of a digital (t′, sd)-sequence over some ring Rb with b elements. Let
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C
(d)
1 , . . . , C

(d)
s be defined as above. Then for any α ≥ 1 the matrices C

(d)
1 , . . . , C

(d)
s

are generating matrices of a digital (t, α,min(α, d), s)-sequence over Rb, with

t = min(α, d) t′ +

⌈
s(d− 1) min(α, d)

2

⌉
.

The last result shows that (t, α, β,m, s)-nets indeed exist for any 0 < β ≤ α
and for m arbitrarily large. We have even shown that digital (t, α, β,m, s)-nets exist
which are extensible in m and s. This can be achieved by using an underlying (t′, sd)-
sequence which is itself extensible in m and s. If the t′-value of the original (t′,m, s)-
net or (t′, s)-sequence is known explicitly, then we also know the t-value of the digital
(t, α, β,m, s)-net or (t, α, β, s)-sequence. Furthermore it has also been shown how
such digital nets can be constructed in practice.

In the following we investigate for which values of t, α, s, b digital (t, α, s)-sequences
over Zb exist. We need some further notation (see also [21, Definition 8.2.15]).

Definition 4.3. For given integers s, α ≥ 1 and prime number b let db(s, α) be
the smallest value of t such that a (t, α, s)-sequence over Zb exists.

We have the following bound on db(s, α).
Corollary 4.4. Let s, α ≥ 1 be integers and b be a prime number. Then we

have

α

(
s

b
− 1 − logb

(b− 1)s + b + 1

2

)
+ 1

≤ db(s, α) ≤ α(s− 1)
3b− 1

b− 1
− α

(2b + 4)
√
s− 1√

b2 − 1
+ 2α + s

α(α− 1)

2
.

Proof. The lower bound follows from part (iii) of Theorem 3.3 by choosing
α′ = 1 and using a lower bound on the t-value for (t, s)-sequences (see [20]). The
upper bound follows from Theorem 4.2 by choosing d = α and using Theorem 8.4.4
of [21].

5. A bound on the worst-case error in Hα for digital (t, α, β,m, s)-nets
and digital (t, α, β, s)-sequences. In this section we prove an upper bound on the
worst-case error for integration in the Korobov space Hα using digital (t, α, β,m, s)-
nets and (t, α, β, s)-sequences.

Lemma 5.1. Let α ≥ 2 be a natural number, let b be prime, and let C1, . . . , Cs ∈
Z
m×m
b be the generating matrices of a digital (t, α, β,m, s)-net over Zb, with m > t/β.

Then we have

Q∗
b,m,u,α(C1, . . . , Cs) ≤ 2b|u|αb−βm+t(βm + 2)|u|α−1,

where Q∗
b,m,u,α is defined in Lemma 2.10.

Proof. We obtain a bound on Q∗
b,m,{1,...,s},α; for all other subsets u, the bound

can be obtained using the same arguments.
We first partition the set D∗

bm,{1,...,s} into parts where the highest digits of kj are

prescribed, and we count the number of solutions of CT
1
	k1 + · · · + CT

s
	ks = 	0. For

j = 1, . . . , s let now ij,α < · · · < ij,1 ≤ m, with ij,1 ≥ 1. Note that we now allow
ij,l < 1, in which case the contributions of those ij,l are to be ignored. This notation
is adopted in order to avoid considering many special cases. Now we define

D∗
bm,{1,...,s}(i1,1, . . . , i1,α, . . . , is,1, . . . , is,α)

= {k ∈ D∗
bm,{1,...,s} : kj = �κj,1b

ij,1−1 + · · · + κj,αb
ij,α−1 + lj�, with 0 ≤ lj < bij,α−1

and 1 ≤ κj,l < b for j = 1, . . . , s},
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where �·� just means that the contributions of ij,l < 1 are to be ignored. Then we
have

Q∗
b,m,{1,...,s},α(C1, . . . , Cs)

=

m∑
i1,1=1

· · ·
i1,α−1−1∑
i1,α=1

· · ·
m∑

is,1=1

· · ·
is,α−1−1∑
is,α=1

|D∗
bm,{1,...,s}(i1,1, . . . , i1,α, . . . , is,1, . . . , is,α)|

bi1,1+···+i1,α+···+is,1+···+is,α
.

(5.1)

Some of the sums above can be empty, in which case we just set the corresponding
summation index ij,l = 0.

Note that by the (t, α, β,m, s)-net property we have

|D∗
bm,{1,...,s}(i1,1, . . . , i1,α, . . . , is,1, . . . , is,α)| = 0

as long as i1,1 + · · · + i1,α + · · · + is,1 + · · · + is,α ≤ βm − t. Hence let now 0 ≤
i1,1, . . . , is,α ≤ m be given such that i1,1, . . . , is,1 ≥ 1, ij,α < · · · < ij,1 ≤ m for
j = 1, . . . , s and where if ij,l < 1 we set ij,l = 0 and i1,1+· · ·+i1,α+· · ·+is,1+· · ·+is,α >
βm − t. We now need to estimate |D∗

bm,{1,...,s}(i1,1, . . . , i1,α, . . . , is,1, . . . , is,α)|; that

is, we need to count the number of k ∈ D∗
bm,{1,...,s} with kj = �κj,1b

ij,1−1 + · · · +

κj,αb
ij,α−1 + lj� such that CT

1
	k1 + · · · + CT

s
	ks = 	0.

There are at most (b− 1)αs choices for κ1,1, . . . , κs,α (we write at most because if
ij,l < 1, then the corresponding κj,l does not have any effect and therefore need not
to be included). Let now 1 ≤ κ1,1, . . . , κs,α < b be given, and define

	g = κ1,1c
T
1,i1,1 + · · · + κ1,αc

T
1,i1,α + · · · + κs,1c

T
s,is,1 + · · · + κs,αc

T
s,is,α ,

where we set cTj,l = 0 if l < 1. Further let

B = (cT1,1, . . . , c
T
1,i1,α−1, . . . , c

T
s,1, . . . , c

T
s,is,α−1).

Now the task is to count the number of solutions 	l of B	l = 	g. As long as the columns
of B are linearly independent, the number of solutions can at most be 1. By the
(t, α, β,m, s)-net property this is certainly the case if (we write (x)+ = max(x, 0))

(i1,α − 1)+ + · · · + (i1,α − α)+ + · · · + (is,α − 1)+ + · · · + (is,α − α)+

≤ α(i1,α + · · · + is,α)

≤ βm− t,

that is, as long as

i1,α + · · · + is,α ≤ βm− t

α
.

Let now i1,α + · · · + is,α > βm−t
α . Then by considering the rank of the matrix B

and the dimension of the space of solutions of B	l = 	0, it follows that the number of
solutions of B	l = 	g is smaller or equal to bi1,α+···+is,α−	(βm−t)/α
. Thus we have

|D∗
bm,{1,...,s}(i1,1, . . . , i1,α, . . . , is,1, . . . , is,α)|

≤

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if
∑s

j=1

∑α
l=1 ij,l ≤ βm− t,

(b− 1)αs if
∑s

j=1

∑α
l=1 ij,l > βm− t

and
∑s

j=1 ij,α ≤ βm−t
α ,

(b− 1)αsbi1,α+···+is,α−	(βm−t)/α
 if
∑s

j=1

∑α
l=1 ij,l > βm− t

and
∑s

j=1 ij,α > βm−t
α .
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We estimate the sum (5.1) now. Let S1 be the sum in (5.1) where i1,1+· · ·+is,α >

βm− t and i1,α + · · · + is,α ≤ βm−t
α . For an l > βm− t let A1(l) denote the number

of admissible choices of i1,1, . . . , is,α such that l = i1,1 + · · · + is,α. Then we have

S1 = (b− 1)αs
αsm∑

l=βm−t+1

A1(l)

bl
.

We have A1(l) ≤
(
l+sα−1
sα−1

)
, and hence we obtain

S1 ≤ (b− 1)sα
∞∑

l=βm−t+1

(
l + sα− 1

sα− 1

)
1

bl
≤ bsαb−βm+t−1

(
βm− t + sα

sα− 1

)
,

where the last inequality follows from a result by Matous̃ek [13, Lemma 2.18]; see also
[5, Lemma 6].

Let S2 be the part of (5.1) for which i1,1+ · · ·+is,α > βm−t and i1,α+ · · ·+is,α >
βm−t

α ; i.e., we have

S2 = (b− 1)sα
m∑

i1,1=1

· · ·
i1,α−1−1∑
i1,α=1

· · ·
m∑

is,1=1

· · ·
is,α−1−1∑
is,α=1

b−	(βm−t)/α


bi1,1+···+i1,α−1+···+is,1+···+is,α−1

≤ ms(b− 1)sα

b	(βm−t)/α


m∑
i1,1=1

· · ·
i1,α−2−1∑
i1,α−1=1

· · ·
m∑

is,1=1

· · ·
is,α−2−1∑
is,α−1=1

1

bi1,1+···+i1,α−1+···+is,1+···+is,α−1
,

(5.2)

where in the first line above we have the additional conditions i1,1+ · · ·+is,α > βm−t

and i1,α + · · · + is,α > βm−t
α . From the last inequality and i1,α−l + · · · + is,α−l >

i1,α + · · · + is,α for l = 1, . . . , α − 1, it follows that i1,1 + · · · + i1,α−1 + · · · + is,1 +
· · · + is,α−1 ≥ �(βm − t)(1 − α−1)� + 1. Let A2(l) denote the number of admissible
choices of i1,1, . . . , i1,α−1, . . . , is,1, . . . , is,α−1 such that l = i1,1 + · · · + i1,α−1 + · · · +
is,1 + · · · + is,α−1. Note that we have A2(l) ≤

(
l+s(α−1)−1
s(α−1)−1

)
. Then we have

S2 ≤ ms(b− 1)sα

b	(βm−t)/α


∞∑
l=	(βm−t)(1−α−1)
+1

(
l + s(α− 1) − 1

s(α− 1) − 1

)
1

bl

≤ ms(b− 1)sα

b	(βm−t)/α

b�(βm−t)/α�

(1 − b−1)s(α−1)bβm−t+1

(
�(βm− t)(1 − α−1)� + s(α− 1)

s(α− 1) − 1

)
,

where the last inequality follows again from a result by Matous̃ek [13, Lemma 2.18];
see also [5, Lemma 6]. Hence we have

S2 ≤ msbsαb−βm+t

(
�(βm− t)(1 − α−1)� + s(α− 1)

s(α− 1) − 1

)
.

Note that we have Q∗
b,m,α,{1,...,s}(C1, . . . , Cs) = S1 + S2. Let a ≥ 1 and b ≥ 0 be

integers; then we have (
a + b

b

)
=

b∏
i=1

(
1 +

a

i

)
≤ (1 + a)b.
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Therefore we obtain S1 ≤ bsαb−βm+t−1(βm−t+2)sα−1 and S2 ≤ bsαb−βm+tms(βm−
t + 2)s(α−1)−1. Thus we have

Q∗
b,m,α,{1,...,s}(C1, . . . , Cs) ≤ 2bsαb−βm+t(βm + 2)sα−1,

from which the result follows.
The following theorem is an immediate consequence of Lemmas 2.10 and

5.1.
Theorem 5.2. Let b be prime, let α ≥ 2 be a natural number, and let C1, . . . , Cs ∈

Z
m×m
b be the generating matrices of a digital (t, α, β,m, s)-net over Zb, with m > t/β.

Then the worst-case error in the Korobov space Hα is bounded by

eb,m,α(C1, . . . , Cs) ≤
2
(
1 + b−αmCb,α(α + b−2) + Cb,α(1 + α + b−2)(βm + 2)α

)s
bβm−t(βm + 2)

+ (1 + b−αmCb,α(α + b−2))s − 1,

where Cb,α > 0 is the constant in Lemma 2.9.
Remark 4. By the lower bound of Sharygin [24] we have that the worst-case

error in the Korobov space Hα is at most O(N−α(logN)s−1). Hence it follows from
Theorem 5.2 that for a digital (t, α, β,m, s)-net with β > α we must have t = O((β−
α)m). Thus in order to avoid having a t-value which grows with m, we added the
restriction β ≤ α in Definition 3.1. Further, this also implies that a digital (t, α, β, s)-
sequence with t < ∞ cannot exist if β > α; hence, β ≤ α is in this case a consequence
of the definition rather than a restriction.

Remark 5. Lemma 2.8 also holds for digital nets which are digitally shifted by an
arbitrary digital shift σ ∈ [0, 1)s, and hence it follows that Theorem 5.2 also holds
in a more general form, namely, for all digital (t, α, β,m, s)-nets which are digitally
shifted.

Theorem 5.2 shows that we can obtain the optimal convergence rate for natural
numbers α ≥ 2 by using a digital (t, α,m, s)-net. The constructions previously pro-
posed (for example, by Sobol, Faure, Niederreiter, or Niederreiter–Xing) have only
been shown to be (t, 1,m, s)-nets, and it has been proven that they achieve a conver-
gence of the worst-case error of O(N−1(logN)s−1).

We can use Theorem 5.2 to obtain the following corollary.

Corollary 5.3. Let b be prime, and let C
(d)
1 , . . . , C

(d)
s ∈ Z

∞×∞
b be the generating

matrices of a digital (t(a), a,min(a, d), s)-sequence S over Zb for any integer a ≥ 1.
Then for any real α ≥ 1 there is a constant C ′

b,s,α > 0, depending only on b, s, and α,
such that the worst-case error in the Korobov space Hα using the first N = bm points
of S is bounded by

eb,m,α(C
(d)
1 , . . . , C(d)

s ) ≤ C ′
b,s,αb

t(	α
) (logN)s	α
−1

Nmin(	α
,d) .

Remark 6. The above corollary shows that digital (t, α,min(α, d), s)-sequences
constructed in section 4 achieve the optimal convergence (apart from maybe some
logN factor) of P2α of O(N−2α(logN)2sα−2) as long as α is an integer such that
1 ≤ α ≤ d. If α > d, we obtain a convergence of O(N−2d(logN)2sα−2).

6. A bound on the mean square worst-case error in Hα for digital
(t, α, β,m, s)-nets and digital (t, α, β, s)-sequences. To combine the advan-
tages of random quadrature points with those of deterministic quadrature points, one



2160 JOSEF DICK

sometimes uses a combination of those two methods; see, for example, [5, 8, 13, 22].
The idea is to use a random element which preserves the essential properties of a
deterministic point set. We call the expectation value of the square worst-case error
of such randomized point sets the mean square worst-case error.

6.1. Randomization. In the following we introduce a randomization scheme
called digital shift (see [4, 13]). Let PN = {x0, . . . ,xN−1} ⊆ [0, 1)s, with xn =
(x1,n, . . . , xs,n) and xj,n = xj,n,1b

−1 + xj,n,2b
−2 + · · · for n = 0, . . . , N − 1 and j =

1, . . . , s. Let σj,1, σj,2, . . . ∈ {0, 1} be independently and identically distributed (i.i.d.)
for j = 1, . . . , s. Then the randomly digitally shifted point set PN,σ = {z0, . . . ,zN−1},
zn = (z1,n, . . . , zs,n) using a digital shift, is then given by

zj,n = (xj,n,1 ⊕ σj,1)b
−1 + (xj,n,2 ⊕ σj,2)b

−2 + · · ·

for j = 1, . . . , s and n = 0, . . . , N −1, where xj,n,k ⊕σj,n = xj,n,k +σj,n (mod b) (note
that all additions of the digits are carried out in the finite field Zb). Subsequently let
PN = {x0, . . . ,xN−1}, and let PN,σ be the digitally shifted point set PN using the
randomization just described.

6.2. The mean square worst-case error in the Korobov space. In this
section we will analyze the expectation value of e2(PN,σ,Kα), which we denote by
ẽ2(PN ,Kα) = E[e2(PN,σ,Kα)], with respect to the random digital shift described
above. We call ẽ2(PN ,Kα) the mean square worst-case error.

From (2.4) and the linearity of the expectation operator we have

ẽ2(PN ,Kα) = E[e2(PN,σ,Kα)] = −1 +
1

N2

N−1∑
n,l=0

s∏
j=1

E[Kα(zj,n, zj,l)].

In order to compute E[Kα(zj,n, zj,l)] we need the following lemma, which, in a
very similar form, was already shown in [5, Lemma 3]. Hence we omit a proof.

Lemma 6.1. Let x1, x2 ∈ [0, 1), and let z1, z2 ∈ [0, 1) be the points obtained after
applying an i.i.d. random digital shift to x1 and x2. Then we have

E[walk(z1)wall(z2)] =

{
walk(x1)walk(x2) if k = l,
0 otherwise.

Recall that

Kα(x1, x2) =

∞∑
k,l=0

rb,α(k, l)walk(x1)wall(x2),

where

rb,α(k, l) =

∫ 1

0

∫ 1

0

Kα(x1, x2)walk(x1)wall(x2) dx1 dx2.

Let z1, z2 be obtained by applying an i.i.d. random digital shift to x1, x2. Using
Lemma 6.1 and the linearity of expectation we obtain

E[Kα(z1, z2)] =

∞∑
k=0

rb,α(k)walk(x1)walk(x2),

where rb,α(k) = rb,α(k, k) and rb,α(0) = 1.
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Therefore we obtain

E[e2(PN,σ,Kα)] = −1 +
1

N2

N−1∑
n,l=0

s∏
j=1

∞∑
k=0

rb,α(k)walk(xj,n)walk(xj,l).

Further we have

s∏
j=1

bm−1∑
k=0

rb,α(k)walk(xj,n)walk(xj,l) = 1 +
∑

k∈{0,...,bm−1}s\{0}
rb,α(k)walk(xn � xl),

where we write rb,α(k) =
∏s

j=1 rb,α(kj) for k = (k1, . . . , ks). We have shown the
following theorem.

Theorem 6.2. Let b ≥ 2 be a natural number, and let α > 1/2 be a real number.
Then the mean square worst-case error for integration in the Korobov space Hα using
the point set PN randomized by a digital shift is given by

E[e2(PN,σ,Kα)] =
∑

k∈Ns
0\{0}

rb,α(k)
1

N2

N−1∑
n,l=0

walk(xn � xl).

In the following we closer investigate the mean square worst-case error for digital
nets randomized with a digital shift.

Subsequently we will often write ẽ2
b,m,α(C1, . . . , Cs) to denote the mean square

worst-case error E[e(Pbm,σ,Kα)], where Pbm is a digital net with generating matrices
C1, . . . , Cs and bm points and Pbm,σ is the digital net Pbm randomized with a digital
shift.

Theorem 6.3. Let m ≥ 1, b be a prime number, and α > 1/2 be a real number.
The mean square worst-case error in the Korobov space Hα using a randomly digitally
shifted digital net over Zb with generating matrices C1, . . . , Cs ∈ Z

m×m
b is given by

ẽ2
b,m,α(C1, . . . , Cs) =

∑
k∈D

rb,α(k).

Proof. In [4] it was shown that

1

b2m

bm−1∑
n,l=0

walk(xn � xl) =
1

bm

bm−1∑
n=0

walk(xn) =

{
1 if k ∈ D ∪ {0},
0 otherwise.

Hence the result follows from Theorem 6.2.
Remark 7. Theorems 2.5 and 6.3 now imply that

ẽb,m,α(C1, . . . , Cs) =

√∑
k∈D

rb,α(k) ≤
√ ∑

k,l∈D
rb,α(k, l) = e(Pbm ,Kα);

i.e., the root mean square worst-case error is always smaller than the worst-case error;
see also Remark 5.

Remark 5 and also the above Remark 7 imply that the bounds on the worst-case
error also hold for the root mean square worst-case error. On the other hand, following
the proofs for the bound on the worst-case error using the criterion for the root mean
square worst-case error yields a better bound. We outline the results subsequently.
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Following the proof of Lemma 2.10 we obtain∑
k∈D

rb,α(k) ≤
∑

∅�=u⊆{1,...,s}
(1 + b−2αmC̄2

b,α)s−|u|(C2
b,α + C̄2

b,α)|u|
∑

k∈D∗
bm,u

q2
b,α(k)

+(1 + b−2αmC̄2
b,α)s − 1,

where Cb,α is the constant from Lemma 2.9 and

(6.1) C̄b,α = Cb,α

√√√√b−1 + (b2 − b)−1

α+1∏
c=3

(b2c − b2(c−1))−1.

The sum
∑

k∈D∗
bm,u

q2
b,α(k) can now be bounded using almost the same arguments

as in the proof of Lemma 5.1. Doing this one can obtain that for a digital (t, α, β,m, s)-
net we have ∑

k∈D∗
bm,u

q2
b,α(k) ≤ (2b)|u|αb−2(βm−t)+1(βm− t + 1)|u|α−1.

Hence we obtain the following theorem.
Theorem 6.4. Let b be prime, let α ≥ 1 be an integer, and let C1, . . . , Cs ∈ Z

m×m
b

be the generating matrices of a digital (t, α, β,m, s)-net over Zb, with m > t/β. Then
the mean square worst-case error in the Korobov space Hα is bounded by

ẽ2
b,m,α(C1, . . . , Cs)

≤

(
1 + b−2αmC̄2

b,α + (2b)α(C2
b,α + C̄2

b,α)(βm− t + 1)α
)s

− (1 + b−2αmC̄2
b,α)s

b2(βm−t)−1(βm− t + 1)

+ (1 + b−2αmC̄2
b,α)s − 1,

where Cb,α > 0 is the constant in Lemma 2.9 and the constant C̄b,α > 0 is given by
(6.1).

We can use Theorem 6.4 to obtain the following corollary.

Corollary 6.5. Let b be prime, and let C
(d)
1 , . . . , C

(d)
s ∈ Z

∞×∞
b be the generating

matrices of a digital (t(a), a,min(a, d), s)-sequence S over Zb for any integer a ≥ 1.
Then for any real α ≥ 1 there is a constant C ′′

b,s,α > 0, depending only on b, s, and
α, such that the root mean square worst-case error in the Korobov space Hα using the
first N = bm points of S is bounded by

ẽb,m,α(C
(d)
1 , . . . , C(d)

s ) ≤ C ′′
b,s,αb

t(	α
) (logN)(s	α
−1)/2

Nmin(	α
,d) .

Remark 8. The above corollary shows that the digital (t, α,min(α, d), s)-sequences
constructed in section 4 achieve the optimal convergence of P2α of O(N−2α(logN)sα−1)
as long as α is an integer such that 1 ≤ α ≤ d. (This convergence is the best pos-
sible for α = 1 by the lower bound in [24].) If α > d, we obtain a convergence of
O(N−2d(logN)sα−1).

Using the construction of Theorem 4.1 or 4.2 it follows that t(a) also depends on
the choice of d. Hence choosing a large value of d also increases the constant factor
bt(	α
) in Corollaries 5.3 and 6.5.
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7. Some examples of digital (t, α,m, s)-nets over Z2. In this section we
give a simple example to show how the nets described in this paper can be constructed.
We use the construction method outlined in section 4.

7.1. Example of a digital (0, 2,m, 1)-net over Z2. First we use the so-called
Hammersley net as the underlying digital net, which is a (0,m, 2)-net over Z2. The
generating matrices for this net are given by

(7.1) C1 =

⎛⎜⎜⎜⎜⎝
1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 1

⎞⎟⎟⎟⎟⎠ and C2 =

⎛⎜⎜⎜⎜⎝
0 . . . 0 1
... . .

.
. .

.
0

0 . .
.

. .
. ...

1 0 . . . 0

⎞⎟⎟⎟⎟⎠ .

Now we use the construction method of section 4 to construct the matrix C
(2)
1 ,

i.e., d = 2 in this case. The first row of C
(2)
1 is the first row of C1, the second row of

C
(2)
1 is the first row of C2, the third row of C

(2)
1 is the second row of C1, the fourth row

of C
(2)
1 is the second row of C2, and so on. Assume that C1, C2 are m×m matrices,

where m is even. Then we obtain

C
(2)
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . . . . . . . . . . 0
0 . . . . . . . . . . . . . . . 0 1
0 1 0 . . . . . . . . . . . . 0
0 . . . . . . . . . . . . 0 1 0
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 1 0 . . . . . . 0
0 . . . . . . 0 1 0 . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

So, for example, if m = 4, we obtain

(7.2) C
(2)
1 =

⎛⎜⎜⎝
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞⎟⎟⎠ .

The matrix C
(2)
1 is of course nonsingular, and therefore the point set one obtains

consists of just equidistant points starting with 0.
Assume that m is even. Then the digital net which one obtains from C

(2)
1 is a

digital (0, 1,m, 1)-net over Z2, and, at the same time, it is also a digital (0, 2,m, 1)-
net. Note that using the bound from Theorem 4.1 we obtain a t-value of 1, but by
closer investigation using Definition 3.1 one can see that the properties also hold for
t = 0. Hence the t-value obtained from Theorem 4.1 is not necessarily strict even if
the value of the underlying digital net is strict.

7.2. Example of a digital (t, 2, 4, 2)-net over Z2. Consider the digital
(1, 4, 4)-net over Z2 with generating matrices given by C1, C2 above and

C3 =

⎛⎜⎜⎝
1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1

⎞⎟⎟⎠ and C4 =

⎛⎜⎜⎝
0 1 1 0
1 1 0 1
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ .
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Fig. 7.1. A digital (3, 2, 4, 2)-net over Z2.

Then C
(2)
1 is given by (7.2), and C

(2)
2 is given by

C
(2)
2 =

⎛⎜⎜⎝
1 1 1 1
0 1 1 0
0 1 0 1
1 1 0 1

⎞⎟⎟⎠ .

Using the digital construction scheme we obtain the points

(0, 0), ( 1
2 ,

9
16 ), ( 1

8 ,
15
16 ), ( 5

8 ,
3
8 ), ( 1

16 ,
3
4 ), ( 9

16 ,
5
16 ), ( 3

16 ,
3
16 ), ( 11

16 ,
5
8 ),

( 1
4 ,

11
16 ), ( 3

4 ,
1
8 ), ( 3

8 ,
1
4 ), ( 7

8 ,
13
16 ), ( 5

16 ,
7
16 ), ( 13

16 ,
7
8 ), ( 7

16 ,
1
2 ), ( 15

16 ,
1
16 ),

which are shown in Figure 7.1.
It can be checked that this digital net is a digital (1, 1, 4, 2)-net, i.e., a digital

(1, 4, 2)-net (the first two rows of C
(2)
1 and the first two rows of C

(2)
2 are linearly

dependent, so the t-value cannot be 0 when α = 1).
Now we investigate the t-value when α = 2. First note that Theorem 4.1 yields a t-

value of 4 for α = 2 (d = s = 2). Further the t-value cannot be 2 in this case: We need
to consider all cases where i1,1 + i1,min(ν1,2) + i2,1 + i2,min(ν2,2) ≤ αm− t = 2 ·4−2 = 6,
with 0 ≤ ν1, ν2 ≤ 4. But by choosing i1,1 = i2,1 = 2 and i1,2 = i2,2 = 1 we obtain
the first two rows of C1 and the first two rows of C2, and as those 4 rows are linearly
dependent it follows that the t-value cannot be 2. Now let us check whether a t-value of
3 is possible: We need to have i1,1+i1,min(ν1,2)+i2,1+i2,min(ν2,2) ≤ 5; hence, ν1, ν2 ≥ 2
is not possible (because then we would have i1,1 + i1,2 + i2,1 + i2,2 ≥ 2+1+2+1 > 5).

Further the conditions are satisfied if either ν1 = 0 or ν2 = 0 as the matrices C
(2)
1
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and C
(2)
2 are nonsingular. If ν1 > 2, then i1,1 ≥ 3, i1,2 ≥ 2, and hence i1,1 + i1,2 ≥ 5,

and we can only get i1,1 + i1,min(ν1,2) + i2,1 + i2,min(ν2,2) ≤ 5 if ν2 = 0. Hence if either
ν1 > 2 or ν2 > 2, the properties are also satisfied. Thus we are left with the following
three cases: (ν1, ν2) = (1, 1), (ν1, ν2) = (1, 2), and (ν1, ν2) = (2, 1).

Now let ν1 = ν2 = 1. Then we need to take one row of each matrix C
(2)
1 and

C
(2)
2 such that the sum of their row indices is smaller or equal to 5 and check whether

those two rows are linearly independent. It can be checked that this is always the

case: Let C
(2)
j = (c�j,1, c

�
j,2, c

�
j,3, c

�
j,4); i.e., cj,k denotes the kth row of C

(2)
j . Then the

pairs of vectors (c1,k, c2,l), where k + l ≤ 5, are always linearly independent for all
admissible choices of k and l (i.e., c1,k �= c2,l).

Consider now ν1 = 1 and ν2 = 2; i.e., we take one row from C
(2)
1 and two rows

from C
(2)
2 such that the sum of the row indices does not exceed 5. Note that i2,2 has

to be 1; otherwise, i2,1 + i2,2 ≥ 5 and i1,1 cannot even be 1. As i1,1 ≥ 1 and i2,1 ≥ 2,
the only choices left are i1,1 = 1, i2,1 = 2, 3 and i1,1 = 2, i2,1 = 2. So we need to
check whether the triplets (c1,1, c2,1, c2,2), (c1,1, c2,1, c2,3), and (c1,2, c2,1, c2,2) are all
linearly independent, which upon inspection can be seen to be the case.

The case ν = 2 and ν = 1 can also be checked as the previous case. In this case
all of the relevant sets of vectors are also always linearly independent; hence, a t-value
of 3 is possible for α = 2; i.e., the digital net above is a (strict) digital (3, 2, 4, 2)-net.

The classical t-value (i.e., α = 1) of this digital net is not as good as, for example,
the t-value of the Hammersley net (which is 0). On the other hand, it can be checked
that for α = 2 the t-value of the Hammersley net where m = 4 is 4, and hence for
this case it is worse than the t-value of the digital net constructed above.

As a last example let us consider the Hammersley net again for arbitrary m ≥ 1,
i.e., with the m × m generating matrices given by (7.1). As, for example, the first
row of C1 and the last row of C2 are the same (and therefore linearly dependent), we
must have βm − t < m + 1 for all α ≥ 1 (for α = 1 we can still choose β = 1 and
t = 0, and hence the Hammersley net achieves the optimal t-value, but for α > 1 we
have seen in section 4 that there are better constructions). It is sensible to choose β
such that we can have a t-value which is independent of m (for example, this is the
case when one considers sequences and which is also the motivation for introducing
those parameters; for digital nets it would of course also make sense to just state the
value of βm − t and m instead of t, β, and m). This means that β ≤ 1, and as β
indicates the convergence rate one can obtain, it follows that one cannot expect to
obtain a convergence rate beyond (bm)−1+δ (for an arbitrary small δ > 0) when using
a Hammersley net.

8. Appendix: Some lemmas. We need the following lemmas.
Lemma 8.1. Let j ≥ 1, a ≥ 0, b ≥ 2, and 0 ≤ u, v < ba, with u �= v. Then we

have

∫ (u+1)/ba

u/ba

∫ (u+1)/ba

u/ba
|x− y|j dxdy =

2

ba(j+2)(j + 1)(j + 2)

and

∫ (u+1)/ba

u/ba

∫ (v+1)/ba

v/ba
|x− y|j dxdy =

2j!

ba(j+2)

	j/2
∑
l=0

|u− v|j−2l

(j − 2l)!(2l + 2)!
.
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Proof. We have∫ (u+1)/ba

u/ba

∫ (u+1)/ba

u/ba
|x− y|j dxdy =

∫ 1/ba

0

∫ 1/ba

0

|x− y|j dxdy

=
1

ba(j+2)

∫ 1

0

∫ 1

0

|x− y|j dxdy.

We divide the last double integral in two parts, and we have∫ 1

0

∫ 1

0

|x− y|j dxdy =

∫ 1

0

∫ y

0

(y − x)j dxdy +

∫ 1

0

∫ 1

y

(x− y)j dxdy.

We calculate the first part and obtain∫ 1

0

∫ y

0

(y − x)j dxdy =
1

j + 1

∫ 1

0

yj+1 dy =
1

(j + 1)(j + 2)
,

and the second part is given by∫ 1

0

∫ 1

y

(x− y)j dxdy =
1

j + 1

∫ 1

0

(1 − y)j+1 dy =
1

(j + 1)(j + 2)
.

Hence we have ∫ 1

0

∫ 1

0

|x− y|j dxdy =
2

(j + 1)(j + 2)
.

For the second part we have∫ (u+1)/ba

u/ba

∫ (v+1)/ba

v/ba
|x− y|j dxdy =

∫ 1/ba

0

∫ (|u−v|+1)/ba

|u−v|/ba
|x− y|j dxdy

=
1

ba(j+2)

∫ 1

0

∫ |u−v|+1

|u−v|
(x− y)j dxdy,

where now |u− v| ≥ 1. We have∫ 1

0

∫ |u−v|+1

|u−v|
(x− y)j dxdy =

1

j + 1

∫ 1

0

(
(|u− v| + 1 − y)j+1 − (|u− v| − y)j+1

)
dy

=
2|u− v|j+2 − (|u− v| + 1)j+2 − (|u− v| − 1)j+2

(j + 1)(j + 2)
.

The result follows by simplifying the sum in the numerator.
Lemma 8.2. Let k ≥ 1 be given by k = κa1−1b

a1−1 + · · · + κaν−1b
aν−1 for some

ν ≥ 1, κa1−1, . . . , κaν−1 ∈ {1, . . . , b − 1}, and 1 ≤ aν < · · · < a1. For any even
0 ≤ j < 2ν we have Ij(k) = 0.

Proof. The result for j = 0 follows from Proposition 2.3 and (2.6). It was shown
in [4, Appendix A] that

x =
1

2
+

∞∑
c=1

b−1∑
τ=1

1

bc(e−2πiτ/b − 1)
walτbc−1(x),
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and hence

|x− y|j =

( ∞∑
c=1

b−1∑
τ=1

1

bc(e−2πiτ/b − 1)
(walτbc−1(y) − walτbc−1(x))

)j

=

∞∑
c1,...,cj=1

1

bc1+···+cj

j∏
i=1

b−1∑
τ=1

walτbci−1(y) − walτbci−1(x)

e−2πiτ/b − 1
.

Let

Ak(c1, . . . , cj) =

∫ 1

0

∫ 1

0

j∏
i=1

b−1∑
τ=1

walτbci−1(y) − walτbci−1(x)

e−2πiτ/b − 1
walk(x)walk(y) dxdy.

Then we have

Ij(k) =

∞∑
c1,...,cj=1

Ak(c1, . . . , cj)

bc1+···+cj
.

We have

j∏
i=1

b−1∑
τ=1

walτbci−1(y) − walτbci−1(x)

e−2πiτ/b − 1

=

b−1∑
τ1,...,τj=1

j∏
i=1

(e−2πiτj/b − 1)−1
∑

u⊆{1,...,j}
(−1)|u|

∏
i∈u

walτibci−1(y)
∏
i �∈u

walτibci−1(x)

=

b−1∑
τ1,...,τj=1

j∏
i=1

(e−2πiτj/b − 1)−1
∑

u⊆{1,...,j}
(−1)|u|walCu,τ (y)walC{1,...,j}\u,τ (x),

where Cu,τ =
∑

i∈u τib
ci−1, and hence

Ak(c1, . . . , cj)

=
b−1∑

τ1,...,τj=1

j∏
i=1

(e−2πiτj/b − 1)−1
∑

u⊆{1,...,j}
(−1)|u|

∫ 1

0

∫ 1

0

walCu,τ (y)walC{1,...,j}\u,τ
(x)walk(x)walk(y) dxdy

=
b−1∑

τ1,...,τj=1

j∏
i=1

(e−2πiτj/b − 1)−1

∑
u⊆{1,...,j}

(−1)|u|
∫ 1

0

walCu,τ⊕k(y) dy

∫ 1

0

walC{1,...,j}\u,τ�k(x) dx.

Note that if ν > j/2, we have either Cu,τ ⊕ k �= 0 or C{1,...,j}\u,τ � k �= 0, and
hence Ak(c1, . . . , cj) = 0. The result now follows.
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Let σp(n) =
∑n−1

h=1 h
p. It is known that

(8.1) σp(n) =

p∑
h=0

Bh

h!

p!

(p + 1 − h)!
np+1−h,

where B0, B1, . . . are the Bernoulli numbers (in particular, B0 = 1, B1 = −1/2, and
B2 = 1/6).

Lemma 8.3. Let b ≥ 2, 1 ≤ d ≤ a, and k = κd−1b
d−1 + · · · + κ0, where

κd−1 ∈ {1, . . . , b − 1}, κd−2, . . . , κ0 ∈ {0, . . . , b − 1}, m = ma−1b
a−1 + · · · + m0, and

n = na−1b
a−1 + · · · + n0. Then we have

ba−2∑
n=0

ba−1∑
m=n+1

walk((n�m)/ba) = b2a−d

(
1

2
+

1

e2πiκd−1/b − 1

)
− ba

2
,

ba−2∑
n=0

ba−1∑
m=n+1

(m− n)walk((n�m)/ba) = b3a−2d

(
1

6
− 1

2 sin2(κd−1π/b)

)
− ba

6
,

and

ba−2∑
n=0

ba−1∑
m=n+1

(m− n) =
1

6
(b3a − ba).

Proof. In order to obtain a formula for the first sum, let m′ = ma−1b
a−1 + · · · +

ma−d+1b
a−d+1, m′′ = ma−d−1b

a−d−1 + · · ·+m0, n
′ = na−1b

a−1 + · · ·+na−d+1b
a−d+1,

and n′′ = na−d−1b
a−d−1+· · ·+n0. First consider the case where m′ > n′ and arbitrary

m′′, n′′. We have

b−1∑
na−d=0

b−1∑
ma−d=0

e2πi(κ0(na−1−ma−1)+···+κd−1(na−d−ma−d))/b = 0,

as
∑b−1

m=0 e2πiκm/b = 0 for all κ = 1, . . . , b−1. Thus we only need to consider the case
where m′ = n′, for which case we have

e2πi(κ0(na−1−ma−1)+···+κd−1(na−d−ma−d))/b = e2πiκd−1(ma−d−na−d)/b.

This part is now given by

(8.2) bd−1
ba−d−1∑
n′′=0

ba−d−1∑
m′′=0

b−1∑
na−d=0

b−1∑
ma−d=0

e2πiκd−1(na−d−ma−d)/b,

where we have the additional assumption ma−db
a−d + m′′ > na−db

a−d + n′′. First
consider the case where ma−d > na−d. This part of (8.2) is given by

bd−1
ba−d−1∑
n′′=0

ba−d−1∑
m′′=0

b−2∑
na−d=0

b−1∑
ma−d=na−d+1

e2πiκd−1(na−d−ma−d)/b

= bd−1b2(a−d)
b−2∑

na−d=0

b−1∑
ma−d=na−d+1

e2πiκd−1(na−d−ma−d)/b

=
b2a−d

e2πiκd−1/b − 1
.
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Now consider the case where ma−d = na−d. In this case we have the assumption that
m′′ > n′′, and hence this part of (8.2) is given by

bd
ba−d−2∑
n′′=0

ba−d−1∑
m′′=n′′+1

1 =
1

2

(
b2a−d − ba

)
.

Thus (8.2) is given by

b2a−d

e2πiκd−1/b − 1
+

1

2

(
b2a−d − ba

)
,

and the first result follows.
For the second sum let again m′ = ma−1b

a−1 + · · · + ma−d+1b
a−d+1, m′′ =

ma−d−1b
a−d−1 + · · · + m0, n′ = na−1b

a−1 + · · · + na−d+1b
a−d+1, and also n′′ =

na−d−1b
a−d−1 + · · ·+n0. First consider the case where m′ > n′ and arbitrary m′′, n′′.

We have

b−1∑
na−d=0

b−1∑
ma−d=0

(m− n)e2πi(κ0(na−1−ma−1)+···+κd−1(na−d−ma−d))/b

=

b−1∑
na−d=0

b−1∑
ma−d=0

(ma−d − na−d)e
2πi(κ0(na−1−ma−1)+···+κd−1(na−d−ma−d))/b

= 0,

as
∑b−1

m=0 e2πiκm/b = 0 for all κ = 1, . . . , b− 1.
Thus we are left with the case where m′ = n′. We have

e2πi(κ0(na−1−ma−1)+···+κd−1(na−d−ma−d))/b = e2πiκd−1(ma−d−na−d)/b.

Hence this part is given by

(8.3)

bd−1
b−1∑

na−d=0

b−1∑
ma−d=0

ba−d−1∑
n′′=0

ba−d−1∑
m′′=0

(m′′−n′′+ba−d(ma−d−na−d))e
2πiκd−1(na−d−ma−d)/b,

where we have the additional assumption ma−db
a−d + m′′ > na−db

a−d + n′′. First
consider the case where ma−d > na−d. This part of (8.3) is given by

bd−1
∑

0≤na−d<ma−d<b

ba−d−1∑
m′′,n′′=0

(m′′ − n′′ + ba−d(ma−d − na−d))e
2πiκd−1(na−d−ma−d)/b

= bd−1b3(a−d)
b−2∑

na−d=0

b−1∑
ma−d=na−d+1

(ma−d − na−d)e
2πiκd−1(na−d−ma−d)/b

= − b3a−2d

2 sin2(κd−1π/b)
.
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Now consider the case where ma−d = na−d. In this case we have the assumption that
m′′ > n′′, and hence this part of (8.3) is given by

bd
ba−d−2∑
n′′=0

ba−d−1∑
m′′=n′′+1

(m′′ − n′′) =
bd

6
(b3(a−d) − ba−d).

(This result can be obtained using (8.1); see the proof of the third part below.) Thus
(8.3) is given by

− b3a−2d

2 sin2(κd−1π/b)
+

bd

6
(b3(a−d) − ba−d),

and the second result follows.
The third result can easily be verified by using (8.1). Indeed we have

ba−2∑
n=0

ba−1∑
m=n+1

(m− n) =

ba−2∑
n=0

ba−1−n∑
m=1

m =

ba−2∑
n=0

σ1(b
a − n) =

1

2

ba−2∑
n=0

((ba − n)2 − (ba − n)).

The last sum can be written as 1
2

∑ba

n=1(n
2 − n) = 1

2 (σ2(b
a + 1)− σ1(b

a + 1)), and by
using (8.1) again the result follows.

Lemma 8.4. Let j ≥ 0, ν ≥ 1, 1 ≤ aν < · · · < a1 ≤ a, and k = κa1−1b
a1−1 +

· · · + κaν−1b
aν−1, where κa1−1, . . . , κaν−1 ∈ {1, . . . , b− 1}. Then we have

ba−2∑
n=0

ba−1∑
m=n+1

(m− n)j = baσj(b
a) − σj+1(b

a) ≤ ba(j+2)

(j + 1)(j + 2)

and ∣∣∣∣∣
ba−2∑
n=0

ba−1∑
m=n+1

(m− n)jwalk((n�m)/ba)

∣∣∣∣∣ ≤ Cb,jb
(j+2)a−2(a1+···+amin(ν,�j/2�))

for some constant Cb,j > 0 which is independent of ν, a, and a1, . . . , aν .
Proof. We have

ba−2∑
n=0

ba−1∑
m=n+1

(m− n)j =

ba−1∑
n=1

(ba − n)nj = baσj(b
a) − σj+1(b

a),

and by using (8.1) it follows that

baσj(b
a) − σj+1(b

a)

= ba(j+2)

(
j∑

h=0

Bh

(
j!

h!(j + 1 − h)!
− (j + 1)!

h!(j + 2 − h)!

)
b−ah −Bj+1b

−a(j+1)

)

≤ ba(j+2)B0
1

(j + 1)(j + 2)
,

from which the first part follows as B0 = 1.
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For j = 0, 1 the second part immediately follows from Lemma 8.3. Let now j ≥ 2,
and assume the result holds for all j − 1, . . . , 1, 0.

Let m = ma−1b
a−1 + · · ·+m0 and n = na−1b

a−1 + · · ·+ n0. In order to obtain a
bound on

(8.4)

∣∣∣∣∣
ba−2∑
n=0

ba−1∑
m=n+1

(m− n)je2πi(κa1−1(na−a1−ma−a1 )+···+κaν−1(na−aν−ma−aν ))/b

∣∣∣∣∣ ,
we first sum over the digits ma−a1

and na−a1 .
Let m′ = ma−1b

a−1+· · ·+ma−a1+1b
a−a1+1, n′ = na−1b

a−1+· · ·+na−a1+1b
a−a1+1,

m′′ = ma−a1−1b
a−a1−1 + · · ·+m0, and n′′ = na−a1−1b

a−a1−1 + · · ·+n0. We consider
two cases, namely, where m′ > n′ and where m′ = n′.

For m′ = n′ we have either ma−a1
> na−a1

or ma−a1
= na−a1

and m′′ > n′′, as
m > n. First let ma−a1 > na−a1

. We have ba1−1 choices for m′ = n′, and the sum
over the digits ma−a1

, na−a1
with ma−a1 > na−a1

can be written as one sum so that
the part of (8.4) where m′ = n′ is given by

ba1−1

∣∣∣∣∣∣
ba−a1−1∑
n′′=0

ba−a1−1∑
m′′=0

b−1∑
τ=1

(b− τ)(τba−a1 + m′′ − n′′)je−2πiκa1−1τ/b

∣∣∣∣∣∣
≤ ba1−1

ba−a1−1∑
n′′=0

ba−a1−1∑
m′′=0

b−1∑
τ=1

(b− τ)(τba−a1 + m′′ − n′′)j

≤ C ′′
b,jb

a1b(j+2)(a−a1),

for some constant C ′′
b,j > 0 which depends only on b and j. Hence this part satisfies

the bound. Now let ma−a1
= na−a1 ; then we have m′′ > n′′, and hence the part of

(8.4) where m′ = n′ and ma−a1
= na−a1

is given by

ba1

ba−a1−1∑
n′′=0

ba−a1−1∑
m′′=n′′+1

(m′′ − n′′)j ≤ ba1b(j+2)(a−a1)

(j + 1)(j + 2)
,

where the inequality was already obtained in the first part of this proof. Hence also
this part satisfies the bound.

Now we consider the part of (8.4) where m′ > n′. We have

b−1∑
ma−a1 ,na−a1=0

(m′ − n′ + ba−a1(ma−a1 − na−a1) + m′′ − n′′)je2πiκa1−1(na−a1
−ma−a1

)/b

= b(m′ − n′ + m′′ − n′′)j +

b−1∑
τ=1

(b− τ)[e−2πiκa1−1τ/b(m′ − n′ + τba−a1 + m′′ − n′′)j

+ e2πiκa1−1τ/b(m′ − n′ − τba−a1 + m′′ − n′′)j ]

= b(m′ − n′ + m′′ − n′′)j +

j∑
u=0

(
j

u

)
(m′ − n′ + m′′ − n′′)j−ubu(a−a1)Eu,

(8.5)

where

Eu =

b−1∑
τ=1

(b− τ)[e−2πiκa1−1τ/bτu + e2πiκa1−1τ/b(−τ)u].
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It can be checked that E0 = −b and E1 = 0. Hence (8.5) is given by

j∑
u=2

(
j

u

)
(m′ − n′ + m′′ − n′′)j−ubu(a−a1)Eu,

and hence the result follows from the induction assumption or the first part.
Lemma 8.5. Let k ≥ 1 be given by k = κa1−1b

a1−1 + · · · + κaν−1b
aν−1 for some

ν ≥ 1, 1 ≤ aν < · · · < a1, and κa1−1, . . . , κaν−1 ∈ {1, . . . , b − 1}. Then for j ≥ 1 we
have

|Ij(k)| ≤ C̄b,j

b2(a1+···+amin(ν,�j/2�))

for some constant C̄b,j > 0 which depends only on b and j.
Proof. Let k = κa−1b

a−1 + · · · + κ0, where now a = a1, u = ua−1b
a−1 + · · · + u0,

and v = va−1b
a−1 + · · · + v0. Then we have

Ij(k) =

∫ 1

0

∫ 1

0

|x− y|jwalk(x)walk(y) dxdy

=

ba−1∑
u=0

ba−1∑
v=0

e2πi(κ0(ua−1−va−1)+···+κa−1(u0−v0))

∫ (u+1)/ba

u/ba

∫ (v+1)/ba

v/ba
|x− y|j dxdy.

For u = v we have e2πi(κ0(ua−1−va−1)+···+κa−1(u0−v0)) = 1. Using Lemma 8.1 it follows
that this part in the above sum is given by

2

ba(j+1)(j + 1)(j + 2)
.

Hence it remains to calculate

ba−1∑
u=0

ba−1∑
v=0
u�=v

e2πi(κ0(ua−1−va−1)+···+κa−1(u0−v0))

∫ (u+1)/ba

u/ba

∫ (v+1)/ba

v/ba
|x− y|j dxdy

= 2

ba−2∑
u=0

ba−1∑
v=u+1

e2πi(κ0(ua−1−va−1)+···+κa−1(u0−v0))
2j!

ba(j+2)

	j/2
∑
i=0

|u− v|j−2i

(j − 2i)!(2i + 2)!

=
4j!

ba(j+2)

	j/2
∑
i=0

1

(j − 2i)!(2i + 2)!

ba−2∑
u=0

ba−1∑
v=u+1

e2πi(κ0(ua−1−va−1)+···+κa−1(u0−v0))

(v − u)2i−j
,

where we used Lemma 8.1. The absolute value of the inner double sum can now be
bounded using Lemma 8.4, and hence the result follows.

Lemma 8.6. Let b ≥ 2 be an integer, and let α > 1/2 be a real number. Then we
have

∞∑
k=1

rb,α(k) = 2ζ(2α),

where ζ(2α) =
∑∞

h=1 h
−2α.
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Proof. Let h ∈ Z \ {0}, and let fh(x) = e2πihx. The Walsh coefficients f̂h(k)

of the function fh are then given by f̂h(k) =
∫ 1

0
fh(x)walk(x) dx. It follows that

|f̂h(k)|2 = |βh,k|2, where βh,k was defined in Lemma 2.6. Using Parseval’s equality
we obtain

∞∑
k=1

|βh,k|2 =

∞∑
k=1

|f̂h(k)|2 =

∫ 1

0

|fh(x)|2 dx =

∫ 1

0

1 dx = 1.

Hence we have

∞∑
k=1

rb,α(k) =
∑

h∈Z\{0}

1

|h|2α
∞∑
k=1

|βh,k|2 =
∑

h∈Z\{0}

1

|h|2α = 2ζ(2α).

The result follows.
Lemma 8.7. Let k = κa1−1b

a1−1 + · · · + κaν−1b
aν−1, with 1 ≤ aν < · · · < a1, let

κa1−1, . . . , κaν−1 ∈ {1, . . . , b− 1}. Then

βh,κa1−1ba1−1+···+κaν−1baν−1 =
∑

h1,...,hν∈Z,hl≡κal−1 ( mod b)

h=h1ba1−1+···+hνbaν−1

bν

(2πi)ν

ν∏
l=1

1 − e2πihl/b

hl
.

Proof. First we consider k = κa−1b
a−1, with κa−1 ∈ {1, . . . , b − 1}. Let x =

x1

b + x2

b2 + · · · , and then we have walk(x) = e2πiκa−1xa/b. Note that walk(x) is constant
in the intervals [u/ba, (u + 1)/ba) for 0 ≤ u < ba. Let u = ua−1b

a−1 + · · · + u0. Then
for any h ∈ Z \ {0} we have

βh,k =

ba−1∑
u=0

e2πiκa−1u0/b

∫ (u+1)/ba

u/ba
e−2πihx dx

=
ba−1∑
u=0

e2πiκa−1u0/b
e−2πih(u+1)/ba − e−2πihu/ba

−2πih

=
1 − e−2πih/ba

2πhi

b−1∑
u0=0

· · ·
b−1∑

ua−1=0

e2πiκa−1u0/be−2πih(ua−1/b+···+u0/b
a)

=
1 − e−2πih/ba

2πhi

b−1∑
u0=0

e2πiu0(κa−1/b−h/ba)
b−1∑
u1=0

e−2πiu1h/b
a−1 · · ·

b−1∑
ua−1=0

e−2πiua−1h/b.

Let now h ∈ Z\{0}, let h = hc−1b
c−1+· · ·+h0, and set hc = hc+1 = · · · = 0. If h > 0,

we assume that hi ∈ {0, . . . , b− 1}, and if h < 0, we assume that hi ∈ {−b+ 1, . . . , 0}
for all i ≥ 0. If h0 �= 0, then

∑b−1
ua−1=0 e−2πiua−1h/b = 0, and hence βh,κa−1ba−1 = 0.

If h0 = 0, then
∑b−1

ua−1=0 e−2πiua−1h/b = b. In general, if for an 0 ≤ i < a − 1 we
have hi �= 0, then βh,κa−1ba−1 = 0. Further, if hi = 0 for 0 ≤ i ≤ a − 1, then we
also have βh,κa−1ba−1 = 0. Hence, in order to obtain βh,κa−1ba−1 �= 0 we must have
h0 = · · · = ha−2 = 0 and κa−1 − ha−1 ≡ 0 (mod b). In this case we have

βh,κa−1ba−1 =
1 − e−2πiha−1/b

2πhi
ba,
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where h = ha−1b
a−1 + hab

a + · · · , with ha−1 ≡ κa−1 (mod b). We can also write

βhba−1,κa−1ba−1 =
b(1 − e−2πih/b)

2πih
,

with h ∈ Z such that h ≡ κa−1 (mod b).

We can interpret βh,k =
∫ 1

0
e−2πihxwalk(x) dx as the Fourier coefficients of the

kth Walsh function; hence, it follows that

walk(x) =
∑
h∈Z

βh,ke
2πihx.

Let now k = κa1−1b
a1−1 + · · ·+κaν−1b

aν−1 for some 1 ≤ aν < · · · < a1. Then we
have

walκa1−1ba1−1+···+κaν−1baν−1(x)

= walκa1−1ba1−1(x) · · ·walκaν−1baν−1(x)

=
∑
h1∈Z

βh1,κa1−1ba1−1e2πih1x · · ·
∑
hν∈Z

βhν ,κaν−1baν−1e2πihνx

=
∑

h1,...,hν∈Z

βh1,κa1−1ba1−1 · · ·βhν ,κaν−1baν−1e2πi(h1+···+hν)x.

On the other hand, we have

walκa1−1ba1−1+···+κaν−1baν−1(x) =
∑

h∈Z\{0}
βh,κa1−1ba1−1+···+κaν−1baν−1e2πihx.

On comparing the last two equations we obtain that βh,κa1−1ba1−1+···+κaν−1baν−1 = 0

if either ba1−1 � |h or h �≡ κa1−1 (mod ba1−1). Now let h ∈ Z such that ba1−1|h and
h ≡ κa1−1 (mod ba1−1). Then we have

βh,κa1−1ba1−1+···+κaν−1baν−1

=
∑

h1,...,hν∈Z,hl≡κal−1 ( mod b)

h=h1ba1−1+···+hνbaν−1

βh1ba1−1,κa1−1ba1−1 · · ·βhνbaν−1,κaν−1baν−1

=
∑

h1,...,hν∈Z,hl≡κal−1 ( mod b)

h=h1ba1−1+···+hνbaν−1

bν

(2πi)ν

ν∏
l=1

1 − e2πihl/b

hl
,

and the result follows.
Lemma 8.8. For k ≥ 1, b ≥ 2, m ≥ 1, and α > 1/2 we have

rb,α(kbm) = b−2αmrb,α(k).

Proof. First note that βh,κa1−1bm+a1−1+···+κaν−1bm+aν−1 = 0 if bm � |h. Further it
follows from the previous lemma that

βhbm,κa1−1bm+a1−1+···+κaν−1bm+aν−1 = βh,κa1−1ba1−1+···+κaν−1baν−1 ,
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and hence by Lemma 2.6 we have

rb,α(kbm) =
∑

h∈Z\{0}

|βhbm,kbm |2
|hbm|2α = b−2αm

∑
h∈Z\{0}

|βh,k|2
|h|2α = b−2αmrb,α(k).

The result follows.
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Acta Arith., 41 (1982), pp. 337–351.

[7] T. Gerstner and M. Griebel, Numerical integration using sparse grids, Numer. Algorithms,
18 (1998), pp. 209–232.

[8] F. J. Hickernell and R.-X. Yue, The mean square discrepancy of scrambled (t, s)-sequences,
SIAM J. Numer. Anal., 38 (2000), pp. 1089–1112.
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A MASS AND MAGNETIZATION CONSERVATIVE AND
ENERGY-DIMINISHING NUMERICAL METHOD FOR

COMPUTING GROUND STATE OF SPIN-1 BOSE–EINSTEIN
CONDENSATES∗

WEIZHU BAO† AND HANQUAN WANG‡

Abstract. In this paper, a mass (or normalization) and magnetization conservative and energy-
diminishing numerical method is presented for computing the ground state of spin-1 (or F = 1
spinor) Bose–Einstein condensates (BECs). We begin with the coupled Gross–Pitaevskii equations,
and the ground state is defined as the minimizer of the energy functional under two constraints on
the mass and magnetization. By constructing a continuous normalized gradient flow (CNGF) which
is mass and magnetization conservative and energy-diminishing, the ground state can be computed
as the steady state solution of the CNGF. The CNGF is then discretized by the Crank–Nicolson
finite difference method with a proper way to deal with the nonlinear terms, and we prove that the
discretization is mass and magnetization conservative and energy-diminishing in the discretized level.
Numerical results of the ground state and their energy of spin-1 BECs are reported to demonstrate
the efficiency of the numerical method.

Key words. spin-1 Bose–Einstein condensate, coupled Gross–Pitaevskii equations, ground
state, continuous normalized gradient flow, mass and magnetization conservative, energy-diminishing
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1. Introduction. Since its realization in dilute bosonic atomic gases [2, 13, 9],
the atomic Bose–Einstein condensate (BEC) has been produced and studied exten-
sively in the laboratory [28, 29, 16] and has provided a successful testing ground of
theoretical studies of quantum many-body systems [28, 29]. In earlier BEC exper-
iments, atoms were spatially confined with magnetic traps, which essentially freeze
the atomic internal degrees of freedom [2, 13, 9]. Most studies were thus focused on
scalar models, i.e., single-component quantum degenerate gases [12]. One of the most
important recent developments in BECs was the study of spin-1 condensates (of atoms
with hyperfine quantum number F = 1) [17, 27, 34, 10, 31], and they were realized
in experiments recently using both 23Na and 87Rb [24, 35]. In fact, the emergence of
the spin-1 BEC [19, 20, 24] has created opportunities for understanding degenerate
gases with internal degrees of freedom [21, 22, 17, 18, 14, 25, 26, 32, 37].

At temperature T much smaller than the critical condensate temperature Tc [23],
a spin-1 BEC is well described by the three-component wave function Ψ = (ψ1(x, t),
ψ0(x, t), ψ−1(x, t))

T whose evolution is governed by the coupled Gross–Pitaevskii
equations (GPEs) [23, 17, 18, 38, 36]:
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i�∂tψ1(x, t) =

[
− �

2

2m
∇2 + V (x) + (c0 + c2)

(
|ψ1|2 + |ψ0|2

)
+ (c0 − c2)|ψ−1|2

]
ψ1

+c2ψ̄−1ψ
2
0 ,(1.1)

i�∂tψ0(x, t) =

[
− �

2

2m
∇2 + V (x) + (c0 + c2)

(
|ψ1|2 + |ψ−1|2

)
+ c0|ψ0|2

]
ψ0

+2c2ψ−1ψ̄0ψ1,(1.2)

i�∂tψ−1(x, t) =

[
− �

2

2m
∇2 + V (x) + (c0 + c2)

(
|ψ−1|2 + |ψ0|2

)
+ (c0 − c2)|ψ1|2

]
ψ−1

+c2ψ
2
0ψ̄1.(1.3)

Here x = (x, y, z)T is the Cartesian coordinate vector, � is the Planck constant, m is
the atomic mass, and V (x) is the external trapping potential. When a harmonic trap
potential is considered,

(1.4) V (x) =
m

2
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2),

with ωx, ωy, and ωz being the trap frequencies in the x-, y-, and z-directions, re-
spectively. f̄ and Re(f) denote the conjugate and the real part of the function f ,
respectively. c0 = 4π�

2(a0 + 2a2)/3m and c2 = 4π�
2(a2 − a0)/3m denote constants

of the mean-field (spin-independent) and spin-exchange interaction, respectively, with
aj the s-wave scattering lengths for the channel of total hyperfine spin j (j = 0, 2).
The wave function is normalized according to

(1.5) ‖Ψ‖2 :=

∫
R3

|Ψ(x, t)|2 dx =

∫
R3

1∑
j=−1

|ψj(x, t)|2 dx :=

1∑
j=−1

‖ψj‖2 = N,

where N is the total number of particles in the condensate.
By introducing the dimensionless variables t → t/ωm, with ωm = min{ωx, ωy, ωz},

and x → x as, with as =
√

�

mωm
, ψj →

√
Nψj/a

3/2
s (j = −1, 0, 1), we get the

dimensionless coupled GPEs from (1.1)–(1.3) as [38, 39, 36]:

i∂tψ1(x, t) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|ψ1|2 + |ψ0|2

)
+ (βn − βs)|ψ−1|2

]
ψ1

+βsψ̄−1ψ
2
0 ,(1.6)

i∂tψ0(x, t) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|ψ1|2 + |ψ−1|2

)
+ βn|ψ0|2

]
ψ0

+2βsψ−1ψ̄0ψ1,(1.7)

i∂tψ−1(x, t) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|ψ−1|2 + |ψ0|2

)
+ (βn − βs)|ψ1|2

]
ψ−1

+βsψ
2
0ψ̄1,(1.8)

where βn = N c0
a3
s�ωm

= 4πN(a0+2a2)
3as

, βs = N c2
a3
s�ωm

= 4πN(a2−a0)
3as

, and V (x) = 1
2 (γ2

xx
2

+γ2
yy

2 + γ2
zz

2), with γx = ωx

ωm
, γy =

ωy

ωm
, and γz = ωz

ωm
. Similar as those in the single-

component BEC [29, 1, 7, 3, 6], in the disk-shaped condensation, i.e., ωx ≈ ωy and
ωz � ωx (⇐⇒ γx = 1, γy ≈ 1, and γz � 1, with ωm = ωx), the three-dimensional
(3D) coupled GPEs (1.6)–(1.8) can be reduced to 2D coupled GPEs, and in the cigar-
shaped condensation, i.e., ωy � ωx and ωz � ωx (⇐⇒ γx = 1, γy � 1, and γz � 1,
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with ωm = ωx), the 3D coupled GPEs (1.6)–(1.8) can be reduced to 1D coupled GPEs.
Thus here we consider the dimensionless coupled GPEs in d dimensions (d = 1, 2, 3):

i∂tψ1(x, t) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|ψ1|2 + |ψ0|2

)
+ (βn − βs)|ψ−1|2

]
ψ1

+βsψ̄−1ψ
2
0 ,(1.9)

i∂tψ0(x, t) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|ψ1|2 + |ψ−1|2

)
+ βn|ψ0|2

]
ψ0

+2βsψ−1ψ̄0ψ1,(1.10)

i∂tψ−1(x, t) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|ψ−1|2 + |ψ0|2

)
+ (βn − βs)|ψ1|2

]
ψ−1

+βsψ
2
0ψ̄1.(1.11)

Here V (x) is a real-valued potential whose shape is determined by the type of system
under investigation; βn ∝ N and βs ∝ N correspond to the dimensionless mean-
field (spin-independent) and spin-exchange interaction, respectively. Three important
invariants of (1.9)–(1.11) are the mass (or normalization) of the wave function

(1.12)

N(Ψ(·, t)) := ‖Ψ(·, t)‖2 :=

∫
Rd

1∑
j=−1

|ψj(x, t)|2 dx ≡ N(Ψ(·, 0)) = 1, t ≥ 0,

the magnetization (with −1 ≤ M ≤ 1)

(1.13) M(Ψ(·, t)) :=

∫
Rd

[
|ψ1(x, t)|2 − |ψ−1(x, t)|2

]
dx ≡ M(Ψ(·, 0)) = M,

and the energy per particle

E(Ψ(·, t)) =

∫
Rd

{ 1∑
j=−1

(
1

2
|∇ψj |2 + V (x)|ψj |2

)
+ (βn − βs)|ψ1|2|ψ−1|2

+
βn

2
|ψ0|4 +

βn + βs

2

[
|ψ1|4 + |ψ−1|4 + 2|ψ0|2

(
|ψ1|2 + |ψ−1|2

)]
+βs

(
ψ̄−1ψ

2
0ψ̄1 + ψ−1ψ̄

2
0ψ1

)}
dx ≡ E(Ψ(·, 0)), t ≥ 0.(1.14)

The ground state of a spin-1 BEC is defined as the minimizer of the following
nonconvex minimization problem:

Find (Φg ∈ S) such that

(1.15) Eg := E(Φg) = min
Φ∈S

E(Φ),

where the nonconvex set S is defined as

(1.16)

S =

{
Φ = (φ1, φ0, φ−1)

T | ‖Φ‖ = 1,

∫
Rd

[
|φ1(x)|2 − |φ−1(x)|2

]
= M, E(Φ) < ∞

}
.

When βn ≥ 0, βn ≥ |βs|, and lim|x|→∞ V (x) = ∞, the existence of a minimizer of
the nonconvex minimization problem (1.15) follows from the standard theory [33].
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For understanding the uniqueness question note that E(α · Φg) = E(Φg) for all α =(
eiθ1 , eiθ0 , eiθ−1

)T
, with θ1 + θ−1 = 2θ0. Thus additional constraints have to be

introduced to show the uniqueness.
One of the fundamental problems in theoretical study of a spin-1 BEC is to find

its ground state so as to compare the numerical results with experimental observa-
tions and to prepare initial data for studying the dynamics of a spin-1 BEC. Due to
the facts that there are three components in the wave function Φ in (1.15) and that
there are only two constraints in (1.16), it is not obvious that the most powerful and
popular imaginary time method [11, 1, 3, 4, 5, 8, 7] used for computing the ground
state of a single-component BEC could be extended to this case directly. The reason
is that, in the projection step, we need to determine three parameters but have only
two equations from the two constraints. However, in physics literatures, they still
use the imaginary time method for computing the ground state of a spin-1 BEC by
introducing a random variable to choose the three projection parameters in the pro-
jection step [38]. Of course, this is not a determinate and efficient way to compute
the ground state of a spin-1 BEC due to the choice of the random variable. In fact, to
our knowledge, there is no efficient and determinate numerical method for computing
the ground state of a spin-1 BEC in the literature yet. The aim of this paper is to
propose such a numerical method.

The paper is organized as follows. In section 2, we first introduce the Euler–
Lagrange equations (or time-independent coupled GPEs) associated to the minimiza-
tion problem (1.15) and then construct a continuous normalized gradient flow (CNGF)
such that the ground state of a spin-1 BEC is the steady state solution of this CNGF.
In section 3, the CNGF is discretized in space and time with a proper way to treat
the nonlinear terms, and we prove that the discretization is mass and magnetization
conservative and energy-diminishing. In section 4, numerical results are reported to
demonstrate the efficiency of our numerical method. Finally, some conclusions are
drawn in section 5.

2. A continuous normalized gradient flow. In this section, we will introduce
the Euler–Lagrange equations associated to the minimization problem (1.15) and
construct a continuous normalized gradient flow for computing the ground state of a
spin-1 BEC.

2.1. Euler–Lagrange equations. In order to find the Euler–Lagrange equa-
tions associated to the minimization problem (1.15), we define the Lagrangian

(2.1)
L(Φ, μ, λ) := E(Φ) − μ

(
‖φ1‖2 + ‖φ0‖2 + ‖φ−1‖2 − 1

)
− λ

(
‖φ1‖2 − ‖φ−1‖2 −M

)
.

Differentiating (2.1) with respect to φ̄1, φ̄0, and φ̄−1, respectively, we get the following
Euler–Lagrange equations:

(μ + λ) φ1(x) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|φ1|2 + |φ0|2

)
+ (βn − βs)|φ−1|2

]
φ1

+βsφ̄−1φ
2
0 := H1φ1,(2.2)

μ φ0(x) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|φ1|2 + |φ−1|2

)
+ βn|φ0|2

]
φ0

+2βsφ−1φ̄0φ1 := H0φ0,(2.3)
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(μ− λ) φ−1(x) =

[
−1

2
∇2 + V (x) + (βn + βs)

(
|φ−1|2 + |φ0|2

)
+ (βn − βs)|φ1|2

]
φ−1

+βsφ
2
0φ̄1 := H−1φ−1.(2.4)

Here μ and λ are the Lagrange multipliers (or chemical potentials) of the coupled
GPEs (2.2)–(2.4). In addition, (2.2)–(2.4) is also a nonlinear eigenvalue problem with
two constraints:

‖Φ‖2 :=

∫
Rd

|Φ(x)|2 dx =

∫
Rd

1∑
j=−1

|φj(x)|2 dx :=

1∑
j=−1

‖φj‖2 = 1,(2.5)

‖φ1‖2 − ‖φ−1‖2 :=

∫
Rd

[
|φ1(x)|2 − |φ−1(x)|2

]
dx = M.(2.6)

In fact, the nonlinear eigenvalue problem (2.2)–(2.4) can be also obtained from the
coupled GPEs (1.9)–(1.11) by plugging ψj(x, t) = e−iμjtφj(x) (j = 1, 0,−1) with
μ1 = μ+λ, μ0 = μ, and μ−1 = μ−λ. Thus it is also called time-independent coupled
GPEs. In physics literatures, any eigenfunction Φ of the nonlinear eigenvalue problem
(2.2)–(2.4) under the constraints (2.5) and (2.6) whose energy is larger than the energy
of the ground state is called an excited state of the coupled GPEs (1.9)–(1.11).

When V (x) is chosen as a harmonic oscillator potential, following the idea in
[12, 29] for a single-component BEC, we have the following virial theorem for a spin-1
BEC.

Lemma 2.1. Suppose Φ ∈ S is an eigenfunction of the nonlinear eigenvalue
problem (2.2)–(2.4). When V (x) is chosen as a harmonic oscillator potential, i.e., it
is a quadratic form in x, we have

(2.7) 2 Ekin (Φ) − 2 Epot (Φ) + d Eint (Φ) = 0,

where Ekin, Epot, and Eint are the kinetic energy, potential energy, and interaction
energy, respectively, and are defined as

Ekin(Φ) =
1

2

∫
Rd

1∑
j=−1

|∇φj |2 dx, Epot(Φ) =

∫
Rd

1∑
j=−1

V (x)|φj |2 dx,(2.8)

Eint(Φ) =

∫
Rd

[βn + βs

2

(
|φ1|4 + |φ−1|4 + 2|φ0|2

(
|φ1|2 + |φ−1|2

))
+(βn − βs)|φ1|2|φ−1|2 +

βn

2
|φ0|4 + βs

(
φ̄−1φ

2
0φ̄1 + φ−1φ̄

2
0φ1

)]
dx.(2.9)

Proof. Suppose Φe ∈ S is an eigenfunction of the nonlinear eigenvalue problem
(2.2)–(2.4), and we define a trial function Φε ∈ S as

(2.10) Φε(x) = (1 + ε)d/2Φe ((1 + ε)x) , x ∈ R
d.

Plugging Φε into the energy functional in (1.14), change of variables, we obtain

E(Φε(x)) = E
(
(1 + ε)d/2Φe ((1 + ε)x)

)
= (1 + ε)2Ekin (Φe(x)) +

1

(1 + ε)2
Epot (Φe(x)) + (1 + ε)dEint (Φe(x)) .(2.11)

Differentiating (2.11) with respect to ε, we get

(2.12)
dE(Φε)

dε
= 2(1 + ε)Ekin (Φe) −

2

(1 + ε)3
Epot (Φe) + d(1 + ε)d−1Eint (Φe) .
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Since Φe is also a critical point of the energy functional E(Φ) over the set S, we get
(2.7) from (2.12) by setting ε = 0 and noticing Φε=0(x) = Φe (x) in (2.10).

2.2. A continuous normalized gradient flow. In order to compute the ground
state of a spin-1 BEC in (1.15) numerically, we construct the following CNGF:

∂tφ1(x, t) =

[
1

2
∇2 − V (x) − (βn + βs)

(
|φ1|2 + |φ0|2

)
− (βn − βs)|φ−1|2

]
φ1

−βsφ̄−1φ
2
0 + [μΦ(t) + λΦ(t)]φ1 = −H1 φ1 + [μΦ(t) + λΦ(t)]φ1,(2.13)

∂tφ0(x, t) =

[
1

2
∇2 − V (x) − (βn + βs)

(
|φ1|2 + |φ−1|2

)
− βn|φ0|2

]
φ0

−2βsφ−1φ̄0φ1 + μΦ(t) φ0 = −H0 φ0 + μΦ(t) φ0,(2.14)

∂tφ−1(x, t) =

[
1

2
∇2 − V (x) − (βn + βs)

(
|φ−1|2 + |φ0|2

)
− (βn − βs)|φ1|2

]
φ−1

−βsφ
2
0φ̄1 + [μΦ(t) − λΦ(t)]φ−1 = −H−1 φ−1 + [μΦ(t) − λΦ(t)]φ−1.(2.15)

Here μΦ(t) and λΦ(t) are chosen such that the above CNGF is mass (or normalization)
and magnetization conservative, and they are given as
(2.16)

μΦ(t) =
RΦ(t)DΦ(t) −MΦ(t)FΦ(t)

NΦ(t)RΦ(t) −M2
Φ(t)

, λΦ(t) =
NΦ(t)FΦ(t) −MΦ(t)DΦ(t)

NΦ(t)RΦ(t) −M2
Φ(t)

,

with

NΦ(t) =

∫
Rd

[
|φ−1(x, t)|2 + |φ0(x, t)|2 + |φ1(x, t)|2

]
dx,(2.17)

MΦ(t) =

∫
Rd

[
|φ1(x, t)|2 − |φ−1(x, t)|2

]
dx,(2.18)

RΦ(t) =

∫
Rd

[
|φ1(x, t)|2 + |φ−1(x, t)|2

]
dx,(2.19)

DΦ(t) =

∫
Rd

{ 1∑
j=−1

(
1

2
|∇φj |2 + V (x)|φj |2

)
+ 2(βn − βs)|φ1|2|φ−1|2 + βn|φ0|4

+(βn + βs)
[
|φ1|4 + |φ−1|4 + 2|φ0|2

(
|φ1|2 + |φ−1|2

)]
+2βs

(
φ̄−1φ

2
0φ̄1 + φ−1φ̄

2
0φ1

)}
dx,(2.20)

FΦ(t) =

∫
Rd

{
1

2

(
|∇φ1|2 − |∇φ−1|2

)
+ V (x)

(
|φ1|2 − |φ−1|2

)
+(βn + βs)

[
|φ1|4 − |φ−1|4 + |φ0|2

(
|φ1|2 − |φ−1|2

)]}
dx.(2.21)

For the above CNGF, we have the following.
Theorem 2.2. For any given initial data

(2.22) Φ(x, 0) = (φ1(x, 0), φ0(x, 0), φ−1(x, 0))T := Φ(0)(x), x ∈ R
d,
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satisfying

(2.23) NΦ(t = 0) := NΦ(0) = 1, MΦ(t = 0) := MΦ(0) = M,

the CNGF (2.13)–(2.15) is mass and magnetization conservative and energy-diminishing,
i.e.,

NΦ(t) ≡ NΦ(t = 0) = 1, MΦ(t) ≡ MΦ(t = 0) = M, t ≥ 0,(2.24)

E (Φ(·, t)) ≤ E (Φ(·, s)) for any t ≥ s ≥ 0.(2.25)

Proof. Differentiating (2.17) with respect to t and noticing (2.13)–(2.15), we have

dNΦ(t)

dt
=

d

dt

∫
Rd

1∑
j=−1

|φj(x, t)|2 dx =

∫
Rd

1∑
j=−1

[
φ̄j ∂tφj + φj ∂tφ̄j

]
dx

=

∫
Rd

1∑
j=−1

(
−φ̄jHjφj − φjH̄j φ̄j

)
dx + 2 [μΦ(t) + λΦ(t)] ‖φ1‖2

+2μΦ(t)‖φ0‖2 + 2 [μΦ(t) − λΦ(t)] ‖φ−1‖2

= 2μΦ(t)
(
‖φ1‖2 + ‖φ0‖2 + ‖φ−1‖2

)
+ 2λΦ(t)

(
‖φ1‖2 − ‖φ−1‖2

)
−
∫

Rd

1∑
j=−1

φ̄jHjφj dx −
∫

Rd

1∑
j=−1

φjH̄j φ̄j dx.(2.26)

From (2.13)–(2.15) and (2.20), integrating by parts, we have

(2.27) DΦ(t) =

∫
Rd

1∑
j=−1

φ̄jHjφj dx =

∫
Rd

1∑
j=−1

φjH̄j φ̄j dx.

Plugging (2.27) into (2.26) and noticing (2.16), (2.17), and (2.18), we obtain

dNΦ(t)

dt
= 2μΦ(t)NΦ(t) + 2λΦ(t)MΦ(t) − 2DΦ(t)

= 2NΦ(t)
RΦ(t)DΦ(t) −MΦ(t)FΦ(t)

NΦ(t)RΦ(t) −M2
Φ(t)

+ 2MΦ(t)
NΦ(t)FΦ(t) −MΦ(t)DΦ(t)

NΦ(t)RΦ(t) −M2
Φ(t)

−2DΦ(t)

= 2DΦ(t) − 2DΦ(t) ≡ 0, t ≥ 0.(2.28)

Thus the first part in (2.24) can be obtained from (2.28) immediately. Similarly,
differentiating (2.18) with respect to t, noticing (2.13), (2.15), (2.16), and (2.21), and
integrating by parts, we obtain

dMΦ(t)

dt
=

d

dt

∫
Rd

[
|φ1(x, t)|2 − |φ−1(x, t)|2

]
dx

=

∫
Rd

[
φ̄1 ∂tφ1 + φ1 ∂tφ̄1 − φ̄−1 ∂tφ−1 − φ−1 ∂tφ̄−1

]
dx

=

∫
Rd

[
−φ̄1 H1φ1 − φ1 H̄1φ̄1 + φ̄−1 H−1φ−1 + φ−1 H̄−1φ̄−1

]
dx

+2 [μΦ(t) + λΦ(t)] ‖φ1‖2 − 2 [μΦ(t) − λΦ(t)] ‖φ−1‖2

= 2μΦ(t)
(
‖φ1‖2 − ‖φ−1‖2

)
+ 2λΦ(t)

(
‖φ1‖2 + ‖φ−1‖2

)
−
∫

Rd

[
φ̄1 H1φ1 − φ̄−1 H−1φ−1

]
dx −

∫
Rd

[
φ1 H̄1φ̄1 − φ−1 H̄−1φ̄−1

]
dx.(2.29)
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From (2.13)–(2.15) and (2.21), integrating by parts, we have

(2.30) FΦ(t) =

∫
Rd

[
φ̄1 H1φ1 − φ̄−1 H−1φ−1

]
dx =

∫
Rd

[
φ1 H̄1φ̄1 − φ−1 H̄−1φ̄−1

]
dx.

Plugging (2.30) into (2.29) and noticing (2.16), (2.18), and (2.19), we obtain

dMΦ(t)

dt
= 2μΦ(t)MΦ(t) + 2λΦ(t)RΦ(t) − 2FΦ(t)

= 2MΦ(t)
RΦ(t)DΦ(t) −MΦ(t)FΦ(t)

NΦ(t)RΦ(t) −M2
Φ(t)

+ 2RΦ(t)
NΦ(t)FΦ(t) −MΦ(t)DΦ(t)

NΦ(t)RΦ(t) −M2
Φ(t)

−2FΦ(t)

= 2FΦ(t) − 2FΦ(t) ≡ 0, t ≥ 0.(2.31)

Thus the second part in (2.24) can be obtained from (2.31) immediately. Finally,
differentiating (1.14) (with Ψ = Φ) with respect to t and integrating by parts, we
have

dE(Φ(t))

dt
=

d

dt

∫
Rd

{ 1∑
j=−1

(
1

2
|∇φj |2 + V (x)|φj |2

)
+ (βn − βs)|φ1|2|φ−1|2

+
βn

2
|φ0|4 +

βn + βs

2

[
|φ1|4 + |φ−1|4 + 2|φ0|2

(
|φ1|2 + |φ−1|2

)]
+βs

(
φ̄−1φ

2
0φ̄1 + φ−1φ̄

2
0φ1

)}
dx

=

∫
Rd

1∑
j=−1

[
∂tφjH̄j φ̄j + ∂tφ̄jHjφj

]
dx.(2.32)

Plugging (2.13)–(2.15) into (2.32) and noticing (2.28) and (2.31), we obtain

dE(Φ(t))

dt
=

∫
Rd

[
−2|∂tφ−1|2 + (μΦ(t) − λΦ(t)) ∂t|φ−1|2 − 2|∂tφ0|2 + μΦ(t)∂t|φ0|2

−2|∂tφ1|2 + (μΦ(t) + λΦ(t)) ∂t|φ1|2
]
dx

= μΦ(t)

∫
Rd

∂t
[
|φ1|2 + |φ0|2 + |φ−1|2

]
dx + λΦ(t)

∫
Rd

∂t
[
|φ1|2 − |φ−1|2

]
dx

−2

∫
Rd

[
|∂tφ−1|2 + |∂tφ0|2 + |∂tφ1|2

]
dx

= μΦ(t)
dNΦ(t)

dt
+ λΦ(t)

dMΦ(t)

dt
− 2

∫
Rd

[
|∂tφ−1|2 + |∂tφ0|2 + |∂tφ1|2

]
dx

= −2

∫
Rd

[
|∂tφ−1|2 + |∂tφ0|2 + |∂tφ1|2

]
dx ≤ 0, t ≥ 0.(2.33)

Thus the inequality (2.25) can be obtained from (2.33) immediately.
Using an argument similar to that in [33], when V (x) ≥ 0 for all x ∈ R

d, βn ≥ 0,
βn ≥ |βs|, and Φ0 ∈ S, we may get that as t → ∞, Φ approaches to a steady state
solution, which is a critical point of the energy functional E(Φ) over the set S. When
the initial data Φ0 in (2.22) for the CNGF (2.13)–(2.15) are chosen properly, e.g., its
energy is less than that of the first excited state, the ground state Φg can be obtained
from the steady state solution of the CNGF (2.13)–(2.15), i.e.,

(2.34) Φg(x) = lim
t→∞

Φ(x, t), x ∈ R
d.
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3. Mass and magnetization conservative and energy-diminishing nu-
merical discretization. In this section, we present a mass and magnetization con-
servative and energy-diminishing scheme to discretize the continuous normalized gra-
dient flow (2.13)–(2.15) for computing the ground state of a spin-1 BEC.

3.1. Semidiscretization in time. Choose a time step k = Δt > 0, and set tn =
nΔt for n = 0, 1, 2, . . . . Let Φn(x) = (φn

1 (x), φn
0 (x), φn

−1(x))T be the approximation

of Φ(x, tn), and denote Φn+1/2(x) = (φ
n+1/2
1 (x), φ

n+1/2
0 (x), φ

n+1/2
−1 (x))T defined as

(3.1) φ
n+1/2
j := φ

n+1/2
j (x) =

1

2

[
φn+1
j (x) + φn

j (x)
]
, j = −1, 0, 1.

Consider the following implicit semidiscretization scheme for the CNGF (2.13)–(2.15):

φn+1
1 (x) − φn

1 (x)

Δt
=

[
1

2
∇2 − V (x) − βn + βs

2

(
|φn+1

1 |2 + |φn
1 |2 + |φn+1

0 |2 + |φn
0 |2

)
−βn − βs

2

(
|φn+1

−1 |2 + |φn
−1|2

)]
φ
n+1/2
1

−βs

2

[(
φn+1

0

)2
+ (φn

0 )
2
]
φ̄
n+1/2
−1 +

[
μ
n+1/2
Φ + λ

n+1/2
Φ

]
φ
n+1/2
1 ,(3.2)

φn+1
0 (x) − φn

0 (x)

Δt
=

[
1

2
∇2 − V (x) − βn + βs

2

(
|φn+1

1 |2 + |φn
1 |2 + |φn+1

−1 |2 + |φn
−1|2

)
−βn

2

(
|φn+1

0 |2 + |φn
0 |2

)]
φ
n+1/2
0 − βs

(
φn+1
−1 φn+1

1 + φn
−1φ

n
1

)
φ̄
n+1/2
0

+μ
n+1/2
Φ φ

n+1/2
0 ,(3.3)

φn+1
−1 (x) − φn

−1(x)

Δt
=

[
1

2
∇2 − V (x) − βn + βs

2

(
|φn+1

−1 |2 + |φn
−1|2 + |φn+1

0 |2 + |φn
0 |2

)
−βn − βs

2

(
|φn+1

1 |2 + |φn
1 |2

)]
φ
n+1/2
−1

−βs

2

[(
φn+1

0

)2
+ (φn

0 )
2
]
φ̄
n+1/2
1 +

[
μ
n+1/2
Φ − λ

n+1/2
Φ

]
φ
n+1/2
−1 .(3.4)

Here μ
n+1/2
Φ and λ

n+1/2
Φ are chosen such that the above discretization is mass (or

normalization) and magnetization conservative, and they are given as

(3.5)

μ
n+1/2
Φ =

R
n+1/2
Φ D

n+1/2
Φ −M

n+1/2
Φ F

n+1/2
Φ

N
n+1/2
Φ R

n+1/2
Φ −

(
M

n+1/2
Φ

)2 ,

λ
n+1/2
Φ =

N
n+1/2
Φ F

n+1/2
Φ −M

n+1/2
Φ D

n+1/2
Φ

N
n+1/2
Φ R

n+1/2
Φ −

(
M

n+1/2
Φ

)2 ,
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with

N
n+1/2
Φ =

∫
Rd

[
|φn+1/2

−1 (x)|2 + |φn+1/2
0 (x)|2 + |φn+1/2

1 (x)|2
]
dx,(3.6)

M
n+1/2
Φ =

∫
Rd

[
|φn+1/2

1 (x)|2 − |φn+1/2
−1 (x)|2)

]
dx,(3.7)

R
n+1/2
Φ =

∫
Rd

[
|φn+1/2

1 (x)|2 + |φn+1/2
−1 (x)|2)

]
dx,(3.8)

D
n+1/2
Φ =

∫
Rd

{ 1∑
j=−1

(
1

2
|∇φ

n+1/2
j |2 + V (x)|φn+1/2

j |2
)

+
βn

2

(
|φn+1

0 |2 + |φn
0 |2

)
|φn+1/2

0 |2

+
βn − βs

2

[(
|φn+1

−1 |2 + |φn
−1|2

)
|φn+1

1 |2 +
(
|φn+1

1 |2 + |φn
1 |2

)
|φn+1

−1 |2
]

+ βsRe
(
φ
n+1/2
−1 [

(
φ̄n+1

0

)2
+
(
φ̄n

0

)2
]φ

n+1/2
1

+
(
φ̄
n+1/2
0

)2 (
φn+1
−1 φn+1

1 + φn
−1φ

n
1

))
+
βn + βs

2

[(
|φn+1

1 |2 + |φn
1 |2 + |φn+1

0 |2 + |φn
0 |2

)
|φn+1/2

1 |2

+
(
|φn+1

−1 |2 + |φn
−1|2 + |φn+1

0 |2 + |φn
0 |2

)
|φn+1/2

−1 |2

+
(
|φn+1

1 |2 + |φn
1 |2 + |φn+1

−1 |2 + |φn
−1|2

)
|φn+1/2

0 |2
]}

dx,(3.9)

F
n+1/2
Φ =

∫
Rd

{
1

2

(
|∇φ

n+1/2
1 |2 − |∇φ

n+1/2
−1 |2

)
+ V (x)

(
|φn+1/2

1 |2 − |φn+1/2
−1 |2

)
+
βn − βs

2

[(
|φn+1

−1 |2 + |φn
−1|2

)
|φn+1/2

1 |2 −
(
|φn+1

1 |2 + |φn
1 |2

)
|φn+1/2

−1 |2
]

+
βn + βs

2

[(
|φn+1

1 |2 + |φn
1 |2 + |φn+1

0 |2 + |φn
0 |2

)
|φn+1/2

1 |2

−
(
|φn+1

−1 |2 + |φn
−1|2 + |φn+1

0 |2 + |φn
0 |2

)
|φn+1/2

−1 |2
]}

dx.(3.10)

For the above semidiscretization (3.2)–(3.4), we have the following.
Theorem 3.1. For any given time step Δt > 0 and initial data Φ(0)(x) in

(2.22) satisfying (2.23), the semidiscretization (3.2)–(3.4) is mass and magnetization
conservative and energy-diminishing, i.e.,

Nn+1
Φ := NΦ(tn+1) ≡ NΦ(t0 = 0) = NΦ(0) = 1,(3.11)

Mn+1
Φ := MΦ(tn+1) ≡ MΦ(t0 = 0) = MΦ(0) = M,(3.12)

E
(
Φn+1

)
≤ E (Φn) ≤ · · · ≤ E

(
Φ0

)
= E(Φ(0)), n = 0, 1, 2, . . . .(3.13)
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Proof. Multiplying (3.2) by 2φ̄
n+1/2
1 = φ̄n+1

1 + φ̄n
1 , integrating over R

d, and
integrating by parts, we have

‖φn+1
1 ‖2 = −2Δt

∫
Rd

[
1

2
|∇φ

n+1/2
1 |2 +

βn − βs

2

(
|φn+1

−1 |2 + |φn
−1|2

)
|φn+1/2

1 |2

+
βn + βs

2

(
|φn+1

1 |2 + |φn
1 |2 + |φn+1

0 |2 + |φn
0 |2

)
|φn+1/2

1 |2 + V (x)|φn+1/2
1 |2

+
βs

2
φ̄
n+1/2
−1

[(
φn+1

0

)2
+ (φn

0 )
2
]
φ̄
n+1/2
1

]
dx

+2Δt
[
μ
n+1/2
Φ + λ

n+1/2
Φ

]
‖φn+1/2

1 ‖2 + ‖φn
1‖2 +

∫
Rd

[
φ̄n+1

1 φn
1 − φ̄n

1φ
n+1
1

]
dx.(3.14)

Summing (3.14) with its conjugate and then dividing both sides by 2, we obtain

‖φn+1
1 ‖2 = −2Δt

∫
Rd

{
1

2
|∇φ

n+1/2
1 |2 +

βn − βs

2

(
|φn+1

−1 |2 + |φn
−1|2

)
|φn+1/2

1 |2

+
βn + βs

2

(
|φn+1

1 |2 + |φn
1 |2 + |φn+1

0 |2 + |φn
0 |2

)
|φn+1/2

1 |2 + V (x)|φn+1/2
1 |2

+
βs

2
Re

(
φ
n+1/2
−1

[(
φ̄n+1

0

)2
+
(
φ̄n

0

)2]
φ
n+1/2
1

)}
dx

+‖φn
1‖2 + 2Δt

[
μ
n+1/2
Φ + λ

n+1/2
Φ

]
‖φn+1/2

1 ‖2.(3.15)

Applying the same procedure to (3.3) by multiplying 2φ̄
n+1/2
0 = φ̄n+1

0 + φ̄n
0 , we get

‖φn+1
0 ‖2 = −2Δt

∫
Rd

{
1

2
|∇φ

n+1/2
0 |2 + V (x)|φn+1/2

0 |2 +
βn

2

(
|φn+1

0 |2 + |φn
0 |2

)
|φn+1/2

0 |2

+
βn + βs

2

(
|φn+1

1 |2 + |φn
1 |2 + |φn+1

−1 |2 + |φn
−1|2

)
|φn+1/2

0 |2

+βs Re

((
φ̄
n+1/2
0

)2 (
φn+1
−1 φn+1

1 + φn
−1φ

n
1

))}
dx

+‖φn
0‖2 + 2Δt μ

n+1/2
Φ ‖φn+1/2

0 ‖2.(3.16)

Applying the same procedure to (3.4) by multiplying 2φ̄
n+1/2
−1 = φ̄n+1

−1 + φ̄n
−1, we have

‖φn+1
−1 ‖2 = −2Δt

∫
Rd

{
1

2
|∇φ

n+1/2
−1 |2 +

βn − βs

2

(
|φn+1

1 |2 + |φn
1 |2

)
|φn+1/2

−1 |2

+
βn + βs

2

(
|φn+1

−1 |2 + |φn
−1|2 + |φn+1

0 |2 + |φn
0 |2

)
|φn+1/2

−1 |2 + V (x)|φn+1/2
−1 |2

+
βs

2
Re

(
φ
n+1/2
−1

[(
φ̄n+1

0

)2
+
(
φ̄n

0

)2]
φ
n+1/2
1

)}
dx

+‖φn
−1‖2 + 2Δt

[
μ
n+1/2
Φ − λ

n+1/2
Φ

]
‖φn+1/2

−1 ‖2.(3.17)
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Summing (3.15), (3.16), and (3.17) and noticing (3.9), (3.6), and (3.7), we get

Nn+1
Φ = ‖φn+1

1 ‖2 + ‖φn+1
0 ‖2 + ‖φn+1

−1 ‖2

= Nn
Φ − 2Δt D

n+1/2
Φ + 2Δt

[
μ
n+1/2
Φ + λ

n+1/2
Φ

]
‖φn+1/2

1 ‖2

+2Δt μ
n+1/2
Φ ‖φn+1/2

0 ‖2 + 2Δt
[
μ
n+1/2
Φ − λ

n+1/2
Φ

]
‖φn+1/2

−1 ‖2

= Nn
Φ − 2Δt D

n+1/2
Φ + 2Δt μ

n+1/2
Φ

[
‖φn+1/2

1 ‖2 + ‖φn+1/2
0 ‖2 + ‖φn+1/2

−1 ‖2
]

+2Δt λ
n+1/2
Φ

[
‖φn+1/2

1 ‖2 − ‖φn+1/2
−1 ‖2

]
= Nn

Φ − 2Δt D
n+1/2
Φ + 2Δt μ

n+1/2
Φ N

n+1/2
Φ + 2Δt λ

n+1/2
Φ M

n+1/2
Φ .(3.18)

Plugging (3.5) into (3.18), we obtain

Nn+1
Φ = Nn

Φ − 2Δt D
n+1/2
Φ + 2Δt N

n+1/2
Φ

R
n+1/2
Φ D

n+1/2
Φ −M

n+1/2
Φ F

n+1/2
Φ

N
n+1/2
Φ R

n+1/2
Φ −

(
M

n+1/2
Φ

)2

+2Δt M
n+1/2
Φ

N
n+1/2
Φ F

n+1/2
Φ −M

n+1/2
Φ D

n+1/2
Φ

N
n+1/2
Φ R

n+1/2
Φ −

(
M

n+1/2
Φ

)2

= Nn
Φ − 2Δt D

n+1/2
Φ + 2Δt D

n+1/2
Φ

= Nn
Φ, n = 0, 1, 2, . . . .(3.19)

Thus the mass conservation in (3.11) can be obtained from (3.19) by induction. Sub-
tracting (3.17) from (3.15) and noticing (3.10), (3.6), and (3.8), we have

Mn+1
Φ = ‖φn+1

1 ‖2 − ‖φn+1
−1 ‖2

= ‖φn
1‖2 − ‖φn

−1‖2 − 2Δt F
n+1/2
Φ + 2Δt

[
μ
n+1/2
Φ + λ

n+1/2
Φ

]
‖φn+1/2

1 ‖2

−2Δt
[
μ
n+1/2
Φ − λ

n+1/2
Φ

]
‖φn+1/2

−1 ‖2

= Mn
Φ − 2Δt F

n+1/2
Φ + 2Δtμ

n+1/2
Φ

[
‖φn+1/2

1 ‖2 − ‖φn+1/2
−1 ‖2

]
+2Δt λ

n+1/2
Φ

[
‖φn+1/2

1 ‖2 + ‖φn+1/2
−1 ‖2

]
= Mn

Φ − 2Δt F
n+1/2
Φ + 2Δt μ

n+1/2
Φ M

n+1/2
Φ + 2Δt λ

n+1/2
Φ R

n+1/2
Φ .(3.20)

Plugging (3.5) into (3.20), we obtain

Mn+1
Φ = Mn

Φ − 2Δt F
n+1/2
Φ + 2Δt M

n+1/2
Φ

R
n+1/2
Φ D

n+1/2
Φ −M

n+1/2
Φ F

n+1/2
Φ

N
n+1/2
Φ R

n+1/2
Φ −

(
M

n+1/2
Φ

)2

+2Δt R
n+1/2
Φ

N
n+1/2
Φ F

n+1/2
Φ −M

n+1/2
Φ D

n+1/2
Φ

N
n+1/2
Φ R

n+1/2
Φ −

(
M

n+1/2
Φ

)2

= Mn
Φ − 2Δt F

n+1/2
Φ + 2Δt F

n+1/2
Φ

= Mn
Φ, n = 0, 1, 2, . . . .(3.21)

Thus the magnetization conservation in (3.12) can be obtained from (3.21) by induc-

tion. To prove the energy-diminishing property (3.13), multiplying (3.2) by φ̂
n+1/2
1 :=
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φ̄n+1
1 − φ̄n

1 , integrating over R
d, and integrating by parts, we have

‖φn+1
1 − φn

1‖2

Δt
= −

∫
Rd

[
1

2
∇φ

n+1/2
1 · ∇φ̂

n+1/2
1 +

βs

2
φ̄
n+1/2
−1

((
φn+1

0

)2
+ (φn

0 )
2
)
φ̂
n+1/2
1

+V (x)φ
n+1/2
1 φ̂

n+1/2
1 +

βn − βs

2

(
|φn+1

−1 |2 + |φn
−1|2

)
φ
n+1/2
1 φ̂

n+1/2
1

+
βn + βs

2

(
|φn+1

1 |2 + |φn
1 |2 + |φn+1

0 |2 + |φn
0 |2

)
φ
n+1/2
1 φ̂

n+1/2
1

]
dx

+
[
μ
n+1/2
Φ + λ

n+1/2
Φ

] ∫
Rd

φ
n+1/2
1 φ̂

n+1/2
1 dx.(3.22)

Summing (3.22) with its conjugate, we obtain

2

Δt
‖φn+1

1 − φn
1‖2 = −

∫
Rd

[
1

2
|∇φn+1

1 |2 + V (x)|φn+1
1 |2 +

βn − βs

2
|φn+1

−1 |2|φn+1
1 |2

+
βn + βs

2

(
|φn+1

1 |2 + |φn+1
0 |2

)
|φn+1

1 |2 − 1

2
|∇φn

1 |2 − V (x)|φn
1 |2

−βn − βs

2
|φn

−1|2|φn
1 |2 −

βn + βs

2

(
|φn

1 |2 + |φn
0 |2

)
|φn

1 |2

+
βn + βs

2

[(
|φn

1 |2 + |φn
0 |2

)
|φn+1

1 |2 −
(
|φn+1

1 |2 + |φn+1
0 |2

)
|φn

1 |2
]

+
βn − βs

2

[
|φn

−1|2|φn+1
1 |2 − |φn+1

−1 |2|φn
1 |2

]
+βs Re

(
φ̄
n+1/2
−1

((
φn+1

0

)2
+ (φn

0 )
2
) (

φ̄n+1
1 − φ̄n

1

)) ]
dx

+
[
μ
n+1/2
Φ + λ

n+1/2
Φ

] (
‖φn+1

1 ‖2 − ‖φn
1‖2

)
.(3.23)

Here we use

φ
n+1/2
1

(
φ̄n+1

1 − φ̄n
1

)
+ φ̄

n+1/2
1

(
φn+1

1 − φn
1

)
=

1

2

[(
φn+1

1 + φn
1

) (
φ̄n+1

1 − φ̄n
1

)
+
(
φ̄n+1

1 + φ̄n
1

) (
φn+1

1 − φn
1

)]
= |φn+1

1 |2 − |φn
1 |2,(3.24)

and

(3.25) ∇φ
n+1/2
1 · ∇

(
φ̄n+1

1 − φ̄n
1

)
+ ∇φ̄

n+1/2
1 · ∇

(
φn+1

1 − φn
1

)
= |∇φn+1

1 |2 − |∇φn
1 |2.

Applying the same procedure to (3.3) by multiplying φ̄n+1
0 − φ̄n

0 , we get

2

Δt
‖φn+1

0 − φn
0‖2 = −

∫
Rd

[
1

2
|∇φn+1

0 |2 + V (x)|φn+1
0 |2 +

βn

2
|φn+1

0 |4

+
βn + βs

2

(
|φn+1

1 |2 + |φn+1
−1 |2

)
|φn+1

0 |2 − 1

2
|∇φn

0 |2 − V (x)|φn
0 |2

−βn

2
|φn

0 |4 −
βn + βs

2

(
|φn

1 |2 + |φn
−1|2

)
|φn

0 |2

+
βn + βs

2

[(
|φn

1 |2 + |φn
−1|2

)
|φn+1

0 |2 −
(
|φn+1

1 |2 + |φn+1
−1 |2

)
|φn

0 |2
]

+βs Re
((
φn+1
−1 φn+1

1 + φn
−1φ

n
1

) (
(φ̄n+1

0 )2 − (φ̄n
0 )2

))]
dx

+μ
n+1/2
Φ

(
‖φn+1

0 ‖2 − ‖φn
0‖2

)
.(3.26)
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Applying the same procedure to (3.4) by multiplying φ̄n+1
−1 − φ̄n

−1, we get

2

Δt
‖φn+1

−1 − φn
−1‖2 = −

∫
Rd

[
1

2
|∇φn+1

−1 |2 + V (x)|φn+1
−1 |2 +

βn − βs

2
|φn+1

−1 |2|φn+1
1 |2

+
βn + βs

2

(
|φn+1

−1 |2 + |φn+1
0 |2

)
|φn+1

−1 |2 − 1

2
|∇φn

−1|2 − V (x)|φn
−1|2

−βn − βs

2
|φn

−1|2|φn
1 |2 −

βn + βs

2

(
|φn

−1|2 + |φn
0 |2

)
|φn

−1|2

+
βn + βs

2

[(
|φn

−1|2 + |φn
0 |2

)
|φn+1

−1 |2 −
(
|φn+1

−1 |2 + |φn+1
0 |2

)
|φn

−1|2
]

+
βn − βs

2

[
|φn

1 |2|φn+1
−1 |2 − |φn+1

1 |2|φn
−1|2

]
+βs Re

(
φ̄
n+1/2
1

((
φn+1

0

)2
+ (φn

0 )
2
) (

φ̄n+1
−1 − φ̄n

−1

))]
dx

+
[
μ
n+1/2
Φ − λ

n+1/2
Φ

] (
‖φn+1

−1 ‖2 − ‖φn
−1‖2

)
.(3.27)

Adding (3.23), (3.26), and (3.27) and noticing (3.19), (3.21), and (1.14) with Ψ =
Φn+1 and Ψ = Φn, respectively, we have

E(Φn+1) = E(Φn) − 2

Δt

[
‖φn+1

1 − φn
1‖2 + ‖φn+1

0 − φn
0‖2 + ‖φn+1

−1 − φn
−1‖2

]
+
[
μ
n+1/2
Φ + λ

n+1/2
Φ

] (
‖φn+1

1 ‖2 − ‖φn
1‖2

)
+ μ

n+1/2
Φ

(
‖φn+1

0 ‖2 − ‖φn
0‖2

)
+
[
μ
n+1/2
Φ − λ

n+1/2
Φ

] (
‖φn+1

−1 ‖2 − ‖φn
−1‖2

)
= E(Φn) − 2

Δt

[
‖φn+1

1 − φn
1‖2 + ‖φn+1

0 − φn
0‖2 + ‖φn+1

−1 − φn
−1‖2

]
+μ

n+1/2
Φ

[
‖φn+1

1 ‖2 + ‖φn+1
0 ‖2 + ‖φn+1

−1 ‖2 − ‖φn
1‖2 − ‖φn

0‖2 − ‖φn
−1‖2

]
+λ

n+1/2
Φ

[
‖φn+1

1 ‖2 − ‖φn+1
−1 ‖2 − ‖φn

1‖2 + ‖φn
−1‖2

]
= E(Φn) − 2

Δt

[
‖φn+1

1 − φn
1‖2 + ‖φn+1

0 − φn
0‖2 + ‖φn+1

−1 − φn
−1‖2

]
+μ

n+1/2
Φ

[
Nn+1

Φ −Nn
Φ

]
+ λ

n+1/2
Φ

[
Mn+1

Φ −Mn
Φ

]
= E(Φn) − 2

Δt

[
‖φn+1

1 − φn
1‖2 + ‖φn+1

0 − φn
0‖2 + ‖φn+1

−1 − φn
−1‖2

]
≤ E(Φn), n = 0, 1, 2, . . . .(3.28)

Here we use

βs Re
([(

φn+1
0

)2
+ (φn

0 )
2
] [

φ̄
n+1/2
−1

(
φ̄n+1

1 − φ̄n
1

)
+ φ̄

n+1/2
1

(
φ̄n+1
−1 − φ̄n

−1

)]
+
(
φn+1
−1 φn+1

1 + φn
−1φ

n
1

) (
(φ̄n+1

0 )2 − (φ̄n
0 )2

))
= βs Re

([(
φn+1

0

)2
+ (φn

0 )
2
] (

φ̄n+1
1 φ̄n+1

−1 − φ̄n
1 φ̄

n
−1

)
+
(
φn+1
−1 φn+1

1 + φn
−1φ

n
1

) (
(φ̄n+1

0 )2 − (φ̄n
0 )2

))
= βs

[
φn+1
−1 φn+1

1 (φ̄n+1
0 )2 + φ̄n+1

−1 φ̄n+1
1 (φn+1

0 )2
]

−βs

[
φn
−1φ

n
1 (φ̄n

0 )2 + φ̄n
−1φ̄

n
1 (φn

0 )2
]
.(3.29)

Thus (3.13) can be obtained from (3.28) immediately.
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3.2. A fully discretized method. For simplicity of notation, we introduce a
fully discretized method for the CNGF (2.13)–(2.15) truncated into a bounded interval
Ω = [a, b] (with |a| and |b| sufficiently large) in the case of one spatial dimension
(d = 1) with homogeneous Dirichlet boundary conditions

(3.30) φj(a, t) = φj(b, t) = 0, t ≥ 0, j = 1,−0, 1.

Generalizations to a higher dimension are straightforward for tensor product grids,
and the results remain valid without modifications. For d = 1, we choose the spatial
mesh size h = Δx > 0, with Δx = (b−a)/L and L is an even positive integer. The grid
points are defined as xl = a + l h for l = 0, 1, · · · , L, and let Φn

l = (φn
1,l, φ

n
0,l, φ

n
−1,l)

T

be the numerical approximation of Φ(xj , tn) and Φn
h the solution vector at time t = tn

with components Φn
l . In addition, denote Φ

n+1/2
l = (φ

n+1/2
1,l , φ

n+1/2
0,l , φ

n+1/2
−1,l )T , with

φ
n+1/2
j,l defined as

(3.31) φ
n+1/2
j,l :=

1

2

[
φn+1
j,l + φn

j,l

]
, j = −1, 0, 1, l = 0, 1, 2, . . . , L.

Here we propose a full discretization for the CNGF (2.13)–(2.15) in 1D, for 1 ≤ l ≤
L− 1 and n ≥ 0, as

φn+1
1,l − φn

1,l

Δt
=

φ
n+1/2
1,l+1 − 2φ

n+1/2
1,l + φ

n+1/2
1,l−1

2h2
− βn − βs

2

(
|φn+1

−1,l|2 + |φn
−1,l|2

)
φ
n+1/2
1,l

−
[
βn + βs

2

(
|φn+1

1,l |2 + |φn
1,l|2 + |φn+1

0,l |2 + |φn
0,l|2

)
+ V (xl)

]
φ
n+1/2
1,l

−βs

2
φ̄
n+1/2
−1,l

[(
φn+1

0,l

)2

+
(
φn

0,l

)2]
+
[
μ
n+1/2
Φ,h + λ

n+1/2
Φ,h

]
φ
n+1/2
1,l ,(3.32)

φn+1
0,l − φn

0,l

Δt
=

φ
n+1/2
0,l+1 − 2φ

n+1/2
0,l + φ

n+1/2
0,l−1

2h2
− βn

2

(
|φn+1

0,l |2 + |φn
0,l|2

)
φ
n+1/2
0,l

−
[
βn + βs

2

(
|φn+1

1,l |2 + |φn
1,l|2 + |φn+1

−,l |2 + |φn
−,l|2

)
+ V (xl)

]
φ
n+1/2
0,l

−βs

(
φn+1
−1,lφ

n+1
1,l + φn

−1,lφ
n
1,l

)
φ̄
n+1/2
0,l + μ

n+1/2
Φ,h φ

n+1/2
0,l ,(3.33)

φn+1
−1,l − φn

−1,l

Δt
=

φ
n+1/2
−1,l+1 − 2φ

n+1/2
−1,l + φ

n+1/2
−1,l−1

2h2
− βn − βs

2

(
|φn+1

1,l |2 + |φn
1,l|2

)
φ
n+1/2
−1,l

−
[
βn + βs

2

(
|φn+1

−1,l|2 + |φn
−1,l|2 + |φn+1

0,l |2 + |φn
0,l|2

)
+ V (xl)

]
φ
n+1/2
−1,l

−βs

2
φ̄
n+1/2
1,l

[(
φn+1

0,l

)2

+
(
φn

0,l

)2]
+
[
μ
n+1/2
Φ,h − λ

n+1/2
Φ,h

]
φ
n+1/2
−1,l .(3.34)

Again, here μ
n+1/2
Φ,h and λ

n+1/2
Φ,h are chosen such that the above discretization is mass

(or normalization) and magnetization conservative, and they are given as

(3.35)

μ
n+1/2
Φ,h =

R
n+1/2
Φ,h D

n+1/2
Φ,h −M

n+1/2
Φ,h F

n+1/2
Φ,h

N
n+1/2
Φ,h R

n+1/2
Φ,h −

(
M

n+1/2
Φ,h

)2 ,

λ
n+1/2
Φ,h =

N
n+1/2
Φ,h F

n+1/2
Φ,h −M

n+1/2
Φ,h D

n+1/2
Φ,h

N
n+1/2
Φ,h R

n+1/2
Φ,h −

(
M

n+1/2
Φ,h

)2 ,



2192 W. BAO AND H. WANG

with

N
n+1/2
Φ,h =

L−1∑
l=0

h
[
|φn+1/2

−1,l |2 + |φn+1/2
0,l |2 + |φn+1/2

1,l |2
]
,(3.36)

M
n+1/2
Φ,h =

L−1∑
l=0

h
[
|φn+1/2

1,l |2 − |φn+1/2
−1,l |2

]
,(3.37)

R
n+1/2
Φ,h =

L−1∑
l=0

h
[
|φn+1/2

1,l |2 + |φn+1/2
−1,l |2

]
,(3.38)

D
n+1/2
Φ,h = h

L−1∑
l=0

{ 1∑
j=−1

(
1

2h2
|φn+1/2

j,l+1 − φ
n+1/2
j,l |2 + V (xl)|φn+1/2

j,l |2
)

+
βn − βs

2

[(
|φn+1

−1,l|2 + |φn
−1,l|2

)
|φn+1

1,l |2 +
(
|φn+1

1,l |2 + |φn
1,l|2

)
|φn+1

−1,l|2
]

+βsRe
(
φ
n+1/2
−1,l

[(
φ̄n+1

0,l

)2

+
(
φ̄n

0,l

)2]
φ
n+1/2
1,l +

(
φ̄
n+1/2
0,l

)2 (
φn+1
−1,lφ

n+1
1,l

+φn
−1,lφ

n
1,l

))
+

βn + βs

2

[(
|φn+1

1,l |2 + |φn
1,l|2 + |φn+1

0,l |2 + |φn
0,l|2

)
|φn+1/2

1,l |2

+
βn

2

(
|φn+1

0,l |2 + |φn
0,l|2

)
|φn+1/2

0,l |2 +
(
|φn+1

−1,l|2 + |φn
−1,l|2 + |φn+1

0,l |2

+|φn
0,l|2

)
|φn+1/2

−1,l |2 +
(
|φn+1

1,l |2 + |φn
1,l|2 + |φn+1

−1,l|2 + |φn
−1,l|2

)
|φn+1/2

0,l |2
]}

,(3.39)

F
n+1/2
Φ,h = h

L−1∑
l=0

{
1

2h2

(
|φn+1/2

1,l+1 − φ
n+1/2
1,l |2 − |φn+1/2

−1,l+1 − φ
n+1/2
−1,l |2

)
+ V (xl)|φn+1/2

1,l |2

+
βn − βs

2

[(
|φn+1

−1,l|2 + |φn
−1,l|2

)
|φn+1/2

1,l |2 −
(
|φn+1

1,l |2 + |φn
1,l|2

)
|φn+1/2

−1,l |2
]

+
βn + βs

2

[(
|φn+1

1,l |2 + |φn
1,l|2 + |φn+1

0,l |2 + |φn
0,l|2

)
|φn+1/2

1,l |2 − V (xl)|φn+1/2
−1,l |2

−
(
|φn+1

−1,l|2 + |φn
−1,l|2 + |φn+1

0,l |2 + |φn
0,l|2

)
|φn+1/2

−1,l |2
]}

.(3.40)

The homogeneous Dirichlet boundary conditions (3.30) are discretized as

(3.41) φn+1
1,0 = φn+1

1,L = φn+1
0,0 = φn+1

0,L = φn+1
−1,0 = φn+1

−1,L = 0, n = 0, 1, 2, . . . .

The initial conditions (2.22) in 1D are discretized as

(3.42) φ0
j,l = φj(xl, 0) = φ

(0)
j (xl), j = −1, 0, 1, l = 0, 1, 2, . . . , L.

For the above full discretization (3.32)–(3.34), we have the following.
Theorem 3.2. For any given time step Δt > 0 and mesh size h > 0 as well as ini-

tial data Φ(0)(x) in (2.22) satisfying (2.23), the full discretization (3.32)–(3.34) for the
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CNGF (2.13)–(2.15) is mass and magnetization conservative and energy-diminishing,
i.e.,

Nn
Φ,h := h

L−1∑
l=0

1∑
j=−1

|φn
j,l|2 ≡ N0

Φ,h := h

L−1∑
l=0

1∑
j=−1

|φ(0)
j (xl)|2,

Mn
Φ,h := h

L−1∑
l=0

[
|φn

1,l|2 − |φn+1
−1,l|2

]
≡ M0

Φ,h := h

L−1∑
l=0

[
|φ(0)

1 (xl)|2 − |φ(0)
−1(xl)|2

]
,

En
Φ,h ≤ En−1

Φ,h ≤ · · · ≤ E0
Φ,h, n = 0, 1, 2, . . . ,(3.43)

where the discretized energy functional is defined as

En
Φ,h = h

L−1∑
l=0

{ 1∑
j=−1

(
1

2h2
|φn

j,l+1 − φn
j,l|2 + V (xl)|φn

j,l|2
)

+ (βn − βs)|φn
1,l|2|φn

−1,l|2

+
βn

2
|φn

0,l|4 +
βn + βs

2

[
|φn

1,l|4 + |φn
−1,l|4 + 2|φn

0,l|2
(
|φn

1,l|2 + |φn
−1,l|2

)]
+βs

(
φ̄n
−1,l

(
φn

0,l

)2
φ̄n

1,l + φn
−1,l

(
φ̄0,l

)2
φn

1,l

)}
.(3.44)

Proof. The proof is similar as that for Theorem 3.1 except that we need to replace
integrating over R

d by summation over 0 ≤ l ≤ L− 1 and notice

(3.45)
L−1∑
l=0

(
φ
n+1/2
j,l+1 − 2φ

n+1/2
j,l + φ

n+1/2
j,l−1

)
g
l
=

L−1∑
l=0

(
φ
n+1/2
j,l+1 − φ

n+1/2
j,l

) (
g
l+1

− g
l

)
for any g

l
(l = 0, 1, 2, . . . , L) with g

0
= g

L
= 0. The details are omitted here.

Remark 3.1. For solving the nonlinear system (3.32)–(3.34), different iterative
numerical methods in the literature can be applied. Here we use an efficient way
which is easy to be extended to 2D and 3D to solve it iteratively by treating the
linear terms implicitly and the nonlinear terms explicitly at each iterative step. For
(3.32), the iterative method reads

φn+1,m+1
1,l − φn

1,l

Δt
=

φ
n+1/2,m+1
1,l+1 − 2φ

n+1/2,m+1
1,l + φ

n+1/2,m+1
1,l−1

2h2
− α1 φn+1,m+1

1,l

+α1 φn+1,m
1,l − βn − βs

2

(
|φn+1,m

−1,l |2 + |φn
−1,l|2

)
φ
n+1/2,m
1,l

−
[
βn + βs

2

(
|φn+1,m

1,l |2 + |φn
1,l|2 + |φn+1,m

0,l |2 + |φn
0,l|2

)
+ V (xl)

]
φ
n+1/2,m
1,l

−βs

2
φ̄
n+1/2,m
−1,l

[(
φn+1,m

0,l

)2

+
(
φn

0,l

)2]
+
[
μ
n+1/2,m
Φ,h + λ

n+1/2,m
Φ,h

]
φ
n+1/2,m
1,l ,(3.46)

where φn+1,m
1,l is the approximation of φn+1

1,l at the mth iterative step, with φn+1,0
1,l =

φn
1,l, φ

n+1/2,m+1
1,l := 1

2 [φn+1,m+1
1,l + φn

1,l] and φ
n+1/2,m
1,l := 1

2 [φn+1,m
1,l + φn

1,l] (j =
0, 1, 2, . . . , L), and α1 is a stabilization factor such that the iterative method con-
verges as fast as possible [4]. The other two equations (3.33) and (3.34) can be dealt
with in a similar way.
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Fig. 1. Time evolution of N1 = ‖φ1(·, t)‖2 (left), N0 = ‖φ0(·, t)‖2 (middle), and N−1 =
‖φ−1(·, t)‖2 (right) for the full discretization (3.32)–(3.34) with βn = 87.16 and βs = −1.7481 to
analyze the convergence of different initial data in (4.2) with α = 0.1 (dotted-dashed line), α = 0.2
(solid line), α = 0.4 (dotted line), α = 0.5 (horizontal line), and α = 0.7 (dashed line), respectively.

4. Numerical results. In this section, we will first study how to choose the ini-
tial data in (2.22) for computing the ground state and then test the energy-diminishing
property and accuracy of our numerical method. Finally, we apply the method to
compute the ground state of a spin-1 BEC with harmonic potential. In our computa-
tions, the ground state is reached by using the numerical method (3.32)–(3.34) when
‖Φn+1

h − Φn
h‖ ≤ ε := 10−6.

In our computations, we choose d = 1, V (x) = x2/2, βn = 0.08716N , and βs =
−0.0017481N in (2.13)–(2.15), with N the number of particles in the condensate. The
values for the interaction strengths βn and βs correspond to the experimental setup
with parameters as follows [34, 24, 25]: � = 1.054×10−34[J s], m = 1.443×10−25[kg],
ωx = 2π[Hz], ωy = 2π × 20π

√
2[Hz], ωz = 2π × 20π

√
2[Hz], a0 = 5.5[nm]= 5.5 ×

10−9[m], and a2 = 5.182[nm]= 5.182 × 10−9[m], which implies as =
√

�/mωx =

0.7624 × 10−6, βn ≈ 4π(a0+2a2)N
3as

√
ωyωz

2πωx
= 0.08716N , and βs ≈ 4π(a2−a0)N

3as

√
ωyωz

2πωx
=

−0.0017481N .

4.1. Choice of initial data and energy diminishing. Here we test that the
converged solution is independent of different choices of the initial data in (2.22). In
order to do so, we take M = 0.1 in (2.24) and choose the initial data in (2.22) as

φ
(0)
1 (x) =

√
0.5(1 + M − α)

1

π1/4
e−x2/2, φ

(0)
0 (x) =

√
α

π1/4
e−x2/2,(4.1)

φ
(0)
−1(x) =

√
0.5(1 −M − α)

1

π1/4
e−x2/2, −∞ < x < ∞,(4.2)

where α is a parameter to be determined. We solve the problem (2.13)–(2.15) by
our discretization (3.32)–(3.34) on [−16, 16] with time step Δt = 0.01 and mesh size
h = 1/16 for different values of α in (4.2). Figure 1 plots the time evolution of
Nj(t) := ‖φj(·, t)‖2 (j = 1, 0,−1) for different choices of α in (4.2). In addition,
Figure 2 shows the time evolution of mass N and magnetization M as well as energy
E of our method for the problem with α = 0.1 in the initial data (4.1)–(4.2).

From Figure 1 and additional results not shown here, we can see that the con-
verged solution is independent of the choices of initial data in (2.22). In fact, other
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Fig. 2. Time evolution of the mass N and magnetization M (left) and energy E (right) for the
discretization (3.32)–(3.34) with βn = 87.16 and βs = −1.7481 and initial data (4.2) with α = 0.1.

Table 1

Spatial error analysis of the ground state for different mesh sizes h and number of particles N
in the condensate with fixed magnetization M = 0.3.

N h = 1/2 h = 1/4 h = 1/8 h = 1/16 h = 1/32
0 1.3336E-2 3.2999E-3 8.0E-4 2.0E-4 5.0E-5
10 4.3021E-3 1.1145E-3 2.5794E-4 6.0940E-5 1.1990E-5
100 1.9063E-3 5.1658E-4 1.3568E-4 2.9750E-5 6.7299E-6
1000 9.5683E-4 2.7421E-4 6.6909E-5 1.6079E-5 3.2299E-6
10000 8.9626E-4 1.8109E-4 4.4159E-5 1.0589E-5 2.1599E-6
30000 6.4606E-4 2.5697E-4 8.5889E-5 3.6030E-5 1.1980E-5

types of initial data are also tested. From our experiments, when βs ≤ 0, for any

φ
(0)
1 ≥ 0, φ

(0)
0 ≥ 0, and φ

(0)
−1 ≥ 0 in (2.22) satisfying (2.23), we always get the unique

positive ground state solution of (1.15). In addition, from Figure 2, the mass N and
magnetization M are conserved (cf. Figure 2, left), and energy E is diminishing (cf.
Figure 2, right) when time t increases, which confirm the results in Theorem 3.2.

4.2. Accuracy test. Here we test the accuracy of our numerical method (3.32)–
(3.34) for computing the ground state of a spin-1 BEC. We choose M = 0.3 in (2.24)
and α = 0.1 in (4.1)–(4.2). For a given set of parameters, the “exact” ground state
solution Φg is obtained by our numerical method with mesh size h = 1/64. Let Φh

g

be the numerical solution obtained by our method with mesh size h. Table 1 lists the
error ‖Φg−Φh

g‖ for different mesh sizes h and number of particles N in the condensate.
From Table 1, we can see that the full discretization (3.32)–(3.34) is second order

in space for computing the ground state of a spin-1 BEC.

4.3. Applications. Now we report the ground state of a spin-1 BEC computed
by our numerical method (3.32)–(3.34) for different parameter regimes. In this sub-
section, the initial data are always taken as in (4.1)–(4.2) with α = 0.3, and the
bounded computational interval is taken as [−32, 32]. We choose mesh size h = 1/16
and time step Δt = 0.01 in (3.32)–(3.34) in our computation.

First, we report the energy of the ground state and study conservation law (2.7)
of our numerical ground state. Table 2 shows the numerical kinetic energy Eh

kin :=
Ekin(Φh

g ) (with Φh
g is the numerical ground state), potential energy Eh

pot := Epot(Φ
h
g ),

interaction energy Eh
int := Eint(Φ

h
g ), total energy Eh

g := E(Φh
g ), and the error eh =
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Table 2

Different energies of the ground state for different numbers of particles N in the condensate
with fixed magnetization M = 0.2.

N Eh
kin Eh

pot Eh
int Eh

g eh

0 0.24997 0.25000 0.00000 0.49997 −0.000061
100 0.11046 0.62889 1.03689 1.77618 0.000016
200 0.08175 0.92923 1.69499 2.70597 0.000017
500 0.05321 1.64097 3.17555 5.41056 0.000040
1000 0.03779 2.57116 5.06673 8.01489 −0.000001
2000 0.02654 4.05694 8.06083 12.14431 0.000035
5000 0.01638 7.43899 14.84528 22.30065 0.000049
10000 0.01126 11.74132 23.46028 35.21286 0.000159
15000 0.00907 15.42019 30.82933 46.25859 0.007074
20000 0.00773 18.74087 37.46981 56.21798 0.003524
50000 0.00463 34.39498 68.78410 103.18371 0.003392
100000 0.00312 54.26870 108.5344 162.80622 0.003288

−1 −0.5 0 0.5 1
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0.2

0.4

0.6

0.8

1

M

N
1

N
0

N
−1

Fig. 3. Mass of the three components of the ground state, i.e., Nj = ‖φj‖2 (j = 1, 0,−1), of a
spin-1 BEC with a fixed number of particles N = 1000 for different magnetizations −1 < M < 1.

2Eh
kin − 2Eh

pot − Eh
int, with magnetization M = 0.2 for different numbers of particles

N in the condensate.
From Table 2, we can see that, when the number of particles N in the condensate

increases, the total energy, potential energy, and interaction energy increases, too,
where the kinetic energy decreases. In addition, the relation (2.7) for different energies
of the ground state is kept very well in our numerical results.

Second, we report the ground state wave functions for different magnetizations
M and numbers of particles N in the condensate. Figures 3 and 4 plot the mass of
the three components and wave functions of the ground states of a spin-1 BEC with
a fixed number of particles N = 1000 in the condensate for different magnetizations
M , respectively. In addition, Figure 5 depicts the wave functions of the ground state
of a spin-1 BEC with fixed magnetization M = 0.1 for different numbers of particles
N in the condensate.

From Figure 3, we can see that, for a fixed number of particles N in the conden-
sate, when the magnetization M increases from −1 to 1, the mass N1 increases from
0 to 1, the mass N−1 decreases from 1 to 0, and the mass N0 increases from 0 to
its maximum when −1 ≤ M ≤ 0, attains its maximum when M = 0, and decreases
from its maximum to 0 when 0 ≤ M ≤ 1. From Figures 4 and 5, we can see that the
ground states are positive functions when βs ≤ 0.
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Fig. 4. Wave functions of the ground state, i.e., φ1(x) (solid line), φ0(x) (dashed-dotted
line), and φ−1(x) (dotted line), of a spin-1 BEC with a fixed number of particles N = 1000 in the
condensate for different magnetizations M = −0.8,−0.5,−0.1, 0, 0.1, 0.8.

5. Conclusion. We have proposed an efficient and determinate numerical method
for computing the ground state of a spin-1 BEC. By constructing a CNGF which is
mass and magnetization conservative and energy-diminishing, the ground state of a
spin-1 BEC can be computed as the steady state solution of the CNGF. The CNGF
was then discretized in space by the finite difference method and in time by the
Crank–Nicolson method with a proper way to deal with the nonlinear terms, and
we proved rigorously that the discretization is mass and magnetization conservative
and energy-diminishing in the discretized level. Numerical results were reported to
demonstrate the efficiency of our new numerical method for computing the ground
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Fig. 5. Wave functions of the ground state, i.e. φ1(x) (solid line), φ0(x) (dashed-dotted line)
and φ−1(x) (dotted line), of spin-1 BEC with fixed magnetization M = 0.1 for different number of
particles N = 5000 (top left), N = 10000 (top right), N = 20000 (down left) and N = 100000 (down
right), in the condensate.

state of a spin-1 BEC. In the future we plan to study physically more complex systems
based on our new numerical method and extend our method to compute the ground
state of a spin-2 [15, 32] and spin-3 [30] Bose–Einstein condensates.
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METHODS FOR RELIABLE TOPOLOGY CHANGES FOR
PERIMETER-REGULARIZED GEOMETRIC INVERSE PROBLEMS∗
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Abstract. This paper is devoted to the incorporation of topological derivativelike expansions
into level set methods for perimeter-regularized geometric inverse problems. The expansions are
done up to the second order with respect to the Lebesgue measure of the symmetric difference. They
provide simpler shape functionals, still including the perimeter, and therefore allow the construction
of steepest descent- and Newton-type algorithms to force topology changes during the level set
evolution. Numerous numerical examples are provided that show the strong and also the weak
points of the newly developed algorithms.
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1. Introduction. Identification of unknown geometries via minimizing appro-
priate objective functionals is a challenging task, appearing in various applications
ranging from topology optimization (cf. Bendsøe and Sigmund [11], Bourdin and
Chambolle [12]) over image processing (cf. Tsai and Osher [46]) to inverse problems
(cf. Burger and Osher [18], Habib and Hyeonbae [29]). Later it got very common to
use level set methods (cf. Osher and Fedkiw [40], Litman, Lesselier, and Santosa [36])
whose velocities depend on shape derivatives (cf. Delfour and Zolésio [22]) to solve
such geometric problems. For several optimization problems, these level set methods
were successfully applied to compute optimal geometries without a priori knowledge of
the number of connected components (cf. Burger [13, 15], Dorn, Miller, and Rapport
[23], Hintermüller and Ring [33], Ito, Kunisch, and Li [34], Santosa et al. [36, 41, 42]).

Level set methods are gradientlike methods that allow a simple and flexible ge-
ometry representation and evolution. Hence the topologies can only split, merge, and
vanish during the level set evolution. A sudden appearance of a new component dur-
ing the evolution is not possible. Due to the fact that level set methods just evolve
the boundary of a geometry, they may easily get stuck in local minima. Theoretical
constructed examples prove this, but it is even observed practically (cf. Allaire, Jouve,
and Toader [3, 4], Burger, Hackl, and Ring [16]).

Recently a new concept called topological derivatives (cf. Eschenauer et al. [24,
25], Sokolowski and Żochowski [43, 44]) was developed. In this concept one considers
the variation of an objective functional with respect to the introduction of infinitesi-
mally small holes at a certain point. The topological derivative then indicates whether
it is favorable to introduce a hole at this point or not. Already the definition of the
topological derivative suggests an algorithm that was successfully applied to several
problems (cf. Amstutz et al. [7, 8, 9], Guillaume and Idris [27], Guzina and Bonnet
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[28], Masmoudi et al. [9, 37]). Also algorithms based just on topological derivatives
may get stuck in local minima. This is mainly due to their “disability” to reduce the
number of connected components.

Hence several authors (cf. Allaire, de Gournay, and Toader [2], Burger, Hackl,
and Ring [16], Hintermüller [32], Wang, Mei, and Wang [47]) tried successfully to
combine classical level set methods with the concept of topological derivatives. There
are basically two ideas about how to combine these methods. One idea is to add an
additional source term to the right-hand side of the level set methods. This addi-
tional source term depends on the topological derivative and is defined in the whole
domain. Therefore the modified level set methods allow also for the addition of new
components. The second idea is to restart the level set evolution after some fixed
time (or due to some stopping criteria). The initial value of the restart is determined
via the topological derivative at the last time step. The rationale behind both ideas
is to fulfill the combined necessary optimality condition for shape and topological
derivatives (see Sokolowski and Żochowski [45]).

Nonetheless there are still some problems. First, in geometric inverse problems
one usually uses perimeter regularization, which is not topological differentiable at all.
Second, topological derivatives are just indicators. They do not provide information
about the size and shape of the preferable topology change which actually decreases
the cost functional.

By means of an ill-posed, PDE-constraint inverse shape identification problem
we are going to construct local approximations of the perimeter-regularized objective
functional such that:

• we can provide local error estimates of first (respectively, second) order with
respect to the Lebesgue measure of the symmetric difference;

• the approximated shape functionals are either not PDE-constraint (first or-
der approximation) or the PDE constraint becomes simpler (second order
approximation); and

• in the limit, Lebesgue measure to zero, we retrieve the topological derivative
of the original problem.

Minimizing the approximated shape functionals will allow one to construct algorithms
of the steepest descent type (first order approximation) and the Newton type (second
order approximation). Up to provided error estimates every minimizer of the approx-
imated shape functional guarantees a descent of the original perimeter-regularized
objective functional. This is in contrast to most methods relying on topological deriva-
tives. Like in the functional analytic framework, the numerical minimization of the
first order approximation is less expensive than the second order approximation but
also provides less accurate error estimates close to the solution.

Model problem. Let D ⊂ R
d be some bounded open Lipschitz set, and let

Ω ∈ FL(D), with FL(D) =
{
Ω ⊂ cl(D)

∣∣Ω open and measurable
}
. Consider the

partial differential equation

(1.1)

−Δu + cΩ u = f in D,
∂u

∂n
= h on ΓN ,

u = g on ΓD,

where cΩ = c+ (c− c)χΩ and χΩ is the characteristic function of Ω. Furthermore as-

sume that the source term f ∈ L2(D), the Neumann boundary term h is in H− 1
2 (ΓN ),

and the Dirichlet term g is in H
1
2 (ΓD) = H1(D)|ΓD

. For every set Ω ∈ FL(D) the
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partial differential equation (1.1) provides an unique solution u ∈ H1(D).

ΓN

ΓD

Ω

ΩD

Σ = ∂Ω

Now let ΓM ⊂ D be some open set or ΓM ⊂ ΓN with positive (d−1)-dimensional
Lebesgue measure. Denote by û measurements of u|ΓM

restricted to ΓM with possible
additional Gaussian noise bounded in the L2-norm. The geometric inverse problem
is to identify the set Ω ∈ FL(D) from measurements û.

In general the solution to the above geometric inverse problem is not stable. A
stabilized approximation of the original problem is the minimization of the perimeter-
regularized least squares functional

(1.2) Jα(Ω) =
1

2

∫
ΓM

|u− û|2 ds + αPer
(
Ω
)
,

where α acts as regularization parameter and is chosen in dependence of the noise
level of the measurements û. Note that the perimeter of a set is defined by

Per
(
Ω
)

= |χΩ|BV(D) = sup
φ∈C1

0(D,Rd)

‖φ‖∞≤1

∫
D
χΩdivφdx .

The regularization property of the perimeter and the choice of the parameter α will
not be dealt with in this paper (cf. Ben Ameur, Burger, and Hackl [10] for a detailed
analysis). Only the appearance of the perimeter in the minimization functional will
be in the focus in the following, since it prevents the application of known solution
methods based on topological derivatives.

Notation. We denote by Lp(D) the space of functions on Ω whose pth power
is integrable, with Hk(D) the Sobolev space of k-times differentiable functions whose
derivatives up to order k are in L2(D). Note that the space Hk(D) is a Hilbert space.
Furthermore we abbreviate by H1

D,0(D) ⊂ H1(D) the function space with boundary
values zero at the boundary ΓD ⊂ ∂D. We often use the notation �, which means
≤ up to a multiplicative constant that does not depend on the important properties.
With ∂u we denote the partial derivative with respect to u. Finally we denote with
Ω̃ΔΩ = (Ω̃ \ Ω) ∪ (Ω \ Ω̃) = (Ω̃ ∪ Ω) \ (Ω̃ ∩ Ω) the symmetric difference of sets.

The paper is organized as follows: In section 2 we provide the shape and the
topological derivative for the objective functional (1.2). Then, based on the proof of
the topological derivative, we provide in section 3 the first and second order approx-
imations, in volume and perimeter, of the objective functional (1.2). The first and
second order approximations allow one to construct steepest descent (respectively,
Newton-) type iterations which allow topology changes. Details about the numeri-
cal implementation of level set methods and the newly suggested steepest descent-
as well as Newton-type iterations are provided in section 4. In section 5 we provide
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some numerical examples to show the applicability and performance of the methods
suggested in this paper. Finally we draw the conclusion in section 6.

2. Shape and topological derivatives. In this section we recall two different
concepts of shape (geometry) perturbations and consider the sensitivity of the shape
functional (1.2) with respect to these perturbations. The first perturbation is a pure
boundary perturbation moving a shape (geometry) in a velocity field V . This ap-
proach results in the concept of shape derivatives. For a comprehensive introduction
to this topic we refer to Delfour and Zolésio [22]. The second perturbation changes
the topology of the shape (geometry) by introducing a fixed additional shape with
varying size and position. The sensitivity of the shape functional (1.2) with respect to
the size of the newly introduced shape results in the concept of topological derivatives,
which were first introduced by Eschenauer et al. [24, 25] and by Céa et al. [19] in the
context of topology optimization and made mathematically rigorous by Sokolowski
and Żochowski [43, 44].

2.1. Shape derivatives. Shape derivatives for geometric problems allow one to
characterize extrema and yield directions of steepest descent. They take the role of
Gateaux and Fréchet derivatives in a functional analytic framework.

Ω t

Ω

t

Σ=∂Ω

tΣ  = 

(Ω)

T (Σ)t

= T  

The basic idea is to define a perturbation of a domain Ω (piecewise C2) via the
time evolution of Ω in a vector field V : R

+
0 × R

d → R
d, with

(2.1)
∃ τ > 0∀x ∈ R

d : V (., x) ∈ C([0, τ ],Rd)
∃L > 0∀x, y ∈ R

d :
‖V (., y) − V (., x)‖C([0,τ ],Rd) ≤ L|y − x| .

Then the perturbed domain is set to Ωt(V ) = Tt(Ω, V ), where Tt(., V ) is the solution
map (the flow) of the dynamical system

(2.2)

dTt(x, V )

dt
=V (t, Tt(x, V )),

T0(x, V ) =x.

With these perturbations we are able to define the Eulerian semiderivative of a
shape functional J(Ω) as

J ′(Ω)[V ] =
d

dt
J(Tt(Ω, V ))

∣∣
t=0

.

When this semiderivative is linear and continuous for all velocities V = tθ, with
θ ∈ C0,1(D,Rd), we call the shape functional J(Ω) shape differentiable.
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A basic structure theorem (cf. Novruzi and Pierre [38], Delfour and Zolésio [22])
proves that the shape derivative depends only on V |∂Ω. Furthermore, for smooth
shapes, the perturbation vector field V can be decomposed into a normal and a
tangential component on ∂Ω, where the tangential component leaves Ω invariant.
Hence the shape derivative is independent of the tangential component, and we obtain

J ′(Ω)[V ] = J ′(Ω)[(V.n)n].

In the case that J(Ω) is an objective functional in a minimization problem a
necessary condition for the shape Ω to be optimal is

∀V : J ′(Ω)[V ] = 0.

When the shape derivative is not zero we can construct a velocity V such that the
objective functional decreases. This allows the construction of gradientlike descent
algorithms as level set methods (see section 4.1).

To calculate the shape derivative of the shape functional Jα (1.2) we need the
shape derivative of domain (respectively, boundary) integrals and the solution of the
partial differential equation (1.1). These derivatives are well known in the literature
(cf. Delfour and Zolésio [22] for shape derivatives of domain and boundary integrals
and Hettlich and Rundell [31] for the shape derivative of (1.1)), and we just state
them in the following theorems.

Theorem 2.1 (shape derivative domain and boundary integrals). Let Ω be an
open, bounded measurable domain of class C2 with boundary Σ = ∂Ω, and assume that
V ∈ C0

(
[0, τ ], C1

loc(R
d,Rd)

)
fulfill (2.1). Furthermore assume ϕ ∈ C

(
0, τ,W 1

loc(R
d) ∩

C1(0, τ,H2
loc(R

d))
)
. Then the semiderivative of the shape functionals

JD(Ωt) :=

∫
Tt(Ω,V )

ϕ(t) dx, JB(Σt) :=

∫
Tt(Σ,V )

ϕ(t) ds

at t = 0 are given by

J ′
D(Ω)[V (0)] =

∫
Ω

dϕ

dt
(0) dx +

∫
Σ

ϕ(0)V (0).n ds,

J ′
B(Γ)[V (0)] =

∫
Σ

dϕ

dt
(0) +

(∂ϕ(0)

∂n
+ κϕ(0)

)
V (0).n ds ,

where κ is the mean curvature of Σ.
Theorem 2.2. Let Ω be a domain with C1 boundary and the velocity field V be

as in the previous theorem. Then the solution u of (1.1) is shape differentiable and
its shape derivative is characterized by the unique solution u′ = u′(Ω)[V (0)] to the
transmission problem

(2.3)

−Δu′ + cΩ u′ = 0 in Ω ∪ D \ Ω,

�∂u′

∂n
� =−

�
cΩ

�
V (0).n on ∂Ω,

�
u′� = 0 on ∂Ω,

∂u′

∂n
= 0 on ΓN ,

u′ = 0 on ΓD,

where � . � denotes the jump across the interface ∂Ω.
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Summing up, the shape derivative of the objective functional Jα (1.2) is given as

J ′
α(Ω)[V (0)] =

∫
ΓM

u′[V (0)](u− û) ds + α

∫
∂Ω

κV (0).n ds.

We can simplify this shape derivative when we introduce the adjoint state w

(2.4)

−Δw + cΩ w=−χΓM
(u− û), respectively, 0, in D,

∂w

∂n
= 0, respectively, −χΓM

(u− û), on ΓN ,

w = 0 on ΓD.

The shape derivative of the objective functional Jα(Ω) finally gets

(2.5) J ′
α(Ω)[V (0)] =

∫
∂Ω

(�cΩ�uw + ακ)V (0).n ds.

First note that we just solve two partial differential equations, namely, (1.1) and
(2.4), to calculate the shape derivative. Second, the first order necessary condition
for optimal shapes Ω requires for all V : J ′

α(Ω)[V (0)] = 0. Hence (uw + ακ) = 0 on
∂Ω. If this is not the case, we can construct a velocity such that J ′

α(Ω)[V (0)] < 0.
For example, take V = −(uw+ακ)n, but other choices are possible (cf. Burger [14]).

2.2. Topological derivatives. In contrast to shape derivatives where one con-
siders variations of a shape, topological derivatives aim for variations of the topology.
The basic idea of the topological derivative is to add a small sphere with center x
and radius ε to the domain Ω and consider the variation of the objective functional
J(Ω ∪ Bε(x)) with respect to the radius of this sphere. Note that different shapes
than spheres are possible and might result in different values of the derivatives.

Definition 2.3 (topological derivative). Let J : Ω ⊂ R
d → R be an objective

functional. Then the topological derivative is defined as the limit (if it exists)

(2.6) dτJ(x) := lim
ε→0+

J(Ω ∪Bε(x)) − J(Ω)

|Bε(x)| .

ε

Ω

Σ = ∂Ω

B  (x)D ε

x

A negative topological derivative dτJ(x) < 0 indicates that it might be reasonable
to add a small sphere at point x to reduce the objective functional. It is also possible
to subtract material, i.e., take the set-minus instead of adding material, i.e., the union
in (2.6).
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In practice, topology changes forced by the topological derivative are neither
spherical nor infinitesimally small. Most methods are based on a threshold criteria
such as (4.3). This is opposed to functional analytic methods, where the finite step
sizes are usually based on higher order estimates (remainder estimates) or line search
methods, still guaranteeing descent in the objective functional. For a line searchlike
idea in combination with topological derivatives, see Hintermüller [32]. In the frame-
work of topological, asymptotic higher order estimates are used by Cedio-Fengya,
Moskow, and Vogelius [20] and Habib and Hyeonbae [29]. To the best knowledge of
the author, higher order estimates, although available, are not used for algorithms
based on topological derivatives. One reason might be that higher order estimates for
topological derivatives would just allow for a finite number of disjoint small holes (cf.
Cedio-Fengya, Moskow, and Vogelius [20]).

Nonetheless the practical experience by most authors, using the topological deriva-
tive as an indicator, is rather positive. Therefore let us calculate the topological deriva-
tive for our objective functional (1.2). First of all consider the topological derivative
of the perimeter Per

(
Ω
)
:

dτPer
(
Ω
)

= lim
ε→0

Per
(
Bε(x)

)
|Bε(x)| � lim

ε→0

εd−1

εd
= ∞.

Hence the perimeter is not topologically differentiable. In practical applications one
usually neglects this fact and calculates the topological derivative of the objective
functional without the perimeter, i.e., for J0(Ω). This derivative is already well known
(see Amstutz [6]). Nonetheless we provide a detailed proof that is based on Hölder
estimates, Sobolev embedding, and regularity results for elliptic partial differential
equations. Parts of the proof will play a crucial role in the rest of the paper. Let us
first state Sobolev’s embedding theorem (cf. Adams [1])

Theorem 2.4 (Sobolev embedding). Let ω be a Lipschitz domain in R
d, m ∈ N0.

d > 2m: Hm(ω) ↪→ Lq(ω) for 2 ≤ q ≤ 2d
d−2m ,

d = 2m: Hm(ω) ↪→ Lq(ω) for 2 ≤ q < ∞,
d < 2m: Hm(ω) ↪→ C

(
cl(ω)

)
.

Based on the Caccioppoli inequality we cite an interior regularity result for elliptic
partial differential equations (cf. Giaquinta [26]) that applies to (1.1) and (2.4).

Theorem 2.5 (interior regularity). Let Aij ∈ C0,1(D) be strictly elliptic and
f ∈ L2(D) and u be a weak solution to the linear elliptic equation

−∂i
(
Aij∂ju

)
= f ;

then u ∈ H2
loc(D) and even more

(2.7) ‖u‖2
H2([D]η) ≤ C(d)

(
‖f‖2

L2(D) +
1

η2
‖∇u‖2

L2(D)

)
,

where η > 0 and [D]η := cl
(
int{x ∈ D|dist(x, ∂D) ≥ η}

)
.

The strength of the above interior regularity result is that it is independent of the
boundary conditions and the regularity of the domain D at the price that it is valid
only in the interior of the domain D. This allows us to deal with Lipschitz domains
D and arbitrary mixed boundaries; i.e., g ∈ H

1
2 (ΓD), h ∈ H− 1

2 (ΓN ) are arbitrary in
(1.1). Therefore we need not bother about corner singularities. The drawback for this
convenience is that we need to restrict Ω to be a subset of [D]η.
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In our application u,w ∈ H1(D) are solutions to the elliptic partial differential
equations (1.1), (2.4). Therefore ‖u‖H1(D) and ‖w‖H1(D) can be estimated by

‖u‖2
H1(D) �‖f‖2

H−1(D) + ‖g‖2

H
1
2 (ΓD)

+ ‖h‖2

H− 1
2 (ΓN )

,

‖w‖H1(D)�‖u− û‖L2(ΓM ) .

When we plug this into the interior regularity result (2.7) we achieve

‖u‖2
H2([D]η) ≤C(η, d,D)

(
‖f‖2

L2(D) + ‖g‖2

H
1
2 (ΓD)

+ ‖h‖2

H− 1
2 (ΓN )

)
,

‖w‖H2([D]η)≤C(η, d,D)‖u− û‖L2(ΓM ) .

Note that, if it is not an option to restrict Ω ⊂ [D]η, one needs to restrict instead

D ∈ C1, g ∈ H
3
2 (ΓD), h ∈ H

1
2 (ΓN ), and g, h compatible such that the outer regularity

result applies (cf. Giaquinta [26]):

‖u‖H2(D) ≤ C(d,D)
(
‖f‖L2(D) + ‖g‖

H
3
2 (ΓD)

+ ‖h‖
H

1
2 (ΓN )

)
,

‖w‖H2(D) ≤ C(d,D)‖u− û‖L2(ΓM ), respectively, ‖w‖
H

3
2 (D)

≤ C(d,D)‖u− û‖L2(ΓM ).

Finally, before we calculate the topological derivative, let us recall the direct (1.1)
and the adjoint (2.4) partial differential equations but in their weak form.

Direct problem.

(2.8) 〈∇u,∇v〉 + 〈cΩu, v〉 = 〈f, v〉 + 〈h, v〉
H− 1

2 (ΓN )×H
1
2 (ΓN )

∀ v ∈ H1
0,D(D).

Adjoint problem.

(2.9) 〈∇v,∇w〉 + 〈cΩv, w〉 = −∂uJ0(Ω)[v] = −〈u− û, v〉L2(ΓM ) ∀ v ∈ H1
0,D(D).

In the following we will often use the topologically perturbed domain Ω̃ and the
corresponding solution ũ of (1.1).

Proposition 2.6. For η > 0 and every point x ∈ [D]η \ ∂Ω the topological
derivative of the shape functional (1.2) with α = 0 is given by

dτJ0(Ω)(x) = −2(χΩ − 1
2 )(c− c)u(x)w(x) .

Proof. Let Ω̃, Ω ⊂ [D]η be arbitrary domains with positive Lebesgue measure, and
consider the first order Taylor expansion of the objective functional J0 with respect
to the state u:

J0(Ω̃) − J0(Ω) = ∂uJ0(Ω)[ũ− u] + O
(
‖ũ− u‖2

H1(D)

)
.

‖ũ−u‖H1(D) � |Ω̃ΔΩ|< d+2
2d : We subtract the two determining partial differential

equations for u (respectively, ũ) and rearrange the terms to get

〈∇(ũ− u),∇v〉+〈cΩ̃(ũ− u), v〉 (1.1)
= −〈(cΩ̃ − cΩ)u, v〉

Hölder 1
r + 1

p+ 1
q =1

≤ |c− c||Ω̃ΔΩ| 1r ‖u‖Lp(Ω̃ΔΩ)‖v‖Lq(Ω̃ΔΩ).

To minimize r we use the interior regularity result u ∈ H2([D]η) and v ∈ H1(D) and
apply Sobolev’s embedding theorem to conclude p ≤ ∞:

q ≤
{

2d
d−2 d = 3

< ∞ d = 2
⇒ r ≥

{
2d
d+2 d = 3

> 1 d = 2.
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Finally the Lax Milgram lemma provides us with the desired result

‖ũ− u‖H1(D) � |c− c||Ω̃ΔΩ| 1r ‖u‖H2([D]η).

∂uJ0(Ω)[ũ− u] = 〈(cΩ̃ − cΩ)u,w〉+O
(
|Ω̃ΔΩ|< d+2

d

)
: We just use the definition of

the adjoint problem (2.4) and afterwards (1.1) for ũ and u to get

∂uJ0(Ω)[ũ− u]
(2.4)
= −〈∇(ũ− u),∇w〉 − 〈cΩ(ũ− u), w〉 (1.1)

= 〈(cΩ̃ − cΩ)ũ, w〉
= 〈(cΩ̃ − cΩ)u,w〉 + 〈(cΩ̃ − cΩ)(ũ− u), w〉.

For the term 〈(cΩ̃ − cΩ)(ũ − u), w〉 we proceed as above, but this time we consider
(ũ−u) ∈ H1

0,D(D) and w ∈ H2([D]η). Therefore we get, with r as above, the estimate

∂uJ0(Ω)[ũ− u] = 〈(cΩ̃ − cΩ)u,w〉 + O
(
|Ω̃ΔΩ| 1r |c− c|‖ũ− u‖H1(D)‖w‖H2([D]η)

)
.

Summing up all of the estimates we get

(2.10) J0(Ω̃) − J0(Ω) ≤ 〈(cΩ̃ − cΩ)u,w〉 + O
(
|Ω̃ΔΩ|<

d+2
d

)
.

Now set Ω̃ = Bε(x) ∪ Ω and perform the limit according to the definition of the
topological derivative. In general the limit can be deduced from the Lebesgue dif-
ferentiation theorem (cf. Giaquinta [26]) almost everywhere, but due to the fact that
u, w ∈ H2([Dη]) ↪→ C([D]η) it is even more obvious.

Like the shape derivative (2.5), the topological derivative depends on the solu-
tion u of (1.1) and the adjoint w (2.4) only, which is standard for adjoint methods.
Moreover, both derivatives are the same, which is not true in general but holds, up
to a constant, for surprisingly many cases.

3. Topological expansions up to the first and second orders. In the pre-
vious section we introduced two concepts of geometry derivatives. Shape derivatives
take the role of the Gateux and Fréchet derivatives in a functional analytic framework
and allow Taylor expansions with remainder estimates in proper shape metrics such
as the Courant metric. Shape derivatives are even suitable for perimeter-regularized
objective functionals. This is different for topological derivatives. They provide Tay-
lor expansion with respect to the size parameter ε (see Definition 2.3) but not with
respect to shape metrics such as the L1-metric (Lebesgue measure), and they are not
suitable for perimeter-regularized problems. Therefore the goal of this section is to
overcome these, remedy, and provide Taylor expansions of first and second order with
respect to the L1-metric. To allow also for perimeter-regularized problems we need
to add to the Taylor expansion an additional dominating first order term depending
on the perimeter of the symmetric difference of the two objects. The rational of this
extra term is the general inequality

(3.1)
∣∣Per

(
Ω̃
)
− Per

(
Ω
)∣∣ ≤ Per

(
Ω̃ΔΩ

)
.

With a Taylor expansion at hand we are able to construct, like in the functional
analytic framework, steepest descent- and Newton-type algorithms to reduce the shape
objective functional Jα(Ω).

3.1. First order topological expansion. A closer look at the proof of the
topological derivative (Proposition 2.6), more precisely, (2.10) together with (3.1),
shows that we already have the desired topological estimate.
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Proposition 3.1. Let Ω̃,Ω ∈ FL([D]η); then the objective functional Jα(Ω) (1.2)
with state u given by (1.1) has the first order topological expansion

(3.2) Jα(Ω̃) − Jα(Ω) ≤ 〈(cΩ̃ − cΩ)u,w〉 + αPer
(
Ω̃ΔΩ

)
+ O

(
|Ω̃ΔΩ|<

d+2
2

)
.

Our aim is to minimize the objective functional Jα(Ω) (1.2) with respect to the
geometry Ω. Hence, when we already have an initial guess Ωk we can improve it and
calculate a new geometry Ωk+1 such that we reduce the objective functional Jα(Ωk),
when we solve the auxiliary minimization problem

(3.3) Ωk+1 = argmin
Ω∈FL([D]η)

〈(cΩ − cΩk
)u,w〉 + αPer

(
ΩΔΩk

)
+ c

(
|ΩΔΩk|<

d+2
2

)
.

The constant c is a consequence of the embedding and regularity results and can in
principle be estimated. Algorithmically it seems more favorable to perform a trust
region approach and vary c until the predicted decrease of the objective functional
Jα(Ω) is close to the actual decrease.

The minimization problem (3.3) already suggests a steepest descent-type algo-
rithm to solve the original minimization problem of Jα(Ω). We are more interested to
solve (3.3) just once for every restart in the level set methods to force systematically
reliable topology changes that decrease the objective functional Jα(Ω). Therefore we
prove that the minimization problem (3.3) has a solution which is not necessarily
unique.

Proposition 3.2. Let α > 0 and Per
(
Ωk

)
< ∞; then the minimization problem

(3.3) has a solution in the finite perimeter (Caccioppoli) sets.
Proof. For every Ω ∈ FL([D]η) with a finite objective functional in the min-

imization problem (3.3) we conclude from α > 0 that Per
(
ΩΔΩk

)
< ∞. There-

fore we can restrict Ω ∈ FL([D]η) to finite perimeter sets. Next we observe that
cΩ − cΩk

= −2(c − c)
(
χΩk

− 1
2

)
χΩΔΩk

. This allows one to replace the minimiza-
tion problem (3.3) over Ω by a minimization problem over ΩΔΩk and therefore an
equivalent reformulation in BV(D, {0, 1}):

min
p∈BV(D,{0,1})

〈
− 2(c− c)(χΩk

− 1
2 )uw, p

〉
+ α|p|BV(D) + c

(
|p|<

d+2
2

L1(D)

)
.

Now take a minimizing sequence pi ∈ BV(D, {0, 1}) which is due to α > 0 uniformly
bounded in ‖ . ‖BV(D). Therefore there exists a BV weak-* limit p ∈ BV(D). Due
to the compact embedding BV(D) ↪→c L1(D) (cf. Ambrosio, Fusco, and Pallara [5,
Corollary 3.49]), the weak-* limit is also a strong limit in L1(D). Consequently we
conclude p ∈ BV(D, {0, 1}). Finally, the lower semicontinuity of | . |BV(D) in the
functions of bounded variation BV(D) guarantees that p is a solution to the above
minimization problem formulated in BV(D, {0, 1}), and therefore Ωk+1 =

(
Ωk \ {p =

1}
)
∪ {(1 − χΩk

)p = 1} is a minimizer for (3.3).
Note that the minimizer to (3.3) might be Ωk itself; i.e., no topology change is

favorable to generate a guaranteed descent in the objective functional Jα(Ω). This
happens when the perimeter term dominates the first order term, i.e., when the topol-
ogy changes get too small or when the topology is already the optimum of Jα(Ω).

3.2. Second order topological expansion. The first order topological ex-
pansion in the L1-metric was based mainly on a first order Taylor expansion of the
objective functional J0(Ω) with respect to the state u. We follow this strategy for the
second order topological expansion. To allow a proper estimation of the second order
terms we need to introduce an auxiliary partial differential equation.
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Linearized problem.

−Δulin(Ω̃) + cΩu
lin(Ω̃)=−(cΩ̃ − cΩ)u in D,

∂ulin

∂n
(Ω̃) =0 on ΓN ,

ulin(Ω̃) =0 on ΓD.

We will indeed need the weak form of the linearized problem, which is given by

(3.4) 〈∇ulin(Ω̃),∇v〉 + 〈cΩulin(Ω̃), v〉 = −〈(cΩ̃ − cΩ)u, v〉 ∀ v ∈ H1
0,D(D).

The reason why we denote the above partial differential equation linearized problem of
(1.1) is that, when we consider (1.1) in a functional analytic setting with cΩ ∈ L2(D),
the above formula would be its linearization.

Proposition 3.3. Let α > 0 and Per
(
Ωk

)
< ∞; then the objective functional

Jα(Ω) (1.2) with state u given by (1.1) has the second order topological expansion

(3.5)
Jα(Ω̃) − Jα(Ω) ≤

〈
(cΩ̃ − cΩ)

(
u + ulin(Ω̃)

)
, w

〉
+ 1

2∂
2
uJ0(Ω)[ulin(Ω̃)]2

+αPer
(
Ω̃ΔΩ

)
+ O

(
|Ω̃ΔΩ|< d+4

d

)
.

Proof. First we start to do a Taylor expansion up to the second order for the
unregularized objective functional J0(Ω) with respect to the state u:

J0(Ω̃) − J0(Ω) = ∂uJ0(Ω)[ũ− u] + 1
2∂

2
uJ0(Ω)[ulin(Ω̃)]2

+∂2
uJ0(Ω)[ũ− u− ulin(Ω̃)][ulin(Ω̃)]

+ 1
2∂

2
uJ0(Ω)[ũ− u− ulin(Ω̃)]2 + O

(
‖ũ− u‖3

H1(D)

)
.

Again we estimate the higher order terms in the second and third rows by the
L1-metric |Ω̃ΔΩ|, where we use ‖∂2

uJ0(Ω)‖ � 1. Then we reformulate the terms in the
first row. Several times we will use that u,w ∈ H2([D]η) (Theorem 2.5), Sobolev’s
embedding theorem, Hölder’s inequality, and the Lax Milgram lemma.

‖ulin(Ω̃)‖H1(D) � |Ω̃ΔΩ|< d+2
2d : With r, p, q as in the proof of Proposition 2.6 we

have

〈∇ulin(Ω̃),∇v〉 +〈cΩulin(Ω̃), v〉 = −〈(cΩ̃ − cΩ)u, v〉
Hölder 1

r + 1
p+ 1

q =1

� (c− c)|Ω̃ΔΩ| 1r ‖u‖Lp(Ω̃ΔΩ)‖v‖Lq(Ω̃ΔΩ)
Theorem 2.4

� (c− c)|Ω̃ΔΩ|< d+2
2d ‖u‖H2([D]η)‖v‖H1(D).

‖ũ−u−ulin(Ω̃)‖H1(D) � |Ω̃ΔΩ|< d+6
2d : First note that due to Sobolev’s embedding

theorem H1(D) ↪→ Lq(D), with

q ≤
{

2d
d−2 d = 3

< ∞ d = 2.

Then we apply Lax Milgram’s lemma to the following term:

〈∇(ũ− u− ulin(Ω̃)),∇v〉 + 〈cΩ(ũ− u− ulin(Ω̃)), v〉
(1.1) & (3.4)

= −〈(cΩ̃ − cΩ)(ũ− u), v〉
Hölder 1

p+ 2
q =1

� |Ω̃ΔΩ| 1p ‖ũ− u‖Lq(Ω̃ΔΩ)‖v‖Lq(Ω̃ΔΩ)
Theorem 2.4

� |Ω̃ΔΩ|< 2
d ‖ũ− u‖H1(D)‖v‖H1(D)

Proposition 2.6

� |Ω̃ΔΩ|< d+6
2d ‖u‖H2([D]η)‖v‖H1(D).
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∂uJ0(Ω)[ũ− u] = 〈(cΩ̃ − cΩ)(u + ulin(Ω̃)), w〉 + O
(
|Ω̃ΔΩ|< d+4

d

)
:

∂uJ0(Ω)[ũ− u]
(2.4)
= −〈∇(ũ− u),∇w〉 − 〈cΩ(ũ− u), w〉 (1.1)

= 〈(cΩ̃ − cΩ)ũ, w〉
= 〈(cΩ̃ − cΩ)(u + ulin(Ω̃)), w〉 + 〈(cΩ̃ − cΩ)(ũ− u− ulin(Ω̃)), w〉.

Finally we need to to estimate the term 〈(cΩ̃ − cΩ)(ũ− u− ulin(Ω̃)), w〉 following the
same arguments and with the same choice for r, p, q as in Proposition 2.6:

. . .
Hölder 1

r + 1
p+ 1

q =1

≤ |Ω̃ΔΩ| 1r |c− c|‖ũ− u− ulin(Ω̃)‖Lq(D)‖w‖Lp(D)
Theorem 2.4

� |Ω̃ΔΩ|< d+2
2d |c− c|‖ũ− u− ulin(Ω̃)‖H1(D)‖w‖H2([D]η).

The perimeter term we estimate as in the first order topological expansion.
With the second order expansion at hand we can improve an initial geometry

Ωk, such that the objective functional Jα(Ω) decreases, when we solve the partial
differential equation constraint minimization problem
(3.6)
Ωk+1 = argmin

Ω∈FL([D]η)

〈(cΩ − cΩk
)(u+ ulin(Ω)), w〉+ 1

2∂
2
uJα(Ωk)[u

lin(Ω)]2 +αPer
(
ΩΔΩk

)
.

The constraint minimization problem is similar to a Newton-type step. Later we
will use the solution to the minimization problem to force a topology change in level
set methods. Before that, we prove that the constraint minimization problem (3.6)
has a solution which is not necessarily unique.

Proposition 3.4. Let α > 0 and Per
(
Ωk

)
< ∞; then the minimization problem

(3.6) has a solution in the finite perimeter (Caccioppoli) sets.
Proof. First we note that ulin(Ω) is uniformly bounded in H1(D). Therefore also

the objective functional of the constraint minimization problem (3.6) is uniformly
bounded from below. Hence every Ω ∈ FL([D]η) with a finite objective functional of
the constraint minimization problem (3.6) has a finite perimeter, i.e., Per

(
Ω
)
< ∞. As

in Proposition 3.2 we conclude from cΩ − cΩk
= −2(χΩk

− 1
2 )χΩΔΩk

that also ulin(Ω)
(3.4) just depends on ΩΔΩk. Therefore we can again reformulate the minimization
problem (3.6) over Ω to a minimization over ΩΔΩk and then switch to BV(D, {0, 1}):

min
p∈BV(D,{0,1})

〈
− 2(c− c)(χΩk

− 1
2 )w(u + ulin(p)), p

〉
+ 1

2∂
2
uJα(Ωk)[u

lin(p)]2 + α|p|BV.

Note that ulin(p) solves for all v ∈ H1
0,D(D) :

〈∇ulin(p),∇v〉 + 〈cΩk
ulin(p), v〉 =

〈
− 2(c− c)(χΩk

− 1
2 )puΩk

, v
〉
.

Following the arguments of Proposition 3.2 provides a minimizing sequence pi ∈
BV(D, {0, 1}) converging weak* to p ∈ BV(D) and strongly in L1(D). From the
strong convergence of pi → p in L1(D) and Lax Milgram’s lemma, we conclude
strong convergence of ulin(pi) → ulin(p) in H1(D). Finally we deduce from the
lower semicontinuity of | . |BV that p ∈ BV(D, {0, 1}) is a minimizer, and therefore
Ωk+1 =

(
Ωk \ {p = 1}

)
∪ {(1 − χΩk

)p = 1} is a minimizer of (3.6).
In principle, minimization problem (3.6) is as difficult as the original problem,

but first we do not need to solve it too accurately; it is enough to correct the first
order solution. Second, it might be much easier to construct efficient solvers for
problems with the partial differential equation constraint that are linear in χΩΔΩk

. For
example, in imaging it is possible to reformulate problems in BV({0, 1}) to problems
in BV([0, 1]) (cf. Burger and Hintermüller [17]). Furthermore there is a well-developed
theory for BV regularization for linear problems, linear in χΩ (cf. Osher et al. [39]).
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4. Numerical solution. In this section we provide a brief introduction into level
set methods (cf. Osher and Fedkiw [40]). Then we use the so-called phase I/II method
(cf. Allaire et al. [2], Burger, Hackl, and Ring [16], Hintermüller [32]) to incorporate
the steepest descent- (3.3) (respectively, the Newton-) type (3.6) step into level set
methods. Furthermore we provide details about how we solved the minimization
problems (3.3) and (3.6) numerically.

4.1. Level set methods. The main idea of level set methods is to represent an
evolving front Σ(t) = ∂Ω(t) as the zero level set of a continuous function, i.e.,

Ω(t) =
{
x ∈ D

∣∣φ(x, t) > 0
}
,

Σ(t) =
{
x ∈ D

∣∣φ(x, t) = 0
}
.

Ω (t)

φ(x,t)

{φ(x,t)>0}Σ( t)

V = V .nn

The geometric motion of the level set with normal velocity �V = Vn.n can equiv-
alently be described by the propagation of the level set function φ which solves the
Hamilton–Jacobi equation

(4.1)
∂φ

∂t
− Vn|∇φ| = 0 in R

d × R
+.

The Hamilton–Jacobi equation (4.1) for φ is the analogon to the flow equation (2.2).
As already mentioned in section 2.1 the crucial point is an appropriate choice of

the velocity, such that the objective functional Jα(Ω) (1.2) decreases. This resembles
the classical speed method in shape optimization (cf. Delfour and Zolésio [22]). The
weak formulation via the level set methods allows for more general evolutions and for
topological changes such as splitting, merging, and vanishing of domains.

From the shape derivative J ′
α(Ω)[Vn] of the objective functional (1.2)

J ′
α(Ω)[Vn] =

∫
∂Ω

(
�cΩ�uw + ακ

)
Vn ds,

we can deduce normal velocities Vn such that the objective functional (1.2) decreases.
The simplest choice would be Vn = −

(
�cΩ�uw + ακ). This choice results in a very

regular velocity. According to Burger [14] a preconditioned velocity Vn ∈ H− 1
2 (∂Ω)

is more appropriate and results into faster convergence. This H− 1
2 (∂Ω) velocity can

be set to Vn =
�
∂ψ
∂n

�
, where ψ solves the subproblem

〈ψ, v〉 = −
〈

�cΩ�uw + ακ,� ∂v

∂n
�
〉

∂Ω

∀ v ∈ H1
0 (D).
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We solve the level set equation (4.1) with a standard fifth order weighted ENO
scheme for the spatial and a third order explicit Runge–Kutta scheme for the time
discretization (cf. Jiang and Peng [35]).

4.2. Phase I/II algorithm. In Burger, Hackl, and Ring [16] the topological
derivatives were incorporated as an extra source term in the level set methods:

∂φ

∂t
− Vn|∇φ| + S = 0, Vn = Vn

(
J ′
α(Ω)

)
, S = S

(
dτJ0(Ω)

)
.

An inherent time step control in the level set methods guaranteed that the topological
change was such that the objective function decreased. Another method suggested
by Allaire et al. [2], Burger, Hackl, and Ring [16], and Hintermüller [32] is to restart
the level set evolution after a fixed time (or due to clever criteria) with an initial
level set function generated by the last time step plus the topological change due to
the topological derivatives. This algorithm was phrased phase I/II algorithm by Hin-
termüller [32], where phase I corresponds to the algorithm for the topology change
and phase II to the classical level set evolution. Let us put this into a more mathe-
matical formulation: Let (Tk)k∈N0 be a series of time steps, either fixed or generated
due to a termination criterion in the level set evolution. Set φ−1(T−1) to an initial
guess (usually no material or material everywhere). Then the phase I/II algorithm is
given by

φk(t = 0) = S(dτJ0(Ωk−1), φk−1(Tk−1)),

∂φk

∂t
+ Vn(J ′

α)|∇φk| = 0,

where S(., .) describes phase I; i.e., the algorithm that forces other topology changes
than splitting, merging, and vanishing. Most implementations of phase I do not
use higher order estimates for the topological derivative and force a topology change
whenever the topological derivative is negative or smaller than a certain threshold
criterion as (4.3). Therefore the objective functional Jα(Ω) and even J0(Ω) might
increase. Exceptional to this practice is the line searchlike algorithm proposed by
Hintermüller [32] that guarantees descent in J0(Ω). An extension of the line search
algorithm to problems with perimeter constraints Jα(Ω) is possible with the methods
developed in this paper.

The idea is to use the first (respectively, second) order topological expansion to
construct phase I and therefore guarantee a decrease in the objective functional Jα(Ω).

Phase I. S(Jα, φk−1(Tk−1)) := bΩk
; Ωk solution to (3.3) (respectively, (3.6)).

With bΩ we denoted the signed distance function defined by

bΩ(x) = inf
y∈Ω

|x− y| − inf
y∈C(Ω)

|x− y|.

In the following we describe briefly how we solve (3.3) (respectively, (3.6)) numerically.

Steepest descent-type topology changes. First we recall the auxiliary min-
imization problem (3.3) in its equivalent reformulation given, in Proposition 3.2:

(4.2)

Ωk+1ΔΩk = argmin
ΩΔΩk∈FL([D]η)

〈dτJ0(Ωk), χΩΔΩk
〉 + αPer

(
ΩΔΩk

)
+ c|ΩΔΩk|<

d+2
2︸ ︷︷ ︸

=:G1
Ωk

(ΩΔΩk)

,
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where we used that dτJ0(Ωk) = −2(c− c)(χΩk
− 1

2 )uw. Ωk+1 is then given by Ωk+1 =
Ωk\(Ωk+1ΔΩk)∪(C(Ωk)∩(Ωk+1ΔΩk)). As soon as the solutions to the direct problem
u (1.1) and the adjoint problem w (2.4) are given, we can solve the minimization
problem (4.2) without solving further partial differential equations. Furthermore note
that the objective functional in the auxiliary minimization problem (3.3) over Ω was
not continuous due to the term Per

(
ΩΔΩk

)
. This is not the case any more for the

objective functional G1(ΩΔΩk), which is even shape differentiable:

G1
Ωk

′
(ΩΔΩk)[V ] =

∫
∂(ΩΔΩk)

(
dτJ0(Ωk) + c

(
<

d + 2

2

)
|ΩΔΩk|<

d
2 + ακ

)
V.n ds.

This allows us to use level set methods to solve the minimization problem (4.2). An

obvious choice for the velocity is Vn = −
(
dτJ0(Ωk) + c

(
< d+2

2

)
|Ω̃ΔΩ|< d

2 + ακ
)
. To

provide an appropriate initial guess either we solve the minimization problem (3.3)
for α = 0 or we use the classical guess

(4.3)
{
χΩk

dτJ0(Ωk) < rmin(mχΩk
, 0)

}
∪
{
(1−χΩk

)dτJ0(Ωk) < rmin(m1−χΩk
, 0)

}
,

with mχ = −‖min(χdτJ0(Ωk), 0)‖L∞(D) and r ∈ [0, 1].
Note that the solution to the minimization problem (4.2) with α = 0 needs to

fulfill

dτJ0(Ωk)|∂(ΩΔΩk) + c

(
<

d + 2

d

)
|ΩΔΩk|<

d
2 = 0.

Therefore we are searching for a level set of −
(
> d

c(d+2)

)
dτJ0(Ωk) whose enclosed vol-

ume to the power of < d
2 coincides with the value of the level set. The volume |ΩΔΩk|

enclosed by the level set −
(
> d

c(d+2)

)
dτJ0(Ωk) is monotonically (not necessarily con-

tinuously) decreasing to zero. Therefore a simple bisection algorithm can provide an
outer (inner) approximation for the minimization problem (3.3) with α = 0. This can
be used as the initial guess for the above minimization problem with α �= 0.

Both the classical guess as well as the solution to the above minimization problem
with α = 0 are based on the level set of the topological derivative. In our numerical
implementation we use the classical guess with r = 0.7. Both guesses might provide
many topology changes at once and/or very rough topologies which might increase
the original objective functional Jα. Therefore they are usually not very well suited as
an initial guess for level set methods applied to the original problem (cf. Hackl [30]).

Newton-type topology changes. First we recall the minimization problem
(3.6) but in its equivalent reformulation developed in Proposition 3.4:

(4.4)
Ωk+1ΔΩk = argmin

ΩΔΩk∈FL([D]η)

〈−2(c− c)(χΩk
− 1

2 )(u + ulin(ΩΔΩk))w,χΩΔΩk
〉

+ 1
2∂

2
uJα(Ωk)[u

lin(ΩΔΩk)]
2 + αPer

(
ΩΔΩk

)︸ ︷︷ ︸
=:G2

Ωk
(Ω)

.

Note that here ulin(ΩΔΩk) is equivalently defined by for all v ∈ H1
0,D(D) :

〈∇ulin(ΩΔΩk),∇v〉 + 〈cΩulin(ΩΔΩk), v〉 = 〈2(c− c)(χΩk
− 1

2 )χΩΔΩk
uk, v〉.

Minimization problem (4.4) has a partial differential equation as a constraint. Hence
it is as difficult to treat as the original minimization problem of Jα(Ω) (1.2).
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One might argue that there is no point in solving the Newton-type minimization
problem but to just perform phase I with the steepest descent-type method and then
proceed with the level set evolution of the original minimization problem with objec-
tive functional Jα. This argument is true because we do not have efficient solvers at
hand that exploit the special structure of the constraint minimization problem where
the partial differential equation constraint is ulin(ΩΔΩk) is linear in χΩΔΩk

. Algo-
rithms that aim in this direction are known in imaging (cf. Burger and Hintermüller
[17], Osher et al. [39]) but are not yet applicable to our problem. Furthermore note
that the above argument would also apply to Newton’s method in a functional analytic
setting. There it is known that Newton-type iterations have quadratic convergence
rates, whereas steepest descent-type iterations have linear rates. The better conver-
gence comes at the price that one Newton iteration is usually computationally much
more expansive than one steepest descent-type iteration. This effect is especially ob-
served in minimization problems with partial differential equations as a constraint.
Here the steepest descent-type methods often perform equally well, in terms of total
computational time consumed, as Newton-type methods.

Our task is to solve the above shape optimization problem, and clearly we could
use level set methods for that. To distinguish phase I with Newton-type iterations
from phase II we decided to use a phase field approach to solve the above minimization
problem. Again it might be much more efficient to apply this approach directly to
the original shape optimization problem (see Hackl [30] for a comparison of these
methods), but this is not the point of this paper. We focus on the expansion of first
and second orders and show their applicability.

The phase field approach is based on the equivalent formulation of the above
minimization problem in the space BV(D, {0, 1}) that we already met in the proof of
Proposition 3.4. In the phase field approach the minimization problem, formulated
in BV(D, {0, 1}), is relaxed, in the framework of Γ-convergence (cf. Bourdin and
Chambolle [12]) to a Hilbert space problem, namely:

pk+1 = argmin
p∈H1

0 (D)

〈
− 2(c− c)(χΩk

− 1
2 )w(u + ulin(p)), p

〉
+ 1

2∂
2
uJ0(Ωk)[u

lin(p)]2

+

(
ε‖∇p‖2

L2(D) +
α2

ε

∫
D
WN (p) dx

)
.

WN (.) is a normalized double well potential, with WN (0) = WN (1) = 0, WN (s) >

0, s ∈ R \ {0, 1}, and 2
∫ 1

0

√
WN (s) ds = 1.

The double well potential on one hand forces p to approach {0, 1} when ε → 0,
whereas the H1-seminorm of p requires smooth solutions. With ε → 0 the H1-
seminorm term forces the solution to switch smoothly from 0 to 1 in an ε-region.
Altogether these two terms approximate with ε → 0 the perimeter term. The mini-
mization problem is now posed in a Hilbert space setting, and one can use steepest
descent- or Newton-type methods to solve this problem. For our numerical tests we
chose

WN (s) =

{ (
4
π

)2

s(1 − s) s ∈ [0, 1],

∞ otherwise,

and perform a Gauss–Newton algorithm implemented as SQP. For details about the
implementation of the phase field method see Hackl [30]. We will discuss only briefly
the choice of ε.
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From the theoretical point of view ε should be very small to approximate the
original problem best, but numerically there needs to be a relation that connects ε

α
to the mesh size h. Practical experience led us to set this relation to

ε

α
= τh, τ ≥ 2.

Furthermore when we start the optimization with a very small ε, then the double well
potential provides a too-strict restriction, and the algorithm cannot perform topology
changes other than merging, splitting, and vanishing. In this case the algorithm
behaves more like classical level set methods, and therefore it is better to use a level
set method, due to its clear, reliable, and simple implementation. Hence ε should be
chosen large at the beginning of the iterations to allow for easy topology changes and
get gradually closer to the smallest possible value for ε to get sharp interfaces.

Final remark. In our implementation for both the steepest descent- as well as the
Newton-type phase I algorithms, we ensured that only the level set method (phase II)
is responsible for evolving the boundary ∂Ω. We did this by minimizing (4.2), (3.6)
over ΩΔΩk ∈ FL

(
[D]η ∩ [∂Ωk]

η
)

instead of ΩΔΩk ∈ FL([D]η). The main reason for
that is that we believe that phase I should be responsible for topology changes only.
The evolution of the boundary ∂Ωk is usually much more efficient and reliable using
level set methods (phase II). As a side effect of this restriction we have the equality
Per

(
Ω
)
− Per

(
Ωk

)
= Per

(
ΩΔΩk

)
instead of the inequality (3.1).

5. Numerical results. In this section we compare the classical level set method
to the level set method proposed in this paper that incorporates steepest descent-type
(4.2) and Newton-type (4.4) topology changes. For a comparison to other methods see
Hackl [30]. We just restrict our attention to problems with more than one connected
component, namely, to the identification of two ellipses and of an elliptic hole in
another ellipse. The two ellipse case we consider for full measurements, i.e., ΓM = D,
as well as for boundary measurements, i.e., ΓM = ΓN . Just the elliptic hole in an
ellipse case we consider for full measurements only.

We perform all numerical tests on a fixed domain D = [−1, 1]2. To avoid inverse
crime (cf. Colton and Kress [21, p. 133]), we generate the data on a different grid
(finer mesh and higher order basis functions) and perturb it with 1% Gaussian noise,
measured in the ‖ . ‖L2(ΓM )-norm. We use 1% noise because we expect the numerical
error of our discretization to be of the same magnitude.

We provide graphs (Figures 5.1, 5.2, 5.3) that show the iteration number ver-
sus objective functional Jα(Ωk), L1-distance dL1(Ωk,Ω

†), and Hausdorff distance
dH(Ωk,Ω

†):

dL1(Ω, Ω̃) := |ΩΔΩ̃|,
dH(Ω, Ω̃) := max

(
supx∈Ω infy∈Ω̃ |x− y|, supy∈Ω̃ inf

x∈Ω
|x− y|

)
.

To visualize the evolution of the geometry for each algorithm, we present a series
of pictures (see Figures 5.4, 5.5, 5.6), starting with the first iteration up to the final
solution (note the iteration numbers in each row do not coincide). The pictures are
arranged such that each column represents the evolution for one algorithm: namely,
the left column represents the classical level set method, the middle column represents
the level set method with incorporated steepest descent-type topology change, and the
right column represents the level set method with incorporated Newton type topology
change.
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Fig. 5.1. Two ellipses, ΓM = D: Iteration vs. Jα(Ωi), dL1 (Ωi,Ω
†), dH(Ωi,Ω
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Fig. 5.2. Ellipse with elliptic hole, ΓM = D: Iteration vs. Jα(Ωi), dL1 (Ωi,Ω
†), dH(Ωi,Ω

†).
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Fig. 5.3. Two ellipses, ΓM = ΓN : Iteration vs. Jα(Ωi), dL1 (Ωi,Ω
†), dH(Ωi,Ω

†).

Finally we present in Table 5.1 the numbers of iterations needed for each method
to get to the final solution, the corresponding values of the objective functional, the
L1-distance and the Hausdorff-distance, as well as the number of needed partial differ-
ential equation solver calls. For Newton-type phase I steps we solve a Newton system,
implemented as SQP with an additional feasibility step. In our implementation one
SQP call is approximately equivalent to 11 partial differential equation calls, when
using also sparse direct solvers for the SQP system.

Our theoretic results for the topological derivative (Theorem 2.6) as well as for the
steepest descent-type (3.3) and the Newton-type (3.6) topology changes are valid just
inside the domain D, and all constants depend on the distance to the boundary ∂D.
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Fig. 5.4. Two ellipses, ΓM = D: Evolution of the algorithm.
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Table 5.1

Iteration numbers k, objective Jα(Ωk), Hausdorff- and L1-distance, and number of PDE calls
for different algorithms.

Method k Jα(Ωk) dH(Ωk,Ω
†) dL1 (Ωk,Ω

†) # PDEs
Level set method 120 3.13 · 10−4 0.134 0.206 3 × 120
Steepest descent 200 2.94 · 10−4 0.130 0.207 3 × 200 + 20×H.-J.

Newton type 8 3.08 · 10−4 0.135 0.167 3 × 8 + 14×SQP system

(a) Two ellipses, ΓM = D.

Method k Jα(Ωk) dH(Ωk,Ω
†) dL1 (Ωk,Ω

†) # PDEs
Level set method 300 2.19 · 10−4 0.205 0.296 3 × 300
Steepest descent 40 1.99 · 10−4 0.127 0.230 3 × 40 + 4×H.-J.

Newton type 40 1.99 · 10−4 0.115 0.210 3 × 40 + 15×SQP system

(b) Ellipse with elliptic hole, ΓM = D.

Method k Jα(Ωk) dH(Ωk,Ω
†) dL1 (Ωk,Ω

†) # PDEs
Level set method 1000 6.57 · 10−4 0.290 0.455 3 × 1000
Steepest descent 2000 5.33 · 10−4 0.743 0.630 3 × 2000 + 200×H.-J.

Newton type 1000 7.17 · 10−4 0.395 0.565 3 × 1000 + 120×SQP system

(c) Two ellipses, ΓM = ΓN .

This was due to the use of the interior regularity result (Theorem 2.5). Therefore we
restrict our algorithm to the domain [D]0.1 = [−0.9, 0.9]2. Furthermore we perform
phase I just on the set [D]0.1 ∩ [∂Ωk]

0.1 to guarantee a disjoint set of influence for
phases I and II.

Our objective functional Jα(Ω) incorporates perimeter regularization. To get a
proper choice for the regularization parameter α we chose α such that the classical
level set method, started at the exact solution (with 1% noisy data), does not iterate
away from the exact solution too far. A too-large α would not allow us to achieve
topology changes in our algorithms, and a too-small α does not regularize the problem
enough. We found α = 10−5‖û‖2

L2(ΓM ) to be a proper choice for all examples.
As an initial guess we take for all of our test examples a circle with radius r = 0.7

and centered at the origin (0, 0) for the classical level set method, while we started with
no material for the level set method incorporating steepest descent-type (respectively,
Newton-type) topological changes.

For the level set method incorporating a steepest descent-type topology change
we solve (4.2) after every 10th classical level set iterations, while for Newton-type
topology changes we solve (4.4) after every 50th classical level set iteration.

In our implementation we did not implement any termination criteria except a
maximal number of iterations. This is because our implementation of the L1-distance
and Hausdorff distance are not accurate enough to allow classical termination criteria
from optimization terminate when dL1(Ωk+1,Ωk) is small enough. The number of
iterations needed to get to the optimum was estimated in a postprocessing step looking
for the minimum in the L1-distance dL1(Ωk,Ω

†).

5.1. Full measurements ΓM = D. In this section we consider the identifica-
tion of two ellipses and an ellipse with an elliptic hole from full measurements, i.e.,
ΓM = D. The full measurement case is mildly ill-posed, something like twice differ-
entiation, and provides a lot of data. Therefore we can expect good results for all
algorithms. Most challenging is probably the ellipse with an elliptic hole. For this
case we expect that the classical level set method does not perform a topology change.
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The partial differential equations (1.1), (2.4) are described by

(-1,-1) (1,-1)

(1,1)(-1,1)

u = 1

u = 1

u
=

1

u
=

1

Σ
Ω

D

−Δu + χΩu = 0 in D,
u = 1 on ΓD,
∂u

∂n
= 0 on ΓN ,

−Δw + χΩw = −(u− û) in D,
w = 0 on ΓD,
∂w

∂n
= 0 on ΓN .

Measurements.

û = u|D + 1% noise inL2(D),

Jα(Ω) = 1
2‖u− û‖2

L2(D) + αPer
(
Ω
)
.

Due to the Dirichlet boundary conditions u = 1 on ∂D the solution u(Ω†) is close to
the solution of the system without material u(∅) = 1. Hence the subproblem (3.4)
approximates the original problem (1.1) quite well, and we can expect that the level
set method, incorporating Newton-type topology changes, performs very well. Indeed
we will see that already the first solution to (3.6) provides a very good initial guess
and predicts the correct topology of the desired geometry.

Two ellipses, ΓM = D. We compare the classical level set method to a level set
method incorporating a steepest descent-type topology change (4.2) and a level set
method incorporating a Newton-type topology change (4.4). As expected all three
methods perform very well and approximate the exact geometry quite accurately
(Figure 5.4, last row).

Classical level set method (Figure 5.4, 1st column). The algorithm per-
forms very well and even realizes the necessary topology change, by splitting. The
number of iterations needed to approach the solution is moderate (see Table 5.1a).
The distance to the exact geometry in both the L1- and the Hausdorff metrics is
reasonably small (see Figure 5.1).

Steepest descent-type topology change (Figure 5.4, 2nd column). The
classical level set method incorporated into the steepest descent-type topology changes
(4.2) does not predict the correct topology within the first solution to (4.2). It needs a
second call (Figure 5.4, 2nd row, 2nd column) to generate a further topology change.
Even when this topology change does not result in a substantial decrease in the
objective functional (Figure 5.1a), the topological change can be observed in the
jump of the Hausdorff distance dH(Ωk,Ω

†) (Figure 5.1c). Interestingly this topology
change adds two new geometries at the correct position but does not try to reduce the
wrong geometry. Further calls of (3.3) do not cause any changes of the geometry. The
only topology change that occurs happens during the level set evolution where the
above two geometries merge together. Even when the level set method incorporating
a steepest descent-type topology change almost reaches the minimum of the objective
functional Jα(Ω) before the classical level set method (Figure 5.1a), it needs more
iterations until it stays at the final geometry (see Table 5.1a).

Newton-type topology change (Figure 5.4, 3rd column). The first Newton-
type topology change (3.6) already predicts the correct topology (Figure 5.4, 1st row,
3rd column). Also the objective functional Jα(Ω) as well as the L1- and Hausdorff
distances (see Figure 5.1) get very close to their optimum and need just a few correc-
tion steps with the classical level set method. This is not too unexpected because the
subproblem (3.4) approximates the nonlinear partial differential equation (1.1) very
accurately. Although the number of iterations to approach the solution is very low,
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note that one solution of (3.6) is more expansive (see Table 5.1a). Nonetheless the
phase I/II with Newton-type topology changes is significantly faster than the other
methods discussed above.

Elliptic hole in ellipse, ΓM = D. This geometry is more challenging, and
we expect that the classical level set method gets stuck in a local minima and does
not predict the correct geometry. Here the power of the other two methods should
show up. Again the subproblem (3.4) approximates the original partial differential
equation (1.1) very well, and we can expect that the level set method incorporating
Newton-type topology changes perform very well within the first solution of (3.6).

Classical level set method (Figure 5.5, 1st column). During the level
set evolution the topology does not change although the objective functional Jα(Ω)
(Figure 5.2a) gets close to its minimum. Nonetheless the identified geometry does not
look too bad (visually). The number of iterations doubled but is still moderate (see
Table 5.1b).

Steepest-descent type topology change (Figure 5.5, 2nd column). As
before the steepest descent-type topology change (3.3) does not generate the correct
topology within its first call but needs two calls (Figure 5.5, 2nd row, 2nd column).
Further solver calls of (3.3) do not force further changes. Hence after the second
solution call of (3.3) we evolve the geometry just by the classical level set method. This
can be observed in the L1-distance as well as in the Hausdorff distance (Figures 5.2b,
5.2c) which have a jump at iteration 12. We are at the final solution at approximately
40 level set iterations, which makes an equivalent, due to 3 times calling a solver for
(3.3), of 50 classical level set iterations in total (see Table 5.1b). In this test the
steepest descent-type topology change results into the fastest solution.

Newton-type topology change (Figure 5.5, 3rd column). Again the first
call to the Newton-type topology change (4.4) already predicts the topology correct
(see Figure 5.5, 1st row, 3rd column). This time the objective functional Jα(Ω) as
well as the L1- and Hausdorff distances (Figure 5.2) are not yet too close to their
optimum. Hence we additionally need 20–40 classical level set iteration to end at the
final solution. Summing up the level set iterations and the SQP equivalent for one
solution of (4.4), the total cost is about 75–95 classical level set iterations. Therefore
the algorithm is severely faster than the classical level set method but takes twice
the time of the level set method incorporating steepest descent-type topology changes
(see Table 5.1b).

5.2. Boundary neasurements ΓM = ΓN . Finally we consider the identifica-
tion of two ellipses from just one set of boundary measurements, i.e., ΓM = ΓN . To
deal with boundary measurements we have to change slightly our boundary conditions
for the partial differential equations (1.1), (2.4), namely,
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Measurements.

û = u|ΓN
+ 1% noise inL2(ΓN ),
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2‖u− û‖2

L2(ΓN ) + αPer
(
Ω
)
.
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Geometric inverse problems with boundary measurements are supposed to be severely
ill-posed. Severely ill-posed problems are extremely challenging to every algorithm,
and usually one cannot expect too good results for them. Especially topology changes
are extremely difficult to achieve. We expect that the classical level set method is
not able to perform the desired topology change, even when it managed it for the full
measurements case.

Due to the Neumann boundary conditions the solution u to the above system is
not close to the solution u(∅) = 1 (solution without material). Hence the subproblem
(3.4) does not approximate the original problem (1.1) very well (when starting with
no material). As a consequence of this the first step of a Newton-type topology change
(4.4) shall not perform as good as in the full measurement cases.

Two ellipses ΓM = ΓN . Once more we compare the classical level set method
to a level set method incorporating a steepest descent-type topology change (4.2) and
a level set method incorporating a Newton-type topology change (4.4).

Classical level set method (Figure 5.6, 1st column). As predicted, the
classical level set method does not split. Nonetheless the finally identified geometry
does not look too bad (visually). The number of iterations needed, until it approaches
its optimum, is very high, but this is not uncommon for severely ill-posed problems.
Although we do not get the correct topology, the objective functional Jα(Ω) (Figure
5.3a) gets close to its minimum.

Steepest descent-type topology change (Figure 5.6, 2nd column). As
before the classical level set method incorporating steepest descent-type topology
changes (4.2) does not predict the correct topology within the first solution to (4.2).
Iterating further and calculating several times the solution to (4.2), the algorithm
forces further topology changes, some of them correctly located, some of them not
(Figure 5.6, 1st column). Nonetheless the objective functional Jα(Ω) decreases, as
predicted by the theory. After many iterations the algorithm stops with four noncon-
nected components, where two are correctly located and the others are not.

Newton-type topology change (Figure 5.6, 3rd column). Finally we con-
sider the classical level set method incorporating Newton-type topology changes (4.4).
Already the first calculation of the solution to (4.4) predicts the correct number of
connected components, and later solution calls of (4.4) do not force any additional
topology changes. As for the steepest descent-type topology changes, the first solution
to (4.4) does not look too good, but it is enough for the classical level set method to
approach the exact solution. For the final result presented in Figure 5.6, 3rd column,
4th row, the objective functional and also the L1- and Hausdorff distances (Figure
5.3) would decrease further. Hence, iterating further would still improve the result.
Nonetheless we terminated the algorithm, because the number of iterations is already
very high, and we can already see from Figure 5.6, 3rd column, that the algorithm
behaves better than the two other.

6. Conclusion. In this paper we presented a way to generalize the notion of
topological derivatives such that we can also deal with perimeter-regularized objec-
tive functionals. The generalization allows one to formulate auxiliary minimization
problems similar to steepest descent-type and Newton-type minimization problems,
such that a descent in the objective functional is guaranteed. This is in contrast to
classical topological derivatives, where one gets just an indicator of where to force
topology changes, but the indicator does not guarantee a descent in the objective
functional.
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We incorporated this generalization of topological derivatives into the classical
level set method and showed by means of some examples its applicability. While,
in some cases, the classical level set method failed to predict the correct topology,
the suggested level set methods with incorporated steepest descent-type and Newton-
type topology changes succeed to get the correct topology or at least forced topology
changes.

The numerical results for the specific example presented in this paper were quite
promising, and an extension to more complicated problems might be of interest.
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[45] J. Sokolowski and A. Żochowski, Optimality conditions for simultaneous topology and shape
optimization, SIAM J. Control Optim., 42 (2003), pp. 1198–1221.

[46] Y.-H. R. Tsai and S. J. Osher, Level set methods and their application in image sciences,
Commun. Math. Sci., (2003), pp. 623–656.

[47] X. Wang, Y. Mei, and M. Y. Wang, Incorporating topological derivatives into level set meth-
ods for structural topology optimization, in Optimal Shape Design and Modeling, T. Lewin-
ski et al., eds., Polish Academy of Sciences, Warsaw, 2004, pp. 145–157.



SIAM J. NUMER. ANAL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 45, No. 5, pp. 2228–2258

CONVERGENCE ANALYSIS OF A MIXED FINITE VOLUME
SCHEME FOR AN ELLIPTIC-PARABOLIC SYSTEM MODELING

MISCIBLE FLUID FLOWS IN POROUS MEDIA∗

CLAIRE CHAINAIS-HILLAIRET† AND JÉRÔME DRONIOU‡

Abstract. We study a finite volume discretization of a strongly coupled elliptic-parabolic PDE
system describing miscible displacement in a porous medium. We discretize each equation by a
finite volume scheme which allows a wide variety of unstructured grids (in any space dimension) and
gives strong enough convergence for handling the nonlinear coupling of the equations. We prove the
convergence of the scheme as the time and space steps go to 0. Finally, we provide numerical results
to demonstrate the efficiency of the proposed numerical scheme.
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1. Introduction.

1.1. Miscible displacement in porous media. The mathematical model for
the single-phase miscible displacement of one fluid by another in a porous medium,
in the case where the fluids are considered incompressible, is an elliptic-parabolic
coupled system [2, 4]. Let Ω be a bounded domain of R

d (d = 2 or 3) representing
the reservoir and let (0, T ) be the time interval. The unknowns of the problem are
p the pressure in the mixture, U its Darcy velocity, and c the concentration of the
invading fluid.

We denote by Φ(x) and K(x) the porosity and the absolute permeability tensor
of the porous medium, μ(c) the viscosity of the fluid mixture, ĉ the injected concen-
tration, and q+ and q− the injection and the production source terms. If we neglect
gravity, the model reads⎧⎪⎨⎪⎩

div(U) = q+ − q− in (0, T ) × Ω,

U = −K(x)

μ(c)
∇p in (0, T ) × Ω,

(1)

Φ(x)∂tc− div(D(x,U)∇c− cU) + q−c = q+ĉ in (0, T ) × Ω,(2)

where D is the diffusion-dispersion tensor including molecular diffusion and mechan-
ical dispersion

D(x,U) = Φ(x)

(
dmI + |U|

(
dlE(U) + dt(I − E(U))

))
(3)

∗Received by the editors April 14, 2006; accepted for publication (in revised form) February 15,
2007; published electronically October 5, 2007.

http://www.siam.org/journals/sinum/45-5/65723.html
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with I the identity matrix, dm the molecular diffusion, dl and dt the longitudinal
and transverse dispersion coefficients, and E(U) = (

UiUj

|U|2 )1≤i,j≤d. Laboratory ex-

periments have found that the longitudinal dispersivity dl is much greater than the
transverse dispersivity dt and that the diffusion coefficient is very small by compari-
son.

In reservoir simulation, the boundary ∂Ω is typically impermeable. Therefore, if
n denotes the exterior normal to ∂Ω, the system (1)–(2) is supplemented with no flow
boundary conditions: {

U · n = 0 on (0, T ) × ∂Ω,

D(x,U)∇c · n = 0 on (0, T ) × ∂Ω.
(4)

An initial condition is also prescribed:

c(x, 0) = c0(x) in Ω.(5)

Because of the homogeneous Neumann boundary conditions on U, the injection and
production source terms have to satisfy the compatibility condition

∫
Ω
q+(·, x) dx =∫

Ω
q−(·, x) dx in (0, T ), and since the pressure is defined only up to an arbitrary

constant, we normalize p by the following condition:∫
Ω

p(·, x) dx = 0 in (0, T ).(6)

The viscosity μ is usually determined by the following mixing rule

μ(c) = μ(0)

(
1 +
(
M1/4 − 1

)
c

)−4

in [0, 1],(7)

where M = μ(0)
μ(1) is the mobility ratio (μ can be extended to R by letting μ = μ(0)

on (−∞, 0) and μ = μ(1) on (1,∞)). The porosity Φ and the permeability K are in
general assumed to be bounded from above and from below by positive constants (or
positive multiples of I for the tensor K).

In [15], Feng proved the existence of a weak solution to the problem (1)–(7)
in the two-dimensional case and with dl ≥ dt > 0 and dm > 0. This result has
been generalized by Chen and Ewing in [3] to the three-dimensional case and with
gravity effects and various boundary conditions. At high flow velocities the effects of
mechanical dispersion are much greater than those of molecular diffusion. Therefore,
Amirat and Ziani studied in [1] the asymptotic behavior of the weak solution as dm
goes to 0 and proved the existence of a weak solution in the case where dm = 0.

From a numerical point of view, various methods have already been developed
for this problem. In general the pressure equation is discretized by a finite element
method. However, the key point is that equation (2) on c is a convection-dominated
equation, which is not well adapted to the discretization by finite difference or fi-
nite element methods. Douglas, Ewing, and Wheeler [6] used a mixed finite element
method for the pressure equation and a Galerkin finite element method for the con-
centration equation. In [19], Russell introduced a modified method of characteristic
for the resolution of (2), while (1) is solved by a finite element method. Then, Ew-
ing, Russell, and Wheeler [10] combined a mixed finite element method for (1) and a
modified method of characteristic for (2). In [20, 21], the authors also used a mixed
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finite element method for (1) but developed an Eulerian Lagrangian localized adjoint
method for (2).

Convergence of numerical schemes to (1)–(7) (or connected problems) has already
been studied (see, e.g., [5, 6, 11, 12, 17]). But, to the best of our knowledge, these
proofs of convergence are based on a priori error estimates, which need regularity
assumptions on the solution (p,U, c) to the continuous problem. Such regularity does
not seem provable in general, such as if we take a discontinuous permeability tensor
(which is expected in field applications; see [20]).

Finite volume methods are well adapted to the discretization of conservation laws;
see, for instance, the reference book by Eymard, Gallouët, and Herbin [13]. They
provide efficient numerical schemes for elliptic equations as well as for convection-
dominated parabolic equations. However, because of the anisotropic diffusion in (1)
(due to K(x)) and of the dispersion terms in (2)–(3), the standard four-point finite vol-
ume schemes cannot be used here. Besides, as said above, (2) is convection-dominated
and, therefore, a good approximation of U is needed in the discretization of (2) in
order to obtain admissible numerical results. In [9], Droniou and Eymard recently
proposed a mixed finite volume scheme which handles anisotropic heterogeneous dif-
fusion problems on any grid and precisely provides, for equations such as (1), good
approximations of U; this scheme is therefore a natural candidate to discretize such
coupled problems as (1)–(7), especially as it has been shown to behave well from a
numerical point of view.

In this paper, we extend the mixed finite volume scheme of [9] to a system,
presented in section 1.2, which generalizes (1)–(7). Section 2 contains the definition
of the scheme and the statement of the main results: existence and uniqueness of an
approximate solution and its convergence to the solution of the continuous problem
as the time and space steps tend to 0. A priori estimates on the approximate solution
are established in section 3, and in section 4 we prove the existence and uniqueness
of the solution to our scheme. The proof of convergence is presented in section 5,
under no regularity assumption on the solution to the continuous problem. Section 6
presents some numerical experiments to demonstrate the efficiency of our numerical
scheme. Section 7 is an appendix containing a few technical results.

1.2. Formulation of the problem and assumptions. Let us now rewrite the
problem (1)–(7) under the following synthesized and more general form (notice that,
from now on, we use letters with bar accents to denote the exact solutions, and we
use letters without bar accents to denote approximate solutions):⎧⎨⎩

div(Ū) = q+ − q− in (0, T ) × Ω, Ū = −A(·, c̄)∇p̄ in (0, T ) × Ω,∫
Ω

p̄(·, x) dx = 0 in (0, T ), Ū · n = 0 on (0, T ) × ∂Ω,
(8)

⎧⎪⎨⎪⎩
Φ∂tc̄− div(D(·, Ū)∇c̄) + div(c̄Ū) + q−c̄ = q+ĉ in (0, T ) × Ω,

c̄(0, ·) = c0 in Ω,

D(·, Ū)∇c̄ · n = 0 on (0, T ) × ∂Ω.

(9)

In what follows, we assume that Ω is a convex polygonal bounded domain of R
d,

T > 0, and the following:

(q+, q−) ∈ L∞(0, T ;L2(Ω)) are nonnegative,∫
Ω

q+(·, x) dx =

∫
Ω

q−(·, x) dx a.e. in (0, T ),
(10)
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A : Ω × R → Md(R) is a Carathéodory function satisfying the following:

∃αA > 0 , ∃ΛA > 0 such that, for a.e. x ∈ Ω, all s ∈ R, and all ξ ∈ R
d,

A(x, s)ξ · ξ ≥ αA|ξ|2 and |A(x, s)| ≤ ΛA,

(11)

D : Ω × R
d → Md(R) is a Carathéodory function satisfying the following:

∃αD > 0 , ∃ΛD > 0 such that, for a.e. x ∈ Ω, all W ∈ R
d, and all ξ ∈ R

d,

D(x,W)ξ · ξ ≥ αD(1 + |W|)|ξ|2 and |D(x,W)| ≤ ΛD(1 + |W|),

(12)

Φ ∈ L∞(Ω) and there exists Φ∗ > 0 such that Φ∗ ≤ Φ ≤ Φ−1
∗ a.e. in Ω,(13)

ĉ ∈ L∞((0, T ) × Ω) satisfies 0 ≤ ĉ ≤ 1 a.e. in (0, T ) × Ω,(14)

c0 ∈ L∞(Ω) satisfies 0 ≤ c0 ≤ 1 a.e. in Ω.(15)

Remark 1.1. Since E(U) =
(
UiUj/|U|2

)
1≤i,j≤d

is the orthogonal projector on

RU, the model in section 1.1 satisfies this assumptions with αD = φ∗ inf(dm, dl, dt)
and ΛD = φ−1

∗ sup(dm, dl, dt).
As Φ does not depend on t, the following definition (similar to the one in [15]) of

weak solution to (8)–(9) makes sense.
Definition 1.1. Under assumptions (10)–(15), a weak solution to (8)–(9) is

(p̄, Ū, c̄) such that p̄ ∈ L∞(0, T ;H1(Ω)), Ū ∈ L∞(0, T ;L2(Ω))d, c̄ ∈ L∞(0, T ;L2(Ω))∩
L2(0, T ;H1(Ω)),∫

Ω

p̄(t, ·) = 0 for a.e. t ∈ (0, T ) , Ū = −A(·, c̄)∇p̄ a.e. in (0, T ) × Ω,

∀ϕ ∈ C∞([0, T ] × Ω) , −
∫ T

0

∫
Ω

Ū · ∇ϕ =

∫ T

0

∫
Ω

(q+ − q−)ϕ ,

∀ψ ∈ C∞
c ([0, T ) × Ω) , −

∫ T

0

∫
Ω

Φc̄∂tψ +

∫ T

0

∫
Ω

D(·, Ū)∇c̄ · ∇ψ −
∫ T

0

∫
Ω

c̄Ū · ∇ψ

+

∫ T

0

∫
Ω

q−c̄ψ −
∫

Ω

Φc0ψ(0, ·) =

∫ T

0

∫
Ω

q+ĉψ.

2. Scheme and main results. Let us first define the notion of admissible mesh
of Ω and some notation associated with it.

Definition 2.1. Let Ω be a convex polygonal bounded domain in R
d. An admis-

sible mesh of Ω is given by D = (M, E), where the following hold:
(i) M is a finite family of nonempty disjoint convex polygonal domains in Ω

(the “control volumes”) such that Ω = ∪K∈MK.
(ii) E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such

that, for all σ ∈ E, there exists an affine hyperplane E of R
d and K ∈ M verifying

that σ ⊂ ∂K ∩E and σ is a nonempty open convex subset of E. We assume that, for
all K ∈ M, there exists a subset EK of E such that ∂K = ∪σ∈EK

σ. We also assume
that, for all σ ∈ E, either σ ⊂ ∂Ω or σ = K ∩ L for some (K,L) ∈ M×M.
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The d-dimensional measure of a control volume K is denoted by m(K), and the
(d − 1)-dimensional measure of an edge σ by m(σ); in the integral signs, γ denotes
the measure on the edges. If σ ∈ EK , then nK,σ is the unit normal to σ outward to
K. In the case where σ ∈ E satisfies σ = K ∩ L for (K,L) ∈ M × M, we denote
σ = K|L (K and L are then called “neighboring control volumes”). We define the set
of interior (resp., boundary) edges as Eint = {σ ∈ E ; σ 
⊂ ∂Ω} (resp., Eext = {σ ∈ E ;
σ ⊂ ∂Ω}). For all K ∈ M and all σ ∈ E , xK and xσ are the respective barycenters
of K and σ.

The size of a mesh D is size(D) = supK∈M diam(K). The following quantity
measures the regularity of the mesh

regul(D) = sup

{
max

(
diam(K)d

ρdK
,Card(EK)

)
; K ∈ M

}
,

where, for K ∈ M, ρK is the supremum of the radius of the balls contained in K.
The definition of regul(D) implies that, if ωd is the volume of the unit ball in R

d, for
all K ∈ M,

diam(K)d ≤ regul(D)ρdK ≤ regul(D)

ωd
m(K) .(16)

Remark 2.1. We ask for very few geometrical constraints on the mesh of Ω.
This is particularly important since, in real-world problems, meshes used in basin
and reservoir simulations can be quite irregular and not admissible in the usual finite
element or finite volume senses (see [14]).

Our scheme is based on the mixed finite volume scheme introduced in [9] and,
for elliptic equations, [8]. Its main goal is to handle a wide variety of grids for het-
erogeneous and anisotropic operators while giving strong convergence of approximate
gradients. Therefore, this scheme applied to (8) provides a strong approximation of
Ū, which can then be used in the discretization of the convective term div(c̄Ū) in the
parabolic equation.

The idea is to consider, besides unknowns which approximate the functions (p̄, c̄),
unknowns which approximate the gradients of these functions, as well as unknowns
which stand for the fluxes associated with the differential operators. Thus, if D is an
admissible mesh of Ω and k > 0 is a time step (we always choose time steps such that
Nk = T/k is an integer), we consider, for all n = 1, . . . , Nk and all K ∈ M, unknowns
(pnK ,vn

K) which stand for approximate values of (p̄,∇p̄) on [(n − 1)k, nk) × K and
numbers Fn

K,σ (for σ ∈ EK) which stand for approximate values of −
∫
σ
Ū · nK,σ dγ

on [(n − 1)k, nk). Similarly, the unknowns (cnK ,wn
K) approximate (c̄,∇c̄) on [(n −

1)k, nk)×K and the numbers Gn
K,σ (for σ ∈ EK) approximate

∫
σ
D(·, Ū)∇c̄ ·nK,σ dγ

on [(n− 1)k, nk).
The quantities q+,n

K , q−,n
K , and ĉnK denote the mean values of q+, q−, and ĉ on

[(n − 1)k, nk) × K, and ΦK , c0K , AK(s), and DK(ξ) are the mean values of Φ, c0,
A(·, s), and D(·, ξ) on K. We also take positive numbers (νK)K∈M. The scheme for
(8) reads as follows: for all n = 1, . . . , Nk,

vn
K · (xσ − xK) + vn

L · (xL − xσ) + νKm(K)Fn
K,σ − νLm(L)Fn

L,σ

= pnL − pnK ∀σ = K|L ∈ Eint,
(17)

Fn
K,σ + Fn

L,σ = 0 ∀σ = K|L ∈ Eint ,(18)
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Un
K = −AK(cn−1

K )vn
K ∀K ∈ M ,(19)

m(K)Un
K = −

∑
σ∈EK

Fn
K,σ(xσ − xK) ∀K ∈ M ,(20)

−
∑
σ∈EK

Fn
K,σ = m(K)q+,n

K − m(K)q−,n
K ∀K ∈ M ,(21)

∑
K∈M

m(K)pnK = 0 ,(22)

Fn
K,σ = 0 ∀K ∈ M , ∀σ ∈ EK ∩ Eext .(23)

Denoting by (−Fn
K,σ)+ and (−Fn

K,σ)− the positive and negative parts of −Fn
K,σ,

the scheme for (9) reads as follows: for all n = 1, . . . , Nk,

wn
K · (xσ − xK) + wn

L · (xL − xσ) + νKm(K)Gn
K,σ − νLm(L)Gn

L,σ

= cnL − cnK ∀σ = K|L ∈ Eint ,
(24)

Gn
K,σ + Gn

L,σ = 0 ∀σ = K|L ∈ Eint ,(25)

m(K)DK(Un
K)wn

K =
∑
σ∈EK

Gn
K,σ(xσ − xK) ∀K ∈ M ,(26)

m(K)ΦK
cnK − cn−1

K

k
−
∑
σ∈EK

Gn
K,σ +

∑
σ∈EK∩Eint

σ=K|L

[
(−Fn

K,σ)+cnK − (−Fn
K,σ)−cnL

]
+ m(K)q−,n

K cnK = m(K)q+,n
K ĉnK ∀K ∈ M ,

(27)

Gn
K,σ = 0 ∀K ∈ M , ∀σ ∈ EK ∩ Eext .(28)

Let us explain why each equation of this scheme is quite natural.
• If we take νK = 0, (17) and (24) state that vn

K (≈ ∇p̄) and wn
K (≈ ∇c̄) are

“discrete gradients” of pnK (≈ p̄) and cnK (≈ c̄). The penalization using the
fluxes (i.e., with νK > 0) is added to ensure the stability of the scheme.

• Equations (18) and (25) state the conservation of the fluxes, and (23) and (28)
translate the no flow boundary conditions.

• Equations (21) and (27) come from the integration on a control volume and
on a time step of the PDEs in (8) and (9). Notice that, as usual, we have
chosen a time-implicit scheme for the convection-diffusion equation with an
upwind discretization of the convective term.

• Equations (19) and (22) are expressions of Ū = −A(·, c̄)∇p̄ and
∫
Ω
p̄(t, ·) = 0.

• Equations (20) and (26) come from the reconstruction formula given in Lem-
ma 7.1, since Fn

K,σ and Gn
K,σ are approximations of the fluxes of −Ū and

D(·, Ū)∇c̄.
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In the following, if a = (anK)n=1,...,Nk , K∈M is a family of numbers (or vectors),
we use a to denote the piecewise constant function on [0, T )×Ω which is equal to anK
on [(n − 1)k, nk) ×K. Similarly, for a fixed n, an = (anK)K∈M is identified with the
function on Ω which takes the constant value anK on the control volume K. Hence
p denotes both the family (pnK)n=1,...,Nk , K∈M and the corresponding function on
[0, T ) × Ω. We also denote by F and G the families (Fn

K,σ)n=1,...,Nk , K∈M , σ∈EK
and

(Gn
K,σ)n=1,...,Nk , K∈M , σ∈EK

.

Theorem 2.1. Let Ω be a convex polygonal bounded domain in R
d and let T > 0.

Assume (10)–(15) hold. Let D be an admissible mesh of Ω and k > 0 such that T/k
is an integer. Then there exists a unique solution (p,v,U, F, c,w, G) to (17)–(28).

Theorem 2.2. Let Ω be a convex polygonal bounded domain in R
d and let T > 0.

Assume (10)–(15) hold. Let ν0 > 0 and β ∈ (2−2d, 4−2d). Let (Dm)m≥1 be a sequence
of admissible meshes of Ω such that size(Dm) → 0 as m → ∞ and (regul(Dm))m≥1 is
bounded; assume that there exists C1 such that, for all m ≥ 1,

∀K,L ∈ Mm neighboring control volumes, diam(K)2−β−d ≤ C1diam(L)d−2.(29)

For all K ∈ Mm, we take νK = ν0diam(K)β. Let km > 0 be such that Nkm
= T/km

is an integer and km → 0 as m → ∞, and denote by (pm,vm,Um, Fm, cm,wm, Gm)
the solution to (17)–(28) with D = Dm and k = km. Then, up to a subsequence, as
m → ∞,

pm → p̄ weakly-∗ in L∞(0, T ;L2(Ω)) and strongly in Lp(0, T ;Lq(Ω))
for all p < ∞ and all q < 2;

vm → ∇p̄ weakly-∗ in L∞(0, T ;L2(Ω))d and strongly in L2((0, T ) × Ω)d;

Um → Ū weakly-∗ in L∞(0, T ;L2(Ω))d and strongly in L2((0, T ) × Ω)d;

cm → c̄ weakly-∗ in L∞(0, T ;L2(Ω)) and strongly in Lp(0, T ;Lq(Ω))
for all p < ∞ and all q < 2;

wm → ∇c̄ weakly in L2((0, T ) × Ω)d,

where (p̄, Ū, c̄) is a weak solution to (8)–(9).
Remark 2.2. As usual in finite volume schemes, we do not assume the existence

of a solution to the continuous problem; this existence is obtained as a byproduct
of the proof of convergence. In particular, this means that, contrary to [5] or [11],
the convergence of the mixed finite volume scheme is proved here under no regularity
assumption on the solution to (8)–(9). The convergence occurs only up to a subse-
quence because, with such a lack of regularity, the uniqueness of the solution is not
known (see [15]); in the case where the solution is unique (for instance, under suitable
regularity assumptions), then the whole sequence converges.

Remark 2.3. Note that, since 4 − β − 2d ≥ 0, one way to satisfy (29) is to ask
that diam(K) ≤ C2diam(L) for all neighboring control volumes K and L of a mesh.
But (29) allows more freedom on the meshes (for example, if d = 1 and β ∈ (0, 1] or
if d = 2 and β ∈ (−2, 0), then (29) is always satisfied).

3. The a priori estimates. We prove a priori estimates on the solution to the
scheme.

Proposition 3.1. Let Ω be a convex polygonal bounded domain in R
d and

let T > 0. Assume (10)–(11) hold. Let D be an admissible mesh of Ω such that
regul(D) ≤ θ for some θ > 0, and let k > 0 be such that Nk = T/k is an integer. Let
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(νK)K∈M be a family of positive numbers such that, for some ν0 > 0 and β ≥ 2− 2d,
νK ≤ ν0diam(K)β for all K ∈ M. Then there exists C3 only depending on d, Ω, θ,
β, ν0, αA, and ΛA such that, for any numbers (cn−1

K )n=1,...,Nk , K∈M, any solution
(p,v,U, F ) to (17)–(23) satisfies

‖p‖2
L∞(0,T ;L2(Ω)) + ‖v‖2

L∞(0,T ;L2(Ω))d + ‖U‖2
L∞(0,T ;L2(Ω))d

+ sup
n=1,...,Nk

∑
K∈M

∑
σ∈EK

νKm(K)|Fn
K,σ|2 ≤ C3‖q+ − q−‖2

L∞(0,T ;L2(Ω)).

Proof. Let n ∈ [1, Nk]. Multiply (21) by pnK , sum over all control volumes, and
gather by edges using (18). Thanks to (23), the terms involving boundary edges
disappear, and this leads to∑

σ=K|L∈Eint

Fn
K,σ(pnL − pnK) =

∑
K∈M

m(K)(q+,n
K − q−,n

K )pnK =

∫
Ω

(q+,n − q−,n)pn,

where q+,n(·) − q−,n(·) = 1
k

∫ nk
(n−1)k

q+(t, ·) − q−(t, ·) dt. Substituting (17) into this
equality and gathering by control volumes (still using (18) and (23)), we deduce∫

Ω

(q+,n − q−,n)pn =
∑

σ=K|L∈Eint

Fn
K,σ (vn

K · (xσ − xK) + vn
L · (xL − xσ))

+
∑

σ=K|L∈Eint

Fn
K,σ

(
νKm(K)Fn

K,σ − νLm(L)Fn
L,σ

)
=
∑

K∈M
vn
K ·
∑
σ∈EK

Fn
K,σ(xσ − xK) +

∑
K∈M

∑
σ∈EK

νKm(K)|Fn
K,σ|2.(30)

Thanks to (20), (19), and hypothesis (11), we find

‖q+,n − q−,n‖L2(Ω)‖pn‖L2(Ω) ≥ αA‖vn‖2
L2(Ω)d +

∑
K∈M

∑
σ∈EK

νKm(K)|Fn
K,σ|2.(31)

We notice that (17) is exactly (61) for (pn,vn, Fn). Hence, since pn satisfies (22),
we can apply the discrete Poincaré–Wirtinger inequality given in Lemma 7.2 to get

‖pn‖L2(Ω) ≤ C4

⎛⎝‖vn‖L2(Ω)d +

( ∑
K∈M

∑
σ∈EK

diam(K)2d−2ν2
Km(K)|Fn

K,σ|2
) 1

2

⎞⎠ ,

where C4 depends only on d, Ω, and θ. By choice of νK , we have diam(K)2d−2νK ≤
ν0diam(K)2d−2+β ; but 2d−2+β ≥ 0, and thus diam(K)2d−2νK ≤ ν0diam(Ω)2d−2+β .
Hence

‖pn‖L2(Ω) ≤ C5

⎛⎝‖vn‖L2(Ω)d +

( ∑
K∈M

∑
σ∈EK

νKm(K)|Fn
K,σ|2

) 1
2

⎞⎠ ,(32)

where C5 depends only on d, Ω, θ, β, and ν0. Substituting this into (31), we obtain

αA‖vn‖2
L2(Ω)d +

∑
K∈M

∑
σ∈EK

νKm(K)|Fn
K,σ|2 ≤ C5‖q+,n − q−,n‖L2(Ω)‖vn‖L2(Ω)d

+ C5‖q+,n − q−,n‖L2(Ω)

( ∑
K∈M

∑
σ∈EK

νKm(K)|Fn
K,σ|2

) 1
2

.
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Using Young’s inequality, this gives the desired bound on v and F and, coming back
to (32), the bound on p. The bound on U derives from the one on v, since A is
bounded (see (11)).

Proposition 3.2. Let Ω be a convex polygonal bounded domain in R
d and let

T > 0. Assume (10) and (12)–(15) hold. Let D be an admissible mesh of Ω, and let
k > 0 be such that Nk = T/k is an integer. Let (νK)K∈M be a family of positive
numbers. Assume that F = (Fn

K,σ)n=1,...,Nk , K∈M , σ∈EK
satisfies (18), (21), and (23),

and let U = (Un
K)n=1,...,Nk , K∈M be a family of vectors in R

d. Then there exists C6

depending only on d, Ω, T , αD, and Φ∗ such that any solution (c,w, G) to (24)–(28)
satisfies

‖c‖2
L∞(0,T ;L2(Ω)) + ‖w‖2

L2((0,T )×Ω)d + ‖ |U|1/2 |w| ‖2
L2((0,T )×Ω)

+

Nk∑
n=1

k
∑

K∈M

∑
σ∈EK

νKm(K)|Gn
K,σ|2 ≤ C6‖c0‖2

L2(Ω) + C6‖q+‖2
L∞(0,T ;L2(Ω)).

Proof. Multiply (27) by cnK and sum over all control volumes. Noting that (cnK −
cn−1
K )cnK ≥ 1

2

(
(cnK)2 − (cn−1

K )2
)

and using (25) to gather by edges (no boundary term
remains thanks to (28)), we obtain, since ΦK ≥ 0,

1

2k

∑
K∈M

m(K)ΦK

(
(cnK)2 − (cn−1

K )2
)

+
∑

σ∈Eint
σ=K|L

Gn
K,σ(cnL − cnK) +

∑
K∈M

m(K)q−,n
K (cnK)2

+
∑

K∈M

∑
σ∈EK∩Eint
σ=K|L

[
(−Fn

K,σ)+cnK − (−Fn
K,σ)−cnL

]
cnK ≤

∑
K∈M

m(K)|q+,n
K ĉnK | |cnK |.(33)

Let us denote by T the fourth term of the inequality. Gathering by edges and
using (18), which implies (−Fn

L,σ)+ = (−Fn
K,σ)− and (−Fn

L,σ)− = (−Fn
K,σ)+, yields

T =
∑

σ=K|L∈Eint

[
(−Fn

K,σ)+ (cnK(cnK − cnL)) + (−Fn
K,σ)− (cnL(cnL − cnK))

]
.

But cnK(cnK − cnL) ≥ 1
2

(
(cnK)2 − (cnL)2

)
and cnL(cnL − cnK) ≥ 1

2

(
(cnL)2 − (cnK)2

)
, hence

T ≥ 1

2

∑
σ=K|L∈Eint

[
(−Fn

K,σ)+ − (−Fn
K,σ)−

] (
(cnK)2 − (cnL)2

)
≥ 1

2

∑
σ=K|L∈Eint

−Fn
K,σ

(
(cnK)2 − (cnL)2

)
,

which gives, gathering by control volumes and using (18), (23), and (21),

T ≥ 1

2

∑
K∈M

(cnK)2

(
−
∑
σ∈EK

Fn
K,σ

)
≥ 1

2

∑
K∈M

m(K)(cnK)2(q+,n
K − q−,n

K ).

Since

1

2

∑
K∈M

m(K)(cnK)2(q+,n
K − q−,n

K ) +
∑

K∈M
m(K)q−,n

K (cnK)2

=
1

2

∑
K∈M

m(K)(q+,n
K + q−,n

K )(cnK)2 ≥ 0
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(because q+ and q− are nonnegative), we deduce from (33) that

1

2k

∑
K∈M

m(K)ΦK

(
(cnK)2 − (cn−1

K )2
)

+
∑

σ=K|L∈Eint

Gn
K,σ(cnL − cnK)

≤
∑

K∈M
m(K)|q+,n

K ĉnK | |cnK |.(34)

Using (24) and gathering by control volumes, we get, thanks to (25), (28), and (26),∑
σ∈Eint
σ=K|L

Gn
K,σ(cnL − cnK) =

∑
K∈M

wn
K ·
∑
σ∈EK

Gn
K,σ(xσ − xK) +

∑
K∈M

∑
σ∈EK

νKm(K)|Gn
K,σ|2

=
∑

K∈M
m(K)DK(Un

K)wn
K · wn

K +
∑

K∈M

∑
σ∈EK

νKm(K)|Gn
K,σ|2.(35)

We then use (12) and plug the corresponding lower bound into (34), which we multiply
by k and sum over n = 1, . . . , N (for some N ∈ [1, Nk]); since |ĉ| ≤ 1, this leads to

1

2

∑
K∈M

m(K)ΦK

(
(cNK)2 − (c0K)2

)
+ αD

N∑
n=1

k
∑

K∈M
m(K)(1 + |Un

K |)|wn
K |2

+

N∑
n=1

k
∑

K∈M

∑
σ∈EK

νKm(K)|Gn
K,σ|2 ≤ T‖q+‖L∞(0,T ;L2(Ω))‖c‖L∞(0,T ;L2(Ω)).(36)

This gives in particular, by (13) and the definition of (c0K)K∈M,

Φ∗
2

∑
K∈M

m(K)(cNK)2 ≤ Φ−1
∗
2

‖c0‖2
L2(Ω) +

T 2

Φ∗
‖q+‖2

L∞(0,T ;L2(Ω)) +
Φ∗
4
‖c‖2

L∞(0,T ;L2(Ω)).

Since ‖c‖2
L∞(0,T ;L2(Ω)) = supr=1,...,Nk

∑
K∈M m(K)(crK)2, this inequality, valid for all

1 ≤ N ≤ Nk, gives the estimate on ‖c‖L∞(0,T ;L2(Ω)). Plugged into (36), it gives the

desired bounds on w, |U|1/2 |w| and G.

4. Existence and uniqueness of numerical solutions. In this section, we
prove Theorem 2.1. Note first that (17)–(23) and (24)–(28) are decoupled systems:
at time step n, the knowledge of cn−1

K (or of c0K if n = 1) shows that (17)–(23) is
a linear system for (pn,vn,Un, (Fn

K,σ)K∈M,σ∈EK
); once this system is solved, Un is

known and (24)–(28) becomes a linear system for (cn,wn, (Gn
K,σ)K∈M,σ∈EK

). Hence,
to prove Theorem 2.1 we only need to show that these linear systems are solvable.

Let us first consider the system on (cn,wn, (Gn
K,σ)K∈M,σ∈EK

). By (25) and (28),
we can consider that there is only one flux by interior edge and this system there-
fore has (d + 1)Card(M) + Card(Eint) unknowns, with as many remaining equa-
tions ((26) gives dCard(M) equations, (27) another Card(M) equations, and (24)
the last Card(Eint) equations). Hence, this first system is a square system. Assume
that (cn,wn, (Gn

K,σ)K∈M,σ∈EK
) is a solution with a null right-hand side, i.e., with

cn−1 = ĉn = 0; then (34) and (35) show that this solution is null, and therefore that
this system is invertible.

Without the relation (22) and since we can eliminate Un by (19), the system
on (pn,vn,Un, (Fn

K,σ)K∈M,σ∈EK
) also has (d + 1)Card(M) + Card(Eint) unknowns
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and the same number of equations. However, it is not invertible since its kernel
clearly contains (C, 0, 0, 0), where C ∈ R

Card(M) is any constant vector; in fact, the
estimates in the preceding section show that these vectors fully describe the kernel of
((17)–(21), (23)): if (pn,vn,Un, (Fn

K,σ)K∈M,σ∈EK
) belongs to this kernel, then (pn −

C,vn,Un, (Fn
K,σ)K∈M,σ∈EK

), where C is a constant vector such that (22) holds with

pn−C, satisfies (17)–(23) with q+,n−q−,n = 0, and is therefore null by Proposition 3.1,
which shows that (pn,vn,Un, (Fn

K,σ)K∈M,σ∈EK
) = (C, 0, 0, 0).

Summing (21) over K and using (18) and (23), we obtain that a necessary con-
dition for ((17)–(21), (23)) to have a solution is

∑
K∈M m(K)qn,+K − m(K)qn,−K = 0.

Since the kernel of the square system ((17)–(21), (23)) has dimension 1, this condition
is also sufficient, and is clearly satisfied by the data we consider thanks to (10). We
can therefore always find a solution to ((17)–(21), (23)) and, in view of the kernel of
this system, (22) then selects one and only one solution.

Remark 4.1. As said above, at each time step the scheme (17)–(28) can be
decoupled in two successive linear systems, (17)–(23) and then (24)–(28), each one
with size (d + 1)Card(M) + Card(Eint). However, it is possible to proceed to an
algebraic elimination which leads to smaller sparse linear systems, following [18] for
the mixed finite element method and [9] for the mixed finite volume method for
anisotropic diffusion problems.

The computation of (p,v,U, F ) at each time step reduces to the resolution of
a linear system of size Card(Eint), while the computation of (c,w, G) demands the
resolution of a linear system of size Card(M)+Card(Eint) (the size of this last system
cannot be reduced to Card(Eint) because of the upwind and implicit discretization of
the convective term div(cU)).

5. Proof of the convergence of the scheme. In this section, we prove The-
orem 2.2. To simplify the notation, we drop the index m and thus prove the desired
convergence as size(D) → 0 and k → 0, with regul(D) bounded and (29) uniformly
satisfied for all considered meshes. Under these assumptions, Propositions 3.1 and 3.2
give estimates which are uniform with respect to the meshes and time steps.

5.1. Compactness of the concentration. We prove the strong compactness
of the concentration.

Lemma 5.1. Under the assumptions of Theorem 2.2, c is relatively compact in
L1(0, T ;L1

loc(Ω)).
Proof. We first construct an affine interpolant c̃ of c and prove, thanks to Aubin’s

theorem, the relative compactness of this interpolant in a weaker space. We then
deduce the compactness of c in L1(0, T ;L1

loc(Ω)).
Step 1. An affine interpolant of c.
We define c̃ : [0, T ) × Ω → R as, for all n = 1, . . . , Nk and all t ∈ [(n− 1)k, nk),

c̃(t, ·) =
t− (n− 1)k

k
cnK +

nk − t

k
cn−1
K on K.

The estimates of Proposition 3.2 and the definition of (c0K)K∈M ensure the bound of
‖c̃‖L∞(0,T ;L2(Ω)). For all n = 1, . . . , Nk and all t ∈ [(n − 1)k, nk), we have ∂tc̃(t, ·) =
cnK−cn−1

K

k on K. Hence, denoting by ΦD the piecewise constant function on Ω equal to
ΦK on K and taking ϕ ∈ C2

c (Ω), we deduce from (27) that if ϕK is the mean value
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of ϕ on K,∫
Ω

ΦD(x)∂tc̃(t, x)ϕ(x) dx =
∑

K∈M
m(K)ΦK

cnK − cn−1
K

k
ϕK

=
∑

K∈M

∑
σ∈EK

Gn
K,σϕK −

∑
K∈M

m(K)q−,n
K cnKϕK +

∑
K∈M

m(K)q+,n
K ĉnKϕK

−
∑

K∈M

∑
σ=K|L∈EK∩Eint

[
(−Fn

K,σ)+cnK − (−Fn
K,σ)−cnL

]
ϕK .(37)

Let us denote by T1, T3, T4, and T2 the four terms on the right-hand side of this
equality. In the following, Ci denote constants which do not depend on k, D, n, K,
or ϕ; we induce C2

c (Ω) with the norm ‖ϕ‖ = supx∈Ω

(
|ϕ(x)| + |∇ϕ(x)| + |D2ϕ(x)|

)
.

Since xK is the barycenter of K and ϕ is regular we have ϕ(xσ)−ϕK = ∇ϕ(xK) ·
(xσ − xK) + RK,σ for all σ ∈ EK , with |RK,σ| ≤ C7‖ϕ‖diam(K)2. Hence,

ϕL − ϕK = ∇ϕ(xK) · (xσ − xK) + ∇ϕ(xL) · (xL − xσ) + RK,σ −RL,σ.(38)

Using this equality and gathering by control volumes, we get

−T1 =
∑

σ=K|L∈Eint

Gn
K,σ(ϕL − ϕK)

=
∑

K∈M
∇ϕ(xK) ·

∑
σ∈EK

Gn
K,σ(xσ − xK) +

∑
K∈M

∑
σ∈EK

Gn
K,σRK,σ

=
∑

K∈M
m(K)∇ϕ(xK) ·DK(Un

K)wn
K +

∑
K∈M

∑
σ∈EK

Gn
K,σRK,σ.(39)

On one hand, thanks to (12) and to the estimate on U in L∞(0, T ;L2(Ω))d (which
gives in particular an estimate in L∞(0, T ;L1(Ω))d), we have∣∣∣∣∣ ∑

K∈M
m(K)∇ϕ(xK) ·DK(Un

K)wn
K

∣∣∣∣∣ ≤ C8‖ϕ‖
∑

K∈M
m(K)(1 + |Un

K |) |wn
K |

≤ C9‖ϕ‖
( ∑

K∈M
m(K)(1 + |Un

K |)|wn
K |2
) 1

2

.(40)

On the other hand, using |RK,σ| ≤ C7‖ϕ‖diam(K)2 and the Cauchy–Schwarz inequal-
ity, we get∣∣∣∣∣ ∑

K∈M

∑
σ∈EK

Gn
K,σRK,σ

∣∣∣∣∣
≤ C7‖ϕ‖

( ∑
K∈M

∑
σ∈EK

νKm(K)|Gn
K,σ|2

) 1
2
( ∑

K∈M

∑
σ∈EK

diam(K)4

νKm(K)

) 1
2

≤ C10‖ϕ‖
( ∑

K∈M

∑
σ∈EK

νKm(K)|Gn
K,σ|2

) 1
2
( ∑

K∈M
diam(K)4−2d−βm(K)

) 1
2

(41)
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because (16) and the definition of νK imply

diam(K)4

νKm(K)
= m(K)

diam(K)4−β

ν0m(K)2
≤ 1

ν0

(
regul(D)

ωd

)2

m(K)diam(K)4−2d−β .(42)

But 4 − 2d − β ≥ 0 and thus diam(K)4−2d−β ≤ diam(Ω)4−2d−β . Using this in (41)
and substituting the result along with (40) into (39), we deduce the final estimate:

|T1| ≤ C11‖ϕ‖
( ∑

K∈M
m(K)(1 + |Un

K |)|wn
K |2
) 1

2

+C11‖ϕ‖
( ∑

K∈M

∑
σ∈EK

νKm(K)|Gn
K,σ|2

) 1
2

.(43)

For σ = K|L, set bnK,σ = (−Fn
K,σ)+cnK − (−Fn

K,σ)−cnL. By (18), we have bnK,σ =
−bnL,σ. Hence, using (38) and gathering by control volumes, we get

T2 =
∑

σ=K|L∈Eint

bnK,σ(ϕL − ϕK)

=
∑

K∈M
∇ϕ(xK) ·

∑
σ∈EK∩Eint

bnK,σ(xσ − xK) +
∑

K∈M

∑
σ∈EK∩Eint

bnK,σRK,σ.

But bnK,σ = −Fn
K,σc

n
K + (−Fn

K,σ)−(cnK − cnL) and thus, by (23) and (20),

T2 = −
∑

K∈M
cnK∇ϕ(xK) ·

∑
σ∈EK

Fn
K,σ(xσ−xK)+T5 =

∑
K∈M

m(K)cnK∇ϕ(xK) ·Un
K +T5

with

T5 =
∑

K∈M
∇ϕ(xK) ·

∑
σ∈EK∩Eint

σ=K|L

(−Fn
K,σ)−(cnK − cnL)(xσ − xK) +

∑
K∈M

∑
σ∈EK∩Eint

bnK,σRK,σ.

Let us estimate T5. The corresponding calculations will be useful later in the proof
of the convergence of the concentration. We have

|T5| ≤ ‖ϕ‖
∑

K∈M

∑
σ=K|L∈EK∩Eint

|Fn
K,σ| |cnK − cnL|diam(K)

+C7‖ϕ‖
∑

K∈M

∑
σ∈EK∩Eint

|bnK,σ|diam(K)2.(44)

But (24) entails

|cnK − cnL| ≤ |wn
K |diam(K) + |wn

L|diam(L) + νKm(K)|Gn
K,σ| + νLm(L)|Gn

L,σ|

and thus, using |Fn
K,σ| = |Fn

L,σ| whenever σ = K|L,

|bnK,σ| ≤ |Fn
K,σ| |cnK | + |Fn

K,σ| |wn
K |diam(K) + |Fn

K,σ| |wn
L|diam(L)

+ νKm(K)|Fn
K,σ| |Gn

K,σ| + νLm(L)|Fn
L,σ| |Gn

L,σ|.
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Substituting these two estimates into (44) and bounding diam(K) either by diam(Ω)
or size(D), we get

|T5| ≤ C12‖ϕ‖
∑

K∈M

∑
σ∈EK

|Fn
K,σ| (|wn

K | + |cnK |) diam(K)2

+C12‖ϕ‖
∑

K∈M

∑
σ=K|L∈EK∩Eint

|Fn
K,σ| |wn

L|diam(K)diam(L)

+C12‖ϕ‖size(D)
∑

K∈M

∑
σ∈EK

νKm(K)|Fn
K,σ| |Gn

K,σ|

+C12‖ϕ‖size(D)
∑

K∈M

∑
σ=K|L∈EK∩Eint

νLm(L)|Fn
L,σ| |Gn

L,σ|.(45)

We successively apply the Cauchy–Schwarz inequality, the fact that regul(D) is bounded,
inequality (42), and the estimates on F from Proposition 3.1. This yields∑
K∈M

∑
σ∈EK

|Fn
K,σ| (|wn

K | + |cnK |) diam(K)2

≤ C13

( ∑
K∈M

∑
σ∈EK

νKm(K)|Fn
K,σ|2

)1
2
( ∑

K∈M
m(K)diam(K)4−2d−β(|wn

K | + |cnK |)2
) 1

2

≤ C14size(D)
4−2d−β

2

( ∑
K∈M

m(K)(|wn
K | + |cnK |)2

) 1
2

.(46)

Then we note that (thanks to (23))∑
K∈M

∑
σ=K|L∈EK∩Eint

νLm(L)|Fn
L,σ| |Gn

L,σ| =
∑

K∈M

∑
σ∈EK

νKm(K)|Fn
K,σ| |Gn

K,σ|(47)

and, with the estimates on F from Proposition 3.1, we get

∑
K∈M

∑
σ∈EK

νKm(K)|Fn
K,σ| |Gn

K,σ| ≤ C15

( ∑
K∈M

∑
σ∈EK

νKm(K)|Gn
K,σ|2

) 1
2

.(48)

Using the fact that νK = ν0diam(K)β and inequalities (16) and (29),we get∑
K∈M

∑
σ=K|L∈EK∩Eint

|Fn
K,σ| |wn

L|diam(K)diam(L)

≤
( ∑

K∈M

∑
σ∈EK

νKm(K)|Fn
K,σ|2

)1
2

⎛⎜⎜⎝ ∑
K∈M

∑
σ∈EK∩Eint

σ=K|L

diam(K)2diam(L)2

νKm(K)
|wn

L|2

⎞⎟⎟⎠
1
2

≤ C16

( ∑
K∈M

∑
σ∈EK

νKm(K)|Fn
K,σ|2

)1
2

⎛⎜⎜⎝∑
L∈M

|wn
L|2

∑
σ∈EL∩Eint
σ=L|K

diam(K)2−β−ddiam(L)2

⎞⎟⎟⎠
1
2

≤ C17

( ∑
K∈M

∑
σ∈EK

νKm(K)|Fn
K,σ|2

) 1
2
(∑

L∈M
m(L)|wn

L|2
) 1

2

.
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Finally, gathering (45), (46), (47), (48), and this last inequality, it yields

|T5| =

∣∣∣∣T2 −
∑

K∈M
m(K)cnK∇ϕ(xK) · Un

K

∣∣∣∣
≤ C18‖ϕ‖size(D)

4−2d−β
2

( ∑
K∈M

m(K)(|wn
K | + |cnK |)2

) 1
2

+C18‖ϕ‖
( ∑

K∈M

∑
σ∈EK

νKm(K)|Fn
K,σ|2

) 1
2
( ∑

K∈M
m(K)|wn

K |2
) 1

2

+C18‖ϕ‖size(D)

( ∑
K∈M

∑
σ∈EK

νKm(K)|Gn
K,σ|2

) 1
2

.(49)

Thanks to the L∞(0, T ;L2(Ω)) estimates on c and U, we also have∣∣∣∣∣ ∑
K∈M

m(K)cnK∇ϕ(xK) · Un
K

∣∣∣∣∣ ≤ ‖ϕ‖
( ∑

K∈M
m(K)|cnK |2

) 1
2
( ∑

K∈M
m(K)|Un

K |2
) 1

2

≤ C19‖ϕ‖,

and, using the bound on the fluxes Fn
K,σ from Proposition 3.1, the final estimate on

T2 reads

|T2| ≤ C20‖ϕ‖ + C20‖ϕ‖
( ∑

K∈M
m(K)(|wn

K | + |cnK |)2
) 1

2

(50)

+ C20‖ϕ‖
( ∑

K∈M

∑
σ∈EK

νKm(K)|Gn
K,σ|2

) 1
2

.

The estimates on T3 and T4 are straightforward, thanks to the L∞(0, T ;L2(Ω))-
bound on c; plugging (43) and (50) into (37), we obtain, for all n = 1, . . . , Nk and all
t ∈ [(n− 1)k, nk),∣∣∣∣∫

Ω

ΦD(x)∂tc̃(t, x)ϕ(x) dx

∣∣∣∣
≤ C21‖ϕ‖

( ∑
K∈M

m(K)(1 + |Un
K |)|wn

K |2
)1

2

+ C21‖ϕ‖
( ∑

K∈M

∑
σ∈EK

νKm(K)|Gn
K,σ|2

)1
2

+ C21‖ϕ‖ + C21‖ϕ‖
( ∑

K∈M
m(K)(|wn

K | + |cnK |)2
) 1

2

.

Since this inequality is satisfied for all ϕ ∈ C2
c (Ω) and ΦD does not depend on t, this

gives an estimate on ‖∂t(ΦD c̃)(t, ·)‖(C2
c (Ω))′ which, squared, leads to

‖∂t(ΦD c̃)(t, ·)‖2
(C2

c (Ω))′ ≤ C22

∑
K∈M

m(K)(1 + |Un
K |)|wn

K |2 + C22

+ C22

∑
K∈M

∑
σ∈EK

νKm(K)|Gn
K,σ|2 + C22

∑
K∈M

m(K)(|wn
K | + |cnK |)2
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for all n = 1, . . . , Nk and all t ∈ [(n − 1)k, nk). Integrating this last inequality on
t ∈ [(n− 1)k, nk) and summing over n = 1, . . . , Nk, we prove, thanks to the estimates
of Proposition 3.2, that ∂t(ΦD c̃) is bounded in L2(0, T ; (C2

c (Ω))′).
Noting that ΦD c̃ is bounded in L∞(0, T ;L2(Ω)) (because c̃ is bounded in this

space and ΦD is bounded in L∞(Ω)), and since L2(Ω) is continuously embedded in
(C2

c (Ω))′ (via the natural embedding f → (ϕ →
∫
Ω
fϕ)), this shows that ΦD c̃ is

bounded in H1(0, T ; (C2
c (Ω))′). But C2

c (Ω) is compactly and densely embedded in
C0(Ω), and, by duality, (C0(Ω))′ (the space of bounded measures on Ω) is compactly
embedded in (C2

c (Ω))′. Since L2(Ω) is continuously embedded in (C0(Ω))′ (via an
embedding which is compatible with the preceding one), the embedding of L2(Ω) in
(C2

c (Ω))′ is in fact compact. Hence, by Aubin’s compactness theorem we deduce that
ΦD c̃ is relatively compact in C([0, T ]; (C2

c (Ω))′).
Step 2. Conclusion.
For all n = 1, . . . , Nk and t ∈ [(n − 1)k, nk), we have ΦDc(t, ·) = ΦD c̃(nk, ·) on

Ω (these functions are both equal to ΦKcnK on each K ∈ M). We also know (see,
e.g., [7]) that H1(0, T ; (C2

c (Ω))′) is continuously embedded in C1/2([0, T ]; (C2
c (Ω))′)

(the space of 1/2-Hölder continuous functions [0, T ] → (C2
c (Ω))′). Hence, ΦD c̃ is also

bounded in C1/2([0, T ]; (C2
c (Ω))′) and there exists C23 not depending on k or D such

that, for all n = 1, . . . , Nk and all t ∈ [(n− 1)k, nk),

‖ΦDc(t, ·) − ΦD c̃(t, ·)‖(C2
c (Ω))′ = ‖ΦD c̃(nk, ·) − ΦD c̃(t, ·)‖(C2

c (Ω))′ ≤ C23

√
k.

This means that, as k → 0, ΦDc − ΦD c̃ → 0 in L∞(0, T ; (C2
c (Ω))′); since ΦD c̃ is

relatively compact in this space, we deduce that ΦDc is also relatively compact in this
same space, and thus in particular in L1(0, T ; (C2

c (Ω))′).
Let n = 1, . . . , Nk and t ∈ [(n − 1)k, nk). By (24), Lemma 7.3 gives, for all ω

relatively compact in Ω and all |ξ| < dist(ω,Rd\Ω),

‖c(t, · + ξ) − c(t, ·)‖L1(ω) ≤ C24|ξ|
∑

K∈M
m(K)|wn

K |

+C24|ξ|
∑

K∈M

∑
σ∈EK

diam(K)d−1νKm(K)|Gn
K,σ|.

Integrating on t ∈ [(n− 1)k, nk) and summing over n = 1, . . . , Nk, this implies that

‖c(·, · + ξ) − c‖L1((0,T )×ω)

≤ C24|ξ| ‖w‖L1((0,T )×Ω)d + C24|ξ|
(

Nk∑
n=1

k
∑

K∈M

∑
σ∈EK

diam(K)2d−2νKm(K)

) 1
2

×
(

Nk∑
n=1

k
∑

K∈M

∑
σ∈EK

νKm(K)|Gn
K,σ|2

) 1
2

≤ C25|ξ| + C25|ξ|
(

Nk∑
n=1

k
∑

K∈M
diam(K)2d−2+βm(K)

) 1
2

thanks to the estimates of Proposition 3.2. But 2d−2+β ≥ 0 and diam(K)2d−2+β ≤
diam(Ω)2d−2+β . Hence, we see that ‖c(·, ·+ ξ)− c‖L1((0,T )×ω) → 0 as ξ → 0, indepen-
dent of k or D.
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Since ΦD is bounded in L∞(Ω) and c is bounded in L∞(0, T ;L2(Ω)), we have

‖(ΦDc)(·, · + ξ) − ΦDc‖L1((0,T )×ω)

= ‖ΦD(· + ξ)(c(·, · + ξ) − c) + (ΦD(· + ξ) − ΦD)c‖L1((0,T )×ω)

≤ C26‖c(·, · + ξ) − c‖L1((0,T )×ω) + C27‖ΦD(· + ξ) − ΦD‖L2(ω),

where C26 and C27 do not depend on D or k. But it is classical that ΦD → Φ in L2(Ω)
as size(D) → 0 and thus ‖ΦD(·+ ξ)−ΦD‖L2(ω) → 0 as ξ → 0, independent of D. We
therefore obtain ‖(ΦDc)(·, ·+ ξ)−ΦDc‖L1((0,T )×ω) → 0 as ξ → 0, independent of k or
D. Since ΦDc is relatively compact in L1(0, T ; (C2

c (Ω))′), Lemma 7.5 then shows that
ΦDc is relatively compact in L1(0, T ;L1

loc(Ω)).
Up to a subsequence as k → 0 and size(D) → 0, ΦDc → f in L1(0, T ;L1

loc(Ω)).
Using again the fact that ΦD → Φ in L2(Ω) we also have, up to another subsequence,
ΦD → Φ a.e. on Ω; moreover, ΦD ≥ Φ∗ > 0 and thus 1

ΦD
stays bounded on Ω

(independent of D) and converges a.e. to 1
Φ . The Lebesgue dominated convergence

theorem then shows that c = 1
ΦD

ΦDc → 1
Φf in L1(0, T ;L1

loc(Ω)), which concludes the
proof.

In what follows, we extract a sequence such that c converges in L1(0, T ;L1
loc(Ω))

to some c̄.

5.2. Convergence of the pressure. Let us now turn to the convergence of
(p,v,U). By Proposition 3.1, we can assume, up to a subsequence, that p → p̄
weakly-∗ in L∞(0, T ;L2(Ω)) and that v → v̄ weakly-∗ in L∞(0, T ;L2(Ω))d. Since∫
Ω
p(t, ·) = 0 for all t ∈ (0, T ), it is quite clear that

∫
Ω
p̄(t, ·) = 0 for a.e. t ∈ (0, T ).

By choice of νK and thanks to the estimate on F in Proposition 3.1 and the fact that
2d− 2 + β > 0, we have

Nk∑
n=1

k
∑

K∈M

∑
σ∈EK

diam(K)d−1νKm(K)|Fn
K,σ|

≤
(

Nk∑
n=1

k
∑

K∈M

∑
σ∈EK

m(K)

) 1
2
(

Nk∑
n=1

k
∑

K∈M

∑
σ∈EK

diam(K)2d−2ν2
Km(K)|Fn

K,σ|2
) 1

2

≤ C28

(
sup

n=1,...,Nk

∑
K∈M

∑
σ∈EK

diam(K)2d−2+βνKm(K)|Fn
K,σ|2

) 1
2

≤ C29 size(D)
2d−2+β

2 .(51)

Hence, Lemma 7.4 shows that p̄ ∈ L2(0, T ;H1(Ω)) and that ∇p̄ = v̄, so that p̄ ∈
L∞(0, T ;H1(Ω)). Let AD : Ω × R → Md(R) be the function defined by AD(x, s) =
AK(s) whenever s ∈ R and x belongs to K ∈ M. We also define c̆ : (0, T ) × Ω → R

by c̆ = cn−1
K on [(n − 1)k, nk) × K (n = 1, . . . , Nk and K ∈ M); noticing that

c̆ = c0K ∈ [0, 1] on [0, k[×K and that c̆ = c(· − k, ·) on [k, T [×Ω, it is clear that c̆ → c̄
in L1(0, T ;L1

loc(Ω)) as k → 0 and size(D) → 0. We have U = −AD(·, c̆)v and thus,

for all Z ∈ L2((0, T )×Ω)d,
∫ T
0

∫
Ω

Z ·U =
∫ T
0

∫
Ω
−AD(·, c̆)TZ ·v. Applying Lemma 7.6

(with −AT instead of A, um = c̆, and Zm constant equal to Z), and since v converges

to ∇p̄ weakly in L2((0, T )×Ω)d, we obtain that
∫ T
0

∫
Ω

Z ·U →
∫ T
0

∫
Ω
−A(·, c̄)TZ ·∇p̄,

which proves that U → Ū = −A(·, c̄)∇p̄ weakly in L2((0, T )×Ω)d (since U is bounded
in L∞(0, T ;L2(Ω))d, the convergence also holds weakly-∗ in this space).
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Let us now prove that p̄ is the weak solution to (8) with c̄ fixed as given above.

Let ϕ ∈ C∞([0, T ] × Ω) and define ϕn(x) = 1
k

∫ nk
(n−1)k

ϕ(t, x) dt for n = 1, . . . , Nk.

Multiply (21) by ϕn(xK), sum over all control volumes, and, using (18) and (23),
gather by edges; this gives∑

K∈M
m(K)(q+,n

K − q−,n
K )ϕn(xK) =

∑
σ=K|L∈Eint

Fn
K,σ(ϕn(xL) − ϕn(xK)).

However, since ϕ is regular, we have

ϕn(xL) − ϕn(xK) = ∇ϕn(xK) · (xσ − xK) + ∇ϕn(xL) · (xL − xσ)

+Rn
K,σ −Rn

L,σ

with |Rn
K,σ| ≤ C30diam(K)2 ,

(52)

where C30 does not depend on n, σ = K|L, k, or D. Therefore,∑
K∈M

m(K)(q+,n
K − q−,n

K )ϕn(xK) =
∑

K∈M
∇ϕn(xK) ·

∑
σ∈EK

Fn
K,σ(xσ − xK)

+
∑

K∈M

∑
σ∈EK

Fn
K,σR

n
K,σ

= −
∑

K∈M
m(K)∇ϕn(xK) · Un

K +
∑

K∈M

∑
σ∈EK

Fn
K,σR

n
K,σ.(53)

If ϕk,D and Ψk,D denote the functions on [0, T )×Ω which are equal to ϕn(xK) and to
∇ϕn(xK) on [(n− 1)k, nk)×K, it is clear that ϕk,D → ϕ and Ψk,D → ∇ϕ uniformly
on (0, T ) × Ω as k → 0 and size(D) → 0; multiplying (53) by k and summing over
n = 1, . . . , Nk, we obtain∫ T

0

∫
Ω

(q+ − q−)ϕk,D = −
∫ T

0

∫
Ω

Ψk,D · U +

Nk∑
n=1

k
∑

K∈M

∑
σ∈EK

Fn
K,σR

n
K,σ.(54)

Adapting the proof of (41) to F by using Proposition 3.1, we get∣∣∣∣∣ ∑
K∈M

∑
σ∈EK

Fn
K,σR

n
K,σ

∣∣∣∣∣ ≤ C31

( ∑
K∈M

m(K)diam(K)4−2d−β

) 1
2

≤ C32 size(D)
4−2d−β

2 .(55)

Hence, by the weak convergence of U, we can pass to the limit in (54) and find∫ T
0

∫
Ω
(q+ − q−)ϕ = −

∫ T
0

∫
Ω
∇ϕ · Ū; since this equation is satisfied for all ϕ ∈

C∞([0, T ] × Ω), this concludes the proof that p̄ is the weak solution to (8) for the
given c̄ (limit of c).

We now want to prove the strong convergence of v to ∇p̄ in L2((0, T ) × Ω)d.
To do so, we use (20) and (19) in (30), which we then multiply by k and sum over
n = 1, . . . , Nk; this leads to∫ T

0

∫
Ω

(q+ − q−)p =

∫ T

0

∫
Ω

A(·, c̆)v · v +

Nk∑
n=1

k
∑

K∈M

∑
σ∈EK

νKm(K)|Fn
K,σ|2.(56)
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Dropping the last term (which is nonnegative), the weak convergence of p gives, since
p̄ is a solution to (8),

lim sup
k→0 , size(D)→0

∫ T

0

∫
Ω

A(·, c̆)v · v ≤
∫ T

0

∫
Ω

(q+ − q−)p̄ =

∫ T

0

∫
Ω

A(·, c̄)∇p̄ · ∇p̄(57)

(the last equality is obtained using p̄ as a test function in (8), which is possible since
the weak formulation of (8) is in fact valid with test functions in L1(0, T ;H1(Ω))).
We now write, thanks to (11),

αA

∫ T

0

∫
Ω

|v −∇p̄|2 ≤
∫ T

0

∫
Ω

A(·, c̆)(v −∇p̄) · (v −∇p̄)

=

∫ T

0

∫
Ω

A(·, c̆)v · v −
∫ T

0

∫
Ω

A(·, c̆)v · ∇p̄−
∫ T

0

∫
Ω

A(·, c̆)∇p̄ · v

+

∫ T

0

∫
Ω

A(·, c̆)∇p̄ · ∇p̄.(58)

Up to a subsequence, we can assume that c̆ → c̄ a.e. on (0, T ) × Ω, and (11) then
gives A(·, c̆)∇p̄ → A(·, c̄)∇p̄ and A(·, c̆)T∇p̄ → A(·, c̄)T∇p̄ strongly in L2((0, T )×Ω)d.
Hence, the weak convergence of v to ∇p̄ allows us to pass to the limit in the second
and third terms on the right-hand side of (58); the last term on this right-hand side
obviously converges and (57) therefore gives

lim sup
k→0 , size(D)→0

αA

∫ T

0

∫
Ω

|v −∇p̄|2 ≤ lim sup
k→0 , size(D)→0

∫ T

0

∫
Ω

A(·, c̆)v · v

−
∫ T

0

∫
Ω

A(·, c̄)∇p̄ · ∇p̄ ≤ 0 ,

which concludes the proof of the strong convergence of v to ∇p̄ in L2((0, T ) × Ω)d.
The strong convergence of U in the same space is then a consequence of Lemma 7.6,
of the equality U = −AD(·, c̆)v, and of the strong convergence of v.

We conclude by proving that, up to subsequence and as k → 0 and size(D) → 0,
p(t) → p̄(t) in L1

loc(Ω) for a.e. t ∈ (0, T ). Since p is bounded in L∞(0, T ;L2(Ω)), and
thus in L∞(0, T ;L1

loc(Ω)), this a.e. convergence and Vitali’s theorem imply the conver-
gence in L1(0, T ;L1

loc(Ω)), and, using once again the bound on p in L∞(0, T ;L2(Ω)),
we deduce the strong convergences stated in Theorem 2.2.

As v converges in L2(0, T ;L2(Ω))d, we can assume that, up to a subsequence,
v(t) → ∇p̄(t) in L2(Ω)d for a.e. t ∈ (0, T ). Take a t0 for which this convergence holds,
and such that

∫
Ω
p̄(t0) = 0; we now prove, using the method of proof by contradiction,

that p(t0) → p̄(t0) in L1
loc(Ω) (along the same subsequence as the one chosen for v,

which thus does not depend on t0). If this convergence does not hold, then we can
assume, up to a new subsequence, that, for some η > 0, d1(p(t0), p̄(t0)) ≥ η, where d1

is the distance in L1
loc(Ω). By (17), (p(t0),v(t0), F

n(t0,k)) ∈ Lν(D) (where n(t0, k) is
such that (n(t0, k) − 1)k ≤ t0 < n(t0, k)k) and Proposition 3.1 proves, with the help
of the Cauchy–Schwarz inequality, that M1(D, ν, Fn(t0,k)) (defined in Lemma 7.3)
stays bounded; hence, since p(t0) is bounded in L2(Ω) (see again Proposition 3.1),
Lemma 7.3 and Kolmogorov’s compactness theorem show that, up to a subsequence,
p(t0) converges to some P strongly in L1

loc(Ω) and weakly in L2(Ω). By (22), it is
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clear that
∫
Ω
P = 0 (use the weak convergence in L2(Ω)). Applying Lemma 7.4 to the

functions constant in time (u, r) = (p(t0),v(t0)) and to the fluxes H = Fn(t0,k), the
estimates in Proposition 3.1 allow us to see that (64) is satisfied and thus that ∇P =
∇p̄(t0) (because v(t0) → ∇p̄(t0)); hence, since

∫
Ω
p̄(t0) = 0, we deduce that P = p̄(t0),

and therefore that p(t0) → p̄(t0) in L1
loc(Ω). Since the subsequence along which this

convergence holds has been extracted from a sequence which satisfies d1(p(t0), p̄(t0)) ≥
η, this gives the contradiction we sought.

Remark 5.1. From the strong convergence of v and the a.e. convergence of c̆, we

have
∫ T
0

∫
Ω
A(·, c̆)v ·v →

∫ T
0

∫
Ω
A(·, c̄)∇p̄ ·∇p̄ =

∫ T
0

∫
Ω
(q+−q−)p̄. Hence, (56) implies

lim
k→0 , size(D)→0

Nk∑
n=1

k
∑

K∈M

∑
σ∈EK

νKm(K)|Fn
K,σ|2 = 0.(59)

5.3. Convergence of the concentration. Let us now turn to the conver-
gence of (c,w). By the estimates of Proposition 3.2, the convergence of c to c̄ holds
not only in L1(0, T ;L1

loc(Ω)), but also in L∞(0, T ;L2(Ω)) weak-∗ and strongly in
Lp(0, T ;Lq(Ω)) for all p < ∞ and q < 2. Up to a subsequence, we can assume that
w → w̄ weakly in L2((0, T )×Ω)d. Thanks to the estimates on G from Proposition 3.2,
the analogue of (51) reads

Nk∑
k=1

k
∑

K∈M

∑
σ∈EK

diam(K)d−1νKm(K)|Gn
K,σ| ≤ C33size(D)

2d−2+β
2

→ 0 as size(D) → 0.

Hence, by (24) and Lemma 7.4, we have c̄ ∈ L2(0, T ;H1(Ω)) and w̄ = ∇c̄. We now
prove that c̄ is a solution to (9), with Ū the strong limit of U found in section 5.2.

Let ψ ∈ C∞
c ([0, T ) × Ω) and, for n = 1, . . . , Nk, ψn(x) = 1

k

∫ nk
(n−1)k

ψ(t, x) dt. We

multiply (27) by kψn(xK) and sum over all K ∈ M and over n = 1, . . . , Nk; this
gives T6 + T7 + T8 + T9 = T10. Let us study the limit of each of these terms as k → 0
and size(D) → 0.

5.3.1. Limit of T6. We have, since ψNk = ψNk+1 = 0 for k small enough (the
support of ψ does not touch t = T ),

T6 =

Nk∑
n=1

k
∑

K∈M
m(K)ΦK

cnK − cn−1
K

k
ψn(xK)

=

Nk∑
n=1

k
∑

K∈M
m(K)ΦKcnK

ψn(xK) − ψn+1(xK)

k
−
∑

K∈M
m(K)ΦKc0Kψ1(xK)

=

∫ T

0

∫
Ω

Φcζk,D −
∫

Ω

ΦDc0πk,D,

where ΦD = ΦK on K (as before), ζk,D = ψn(xK)−ψn+1(xK)
k on [(n − 1)k, nk) × K,

and πk,D = ψ1
K on K (n = 1, . . . , Nk and K ∈ M). By regularity of ψ, it is clear that

ζk,D → −∂tψ uniformly on (0, T )×Ω and πk,D → ψ(0, ·) uniformly on Ω; we also recall
that ΦD → Φ strongly in L2(Ω). The weak-∗ convergence of c in L∞(0, T ;L2(Ω)) then

implies T6 → −
∫ T
0

∫
Ω

Φc̄∂tψ −
∫
Ω

Φc0ψ(0, ·).
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5.3.2. Limit of T7. Making use of manipulations which should be, at this stage,
familiar to the reader, we get, using (52) with ϕ = ψ and letting Ψk,D be the function
on [0, T ) × Ω equal to ∇ψn(xK) on [(n− 1)k, nk) ×K,

T7 = −
Nk∑
n=1

k
∑

K∈M

∑
σ∈EK

Gn
K,σψ

n(xK)

=

Nk∑
n=1

k
∑

K∈M
∇ψn(xK) ·

∑
σ∈EK

Gn
K,σ(xσ − xK) +

Nk∑
n=1

k
∑

K∈M

∑
σ∈EK

Gn
K,σR

n
K,σ

=

Nk∑
n=1

k
∑

K∈M
m(K)DK(Un

K)wn
K · ∇ψn(xK) +

Nk∑
n=1

k
∑

K∈M

∑
σ∈EK

Gn
K,σR

n
K,σ

=

∫ T

0

∫
Ω

w ·D(·,U)TΨk,D +

Nk∑
n=1

k
∑

K∈M

∑
σ∈EK

Gn
K,σR

n
K,σ.(60)

However, thanks to the estimates on G from Proposition 3.2, the analogue of (55)
reads ∣∣∣∣ Nk∑

n=1

k
∑

K∈M

∑
σ∈EK

Gn
K,σR

n
K,σ

∣∣∣∣ ≤ C34 size(D)
4−2d−β

2 → 0 as size(D) → 0.

Since U → Ū strongly in L2((0, T ) × Ω)d, hypothesis (12) classically implies that
D(·,U) → D(·, Ū) strongly in L2((0, T ) × Ω)d×d. Since Ψk,D → ∇ψ uniformly on
(0, T ) × Ω, we deduce that D(·,U)TΨk,D → D(·, Ū)T∇ψ in L2((0, T ) × Ω)d and
the weak convergence of w to ∇c̄ allows us to pass to the limit in (60), and we get

T7 →
∫ T
0

∫
Ω
D(·, Ū)∇c̄ · ∇ψ.

5.3.3. Limit of T8. The term T8 is built by writing −kT2 (introduced in the
proof of Lemma 5.1) with ψn(xK) instead of ψK and summing over n, that is,

T8 =

Nk∑
n=1

k
∑

K∈M

∑
σ=K|L∈EK∩Eint

[
(−Fn

K,σ)+cnK − (−Fn
L,σ)−cnL

]
ψn(xK).

In the proof of Lemma 5.1, the estimate (49) on T2 has been proved for test functions
ϕ in C2

c (Ω), but it is also valid for test functions in C2(Ω); in the same way, it is still
valid if we use, in the definition of T2, ϕ(xK) rather than the mean value of ϕ on
K (because (52) is similar to (38) without requiring xK to be the barycenter of K).
Therefore,∣∣∣∣∣T8 +

Nk∑
n=1

k
∑

K∈M
m(K)cnKUn

K · ∇ψn(xK)

∣∣∣∣∣
≤ C35 size(D)

4−2d−β
2

Nk∑
n=1

k

( ∑
K∈M

m(K)(|wn
K | + |cnK |)2

) 1
2

+C35

Nk∑
n=1

k

( ∑
K∈M

∑
σ∈EK

νKm(K)|Fn
K,σ|2

) 1
2
( ∑

K∈M
m(K)|wn

K |2
) 1

2

+C35 size(D)

Nk∑
n=1

k

( ∑
K∈M

∑
σ∈EK

νKm(K)|Gn
K,σ|2

) 1
2
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and, using the Cauchy–Schwarz inequality, the estimates of Proposition 3.2, and (59),
this right-hand side tends to 0 as k → 0 and size(D) → 0. With the same Ψk,D as

before, we have
∑Nk

n=1 k
∑

K∈M m(K)cnKUn
K · ∇ψn(xK) =

∫ T
0

∫
Ω
cU · Ψk,D, and we

therefore can pass to the limit (using the weak convergence of c in L2((0, T )×Ω), the
strong convergence of U in L2((0, T ) × Ω)d, and the uniform convergence of Ψk,D on

(0, T ) × Ω) to obtain T8 → −
∫ T
0

∫
Ω
c̄Ū · ∇ψ.

5.3.4. Limits of T9 and T10. We have, with ψk,D equal to ψn(xK) on [(n −
1)k, nk) ×K,

T9 =

Nk∑
n=1

k
∑

K∈M
m(K)q−,n

K cnKψn(xK) =

∫ T

0

∫
Ω

q−cψk,D →
∫ T

0

∫
Ω

q−c̄ψ.

It is also easy to pass to the limit in

T10 =

Nk∑
n=1

k
∑

K∈M
m(K)q+,n

K ĉnKψn(xK) =

∫ T

0

∫
Ω

q+ĉk,Dψk,D

once we notice that, as for ΦD, the function ĉk,D equal to ĉnK on [(n− 1)k, nk) ×K

converges to ĉ in L2((0, T ) × Ω). Hence, T10 →
∫ T
0

∫
Ω
q+ĉψ.

Gathering the preceding convergences in T6 +T7 +T8 +T9 = T10, we deduce that
c̄ is a weak solution to (9) with the function Ū being the limit of U.

6. Numerical results. In this section, we illustrate the behavior of the mixed
finite volume scheme by applying it to the system (1)–(7), which describes the miscible
displacement of one fluid by another in a porous medium. Some of the tests cases
come from [20], where an ELLAM-MFEM scheme is used, and our results compare
very well to the ones in this reference. In practice, for the implementation of the
numerical scheme we have used the hybrid method mentioned in Remark 4.1.

In all the test cases, the spatial domain is Ω = (0, 1000) × (0, 1000) ft2 and the
time period is [0, 3600] days. The injection well is located at the upper-right corner
(1000, 1000) with an injection rate q+ = 30 ft2/day and an injection concentration
ĉ = 1.0. The production well is located at the lower-left corner (0, 0) with a production
rate q− = 30 ft2/day. The viscosity of the oil is μ(0) = 1.0 cp, the porosity of the
medium is specified as Φ(x) = 0.1, and the initial concentration is c0(x) = 0.

Remark 6.1. Although this does not entirely satisfy the assumptions of our
theoretical study, the wells can be considered as Dirac masses; from the point of view
of numerical tests, we saw no difference between using Dirac masses for q+ and q−

or approximations of such masses by functions with small support (which would be
admissible in the theoretical study).

The mesh of the domain is partitioned into 928 triangles of maximal edge length
50 ft. We take as time step k = 36 days, but the scheme still works with greater time
steps (indeed, the discretization is implicit in time and does not require any stability
condition). In fact, if we use the same time step k = 360 days as in [20], we obtain
numerical results close to the ones in this reference but, since the computational times
are in any case very short (less than 3 seconds per time step on a personal computer),
we choose the smaller time step k = 36 days to show more accurate results with
respect to the exact solution. As noticed in [9], the choice of νK has very little impact
on the numerical outcomes and any small value for the penalization gives good results;
we therefore take νKm(K) = 10−6 for all K. Note that for 10−10 ≤ νKm(K) ≤ 10−2,
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the numerical results are similar. For each test case, we present the surface plot
and/or the contour plot of the concentration c, the interesting physical quantity, at
t = 3 years (≈ 30 time steps) and t = 10 years (≈ 100 time steps).

Remark 6.2. Notice that our scheme preserves the discrete mass, that is, for
n = 1, . . . , Nk,∫

Ω

φ(x)cn(x) dx +

∫ nk

(n−1)k

∫
Ω

q−(t, x)cn(x) dxdt =

∫
Ω

φ(x)cn−1(x) dx

+

∫ nk

(n−1)k

∫
Ω

q+(t, x)ĉn(x) dxdt

(this is obtained by summing (27) over all K ∈ M and using (25) and (28) to cancel
the terms involving Gn

K,σ and (18) to cancel the terms involving Fn
K,σ). This is of

essential importance in the applications.
Remark 6.3. We also notice that, in all the following numerical tests, the com-

puted values of the concentration remain in [0, 1]. This is, however, only a numerical
verification, not a proof (but, thanks to assumption (11), these bounds are not needed
to prove the convergence of the mixed finite volume scheme—and in fact, since the
computed c remains in [0, 1], the implementation of the scheme does not require ex-
tending μ outside of [0, 1]). The mixed finite volume method has many advantages: it
works on very general meshes (which can be useful in petroleum engineering; see [14]);
it ensures strong convergence of the discrete gradients (and therefore convergence of
the scheme for the fully coupled system with minimal regularity assumptions on the
data); it can be easily implemented. But the counterpart is that, though the continu-
ous concentration remains in [0, 1] (see [3] or [15]), we did not prove such bounds for
the approximate concentration; they are just verified in numerical experiments (such
is also the case for other numerical methods; see, e.g., [12, 17, 20]).

Test 1. For this test case, we assume that the porous medium is homogeneous and
isotropic: the permeability tensor is diagonal and constant, K = 80I. The mobility
ratio between the resident and the injected fluids is M = 1, so that the viscosity is
constant, μ(c) = 1.0 cp.

We assume that Φdm = 1.0 ft2/day, Φdl = 5.0 ft, and Φdt = 0.5 ft. This means
that the diffusion effects will be considerably greater than the dispersion effects, which
is in fact unrealistic.

The surface plot and the contour plot of the concentration c at t = 3 years and
t = 10 years are shown in Figure 1. As expected, the Darcy velocity is radial and the
contour plots are circular until the invading fluid reaches the production well (see at
t = 3 years). When the production well is reached, the invading fluid continues to fill
the whole domain until c = 1.

Test 2. The permeability tensor is still diagonal and constant, K = 80I. The
adverse mobility ratio is M = 41 and the viscosity μ(c) now really depends on c.

We assume that there is no molecular diffusion Φdm = 0.0 ft2/day and that
Φdl = 5.0 ft and Φdt = 0.5 ft. This means that we take into account dispersion
effects, which is realistic.

This test case is presented in [20] and permits us to see the macroscopic fingering
phenomenon. Indeed, the viscosity μ(c) rapidly changes across the fluid interface.
It induces rapid changes of the Darcy velocity U, and the difference between the
longitudinal and the transverse dispersivity coefficients implies that the fluid flow is
much faster along the diagonal direction. Such effects can be seen on the surface and
contour plots in Figure 2.
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Fig. 1. Concentration of the invading component in Test 1.

Remark 6.4. Although this test (as well as Tests 3 and 4) does not satisfy our
theoretical assumptions (because dm = 0), we present its results to show that the
mixed finite volume scheme is robust and can numerically handle more general cases
than the ones admitted in the theoretical study, and also to compare it with other
existing schemes for the same equations (note that there is no theoretical study of
convergence whatsoever in [20] or [21]).

Test 3. In this test case, we consider that the permeability tensor is still diagonal
but discontinuous: K = 80I on the subdomain (0, 1000)×(0, 500) and K = 20I on the
subdomain (0, 1000)×(500, 1000). The adverse mobility ratio, the molecular diffusion,
the longitudinal and the transverse dispersivities are the same as in Test 2.

The lower half domain has a larger permeability than the upper half domain.
Therefore, when the invading fluid reaches the lower half domain, it “prefers” to pass
through this domain rather than through the domain with lower permeability. As
expected, we also notice that the upper half domain is, overall, less invaded than in
Test 2. These effects are illustrated by the contour plots of c in Figure 3.

Test 4. In this last test case, the permeability tensor has the form K = κ(x)I with
κ(x) = 80 except on the four square subdomains (200, 400) × (200, 400), (600, 800) ×
(200, 400), (200, 400) × (600, 800), and (600, 800) × (600, 800), where κ(x) = 20. The
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Fig. 2. Concentration of the invading component in Test 2.

adverse mobility ratio is M = 41, and we take Φdm = 0.0 ft2/day, Φdl = 5.0 ft, and
Φdt = 0.5 ft.

Figure 4 shows the contour plot of the concentration at t = 3 years and t =
10 years. The subdomains where the permeability is lower can easily be seen in the
figures. We note that the area occupied by the invading fluid at t = 10 years is in this
case larger than in Test 2, where the permeability was homogeneous.

7. Appendix.

7.1. A magical lemma. The proof of the following lemma (a very simple ap-
plication of Stokes’s formula) can be found in [9].

Lemma 7.1. Let K be a nonempty polygonal convex domain in R
d. For σ ∈ EK ,

we define xσ as the center of gravity of σ, and nK,σ as the unit normal to σ outward
to K. Then, for all vector e ∈ R

d and for all point xK ∈ R
d, we have m(K)e =∑

σ∈EK
m(σ)e · nK,σ(xσ − xK), where m(K) is the d-dimensional measure of K and

m(σ) is the (d− 1)-dimensional measure of σ.

7.2. Lemmas on discrete gradients. For D an admissible mesh of Ω and
ν = (νK)K∈M a family of positive numbers, we denote by Lν(D) the space of (u, r, H),
with u = (uK)K∈M a family of numbers, r = (rK)K∈M a family of vectors, and
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Fig. 3. Concentration of the invading component in Test 3.
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Fig. 4. Concentration of the invading component in Test 4.

H = (HK,σ)K∈M , σ∈EK
a family of numbers, such that, for all σ = K|L ∈ Eint,

rK · (xσ − xK) + rL · (xL − xσ) + νKm(K)HK,σ − νLm(L)HL,σ = uL − uK(61)

(note that u and r are also identified with the corresponding functions on Ω constant
on each control volume K). The following lemmas are the counterparts for Neumann
boundary conditions of lemmas stated in [9] or [8] in the case of Dirichlet boundary
conditions.

Lemma 7.2. Let Ω be a convex polygonal bounded domain in R
d, D an admissible

mesh of Ω such that regul(D) ≤ θ for some θ > 0, and ν = (νK)K∈M a family of
positive numbers. Then there exists C36 depending only on d, Ω, and θ such that, for
all (u, r, H) ∈ Lν(D) satisfying

∫
Ω
u = 0,

‖u‖L2(Ω) ≤ C36

(
‖r‖L2(Ω)d + M2(D, ν,H)

)
with M2(D, ν,H) =

(∑
K∈M

∑
σ∈EK

diam(K)2d−2ν2
Km(K)|HK,σ|2

) 1
2 .
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Proof. Let w be the weak solution of −Δw = u on Ω with homogeneous Neumann
boundary conditions on ∂Ω (such a w exists thanks to the fact that

∫
Ω
u = 0) and

null mean value. Since Ω is convex, it is well known (see [16]) that w ∈ H2(Ω) and
that there exists C37 depending only on d and Ω such that ‖w‖H2(Ω) ≤ C37‖u‖L2(Ω).

We multiply each equation of (61) by
∫
σ
∇w ·nK,σ dγ, sum over the interior edges,

gather by control volumes, and use that
∫
σ
∇w · nK,σ dγ = 0 whenever σ ∈ Eext; this

gives ∑
K∈M

∑
σ∈EK

rK · (xσ − xK)

∫
σ

∇w · nK,σ dγ

+
∑

K∈M

∑
σ∈EK

νKm(K)HK,σ

∫
σ

∇w · nK,σ dγ = ‖u‖2
L2(Ω).

(62)

Since regul(D) ≤ θ, [8, Lemma 8.1] gives C38 depending only on d, Ω, and θ such
that ∣∣∣∣∫

σ

∇w dγ · nK,σ

∣∣∣∣2 ≤
∣∣∣∣∫

σ

∇w dγ

∣∣∣∣2 ≤ C38m(σ)

diam(K)
‖w‖2

H2(K).

Using the Cauchy–Schwarz inequality, we deduce, since Card(EK) ≤ regul(D) ≤ θ for
all K ∈ M,∑

K∈M

∑
σ∈EK

rK · (xσ − xK)

∫
σ

∇w · nK,σ dγ

≤
( ∑

K∈M

∑
σ∈EK

m(K)|rK |2
) 1

2
( ∑

K∈M

∑
σ∈EK

diam(K)2

m(K)

∣∣∣∣∫
σ

∇w dγ · nK,σ

∣∣∣∣2
) 1

2

≤ (C38θ)
1
2

( ∑
K∈M

m(K)|rK |2
) 1

2
( ∑

K∈M

∑
σ∈EK

diam(K)m(σ)

m(K)
‖w‖2

H2(K)

) 1
2

.

We have, if σ ∈ EK , m(σ) ≤ ωd−1diam(K)d−1 (where ωd−1 is the volume of the unit

ball in R
d−1); thus, by (16), diam(K)m(σ)

m(K) ≤ regul(D)ωd−1

ωd
and we obtain

∑
K∈M

∑
σ∈EK

rK · (xσ − xK)

∫
σ

∇w · nK,σ dγ ≤
θ

3
2

√
C38ωd−1√
ωd

‖r‖L2(Ω)d‖w‖H2(Ω).(63)

The Cauchy–Schwarz inequality also gives∑
K∈M

∑
σ∈EK

νKm(K)HK,σ

∫
σ

∇w · nK,σ dγ

≤
( ∑

K∈M

∑
σ∈EK

diam(K)2d−2ν2
Km(K)|HK,σ|2

) 1
2

×
( ∑

K∈M

∑
σ∈EK

m(K)

diam(K)2d−2

∣∣∣∣∫
σ

∇w · nK,σ dγ

∣∣∣∣2
) 1

2

≤
√

C38 M2(D, ν,H)

( ∑
K∈M

∑
σ∈EK

m(σ)m(K)

diam(K)2d−1
‖w‖2

H2(K)

) 1
2

.
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Since m(σ)m(K)
diam(K)2d−1 ≤ ωd−1ωd, this inequality and (63) plugged in (62) conclude the

proof, since ‖w‖H2(Ω) ≤ C37‖u‖L2(Ω).

Lemma 7.3. Let Ω be a convex polygonal bounded domain in R
d, D an admissible

mesh of Ω such that regul(D) ≤ θ for some θ > 0, and ν = (νK)K∈M a family of
positive numbers. Let ω be relatively compact in Ω. Then there exists C39 depending
only on d, Ω, ω, and θ such that, for all (u, r, H) ∈ Lν(D) and all |ξ| < dist(ω,Rd\Ω),

‖u(· + ξ) − u‖L1(ω) ≤ C39

(
‖r‖L1(Ω)d + M1(D, ν,H)

)
|ξ|,

where M1(D, ν,H) =
∑

K∈M
∑

σ∈EK
diam(K)d−1νKm(K)|HK,σ|.

We leave to the reader the proof of Lemma 7.3, counterpart of Lemma 3.2 in [9].
Lemma 7.4. Let Ω be a convex polygonal bounded domain in R

d and let T > 0.
Let (Dm)m≥1 be a sequence of admissible meshes of Ω such that size(Dm) → 0 as
m → ∞ and (regul(Dm))m≥1 is bounded. We also take, for all m ≥ 1, km > 0 such
that Nkm = T/km is an integer and km → 0 as m → ∞, and νm = (νm,K)K∈Mm a
family of positive numbers.

For all m ≥ 1 and all n = 1, . . . , Nkm
, we take (um,n, rm,n) = (um,n

K , rm,n
K )K∈Mm

and a family Hm,n = (Hm,n
K,σ )K∈Mm , σ∈EK

such that (um,n, rm,n, Hm,n) ∈ Lνm
(Dm).

We let (um, rm) be the functions on [0, T )×Ω equal to (um,n
K , rm,n

K ) on [(n−1)k, nk)×K
(for n = 1, . . . , Nkm

and K ∈ Mm).
Assume that, as m → ∞, um → ū weakly in L2((0, T ) × Ω), rm → r̄ weakly in

L2((0, T ) × Ω)d, and

Nkm∑
n=1

km
∑

K∈Mm

∑
σ∈EK

diam(K)d−1νm,Km(K)|Hm,n
K,σ | → 0.(64)

Then ū ∈ L2(0, T ;H1(Ω)) and ∇ū = r̄.
Proof. We first simplify the notation by dropping the index m; hence, we denote

D = Dm, k = km, u = um, r = rm, Hn
K,σ = Hm,n

K,σ , and we are interested in the
convergence of quantities as k → 0 and size(D) → 0.

To prove the lemma, we just need to show that ∇ū = r̄ in the sense of the
distributions on (0, T ) × Ω. Let ϕ ∈ C∞

c ((0, T ) × Ω) and e ∈ R
d; we multiply each

equation (61) on (un, rn, Hn) by
∫ nk
(n−1)k

∫
σ
ϕe · nK,σ dγ. We then sum over all the

edges and, using nK,σ = −nL,σ if σ = K|L ∈ Eint, we gather by control volumes.

Thanks to the fact that
∫ nk
(n−1)k

∫
σ
ϕe ·nK,σ dγ = 0 if σ ∈ Eext, we can freely introduce

the terms corresponding to boundary edges (which are otherwise not present). Finally
summing over n = 1, . . . , Nk, we obtain

Nk∑
n=1

∑
K∈M

rnK ·
∑
σ∈EK

∫ nk

(n−1)k

∫
σ

ϕe · nK,σ dγ(xσ − xK)

+

Nk∑
n=1

∑
K∈M

∑
σ∈EK

νKm(K)Hn
K,σ

∫ nk

(n−1)k

∫
σ

ϕe · nK,σ dγ = −
∫ T

0

∫
Ω

udiv(ϕe).(65)

By convergence of u, this right-hand side tends, as k → 0 and size(D) → 0, to

−
∫ T
0

∫
Ω
ūdiv(ϕe). Let us denote by T11 and T12 the two terms on the left-hand side

of this equality.



2256 CLAIRE CHAINAIS-HILLAIRET AND JÉRÔME DRONIOU

We have, since ϕ is bounded and m(σ) ≤ ωd−1diam(K)d−1 if σ ∈ EK ,

|T12| ≤ ‖ϕ‖∞ωd−1

Nk∑
n=1

k
∑

K∈M

∑
σ∈EK

νKm(K)|Hn
K,σ|diam(K)d−1

and thus, by assumption, T12 → 0 as k → 0 and size(D) → 0. We now compare T11

with

T13 =

Nk∑
n=1

∑
K∈M

rnK ·
∫ nk

(n−1)k

∑
σ∈EK

m(σ)

(
1

m(K)

∫
K

ϕ e

)
· nK,σ(xσ − xK).

Since ϕ is regular, we have C40 depending only on ϕ such that

|T11 − T13| ≤ C40size(D)

Nk∑
n=1

k
∑

K∈M
|rnK |

∑
σ∈EK

m(σ)diam(K).

Using the fact that regul(D) stays bounded and that m(σ) ≤ ωd−1diam(K)d−1, we
get

|T11 − T13| ≤ C41size(D)

Nk∑
n=1

k
∑

K∈M
m(K)|rnK | = C41size(D)‖r‖L1((0,T )×Ω)d .

Since r is bounded in L2((0, T )×Ω)d, this shows that T11 − T13 → 0 as size(D) → 0.
Using Lemma 7.1 with 1

m(K)

∫
K
ϕ(t, ·) e instead of e, we get

T13 =

Nk∑
n=1

∑
K∈M

rnK ·
∫ nk

(n−1)k

∫
K

ϕ e =

∫ T

0

∫
Ω

r · ϕ e −→
∫ T

0

∫
Ω

r̄ · ϕ e

as k → 0 and size(D) → 0. Hence, the limit of (65) as k → 0 and size(D) → 0 gives∫ T
0

∫
Ω

r̄ · ϕ e = −
∫ T
0

∫
Ω
ūdiv(ϕe), which concludes the proof.

7.3. A compactness lemma. The following lemma, whose proof is inspired
by classical proofs of Kolmogorov’s or Aubin’s compactness theorems, mixes a weak
time-compactness and a space-equicontinuity property to obtain a strong time-space
compactness.

Lemma 7.5. Let Ω be a bounded domain in R
d, let T > 0, and let A ⊂

L1(0, T ;L1
loc(Ω)). If A is relatively compact in L1(0, T ; (C2

c (Ω))′) and if, for all ω
relatively compact in Ω,

sup
u∈A

‖u(·, · + ξ) − u‖L1((0,T )×ω) → 0 as |ξ| → 0,

then A is relatively compact in L1(0, T ;L1
loc(Ω)).

Proof. Let ω be relatively compact in Ω and take (ρμ)0<μ<dist(ω,Rd\Ω) smoothing

kernels on R
d such that supp(ρμ) is included in the ball of center 0 and radius μ. For

u ∈ A, let uμ = u ∗ ρμ (the convolution being only on the space variable), which is
defined on (0, T ) × ω.

We first prove that, for all μ, Aμ = {uμ , u ∈ A} is relatively compact in
L1((0, T )×ω). Let (un

μ)n≥1 be a sequence in Aμ. Since (un)n≥1 lies in A, it is relatively



MIXED FV SCHEME FOR A COUPLED SYSTEM 2257

compact in L1(0, T ; (C2
c (Ω))′) and we can assume, up to a subsequence, that it con-

verges in this space. We then have, for all (t, x) ∈ (0, T )×ω, since supp(ρμ(x−·)) ⊂ Ω
by choice of μ,

|un
μ(t, x) − um

μ (t, x)| =

∣∣∣∣∫
Ω

(un(t, y) − um(t, y))ρμ(x− y) dx

∣∣∣∣
≤ ‖un(t, ·) − um(t, ·)‖(C2

c (Ω))′‖ρμ(x− ·)‖C2
c (Ω).

Hence, integrating on x ∈ ω and t ∈ (0, T ), we find Cμ depending on μ but not on n
or m such that ‖un

μ−um
μ ‖L1((0,T )×ω) ≤ Cμ‖un−um‖L1(0,T ;(C2

c (Ω))′), which shows that
(un

μ)n≥1 converges in L1((0, T ) × ω) since (un)n≥1 converges in L1(0, T ; (C2
c (Ω))′).

Hence, for all μ ∈ (0,dist(ω,Rd\Ω)), Aμ is relatively compact in L1((0, T ) × ω).
Let us now conclude. It is sufficient to show that supu∈A ‖u−uμ‖L1((0,T )×ω) goes

to 0 as μ → 0. Indeed, once this is done, we get A ⊂ Aμ + BL1((0,T )×ω)(0, δ(μ)) with
δ(μ) → 0 as μ → 0, which clearly shows, since Aμ is precompact in L1((0, T ) × ω),
that A is also precompact (and thus relatively compact) in this space. Let u ∈ A,
t ∈ (0, T ), and x ∈ ω; we have |u(t, x)−uμ(t, x)| ≤

∫
B(0,μ)

|u(t, x)−u(t, x−y)|ρμ(y) dy

and thus, integrating on x ∈ ω and t ∈ (0, T ),

‖u− uμ‖L1((0,T )×ω) ≤
∫
B(0,μ)

∫ T

0

∫
ω

|u(t, x) − u(t, x− y)| dtdx ρμ(y) dy

≤ sup
|y|≤μ

∫ T

0

∫
ω

|u(t, x) − u(t, x− y)| dtdx,

and the proof is concluded.

7.4. A technical lemma. The proof of the following technical lemma is left to
the reader.

Lemma 7.6. Let Ω be a convex polygonal bounded domain in R
d, let T > 0,

and let A : Ω × R → Md(R) be a Carathéodory bounded matrix-valued function. Let
(Dm)m≥1 be a sequence of admissible meshes of Ω such that size(Dm) → 0 as m → ∞,
and let km > 0 be such that Nkm = T/km is an integer and km → 0 as m → ∞.

Let um = (um,n
K )n=1,...,Nkm , K∈M be a function on (0, T ) × Ω, constant on each

[(n − 1)k, nk) × K (n = 1, . . . , Nkm , K ∈ Mm). We assume that um → ū in
L1(0, T ;L1

loc(Ω)) as m → ∞. Let Zm ∈ L2((0, T ) × Ω)d, which converges to Z̄
in L2((0, T ) × Ω)d as m → ∞. Define ADm : Ω × R → Md(R) by ADm(x, s) =

1
m(K)

∫
K
A(y, s) dy whenever x belongs to K ∈ Mm.

Then ADm(·, um)Zm → A(·, ū)Z̄ in L2((0, T ) × Ω)d as m → ∞.
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Abstract. Adherence boundary conditions for time dependent partial differential equations, via
Chorin algorithm, can be reduced to a parabolic problem with Robin–Fourier boundary conditions in
the three-dimensional context. In the spirit of panel methods, one establishes an integral formulation
whose key point is the estimation of the potential density, introducing a kind of panel method for
tangential kinematic boundary conditions. This paper discusses explicit estimations of this density
in the general case of an arbitrarily shaped three-dimensional body, which leads to a fast numerical
scheme. An error analysis is also provided, involving body smoothness, the Hölder exponent of the
density, and whether the body presents torsion or not.
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1. Introduction. Numerical techniques aimed at solving partial differential equa-
tions involving kinematic boundary conditions, such as the Navier–Stokes equations,
have been viewed from many perspectives. These kinematic boundary conditions usu-
ally rely on zero velocity field on bodies when considering viscous flows. Despite the
fact that these conditions are all mathematically of homogeneous Dirichlet type, fixing
velocity value at boundaries, such vectorial boundary conditions have very different
meanings physically, depending on the velocity component: while the zero normal
component of velocity field on a body is linked to a no-slip-through property, or im-
permeability, the zero tangential components come from an adherence property, or
no-slip condition, not required for ideal fluids relevant to the Euler equations.

The present article focuses on the integral formulation of adherence properties,
which is related to a parabolic problem via the Chorin algorithm (instead of elliptic
for classical panel methods). We present for the first time the numerical analysis of an
ad hoc density evaluation, commonly known as the fastest way to ensure adherence
properties.

It is now generally recognized that integral methods provide powerful tools to
enforce numerically such boundary conditions. Concerning the normal conditions of
velocity, the most common discrete integral technique, known as the “panel method,”
was pioneered by Hess [18, 19] in the 1970s and consists in using a formulation close
to electromagnetism [26], that is, in finding a potential of the form

(1.1) φ(x) =

∫
∂Ω

K(x, y)q(y)dσ(y).

In this equation (1.1), K is a Green function, whose expression is (4π|x − y|)−1 in
the full space R

3, and q is the density function, defined over domain boundary and
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solution of the following integral equation:

(1.2) −q(x)

2
+

∫
∂Ω

nx · ∇K(x, y) q(y) dσ(y) = g(x),

where nx denotes the normal field to ∂Ω and g is a given function depending on the
problem considered. The velocity is then obtained by differentiation of this potential.
Proofs of regularity and well-posedness properties of related discrete operators can be
found in the existing literature (see [34], for example). This usually leads to solving
a large linear system of the size of the boundary discretization [21], which can be
nevertheless efficiently preconditioned [16]. The order of convergence can be under
control and possibly high [3, 4, 35]. In order to speed up the computation, a way to
proceed is to use multipole methods [15, 33, 17], which are by definition well adapted
for Lagrangian or pointwise formulations [2]. Another way is to provide an estimate
of density, which limits convergence order but dramatically decreases computational
time since only potential evaluation remains to be computed [13].

The tangential part of kinematic boundary conditions is a completely different
matter. In the fluid dynamics context, these conditions are related physically to vis-
cous effects, modeled by the Laplacian operator in the Navier–Stokes equations, which
makes them of parabolic type, as opposed to the Euler equations, which are hyper-
bolic. Since the 1980s, several numerical schemes aimed at splitting apart linearity
and nonlinearity have been proposed and implemented in various fields of physics and
mathematical physics, in order to use well-fitted numerical techniques taking into
account the linearity, or lack thereof.

These splitting techniques, also known as fractional step algorithms, can be basi-
cally of first order, or second order when based on the Strang formula, or higher order
by using more general Trotter permutation formulae. Splitting the Navier–Stokes
equations [22] over a time step leads one to consider successively the Euler equation
with only its natural no-slip-though boundary condition, and then a Stokes equa-
tion with full no-slip conditions [9]. In its vorticity formulation, the Stokes problem
can be reduced to a heat equation, possibly vectorial for three-dimensional configura-
tions, with kinematic boundary conditions [8] relying only on tangential components.
From a physical point of view, this heat equation takes into account both near-wall
adherence properties and viscous effects in the whole fluid.

Lighthill’s model states that these kinematic no-slip conditions for a fluid result
from vorticity production on solid boundaries [29]. This production of vorticity has
been viewed from many perspectives, involving Dirichlet conditions [7, 37] or Neumann
conditions [23, 24], usually constrained by Kelvin’s theorem to satisfy conservation of
circulation. It has been shown that Neumann conditions are well adapted for nonsta-
tionary flows for two-dimensional problems [8, 25] or three-dimensional problems in
the half-space [9], i.e., without curvature. It has been recently put forward that three-
dimensional vortical boundary conditions involve the Robin–Fourier condition [11].

By using linearity of the heat equation, it can be split without any approximation
into an equation with a generally nonzero initial condition and homogeneous bound-
ary conditions, and another equation with zero initial condition and Robin–Fourier
boundary conditions, which can be written as

(1.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂ω

∂t
− νΔω = 0 in Ω×]0, T [,

ω(x, 0) = 0 on Ω,

ν Lxω(x, t) = F (x, t) on ∂Ω×]0, T [,
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where Ω is an open set of R
3, F is a boundary source, ν is the diffusion coefficient,

and L, the differential operator defining Robin–Fourier boundary conditions, can be
written as

(1.4) Lx = β(x)Id + n(x) · ∇,

where n(x) denotes the inward normal field to ∂Ω and β denotes a continuous and
bounded function from ∂Ω to R, bounded by β0 (i.e., |β(x)| < β0 for all x ∈ ∂Ω).
Throughout the present paper, Ω is supposed to be an open set such that ∂Ω is a
two-dimensional submanifold of R

3, of class C2+λ, and the source F is supposed to be
a bounded and continuous function on ∂Ω× [0, T ]. The solution of this heat equation
can be found in its integral formulation:

(1.5) ω(x, t) =

∫ t

0

∫
∂Ω

Gξ,τ (x, t)μ̃(ξ, τ)dσ(ξ)dτ,

where σ is a measure on ∂Ω induced by the Lebesgue measure and Gξ,τ is the
parametrix [20, 27], which is, in the case of an isotropic heat equation, simply the
following three-dimensional Gaussian function:

(1.6) Gξ,τ (x, t) = Ĝ(x− ξ, ν(t− τ)) with Ĝ(x, η) =
e−x2/4η

(4πη)3/2
,

whose standard deviation is
√

2ν(t− τ). The density field μ̃ defined on ∂Ω is the
solution of the following Volterra-type integral equation:

(1.7) −1

2
μ̃(x, t) + ν

∫ t

0

∫
∂Ω

LxGξ,τ (x, t) μ̃(ξ, τ)dσ(ξ)dτ = F (x, t),

which admits a unique continuous and bounded solution over ∂Ω× [0, T ] under some
minimalistic hypothesis of smoothness, discussed in [14]. Existence, uniqueness, and
regularity of solutions of the heat equation and this integral equation have been in-
tensively treated in the literature, many results being summarized in [14] and [28].

Joint equations (1.5)–(1.7) are similar in spirit to (1.1)–(1.2), with both providing
a potential aimed at satisfying boundary conditions, and could be named “parabolic
panel method.” Nevertheless, such a panel method involves fully time dependent
densities, which is a function of two variables (instead of one in (1.5)). Moreover, the
integrodifferential operator in (1.7) is twice integrated, in time and space. These two
remarks make joint equations (1.5)–(1.7) much more difficult to handle than classical
panel methods and lead to a much higher degree of computational complexity.

Fast algorithms estimating density μ̃ are consequently of fundamental interest in
order to make the integral method usable in practice, especially in a three-dimensional
context. A way to obtain a fast algorithm is to estimate analytically the density μ̃
as a function of the source F , viscosity ν, time t, the coefficients of operator L, and
local invariants of ∂Ω such as its curvature.

Carrying out density estimation from (1.7) has been performed for two-dimen-
sional bodies [24] and for the three-dimensional case of the half-plane [9] (which comes
directly via a tensorialization for the two-dimensional case). Nevertheless, the exist-
ing literature either considers pure Neumann boundary conditions or simply neglects
curvature effects, sometimes involving some hypothesis on nondependency on time
(usually not mathematically valid) and in any case not followed by any mathematical
analysis on the order of the method.
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The present paper provides such an analysis for the more general problem of
Robin–Fourier boundary conditions and a class of noncompact domains, in establish-
ing, proving, and illustrating that the early behavior of the density can be explicitly
given by the following formula:

(1.8) μ̃(x, t) =
−2F (x, t)

1 + 2
(
κ̄(x) − β(x)

)√
νt/π

+ O(tγ),

where κ̄(x) is the mean curvature of ∂Ω in x, and where γ can reach different values
among ]1/2, 3/2] in the present study, depending on regularity of ∂Ω and whether or
not ∂Ω presents torsion. This result can then be used directly as a numerical scheme
in formula (1.5), its order being led by the value of γ.

One can notice that Neumann boundary conditions can lead to qualitatively good
results at high Reynolds numbers since the relative curvature κ̄

√
ν tends toward 0.

Nevertheless, the Dirichlet part of the Robin–Fourier boundary conditions is linked
to the boundary curvatures [11], and is of the same order of the mean curvature ef-
fect, as shown in formula (1.8) above. Studying the full Robin–Fourier conditions is
consequently of fundamental importance for engineering concerns on viscous flows,
especially since the research community finds new interests in micro- and nanotech-
nologies, which involve small scales where viscous effects are potentially dominant.
In this context, neglecting curvature can lead to dramatic errors in numerical simula-
tion of fluids, especially when considering nonstationary dynamics whose prediction
requires direct numerical simulation. Moreover, even for macroscopic devices, some
new generation Lagrangian schemes such as vortex in cell (VIC) (see [10]) or smooth
particle hydrodynamics (SPH) (see [6]) are very stable and can be used with large
time steps. Consequently, this enlarges numerical viscous scales, which are of order√
νδt (where δt is the time step), and makes the curvature effects orders of magnitude

stronger than standard numerical methods, such as spectral or finite element schemes,
whose time scales are limited due to strong stability conditions related to transport
terms.

The outline of the paper is as follows. Section 2 provides various preliminary
properties. Section 2.1 gives a few well-known properties of fundamental solutions
of the heat equation, results more or less already established in the literature. A
few conditions are then set in section 2.2 in order to provide a good environment for
differential and integral calculus for the following sections. In section 2.3, we show that
integral calculus restricted to a local area is an accurate approximation of the global
calculus at any order of time. This section also extends a classical result on Hölder
continuity of the double heat layer to a class of noncompact manifolds. Section 3
provide convergence results and error estimations of geometrical approximation when
the integrodifferential operator is computed on the local quadratic osculating manifold
instead of the manifold itself. Section 4 shows that the heat layer of unit density on the
best quadratic approximation of the surface can be determined at its main order with
error estimation. Finally, section 5 presents the achievement of the present work, and
Theorem 5.1 shows that the value of the approximated heat layer obtained in section 5
is a valid value at the first order in time. Theorem 5.3 shows that sufficiently smooth
torsionless manifolds allow one to reach order 3/2. The link between these results
is displayed in Figure 1. Sections 6 and 7 give several examples illustrating some
statements of previous sections, in cylindrical and toroidal geometries, respectively.
These examples show that estimates given by Theorems 5.1 and 5.3 are optimal and
describe their application to kinematic boundary conditions.
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Proposition 2.4

Lemma 4.1

Theorems 5.1 and 5.3

Corollary 3.7

Lemma 3.2

Proposition 4.2

Corollary 3.4 Corollary 3.3

Proposition 3.6

Lemma 3.5

Corollary 5.2

Fig. 1. Relations between results leading to Theorems 5.1 and 5.3 (Lemma 3.1 and Proposi-
tion 2.3 are often involved in different proofs).

2. Preliminary work. This section presents well-known results on parabolic
problems in section 2.1 and the hypotheses that are required for the present study
in section 2.2. Accuracy of domain restriction is then analyzed in section 2.3, with a
specific proof valid for noncompact manifolds.

2.1. Well-known results. One first introduces Friedman’s notion of Hölder
continuity for parabolic problems: a function ω is said to be ϑ-Hölder continuous over
Ω × [0, T ] if there exist two constants C and ϑ, independent of x, y, t, and s, such
that

(2.1) |ω(x, t) − ω(y, s)| � C
(
|x− y|ϑ + |ν(t− s)|ϑ/2

)
for all (x, t) and (y, s) in Ω× [0, T ], where | · | denotes both the Euclidean norm of R

3

and the absolute value, depending on the context.
Throughout the paper, | · | will be used for the Euclidean norm in R

n (absolute
value when n = 1), ‖ · ‖ for norms of functions, and ||| · ||| for linear operators (not
necessarily Euclidean for double and triple norms, but L

∞ norm most times and L
1

occasionally).
The integral operator is of fundamental interest for the present study, since its

value at the leading order is the effect of curvature. It is a double layer of density
f with respect to the heat kernel and depends on surface location and time (on
∂Ω × [0, T ]):

(2.2) H̃(x, t)f = ν

∫ t

0

∫
∂Ω

LxGξ,τ (x, t) f(ξ, τ)dσ(ξ)dτ

for any density f bounded and continuous on ∂Ω × [0, T ].
Furthermore, from [31] and Theorem 4 of Chapter 5 of [14], one gets the following

result.
Corollary 2.1. Under the notation above, if f is a continuous and bounded

function on ∂Ω × [0, T ], and ∂Ω is a compact two-dimensional submanifold of R
3

of class C1+λ, then H̃(x, t)f , as a function of x and t, is ϑ-Hölder continuous on
∂Ω × [0, T ] for any exponent satisfying ϑ < 2 min(λ, 1)/3.
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,

,

Fig. 2. Geometrical setup and main notation.

Nevertheless, for a manifold of class at least C2, this corollary gives that H̃(x, t)f
is ϑ-Hölder continuous for any exponent less than 2/3. In our context, one can go
further than this result. Indeed, Corollary 2.1 is independent of the dimension of space
and is valid for manifolds presenting less regularity (i.e., manifolds of class C1+λ) than
our present considerations. In the present context, set up in section 2.2, the following
proposition (more general than Corollary 2.1) holds.

Proposition 2.2. Let H̃ be the integrodifferential operator defined by formula
(2.2). Under conditions (C1)–(C5), with β : ∂Ω → R and f : ∂Ω × [0, T ] → R

two bounded and, respectively, ϑβ- and ϑf -Hölder continuous functions, we have that

H̃(·, ·)f is ϑ∗-Hölder continuous with any ϑ∗ = min(1 − ε, ϑβ , ϑf ) for all ε > 0.
One can see with this proposition that the maximum Hölder exponent is bounded

by the density’s, which forbids us from deducting regularity of μ̃ from the regularity
of H̃.

Moreover, Proposition 2.2 shows that the regularity of the density depends on
the manifold considered, on the regularity of the source, and on the regularity of
the coefficient defining the Dirichlet part of the boundary condition (i.e., the three
are involved and arise at the same order in the regularity analysis). The regularity
consequently has to be analyzed case by case and will not be discussed in the present
paper. To proceed, one can refer to [36] and references therein or [5, 1].

2.2. Geometrical setup and conditions. In order to provide pertinent com-
putations, one assumes that the following condition is satisfied:

(C1) ∂Ω is a two-dimensional differentiable submanifold of R
3, of class C2+λ.

This condition means that ∂Ω is locally the graph of a function ϕx of class
C2+λ(Πx,R

3), where Πx is the tangential plan of ∂Ω in x. One denotes by Tx :
R

3 → R
3 the affine operator that changes 0 into x and R

2 × {0} into Πx.
Consequently, for any x ∈ ∂Ω, there exists a function ϕx defined in a neighborhood

Ax of 0 satisfying ϕx(0) = 0 and ∇ϕx(0) = 0 such that

Tx (Ax × ϕx(Ax)) ⊂ ∂Ω.

One can notice that the bijective application Tx is a composition of a translation
and a rotation; thus its Jacobian is identically equal to 1, and consequently one can
integrate indifferently over ∂Ω or over T−1

x ∂Ω.
This sets up notation for the local description of ∂Ω around x as a graph of

functions ϕx of class C2+λ(R2,R), as displayed in Figure 2. One recalls that being
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of class Cm+λ(R2,R), with 0 < λ � 1, means that ϕx is of class Cm(R2,R) and all
its mth order partial derivatives are λ-Hölder continuous. This means that for any
x ∈ ∂Ω, there exist two constants Cx and C ′

x such that locally one has

(2.3)

∣∣∣∣ϕx(s) − 1

2
tsKxs

∣∣∣∣ � Cx |s|2+λ and
∣∣∇ϕx(s) −Kxs

∣∣ � C ′
x |s|1+λ,

where Kx is the Hessian matrix of ϕx in 0 = T−1
x (x).

One then requires the following conditions on the globality of bounds defined
above:

(C2) There exists R > 0 such that domain definition Ax of applications ϕx contains
B2(0, R) for all x ∈ ∂Ω.

(C3) The spectral radius of the Hessian Kx of φx in 0 is bounded independently
of x ∈ ∂Ω, and its upper bound is denoted ρ0.

(C4) There exist two constants C and C ′ such that for any x ∈ ∂Ω, one has Cx � C
and C ′

x � C ′.

Note that these hypotheses do not imply a lack of generality but provide some
restrictions on smoothness (condition (C1)) and mapping orientation and size (condi-
tions (C2) and (C4)). One can also notice that ∂Ω being the boundary of an open set
Ω and condition (C1) imply that ∂Ω is an oriented manifold and thus the existence
of an inward normal field n to ∂Ω. Condition (C3) eliminates, for example, spiraloids
or clothoidal surfaces whose curvature tends to infinity.

For convenience, one sets up the notation φx = IdR2 × ϕx, which gives that

(2.4) Sx ≡ Txφx (B2(0, R)) ⊂ ∂Ω.

This local parameterization of ∂Ω gives the following integration formula:

(2.5)

∫
Sx

f(ξ)dσ(ξ) =

∫
B2(0,R)

f ◦ Tx ◦ φx(s) |Nx(s)|ds,

where

Nx(s) =
∂φx

s1
(s) ∧ ∂φx

s2
(s)

is the normal field induced by the parameterization φx, its Euclidean norm being the
Jacobian of the parameterization and satisfying

(2.6) |Nx(s)| =
√

1 + |∇ϕx(s)|,

where | · | denotes the Euclidean norm in R
3. Note that Tx is not involved in this

Jacobian because |∂s1Tx ◦ φx ∧ ∂s1Tx ◦ φx| = |∂s1φx ∧ ∂s1φx| = |Nx(s)|.
A few direct consequences of conditions (C1)–(C4) can then be stated.

Proposition 2.3. Under conditions (C1)–(C4), one has the following:

(P1) Nx, the Jacobian of the parameterization by φx, is bounded independently of
x, and its bound is denoted M1.

(P2) There exists a constant M2 such that

(2.7) |(x− ξ) · nx| � M2|x− ξ|2 ∀x, ξ ∈ ∂Ω.
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Proof. Let x be a point of ∂Ω. By (2.3), one gets

|∇ϕx(s)| � |Kxs| + C ′
x|s|1+λ � ρ0R + C ′R1+λ.

Setting M1 =
√

1 + (ρ0 + C ′Rλ)2R2 finishes the proof of assertion (P1).
Furthermore, for all ξ in ∂Ω ∩ B3(x,R) ⊂ Txφx(B2(0, R)) where R is defined by

condition (C2), one has ξ = Txφx(s) with φx = IdR2 × ϕx, and T−1
x n(x) = −e3.

Consequently, one has (ξ − x) · n(x) = ϕx(s) − ϕx(0) = ϕx(s) and by condition (C3)
and by definition of class C2+λ, one gets

|(ξ − x) · n(x)| = |ϕx(s)| � ρ0

2
|s|2 + C|s|2+λ �

(ρ0

2
+ C Rλ

)
|s|2.

For any ξ not in ∂Ω ∩ B3(x,R), one has |(ξ − x) · nx| � |ξ − x| � (ξ − x)2/R. Setting
M2 = max(C Rλ + ρ0/2, 1/R) finishes the proof.

Part (P1) of the proposition will often be useful for calculus through the maps,

while part (P2) implies that the operator H̃(x, t)f is bounded over ∂Ω× [0, T ], which

in itself is useful for showing that the H̃ is Hölder continuous.
Moreover, one needs a last condition of measure growth of ∂Ω:

(C5) There exist two positive constants C and k such that for any x ∈ ∂Ω, the
measure of the part of ∂Ω in the spherical strips B3(x, (n + 1)R) \ B3(x, nR)

does not grow faster than ek n2

; that is,

(2.8) σ
( {

ξ ∈ ∂Ω
/
nR � |ξ − x| < (n + 1)R

})
� C ek n2 ∀x ∈ ∂Ω.

Condition (C5) is satisfied as soon as ∂Ω is compact, and provides useful majo-
rations and controllable error estimates of map restriction when ∂Ω is not compact.

As a concluding note on conditions (C1)–(C5), let us remark that they are not very
restrictive and do not lead to a lack of generality on the kind of surfaces considered.
Their most significant effect is that they limit size and orientation of the maps and
provide a good environment for integral calculus in the next sections.

2.3. Error estimation of the restriction to a map. The definition of H̃
involves a Gaussian function whose standard deviation tends to zero when t tends to
zero (smaller than

√
2νt). Even if a Gaussian is not compactly supported, it decreases

quickly, and its significant values are very localized. Consequently, thanks to limiting
the final time T of the heat equation (which is not a limitation in practice), we can
consider the integral over one map,

(2.9) Sx ≡ Txφx(B2(0, R)) ⊂ ∂Ω ⊂ R
3,

instead of the whole surface ∂Ω, and provide an error analysis thanks to the fast
decreasing of Gaussian functions. One can introduce the heat layer restricted to
Sx ⊂ ∂Ω as

H̃Sx
(x, t)f = ν

∫ t

0

∫
Sx

LxGξ,τ (x, t) f(ξ, τ)dσ(ξ)dτ

for any continuous and bounded function f : ∂Ω × [0, T ] → R, and the error due to
the restriction on Sx ⊂ ∂Ω as

H̃
err (x, t)f =

(
H̃(x, t) − H̃Sx(x, t)

)
f = ν

∫ t

0

∫
∂Ω\Sx

LxGξ,τ (x, t) f(ξ, τ)dσ(ξ)dτ.
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By setting η = ν(t− τ), one gets

|H̃
err (x, t)f |
‖f‖∞

�
∫ νt

0

∫
∂Ω\Sx

∣∣∣∣β(x) − (x− ξ) · n(x)

2η

∣∣∣∣ Ĝ(x− ξ, η)dσ(ξ)dη.

One can now show that the error due to the restriction to a map can then be ne-
glected at any order. The following integral calculus features the parametric approach
of the present paper.

First, by condition (C2) there exists R, such that for all x ∈ ∂Ω, one has s =
T−1
x (ξ) for all ξ in the neighborhood Sx of x and the inequality

|s|2 � |s|2 + ϕx(s)2 = |Txφx(s) − Tx(0)|2 = |ξ − x|2 < R2

and, consequently, the inclusions

∂Ω ∩ B3(x,R) ⊂ Txφx(B2(0, R)) = Sx ⊂ ∂Ω

which imply directly

(2.10) ∂Ω \ Sx = ∂Ω \ Txφx(B2(0, R)) ⊂ ∂Ω \ B3(x,R) ⊂ ∂Ω.

Error estimate |H̃
err

(x, t)f | is thus majorated by

(2.11) ‖f‖∞
∫ νt

0

∫
∂Ω\B3(x,R)

∣∣∣∣β(x) − (x− ξ) · n(x)

2η

∣∣∣∣ Ĝ(x− ξ, η)dσ(ξ)dη,

which implies, due to part (P2) of Proposition 2.3, the following majoration:

(2.12) ‖f‖∞
∫ νt

0

(
|β(x)| + M2

|x− ξ|2
2η

)∫
∂Ω\B3(x,R)

Ĝ(x− ξ, η)dσ(ξ)dη.

Second, and this notation will be used throughout the paper, one has for all
positive x and α,

(2.13) xαe−x � Lαe
−x/2 with Lα = (2α)αe−α.

It follows from (2.13) that expression (2.12) is majorated by

(2.14) ‖f‖∞ (β0 + L1M2)

∫ νt

0

∫
∂Ω\B3(x,R)

e−|x−ξ|2/8η

(4πη)3/2
dσ(ξ) dη.

If ∂Ω is compact, then (2.14) is majorated by

(2.15) ‖f‖∞ (β0 + L1M2)σ(∂Ω)

∫ νt

0

e−R2/8η

(4πη)3/2
dη,

which is finally majorated by

(2.16) ‖f‖∞ 2
√

2L3/2
β0 + M2L1

R3π3/2
e−R2/16νt νt σ(∂Ω).
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If ∂Ω is not compact, there is more work to be done, and one has to consider
condition (C5) on maximal admissible growth of measures of ∂Ω contained in suc-
cessive spherical strips, which leads to the same result. Indeed, one has the disjoint
decomposition

∂Ω = (∂Ω ∩ B3(x,R)) ∪
[ ⋃
n∈N∗

(∂Ω ∩ (B3(0, (n + 1)R) \ B3(0, nR)))

]
;

thus

∂Ω \ B3(x,R) =
⋃

n∈N∗

(∂Ω ∩ (B3(0, (n + 1)R) \ B3(0, nR))) ,

and one can build a majoration of (2.14) by the use of condition (C5):

(2.17) ‖f‖∞C

∫ νt

0

(β0 + L1M2)

⎛⎝∑
j∈N∗

e−j2R2/8η

8π3/2η3/2
ej

2k

⎞⎠ dη

with C depending only on ∂Ω. Equation (2.17) is itself majorated for νt sufficiently
small, i.e., for νt � R2/8k, where k depends only on ∂Ω, by

(2.18) ‖f‖∞C (β0 + L1M2)

∫ νt

0

1

8π3/2η3/2

⎛⎝∑
j∈N∗

exp

{
−j2

(
R2

8η
− k

)}⎞⎠ dη.

Now noticing that j � j2 and that k −R2/8η � −R2/16η for νt � R2/16k, one gets
another majoration of (2.18) by

(2.19) ‖f‖∞C (β0 + L1M2)

∫ νt

0

1

8π3/2η3/2

1

1 − e−R2/16η
e−R2/16η dη.

Noticing also that e−R2/16η � 1/2 for η � R2/16 ln 2, one gets

(2.20) ‖f‖∞C (β0 + L1M2)

∫ νt

0

e−R2/16η

4π3/2η3/2
dη,

which gives the final majoration for νt � R2/16kast with k∗ = max(ln 2, k), i.e., for
t sufficiently small:

(2.21) ‖f‖∞16C L3/2
β0 + L1M2

π3/2R3
e−R2/32νtνt.

Equation (2.16) holds when ∂Ω is a compact manifold, and is extended to the
noncompact case by means of (2.21). From these equations, one gets the following
proposition.

Proposition 2.4. Under conditions (C1)–(C5) and previous notation, there
exists a constant C independent of x and t such that

(2.22)
|H̃

err,B2(ζ,R)
(x, t)f |

‖f‖∞
�

|H̃
err,A

(x, t)f |
‖f‖∞

� C ‖f‖∞ e−R2/32νtνt = O(t∞)

for t sufficiently small and for all x ∈ ∂Ω and any f ∈ L
∞(∂Ω).
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− 1
2 μ̃(x, t) + H̃(x, t)μ̃ = F (x, t)

param.−−−−→ μ�
x(s, t) = μ̃(Txφx(s), t)⏐⏐�restr. on Sx

− 1
2μ


(x, t) + H̃Sx
(x, t)μ
 = F (x, t)

param.−−−−→ μx(s, t) = μ
(Txφx(s), t) !
− 1

2μx(0, t) + H(x, t)μx = F (x, t)⏐⏐�approx. on Sx

− 1
2μx(0, t) + H(x, t)μx = F (x, t)

param.−−−−→ μx(s, t) = μ�(Txφx(s), t).

Fig. 3. Different integrodifferential operators and associated integral equations and densities
involved in the surface potential analysis.

3. Geometrical approximation. It has been shown in section 2.3 that only a
local analysis of the heat layer is required to obtain the development in early time
of the heat layer at any order, since the Gaussian kernel has significant values very
locally.

The local parameterizations of the manifold and its quadratic osculating manifold
are set up in sections 3.1 and 3.2, respectively, and we give a few approximation
lemmas in section 3.3 that will be useful in proving convergence in section 3.4 and
providing error estimates of truncations to get the final results.

The process of parameterization and approximation can be split into two different
steps as shown in Figure 3, which should be read as follows. First one considers the
original integral equation of solution μ̃, whose parameterization is denoted μ�

x in a
neighborhood of origin whose image is a neighborhood Sx ⊂ ∂Ω of x.

The map-restricted heat layer H̃Sx is introduced in section 3.1 and defines a new
integral equation whose solution is denoted μ
 and its parameterization μx, which is
itself the solution of an integral equation involving H, the restricted heat layer acting
on parameterizations, i.e., such that

H̃Sx(x, t)μ
 = H(x, t)μx.

The portion of surface Sx is then approximated by its best quadratic approximant
Sx in section 3.2, which induces a heat layer on the surface approximant denoted H,
and another integral equation involving this operator acting on parameterizations,
whose solution is denoted μx : A → R. This solution corresponds to a density
μ� : ∂Ω → R.

While the relation between densities μ̃ and μ
 is quite obvious by means of propo-
sition 2.4, the link between μ
 and μ� is less obvious and requires an analysis of ap-
proximation relations between the associated integral operators. The convergence of
densities is established in section 3.4, especially in Proposition 3.6.

3.1. Local parameterization of the surface. The two-dimensional manifold
∂Ω is described by its maps, which are themselves defined by means of the description
of ∂Ω by graphs of functions ϕx, given in (2.4), which reads as follows:

(3.1) Txφx ≡ Tx(IdR2 × ϕx) : A = B(0, R) ⊂ R
2 −→ Txφx(A) ≡ Sx ⊂ ∂Ω.
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A density f̃ : ∂Ω → R can be restricted on a map as

(3.2)
f̃ : Sx ⊂ ∂Ω ⊂ R

3 × [0, T ] −→ R × [0, T ],

(ξ, t) �−→ f̃(ξ, t).

One can introduce the local parameterization f in space of f̃ through Txφx in a
neighborhood Sx of x in ∂Ω, so that ξ = Txφx(s), which gives

(3.3)

f : A× [0, T ] −→ R × [0, T ],

(s, t) �−→ f(s, t) = f̃(Tx ◦ φx(s), t)

= f̃ (Tx (s1, s2, ϕx(s)) , t) ,

where A ≡ B2(0, R) ⊂ R
2.

One also considers the double heat layer restricted to a map acting on parame-
terizations of densities, defined consequently by

(3.4) H(x, t)f = H̃Sx(x, t)f̃ = ν

∫ t

0

∫
A

LxGTxφx(s),τ (x, t)f(s, τ)|Nx(s)|dsdτ,

where

Nx(s) =
∂φx

s1
(s) ∧ ∂φx

s2
(s)

and |N(s)| denotes its Euclidean norm in R
3. This Jacobian calculus holds since the

Jacobian of Tx is identically equal to 1 and gives

(3.5) |Nx(s)| =
√

1 + |∇ϕx(s)|2,

which is bounded with respect to x over ∂Ω by Proposition 2.3(P1). One can notice
that the Gaussian functions are spherically symmetric; thus the equalities

GTxφx(s),τ (x, t) = Gφx(s),τ (T
−1
x x, t) = Gφx(s),τ (0, t)

= G0,0(φx(s), t− τ) = Ĝ
(
φx(s), ν(t− τ)

)
=

e−(s2+ϕx(s)2)/4ν(t−τ)

(4πν(t− τ))
3/2

hold because φx = IdR2 × ϕx.
Since one has ϕx(0) = 0 and ∇ϕx(0) = 0, this leads, by means of (2.3), to

(3.6) ϕx(s) =
1

2
tsKx s + O(s2+λ),

where Kx is the symmetric 2 × 2 curvature matrix of ∂Ω in x, in the spirit of the
two-dimensional approach of [24].

3.2. Local approximation of the surface. In order to provide a local analysis
on an explicitly known surface, and to estimate the error related to geometrical ap-
proximation, one considers the second order approximation of ∂Ω in a neighborhood
Sx of x ∈ ∂Ω. This means we introduce the quadratic form

ϕx(s) =
1

2
tsKx s

and all the related quantities, as displayed in Figure 4:
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,

Fig. 4. Context and notation of surface approximation.

• φx = Tx ◦ (IdR2 × ϕx),
• Sx = Txφx(A), the quadratic approximant of Sx,
• H(x, t), the integral operator defined over Sx,
• Nx(s) = ∂s1φx ∧ ∂s2φx, the Jacobian of this parameterization, which verifies

(3.7) |Nx(s)| =
√

1 + |∇ϕx(s)|2 =
√

1 + |Kxs|2,

• μx : A → R, the parameterized solution of the integral equation

(3.8) −μx(0, t) + 2H(x, t)μx = F (x, t),

which defines the density μ� : ∂Ω → R by μ�(x, t) = μx(0, t).
Furthermore, the boundary operator Lx defining the Robin–Fourier condition can

be written as β(x)Id + n(x) · ∇. The gradient of the Gaussian kernel satisfies

∇xGξ,τ (x, t) = − x− ξ

2ν(t− τ)
Gξ,τ (x, t);

thus

(3.9) LxGξ,τ (x, t) =

(
β(x) − (x− ξ) · n(x)

2ν(t− τ)

)
Gξ,τ (x, t).

Moreover, the gradient ∇ϕx(0) = 0 implies T−1
x n(x) = −e3, and since the scalar

product is conserved by rotation/translation (i.e., by operator Tx), one gets

−(x− ξ) · n(x) = (Txφx(s) − Txφx(0)) · n(x)

= (IdR2 × ϕx)(s) · (−be3) = −ϕx(s)

for all ξ = Txφx(s) = Tx(IdR2 × ϕx)(s) ∈ Sx, i.e., for all s ∈ A = B2(0, R).
For a function f : A → R, one has consequently

(3.10)
H(x, t)f =

ν

∫ t

0

∫
A

(
β(x) − ϕx(s)

2ν(t− τ)

)
G0,τ (φx(s), t) f(Txφx(s), τ)

√
1 + |∇ϕx(s)|2 dsdτ,
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and similarly, one gets
(3.11)

H(x, t)f =

ν

∫ t

0

∫
A

(
β(x) − ϕx(s)

2ν(t− τ)

)
G0,τ

(
φx(s), t

)
f(Txφx(s), τ)

√
1 + |∇ϕx(s)|2 dsdτ.

For practical considerations in the estimation of the integrals defined above and
their related quantities, one will often need a purely computational result, which is
given to increase readability.

Lemma 3.1 (integral majoration). There exists a constant C0 independent of t
such that for R � 0 and k > 0, the majoration

ΓR,k
α,η (τ) =

∫ τ

0

∫ ∞

R

rα + uα/2

uη
e−r2/ku r dr du � C0 e

−R2/2kτ τ2−η+α/2

holds when η − α/2 < 2, i.e., when the integral is convergent.
Consequently, ΓR,k

α,η (τ) = O(τ2−η+α/2) if R = 0, and ΓR,k
α,η (τ) = O(τ∞) other-

wise.
Proof. One has

r
rα + uα/2

uη
e−r2/ku � C r uα/2−ηe−r2/2ku

with C = 1 + Lα/2k
α/2, and consequently∫ ∞

R

rα + uα/2

uη
e−r2/ku r dr � C k uα/2+1−η

∫ ∞

R

2r

2ku
e−r2/2ku dr

= C k uα/2+1−ηe−R2/2ku.

Integral (3.1) is then majorated by

ΓR,k
α,η (τ) � C k

∫ τ

0

uα/2+1−ηe−R2/2kudu � C0 e
−R2/2kτ τ2−η+α/2

with

C0 =
k C

2 − η + α/2
> 0.

The comment on order is then obvious.
The question now is how great an error is made in the integral operator when

the surface ∂Ω is approximated by its best osculating quadratic surface, and how the
error on the integral operator is related to the error on the solution μx.

3.3. Approximation lemma. In this section we exhibit in Lemma 3.5 the con-
vergence rate of H toward H in time variable when the surface ∂Ω is replaced by
its best quadratic approximation. This lemma requires preliminary results in Lem-
mas 3.2 and 3.1. The result of Lemma 3.5 is used in the next sections and also implies
the convergence of μx toward μx with the same rate, as explained in Proposition 3.6.

One can define the usual norms considered herein. The simple norm | · | denotes
the Euclidean norm of R

3, and the maximum double norm denotes the usual L
∞

norm over ∂Ω or ∂Ω × [0, T ], depending on the context.



ANALYSIS OF DIRECT 3D PARABOLIC PANEL METHODS 2273

The triple norm of linear operator applies to the integrodifferential operators
defined above. Indeed, for any (x, t) ∈ ∂Ω × [0, T ], H(x, t) is a linear operator that
verifies |H(x, t)f | � ‖f‖∞|H(x, t)1| for any bounded function f , with equality for f
identically equal to 1. One then gets

(3.12) |||H(x, t)|||∞ = sup
f∈L∞(A)\{0}

|H(x, t)f |
‖f‖∞

= sup
‖f‖∞=1

|H(x, t)f | = |H(x, t)1|.

The triple norm |||H(x, t)|||∞ is itself a function of x and t, whose L
∞ norm over

∂Ω is defined as
(3.13)

||||H(·, t)||||∞ = || x �→ |||H(x, t)|||∞ ||∞ = sup
x∈∂Ω

|||H(x, t)|||∞ = sup
x∈∂Ω

|H(x, t)1|.

Lemma 3.2. Let ft : A×[0, T ] → R be a function, possibly depending on t ∈ [0, T ],
such that there exist two constants α � 0 and Cf independent of t satisfying

|ft(s, τ)| � Cf

(
|s|α + |ν(t− τ)|α/2

)
for all (s, τ) ∈ A×[0, t]. Under the hypothesis (C1)–(C4) of section 2.2, with H defined
by formula (3.10), there exists a constant C0 such that for any x ∈ ∂Ω, one has

H(x, t)ft = C0 t
(α+1)/2.

Proof. The portion of surface Sx is the image by the isometry Tx of the graph of
ϕx over the two-dimensional ball A = B2(0, R), with

ϕx(s) =
1

2
tsKx s + O(s2+λ)

since ∂Ω is a manifold of class C2+λ. One has, through the map Txφx,

(3.14) H(x, t)ft = ν

∫ t

0

∫
A

(
β(x) − ϕx(s)

2ν(t− τ)

)
G0,τ (φx(s), t) f(s, τ) |Nx(s)|dsdτ

with

|Nx(s)| =
√

1 + |∇ϕx(s)|2 � M1

and

(3.15) |ϕx(s)| �
∣∣∣∣12 tsKx s

∣∣∣∣+ C |s|2+λ �
(ρ0

2
+ C Rλ

)
s2,

where M1, ρ0, and C are the constants introduced, respectively, in Proposition 2.3(P1),
condition (C3), and condition (C4).

One gets consequently, assuming C1 = (ρ0/2 + C Rλ) and u = νt,
(3.16)

|H(x, t)ft| �

M1

∫ νt

0

∫
A

(
β0 + C1

|s|2
2u

)
1

(4πu)3/2
exp

(
−|s|2 + ( tsKxs)

2

4u

)
ft(s, τ) dsdτ.
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Now noticing that ( tsKs)2 � 0, assuming r = |s|, and applying the Hölder-like
hypothesis on ft, one has an axisymmetric expression that integrates into

(3.17) |H(x, t)ft| � 2Cf M1√
π

∫ νt

0

∫ R

0

(
β0 + C1

r2

2u

)
rα + uα/2

(4u)3/2
e−r2/4u r drdτ.

Using relation (2.13) that gives x e−x � L1e
−x/2, the result follows from Lemma

3.1:

|H(x, t)ft| � Cf M1

4
√
π

(β0 + 2L1C1) Γ0,8
α,3/2(t) = O(t1/2+α/2).

Note that C0 = Cf M1 (β0 + 2L1C1) /4
√
π depends neither on x ∈ ∂Ω nor on t ∈

[0, T ].
One first has to notice that this result holds when α = 0, which provides a useful

majoration of H(x, t)f when f is only bounded, that is to say, majoration of H(x, t)1,
and directly gives that

(3.18) |||H(x, t)|||∞ = O(t1/2)

for any (x, t) ∈ ∂Ω × [0, T ].
One can also notice that the final majorant in the proof is not dependent on x,

and applying this again to the unity function, one can extend result (3.18) into

(3.19) ||||H(·, t)||||∞ = ||x �→ |||H(x, t)|||∞ ||∞ = O(t1/2).

Another important result is that the lemma also holds for H(x, t), which is a
special case with the function ϕx = ϕx of class C∞ so a fortiori C3, with a constant
C set to 0 in (3.15). This gives that there exists a constant C such that

(3.20) ||||H(·, t)||||∞ � C t1/2

and consequently the following corollary.
Corollary 3.3. Let H be the operator defined by formula (3.11). Then, under

the hypothesis of Lemma 3.2, for t sufficiently small, one has ||||H(·, t)||||∞ < 1/2.
From Lemma 3.2, one also has the following property valid on Sx ⊂ ∂Ω.
Corollary 3.4. Let Zx,t be a function over Sx × [0, T ] such that there exist two

constants α � 0 and CZ independent of x, y, t, and τ satisfying

|Zx,t(y, τ)| � CZ

(
|x− y|α + |ν(t− τ)|α/2

)
for all (y, τ) ∈ Sx × [0, t] and (x, t) ∈ ∂Ω × [0, T ]. Under the hypothesis (C1)–(C4) of
section 2.2, there exists a constant C0 such that for any x ∈ ∂Ω, one has

H̃Sx(x, t)Zx,t = C0 t
(α+1)/2.

Proof. Let Z

x,t be the parameterization of Z through the map Txφx:

Z

x,t(s, τ) = Zx,t(Txφx(s), τ),

which gives H̃Sx(x, t)Zx,t = H(x, t)Z

x,t. One then has

|Z

x,t(s, τ)| � CZ

(
|Txφx(s) − x|α + |ν(t− τ)|α/2

)
� C0

(
|s|α + |ν(t− τ)|α/2

)
since Tx is an isometry and |φx(s)|2 = |s|2 + |ϕx(s)|2 � (1 + C2

1R
2)|s|2, which leads

to set C0 = CZ

√
1 + C2

1R
2. One can then apply Lemma 3.2.
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3.4. Geometrical convergence. Now we present the following stability lemma
of fundamental importance.

Lemma 3.5 (H−H estimation). Under the hypothesis (C1)–(C4) of section 2.2,
∂Ω being a two-dimensional manifold of class C2+λ, 0 < λ � 1, there exists a constant
C0 independent of t such that

||||H(·, t) −H(·, t)||||∞ = sup
x∈∂Ω

|||H(x, t) −H(x, t)|||∞ � C0 t
(1+λ)/2.

Proof. The proof of this lemma uses more or less the same technique as the proof
of Lemma 3.2. One chooses an x ∈ ∂Ω and gets for a bounded function over Sx ⊂ ∂Ω

|H(x, t)f −H(x, t)f | � ‖f‖∞|H(x, t)1 −H(x, t)1|

with equality for f ≡ 1, and consequently

|||H(x, t) −H(x, t)|||∞ = |H(x, t)1 −H(x, t)1|.

It remains to build an accurate majoration of this quantity independent of x.
Operators H(x, t) and H(x, t) are defined by formulas (3.10) and (3.11), which

give

|||H(x, t) −H(x, t)|||∞ =

∣∣∣∣∫ νt

0

∫
A

γ(s, u)Ĝ (φx(s), u) − γ(s, u)Ĝ
(
φx(s), u

)
dsdu

∣∣∣∣ ,
where u = ν(t− τ), and

γ(s, u) =

(
βx − ϕx(s)

2u

)√
1 + |∇ϕx(s)|2

and

γ(s, u) =

(
βx − ϕx(s)

2u

)√
1 + |∇ϕx(s)|2.

Moreover, Ĝ
(
φx(s), u

)
and Ĝ (φx(s), u) are both majorated by e−|s|2/4u/(4πu)3/2,

and thus

(3.21) |||H(x, t) −H(x, t)|||∞ �
∫ νt

0

∫
R2

∣∣γ(s, u) − γ(s, u)
∣∣ e−|s|2/4u

(4πu)3/2
dsdu.

The graph approximation, by means of condition (C4), satisfies

(3.22)
∣∣ϕx(s) − ϕx(s)

∣∣ � C |s|2+λ.

Moreover, the gradients satisfy ∇ϕx(s) = Kxs, and there exists a constant C ′ such
that |∇ϕx(s) −Kxs| � C ′ |s|1+λ; thus

(3.23) |∇ϕx(s) −∇ϕx(s)|2 � C ′|s|2+2λ.

One can do the following decomposition relying on the triangular inequality:∣∣γ(s, u) − γ(s, u)
∣∣ � K1 + K2
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with

K1 =

∣∣∣∣ (βx − ϕx(s)

2u

)√
1 + |∇ϕx(s)|2 −

(
βx − ϕx(s)

2u

)√
1 + |∇ϕx(s)|2

∣∣∣∣
and

K2 =

∣∣∣∣(βx − ϕx(s)

2u

)√
1 + |∇ϕx(s)|2 −

(
βx − ϕx(s)

2u

)√
1 + |∇ϕx(s)|2

∣∣∣∣ .
The first part K1 can be majorated by

(3.24) K1 �
(
β0 +

∣∣∣∣ϕx(s)

2u

∣∣∣∣) ∣∣∣√1 + |∇ϕx(s)|2 −
√

1 + |∇ϕx(s)|2
∣∣∣ ,

and the second by

(3.25) K2 � 1

2u

∣∣ϕx(s) − ϕx(s)
∣∣ √1 + |∇ϕx(s)|2,

which, noticing that |∇ϕx(s)| = |Kxs| � ρ0R � ρ0R + C ′R1+λ, gives (see proof of
Proposition 2.3(P1))

(3.26) K2 � M1

∣∣ϕx(s) − ϕx(s)
∣∣

2u
� M1C

′ |s|2+λ

2u
.

Furthermore, the triangular inequality

|∇ϕx(s)|2 � |∇ϕx(s)|2 + |∇ϕx(s) −∇ϕx(s)|2

implies

(3.27)
√

1 + |∇ϕx(s)|2 �
√

1 + |∇ϕx(s)|2 + |∇ϕx(s) −∇ϕx(s)|2.

Now one can notice that the epigraph of −
√
x is convex; thus for any a > 0 one has√

a + x � √
a + x/2

√
a for all x ∈ [−a,+∞[. This implies

(3.28)
√

1 + |∇ϕx(s)|2 �
√

1 + |∇ϕx(s)|2 +
|∇ϕx(s) −∇ϕx(s)|2

2
√

1 + |∇ϕx(s)|2
.

This leads to a majoration of (3.24) using (3.23):

(3.29) K1 � C ′

2

(
β0 +

∣∣∣∣ϕx(s)

2u

∣∣∣∣) |s|2+2λ.

Since one has |ϕζ(s)| � (ρ0 + C Rλ)|s|2, one finally has the majoration

(3.30)
∣∣γ(s, u) − γ(s, u)

∣∣ � C ′

2

(
β0 + (ρ0 + C Rλ)

|s|2
2u

)
|s|2+2λ + M1C

′ |s|2+λ

2u
.

Integral (3.21) can then be majorated by applying Lemma 3.1 and majoration
obtained by (3.30). Indeed, one can set r = |s| and apply Lemma 3.1 with R = 0.
This gives
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|||H(x, t) −H(x, t)|||∞ � C ′β0

8
√
π

Γ0,4
2+2λ,3/2(t) +

C ′β0

16
√
π

(ρ0 + C Rλ)Γ0,4
4+2λ,5/2(t)(3.31)

+
M1C

′

8
√
π

Γ0,4
2+λ,5/2(t) = O(t(1+λ)/2).

Proposition 3.6 (geometrical convergence). Under the previous notation and
conditions (C1)–(C4), with H and H defined, respectively, by formulas (3.10) and
(3.11), and for t sufficiently small, the densities μ
 and μ� defined in section 3 satisfy

(3.32)
‖μ
(·, t) − μ�(·, t)‖∞

‖μ
(·, t)‖∞
� 2

1 − 2||||H(·, t)||||∞
||||H(·, t) −H(·, t)||||∞.

Proof. Let μ
, introduced in section 3, be the solution of the integral equation
involving the localized integrodifferential operator (see also Figure 3),

(3.33) −1

2
μ
(x, t) + H̃Sx

μ
 = F (x, t),

whose solution μ
, bounded over ∂Ω, has a local parameterization μx on A by μx(s, t) =
μ
(Txφx(s), t). The integral equation (3.33) is then equivalent to

(3.34) −1

2
μx(0, t) + H(x, t)μx = F (x, t).

The Sx-localized integrodifferential operator H acting on parameterized densities can
then be defined on an approximated surface Sx, which leads to the integral equation

(3.35) −1

2
μx(0, t) + H(x, t)μx = F (x, t)

of solution μx : A× [0, T ] → R, which is the parameterization of the density μ�(x, t) =
μx(0, t). The functions μx and μx are both defined on the same domain A but repre-
sent densities on two different surfaces, Sx ⊂ ∂Ω and Sx.

One can then write, subtracting (3.34) and (3.35),

μx(s, t) − μx(s, t)

2
= H(x, t)μx −H(x, t)μx

= H(x, t)μx −H(x, t)μx + H(x, t)μx −H(x, t)μx

and
(3.36)

|μx(s, t) − μx(s, t)|
2

� |||H(x, t) −H(x, t)|||∞ ‖μx‖∞ + |||H(x, t)|||∞ ‖μx − μx‖∞,

where the L
∞-norm of densities is taken over A. One can notice that

‖μx‖∞ = sup
s∈A

|μx(s)| = sup
ξ∈Sx

|μ
(ξ)| � sup
ξ∈∂Ω

|μ
(ξ)| = ‖μ
‖∞

and also that ‖μx − μx‖∞ � ‖μ
 − μ�‖∞.
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Taking the maximum of x over ∂Ω for the triple norms in (3.36) and applying it
to s = 0 gives
(3.37)
|μ
(x, t) − μ�(x, t)| � 2 ||||H(·, t) −H(·, t)||||∞ ‖μ
‖∞ + 2 ||||H(·, t)||||∞ ‖μ
 − μ�‖∞.

The right-hand side of (3.37) is independent of x; thus one can take the maximum of
x over ∂Ω on the left-hand side and get

(3.38)
(
1 − 2 ||||H(·, t)||||∞

)
‖μ
 − μ�‖∞ � 2 ||||H(·, t) −H(·, t)||||∞ ‖μ
‖∞.

Finally, by Corollary 3.3 of Lemma 3.2, one has ||||H(·, t)||||∞ < 1/2, which finishes
the proof.

This proposition leads directly to the order of convergence when ∂Ω is sufficiently
smooth, when used with Lemma 3.5

Corollary 3.7. Under the hypothesis of Proposition 3.6, if ∂Ω is a manifold of
class C2+λ, 0 < λ � 1, then there exists a constant C0 independent of t such that

(3.39) ‖μ
(·, t) − μ�(·, t)‖∞ � C t(1+λ)/2.

This means that a manifold of class C3 allows us to reach order 1 in density
convergence when locally approximating the surface by its best quadratic osculating
surface.

4. Leading order of H. We have shown in last section that the best parabolic
approximation of the surface leads at least to first order in the approximation of the
density, which is enough to carry out the main contribution of the curvature effect to
the solution.

Lemma 4.1. Under conditions (C1)–(C4) and previous notation, we consider the
integral

(4.1) H0(x, t) =

∫ νt

0

∫
R2

(
βx −

tsKxs

4u

)
e−(|s|2+ tsKxs/2)/4u

(4πu)3/2
dsdu.

Then H(x, t)1 = H0(x, t) + O
(
t3/2

)
, with H(x, t) defined by (3.11).

Proof. We first introduce the integral

(4.2) H1(x, t) =

∫ νt

0

∫
R2

(
βx −

tsKxs

4u

)
e−(|s|2+( tsKxs)

2/4)/4u

(4πu)3/2

√
1 + |Kxs|2 dsdu

with tsKxs/2 = ϕx(s). We then get

|H(x, t)1 −H1(x, t)| � M1

4
√
π

∫ νt

0

∫ +∞

R

(
β0 +

|ϕx(s)|
2u

)
e−|s|2/4u

u3/2
r dr,

where |ϕx(s)| � ρ0|s|2/2, which gives

(4.3) |H(x, t)1 −H1(x, t)| � M1

4
√
π

(β0 + ρ0L1) ΓR,8
0,3/2(t).

One can now focus on the estimation of H1(x, t) −H0(x, t). The difference between
the two operators lies in the Jacobian Nx(s), which is not present in the definition of
H0(x, t). One has

|H1(x, t) −H0(x, t)| � β0 + ρ0L1

4
√
π

∫ νt

0

∫ +∞

0

e−|s|2/8u

u3/2

(√
1 + ρ2

0r
2 − 1

)
r dr,
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which gives, since
√

1 + α � 1 + α/2 for any α � −1,

(4.4) |H1(x, t) −H0(x, t)| � ρ2
0

8
√
π

(β0 + ρ0L1) Γ0,8
2,3/2(t).

Applying triangular inequality and noticing that ΓR,8
0,3/2(t) + Γ0,8

2,3/2(t) = O
(
t3/2

)
fin-

ishes the proof the lemma.
Now that the integrals H(x, t)1 and H0(x, t) are linked and are an approximation

of one another at an order higher than surface approximation (see Lemma 3.5), one
can focus on the estimation of H0(x, t).

Proposition 4.2. Under conditions (C1)–(C4) and H0(x, t) defined by (4.1),
one has uniformly

(4.5) H0(x, t) =

(
βx − tr(Kx)

2

)√
νt

π
+ O

(
t3/2

)
.

Proof. We begin to write the curvature matrix Kx as

Kx =

[
κ1 κ0

κ0 κ2

]
.

By means of the cylindrical change of variable s = (r cos θ, r sin θ), the integral (4.1)
becomes

(4.6) H0(x, t) =

∫ 2π

0

∫ νt

0

∫ ∞

0

(
βx − r2m(θ)

4u

)
e−(r2+r4m(θ)2/4)/4u

(4πu)3/2
r dr du dθ,

where m(θ) = κ1 cos2 θ + κ2 sin2 θ + κ0 cos θ sin θ. Now posing (r, u) = (ξζ, ζ2/4),
associated with a Jacobian ζ2/2, one gets

H0(x, t) =
1

2π3/2

∫ 2π

0

∫ 2
√
νt

0

∫ ∞

0

γ(ξ, ζ, θ, x, t) dξ dζ dθ

with

(4.7) γ(ξ, ζ, θ, x, t) = (ξβx − ξ3m(θ)) exp

{
−ξ2

(
1 +

ξ2ζ2m(θ)2

4

)}
,

which is infinitely differentiable in variables ξ, ζ, and θ.
Since for any positive constants a and b, the function f(ζ) = e−a−bζ2

satisfies
f ′(0) = 0 and f ′′ is bounded over R

+, there exists ζ0 ∈ [0, ζ] such that

f(ζ) = f(0) + ζ2f ′′(ζ0)/2.

In order to make a Taylor development of γ in ζ valid, one has to exhibit the bounds
of f ′′ with respect to coefficients a, b, and c. Indeed, one has

f ′′(ζ) = (4b2ζ2 − 2b)e−a−bζ2

;

thus

(4.8) |f ′′(ζ)| � 2be−a(1 + 2bζ2)e−bζ2 � 4be−a.
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Applying this result with a = ξ2 and b = ξ4m(θ)2/4 to the exponential part of (4.7),
and using majoration (2.13), one gets∣∣∣∣exp

{
−ξ2

(
1 +

ξ2ζ2m(θ)2

4

)}
− 1

∣∣∣∣ � ζ2ξ4m(θ)2e−ξ2 � L2 ζ
2 m(θ)2e−ξ2/2.

Consequently, one has

(4.9)
∣∣∣γ(ξ, ζ, θ, x, t) − (ξβx − ξ3m(θ))e−ξ2

∣∣∣ � L2

(
β0ξ + |m(θ)|ξ3

)
ζ2m(θ)2e−ξ2/2,

which is itself majorated, using again formula (2.13), by

√
2L2

(
L1/2β0 + 2L3/2|m(θ)|

)
ζ2m(θ)2e−ξ2/4.

Now noticing that

|m(θ)| � |κ1| + |κ0| + |κ0| + |κ2|

� 2 max (|κ1| + |κ0|, |κ0| + |κ2|) = 2|||Kx|||1 � 2
√

2|||Kx|||2 � 2
√

2ρ0,

where ||| · ||| is the standard norm for linear operators, and setting

(4.10) C = 8
√

2L2

(
L1/2β0 + 4L3/2ρ0

)
ρ2
0,

one gets

(4.11)
∣∣∣γ(ξ, ζ, θ, x, t) − (ξβx − ξ3m(θ))e−ξ2

∣∣∣ � C ζ2 e−ξ2/4,

whose right-hand side is variable separated and integrates obviously into

(4.12)

∫ 2π

0

∫ 2
√
νt

0

∫ ∞

0

ζ2 e−ξ2/4 dξ dζ dθ =
16π3/2

3
(νt)3/2,

and consequently

(4.13)

∣∣∣∣H0(x, t) −
√
νt

π3/2

∫ 2π

0

∫ ∞

0

(ξβx − ξ3m(θ))e−ξ2

dξ dθ

∣∣∣∣ � 8C

3
(νt)3/2.

Moreover, one has

(4.14)

∫ 2π

0

m(θ) dθ = πκ1 + πκ2 = π tr(Kx),

and thus

(4.15)

∣∣∣∣∣H0(x, t) −
√

νt

π

∫ ∞

0

(2ξβx − ξ3(κ1 + κ2))e
−ξ2

dξ

∣∣∣∣∣ � 8C

3
(νt)3/2

with ∫ ∞

0

(2ξβx − ξ3(κ1 + κ2))e
−ξ2

dξ = βx − κ1 + κ2

2
,

which concludes the proof.
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5. Curvature effect on the whole surface. From all the previous sections
we can give now the following result.

Theorem 5.1. Let Ω be an open set of R
3 such that ∂Ω is a two-dimensional

manifold of class C2+λ, 0 < λ � 1, satisfying conditions (C1)–(C5), and Lx is a
Robin–Fourier differential operator Lx = β(x)Id + n(x) · ∇ with β bounded over ∂Ω

and n(x) the inward normal to ∂Ω in x. Let also H̃ be the following integrodifferential
operator:

(5.1) H̃(x, t)f = ν

∫ t

0

∫
∂Ω

LxGξ,τ (x, t) f(ξ, τ)dσ(ξ)dτ

for all continuous and bounded functions f : ∂Ω × [0, T ] → R. If the density μ̃ is
α-Hölder continuous, then

(5.2) H̃(x, t)μ̃ =
[
μ̃(x, t)

(
β(x) − κ̄(x)

)]√νt

π
+ O(t(1+γ)/2)),

where γ = min(α, λ) and κ̄(x) is the mean curvature of ∂Ω in x.
Proof. Let μ̃ be a density that is supposed α-Hölder continuous with α ∈]0, 1].

One can introduce the function Zx,t defined by

(5.3) Zx,t : (y, τ) �→ Zx,t(y, τ) = μ̃(y, τ) − μ̃(x, t)

with the following property:

(5.4) |Zx,t(y, τ)| = |μ̃(y, τ) − μ̃(x, t)| � CZ

(
|x− y|α + |ν(t− τ)|α/2

)
.

One then gets

H̃Sx
(x, t)Zx,t = H̃Sx

(x, t)μ̃− μ̃(x, t)H̃Sx
(x, t)1.

By Corollary 3.4 of Lemma 3.2, one gets that there exists a constant C1 independent
of x and t such that

(5.5) |H̃Sx(x, t)Zx,t| = |H̃Sx
(x, t)μ̃− μ̃(x, t)H̃Sx

(x, t)1| � C1t
(α+1)/2

with H̃Sx
(x, t)1 = H(x, t)1, and thus

(5.6)
∣∣∣H̃Sx(x, t)1 −H(x, t)1

∣∣∣ � C2t
(1+λ)/2

by Lemma 3.5,

(5.7)
∣∣H(x, t)1 −H0(x, t)

∣∣ � C3t
3/2

by Lemma 4.1, and also

(5.8)
∣∣∣H0(x, t) − (βx − κ̄(x))

√
νt/π

∣∣∣ � C4t
3/2

by Proposition 4.2, where κ̄(x) = trKx/2 is the mean curvature of ∂Ω in x.
Joining together (5.5), (5.6), (5.7), and (5.8) gives

(5.9)
∣∣∣H̃Sx(x, t)μ̃− (βx − κ̄(x)) μ̃(x, t)

√
νt/π

∣∣∣ � C5t
(γ+1)/2
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with γ = min(α, λ) and C5 = C1T
(α−γ)/2 +C2T

(λ−γ)/2 + (C3 +C4)T
2−γ/2. Noticing

that

(5.10) H̃(x, t)μ̃ = H̃Sx(x, t)μ̃ + O(t∞)

by Proposition 2.4 gives the final result.
First of all, it is necessary to remark that Theorem 5.1 gives the early behavior

of the solution, as mentioned in section 1.
Corollary 5.2. Let ∂Ω be a two-dimensional manifold of class C3 and let F be

a bounded function over ∂Ω × [0, T ] such that the solution μ̃ of the integral equation

(5.11) −1

2
μ̃(x, t) + H̃(x, t)μ̃ = F (x, t)

is bounded and (1− ε)-Hölder continuous with the Hölder exponent satisfying 0 � ε <
1. Under the notation and hypothesis of Theorem 5.1, one has

(5.12) μ̃(x, t) =
−2F (x, t)

1 + 2 (κ̄(x) − β(x))
√

νt/π
+ O(t1−ε/2).

Furthermore, one can build a result in a smoother context concerning torsion-free
surfaces.

Theorem 5.3. Let Ω be an open set of R
3 such that ∂Ω is a two-dimensional

manifold of class C3+λ∗
without torsion, with 0 < λ∗ � 1, satisfying conditions (C1)–

(C5). Let β and F be two functions bounded, respectively, over ∂Ω and ∂Ω × [0, T ]
such that the solution μ̃ of the integral equation (5.11) is of class C1+α(∂Ω × [0, T ])
and bounded. Then the solution μ̃ of (5.11) satisfies

(5.13) H̃(x, t)μ̃ =
[
μ̃(x, t)

(
β(x) − κ̄(x)

)]√νt

π
+ O(t1+γ/2),

where γ = min(α, λ∗) and κ̄(x) is the mean curvature of ∂Ω in x.
Proof. In the context of a manifold smoother than C3, there exist two constants

Cx and C ′
x such that

(5.14)

∣∣∣∣ϕx(s) − 1

2
tsKxs−

1

6
T ijk
x sisjsk

∣∣∣∣ � Cx |s|3+λ

and

(5.15)

∣∣∣∣∇ϕx(s) −Kxs−
1

2
ts(Tx : e·)s

∣∣∣∣ � C ′
x |s|2+λ,

where Tx is the torsion tensor of ϕx in 0 defined as

T ijk
x =

∂3ϕx

∂si∂sj∂sk
(0)

and T ijk
x sisjsk is its associated cubic form. The torsion tensor can be contracted with

the vectors of canonical basis ek, such that the kth component of Tx : e· is the matrix
Tx : ek associated to the quadratic form ts(Tx : ek)s. This can be equivalently stated,
using again the Einstein notation, as

ts(Tx : e·)s = (Tx : e·)
ijsisj = T ijk

x sisjek.
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This statement is also equivalent to the symmetric formulation (E∗)⊗3 ≡ E⊗E∗⊗E∗

with E = R
2.

Constants Cx and C ′
x can be assumed to be bounded independently of x over ∂Ω,

and in the case of a torsion-free surface (for example, cylinders and spheres are torsion-
free), the torsion tensor is identically equal to 0, which leads to majorations of the same
kind as those of equations (2.3) with majorants C|s|3+λ∗

and C ′|s|2+λ∗
, respectively,

for the gradients. In this context, Lemma 3.5 holds with λ = 1 + λ∗ ∈ ]0, 2], which
gives that

(5.16) H̃(x, t)μ̃ = H(x, t)μ�
x + O(t∞) = H(x, t)μ�

x + O(t1+λ∗/2)

with μ�
x(s, τ) = μ̃(Txφx(s), τ).

Moreover, thanks to greater regularity of the density through the maps, one can
write the following development:

(5.17)
μ�
x(s, τ) = μ�

x(0, t) + Rx,t(s, τ) − ν(t− τ)
∂μ�

x

∂τ

∣∣∣
0,t

+ O
(
|s|1+α + |s|uα/2

)
+ O

(
|s|αu + u1+α/2

)
with Rx,t(s, τ) = s · ∇μ�

x(0, t) and u = ν|t− τ |.
By oddness, one has H(x, t)Rx,t = 0, and one can easily establish upon proof of

Lemma 3.2 that

(5.18)
∣∣H(x, t)[|s|a(ν(t− τ))b]

∣∣ � 2M1√
π

∫ νt

0

∫ R

0

(
β0 +

ρ0

2

r2

2u

)
raube−r2/4u

8u3/2
r drdτ,

which gives

(5.19)
∣∣H(x, t)[|s|a(ν(t− τ))b]

∣∣ � C1 Γ0,8
a,3/2−b = O(t1/2+b+a/2)

with C1 = M1(β0 + L1ρ0)/4
√
π. This implies that |H(x, t)[ν(t− τ)]| = O(t3/2); thus

(5.17) reads as

(5.20) μ�
x(s, τ) = μ�

x(0, t) + O(tη)

with η = min(3/2, 1 + α/2, 3/2 + α/2) = 1 + α/2. Combining this with (5.16) gives
(5.21)

H̃(x, t)μ̃ = H(x, t)μ�
x + O(t1+λ∗/2) = μ�

x(0, t)H(x, t)1 + O(t1+λ∗/2) + O(t1+α/2).

By Lemma 4.1 and Proposition 4.2, one has

(5.22)
∣∣∣H(x, t)1 − (βx − κ̄(x))

√
νt/π

∣∣∣ = O(t3/2),

and consequently (5.21) leads to
(5.23)

H̃(x, t)μ̃ = μ̃(x, t)H(x, t)1 + O(t1+γ/2) = μ̃(x, t) (βx − κ̄(x))
√
νt/π + O(t1+γ/2)

with γ = min(λ∗, α).
Note that Theorem 5.3 is not an extension of Theorem 5.1, because a function

can be more regular than Hölder continuous (even with an exponent 1) and less than
C1 (for example,

√
t). Moreover, one can notice that this result is useful only as a
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kind of regularity estimation of the integrodifferential operator H̃, since the density
obtained as the solution of the original integral equation (5.11) exhibits a square-root
singularity in the general case (see Corollary 5.2) and consequently cannot be C1.

Furthermore, a direct corollary of this result is that if the density is C2(∂Ω×[0, T ]),
which is in practice a restrictive condition, and if the manifold ∂Ω is C4, then the error
is of order 3/2. This fact is illustrated in section 6.2 with a constant density and a
cylinder.

6. Cylindrical examples. In this section we provide a few canonical examples
showing the contribution of the curvature effect on the solution.

Example 6.1 puts the problem of boundary source in the more general context of
enforcing boundary conditions. Examples 6.2 and 6.3 describe, respectively, the cases
of the spanwise and azimuthal components of the cylinder. A numerical application
of kinematic boundary conditions is then provided in section 6.4.

6.1. Splitting the full heat equation. The method presented herein can be
very useful when a scheme that does not control boundary conditions is used. Indeed,
the problem

(6.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ω

∂t
− νΔω = g in Ω× ]0, T [,

ω(x, 0) = ω0(x) on Ω,

ν Lxω(x, t) = F (x, t) on ∂Ω× ]0, T [

can be solved in the inner part of Ω by a numerical method not consistent on bound-
aries (or leading to a prohibitive computational cost when consistent), i.e., approxi-
mating the problem

(6.2)

⎧⎨⎩
∂ω

∂t
− νΔω = g in Ω× ]0, T [,

ω(x, 0) = ω0(x) on Ω

with arbitrary boundary conditions. Then one can measure the error on boundaries

q(x, t) = νLxω(x, t)

and use the present integral method to give explicitly (without the cost of another
partial differential equation to solve) the solution of

(6.3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ω

∂t
− νΔω = 0 in Ω× ]0, T [,

ω(x, 0) = 0 on Ω,

ν Lxω(x, t) = F (x, t) − q(x, t) on ∂Ω× ]0, T [,

which is then approximated (at the appropriate order coming from Theorem 5.1 or
Theorem 5.3) by

(6.4) ω(x, t) �
∫ t

0

∫
∂Ω

−2F (ξ, τ) + 2q(ξ, τ)

1 + 2 (κ̄(ξ) − β(ξ))
√
ντ/π

e−(x−ξ)2/4ν(t−τ)

(4πν(t− τ))
3/2

dσ(ξ)dτ,
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which can itself be computed by a time quadrature (for t sufficiently small, typically
for a time step when used in a numerical context) over a surface integral, using, for
example, the midpoint rule:

(6.5) ω(x, t) �
∫
∂Ω

−2t F (ξ, t/2) + 2t q(ξ, t/2)

1 + 2 (κ̄(ξ) − β(ξ))
√
νt/2π

e−(x−ξ)2/2νt

(2πνt)3/2
dσ(ξ).

Note that the time quadrature based on an implicit Euler scheme is singular,
while an explicit Euler scheme does not take curvature into account, despite the fact
of being only first order.

Moreover, in order to provide more accuracy, this technique can be repeated on
smaller intervals of time. The drawback in segmenting the time interval is that it
reduces standard deviation of the Gaussian, which can possibly make the scheme
underresolved, especially for three-dimensional computations. This approach, which
couples the present integral method and a particle strength exchange (PSE) scheme
(see [12]), has been successfully used for three-dimensional flow computations in [32],
where boundary effects are the dominant effect.

Furthermore, one can also notice that (6.2)–(6.3) can be naturally parallelized if
(6.2) is solved for homogeneous boundary conditions (i.e., q = 0). Using this density
estimation also provides a way to correct lack of regularity at the grid interface when
performing domain decomposition at minimal cost.

6.2. The spanwise invariant cylinder. Let B2(0, r) be the open ball of center
0 and radius r in R

2, let Ω = R
2 \ B2(0, r) × R be an infinitely long cylindrical body

of R
3, and let C = ∂B2(0, r).
One considers the heat equation and the spanwise component of its solution,

which is related to a pure Neumann boundary condition. One then gets the spanwise
heat layer of unity:

H̃z(x, t)1 = ν

∫ t

0

∫
∂Ω

nx · ∇Gξ,τ (x, t)dσ(ξ)dτ.

Since the configuration is axisymmetric and spanwise invariant, one can set x =
(r, 0, 0) and ξ = (r cos θ, r sin θ, 0) without loss of generality. By means of integration
in the spanwise direction, one gets

H̃z(x, t)1 = −ν

∫ t

0

∫
C

1

4πν(t− τ)

nx · (x− ξ)

2ν(t− τ)
exp

(
− (x− ξ)2

4ν(t− τ)

)
dσ(ξ)dτ

= − 1

π

∫ νt

0

∫ π

−π

r

8u2
(1 − cos θ) exp

(
−
[
(cos θ − 1)2 + sin2 θ

]
r2

4u

)
rdθdu

with u = ν(t− τ). Noticing the symmetry around θ = 0, one gets by parity

H̃z(x, t)1 = − r2

2π

∫ νt

0

∫ 1

0

y

u2
exp

(
−y r2

u

)
1√

y(1 − y)
dydu

with y = (1 − cos θ)/2, which integrates successively into

H̃z(x, t)1 = − 1

2π

∫ 1

0

e−y r2/νt√
y(1 − y)

dy = −1

2
e−r2/2νt I0

(
r2

2νt

)
,
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Fig. 5. Numerical values of heat layer H̃z(x, t)fx with respect to time t (dashed line represents
the function t/3).

where I0 is the modified Bessel function of first kind (i.e., the solution of x2y′′ +xy′−
x2y = 0 with y(0) = 1 and y′(0) = 0). Since the mean curvature of ∂Ω is κ̄ = 1/2r,
and noticing that

lim
x→+∞

√
x e−xI0(x) =

1√
2π

,

one finally has that H̃z(x, t)1 is equivalent to −κ̄
√
νt/π when t tends to 0, as expected

by Lemma 4.2 and Theorem 5.1. One can notice that the present computation is
performed on the exact surface ∂Ω instead of an approximation.

Moreover, in the present case, the density is smooth and the hypothesis of Theo-
rem 5.3 holds; thus one can expect a full 3/2 order of convergence. Indeed, a cylinder
presents no torsion, and one can show that

lim
x→+∞

(√
x e−xI0(x) − 1√

2πx

)
x3/2 =

1

8
√

2π
,

which proves the 3/2 order of heat layer error on both the exact surface and its
quadratic approximation. This example illustrate the statement of Theorem 5.3, i.e.,
that no torsion implies no error at first order in time for a constant source.

In order to exhibit the limit convergence order of Theorem 5.1, one has to choose
an example for which Theorem 5.3 is not valid. Since the cylinder is torsion-free,
one has to choose a density which is 1-Hölder continuous without being differentiable.
The Euclidean norm satisfies this condition, and using the notation already set above,
one considers the density

fx(ξ, τ) = |x− ξ| = 2r
√
y ;

thus evaluating the heat layer at point x gives

(6.6) H̃z(x, t)fx = − r

π

∫ 1

0

e−y r2/νt

√
1 − y

dy.

Integrating this integral symbolically is more difficult than the previous ones (though
possible using erf functions). Figure 5 shows a certified 15-digit evaluation of the
integral expression (6.6) with respect to time t. This actually exhibits a first order

convergence since fx(x, t) = 0, and consequently H̃z(x, t)fx = fx(x, t) + O(t).
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6.3. Vectorial kinematic boundary conditions and integral formulation
of Chorin’s algorithm in the cylinder case. In this section, one applies the
present density estimation to Chorin’s algorithm in the parabolic context (initially
proposed in an hyperbolic context [7]), in the case of a circular cylinder.

Let u : Ω × [0, T ] → R
3 be a velocity field satisfying the Stokes equations, and

let ω be its associated vorticity field defined by ω = curlu and satisfying the diffusion
problem with kinematic boundary conditions:

(6.7)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂ω

∂t
− νΔω = 0 in Ω× ]0, T [,

u(x, t) = 0 on ∂Ω× ]0, T [,

ω(x, 0) = ω0(x) on Ω.

While computing ω from u is obvious, building u from ω is more difficult. In the
full space Ω = R

3, one can use the three-dimensional Green kernel G(x) = (4π|x|)−1

through the Biot–Savart law

(6.8) u = ∇G ∗̂ω =

∫
R3

∇G(· − x) ∧ ω(x) dx.

In the presence of boundaries, one can use symmetrizations of Biot–Savart laws around
∂Ω or more rigorously consider the single-layer integral formulation of (6.7) shown in
[10]. Nevertheless, integral techniques are much less useful for this problem than the
one presented herein, since the Green kernel and its gradient decrease much more
slowly than Gaussian functions. A more competitive approach to computing the
velocity from the vorticity is to introduce the Poisson equation on stream function
with appropriate boundary conditions (see [30]) and eventually additional quantities
such as potential stream to uncouple components of the three-dimensional Poisson
equation (see [11]). In any case, it is possible to consider the operator A, in the
appropriate functional space, associating a velocity field u = Aω to a vorticity field
ω, satisfying curlu = ω and divu = 0 on Ω and u · nx = 0 on ∂Ω.

One considers the infinitely long circular cylinder Ω of axis ez and radius R, whose
other tangential vector is denoted eθ and whose normal vector is denoted er (that is,
the standard cylindrical coordinates).

Applying Chorin’s method (whose convergence is proved in [8] in the case of the
Stokes equation and its rotational formulation), this problem can be reduced to two
parabolic problems with Neumann and Robin–Fourier (see [11]) boundary conditions.
The first has homogeneous boundary conditions, which in cylindrical coordinates reads
as

(6.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ω1

∂t
− νΔω1 = 0 in Ω× ]0, T [,

ω1(x, 0) = ω0(x) on Ω,

ν
∂ω1

z

∂n
= 0 on ∂Ω× ]0, T [,

ν
ω1
θ

R
+

∂ω1
θ

∂n
= 0 on ∂Ω× ]0, T [,

ω1
r = 0 on ∂Ω× ]0, T [,
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whose divergence-free and no-slip-through associated velocity field u1 = Aω1 presents
a priori nonzero tangential values (u1 is usually called spurious velocity). One then
considers a second diffusion problem with zero initial condition,

(6.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ω2

∂t
− νΔω2 = 0 in Ω× ]0, T [,

ω2(x, 0) = 0 on Ω,

ν
∂ω2

z

∂n
= −∂uθ

∂t
on ∂Ω× ]0, T [,

ν
ω2
θ

R
+

∂ω2
θ

∂n
=

∂uz

∂t
on ∂Ω× ]0, T [,

ω2
r = 0 on ∂Ω× ]0, T [,

which allows us to link asymptotically (see [8]) the solution of (6.7) to the solutions
of (6.9)–(6.10):

(6.11) ω1(t) + ω2(t) = ω(t) + O(t).

One can immediately notice that problem (6.10) is a heat equation with a zero
initial condition and a vectorial Robin–Fourier boundary condition, on which one can
apply component by component the density estimation presented herein, as long as
boundary conditions are expressed in a basis in which the fundamental solution of
heat equation is still Gaussian. One can thus introduce the matrix

(6.12) K =

⎡⎣ 1 0 0
0 1 0
0 0 0

⎤⎦ , N =

⎡⎣ 0 0 0
0 1 0
0 0 1

⎤⎦ , and Γθ =

⎡⎣ cos θ sin θ 0
− sin θ cos θ 0

0 0 1

⎤⎦
so that in the canonical basis ω = (ωx, ωy, ωz), the boundary operator of equa-
tion (6.10) reads as

(6.13) Lxω = Γ−θK Γθ
ω

R
+ Γ−θN Γθ

∂ω

∂n

when expressed at point x = (R cos θ,R sin θ, z). This allows us to write the boundary
conditions of (6.10) under the form

(6.14) ν Lxω =
∂u

∂t
∧ nx.

One can use Theorem 5.1 and get by linearity

(6.15) H̃(x, t)f � Γ−θ

(
K − N

2

)
Γθ

f(x, t)

R

because the mean curvature of the cylinder in κ = 1/2R. Since the density of the

potential giving ω satisfies the integral equation μ̃− 2H̃μ̃ = −2∂tu ∧ n, one gets

(6.16) μ̃(x, t) � −2Γ−θ

(
Id −

√
νt/π

R
(2K −N)

)−1

Γθ
∂u

∂t
∧ nx
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at the appropriate order, depending only on regularity of u since the cylinder is a C∞

differentiable manifold.
Setting ε =

√
νt/π/R, (6.16) reads as

(6.17) μ̃(x, t) � −2Γ−θP
−1Γθ

∂u

∂t
∧ nx, where P =

⎡⎣ 1 − 2ε 0 0
0 1 − ε 0
0 0 1 + ε

⎤⎦ .

This matrix P is obvious to inverse, as long as t is sufficiently small. One can notice
that curvature effects are of different signs for ωθ and ωz due to the Dirichlet part in
the azimuthal direction.

Note also that if one considers only the z direction (for a two-dimensional prob-
lem), the density estimation (6.17) can be written as

(6.18) μ̃z(x, t) �
+2

1 + 1
R

(√
νt/π

) ∂uθ

∂t
(x, t).

6.4. Numerical example of kinematic boundary conditions. One con-
siders the diffusion problem with time-periodic unknown ω : Ω×]0, 2π] �→ R

3, still
defined in a cylindrical domain Ω, and kinematic boundary conditions:

(6.19)

⎧⎨⎩
∂ω

∂t
− νΔω = 0 in Ω× ]0, 2π],

u(x, t) = cos t eθ(x) on ∂Ω× ]0, 2π],

where the velocity field u(x, t) is built from ω by u = Aω, where operator A is based
on formula (6.8), or by using a hybrid technique (see [11]).

Note that this problem is slightly more general than the one in the last section,
because one has nonhomogeneous kinematic boundary conditions, whose main impli-
cation is that spurious velocity vanishes toward boundary value. Indeed, it has been
shown (see [24]) that the parabolic problem

(6.20)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ω

∂t
− νΔω = 0 in Ω× ]0, 2π],

ν
∂ωz

∂n
(x, t) = −∂uθ

∂t
(x, t) = sin t on ∂Ω× ]0, 2π],

ν
∂ωθ

∂n
(x, t) =

∂uz

∂t
(x, t) = 0 on ∂Ω× ]0, 2π],

ωr = 0 on ∂Ω× ]0, 2π]

approximates well problem (6.19) in this particular context (i.e., when residual ve-
locities coming from (6.20) with homogeneous conditions vanish toward ∂tu as stated
above). One can notice that the solution is then invariant in z and θ.

Then let the functions{
K+(r) = Re (Ke0(cr)) + Im (Ke0(cr)) ,

K−(r) = Re (Ke0(cr)) − Im (Ke0(cr))

be based on Kelvin functions (sometimes also called Thompson functions), with c =
1/
√
ν. The function

ω∗(r, t) = (αK−(r) − βK+(r)) cos t− (αK+(r) + βK−(r)) sin t
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is then a time-periodic solution of ∂tω − νΔω = 0. Setting A = c
√

2/2|Ke1(c) | helps
to check that β−iα = Ke1(c)/A is the only pair of parameters that makes ω∗ez satisfy
(6.20).

Let us consider (6.20) over a time step ]tn, tn+1[ with tn = nδt and its initial
value denoted ωn(x). The initial value for n = 0 is set with the exact solution
ω0
z(x) = ω∗(|x|, tn) and other components of ω0 set to zero.

Playing with linearity of the heat equation (without approximation), (6.20) can
be solved in two steps over ]tn, tn+1[. The first step is the computation of the solution
with arbitrary boundary conditions, in practice using a second order PSE scheme on
a grid with a uniform cylindrical lattice (see [11]). The second step is the enforcement
of the boundary condition, in the spirit of section 6.1.

Nevertheless, one can notice that truncated PSE schemes are consistent with a
flux and can be tuned to provide homogeneous Neumann boundary conditions. The
flux error denoted q in section 6.1 can consequently be set to 0 in equations (6.3)–(6.5).
The two steps can be naturally parallelized, and the second step can be computed
with the integral scheme presented herein in the pure Neumann boundary condition
context, which, using formula (6.18), reads as

ωz(x, tn + δt) � ωz(x, tn) − 2

∫ δt

0

∫
∂Ω

Gξ,τ (x, δt)

1 + 1
R (
√
ντ/π)

sin(tn + τ) dσ(ξ)dτ,

where R is the cylinder radius, without any action on other components since 0 is
solution. Note that Theorem 5.3 is valid only at tn = 0; thus this density evaluation
is first order (from Corollary 5.2). One can then use a time quadrature to compute
ω(x, tn+1), such as using the midpoint rule (see (6.5) with q = 0).

This one-dimensional reducible example allows us to compare the three-dimensional
algorithm presented herein with the two-dimensional algorithm from [24] given for
Neumann boundary conditions, and compare both of them with the exact solution.
These three quantities are plotted in Figure 6 at times t = 0.75, 1, 1.5, and 2. The
curves show a good agreement qualitatively, but the main result is that the algorithm
allows us to enforce very well the kinematic boundary conditions: the residual velocity
(rebuilt from vorticity ω by the operator A defined in section 6.3) is close to 10−6,
and this code was run in simple precision.

7. Toroidal examples. This section aims to illustrate the optimality of the
convergence ratio obtained by Theorem 5.1. In order to proceed, one has to consider
an example for which Theorem 5.3 is not valid.

The differences in the hypotheses of Theorems 5.1 and 5.3 lead us to consider
either a nondifferentiable 1-Hölder continuous function on a torsion-free surface (the
case already studied in section 6.2), or a smooth function density defined on a surface
presenting torsion (i.e., whose tensor of map third derivatives is not identically zero).

In order to build such a surface and analyze properties of the integrodifferential
operator H̃ on it, one considers the heat equation with pure Neumann boundary
conditions:

(7.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∂ω

∂t
− νΔω = 0 in Ω× ]0, δt],

ν
∂ω

∂n
(x, t) = F (x, t) on ∂Ω× ]0, δt],

ω(x, 0) = 0 on ∂Ω,
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Fig. 6. Numerical solutions compared to the exact axisymmetric and time-periodic solution of
the heat equation at times t = 0.75, 1.0, 1.5, 2.0, with exact solution (–), three-dimensional scheme
(+), and two-dimensional scheme (×) from [24]. Bottom: residual tangential velocity versus time
step number n (time step δt = 0.025).

where ∂Ω is successively the usual torus in section 7.1 and then modified with har-
monic perturbations introducing torsion in sections 7.2 and 7.3. Large and small
wavelength perturbations are involved, generating, respectively, a “twisted” and a
“rippled” torus.

Instead of solving the heat equation, we will discuss properties of the related
operator H̃ defined by formula (2.2), which reads as follows:

(7.2) H̃(x, t)1 = − ν

16π3/2

∫ t

0

∫
∂Ω

(x− ξ) · nx(
ν(t− τ)

)5/2 e−|x−ξ|2/4ν(t−τ)dσ(ξ)dτ.
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Fig. 7. Right: plot of this surface, with color being the curvature coefficient given by for-
mula (7.12). Left: pointwise error of the estimate of H̃(x, t)1 in θ0 = π/2 versus νt (× is for-
mula (7.13), and the solid line is (νt)3/2).

7.1. The torsionless torus. One sets two radii r and R > r, and two angles
θ ∈ [−π, π[ and ζ ∈ [−π, π[, both defined modulo 2π. The torus T is then the image
of these domains by the function

(7.3) f(θ, ζ) =
(
(R + r cos θ) cos ζ, (R + r cos θ) sin ζ, r sin θ

)
,

which satisfies

(7.4)

∥∥∥∥∂f∂θ ∧ ∂f

∂ζ

∥∥∥∥
2

= r Iθ with Iθ = (R + r cos θ) > 0.

The resulting surface is shown in Figure 7.
One can consider the points on the ζ = 0 section, defined by

(7.5) x = f(θ0, 0) =
(
Iθ0 , 0, r sin θ0

)
,

as arbitrary points of the surface without loss of generality, since the torus is globally
ζ-invariant. The normal vector to T in x is then

(7.6) nx = (cos θ0, 0, sin θ0) .

Moreover, in order to describe a neighborhood of x, one also defines

(7.7) ξ = f(θ, ζ) =
(
Iθ cos ζ, Iθ sin ζ, r sin θ

)
.

The integrodifferential operator defined by formula (7.2) reads as

(7.8) H̃(x, t)1 = − 1

2π3/2

∫ 4νt

0

∫
∂Ω

(x− ξ) · nx

u5/2
e−|x−ξ|2/udσ(ξ)du

for u = 4ν(t− τ). In order to obtain a two-dimensional integral calculus, one can set

(7.9) Ut(θ, ζ) =
(x− ξ(θ, ζ))2

4νt

so that
(7.10)∫ 4νt

0

e−(x−ξ(θ,ζ))2/uu−5/2 du =
E
(
Ut(θ, ζ)

1/2
)
− Ut(θ, ζ)

1/2e−Ut(θ,ζ)

Ut(θ, ζ)3/2
(4νt)3/2,
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Fig. 8. Convergence of estimates for the torsionless torus. Left: uniform convergence of
(νδt)−1/2H̃(x, δt)1 toward κ̄(x)/

√
π versus angle θ0. Right: resulting numerical order N(νδt, θ0)

obtained by formula (7.14) versus angle θ0. Legend: � is νδt = 1, + is νδt = 0.1, and × is
νδt = 0.01.

where E is the scaled erf complementary function defined by

E(x) = −
∫ +∞

x

e−z2

dz =

√
π

2
(erf(x) − 1).

This leads to a new expression for H̃(x, t)1:
(7.11)

− r

(4πνt)3/2

∫ π

0

∫ θ0+π

θ0−π

E
(
Ut(θ, ζ)

1/2
)
− Ut(θ, ζ)

1/2e−Ut(θ,ζ)

Ut(θ, ζ)3/2
(x− ξ(θ, ζ)) · nx Iθ dθdζ.

This two-dimensional integral is then computed by a fifth order Gauss–Legendre
quadrature formula with 20003 elements, once the singularity in (θ0, 0) has been

smoothed by setting θ = θ0 ± θ̂s and ζ = ζ̂s with s = 3.
It can be shown (but is not developed herein) that the mean curvature in x =

f(θ, ζ) is given by

(7.12) κ̄(x) =
1

2

(
1

r
+

cos θ

R + r cos θ

)
.

Theorem 5.3 then predicts, since the torus is a C∞ torsionless two-dimensional sub-
manifold of R

3, that

(7.13) H̃(x, t)1 − κ̄(x)

√
νt

π
= O(t3/2).

One verifies that this 3/2 order is reached with the computation of the difference
of the two expressions above for x = π/2. The left-hand picture in Figure 7 shows
that indeed the difference scales as t3/2. In order to measure the convergence more
uniformly, one introduces the numerical order of convergence N(t) defined by

(7.14) N(νδt, θ0) = log10

⎛⎝ H̃(x, δt)1 − κ̄(x)
√

νδt
π

H̃(x, δt/10)1 − κ̄(x)
√

νδt/10
π

⎞⎠
with x = f(θ0, 0) chosen on the ζ = 0 section (which is the generality since this torus
is ζ-invariant). This function is plotted in the right-hand graph of Figure 8 and shows
a convergence toward the 3/2 order everywhere. The convergence order suggested by
Theorem 5.3 is consequently optimal.
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Fig. 9. Right: plot of the twisted torus (color is the same as for Figure 7). Left: pointwise

error of the estimate of H̃(x, t)1 versus νt (× is formula (7.13) for θ0 = π/4, + is formula (7.13)
for θ0 = π/2, and the solid line is νt).
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Fig. 10. Convergence of estimate for the twisted torus. Left: uniform convergence of
(νδt)−1/2H̃(x, δt)1 toward κ̄(x)/

√
π versus angle θ0. Right: resulting numerical order N(νδt, θ0)

obtained by formula (7.14) versus angle θ0. Legend: + is νδt = 10−2, × is νδt = 10−3, and � is
νδt = 10−4.

7.2. The “twisted” torus. In order to introduce torsion effects to the geome-
try, one considers two strictly positive numbers Ā and m̄ and the function

(7.15) g(ζ) = Ā (2 sin(m̄ζ) − sin(2m̄ζ)) ,

which satisfies g(0) = g′(0) = g′′(0) = 0 and g′′′(0) = 6Ām̄3 �= 0.
The surface defined by

(7.16) f(θ, ζ) + g(ζ)ez

with Ā = 0.2 and m̄ = 4 (where ez denotes the third vector of the canonical basis of
R

3) is called herein the “twisted” torus and is plotted in Figures 9 and 10.
It presents nonzero torsion everywhere on the section ζ = 0, except for θ0 = 0

and θ0 = π for which the mapping is tangential (thus introduces no torsion), without
changing curvature, slope, and location of this section when compared to the torsion-
less torus discussed in the last section (note that in this case the Jacobian is not as
obvious as before and is thus not explicitly given herein).
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Fig. 11. Right: plot of the rippled torus (color is the same as for Figure 7). Left: pointwise

error of the estimate of H̃(x, t)1 versus νt (× is formula (7.13) for θ0 = π/4, + is formula (7.13)
for θ0 = π/2, and the solid line is νt).
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Fig. 12. Convergence of estimate for the rippled torus. Left: uniform convergence of
(νδt)−1/2H̃(x, δt)1 toward κ̄(x)/

√
π versus angle θ0. Right: resulting numerical order N(νδt, θ0)

obtained by formula (7.14) versus angle θ0. Legend: + is νδt = 10−2, × is νδt = 10−3, � is
νδt = 10−4, and ∗ is νδt = 10−5.

According to Theorem 5.1 and the strong need in Theorem 5.3 of the torsion-free
surface to reach order 3/2, one expects in the present case to observe a first order
convergence rate, except for the singular value of θ0 mentioned above.

7.3. The “rippled” torus. In this section one considers the same kind of torus
as in section 7.2, with perturbation parameters chosen as Ā = 0.05 and m̄ = 16. This
example provides a torsion 16 times stronger than the previous one, which makes
torsion effects even clearer. Indeed, one can see in Figure 11 that convergence is
globally first order, as observed for the twisted torus, but with a shift of accuracy due
to stronger torsion effects.

Figure 12 shows that the first order is induced by a broken symmetry led by the
torsion tensor, but also that the order is still constant over the section, except for
θ0 = 0 for which the torsion effect is tangential; thus it does not act on body torsion
and allows a 3/2 convergence order at this special point.

8. Conclusion. In this article, we have proved that the solution of the heat
equation whose sources are provided only at boundaries can be explicited analytically
up to order 3/2, exhibiting a square root in time depending on the boundary curvature
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and the Dirichlet part of the Robin–Fourier coefficients of the boundary conditions.
The solution is expressed in its integral formulation, involving a Gaussian kernel and
a surface density. Most of the present study focuses on properties of this density.

The main result obtained herein is that since the density is analytically provided,
one gets a very fast estimation of the solution of the heat equation for early times.
This leads to a fast numerical scheme for kinematic boundary conditions or in addition
to a scheme not satisfying algebraically the Robin–Fourier boundary condition.

The order depends on whether the manifold defining the domain boundary is
torsionless or not, and on the manifold and the density regularities. Since small times
are considered, the Gaussian kernel of the heat equation has small standard deviation,
and thus its effect is localized (if not compactly supported). Therefore classical results
have been extended to a class of noncompact manifolds, satisfying a few properties
denoted (C1)–(C5).

We first discussed the error estimation due to restriction and then the error result-
ing from the substitution of the manifold by its best quadratic approximant. The error
coming from the flattening process was also discussed, obtaining finally an integral
expression which can be symbolically carried out.

Several applications illustrate that the limit convergence rates given by Theo-
rems 5.1 and 5.3 are optimal. As examples, we investigate numerically the two- and
three-dimensional cylinders, whose different eigenvectors of the curvature matrix in-
duce density anisotropy. These cylindrical examples allow us to show the effect of
density regularity on the double heat layer. The effect of manifold torsion is finally
investigated for smoothly perturbated toroidal manifolds.

Acknowledgments. The author thanks Georges-Henri Cottet and Petros Kou-
moutsakos for their helpful contribution in the early work leading to the three-
dimensional results.
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THE FINITE ELEMENT APPROXIMATION OF THE NONLINEAR
POISSON–BOLTZMANN EQUATION∗

LONG CHEN† , MICHAEL J. HOLST‡ , AND JINCHAO XU§

Abstract. A widely used electrostatics model in the biomolecular modeling community, the
nonlinear Poisson–Boltzmann equation, along with its finite element approximation, are analyzed in
this paper. A regularized Poisson–Boltzmann equation is introduced as an auxiliary problem, making
it possible to study the original nonlinear equation with delta distribution sources. A priori error
estimates for the finite element approximation are obtained for the regularized Poisson–Boltzmann
equation based on certain quasi-uniform grids in two and three dimensions. Adaptive finite element
approximation through local refinement driven by an a posteriori error estimate is shown to converge.
The Poisson–Boltzmann equation does not appear to have been previously studied in detail theoret-
ically, and it is hoped that this paper will help provide molecular modelers with a better foundation
for their analytical and computational work with the Poisson–Boltzmann equation. Note that this
article apparently gives the first rigorous convergence result for a numerical discretization technique
for the nonlinear Poisson–Boltzmann equation with delta distribution sources, and it also introduces
the first provably convergent adaptive method for the equation. This last result is currently one of
only a handful of existing convergence results of this type for nonlinear problems.
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posteriori error estimate, convergence of adaptive methods
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1. Introduction. In this paper, we shall design and analyze finite element ap-
proximations of a widely used electrostatics model in the biomolecular modeling com-
munity, the nonlinear Poisson–Boltzmann equation (PBE):

(1.1) −∇ · (ε∇ũ) + κ̄2 sinh(ũ) =

Nm∑
i=1

qiδi in R
d, d = 2, 3,

where the dielectric ε and the modified Debye–Hückel parameter κ̄ are piecewise
constants in domains Ωm (the domain for the biomolecule of interest) and Ωs (the
domain for a solvent surrounding the biomolecule), and δi := δ(x − xi) is a Dirac
distribution at point xi. The importance of (1.1) in biomolecular modeling is well-
established; cf. [14, 44] for thorough discussions. Some analytical solutions are known,
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but only for unrealistic structure geometries, and usually only for linearizations of
the equation; cf. [30] for a collection of these solutions and for references to the
large amount of literature on analytical solutions to the PBE and similar equations.
The current technological advances are more demanding and require the solution of
highly nonlinear problems in complicated geometries. To this end, numerical methods,
including the finite element method, are widely used to solve the nonlinear PBE
[30, 31, 5, 6, 45, 19, 57].

The main difficulties for the rigorous analysis and provably good numerical ap-
proximation of solutions to the nonlinear Poisson–Boltzmann equation include: (1)
Dirac distribution sources, (2) exponential rapid nonlinearities, and (3) discontinuous
coefficients. We shall address these difficulties in this paper. To deal with the δ distri-
bution sources, we decompose ũ as an unknown function in H1 and a known singular
function, namely,

ũ = u + G, with G =

Nm∑
i=1

Gi,

where Gi is the fundamental solution of −εmΔGi = qiδi in R
d. Substituting this de-

composition into the PBE, we then obtain the so-called regularized Poisson–Boltzmann
equation (RPBE):

−∇ · (ε∇u) + κ̄2 sinh(u + G) = ∇ · ((ε− εm)∇G) in R
d, d = 2, 3.

The singularities of the δ distributions are transferred to G, which then exhibits
degenerate behavior at each {xi} ⊂ Ωm. At those points, both sinhG(xi) and ∇G(xi)
exhibit blowup. However, since G is known analytically, one avoids having to build
numerical approximations to G. Moreover, both of the coefficients κ̄ and ε − εm
are zero inside Ωm where the blowup behavior arises. Due to this cutoff nature of
coefficients, we obtain a well-defined nonlinear second-order elliptic equation for the
regularized solution u with a source term in H−1. We will show that it also admits
a unique solution u ∈ H1, even though the original solution ũ /∈ H1 due to the
singularities present in G.

Singular function expansions are a common technique in applied and compu-
tational mathematics for this type of singularity; this type of expansion has been
previously proposed for the Poisson–Boltzmann equation in [59] and was shown (em-
pirically) to allow for more accurate finite difference approximations. In their work,
the motivation for the technique was the poor discrete approximation of arbitrar-
ily placed delta distributions using only the fixed corners of uniform finite difference
meshes. In the present work, our interest is in developing finite element methods
using completely unstructured meshes, so we are able to place the delta distributions
precisely where they should be and do not have this problem with approximate delta
function placement. Our motivation here for considering a singular function expansion
is rather that the solution to the Poisson–Boltzmann equation is simply not smooth
enough to either analyze or approximate using standard methods without using some
sort of two-scale or multiscale expansion that represents the nonsmooth part of the
solution analytically. In fact, it will turn out that expanding the solution into the sum
of three functions, namely, a known singular function, an unknown solution to a linear
auxiliary problem, and an unknown solution to a second nonlinear auxiliary problem,
is the key to establishing some fundamental results and estimates for the continuous
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problem and is also the key to developing a complete approximation theory for the
discrete problem as well as provably convergent nonadaptive and adaptive numerical
methods.

Starting with some basic results on existence, uniqueness, and a priori estimates
for the continuous problem, we analyze the finite element discretization and derive
discrete analogues of the continuous results to show that discretization leads to a well-
posed discrete problem. Using maximum principles for the continuous and discrete
problems, we derive a priori L∞-estimates for the continuous and discrete solutions
to control the nonlinearity, allowing us to obtain a priori error estimates for our finite
element approximation of the form

‖u− uh‖1 � inf
vh∈V h

D

‖u− vh‖1,

where V h
D is the linear finite element subspace defined over quasi-uniform triangula-

tions with a certain boundary condition, and uh is the finite element approximation
of u in V h

D . The result is quasi-optimal in the sense it implies that the finite element
approximation to the RPBE is within a constant of being the best approximation from
the subspace V h

D . After establishing these results for finite element approximations,
we describe an adaptive approximation algorithm that uses mesh adaptation through
local refinement driven by a posteriori error estimates. The adaptive algorithm can be
viewed as a mechanism for dealing with the primary remaining difficulty in the RPBE,
namely, the discontinuities of the coefficients across the interface between the solvent
and the molecular regions. Finally, we shall prove that our adaptive finite element
method will produce a sequence of approximations that converges to the solution of
the continuous nonlinear PBE. This last result is one of only a handful of existing
results of this type for nonlinear elliptic equations (the others being [24, 49, 15]).

The outline of this paper is as follows. In section 2, we give a brief derivation and
overview of the Poisson–Boltzmann equation. In section 3, we derive a regularized
form of the Poisson–Boltzmann equation by using a singular function expansion. In
section 4, we give some basic existence and uniqueness results for the RPBE. In section
5, we derive an a priori L∞-estimate for the continuous problem. After introducing
finite element methods for the RPBE, in section 6 we derive an analogous a priori
L∞-estimate for the discrete problem, and based on this we obtain a quasi-optimal a
priori error estimate for the finite element approximation. In section 7, we describe
the adaptive algorithm, present an a posteriori error estimate, and prove a general
convergence result for the algorithm. In the last section, we summarize our work and
give further remarks on the practical aspects using results in the present paper.

2. The Poisson–Boltzmann equation. In this section we shall give a brief
introduction to the nonlinear Poisson–Boltzmann equation. A detailed derivation can
be found in [48, 30].

The nonlinear PBE, a second-order nonlinear partial differential equation, is fun-
damental to Debye–Hückel continuum electrostatic theory [22]. It determines a dimen-
sionless potential around a charged biological structure immersed in a salt solution.
The PBE arises from the Gauss law, represented mathematically by the Poisson equa-
tion, which relates the electrostatic potential Φ in a dielectric to the charge density ρ:

−∇ · (ε∇Φ) = ρ,

where ε is the dielectric constant of the medium and here is typically piecewise con-
stant. Usually it jumps by one or two orders of magnitude at the interface between
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the charged structure (a biological molecular or membrane) and the solvent (a salt
solution). The charge density ρ consist of two components: ρ = ρmacro + ρion. For
the macromolecule, the charge density is a summation of δ distributions at Nm point
charges in the point charge behavior, i.e.,

ρmacro(x) =

Nm∑
i=1

qiδ(x− xi), qi =
4πe2

c

κBT
zi,

where κB > 0 is the Boltzmann constant, T is the temperature, ec is the unit of
charge, and zi is the amount of charge.

For the mobile ions in the solvent, the charge density ρion cannot be given in
a deterministic way. Instead it will be given by the Boltzmann distribution. If the
solvent contains N types of ions, of valence Zi and of bulk concentration ci, then a
Boltzmann assumption about the equilibrium distribution of the ions leads to

ρion =

N∑
i=1

ciZiec exp

(
−Zi

ecΦ

κBT

)
.

For a symmetric 1 : 1 electrolyte, N = 2, ci = c0, and Zi = (−1)i, which yields

ρion = −2c0ec sinh

(
ecΦ

κBT

)
.

We can now write the PBE for modeling the electrostatic potential of a solvated
biological structure. Let us denote the molecule region by Ωm ⊂ R

d and consider
the solvent region Ωs = R

d\Ω̄m. We use ũ to denote the dimensionless potential and
κ̄2 to denote the modified Debye–Hückel parameter (which is a function of the ionic
strength of the solvent). The nonlinear Poisson–Boltzmann equation is then

−∇ · (ε∇ũ) + κ̄2 sinh(ũ) =

Nm∑
i=1

qiδi in R
d,(2.1)

ũ(∞) = 0,(2.2)

where

ε =

{
εm if x ∈ Ωm,
εs if x ∈ Ωs,

and κ̄ =

{
0 if x ∈ Ωm,√

εsκ > 0 if x ∈ Ωs.

It has been determined empirically that εm ≈ 2 and εs ≈ 80. The structure itself
(e.g., a biological molecule or a membrane) is represented implicitly by ε and κ̄, as
well as explicitly by the Nm point charges qi = ziec at the positions xi. The charge
positions are located in the strict interior of the molecular region Ωm. A physically
reasonable mathematical assumption is that all charge locations obey the following
lower bound on their distance to the solvent region Ωs for some σ > 0:

(2.3) |x− xi| ≥ σ ∀x ∈ Ωs, i = 1, . . . , Nm.

In some models employing the PBE, there is a third region Ωl (the Stern layer [11]),
a layer between Ωm and Ωs. In the presence of a Stern layer, the parameter σ in (2.3)
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increases in value. Our analysis and results can be easily generalized to this case as
well.

Some analytical solutions of the nonlinear PBE are known, but only for unrealistic
structure geometries and usually only for linearizations of the equation; cf. [30] for
a collection of these solutions and for references to the large amount of literature
on analytical solutions to the PBE and similar equations. However, the problem is
highly nonlinear. Surface potentials of the linear and the nonlinear PBE differ by over
an order of magnitude [45]. Hence, using the nonlinear version of the PBE model is
fundamentally important to accurately describe physical effects, and access to reliable
and accurate numerical approximation techniques for the nonlinear PBE is critically
important in this research area.

We finish this section by making some remarks about an alternative equivalent
formulation of the PBE. It is well known (cf. [48, 30]) that the PBE is formally
equivalent to a coupling of two equations for the electrostatic potential in different
regions Ωm and Ωs through the boundary interface. In fact, this equivalence can be
rigorously justified; some results of this type will appear in [29]. Inside Ωm, there are
no ions. Thus the equation is simply the Poisson equation

−∇ · (εm∇ũ) =

Nm∑
i=1

qiδi in Ωm.

In the solvent region Ωs, there are no atoms. Thus the density is given purely by the
Boltzmann distribution

−∇ · (εs∇ũ) + κ̄2 sinh(ũ) = 0 in Ωs.

These two equations are coupled together through the boundary conditions on the
interface Γ := ∂Ωm = ∂Ωs ∩ Ωm:

[ũ]Γ = 0, and

[
ε
∂ũ

∂nΓ

]
Γ

= 0,

where [f ]|Γ = limt→0 f(x+ tnΓ)− f(x− tnΓ), with nΓ being the unit outward normal
direction of interface Γ. We will assume Γ to be sufficiently smooth, say, of class C2.

Solving the individual subdomain systems and coupling them through the bound-
ary, in the spirit of a nonoverlapping domain decomposition method, is nontrivial due
to the complicated boundary conditions and subdomain shapes. Approaches such
as mortar-based finite element methods to solve the coupled equations for linear or
nonlinear PBE can be found in [19, 52].

3. Regularization of the continuous problem. In this section, we shall in-
troduce a regularized version of the nonlinear PBE for both analysis and discretiza-
tion purposes. We first transfer the original equation posed on the whole space to a
truncated domain using an artificial boundary condition taken from an approximate
analytical solution. Then we use the fundamental solution in the whole space to get
rid of the singularities caused by δ distributions. We shall mainly focus on more dif-
ficult problems in three dimensions. Formulation and results in two dimensions are
similar and relatively easy.

Let Ω ⊂ R
3 with a convex and Lipschitz-continuous boundary ∂Ω, and Ωm ⊂ Ω.

In the numerical simulation, for simplicity, we usually choose Ω to be a ball or cube
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containing a molecule region. The solvent region is chosen as Ωs ∩Ω and will be still
denoted by Ωs. On ∂Ω we choose the boundary condition ũ = g, with

(3.1) g =

(
e2
c

kBT

) Ni∑
i=1

e−κ|x−xi|

εs|x− xi|
.

The boundary condition is usually taken to be induced by a known analytical solution
to one of several possible simplifications of the linearized PBE. Far from the molecule,
such analytical solutions provide a highly accurate boundary condition approximation
for the general nonlinear PBE on a truncation of R

3. For example, (3.1) arises from
the use of the Green’s function for the Helmholtz operator arising from linearizations
of the Poisson–Boltzmann operator, where a single constant global dielectric value
of εs is used to generate the approximate boundary condition. (This is the case
of a rod-like molecule approximation; cf. [30].) Another approach to handling the
boundary condition more accurately is to solve the PBE with boundary conditions
such as (3.1) on a large Ω (with a coarse mesh) and then solve it in a smaller Ω (with a
fine mesh) with the boundary condition provided by the earlier coarse mesh solution.
The theoretical justification of this approach can be found at [28] using the two-grid
theory [54]. We are not going to discuss more on the choice of the boundary condition
in this paper.

Employing (3.1) we obtain the nonlinear PBE on a truncated domain:

−∇ · (ε∇ũ) + κ̄2 sinh(ũ) =

Nm∑
i=1

qiδi in Ω,(3.2)

ũ = g on ∂Ω.(3.3)

This is, in most respects, a standard boundary-value problem for a nonlinear second-
order elliptic partial differential equation. However, the right side contains a linear
combination of δ distributions, which individually and together are not in H−1(Ω);
thus we cannot apply standard techniques such as classical potential theory. This
has at times been the source of some confusion in the molecular modeling commu-
nity, especially with respect to the design of convergent numerical methods. More
precisely, we will see shortly that the solution to the nonlinear Poisson–Boltzmann
equation is simply not globally smooth enough to expect standard numerical methods
(currently used by most PBE simulators) to produce approximations that converge
to the solution to the PBE in the limit of mesh refinement.

In order to gain a better understanding of the properties of solutions to the
nonlinear PBE, primarily so that we can design new provably convergent numerical
methods, we shall propose a decomposition of the solution to separate out the sin-
gularity caused by the δ distributions. This decomposition will turn out to be the
key idea that will allow us to design discretization techniques for the nonlinear PBE
which have provably good approximation properties and, based on this, also design a
new type of adaptive algorithm which is provably convergent for the nonlinear PBE.

We now give this decomposition. It is well known that the function

Gi =
qi
εm

1

|x− xi|

solves the equation

−∇ · (εm∇Gi) = qiδi in R
3.
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We thus decompose the unknown ũ as an unknown smooth function u and a known
singular function G:

ũ = u + G,

with

(3.4) G =

Nm∑
i=1

Gi.

Substituting the decomposition into (3.2), we then obtain

−∇ · (ε∇u) + κ̄2 sinh(u + G) = ∇ · ((ε− εm)∇G) in Ω,(3.5)

u = g −G on ∂Ω,(3.6)

and call it the RPBE. The singularities of the δ distribtuions are transferred to G,
which then exhibits degenerate behavior at each {xi} ⊂ Ωm. At those points, both
sinhG(xi) and ∇G(xi) exhibit blowup. However, since G is known analytically, one
avoids having to build numerical approximations to G. Moreover, both of the coef-
ficients κ̄ and ε − εm are zero inside Ωm, where the blowup behavior arises. Due to
this cutoff nature of coefficients, the RPBE is a mathematically well defined nonlinear
second-order elliptic equation for the regularized solution u with the source term in
H−1. We give a fairly standard argument in the next section to show that it also
admits a unique solution u ∈ H1, even though the original solution ũ /∈ H1 due to
the singularities present in G. In the remainder of the paper we shift our focus to
establishing additional estimates and developing an approximation theory to guide
the design of convergent methods, both nonadaptive and adaptive.

Before moving on, it is useful to note that, away from {xi}, the function G is
smooth. In particular, we shall make use of the fact that G ∈ C∞(Ωs) ∩ C∞(Γ) ∩
C∞(∂Ω) in the later analysis. Also, a key technical tool will be a further decomposi-
tion of the regularized solution u into linear and nonlinear parts, u = ul + un, where
ul satisfies

−∇ · (ε∇ul) = ∇ · ((ε− εm)∇G) in Ω,(3.7)

ul = 0 on ∂Ω,(3.8)

and where un satisfies

−∇ · (ε∇un) + κ̄2 sinh(un + ul + G) = 0 in Ω,(3.9)

un = g −G on ∂Ω.(3.10)

4. Existence and uniqueness. In this section we shall discuss the existence
and uniqueness of the solution of the continuous RPBE. The arguments we use in this
section appear essentially in [30], except there the PBE was artificially regularized by
replacing the delta distributions with H−1-approximations directly rather than being
regularized through a singular function expansion. A different analysis from that ap-
pearing below, giving a more precise characterization of the particular function spaces
involved and containing various auxiliary results such as the rigorous equivalence of
different PBE formulations, will appear in [29].

We first write out the weak formulation. Since ΔG = 0 away from {xi}, through
integration by parts we get the weak formulation of RPBE: Find

u ∈ M := {v ∈ H1(Ω) | ev, e−v ∈ L2(Ωs), and v = g −G on ∂Ω}
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such that

(4.1) A(u, v) + (B(u), v) + 〈fG, v〉 = 0 ∀v ∈ H1
0 (Ω),

where
• A(u, v) = (ε∇u,∇u),
• (B(u), v) = (κ̄2 sinh(u + G), v), and
• 〈fG, v〉 =

∫
Ω
(ε− εm)∇G · ∇v.

Let us define the energy on M :

E(w) =

∫
Ω

ε

2
|∇w|2 + κ̄2 cosh(w + G) + 〈fG, w〉.

It is easy to characterize the solution of (4.1) as the minimizer of the energy.
Lemma 4.1. If u is the solution of the optimization problem, i.e.,

E(u) = inf
w∈M

E(w),

then u is the solution of (4.1).
Proof. For any v ∈ H1

0 (Ω) and any t ∈ R, the function F (t) = E(u + tv) attains
the minimal point at t = 0, and thus F ′(0) = 0, which gives the desired result.

We now recall some standard variational analysis on the existences of the mini-
mizer. In what follows we suppose S is a set in some Banach space V with norm ‖ · ‖,
and J(u) is a functional defined on S. S is called weakly sequential compact if, for any
sequence {uk} ⊂ S, there exists a subsequence {uki} such that uki ⇀ u ∈ S, where ⇀
stands for the convergence in the weak topology. For any uk ⇀ u, if J(uk) → J(u),
we say J is weakly continuous at u; if

J(u) ≤ lim inf
k→∞

J(uk),

we say J is weakly lower semicontinuous (w.l.s.c.) at u. The following theorem can
be proved by the definition easily.

Theorem 4.2. If
1. S is weakly sequential compact, and
2. J is weakly lower semicontinuous on S,

then there exists u ∈ S such that

J(u) = inf
w∈S

J(w).

We shall give conditions for the weakly sequential compactness and weakly lower
semicontinuity. First we use the fact that a bounded set in a reflexive Banach space
is weakly sequential compact.

Lemma 4.3. One has the following results:
1. The closed unit ball in a reflexive Banach space V is weakly sequential com-

pact.
2. If lim‖v‖→∞ J(v) = ∞, then

inf
w∈V

J(w) = inf
w∈S

J(w).

The next lemma concerns when the functional is w.l.s.c. The proof can be found
at [58].
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Lemma 4.4. If J is a convex functional on a convex set S and J is Gâteaux
differentiable, then J is w.l.s.c. on S.

Now we are in the position to establish the existence and uniqueness of solutions
to the RPBE.

Theorem 4.5. There exists a unique u ∈ M ⊂ H1(Ω) such that

E(u) = inf
w∈M

E(w).

Proof. It is easy to see E(w) is differentiable in M with

〈DE(u), v〉 = A(u, v) + (B(u), v) + 〈fG, v〉.

To prove the existence of the minimizer, we need only to verify that
1. M is a convex set,
2. E is convex on M , and
3. lim‖v‖1→∞ E(v) = ∞.

The verification of (1) is easy and thus skipped here. (2) comes from the convexity
of functions x2 and cosh(x). Indeed E is strictly convex. (3) is a consequence of the
inequality

(4.2) E(v) ≥ C(ε, κ̄)‖v‖2
1 + C(G, g),

which can be proved as following. First, by Young’s inequality we have for any δ > 0

〈fG, v〉 ≤ εs‖∇G‖Ωs
‖∇v‖Ωs

≤ 1

δ
‖∇G‖2

Ωs
+ δε2

s‖∇v‖2
Ωs

.

Since cosh(x) ≥ 0, we have then E(v) ≥ C(ε, κ̄)‖∇v‖2 − (1/δ)‖∇G‖2
Ωs

, where we can
ensure C(ε, κ̄) > 0 if δ is chosen to be sufficiently small. Then using norm equivalence
on M , we get (4.2). The uniqueness of the minimizer comes from the strict convexity
of E.

5. Continuous a priori L∞-estimates. In this section, we shall derive a priori
L∞-estimates of the solution of the RPBE. The main result of this section is the
following theorem.

Theorem 5.1. Let u be the weak solution of RPBE in H1(Ω). Then u is also in
L∞(Ω).

Note that we cannot apply the analysis of [32, 33] directly to the RPBE, since the
right side fG ∈ H−1(Ω) and does not lie in L∞(Ω) as required for use of these results.
We shall overcome this difficulty through further decomposition of u into linear and
nonlinear parts.

Let u = ul + un, where ul ∈ H1
0 (Ω) satisfies the linear elliptic equation (the weak

form of (3.7)–(3.8))

(5.1) A(ul, v) + 〈fG, v〉 = 0 ∀v ∈ H1
0 (Ω)

and where un ∈ M satisfies the nonlinear elliptic equation (the weak form of (3.9)–
(3.10))

(5.2) A(un, v) + (B(un + ul), v) = 0 ∀v ∈ H1
0 (Ω).

Theorem 5.1 then follows from the estimates of ul and un in Lemmas 5.2 and 5.3;
cf. (5.3) and (5.4).
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Lemma 5.2. Let ul be the weak solution of (5.1). Then

(5.3) ul ∈ L∞(Ω).

Proof. Since ΔG = 0 in Ωs, using integral by parts we can rewrite the functional
fG as

〈fG, v〉 = ((ε− εm)∇G,∇v) =

(
[ε]

∂G

∂nΓ
, v

)
Γ

,

where [ε] = εs − εm is the jump of ε at the interface. We shall still use fG to denote
the smooth function [ε] ∂G

∂nΓ
on Γ.

It is easy to see that the linear equation (5.1) is the weak formulation of the
elliptic interface problem

−∇ · (ε∇ul) = 0 in Ω [ul] = 0,

[
ε
∂ul

∂n

]
= fG on Γ, and u = 0 on ∂Ω.

Since fG ∈ C∞(Γ) and Γ ∈ C2, by the regularity result of the elliptic interface
problem [4, 12, 20, 42], we have ul ∈ H2(Ωm)∩H2(Ωs)∩H1

0 (Ω). In particular by the
embedding theorem we conclude that ul ∈ L∞(Ω).

To derive a similar estimate for the nonlinear part un, we define

α′ = arg max
c

(
κ̄2 sinh(c + sup

x∈Ωs

(ul + G)) ≤ 0
)
, α = min

(
α′, inf

∂Ω
(g −G)

)
,

β′ = arg min
c

(
κ̄2 sinh(c + inf

x∈Ωs

(ul + G)) ≥ 0
)
, β = max

(
β′, sup

∂Ω
(g −G)

)
.

The next lemma gives the a priori L∞-estimate of un.
Lemma 5.3. Let un be the weak solution of (5.2). Then α ≤ un ≤ β, and thus

(5.4) un ∈ L∞(Ω).

Proof. We use a cutoff-function argument similar to that used in [32]. Since the
boundary condition g−G ∈ C∞(∂Ω), we can find a uD ∈ H1(Ω) such that uD = g−G
on ∂Ω in the trace sense, or more precisely

TuD = g −G,

where T : Ω �→ ∂Ω is the trace operator. Then the solution can be written un =
uD +u0, with u0 ∈ H1

0 (Ω). Let φ = (un−β)+ = max(un−β, 0) and φ = (un−α)− =
min(un − α, 0). Then from

0 ≤ φ = (un − β)+ = (uD + u0 − β)+ ≤ (uD − β)+ + u+
0 ,

0 ≥ φ = (un − α)− = (uD + u0 − α)− ≥ (uD − α)− + u−
0 ,

and

0 ≤ Tφ ≤ T (uD − β)+ + Tu+
0 = 0,

0 ≥ Tφ ≥ T (uD − α)− + Tu−
0 = 0,

we conclude that both φ, φ ∈ H1
0 (Ω). Thus for either φ = φ or φ = φ, we have

(ε∇un,∇φ) + (κ̄2 sinh(un + ul + G), φ) = 0.
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Note that φ ≥ 0 in Ω and its support is the set Y = {x ∈ Ω̄ |un(x) ≥ β}. On Y, we
have

κ̄2 sinh(un + ul + G) ≥ κ̄2 sinh
(
β′ + inf

x∈Ωs

(ul + G)
)
≥ 0.

Similarly, φ ≤ 0 in Ω with support set Y = {x ∈ Ω̄ |un(x) ≤ α}. On Y, we now have

κ̄2 sinh(un + ul + G) ≤ κ̄2 sinh
(
α′ + inf

x∈Ωs

(ul + G)
)
≤ 0.

Together this implies

0 ≥ (ε∇un,∇φ) = (ε∇(un − β),∇φ) = ε‖∇φ‖2 ≥ 0

for either φ = φ or φ = φ. Using the Poincare inequality we have finally

0 ≤ ‖φ‖ � ‖∇φ‖ ≤ 0,

giving φ = 0, again for either φ = φ or φ = φ. Thus α ≤ un ≤ β in Ω.

6. Finite element methods for the regularized Poisson–Boltzmann equa-
tion. In this section we shall discuss the finite element discretization of RPBE using
linear finite element spaces V h

D and prove the existence and uniqueness of the finite el-
ement approximation uh. Furthermore, under some assumptions on the grids we shall
derive a priori L∞-estimates for uh and use these to prove that uh is a quasi-optimal
approximation of u in the H1 norm in the sense that

(6.1) ‖u− uh‖1 � inf
vh∈V h

D

‖u− vh‖1.

While the term on the left in (6.1) is in general difficult to analyze, the term on the
right represents the fundamental question addressed by classical approximation the-
ory in normed spaces, of which much is known. To bound the term on the right from
above, one picks a function in V h

D which is particularly easy to work with, namely, a
nodal or generalized interpolant of u, and then one employs standard techniques in in-
terpolation theory. Therefore, it is clear that the importance of approximation results
such as (6.1) are that they completely separate the details of the Poisson–Boltzmann
equation from the approximation theory, making available all known results on finite
element interpolation of functions in Sobolev spaces (cf. [21]).

Now we assume Ω can be triangulated exactly (e.g., Ω is a cube) with a shape
regular and conforming (in the sense of [21]) triangulation Th. Here h = hmax repre-
sents the mesh size which is the maximum diameter of elements in the triangulation.
We further assume in the triangulation that the discrete interface Γh approximates
the known interface Γ to the second order, i.e., d(Γ,Γh) ≤ Ch2.

Given such a triangulation Th of Ω, we construct the linear finite element space
V h := {v ∈ H1(Ω), v|τ ∈ P1(τ) ∀τ ∈ Th}. Since the boundary condition g − G ∈
C∞(∂Ω), we can find a uD ∈ H1(Ω) such that uD = g −G on ∂Ω in the trace sense.
Then the solution can be uniquely written as u = uD + u0, with u0 ∈ H1

0 . Thus we
will use H1

D(Ω) := H1
0 (Ω) + uD to denote the affine space with a specified boundary

condition and V h
D = V h ∩H1

D(Ω) to denote the finite element affine space of H1
D(Ω).

Similarly V h
0 = V h ∩H1

0 (Ω). Here to simplify the analysis the boundary condition is
assumed to be represented exactly.
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Recall that the weak form of RPBE is

(6.2) Find u ∈ H1
D(Ω) such that (s.t.) A(u, v)+(B(u), v)+〈fG, v〉 = 0 ∀v ∈ H1

0 (Ω).

We are interested in the quality of the finite element approximation:

(6.3) Find uh ∈ V h
D s.t. A(uh, vh) + (B(uh), vh) + 〈fG, v〉 = 0 ∀vh ∈ V h

0 .

It is easy to show that the finite element approximation uh is the minimizer of E in
V h
D , i.e., E(uh) = infvh∈V h

D
E(vh). Then the existence and uniqueness follows from

section 3 since V h
D is convex. As in the continuous setting, it will be convenient to

split the discrete solution to the RPBE into linear and nonlinear parts uh = ul
h + un

h,
where ul

h and un
h satisfy, respectively,

(6.4) Find ul
h ∈ V h

0 s.t. A(ul
h, vh) + 〈fG, v〉 = 0 ∀vh ∈ V h

0 ,

(6.5) Find un
h ∈ V h

D s.t. A(un
h, vh) + 〈B(un

h + ul
h), vh〉 = 0 ∀vh ∈ V h

0 .

6.1. Quasi-optimal a priori error estimate. We begin with the following
properties of the bilinear form A and and operator B.

Lemma 6.1. 1. The bilinear form A(u, v) satisfies the coercivity and continuity
conditions. That is, for u, v ∈ H1(Ω)

‖u‖2
1 � A(u, u), and A(u, v) � ‖u‖1‖v‖1.

2. The operator B is monotone in the sense that

(B(u) −B(v), u− v) ≥ κ̄2‖u− v‖2 ≥ 0.

3. The operator B is bounded in the sense that for u, v ∈ L∞(Ω), w ∈ L2(Ω),

(B(u) −B(v), w) ≤ C‖u− v‖‖w‖.

Proof. The proof of (1) and (2) is straightforward. We now prove (3). By the
mean value theorem, there exists θ ∈ (0, 1) such that

B(u) −B(v) = κ̄2 cosh(θu + (1 − θ)v + G)(u− v).

Then by the convexity of cosh and the fact that u, v ∈ L∞(Ω), G ∈ C∞(Ωs), we get

‖ cosh(θu + (1 − θ)v + G)‖∞,Ωs
≤ ‖ cosh(u + G)‖∞,Ωs

+ ‖ cosh(v + G)‖∞,Ωs
≤ C.

The desired result then follows since B(·) is nonzero only in Ωs.
Theorem 6.2. Let u and uh be the solution of RPBE and its finite element

approximation, respectively. When uh is uniformly bounded, we have

‖u− uh‖1 � inf
vh∈V h

‖u− vh‖1.

Proof. By the definition, the error u− uh satisfies

A(u− uh, wh) + (B(u) −B(uh), wh) = 0 ∀wh ∈ V h
0 .
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Fig. 6.1. Divide a cube into 5 tetrahedra.

We then have, for any vh ∈ V h
D ,

‖u− uh‖2
1 � A(u− uh, u− uh) = A(u− uh, u− vh) + A(u− uh, vh − uh)

� ‖u− uh‖1‖u− vh‖1 − (B(u) −B(uh), vh − uh).

The second term on the right side is estimated by

−(B(u) −B(uh), vh − uh) = −(B(u) −B(uh), u− uh) + (B(u) −B(uh), u− vh)

≤ (B(u) −B(uh), u− vh)

� ‖u− uh‖1‖u− vh‖1.

Here we make use of the monotonicity of B in the second step and the boundness of
B in the third step. In summary we obtain for any vh ∈ V h

D

‖u− uh‖1 � ‖u− vh‖1,

which leads to the desired result by taking the infimum.

6.2. Discrete a priori L∞-estimates. We now derive L∞-estimates of the
finite element approximation uh. To this end, we have to put assumptions on the grid.
Let (aij) denote the matrix of the elliptic operator (ε∇u,∇v), i.e., ai,j = A(ϕi, ϕj).
Two nodes i and j are adjacent if there is an edge connecting them.

(A1) The off-diagonal term ai,j , i, j are adjacent, satisfies

ai,j ≤ − ρ

h2

∑
ei,j⊂T

|T |, with ρ > 0.

We now give example grids satisfying (A1). In three dimensions, to simplify the
generation of the grid, we choose Ω as a cube and divide into small cubes with length
h. For each small cube, we divide it into 5 tetrahedra; see Figure 6.1 for a prototype
of the triangulation of one cube. Neighbor cubes are triangulated in the same fashion
(with different reflection to make the triangulation conforming). By the formula of
the local stiffness matrix in [33, 55], it is easy to verify that the grids will satisfy
assumption (A1). We comment that the uniform grid obtained by dividing each cube
into 6 tetrahedra will not satisfy the assumption (A1), since in this case if i, j are
vertices of diagonal of some cube, then aij = 0.

Theorem 6.3. In general dimension R
d, d ≥ 2, with assumption (A1) and h

sufficiently small, the finite element approximation uh of RPBE satisfies

‖uh‖∞ ≤ C,

where C is independent of h.
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Proof. We shall use the decomposition uh = un
h+ul

h. By the regularity result [42],

we know ul ∈ B
3/2
2,∞(Ω) and thus obtain a priori estimate on quasi-uniform grids

‖ul − ul
h‖∞ ≤ Chs

max ≤ Cdiam(Ω)s for some s ∈ (0, 3/2).

This implies that ‖ul
h‖∞ ≤ ‖ul‖∞ + ‖ul − ul

h‖∞ ≤ C is uniformly bounded with
respect to hmax. The estimate of un

h follows from Theorem 3.3 in [33], where the grid
assumption (A1) is used.

In two dimensions, we can relax the assumption on the grid and obtain a similar
result. Later we will see that, due to this relaxation, the local refinement in two
dimensions is pretty simple.

(A1′) The off-diagonal terms ai,j ≤ 0, j �= i; i.e., the stiffness matrix corresponding
to A(·, ·) is an M-matrix.

Theorem 6.4. For a two-dimensional triangulation satisfying (A1′), the finite
element approximation uh of RPBE is bounded, i.e.,

‖uh‖∞ ≤ C.

Proof. Similarly ‖ul
h‖∞ ≤ C is uniformly bounded. In two dimensions the es-

timate of un
h follows from Theorem 3.1 in [33], where the grid assumption (A1) is

used.

7. Convergence of adaptive finite element approximation. In this section,
we shall follow the framework presented in [50, 51] to derive an a posteriori error
estimate. Furthermore we shall present an adaptive method through local refinement
based on this error estimator and prove that it will converge. The a priori L∞-
estimates of the continuous and discrete problems derived in the previous sections
play an important role here.

7.1. A posteriori error estimate. There are several approaches to adaptive
error control, among which the one based on a posteriori error estimation is usually
the most effective and most general. Although most existing work on a posteriori
estimates has been for linear problems, extensions to the nonlinear case can be made
through linearization. For example, consider the nonlinear problem

(7.1) F (u) = 0, F ∈ C1(B1, B
∗
2),

where the Banach spaces B1 and B2 are, e.g., Sobolev spaces and where B∗ denotes
the dual space of B. Consider now also a discretization of (7.1)

(7.2) Fh(uh) = 0, Fh ∈ C0(Uh, V
∗
h ),

where Uh ⊂ B1 and Vh ⊂ B2. For the RPBE and a finite element discretization,
the function spaces would be taken to be B1 = B2 = H1

0 (Ω). The nonlinear residual
F (uh) can be used to estimate the error through the use of a linearization inequality

(7.3) C1‖F (uh)‖B∗
2
≤ ‖u− uh‖B1

≤ C2‖F (uh)‖B∗
2
.

See, for example, [50] for a proof of this linearization result under weak assumptions
on F . The estimator is then based on an upper bound on the dual norm of the
nonlinear residual on the right in (7.3).

In this section, to show the main idea, we will assume Fh(uh) = F (uh) by making
the following assumption on the grid.
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(A2) The smooth interface Γ is replaced by its discrete approximation Γh such
that ε and κ̄ are piecewise constants on each element of the triangulation Th.

In our setting of the weak formulation, we need to estimate ‖F (uh)‖−1,Ω. To
this end, we first introduce quite a bit of notation. We assume that the d-dimensional
domain Ω has been exactly triangulated with a set Th of shape-regular d-simplices (the
finite dimension d is arbitrary, not restricted to d ≤ 3, throughout this discussion). A
family of simplices will be referred to here as shape-regular in the sense of [21].

It will be convenient to introduce the following notation:
Th = the set of shape-regular simplices triangulating the domain Ω.
N (τ) = the union of faces contained in simplex set τ lying on ∂Ω.
I(τ) = the union of faces contained in simplex set τ not in N (τ).
F(τ) = N (τ) ∪ I(τ).
F = ∪τ∈Th

F(τ).
ωτ =

⋃
{ τ̃ ∈ Th | τ

⋂
τ̃ �= ∅, where τ ∈ Th }.

ωS =
⋃

{ τ̃ ∈ Th | S
⋂
τ̃ �= ∅, where S ∈ F }.

hτ = the diameter of the simplex τ .
hS = the diameter of the face S.

When the argument to one of the face set functions N , I, or F is in fact the entire
set of simplices, we will leave off the explicit dependence on S without danger of
confusion. Finally, we will also need some notation to represent discontinuous jumps
in function values across faces interior to the triangulation. For any face S ∈ N , let
nS denote the unit outward normal; for any face S ∈ I, take nS to be an arbitrary
(but fixed) choice of one of the two possible face normal orientations. Now, for any
v ∈ L2(Ω) such that v ∈ C0(τ) ∀τ ∈ Th, define the jump function:

[v]S(x) = lim
t→0+

v(x + tnS) − lim
t→0−

v(x− tnS).

We now define our a posteriori error estimator

(7.4) η2
τ (uh) = h2

τ‖B(uh)‖2
0,τ +

1

2

∑
S∈I(τ)

hS‖ [nS · (ε∇uh + (ε− εm)∇G)]S ‖2
0,S ,

and the oscillation

(7.5) osc2
τ (uh) = h4

τ

(
‖∇uh‖2

0,τ + ‖∇G‖2
0,τ

)
.

Theorem 7.1. Let u ∈ H1(Ω) be a weak solution of the RPBE and uh be the
finite element approximation with a grid satisfying assumptions (A1) and (A2). There
exist two constants depending only on the shape regularity of Th such that

(7.6) ‖u− uh‖2
1 ≤ C1 η

2
h + C2 osc2

h,

where

η2
h :=

∑
τ∈Th

η2
τ (uh), and osc2

h :=
∑

τ∈Th∩Ωs

osc2
τ (uh).

Proof. We shall apply the general estimate in [51, Chapter 2] (see also [50]) to

a(x, u,∇u) = ε∇u + (ε− εm)∇G, and b(x, u,∇u) = −κ̄2 sinh(u + G).

We then use the following facts to get the desired result:
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• ∇ · (ε∇uh) |τ = 0 ∀τ ∈ Th by the assumption (A2) of the grid;
• ∇ · ((ε− εm)∇G) |τ = 0 ∀τ ∈ Th since ΔG(x) = 0 if x /∈ {xi}.
• For τ ∈ Th ∩ Ωs, let ūh and Ḡ denote the average of uh and G over τ ,

respectively. We then have

‖ sinh(uh + G) − sinh(ūh + Ḡ)‖0,τ ≤ | cosh(ξ)|‖uh − ūh + G− Ḡ‖0,τ

≤ Ch2
τ (‖∇uh‖0,τ + ‖∇G‖0,τ ).

Here we use the L∞-estimates of u and uh to conclude that | cosh(ξ)| ≤ C
and the standard error estimate for ‖uh − ūh‖0,τ and ‖G− Ḡ‖0,τ .

We give some remarks on our error estimator and the oscillation term. First,
using (4.2) one can easily show that ‖∇uh‖0,Ω ≤ C uniformly with respect to h and
thus oscτ = O(h2

τ ). Comparing to the order of ητ = O(hτ ), the error estimator ητ will
dominate in the upper bound. Second, in (7.4) the jump of [nS · (ε− εm)∇G]S �= 0
only if S ∈ Γh. This additional term with order O([ε]) will emphasize the elements
around the interface where the refinement most occurs.

Although it is clear that the upper bound is the key to bounding the error, the
lower bound can also be quite useful; it can help to ensure that the adaptive procedure
does not do too much work by overrefining an area where it is unnecessary. Again
using the general framework for the a posteriori error estimate in [50, 51], we have
the following lower bound result.

Theorem 7.2. There exists two constants C3, C4 depending only on the shape
regularity of Th such that

η2
τ (uh) ≤ C3‖u− uh‖2

1,ωτ
+ C4

∑
τ̃∈ωτ∩Ωs

osc2
τ̃ (uh) ∀τ ∈ Th.

7.2. Marking and refinement strategy. Given an initial triangulation T0, we
shall generate a sequence of nested conforming triangulations Tk using the following
loop:

(7.7) SOLVE → ESTIMATE → MARK → REFINE.

More precisely to get Tk+1 from Tk we first solve the discrete equation to get uk on
Tk. The error is estimated using uk and used to mark a set of triangles that are to be
refined. Triangles are refined in such a way that the triangulation is still shape-regular
and conforming.

We have discussed the step ESTIMATE in detail, and we shall not discuss the
step SOLVE, which deserves a separate investigation. We assume that the solutions of
the finite-dimensional problems can be solved to any accuracy efficiently. Examples of
such optimal solvers are the multigrid method or the multigrid-based preconditioned
conjugate gradient method [53, 13, 27, 56]. In particular we refer to [1, 2] for recent
work on adaptive grids in three dimensions and [31, 30] for solving the PBE with
inexact Newton methods.

We now present the marking strategy which is crucial for our adaptive methods.
We shall focus on one iteration of loop (7.7) and thus use TH for the coarse mesh and
Th for the refined mesh. Quantities related to those meshes will be distinguished by
a subscript H or h, respectively.

Let θi, i = 1, 2 be two numbers in (0, 1).
1. Mark M1,H such that ∑

τ∈M1,H

η2
τ (uH) ≥ θ1

∑
τ∈TH

η2
τ (uH).
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2. If

(7.8) oscH ≥ ηH

or

(7.9) C4

∑
τ̃∈∪τ∈MH

ωτ

osc2
τ (uH) ≥ 1

2

∑
τ∈MH

η2
τ (uH),

then extend M1,H to M2,H such that∑
τ∈M2,H

osc2
τ (uH) ≥ θ2

∑
τ∈TH

osc2
τ (uH).

Unlike the marking strategy for reducing oscillation in the adaptive finite element
methods in [37, 38], in the second step, we put a switch (7.8)–(7.9). In our setting,
the oscillation oscH = O(H2) is in general a high-order term. The marking step (2)
is seldom applied.

In the REFINE step, we need to carefully choose the rule for dividing the marked
triangles such that the mesh obtained by this dividing rule is still conforming and
shape-regular. Such refinement rules include red and green refinement [7], longest
refinement [41, 40], and newest vertex bisection [43, 35, 36]. For the REFINE step,
we are going to impose the following assumptions.

(A3) Each τ ∈ MH , as well as each of its faces, contains a node of Th in its
interior.

(A4) Let Th be a refinement of TH such that the corresponding finite element
spaces are nested, i.e., V H ⊂ V h.

With those assumptions, we can have the discrete lower bound between two nested
grids. Let TH be a shape-regular triangulation, and let Th be a refinement of TH
obtained by local refinement of marked elements set MH . The assumption (A3) is
known as the interior nodes property in [38]. Such a requirement ensures that the
refined finite element space V h is fine enough to capture the difference of solutions.

Theorem 7.3. Let TH be a shape-regular triangulation, and let Th be a refinement
of TH obtained by some local refinement methods of marked elements set MH , such
that it satisfies assumptions (A3) and (A4). Then there exist two constants, depending
only on the shape regularity of TH , such that

(7.10) η2
τ (uH) ≤ C3‖uh − uH‖2

1,ωτ
+ C4

∑
τ̃∈ωτ

osc2
τ̃ (uH) ∀τ ∈ MH .

Proof. The proof is standard using the discrete bubble functions on τ and each
face S ∈ ∂τ .

7.3. Convergence analysis. We shall prove that the repeating of loop (7.7)
will produce a convergent solution uk to u. The convergent analysis of the adaptive
finite element method is an active topic. In the literature it is mainly restricted to
the linear equations [17, 47, 16, 37, 25, 9, 38, 34, 26, 8]. The convergence analysis for
the nonlinear equation is relatively rare [24, 49, 15].

Lemma 7.4. Let TH and Th satisfy assumptions (A1)–(A4). Then there exist two
constants depending only on the shape regularity of TH such that

‖u− uH‖2
1 ≤ C5‖uh − uH‖2

1 + C6 osc2
H .
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When (7.8) and (7.9) do not hold, we have a stronger inequality

‖u− uH‖2
1 ≤ C7 ‖uh − uH‖2

1,

where C7 depends only on the shape regularity of TH .
Proof. By the upper bound and marking strategy

‖u− uH‖2
1 ≤ C1η

2
H + C2osc2

H

≤ C1θ
−1
1

∑
τ∈M1,H

η2
τ (uH) + C2 osc2

H

≤ C5‖uh − uH‖2
1 + C6 osc2

H ,

with

C5 = C1θ
−1
1 C−1

3 , and C6 = (C2 + 2C−1
3 C4).

If (7.8) does not hold, i.e., oscH ≤ ηH , the first inequality becomes

‖u− uH‖2
1 ≤ (C1 + C2)η

2
H .

If (7.9) does not hold, we can easily modify the lower bound (7.10) as∑
τ∈M1,H

η2
τ (uH) ≤ 2C3‖uh − uH‖2

1.

Then the inequality follows similarly.
For τh ⊂ τH , let hτh = γHτH , with γ ∈ (0, 1). The next lemma shows that

even the oscillation is not small; there is also a reduction result. For the marked set
MH ⊂ TH , we shall use MH to denoted the refined elements in Th.

Lemma 7.5. If M2,H\M1,H /∈ ∅, there exist ρ1, ρ2 such that

osc2
h ≤ ρ1 osc2

H + ρ2‖uh − uH‖2
1.

Proof.

osc2
h ≤

∑
τ∈Th

osc2
τ (uH) + C

∑
τ∈Th

(h4
τ‖∇(uh − uH)‖2

τ )

≤
∑

τh∈M2,H

osc2
τ (uH) +

∑
τh∈Th\M2,H

osc2
τ (uH) + Ch2‖∇(uh − uH)‖2

≤ γ2
∑

τH∈M2,H

osc2
τ (uH) +

∑
τH∈TH\M2,H

osc2
τ (uH) + Ch2‖∇(uh − uH)‖2

≤ osc2
H + (γ2 − 1)

∑
τH∈M2,H

osc2
τ (uH) + Ch2‖∇(uh − uH)‖2

≤ ρ1 osc2
H + ρ2‖uh − uH‖2

1,

with ρ1 = 1 − (1 − γ2)/θ2 ∈ (0, 1), and ρ2 = Ch2.
We shall choose θ2 sufficiently close to 1 and hmax < 1/c to ensure ρi ∈ (0, 1), i =

1, 2.
For the nonlinear problem, we do not have the orthogonality in H1 norms. But

we shall use the trivial identity

(7.11) E(uH) − E(u) = E(uH) − E(uh) + E(uh) − E(u).
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The following lemma proves the equivalence of energy error and error in H1 norm.
Again the L∞ norm estimate of u and uh is crucial.

Lemma 7.6. If both Th and TH satisfy the assumption (A1), then
• E(uh) − E(u) � ‖uh − u‖2

1;
• E(uH) − E(u) � ‖uH − u‖2

1;
• E(uH) − E(uh) � ‖uH − uh‖2

1.
Proof. By the Taylor expansion

E(uH) − E(uh) = 〈DE(uh), uH − uh〉 + (D2E(ξ)(uH − uh), uH − uh).

The first term is zero since uh is the minimizer. The desired result follows from the
bound

κ̄2 ≤ ‖D2E(ξ)‖∞ = κ̄2‖ cosh(ξ + G)‖∞,Ωs ≤ C.

Other inequalities follow from the same line.
Our adaptive finite element methods (AFEMs) consist of the iteration of loop

(7.7) with the estimate, marking, and refinement parts discussed before. Also the
grids generated by the algorithm will satisfy assumptions (A1)–(A4). Hereafter we
replace the subscript h by an iteration counter called k and introduce some notation
to simplify the proof. Let uk be the solution in the kth iteration, δk := E(uk)−E(u),
dk = E(uk) − E(uk+1), and ok = osc2(uk)

Theorem 7.7. The adaptive method using loop (7.7) will produce a convergent
approximation in the sense that

lim
k→0

‖u− uk‖1 = 0.

Proof. By Lemma 7.6, we need only to show δk → 0 as k → 0. We first discuss
the easier case: When oscH is the high-order term in the sense that the inequalities
(7.8) and (7.9) do not hold, we have the error reduction

‖u− uH‖2
1 ≤ C‖uh − uH‖2.

Using Lemma 7.5 and (7.11), we have

E(uH) − E(u) ≤ C(E(uH) − E(uh)),

which is equivalent to δH ≤ CδH − Cδh. Then δh ≤ (1 − 1/C)δH , and thus

δk ≤ αkδ0, with α = (1 − 1/C) ∈ (0, 1).

When the oscillation is not small, i.e., (7.8) or (7.9) holds, we can get only

(7.12) Λ1δk ≤ dk + Λ2ok, with Λ1 ∈ (0, 1).

We shall use techniques from [34] to prove the convergence. Recall that we have

(7.13) δk+1 = δk − dk.

For any β ∈ (0, 1), β × (7.12) + (7.13) gives

(7.14) δk+1 ≤ αδk + βΛ2ok − (1 − β)dk, with α = (1 − βΛ1) ∈ (0, 1).
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Recall that we have

(7.15) ok+1 ≤ ρ1ok + ρ2dk.

Let γ = (1 − β)/ρ2; (7.15) × γ + (7.14) gives

δk+1 + γok+1 ≤ αδk + (βΛ2 + ρ1γ)ok.

Let 1 > μ > ρ1. We choose

β =

μ−ρ1

ρ2

Λ2 + μ−ρ1

ρ2

∈ (0, 1)

to get

δk+1 + γok+1 ≤ max(α, μ)(δk + γok),

which also implies the convergence of our AFEM.

8. Summary and concluding remarks. In this article we have established
a number of basic theoretical results for the nonlinear Poisson–Boltzmann equation
and for its approximation using finite element methods. We began by showing that
the problem is well-posed through the use of an auxiliary or regularized version of
the equation and then established a number of basic estimates for the solution to the
regularized problem. The Poisson–Boltzmann equation does not appear to have been
previously studied in detail theoretically, and it is hoped that this paper, together with
a more complete analysis of the continuous PDE solution theory to appear in [29],
will help provide molecular modelers with a better theoretical foundation for their
analytical and computational work with the Poisson–Boltzmann equation. The bulk
of this article then focused on designing a numerical discretization procedure based
on the regularized problem and on establishing rigorously that the discretization pro-
cedure converged to the solution to the original (nonregularized) nonlinear Poisson–
Boltzmann equation. Based on these results, we also designed an adaptive finite
element approximation procedure and then gave a fairly involved technical argument
showing that this adaptive procedure also converges in the limit of mesh refinement.
This article apparently gives the first convergence result for a numerical discretiza-
tion technique for the nonlinear Poisson–Boltzmann equation with delta distribution
sources, and it also introduces the first provably convergent adaptive method for the
equation. This last result is one of only a handful of convergence results of this type
for nonlinear elliptic equations (the others being [24, 49, 15]).

Several of the theoretical results in the paper rest on some basic assumptions on
the underlying simplex mesh partitioning of the domain, namely, assumptions (A1)–
(A4); we now make a few comments on these assumptions. To begin, we required
a refinement procedure that would preserve the L∞ norm estimate of uh. Meeting
this requirement in the two-dimensional setting is relatively easy; one can choose Ω
as a square and start with a uniform mesh of a square. For the refinement methods,
one can use longest edge or newest vertex bisection. Subdivisions obtained by these
two methods contain only one type of triangle: isosceles right triangles. Thus the
assumption (A1′) always holds. In the three-dimensional setting, this is more tricky.
Bisection will introduce some obtuse angles in the refined elements. One needs to
use a three-dimensional analogue of red-green refinement [10]. However, this will not
produce nested subspaces; i.e., assumption (A4) is invalid. For convergence analysis
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based on red-green refinement, we could use the technique in [46] to relax the as-
sumption (A4). Since this will only add technical difficulties but does not exhibit
principally new phenomena, we omit them here. Another approach to relax the as-
sumption (A1) is to use pointwise a posteriori error estimates developed in [39] for
monotone semilinear equations. We can start with a quasi-uniform triangulation and
refine the triangulation according to the pointwise a posteriori error estimator to make
sure ‖u − uh‖∞ ≤ C. Then together with the L∞ norm estimate of u, by the trian-
gulation inequality ‖uh‖∞ ≤ ‖u‖∞ + ‖u− uh‖∞ ≤ C, we have the control of ‖uh‖∞.
Note that the pointwise a posteriori error estimates developed in [39] are for elliptic-
type equations with continuous coefficients. To use this approach we need to adapt
the estimate for the jump coefficients case which will be a further research topic.

Assumption (A2) is needed to approximate the interface well in an a priori man-
ner. Of course, one can include this approximation effect into the a posteriori error
estimate (namely, the term ‖F (uh)−Fh(uh)‖) and use this to drive local refinement to
improve the approximation to the desired level for the assumption or use the strategy
for the oscillation to include it in the refinement loop. However, we note that, since
the interface is known a priori from, e.g., x-ray crystallography information, we do not
need to solve the equation (which is generally the more expensive route) to solve this
problem; we view this as primarily a mesh generation problem. Robust algorithms to
produce well-shaped tetrahedral meshes which are constrained to exactly match some
interior embedded two-manifold are available in the literature; for example, see [18, 3].
A simple algorithm can be based entirely on local refinement with the marking and re-
finement strategy, but without having to solve the PBE to produce error indicators: If
the element cross the interface, then it gets refined. This strategy was employed in [5].

After this work was done, we learned that the assumption (A3) is not needed for
the convergence of adaptive finite element methods for a linear elliptic equation. As
an ongoing project, we are extending it to the nonlinear Poisson–Boltzmann equation.

Finally, we make some remarks on the practical realization of a convergent dis-
cretization procedure based on the two-way (or three-way) expansion into a known
singular function and solution(s) of an associated regularized version of the problem.
Methods for building high-quality approximate solutions of the regularized nonlinear
PBE, either by solving (3.5)–(3.6) at once or by solving for the linear and nonlinear
pieces separately by solving (5.1)–(5.2) and then adding the solutions together, are
well-understood. The techniques described in [28], taken together with the approxi-
mation framework and the adaptive algorithm proposed in the present article, moves
us a step closer to the goal of a complete optimal solution to this problem, in terms
of approximation quality for a given number of degrees of freedom, computational
complexity of solving the corresponding discrete equations, and the storage require-
ments of the resulting algorithms. What remains is simply the cost of evaluating the
singular function G in forming the source terms in (3.5) or (5.1). The source terms
are evaluated using numerical quadrature schemes: sampling the integrand at spe-
cially chosen discrete points in each element and then summing the results up using
an appropriate weighting. This is equivalent to computing all pairwise interactions
between the collection of quadrature points (a fixed constant number of points per
simplex) and the number of charges forming G. Given that G is typically formed from
at most a few thousand charges, the algorithm evaluating G at the quadrature points
should scale linearly with the number of quadrature points, which is a (small) con-
stant multiple of the number of simplices. This can be accomplished using techniques
such distance-classing and fast multiple-type methods.



FEM FOR NONLINEAR POISSON–BOLTZMANN EQUATION 2319

REFERENCES

[1] B. Aksoylu, S. Bond, and M. Holst, An odyssey into local refinement and multilevel pre-
conditioning III: Implementation and numerical experiments, SIAM J. Sci. Comput., 25
(2003), pp. 478–498.

[2] B. Aksoylu and M. Holst, Optimality of multilevel preconditioners for local mesh refinement
in three dimensions, SIAM J. Numer. Anal., 44 (2006), pp. 1005–1025.

[3] P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun, Variational tetrahedral meshing,
ACM Trans. Graphics, 24 (2005), pp. 617–625.
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Abstract. In this paper, we consider degenerate and locally anisotropic boundary value prob-
lems on the unit square. These problems are discretized by piecewise linear finite elements on a
triangular mesh of isosceles right triangles. The system of linear algebraic equations is solved by
a preconditioned gradient method using a domain decomposition preconditioner with overlap. We
prove that the condition number of the preconditioned system is bounded by a constant independent
of the discretization parameter. Moreover, the preconditioning operation requires O(N) operations,
where N is the number of unknowns. Several numerical experiments show the performance of the
proposed method.
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1. Introduction. In this paper, we investigate the degenerate and locally ani-
sotropic boundary value problem

−ω2
1(y)uxx − ω2

2(x)uyy = f in Ω = (0, 1)2,

u = 0 on ∂Ω(1.1)

with some strongly monotonic increasing and bounded weight functions ωi : [0, 1] �→ R

satisfying ω1(0)ω2(0) = 0.
In the past, degenerate problems have been considered relatively rarely. One

reason is the unphysical behavior of the partial differential equation (PDE), which is
quite unusual in technical applications. One work focusing on this type of PDE is
the book of Kufner and Sändig [13]. Nowadays, problems of this type are becoming
more and more popular because there are stochastic PDEs of a similar structure. An
example of an isotropic degenerate stochastic PDE is the elliptic part of the Black–
Scholes PDE [18].

An example of a locally anisotropic degenerate elliptic problem is the solver related
to the problem of the subdomains for the p-version of the finite element method (FEM)
using quadrilateral elements. This solver can be interpreted as the h-version FEM-
discretization matrix of problem (1.1) with ω1(ξ) = ω2(ξ) = ξ. We refer the reader to
[1], [12] for more details.

The discretization of (1.1) using the h-version of the FEM leads to a linear system
of algebraic equations

(1.2) Ku = f.
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It is well known from the literature that preconditioned conjugate gradient (PCG)
methods with domain decomposition (DD) preconditioners are among the most effi-
cient iterative solvers for systems of type (1.2); see, e.g., [7], [14], [10], [20], [15]. In
this paper, we will propose and analyze overlapping DD preconditioners.

The type of overlapping DD preconditioners presented in this paper was originally
developed in [17] for problems with jumping coefficients; see also the recent research
for highly jumping coefficients in [19], [9]. In our recent paper [4], we analyzed these
overlapping DD preconditioners for isotropic degenerate problems. In most cases,
the optimality of this method has been shown. Here, we adapt these techniques to
problem (1.1). For tensor product discretizations, we will prove the optimality of the
method. Moreover, this method can easily be extended to more general h-version
FEM discretizations, too.

Only a limited number of papers have investigated fast solvers for degenerate
elliptic problems. The paper [6] deals with the Laplacian in two dimensions in polar
coordinates. In the paper [8], multigrid methods for some other types of degenerate
problems are proposed. Multigrid solvers for finite element discretizations of (1.1)
have been investigated in [1]; see also [2]. However, the convergence of the V -cycle
was not yet proved. The paper [12] develops nonoverlapping DD preconditioners for
ω1(ξ) = ω2(ξ) = ξ. The paper [5] proposes wavelet methods for several classes of
degenerate elliptic problems on the unit square. One of them is problem (1.1) under

the restriction limξ→0+
ξ3

ω2
i (ξ)

= 0, i = 1, 2, on the weight functions. Moreover, a

fast direct solver based on eigenvalue computations combined with the fast Fourier
transform and solving tridiagonal systems can be designed if at least one of the weight
functions ωi, i = 1, 2, is assumed to be constant on (0, 1) and if a tensor product
discretization is used.

The remaining part of this paper is organized as follows. In section 2, we introduce
the reader to our problem and to our notation. The preconditioners are defined in
section 3; moreover, the main theorems with the condition number estimates are
stated. In section 4, we formulate some auxiliary results from the additive Schwarz
method (ASM), which are required for the proofs of our main theorems given in section
5. In section 6, we present some numerical experiments which show the performance
of the presented methods.

Throughout this paper, the integer k denotes the level number. For two real
symmetric and positive definite n× n matrices A,B, the relation A � B means that
A− cB is negative definite, where c > 0 is a constant independent of n. The relation
A ∼ B means A � B and B � A, i.e., the matrices A and B are spectrally equivalent.
The parameter c denotes a generic constant. The isomorphism between a function
u =

∑
i uiψi ∈ L2 and the corresponding vector of coefficients u = [ui]i in the basis

[Ψ] = [ψ1, ψ2, . . .] is denoted by u = [Ψ]u. The Greek letters μ and ν stand for pairs
of integers (μ1, μ2) and (ν1, ν2), respectively. The closure of an open set M is denoted
by M .

2. Setting of the problem. In this paper, we investigate the following bound-
ary value problem. Let Ω = (0, 1)2.

Find u ∈ HD,0 := {u ∈ L2(Ω) :
∫
Ω
(∇u)TD∇u < ∞, u |∂Ω= 0} such that

(2.1) a(u, v) :=

∫
Ω

(∇v)TD∇u = (f, v) ∀v ∈ HD,0

with the coefficient matrix D(x, y) =
[ ω2

1(y) 0

0 ω2
2(x)

]
and weight functions ωi, i = 1, 2,
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xk
ν =

(
ν1
n
, ν2

n

)

(
ν1
n
, ν2+1

n

)

(
ν1+1

n
, ν2

n

)

(
ν1+1

n
, ν2+1

n

)

τ1,k
ν

τ2,k
ν

Fig. 2.1. Mesh for the finite element method for k = 2 (left); notation of the triangles (right).

which satisfy the following assumption.
Assumption 2.1. The functions ωi : [0, 1] �→ R, i = 1, 2,
• are monotonically increasing;
• are continuous; and
• satisfy the estimate

(2.2) ωi(2ξ) ≤ cωωi(ξ) ∀ξ ∈
(

0,
1

2

]
with some constants cω > 0.

We discretize problem (2.1) by piecewise linear finite elements on the regular
Cartesian grid consisting of congruent, isosceles, and right triangles. For this purpose,
some notation is introduced. Let k be the level of approximation and n = 2k. Let xk

ν =(
ν1

n , ν2

n

)
, where ν = (ν1, ν2) ∈ {0, 1, . . . , n}2. The domain Ω is divided into congruent,

isosceles, and right triangles τ s,kν , where ν ∈ {0, 1, . . . , n−1}2 and s = 1, 2; see Figure
2.1. The triangle τ1,k

ν has the three vertices
(
ν1

n , ν2

n

)
,
(
ν1+1
n , ν2+1

n

)
, and

(
ν1

n , ν2+1
n

)
,

and τ2,k
ν has the three vertices

(
ν1

n , ν2

n

)
,
(
ν1+1
n , ν2+1

n

)
, and

(
ν1+1
n , ν2

n

)
; see Figure 2.1.

Piecewise linear finite elements are used on the mesh Tk = {τ s,kν }ν∈{0,1,...,n−1}2,s∈{1,2}.

The subspace of piecewise linear functions φk
ν with

φk
ν ∈ H1

0 (Ω), φk
ν |τs,k

μ
∈ P1(τ

s,k
μ )

is denoted by Vk, where P1 is the space of polynomials of degree ≤ 1. A basis of
Vk is the system of the usual hat-functions Φk = {φk

ν}ν∈In with In = {(ν1, ν2) ∈
N

2, ν1, ν2 ≤ n− 1} uniquely defined by

φk
ν(x

k
μ) = δνμ

and φk
ν ∈ Vk, where δνμ is the Kronecker delta for multi-indices. Now, we can

formulate the discretized problem.
Find uk ∈ Vk such that

(2.3) a(uk, vk) = (f, vk) ∀vk ∈ Vk

holds. Problem (2.3) is equivalent to solving the system of linear algebraic equations

(2.4) Kkuk = f
k
,



2324 SVEN BEUCHLER AND SERGEY V. NEPOMNYASCHIKH

where Kk =
[
a(φk

ν , φ
k
μ)
]
ν,μ∈In

, uk = [uν ]ν∈In
, and f

k
=
[
(f, φk

μ)〉
]
μ∈In

. The size of

the matrix Kk is N ×N with N = (n− 1)2.

3. Definition of the preconditioners. In this section, we define the overlap-
ping preconditioners for the matrix Kk (2.3). We distinguish between two cases:

• the weight function ω1 is assumed to be constant;
• both weight functions satisfy ωi(0) = 0, i = 1, 2.

3.1. The case ω1(ξ) = 1. We introduce the following notation. Let

• Ωi,x = (2−1−i, 2−i) × (0, 1), i = 0, . . . , k − 2, be a strip of width 2−i−1;
• Ωk−1,x = (0, 2−k+1) × (0, 1) be a strip of width 2−k+1, i.e., 2h;
• Γi,x = {2−i} × (0, 1), i = 1, . . . , k − 1, be the interface of two neighboring

stripes;
• Ω̃j,x = int(

⋃k−1
i=j Ωi,x) = (0, 2−i) × (0, 1) be a strip of width 2−i; and

• nj = 2k−j −1 be the number of interior grid points in Ω̃j,x in the x-direction,
Nj = (n− 1)nj the total number of interior grid points, and nk = −1.

Moreover, let

ε2,j =
(
ω2

(
2−j

))2
.

Figure 3.1 displays a sketch with the notation for k = 4.
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Ω0,xΩ1,x Ω1,x

~

Γ1,xΓ2,x3,xΓ

1/8 1/4 1/20 1 1/2

Ω3,x Ω2,x

1/4

1,x Ω
~

2,x

Fig. 3.1. Notation for k = 4.

We will develop two overlapping additive Schwarz preconditioners with inex-
act subproblem solvers. For the first preconditioner, we split the domain Ω into
the substripes {Ω̃i,x}k−1

i=0 . On {Ω̃i,x}k−1
i=0 , we choose the constant diffusion matrix

argsup(x,y)∈Ω̃j,x
D(x, y), i.e., the componentwise supremum of the original diffusion

matrix D. For the second preconditioner, we consider the domain decomposition into
{Ωi,x∪Ωi+1,x}k−2

i=0 and into Ωk−1,x. The construction of the diffusion matrix is similar
to the first preconditioner.

For the correct mathematical definition of the preconditioners, we introduce the
bilinear form

(3.1) aj(u, v) =

∫
Ω̃j,x

(∇u)T
[

1 0
0 ε2,j

]
∇v, j = 0, . . . , k − 1.
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1/8, D=diag(1,1/64) 1/4, D=diag(1,1/16) 1/2,
D=diag(1,1/4)

D=diag(1,1)

Fig. 3.2. Computational domains for C (3.4), Θ3, Θ2, Θ1, and Θ0, and corresponding diffusion
matrices for ω2

2(ξ) = ξ2 (from left to right).

This is a bilinear form with constant coefficients on Ω̃j,x. Let Cj be the stiffness
matrix

Cj =
[
aj(φ

k
μ, φ

k
ν)
]
μ,ν∈Ij

, j = 0, . . . , k − 1,(3.2)

with Ij =

{
ν ∈ N

2 :
1

n
ν ∈ Ω̃j,x

}
= {(ν1, ν2) ∈ N

2 : ν1 ≤ nj , ν2 ≤ n0}

corresponding to the bilinear form aj(·, ·). Finally, let

(3.3) Θj =

[
Cj 0
0 0N−Nj

]
∈ R

N×N

be the corresponding global assembled stiffness matrix. The computational domains
for Θj are displayed in Figure 3.2.

Then we define

(3.4) C−1 =

k−1∑
j=0

Θ+
j

as a first preconditioner for Kk, where B+ denotes the pseudoinverse of a matrix B.
Note that the locally anisotropic diffusion matrix D(x, y) is hidden in the matrix Θj .

This preconditioner turns out not to be optimal; see Theorem 3.2. To develop an
optimal preconditioner, we have to modify C. Therefore, let

Cj,mod =

[∫
Ωj+1,x∪Ωj,x

∇φk
μ ·
[

1 0
0 ε2,j

]
∇φk

ν

]
μ,ν∈Ij,mod

(3.5)

with Ij,mod =

{
ν ∈ N

2 :
1

n
ν ∈ int(Ωj+1,x ∪ Ωj,x)

}
= {(ν1, ν2) ∈ N

2 : nj+2 + 2 ≤ ν1 ≤ nj , ν2 ≤ n0}.

This is the discretized operator on Ωj+1,x ∪ Ωj,x with Dirichlet boundary conditions
at all edges. Moreover, let

Θj,mod =

⎡⎣ 0Nj+2+n0 0 0
0 Cj,mod 0
0 0 0N−Nj

⎤⎦ ∈ R
N×N , j = 0, . . . , k − 2,

be the corresponding assembled matrix; see Figure 3.3 for the computational domains.
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1/4, D=diag(1,1/16) 1/2,
D=diag(1,1/4) D=diag(1,1)

1/41/8, D=diag(1,1/64) 1/8 1

Fig. 3.3. Computational domains for Cmod (3.6), Θ3, Θ2,mod, Θ1,mod, and Θ0,mod, and
corresponding diffusion matrices for ω2

2(ξ) = ξ2 (from left to right).

The second overlapping preconditioner for Kk is defined as

(3.6) C−1
mod =

k−2∑
j=0

Θ+
j,mod + Θ+

k−1.

Then we can formulate the following theorem.
Theorem 3.1. Let Cmod be defined via (3.6) and let D(x, y) =

[ 1 0
0 ω2

2(x)

]
. Then

the matrix C−1
mod is symmetric positive definite and satisfies Kk ∼ Cmod.

Proof. A detailed proof is given in subsection 5.2.
Concerning the first preconditioner (3.4), we can now prove the following result.
Theorem 3.2. Let C be defined via (3.4) and let D(x, y) =

[ 1 0
0 ω2

2(x)

]
. Then the

spectral equivalence relations 1
kKk ≤ C � Kk hold.

Proof. The proof is given in subsection 5.3.

3.2. The general case. In addition to the notation of subsection 3.1, we define
the following:

• Ωi,y = (0, 1) × (2−1−i, 2−i), i = 0, . . . , k − 2.
• Ωk−1,y = (0, 1) × (0, 2−k+1).

• Ω̃j,y = int
(⋃k−1

i=j Ωi,y

)
= (0, 1) × (0, 2−i).

• Ωjj′ = int((Ωj,x ∪ Ωj+1,x) ∩ (Ωj′,y ∪ Ωj′+1,y)) for j, j′ = 0, . . . , k − 2. Note

that Ωjj′ = (2−2−j , 2−j) × (2−2−j′ , 2−j′) for j, j′ ≤ k − 3.
• Moreover, let

ε1,j =
(
ω1

(
2−j

))2
.

Again, we will define two preconditioners. In comparison to the preconditioners of
subsection 3.1, we use the domain decomposition in both directions. More precisely,
we introduce the bilinear form

bj,j′(u, v) =

∫
Ω̃j,x∩Ω̃j′,y

∇u ·
[

ε1,j′ 0
0 ε2,j

]
∇v, j′, j = 0, . . . , k − 1.

For j = 0, . . . , k − 1, let Bj,j′ be the stiffness matrix

Bj,j′ =
[
bj,j′(φ

k
μ, φ

k
ν)
]
μ,ν∈Jj,j′

with

Jj,j′ = {ν ∈ N
2,

1

n
ν ∈ Ω̃j,x ∩ Ω̃j′,y} = {(ν1, ν2) ∈ N

2, ν1 ≤ nj , ν2 ≤ nj′},
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corresponding to the bilinear form bj,j′(·, ·) with Dirichlet boundary conditions at all
edges.

The corresponding global assembled stiffness matrices is denoted by the matrix
Υj,j′ ∈ R

N×N . Then we define

(3.7) B−1 =

k−1∑
j=0

k−1∑
j′=0

Υ+
j,j′

as a first preconditioner for Kk. Note that the locally anisotropic diffusion matrix
D(x, y) is hidden in the matrix Υj,j′ . This gives us a nonoptimal preconditioner; see
Theorem 3.4. Moreover, we introduce an optimal preconditioner. For 0 ≤ j, j′ ≤ k−2,
let

Bj,j′,mod =

[∫
Ωjj′

∇φk
μ ·
[

ε1,j′ 0
0 ε2,j

]
∇φk

ν

]
μ,ν∈Jj,j′,mod

with(3.8)

Jj,j′,mod =

{
ν ∈ N

2,
1

n
ν ∈ Ωjj′

}
= {(ν1, ν2) ∈ N

2, nj+2 + 2 ≤ ν1 ≤ nj , nj′+2 + 2 ≤ ν2 ≤ nj′}.

This matrix is the finite element discretization matrix of an operator with piecewise
constant coefficients on Ωjj′ = (Ωj+1,x∪Ωj,x)∩(Ωj′+1,y∪Ωj′,y) and Dirichlet boundary
conditions at all edges. For j, j′ ≤ k− 2, the corresponding global assembled stiffness
matrices are denoted by the matrices Υj,j′,mod ∈ R

N×N . If j = k − 1 or j′ = k − 1,
we set

Υj,j′,mod = Υj,j′ .

The corresponding computational domains for the matrices Υj,j′ are displayed in
Figure 3.4.

The second overlapping preconditioner for Kk is defined as

(3.9) B−1
mod =

k−1∑
j=0

k−1∑
j′=0

Υ+
j,j′,mod.

Theorem 3.3. Let Bmod be defined via (3.9) and let D(x, y) =
[ ω2

1(y) 0

0 ω2
2(x)

]
.

Then the matrix B−1
mod is symmetric positive definite and satisfies Kk ∼ Bmod.

Proof. The proof is given in subsection 5.4.
Concerning the first preconditioner (3.7), we can prove the following result.

Theorem 3.4. Let B be defined via (3.7) and let D(x, y) =
[ ω2

1(y) 0

0 ω2
2(x)

]
. Then

the spectral equivalence relations 1
k2Kk ≤ B � Kk hold.

Proof. The proof is similar to the proof of Theorem 3.2.
Remark 3.5. We can replace the matrices Bj,j′,mod in (3.8) by

Bj,j′,var =

[∫
Ωjj′

∇φk
μ ·
[

ω2
1(y) 0
0 ω2

2(x)

]
∇φk

ν

]
μ,ν∈Jj,j′,mod

.

Let Υj,j′,var be the assembled matrices and

B−1
var =

k−1∑
j=0

k−1∑
j′=0

Υ+
j,j′,var.
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j=3,j’=3 j=2,j’=3 j=1,j’=3 j=0,j’=3

j=3,j’=2 j=2,j’=2 j=1,j’=2 j=0,j’=2

j=3,j’=1 j=2,j’=1 j=1,j’=1 j=0,j’=1

j=3,j’=0 j=2,j’=0 j=1,j’=0 j=0,j’=0 D=diag(1,1)

D=diag(1/4,1)

D=diag(1/16,1)

D=diag(1/64,1)D=1/4*diag(1/16,1)

D=1/4*diag(1/4,1)

D=1/4*diag(1,1)

D=1/16*diag(1/4,1)D=1/64*diag(1,1)

D=1/16*diag(1,1)

Fig. 3.4. Corresponding domains Ωjj′ and diffusion matrices with weight functions ω2
i (ξ) = ξ2

for Υj,j′,mod, i = 1, 2.

Due to (2.2), we have Bj,j′,var ∼ Bj,j′,mod, which gives Bmod ∼ Bvar. In the pre-
conditioner Bvar, we now have an operator with variable coefficients. However, the
constants do not change too much since we have the estimate

sup
x1,x2∈(Ωj,x∪Ωj+1,x)

ω2
2(x1)

ω2
2(x2)

≤ c4ω

from our assumption (2.2).

3.3. Computational aspects. In this subsection, we investigate the precon-
ditioning operation C−1w for the preconditioners (3.4), (3.6), (3.7), and (3.9). We
present algorithms to perform this preconditioning operation in optimal arithmetical
complexity.
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Let us start with the case ω1(ξ) = 1. Here, we have developed the preconditioners

C−1 =

k−1∑
j=0

Θ+
j

(see (3.4)) and

C−1
mod =

k−2∑
j=0

Θ+
j,mod + Θ+

k−1

(see (3.6)). In both cases, we have to solve systems of linear algebraic equations
with the discretization of an operator with constant coefficients on a rectangle using
triangular finite elements. The corresponding operators are now

(3.10) −ε2
juxx − uyy

with some numbers 0 < εj ≤ 1. The computational domains are displayed in Fig-
ures 3.2 and 3.3. These domains are the same as for the preconditioners C and Cmod

of [4].
Using multigrid preconditioners combined with a line smoother, optimal solvers

for Θj and Θj,mod can easily be designed; see [11]. The line smoother is necessary
to remove the anisotropy of the operator. It can be shown that the multigrid pre-
conditioner with line smoother and V -cycle is an optimal method independent of the
parameter εj [11]. With the same arguments as in the isotropic case (see [4]), we can
prove that the cost for the operations w = C−1r and w = C−1

modr depends linearly on
the number of unknowns.

In the general case, the application of the preconditioning operations B−1r (3.7)
and B−1

modr (3.9) implies again the solution of systems of linear algebraic equations
with discretizations of operators of type (3.10). However, these systems have to be
solved on the smaller subdomains (Ωj,x ∪ Ωj+1,x) ∩ (Ωj′,y ∪ Ωj′+1,y); see Figure 3.4
for k = 4. The structure of the diffusion matrices are displayed below each of the
16 panels for the weight functions ω2

i (ξ) = ξ2, i = 1, 2. The diffusion matrices
are isotropic for j ≈ j′ and globally anisotropic elsewhere. Therefore, a multigrid
algorithm or multigrid preconditioner with line smoother should be used as a solution
method for |j − j′| � 1. Similarly as for the preconditioners C (3.4) and Cmod (3.6),
the optimality of the preconditioning operations B−1r and B−1

modr can be shown.
Summarizing, we now have to solve globally anisotropic problems with constant

coefficients instead of locally anisotropic problems with changing directions of the
anisotropy. This is much simpler than the original problem since solvers for the
problem with constant coefficients are known in the literature. However, this method
cannot remove the anisotropic behavior of the problem.

4. Some preliminaries. In this section, we formulate some auxiliary results
from ASM which are necessary to prove our main results. The proofs can be found
in the literature.

4.1. Preliminaries from ASM. The first result is a general result for precon-
ditioned ASM.

Lemma 4.1. Let H be a Hilbert space with the scalar product (·, ·). Moreover, let
Hi, i = 1, . . . ,m, be subspaces of H such that

H = H1 + H2 + · · · + Hm.
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Let A : H �→ H be a linear, self-adjoint, bounded, and positive definite operator and
let

(u, v)A = (Au, v) ∀u, v ∈ H.

We denote by Pi, i = 1, . . . ,m, the orthogonal projection operators from H onto Hi

with respect to the scalar product (·, ·)A. We assume that for any u ∈ H there exists
a decomposition u = u1 + · · · + um such that

(4.1) c1

m∑
i=1

(ui, ui)A ≤ (u, u)A

with a positive constant c1. Moreover, let c2 be some positive constant such that

(4.2)

m∑
i=1

(Piu, u)A ≤ c2 (u, u)A ∀u ∈ H.

Also, let Bi : Hi �→ Hi, i = 1, . . . ,m, be some self-adjoint and surjective operators
such that

(4.3) c3 (Biui, ui) ≤ (APiui, Piui) ≤ c4 (Biui, ui) ∀ui ∈ Hi, i = 1, . . . ,m.

Let B−1 = B+
1 + · · ·+ B+

m, where B+
i denotes the pseudoinverse operator of Bi. Then

c1c3
(
A−1u, u

)
≤
(
B−1u, u

)
≤ c2c4

(
A−1u, u

)
∀u ∈ H.

Proof. The proof can be found in [16].
The second result is a technical result for some overlapping preconditioners, in

which the domain is split into stripes as displayed in Figure 3.1. First, let us introduce
some notation which is similar to the notation in Figure 3.1.

• Let

Ω =

k−1⋃
j=0

Ωj

be a domain Ω which is decomposed into stripes Ωi, i.e.,

Ωi ∩ Ωj = ∅ for i �= j, Ωi ∩ Ωj =

⎧⎪⎪⎨⎪⎪⎩
Γi, i = j + 1,
Γj , i = j − 1,
Ωi, i = j,
∅, |i− j| ≥ 2,

and let Ωk−1 ∩ ∂Ω = Γk.
• Let τk be a triangulation of Ω which is admissible to the decomposition of Ω

into Ωi.
• Let Φk = [φi]

N
i=1 be the basis of hat-functions according to the triangulation

τk and let Vk = spanΦk be the corresponding finite element space.
• Let a(·, ·) : Vk × Vk �→ R be a symmetric and positive definite bilinear form

and let

‖u‖a,Ω = a(u, u)

be the energetic norm. In the same way, let

‖u‖a,Ω̃ = a |Ω̃ (u, u)

be the restriction of the norm onto some subdomain Ω̃ ⊂ Ω.
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• For j = 0, . . . , k − 2, let Yj = {u ∈ Vk : supp u ⊂ Ωj ∪ Ωj+1} be the
restriction of the finite element space Vk onto Ωj ∪ Ωj+1 with Dirichlet
boundary conditions at the boundaries Γj and Γj+2. For j = k − 1, we
set Yk−1 = {u ∈ Vk : supp u ⊂ Ωk−1}.

• Let

‖w‖2
Γj ,left = min

u∈Vk
u|Γj

=w
u|Γj+1

=0

‖u‖2
a,Ωj

and(4.4)

‖w‖2
Γj ,right = min

u∈Vk
u|Γj

=w
u|Γj−1

=0

‖u‖2
a,Ωj−1

be the left and right trace norms on Γj .
• Let Tj,left : Vk |Γj �→ Vk |Ωj and Tj,right : Vk |Γj �→ Vk |Ωj−1 be the minimal

energetic extension operators from Γj to Ωj and Ωj−1, i.e.,

‖w‖Γj ,left = ‖Tj,leftw‖a,Ωj and ‖w‖Γj ,right = ‖Tj,rightw‖a,Ωj−1 .

Theorem 4.2. In addition to the above assumptions, let us assume that there
exists an integer j0 such that the following hold:

• There exists a constant γ < 1, which is independent of the discretization
parameter and j, such that

a(Tj,leftu, Tj+1,rightv) ≤ γ‖u‖Γj ,left‖v‖u,Γj+1,right(4.5)

∀j = 0, . . . , j0, ∀u ∈ Yj |Γj
, ∀v ∈ Yj+1 |Γj+1

.

• There exists a constant q0 < 1 and a constant c2, which are independent of j
and the discretization parameter, such that

(4.6) q−1
0 ‖w‖2

Γj ,left ≤ ‖w‖2
Γj ,right ≤ c2‖w‖2

Γj ,left ∀w, j = j0.

• There exists a constant c1, which is independent of the discretization param-
eter, such that

(4.7) c−1
1 ‖w‖2

Γj ,left ≤ ‖w‖2
Γj ,right ≤ c2‖w‖2

Γj ,left ∀w, ∀j = j0+1, . . . , k−1.

Then there exists a decomposition u =
∑k−1

j=0 uj with uj ∈ Yj such that

c2L

k−1∑
j=0

a(uj , uj) ≤ a(u, u) ∀u ∈ Vk.

The constant cL > 0 depends only on γ, c1, c2, and q0. Moreover, for all decomposi-
tions of u =

∑k−1
j=0 uj with uj ∈ Yj, the estimate

a(u, u) ≤ 2

k−1∑
j=0

a(uj , uj) ∀u ∈ Vk

holds.
Proof. The proof can be found in [4].
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Next, we construct a bilinear form ap(·, ·) with piecewise constant coefficients
which is spectrally equivalent to the original bilinear form a(·, ·); cf. (2.1). This idea
has originally been developed in [12]. For i = 1, 2, let

(4.8) χ2
i (ξ) = εi,j , ξ ∈ (2−j−1, 2−j) with εi,j := ω2

i (2
−j)

be a piecewise constant coefficient function and let

(4.9) ap(u, v) :=

∫
Ω

(∇v)T
[

χ2
1(y) 0
0 χ2

2(x)

]
∇u

be the corresponding bilinear form. Moreover, we define the energetic norm

(4.10) ‖u‖2
p := ap(u, u) ∀u ∈ Vk

with respect to the bilinear form ap(·, ·). The stiffness matrix with respect to the
basis Φk is denoted by Kk,p, i.e.,

(4.11) Kk,p = [ap(φil, φi′l′)]
n0,n0

(i,i′),(l,l′)=(1,1) .

Lemma 4.3. Let us assume that the weight functions ωi, i = 1, 2, satisfy As-
sumption 2.1. Then we have

a(u, u) ≤ ap(u, u) ≤ 2c2ω a(u, u) ∀u ∈ Vk.

The constant cω is from (2.2).
Proof. The proof is similar to the proof of Lemma 4.3 in [4].
Remark 4.4.

• In the case of the weight function ω2
i (ξ) = ξα with α > 0, we have c2ω = 2α.

• A direct consequence of (2.4), (4.11), and Lemma 4.3 is the spectral equiva-
lence estimate

1

2
c−2
ω Kk,p ≤ Kk ≤ Kk,p.

4.2. Some estimates for tridiagonal matrices. Finally, some estimates for
tridiagonal matrices with constant main and subdiagonals are required. For a fixed
integer m and some positive parameter κ, we introduce

Fm =

⎡⎢⎢⎢⎢⎢⎣
2 + κ −1 0−1 2 + κ −1

. . .
. . .

. . .

0 −1 2 + κ −1
−1 2 + κ

⎤⎥⎥⎥⎥⎥⎦ ∈ R
m−1×m−1,

F̃m =

[
1 + κ

2 eT1
e1 Fm

]
∈ R

m×m, e1 = (1, 0, . . . , 0)T ∈ R
m−1×1,(4.12)

and the real number

(4.13) q = 1 +
κ

2
+

1

2

√
κ(κ + 4).

We prove the following lemma.
Lemma 4.5. Let Fm and F̃m be defined via (4.12). Then the following assertions

are valid:
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• The determinant of Fm satisfies the equation

(4.14) detFm+1 =
qm+2 − q−m

q2 − 1
= q−m

m∑
i=0

q2i.

• Let sm = 1 + κ
2 − eT1 F

−1
m e1 be the Schur complement of F̃m with respect to

the first row and column. Then

(4.15) sm =
κ

2
+

1 + q2m−1

1 + q + · · · + q2m−1
.

Moreover, the estimate

(4.16)
κ

2
+

1

m
≤ sm ≤ κ

2
+

1

m

1 + q2m−1

2
√
q2m−1

holds.
• Let ŝm = eT1 F

−1
m em, em = (0, . . . , 0, 1)T . Then

(4.17) |ŝm| =
1

detFm−1
.

• Let γm = |ŝm|
sm

. Then

(4.18) γm ≤ 2

qm−1
.

Proof. Relation (4.14) is a consequence of the following recursion:

detFm = (2 + κ)detFm−1 − detFm−2,

detF0 = 1, detF1 = 2 + κ.

The solution of this linear recursion of second order gives the first assertion. The
second relation follows from the first one by the geometric series

1 + q2 + · · · + q2m =
q2m+2 − 1

q2 − 1
.

To prove relation (4.15), we compute the Schur complement by using Cramer’s rule
and (4.14) explicitly. Since

eT1 F
−1
M e1 = (F−1

m )(1,1) =
detFm−1

detFm
,

we conclude

sm =
κ

2
+

detFm − detFm−1

detFm
.

We simplify the second summand with (4.14) and obtain

detFm − detFm−1 = q−m+1
2m−2∑
i=0

(−q)i = q−m+1 q
2m−1 + 1

1 + q
.(4.19)



2334 SVEN BEUCHLER AND SERGEY V. NEPOMNYASCHIKH

Hence,

(4.20)
detFm − detFm−1

detFm
=

1 + q2m−1

1 + q + · · · + q2m−1
,

which proves (4.15). To prove (4.16), we start from (4.15) and use the convexity of
the function f : (1,∞) �→ R given by f(x) = qx for q > 1. Then we have

1 + q2m−1 ≥ q + q2m−2,

1 + q2m−1 ≥ q2 + q2m−3,

...
...

1 + q2m−1 ≥ qm−1 + qm.

Summing up over all inequalities yields

1 + q2m−1

1 + q + · · · + q2m−1
≥ 1

m
,

which proves the lower estimate. For the upper estimate, the inequality of the mean
values between arithmetical and geometrical means is used. Then we have

1 + q + · · · + q2m−1 ≥ 2m 2m
√
q · q2 · . . . · q2m−1 = 2m

√
q2m−1.

This proves the lower estimate of (4.16).
The proof of (4.17) is similar to the proof of (4.15).
For the proof of (4.18), we use relations (4.15), (4.17) and equation (4.19). We

obtain

γm =
|ŝm|
sm

≤ 1

detFm − detFm−1
=

qm−1(1 + q)

q2m−1 + 1
≤ 1 + q

qqm−1
.

Since 1+q
q ≤ 2 for q ≥ 1, the assertion (4.18) follows, which proves the lemma.

The next lemma gives some asymptotic estimates for the Schur complement sm
and the constant γm.

Lemma 4.6.

• Let m ≥ max{ 1√
κ
, 2}. Then we have

(4.21) γm <
20

21
.

• Let 2 ≤ m ≤ 1√
κ

and m ∈ N. Then the estimate

(4.22)
1

m
≤ sm ≤ 9

5

1

m

is valid.
Proof. To prove the first assertion, we use (4.13) and obtain

qm−1 =

(
1 +

κ

2
+

1

2

√
κ(κ + 4)

)m−1

≥
(
1 +

κ

2
+
√
κ
)m−1

.
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With m ≥ 1√
κ
, we can conclude that

qm−1 ≥
(

1 +
1

2m2
+

1

m

)m−1

.

The series {am}m given by am = (1 + 1
2m2 + 1

m )m−1 is monotonically increasing and
satisfies limm→∞ am = e. Moreover, am ≥ 21

10 for m ≥ 4. This gives

qm−1 ≥ 21

10
.

Using (4.18), the assertion follows for m ≥ 4. The case m = 2 implies that κ ≥ 1
4 and

q ≥ 13
8 . A direct computation shows

γ2 ≤ 5

6
<

20

21
.

A similar proof can be given for m = 3.

To prove the second assertion, we start with κ < m−2. With the arguments we
used above, we have

q2m−1 ≤
(

1 +
1

2m2
+

1

m

)2m−1

≤ e2.

Moreover, the function f : [1,∞) �→ R given by

f(x) =
1 + x√

x
=

(
4
√
x− 1

4
√
x

)2

− 2

is monotonically increasing for x ≥ 1. Hence, we can estimate

1 + q2m−1√
q2m−1

≤ 1 + e2

e
.

Now, we insert this estimate into (4.16) and can conclude that

1

m
≤ sm ≤ κ

2
+

1

m

1 + q2m−1

2
√
q2m−1

≤ 1

m

(
1

2m
+

1 + e2

2e

)
≤ 1

m

(
1

4
+

31

20

)
=

9

5m
.

This proves the lemma.

5. Condition number estimates. In this section, we prove the central theo-
rems of this paper. The proofs exploit the tensor product structure of the problems
and use some auxiliary results from the one-dimensional case. The results for the
one-dimensional case are presented in subsection 5.1. The proofs of Theorems 3.1,
3.2, and 3.3 are presented in subsections 5.2, 5.3, and 5.4, respectively.

5.1. Some one-dimensional auxiliary results. In this subsection, we prove
some auxiliary results for the corresponding one-dimensional case. We start with the
definition of a corresponding bilinear form and discretization matrices.
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For n = 2k and i = 1, 2, let In−1 ∈ R
n−1×n−1,

Tn−1 =

⎡⎢⎢⎢⎢⎢⎣
2 −1 0−1 2 −1

. . .
. . .

. . .

0 −1 2 −1
−1 2

⎤⎥⎥⎥⎥⎥⎦ ∈ R
n−1×n−1 and(5.1)

Mωi = diag(ds)
n−1
s=1 with ds =

{
εi,j if 2k−j−1 < s < 2k−j ,

1
2 (εi,j + εi,j−1) if 2k−j = s,

(5.2)

be the identity, the unweighted Laplacian in one dimension, and a scaled weighted
mass matrix with piecewise constant coefficients, respectively. The coefficients εi,j
are defined via (4.8).

Since Tn0 is the one-dimensional Laplacian, we introduce linear finite elements

on the equidistant mesh Mn =
⋃n−1

s=0 τns , where τns =
(
s
n ,

s+1
n

)
. The one-dimensional

hat-functions on this mesh,

(5.3) φn
s (x) =

⎧⎨⎩
nx− (s− 1) on τns−1,
(s + 1) − nx on τns ,

0 otherwise,
s = 1, . . . , n− 1,

are a basis of the finite element space Xn = span[φn
s ]n−1

s=1 = span[Φ1]. Let λ > 0. Then
the matrix Tn−1 + λMωi defines a coercive bilinear form a1(·, ·) on Xn, i.e.,
(5.4)

uT (Tn−1 + λMωi)v = a1([Φ1]u, [Φ1]v) :=
1

n

∫ 1

0

u′(x)v′(x) dx +

n−1∑
s=1

ρi,su
( s
n

)
v
( s
n

)
with ρi,s = 1

2λ(χ2
i |τn

s−1
+ χ2

i |τn
s
), i = 1, 2. Due to the symmetry and positive definite-

ness of the matrix Tn−1 + λMωi
, the bilinear form a1(·, ·) is symmetric and coercive.

For j = 0, . . . , k − 2, let Ωj =
(
2−j−1, 2−j

)
and Ωk−1 = (0, 2k−1). Moreover, we

introduce

W̃j = span{φn
i }

nj

i=nj+1+2, j = 0, . . . , k − 1, and

Wj = span{φn
i }

nj

i=nj+2+2, j = 0, . . . , k − 2, Wk−1 = W̃k−1,

where nj is defined in subsection 3.1. Due to this definition, the spaces Wj and W̃j are
formed by those finite element functions of Xn which have support inside Ωj+1,x∪Ωj,x

and Ωj,x, respectively.

Lemma 5.1. There exists a decomposition u =
∑k−1

j=0 uj with uj ∈ Wj such that

a1(u, u) ≥ c2
k−1∑
j=0

a1(uj , uj) ∀u ∈ Xn.

The constant c2 > 0 does not depend on n and ρi.
Proof. We adapt the notation of Theorem 4.2, i.e., let Γj+1 = Ωj+1 ∪ Ωj and

(5.5) ‖w‖2
Γj ,left = min

u∈Xn
u|Γj

=w
u|Γj+1

=0

‖u‖2
a1,Ωj

and ‖w‖2
Γj ,right = min

u∈Xn
u|Γj

=w
u|Γj−1

=0

‖u‖2
a1,Ωj−1
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be the left and right trace norms on Γj . Moreover, the minimal energy extension
operators with respect to a1(·, ·) from Γj to Ωj and Ωj−1 are denoted by Tj,left and
Tj,right, respectively. Since the coefficients of the bilinear form a1(·, ·) are constant on
Ωj and the discretization is symmetric with respect to the left and right boundaries,
we have

(5.6) ‖w‖2
Γj ,left = ‖w‖2

Γj+1,right ∀w ∈ R

for which the minima in (5.5) are achieved.
We now fix a stripe Ωj . A simple computation shows

(5.7)
[
a1

∣∣
Ωj (φ

n
l , φ

n
l′)
]nj

l,l′=nj+1+2
= Tmj−1 + κi,jImj−1, i = 1, 2,

with mj = 2k−j−1 and κi,j = εi,jλ; i.e., this matrix has the structure of the matrix
Fm (4.12) with m = mj and κ = κi,j , i = 1, 2. So, it is possible to apply the results
about the matrix Fm. Due to the properties of the Schur complement, we have

(5.8) ‖w‖2
Γj ,left = ‖w‖2

Γj+1,right = w2smj ∀w ∈ R

with smj
defined via (4.15). A simple computation shows

(5.9) a1(Tj,leftu, Tj+1,rightv) = uŝmjv ∀u, v ∈ R

with ŝmj
of (4.17). Hence, we can conclude that

(5.10) γ2
mj

= max
u,v∈R

u,v �=0

a1(Tj,leftu, Tj+1,rightv)

‖u‖Γj ,left‖v‖Γj+1,right
=

ŝmj

smj

.

The series {mj}k−1
j=0 is monotonically decreasing by definition. The series {κi,j}k−1

j=0 is

monotonically decreasing by Assumption 2.1. Hence, the series {mjκ
2
i,j}k−1

j=0 is mono-
tonically decreasing, too. Consequently, there exists a number j0 ∈ {−1, 0, . . . , k}
such that

(5.11) mj ≥ κ−2
i,j ∀j ≤ j0 and mj ≤ κ−2

i,j ∀j > j0, i = 1, 2.

Now, we verify the assumptions of Theorem 4.2. Using (5.10) and (4.21), we have

γ2
mj

≤ 20

21
for j < j0.

This gives (4.5). Using (5.8) and (4.22), the lower estimate in (4.7) follows with

q =
9

10
< 1 for j > j0.

The estimates (4.6) and the upper estimate in (4.7) are a consequence of Assumption
2.1; i.e., the weight function before the mass matrix does not vary too much on two
neighboring stripes. Using Theorem 4.2, the assertion follows.

We now define an overlapping preconditioner of the type (3.6), (3.9) for the matrix

(5.12) Aλ = λMωi
+ Tn0

, λ > 0.
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First, we have to introduce some auxiliary matrices. For j = 0, . . . , k − 2, let

Mi,j =

⎡⎣ 0nj+2+1 0 0
0 εi,jInj−nj+2−1 0
0 0 0n0−nj

⎤⎦ ∈ R
n0×n0 , i = 1, 2,

Tj,n0
=

⎡⎣ 0nj+2+1 0 0
0 Tnj−nj+2−1 0
0 0 0n0−nj

⎤⎦ ∈ R
n0×n0 ,

where εi,j is defined via (4.8). For j = k − 1, we set

Mi,k−1 =

[
εi,k−1 0

0 0n0−1

]
∈ R

n0×n0 , i = 1, 2, Tj,n0
=

[
2 0
0 0n0−1

]
∈ R

n0×n0 .

Now, we can define

(5.13) C−1
1 =

k−1∑
j=0

(λMi,j + Tj,n−1)
+

as a preconditioner for Aλ. Now, we are able to formulate the final lemma.

Lemma 5.2. For i = 1, 2 and λ > 0, let Aλ and C1 be defined via (5.12) and
(5.13), respectively. Then c1C1 ≤ Aλ ≤ c2C1. The constants do not depend on the
structure of the weight functions ωi or the parameter λ.

Proof. We apply Lemma 4.1 with the bilinear form (·, ·)A = a1(·, ·) and verify the
assumptions (4.1), (4.2), and (4.3). The space splitting implies β = 2 (cf. Theorem
4.2), which proves (4.2). Relation (4.1) follows from Lemma 5.1.

The bilinear form a1(·, ·) (5.4) is the sum of two terms—a stiffness term and a
mass term. The coefficient before the stiffness term is constant. The coefficient before
the mass term is piecewise constant, i.e., εi,j on Ωj , i = 1, 2. Hence, the maximum of
the coefficients on Ωj ∪Ωj+1 is εi,j , and the minimum is εi,j+1. In the preconditioner
C1 (5.13), the coefficient on Ωj∪Ωj+1 is replaced by εi,j . Assumption 2.1 implies that
the ratio of coefficients ε−1

i,j+1εi,j is bounded. This gives (4.3) and proves the lemma
for the matrix C1.

5.2. The proof of Theorem 3.1. Now, we prove Theorem 3.1.

Proof. Due to Lemma 4.3, it suffices to show the result for the matrix Kk,p (4.11).
A simple computation shows that

Kk,p = Tn0 ⊗Mω2 + In0 ⊗ Tn0 ,

where the matrices Tn and Mω2 are defined via (5.1) and (5.2). Since the matrix Tn0

is symmetric and positive definite, we have

Tn0 = QTΛQ with QTQ = In0 , Λ = diag[λi]i, λi > 0.

Hence,

Kk,p = (QT ⊗ In0
)(Λ ⊗Mω2

+ In0
⊗ Tn0

)(Q⊗ In0
)

= (QT ⊗ In0)blockdiag [λiMω2 + Tn0 ]i (Q⊗ In0).
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We now apply Lemma 5.2 and obtain

K−1
k,p = (QT ⊗ In0)blockdiag

[
(λiMω2 + Tn0)

−1
]
i
(Q⊗ In0)

∼ (QT ⊗ In0
)blockdiag

⎡⎣k−1∑
j=0

(λiMj + Tj,n0
)+

⎤⎦
i

(Q⊗ In0
)

= (QT ⊗ In0
)

k−1∑
j=0

(Λ ⊗Mj + In0
⊗ Tj,n0

)+(Q⊗ In0
)

=

k−1∑
j=0

(
(QT ⊗ In0)(Λ ⊗Mj + In0 ⊗ Tj,n0)(Q⊗ In0

)
)+

=

k−1∑
j=0

(Tn0 ⊗Mj + In0 ⊗ Tj,n0)
+

= C−1
mod,

which proves the result.

5.3. The proof of Theorem 3.2. The proof of Theorem 3.2 requires the fol-
lowing auxiliary result about block matrices.

Lemma 5.3. Let A =
[
A11 A12

A21 A22

]
be a symmetric positive definite matrix and C0 =[

A−1
11 0
0 0

]
. Then we have C0 ≤ A−1.

Proof. Since A is positive definite, A is nonsingular. The inverse of A can be
expressed by

A−1 =

[
A−1

11 + A−1
11 A12S

−1A21A
−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

]
,

where S = A22 −A21A
−1
11 A12 denotes the Schur complement. The matrix

A−1 − C0 =

[
A−1

11 A12S
−1A21A

−1
11 −A−1

11 A12S
−1

−S−1A21A
−1
11 S−1

]
=

[
B11 B12

B21 B22

]
is positive semidefinite since B22 = S−1 is positive definite and B11−B12B

−1
22 B21 = 0.

This proves the lemma.
Now, we are able to prove Theorem 3.2.
Proof. We start with the proof of the lower inequality. We apply Lemma 4.1 for

the bilinear forms (·, ·)A = a(·, ·) and (Bi·, ·) = ai(·, ·), i = 0, . . . , k − 1; see (3.1). We

verify the assumptions (APiui, Piui) ≤ c4 (Biui, ui) (see (4.3)) and
∑k−1

i=0 (Piu, u)A ≤
c2 (u, u)A (see (4.2)) of this lemma. The monotonicity of the weight function gives
c4 = 1 in (4.3). The space splitting into k subspaces implies c2 = k in (4.2). Using
Lemma 4.1, we have C−1 ≤ kK−1

k , which proves the lower estimate.
To prove the upper estimate, we note that Cj =

[ ∗ ∗
∗ Cj,mod

]
> 0; cf. the definition

of the matrices Cj and Cj,mod in (3.2) and (3.5), respectively. Lemma 5.3 implies
Θ+

j,mod ≤ Θ+
j . Using (3.4) and (3.6), we conclude that C−1

mod ≤ C−1, or, equivalently,
C ≤ Cmod. By Theorem 3.1, we obtain C ≤ Cmod � Kk.

5.4. The proof of Theorem 3.3.
Proof. As in the previous case, we use the tensor product structure of the stiffness

matrices Kk and Kk,p (4.11). Due to Lemma 4.3, it suffices to prove B−1
mod ∼ Kk,p.

A simple computation shows that

Kk,p = Tn0 ⊗Mω2 + Mω1 ⊗ Tn0 ;
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see (5.1) and (5.2) for the definition of the involved matrices. Since Mω1
and Tn0

are
symmetric and positive definite matrices, we can conclude

M−1/2
ω1

Tn0
M−1/2

ω1
= Q̃T Λ̃Q̃ with Q̃T Q̃ = In0

, Λ̃ = diag[λ̃i]i, λ̃i > 0.

This gives

Kk,p = (M1/2
ω1

Q̃⊗ In0)(Λ̃ ⊗Mω2 + In0 ⊗ Tn0)(Q̃
TM1/2

ω1
⊗ In0)

= (M1/2
ω1

Q̃⊗ In0)blockdiag
[
λ̃iMω2 + Tn0

]
i
(Q̃TM1/2

ω1
⊗ In0).

Using Lemma 5.2, we can conclude

(λ̃iMω2 + Tn0)
−1 ∼

k−1∑
j=0

(λ̃iM2,j + Tj,n0
)+.

Hence, we can proceed with the estimates

K−1
k,p ∼ (M−1/2

ω1
Q̃⊗ In0

)blockdiag

⎡⎣k−1∑
j=0

(λ̃iM2,j + Tj,n0
)+

⎤⎦
i

(Q̃TM−1/2
ω1

⊗ In0
)

= (M−1/2
ω1

Q̃⊗ In0
)

⎡⎣k−1∑
j=0

Λ̃ ⊗M2,j + In0
⊗ Tj,n0

⎤⎦ (Q̃TM−1/2
ω1

⊗ In0
)

=
k−1∑
j=0

(Tn0 ⊗M2,j + Mω1 ⊗ Tj,n0)
+

:=

k−1∑
j=0

C+
3,j .(5.14)

In a second step, we derive a preconditioner for C3,j . With the same tensor product
arguments as above, we obtain

(5.15) C+
3,j ∼

k−1∑
j′=0

(Tj′,n0 ⊗M2,j + M1,j′ ⊗ Tj,n0)
+

uniformly for all j = 0, . . . , k − 1. Combining (5.14) and (5.15), we have

K−1
k,p ∼

k−1∑
j=0

k−1∑
j′=0

(Tj′,n0 ⊗M2,j + M1,j′ ⊗ Tj,n0)
+

= B−1
mod,

which proves the result.

6. Numerical experiments. In this section, we present some numerical exper-
iments.

6.1. The case ω1(ξ) = 1. In a first experiment, we investigate the precon-
ditioner C (3.4). Figure 6.1 displays the maximal and minimal eigenvalues of the
matrix C−1Kk,p for different weight functions. The minimal eigenvalue of the matrix
C−1Kk,p is bounded from below by a positive constant for all types of investigated
weight functions. The constants are very close to 1. The maximal eigenvalue is about
k on level k.

In a second experiment, we investigate the preconditioner Cmod (3.6). In com-
parison to the first preconditioner, this preconditioner is optimal. Figure 6.2 displays
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Fig. 6.1. Eigenvalue bounds with the preconditioner (3.4): minimal eigenvalue (left), maximal
eigenvalue (right).
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Fig. 6.2. Eigenvalue bounds with the modified preconditioner (3.6): minimal eigenvalue (left),
maximal eigenvalue (right).

the maximal and minimal eigenvalues for the matrix C−1
modKk,p with the modified

preconditioner (3.6) for different weight functions. The minimal eigenvalue of the
matrix C−1

modKk,p is bounded from below by a positive constant for all types of in-
vestigated weight functions. The maximal eigenvalue is bounded from above by a
constant of 2. The asymptotically optimal behavior can be seen only for relatively
high level numbers. Thus, the condition number of C−1Kk,p is lower for k ≤ 10 than
the condition number of C−1

modKk,p, although the condition number of C−1
modKk,p grows

logarithmically, whereas the condition number of C−1Kk,p is bounded.
Finally, we investigated the preconditioners for the matrix Kk. The results for the

minimal eigenvalue of the matrices C−1Kk and C−1
modKk are displayed in Figure 6.3,

left and right panels, respectively. For the maximal eigenvalues, the results are the
same as for the matrix Kk; i.e., the maximal eigenvalue of the matrix C−1Kk is about
k, whereas the maximal eigenvalue of the matrix C−1

modKk is about 2.
Considering the minimal eigenvalue, the results are different. The results for

the matrix C−1
modKk are comparable with the results for the matrix C−1

modKk,p if the
weight function is not ω2

2(ξ) = ξ10. Then an additional factor of about 2.5 can be
seen. The minimal eigenvalue C−1Kk has the expected (pessimistic) additional factor
of 2 ·2α of Lemma 4.3 compared with the minimal eigenvalue C−1Kk,p. Summarizing,
the preconditioner Cmod (3.6) should be preferred for the matrix Kk with a weight
function ω2

2(ξ) = ξα, α > 1.
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Fig. 6.4. Condition numbers for the general case (left), eigenvalue bounds for B−1
modKk (right).

6.2. The general case. In this subsection, we consider the systems

Kku = f and Kk,pu = f.

In all experiments, we choose the weight functions ω2
i (ξ) = ξ2, i = 1, 2. Figure 6.4

displays the condition number of C−1K for five combinations of C = {B,Bmod, Bvar}
and K = {Kk,Kk,p}. The best results are obtained for the matrix Kk,p with a
piecewise constant coefficient function. Then the condition number is moderately
increasing for both preconditioners. For the matrix Kk with the smooth coefficient
function, the results are not as good as in the previous case if we take a preconditioner
with constant coefficients. The preconditioner with variable but smooth coefficients
Bvar of Remark 3.5 behaves better.

In particular for B−1
modKk (3.9), an additional factor of about 4 can be seen,

which arises from the estimates of Lemma 4.3. The eigenvalue bounds of B−1
modKk

and B−1
varKk are similar to those for the preconditioner Cmod (3.6) (cf. Figures 6.3

and 6.2), where the asymptotics can be seen only for relatively high level numbers.
Hence, the nonoptimal preconditioner B (3.7) should be preferred for moderate level
numbers of k = 5, 6, 7.

Finally, we investigate the iterations of the PCG method with the preconditioner
B (3.7). In all experiments, we have taken a randomly chosen right-hand side and a
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Table 6.1

PCG iterations for the systems Kku = f and Kk,pu = f with the preconditioner B (3.7).

Level 3 4 5 6 7 8 9 10
Kk 16 21 25 29 33 37 40 43

Kk,p 16 20 25 30 34 38 41 43

relative accuracy of 10−5. The results for both systems are displayed in Table 6.1.
From the results, a slight increase of the iteration numbers can be seen. Since this
preconditioner is not optimal (cf. Theorem 3.4), the growth of the PCG numbers is not
surprising. The PCG iterations are about the same for the matrix Kk with continuous
weight function and the matrix Kk,p with piecewise constant weight function.

7. Concluding remarks. We will conclude the paper with a remark about an
application for the p-version of the FEM in three dimensions. Using the basis of the
integrated Legendre polynomials {L̂i}pi=2, it has been proved in [3] that the element
stiffness matrix for odd polynomial degree p with respect to the interior bubbles is
spectrally equivalent to the matrix

Kpv = PTblockdiag [Tn ⊗ Tn ⊗Mω + Tn ⊗Mω ⊗ Tn + Mω ⊗ Tn ⊗ Tn]
8
i=1 P

=: PTblockdiag [K3]
8
i=1 P,

where Tn is the matrix (5.1) of dimension p−1
2 , Mω is the matrix (5.2) with the weight

function ω2(ξ) = ξ2, and P is a permutation matrix. In [5], an optimal solver for Kpv

based on wavelets has been derived.
Another preconditioner C3 for K3 can be developed in the same way as for Kk

in (3.9) and (3.7). With the same tensor product arguments as in the proof of The-
orem 3.3 presented in subsection 5.4, the optimality of the estimate C3 ∼ K3,k is
proved. Using a fast Fourier transform for the remaining problem, we obtain a second
fast solver for the block of the interior bubbles in the p-version of the FEM using
hexahedral elements.
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Abstract. The eigenvalue spectrum of a class of nonsymmetric preconditioned matrices arising
in time-dependent partial differential equations is analyzed and discussed. The matrices generated
by the underlying numerical integrators are small rank perturbations of block Toeplitz matrices;
circulant-like preconditioners based on the former are considered. The eigenvalue distribution of
the preconditioned matrix influences often crucially the convergence of Krylov iterative accelerators.
Due to several reasons (lack of symmetry, band structure, and coefficients depending on the size)
the classical approach based on smooth generating functions gives very little insight here. Therefore,
to characterize the eigenvalues, a difference equation approach exploiting the band Toeplitz and
circulant patterns generalizing the well-known results of Trench is proposed.
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1. Introduction. In this paper we focus on small rank perturbations of block
nonsymmetric Toeplitz matrices preconditioned by circulant approximations intro-
duced in [3, 4, 7].

An n× n matrix An = (aj,k) is said to be Toeplitz if aj,k = aj−k, j, k = 1, . . . , n,
i.e., An is constant along its diagonals, and quasi-Toeplitz if it is a small rank per-
turbation of a Toeplitz matrix. Ăn is circulant if it is Toeplitz and its diagonals
satisfy ăn−j = ă−j . The circulant matrices Ăn are diagonalized by the Fourier matrix
F = (Fj,k), Fj,k = e2πijk/n/

√
n, j, k = 0, . . . , n − 1, and i is the imaginary unit;

see [19]. Circulant matrices are easily and efficiently invertible using the fast Fourier
transform (FFT), as in [16].

Perturbations of block nonsymmetric Toeplitz matrices arise in the numerical
approximation of time-dependent partial differential equations (PDEs) by generaliza-
tions of implicit multistep formulas used in boundary value form [20, 1, 14]. The
techniques considered here could be adapted to other discretization schemes based on
finite differences for PDEs.

Other circulant-like matrices used in the PDE context can be found in [8].
As explained in section 2.1, the matrices of the underlying linear systems can be

written as follows:

(1.1) M = A⊗ I − hB ⊗ J,
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where A and B are n× n small rank perturbations of band Toeplitz matrices whose
entries are given by the coefficients of the scheme involved, I is the identity, and J is
an m × m matrix which can be large and sparse. More precisely, J is the Jacobian
matrix of a system of equations discretized in space by finite differences; see [4] for
details.

Unfortunately, when m and/or n are (even moderately) large, iterative solvers for
(1.1), used without preconditioners or with general purpose preconditioners, such as
those based on incomplete factorizations, often converge very slowly or not at all; see
[4, section 5]. In general, direct methods cannot exploit the block structure of (1.1).

Preconditioners introduced in [4] take into account this structure. They are block-
circulant and, in compact form, can be written as

(1.2) P = Ă⊗ I − h B̆ ⊗ J̃ ,

where Ă and B̆ are circulant-like approximations for A, B, respectively, and J̃ is a
suitable approximation for J . Their performance has been tested in several papers
[4, 5, 17].

The distribution of the eigenvalues of the matrices M and P−1M can influence
the convergence of iterations of Krylov subspace methods. This is the case, e.g., if
the condition number of the eigenvector matrix is moderate; see [22].

Tables of the condition number κ2(X) of the eigenvector matrix X for the (left)
preconditioned matrix P−1M and related discussions can be found in [9], showing
that eigenvalues can give reasonable information in our setting. Similar conclusions
hold true for the nonpreconditioned case for most of the methods considered here.
More details are reported in section 6.

A theoretical investigation of the eigenvalues is hard because, in general, P and
M are nonsymmetric and nonsymmetrizable. Moreover, as explained in section 3 an
analysis of the eigenvalues based on the generating function of the underlying Toeplitz
matrices is not feasible here, although very meaningful for Hermitian matrices [16, 23].

These difficulties motivate us to a “direct” analysis, based on the generalized
eigenvalue problem

M u = λP u.

The tools used here are completely different from those in previous works such as [10],
[7], or [25]. In particular, we cannot write Ă, B̆ as small rank perturbations of A, B.

By using instead linear difference equation theory and generalizing Trench’s ap-
proach [33, 34], we derive closed formulas and first-order expansions for λ as a function
of the time step h and of the eigenvalues of the Jacobian matrix J . This characteri-
zation involves the roots of a sparse polynomial whose degree is related to the size of
A and B.

Our estimates are explicitly computed for some well-known 2-step integrators and
compared with the “true” eigenvalues approximated by Matlab. The approach seems
very useful for spectrum localization and is not too expensive provided that A and B
have moderate size or an efficient rootfinder is associated with our technique.

The paper is organized as follows. Section 2 introduces the problem and the main
circulant preconditioning techniques. In section 3 we discuss the relevant literature for
spectral analysis, and we explain in more detail the motivation of our work. Section 4
is devoted to the spectral analysis, from the general case to the 2-step case study. In
section 5 we describe two classical PDE examples, representing the test problems for
our experiments of section 6.
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2. Preliminaries. Let us consider a model problem based on a first-order initial-
boundary value time-dependent partial differential equation

(2.1)

⎧⎪⎨⎪⎩
∂u
∂t

= L(u) + f, x ∈ D,

G(u) = g, x ∈ ∂D,
u = u0, t = t0, x ∈ D,

where D is an open domain in R
N , N ≥ 1, and L is a differential operator, nonlinear

in u in general. Equations (2.1) are evolutionary because they describe evolving
phenomena and combine differentiation with respect to both space and time. For
simplicity, we will focus on linear operators L and G. However, most of the techniques
considered here can be applied to a more general nonlinear framework by recalling
that often numerical codes linearize the nonlinear algebraic equations by using a
quasi-Newton step; see [21].

2.1. Linear multistep formulas in boundary value form. In the following,
a brief description of a generalization of linear multistep formulas is given.

If the partial differential equation (2.1) is first discretized in space, we obtain a
system of ordinary differential equations (ODEs). Such a system can be very large
and is treated by means of a numerical method for ODEs.

Here we focus on linear multistep formulas applied in boundary value form (see
[1, 14]), which generalize classical implicit linear multistep formulas by using both
initial and boundary conditions even in the presence of an initial value problem. Such
schemes have a relatively long history (see, e.g., [20, 1]) and can be very useful in
some communities where “time” has no special orientation (see an example of these
problems in the work by Shirley referred to in [26]).

More precisely, we suppose that (2.1), with solution u(x, t), has been discretized
in space on a certain grid Ωτ , with mesh width τ > 0, to yield a semidiscrete system

(2.2) y′(t) = F (t, y(t)), t0 ≤ t ≤ ts, y(t0) given,

with y(t) = (uj(t))
m
j=1, m being related to the number of grid points in space, and,

for unidimensional spatial domain D, i.e., N = 1 in (2.1), uj(t) approximates u(xj , t)
at some xj , j = 1, . . . ,m. The contribution of the discretized boundary conditions
is enclosed in F . In order to approximate u(x, t) on Ωτ for t = t0, t1, . . . , ts, an
appropriate temporal mesh, we apply an ODE method with step size h > 0.

Using the shortened notation Fn+i = F (tn+i, yn+i), i = 0, . . . , k, if yn approxi-
mates y(tn), linear multistep formulas in boundary value form are given by

(2.3)
k∑

i=0

αiyn+i = h

k∑
i=0

βiFn+i, n = 0, . . . , s− k,

where y0 = y(t0) is provided by initial conditions of (2.1), while y1, . . . , yν−1 and
ys−k+ν+1, . . . , ys, computed at the mesh points t0, . . . , tν−1, ts−k+ν+1, . . . , ts, are de-
termined by using other difference formulas, usually of the same order of (2.3). In
practical use, we couple three sets of formulas: ν − 1 for y1, . . . , yν−1, s− k + 1 with
the coefficients as (2.3) and k − ν for ys−k+ν+1, . . . , ys. We note that the formulas of
the first and third sets are still based on linear multistep finite differences expressions
as (2.3), but each one has different coefficients (and is independent from those in
(2.3)), while all formulas in the second set, based on (2.3), share the same coefficients
α0, . . . , αk, β0, . . . , βk.
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As announced, we simplify the notation; i.e., we suppose F linear, F (t, y(t)) =
J y(t)+ g(t), where J ∈ R

m×m and g is a vector-valued function of t. The underlying
discrete boundary value problem can be solved by forming the following linear system:

Mz = b, M = A⊗ Im −B ⊗ (hJ), zT =
(
yT0 , y

T
1 , . . . , y

T
s

)
,

b = e1 ⊗ y0 + h(B ⊗ Im)g, gT = (g(t0)
T . . . g(ts)

T ),(2.4)

where A, B are (s + 1) × (s + 1) real-valued quasi-Toeplitz nonsymmetric matrices
and e1 is the first column of the identity matrix. In practice, we accommodate the

coefficients αj , α
(r)
j , j = 0, . . . , k, r = 1, . . . , ν − 1, s − k + ν + 1, . . . , s in A and

βj , β
(r)
j , j = 0, . . . , k, r = 1, . . . , ν − 1, s− k + ν + 1, . . . , s in B such that we can

look at A as Â + RA and B as B̂ + RB , Â and B̂ Toeplitz matrices with stencil(
0 . . . 0 α0 . . . αν . . . αk0 . . . 0

)
and (

0 . . . 0 β0 . . . βν . . . βk0 . . . 0
)
,

respectively. The underlined element is the one on the main diagonal, and RA and
RB have nonzero elements at most in their ν× (k+1) upper left and (k−ν)× (k+1)
lower right corners.

The additional work needed for the solution of the discrete problems (2.4) with
respect to those for the solution of implicit standard linear multistep formulas (i.e.,
used with only initial values) is justified by better stability and order properties; see
[14, 4] for details and discussions.

More on the matrices A, B, and M generated by the schemes above can be found
in [7, 6]. Examples of matrices A, B, and M for 2-step formulas will be given in what
follows.

2.2. A review of block-circulant preconditioners. We noted in [4] that, in
d dimensions, d > 1, when a fine enough spatial discretization is used in (2.1), direct
methods are often not feasible to solve linear systems (2.4). Iterative methods are
mandatory when the discrete problem is generated by a three-dimensional or even two-
dimensional differential model (2.1). In [3, 4] Krylov subspace methods were proposed
to solve (2.4). However, without preconditioning, the convergence can be very slow or
iterations do not converge at all. Therefore, in [3, 4] a preconditioning strategy based
on circulant matrices was introduced (see also [16]). Thus, other approximations
were introduced in [5, 8]; see [8] for a more comprehensive bibliography. By left
preconditioning we mean solving the equivalent nonsymmetric linear system

(2.5) P−1Mx = P−1b

instead of Mx = b. Right preconditioning is obtained by considering

MP−1y = b, x = P−1y.

Note that matrices MP−1 and P−1M are similar and hence share the same eigenval-
ues. Since we are interested in the eigenvalues of (2.5), our analysis is based entirely
on left preconditioning.

In what follows, some block-circulant and block-circulant-like preconditioners for
(2.4) are briefly reviewed.
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Let us consider the following approximation of the matrix M :

(2.6) P = Ă⊗ Im − hB̆ ⊗ J̃ ,

where J̃ is a suitable approximation of the Jacobian matrix or the Jacobian itself. Ă,
B̆ are circulant matrices whose entries are derived from the coefficients of the main
method (2.3) as follows:

Ă = circ(ă), ăj = cj,1(s)αj+ν + cj,2(s)αj+ν−(s+1),

B̆ = circ(b̆), b̆j = cj,3(s)βj+ν + cj,4(s)βj+ν−(s+1), j = 0, . . . , s,(2.7)

where circ(·) denotes the circulant matrix having the first column specified in the
argument, and the cj,i(s), i = 1, . . . , 4, j = 0, . . . , s, are linear in j. It is understood
that αj (βj) is zero for j < 0 or j > k in (2.7), so that the sparsity of A, B implies

that of Ă, B̆. The coefficients ci,j(s) in (2.7) are chosen in such a way that Ă, B̆ are
suitable approximations of A, B in (2.4), respectively.

The approximation of A, B with T. Chan’s optimal circulant preconditioner (see
[18]) requires that

(2.8) cj,1(s) = cj,3(s) = 1 − j

s + 1
, and cj,2(s) = cj,4(s) =

j

s + 1
, j = 0, . . . , s,

while for Strang’s natural (or simple) circulant preconditioner (see [29])

cj,1(s) = cj,3(s) = 1, j = 0, . . . ,

⌊
s + 1

2

⌋
,

cj,2(s) = cj,4(s) = 1, j =

⌊
s + 1

2

⌋
+ 1, . . . , s, cj,i(s) = 0 otherwise.

On the other hand, if we consider, instead of (2.8), the following definition of the
coefficients cj,i(s) for Ă and B̆:

(2.9) cj,1(s) = cj,3(s) = 1 +
j

s + 1
, cj,2(s) = cj,4(s) =

j

s + 1
, j = 0, . . . , s,

we get the so-called P-circulant approximations which, used in (2.6), gives the P-
circulant (block) preconditioner, introduced in [3, 4]. The latter definition avoids
singularity problems which are sometimes typical of the former choices.

In [3, 4] and in [17] it was shown that both the P-circulant and generalized Strang
preconditioned systems can be effective to accelerate the convergence. Unfortunately,
when the Jacobian matrix J has some small (or zero) eigenvalues, the simple circulant
or Strang preconditioner can be severely ill-conditioned or even singular (see [3, 4, 5]).
An analysis of the spectrum for the preconditioned matrix based on simple circulant
approximations can be found in [10]. However, we stress that the tools used here are
completely different from those in the former. In particular, we cannot write anymore
Ă, B̆ as small rank perturbations of A, B, respectively.

Therefore, we will focus on preconditioners (2.6) based on T. Chan’s and the
P-circulant approximations in the following discussions. Practical examples for the
matrices A, B, Ă, B̆, M , and P can be found below.

Another approximation which was found effective (but is not considered here)
is based on {ω}-circulant approximations for matrices A and B in (2.4); see [8]. In
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particular, Ă, B̆ are {ω}-circulant matrices approximating A and B, respectively.
The {ω}-circulant matrices are Toeplitz matrices whose first entry of a row is given
by multiplying the last entry of the preceding row by ω = exp (iθ); see [19] for more
details. Notice that the {1}-circulant matrices (θ = 0) are just circulant matrices (and
therefore generate simple or Strang’s approximations for a given Toeplitz matrix),
while {−1}-circulant matrices (θ = π) are skew-circulant matrices.

We observe that various trigonometric approximations can be combined. For
example, {ω}-P-circulant preconditioners can be defined by using (2.9) to give the first
row of the related {ω}-circulant approximation. A similar combination can be made by
using T. Chan’s optimal circulant matrices. Moreover, it is straightforward to observe
that P-circulant approximations can be seen as {ω}-circulant preconditioners with
θ = 0, whose entries are defined as in (2.9). More comments on these generalizations
can be found in [8].

2.3. Dahlquist’s hypothesis. In the proposed eigenvalue analysis for the pre-
conditioned linear systems (2.5), unless otherwise specified, we choose J = μ (i.e.,
a scalar) in (2.2), where μ ∈ C

− := {λ ∈ C : Reλ ≤ 0} (“Dahlquist’s hypothe-
sis”). It is customary to consider this scalar problem in the linear stability theory
for ODEs. The parameter μ can be any eigenvalue of the Jacobian matrix J of the
given PDE, supposed diagonalizable. Indeed, notice that, supposing J diagonalizable,
we have

J = V DV −1, D = diag(μ1, . . . , μm).

This framework is not restrictive for our analysis since

M = A⊗ Im − hB ⊗
(
V DV −1

)
= (Is+1 ⊗ V )(A⊗ Im − hB ⊗D)(Is+1 ⊗ V −1).

Assuming that the preconditioner is based on the exact Jacobian, a similar expression
can be derived for P . Let us write

M(q) = A− qB, P (q) = Ă− qB̆, q = hμ.

It is straightforward to observe that the eigenvalues of the preconditioned/transformed
linear system (2.5) are given by the union of the eigenvalues of the finite sequence of
matrices

{P (q)−1M(q)}q, q = hμi, i = 1, . . . ,m.

Just to have an idea of the matrix structures, we sketch below the explicit expression
of M(q) and P (q) for the particular example of a 2-step generalized Adams–Moulton
method in connection to a P-circulant preconditioner, with an additional final condi-
tion given by the implicit Euler method:

M(q) =

⎛⎜⎜⎜⎜⎜⎝
1 0
−1 1 0

. . .
. . .

. . .

−1 1 0
−1 1

⎞⎟⎟⎟⎟⎟⎠− q ·

⎛⎜⎜⎜⎜⎜⎝
2
3 − 1

12
5
12

2
3 − 1

12
. . .

. . .
. . .

5
12

2
3 − 1

12
0 1

⎞⎟⎟⎟⎟⎟⎠ ,
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P (q) =

⎛⎜⎜⎜⎜⎜⎝
1 0 − s

s+1

− s
s+1 1 0

. . .
. . .

. . .

− s
s+1 1 0

0 − s
s+1 1

⎞⎟⎟⎟⎟⎟⎠− q ·

⎛⎜⎜⎜⎜⎜⎜⎝

2
3 b̆1 b̆s
b̆s

2
3 b̆1
. . .

. . .
. . .

b̆s
2
3 b̆1

b̆1 b̆s
2
3

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where b̆1 = − s+2
12(s+1) , b̆s = 5s

12(s+1) .

We recall that the underlying generalizations of Adams–Moulton formulas, which
should be used only as implicit methods with one initial (given) and one final condi-
tion, are (i) A-stable not only for k = 2 but for arbitrarily high-order k+1 and (ii) all
formulas preserve important properties such as the time reversal symmetry and the
Hamiltonian function; see [14]. Note that if we use the usual 2-step Adams–Moulton
formula, we should supply another starting value y1.

3. Motivation of the work. From now on, we will assume Dahlquist’s hypoth-
esis (see section 2.3) in order to simplify the theoretical analysis.

Understanding the behavior of iterative solvers for (2.4) requires the knowledge
of the following features:

1. How does the spectrum of M depend on the discretization parameters? For
instance, for which values of q (both involving the time step and the Jacobian
of the PDE) can we ensure that the spectrum lies in C

+ := {λ ∈ C : Reλ >
0}? Can we exclude the pathological situation where M is singular?

2. When a suitable preconditioner is applied, we know that the spectrum of
P−1M is clustered; see, e.g., [23]. But which localization of the cluster (and of
the outliers, if present) should be expected? Again, how does that localization
depend on q?

Concerning the first issue, the literature contains plenty of spectral results in-
volving Toeplitz matrices (see, e.g., [12, 13]), even though the nonsymmetric case is
more difficult to treat (surprisingly, smoothness of the generating function can be a
disadvantage: see [32]). In particular, this difficulty arises in our setting, where gen-
erating functions are trigonometric polynomials, and the accurate localization results
typical for Hermitian matrices are no longer applicable. Moreover, such results are
of the asymptotic type and require a critical assumption: the entries of M must not
depend on the size. In other words, as the size varies we obtain a finite section of a
fixed infinite matrix. This is not our case, since varying s (the size of matrices A and
B and s = O(h−1)) gives a different value of q in M .

The only known results we can apply concern mainly algorithms for computation
of a few eigenvalues (in [2]) or a theoretical analysis of the “pencil” A − qB (in the
sense of generalized eigenvalues) in [14]: in the latter book we can find conditions on
q for which M is nonsingular, that is, a partial answer to our questions raised above.

In summary, to the best of our knowledge, a general theoretical characterization
of the eigenvalues of M = A − qB as functions of q is still lacking. The underly-
ing algebraic setting is the (standard) eigenvalue problem for nonsymmetric Toeplitz
matrices with small rank corrections.

Concerning the second issue, some mathematical tools for the spectral analysis
of P−1M have been proposed in the literature (see, e.g., [4, 10, 17, 25]), but they
all assume that M − P has small rank. This is true for some choices of P (such as
Strang’s preconditioner and a few extensions), but several other important instances
(such as T. Chan’s or P-circulant approximations) give rise to matrices M −P whose
rank is usually full.
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Therefore, appropriate tools for the analysis of the case where P differs from M by
more than a matrix whose rank is small1 are still unknown. An exception is provided
in the Hermitian case, not of interest in this context. The underlying algebraic setting
is the generalized eigenvalue problem for nonsymmetric Toeplitz matrices with small
rank corrections.

The following sections will attempt to give some answers to the open questions
discussed so far.

4. Spectral analysis. From now on we focus on the generalized eigenvalue prob-
lem for nonsymmetric quasi-Toeplitz matrices:

(4.1) M(q)u = λP (q)u, u �= 0.

The standard eigenproblem falls into this notation by making the formal assumption
P (q) = I (in this section we are interested just in the structure of the matrices
involved).

The lack of symmetry and the band structure imply that the classical approach
based on generating functions gives very little insight here (see the results presented
in [32]). Therefore, the best way to characterize eigenvalues (and potentially eigen-
vectors) by exploiting the band Toeplitz pattern seems to be the difference equation
approach, proposed by Trench [33] for the standard, pure Toeplitz case.

Let the s+1 equations of (4.1), as well as the entries of u, be indexed from 0 to s;
the indices from ν to s− k + ν correspond to the rows of M(q) and P (q) not affected
by the low rank correction and containing all of the coefficients of the main method.
The resulting relations

k∑
i=0

(αi − qβi)ui+j = λ

k∑
i=0

(ăi−ν − qb̆i−ν)ui+j , j = 0, . . . , s− k

(where we assume a periodic pattern for ăi and b̆i, whenever a subscript is out of
range), can be treated as linear k-order homogeneous difference equations with con-
stant coefficients. The first and last rows of (4.1) will provide us with initial and final
conditions.

The eigenvector u is a nonzero solution of the difference problem and therefore
can be characterized in terms of the algebraic characteristic equation of degree k:

(4.2) π(z) − λπ̆(z) = 0, π(z) :=

k∑
i=0

(αi − qβi)z
i, π̆(z) :=

k∑
i=0

(ăi−ν − qb̆i−ν)z
i

(notice that π̆(z) simplifies into zν in the standard problem).
From now on we assume that, for each eigenvalue λ, all of the roots z1(λ), . . . , zk(λ)

of the characteristic equation are distinct (otherwise, λ is called defective [34], but this
pathological situation occurs just in isolated cases and for specific values of s). In this
case, each component of the solution of the difference equation has the form

(4.3) uj =

k∑
l=1

clzl(λ)j , j = 0, . . . , s,

for suitable coefficients c1, . . . , ck determined by the boundary conditions.

1In the sense that s is supposed large with respect to the band of the Toeplitz matrices involved,
and the rank is not depending on s.
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More specifically, the first ν and the last k − ν rows of (4.1) represent additional
conditions on the sequence uj . In the standard problem, we have ν initial and k − ν
final conditions since just the first and last entries of u are involved, respectively.
In the generalized problem, the circulant structure of P (q) determines a mixing of
initial and final entries in all of these k equations, but for simplicity we keep the same
terminology.

Substituting (4.3) into the mentioned equations, we obtain k homogeneous rela-
tions involving the unknown coefficients c1, . . . , ck, which can be put in matrix form
as follows:

(4.4)
Kin(z1(λ), . . . , zk(λ))c = 0,
Kfin(z1(λ), . . . , zk(λ))c = 0,

where Kin ∈ C
ν×k,Kfin ∈ C

(k−ν)×k and we have emphasized the dependence of these
Vandermonde-like matrices on the roots of the characteristic equation. The trivial
solution c = 0 would imply u = 0 and therefore must be discarded; hence the square
matrix

(4.5) K(z1(λ), . . . , zk(λ)) :=

(
Kin

Kfin

)
must be singular. Its (vanishing) determinant can be regarded as a function of λ
having the same zeros of the characteristic polynomial of (4.1).

An alternative parameterization with respect to the roots zj(λ) can be useful for
a different characterization of λ.

Let ζ be one of the roots, say, z1(λ). From one point of view, ζ is a function
of λ, but it is understood that λ can be retrieved as well from ζ by means of the
characteristic equation

(4.6) λ(ζ) =
π(ζ)

π̆(ζ)
(λ(ζ) = ζ−νπ(ζ) in the standard case);

we remark that any root gives the same value of λ. The other roots can be expressed
in terms of λ by inverting some elementary symmetric functions. For example, in the
generalized problem with k = 2 and ν = 1, the easiest way is to consider the ratio
between the constant term and the leading coefficient in (4.2)

α0 − qβ0 − λ(ăs − qb̆s)

α2 − qβ2 − λ(ă1 − qb̆1)
= z1(λ)z2(λ),

whence, after the substitution λ = λ(ζ) given in (4.6),

(4.7) z2(λ) = ζ−1 (α0 − qβ0)π̆(ζ) − (ăs − qb̆s)π(ζ)

(α2 − qβ2)π̆(ζ) − (ă1 − qb̆1)π(ζ)
=: ζ2(ζ).

In general, we can assume that we have explicit functions ζ2(ζ), . . . , ζk(ζ) that replace
z2(λ), . . . , zk(λ) in the matrix K of (4.5). Thus

det K(ζ, ζ2(ζ), . . . , ζk(ζ)) =: det(ζ; q)

is a function of the single complex variable ζ, containing q as a parameter.
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Table 4.1

Coefficients for some 2-step formulas.

Type α0 α1 α2 β0 β1 β2

Midpoint (MP) −1 0 1 0 2 0

Simpson (S) −1 0 1
1

3

4

3

1

3

Adams–Moulton (AM) −1 1 0
5

12

2

3
− 1

12

As we will see in specific examples, the analysis of the function det(ζ; q) can be
sometimes reduced to the study of a sparse polynomial, which makes feasible a first-
order analysis (perhaps a direct computation) of its roots ζ(q). Finally, the relation
(4.6) allows us to obtain a knowledge of λ from that of ζ(q).

Remark 4.1. det(ζ; q) has a number of redundant roots that should be discarded
in order to simplify the analysis. Some of them are “spurious” values for which
ζ = ζj(ζ) or ζj(ζ) = ζl(ζ), with j �= l (the matrix K turns out to have two equal
columns), violating the assumption of distinct roots. Furthermore, if ζ is a root of
det(ζ; q), then ζ2(ζ), . . . , ζk(ζ) are roots as well, and they all give the same eigenvalue
λ. In summary, since there are s + 1 eigenvalues, we expect to find k(s + 1) roots
of det(ζ; q), plus the spurious roots (whose number cannot be estimated a priori, in
general).

Remark 4.2. Once the behavior of ζ(q) has been obtained, in principle this can
be used also for the study of eigenvectors: the key relation is (4.3), and the main
issue would be the behavior (in terms of q) of the coefficients c1, . . . , ck. This problem
is not treated in the present paper, where we are interested only in the eigenvalues
λ(q).

4.1. A case study: 2-step formulas. In this paper, we focus on 2-step meth-
ods as the principal (or main) scheme (2.3) for a linear multistep formula in boundary
value form, with one initial condition and one final condition provided by an implicit
Euler scheme. For those methods, we have

k = 2, ν = 1,

and Dahlquist’s hypothesis of section 2.3 allows us to assume that

(4.8) A =

⎛⎜⎜⎜⎜⎜⎝
α1 α2 0
α0 α1 α2

. . .
. . .

. . .

α0 α1 α2

−1 1

⎞⎟⎟⎟⎟⎟⎠ , B =

⎛⎜⎜⎜⎜⎜⎝
β1 β2

β0 β1 β2

. . .
. . .

. . .

β0 β1 β2

0 1

⎞⎟⎟⎟⎟⎟⎠ ,

where parameters are given in Table 4.1 for the most common cases.
Circulant approximations for A and B are given by

(4.9) Ă =

⎛⎜⎜⎜⎜⎜⎝
ă0 ă1 ăs
ăs ă0 ă1

. . .
. . .

. . .

ăs ă0 ă1

ă1 ăs ă0

⎞⎟⎟⎟⎟⎟⎠ , B̆ =

⎛⎜⎜⎜⎜⎜⎜⎝
b̆0 b̆1 b̆s
b̆s b̆0 b̆1

. . .
. . .

. . .

b̆s b̆0 b̆1
b̆1 b̆s b̆0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where the examples for its entries considered here are shown in Table 4.2.
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Table 4.2

Entries for the preconditioner P = P (q).

Type ă0 ă1 ăs b̆0 b̆1 b̆s

MP, P-circ 0
s + 2

s + 1
− s

s + 1
2 0 0

S, P-circ 0
s + 2

s + 1
− s

s + 1

4

3

s + 2

3(s + 1)

s

3(s + 1)

AM, Chan 1 0 − s

s + 1

2

3
− s

12(s + 1)

5s

12(s + 1)

AM, P-circ 1 0 − s

s + 1

2

3
− s + 2

12(s + 1)

5s

12(s + 1)

We are not interested in T. Chan’s approximation for the midpoint and Simpson
methods, since it becomes singular in such cases [7, p. 1819].

The characteristic equation (4.2) has a quadratic form, with

π(z) = γ0 + γ1z + γ2z
2 (γi := αi − qβi),

π̆(z) = ğs + ğ0z + ğ1z
2 (ği := ăi − qb̆i);

its roots ζ and ζ2 are then related through (4.7), where we observe that the numerator
vanishes for ζ = 0, whereas the denominator loses its quadratic term. Hence we define

N(ζ) :=
γ0π̆(ζ) − ğsπ(ζ)

ζ
, D(ζ) := γ2π̆(ζ) − ğ1π(ζ),

which are both linear polynomials such that

(4.10) ζ2(ζ) =
N(ζ)

D(ζ)
.

In light of Remark 4.1, we know that the function det(ζ; q) has two spurious roots for
which ζ = ζ2, satisfying the quadratic equation N(ζ)− ζD(ζ) = 0; hence we know in
advance that N(ζ) − ζD(ζ) exactly divides det(ζ; q).

In order to form the explicit expression of det(ζ; q), first we must compute the
2 × 2 matrix

K(ζ, ζ2) =

(
γin(ζ) γin(ζ2)
γfin(ζ) γfin(ζ2)

)
,

where γin(·) and γfin(·) are suitable polynomials obtained by imposing boundary con-
ditions on the main difference equation.

More precisely, since k = 2 and ν = 1, we have just one initial condition (the first
equation in (4.1))

γ1u0 + γ2u1 = λ(ğ0u0 + ğ1u1 + ğsus)

and one final condition (the last of (4.1))

−us−1 + (1 − q)us = λ(ğ1u0 + ğsus−1 + ğ0us),
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where uj given by (4.3),

uj = c1ζ
j + c2ζ

j
2 ,

should be substituted.
This way we obtain two homogeneous equations in the unknowns c1, c2, whose

coefficients contribute to the matrix K. For instance, the coefficient of c1 in the initial
condition is

γin(ζ) = γ1 + γ2ζ − λ(ğ0 + ğ1ζ + ğsζ
s),

whereas that in the final condition is

γfin(ζ) = −ζs−1 + (1 − q)ζs − λ(ğ1 + ğsζ
s−1 + ğ0ζ

s).

The same holds for c2 with ζ2 in place of ζ; it must be remembered that

(4.11) λ(ζ) =
π(ζ)

π̆(ζ)
=

π(ζ2)

π̆(ζ2)
.

Some further algebraic manipulations give the following compact formulas:

γin(z) = π0(z) −
π(z)

π̆(z)
R[zsπ̆], γfin(z) = zs−2πs(z) −

π(z)

π̆(z)
R[zs−1π̆],

where the notation R[P ] means the s-degree remainder of P modulo zs+1 − 1, and

π0(z) :=
π(z) − π(0)

z
, πs(z) := (1 − q)z2 − z.

A useful simplification arises by observing that in light of (4.11) λ needs not to
be evaluated in ζ2 when we form the second column of K. Therefore, the determinant
is given by

det(ζ; q) = γin(ζ)γfin(ζ2) − γin(ζ2)γfin(ζ),

where

γin(ζ2) = π0(ζ2) −
π(ζ)

π̆(ζ)
Qs(ζ2)

and

γfin(ζ2) = ζs−2
2 πs(ζ2) −

π(ζ)

π̆(ζ)
Q̃s(ζ2),

with suitable s-degree polynomials Qs and Q̃s; the substitution (4.10) shows that
det(ζ; q) is a rational function whose denominator is π̆(ζ)2D(ζ)s. From the linearity
of N and D, the function

(4.12) d(ζ; q) := π̆(ζ)2D(ζ)s det(ζ; q)

is a (2s+4)-degree polynomial in ζ, for which N(ζ)− ζD(ζ) is a known exact divisor.
Its significant roots occur in pairs (ζ(q), ζ2(q)), each of them providing a unique value
of λ(q).
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The formulas derived so far simplify very much if we are concerned with the
nonpreconditioned case: it suffices to put formally π̆(z) := z, so that

ζ2 =
γ0

γ2ζ
, γin(z) := π0(z) −

π(z)

z
= −γ0

z
, γfin(z) := zs−2(πs(z) − zπ(z)),

whence

det(ζ; q) = −γ2ζ
s−1
2 (πs(ζ2) − ζ2π(ζ2)) + γ2ζ

s−1(πs(ζ) − ζπ(ζ));

here the denominator is just ζs+2, and the spurious roots of d(ζ; q) := ζs+2 det(ζ; q)
are ±

√
γ0/γ2.

It is important to observe that d(ζ; q) is a sparse polynomial, which makes a
first-order analysis feasible.

We sketch below the essential formulas arising for the specific examples under
consideration, which represent the individual instances of (4.10) for ζ2, (4.12) for
d(ζ; q), and (4.6) for λ(q) := λ(ζ(q)). In the preconditioned cases, polynomials N and
D have been scaled by a constant common factor σ which has been explicitly reported;
hence the true expression of d(ζ; q) should be multiplied by σs, but obviously this
correction has no influence on the roots and will not be considered in the subsequent
analysis.

Nonpreconditioned matrices M(q).

Midpoint (MP).

ζ2 = −1

ζ
,

d(ζ; q) = (−1)s((1 + q)ζ + 1) + ζ2s+3(1 + q − ζ),

λ(ζ(q)) = ζ(q) − 2q − 1

ζ(q)
.

Simpson (S).

ζ2 =
γ

ζ
, γ :=

q/3 + 1

q/3 − 1
,

d(ζ; q) = γs+1
(q

3
− 1

)(
1 +

q

3
+

(
1 +

q

3

)
ζ +

q

3γ
ζ2

)
,

− ζ2s+2
(q

3
− 1

)(q
3

+
(
1 +

q

3

)
ζ +

(q
3
− 1

)
ζ2

)
,

λ(ζ(q)) =
(
1 − q

3

)
ζ(q) − 4

3
q −

(
1 +

q

3

)
/ζ(q).

Adams–Moulton (AM).

ζ2 =
γ

ζ
, γ := −5 − 12

q
,

d(ζ; q) = γs−1

(
1 +

5

12
q

)(
γ

(
1 +

5

12
q

)
− 1

3
γqζ +

5

12
qζ2

)

+ ζ2s+2 q
2

36

(
5

4
− ζ − 1

4
ζ2

)
,

λ(ζ(q)) =
q

12
ζ(q) + 1 − 2

3
q −

(
1 +

5

12
q

)
/ζ(q).
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Preconditioned matrices P (q)−1M(q).

MP, P-circulant.

σ = −s + 1

2
, N(ζ) = q − ζ, D(ζ) = 1 + qζ, ζ2 =

N(ζ)

D(ζ)
,

d(ζ; q) =
2π(ζ)

s + 1
(N − ζD)

[
−

(
1 − 1

s + 1

)
ζsNs +

(
1 +

1

s + 1

)
Ds

]
+

(
1 − 1

(s + 1)2

)
π(ζ)2[Ns − (ζD)s]

− 2(1 + q)π̆(ζ)

s + 1
[Ns+1 − (ζD)s+1] +

4

(s + 1)2
[Ns+2 − (ζD)s+2],

π(ζ) = ζ2 − 2qζ − 1, π̆(ζ) = π(ζ) +
1

s + 1
(ζ2 + 1), λ(ζ(q)) =

π

π̆
.

S, P-circulant.

σ = −9(s + 1)

2
, N(ζ) = (3 + q)(2q + (q − 3)ζ), D(ζ) = (3 − q)(q + 3 + 2qζ),

d(ζ; q) = π(ζ)(N − ζD)(ğ1D
s−1φ1 + ğs(ζN)s−1ψ0)

−
(
ğ1ğsπ(ζ)2 +

2Dψ0

9(s + 1)

)
[Ns − (ζD)s] − 2ψ1

9(s + 1)
[Ns+1 − (ζD)s+1]

(ği := ăi − qb̆i, where ăi and b̆i are given by Table 4.2),

φ1 :=
2D

9(s + 1)
, ψ0 := −π̆(ζ) +

s

s + 1

(
1 +

q

3

)
π(ζ), ψ1 := (1 − q)π̆(ζ) +

4

3
qπ(ζ),

π(ζ) = ζ2 − 1 − q

3
(ζ2 + 4ζ + 1), π̆(ζ) = π(ζ) +

1

s + 1

(
1 + ζ2 +

q

3
(1 − ζ2)

)
.

AM, Chan.

σ = −12(s + 1)

2q/3 − 1
, N(ζ) = 5q + 12, D(ζ) = −qζ,

d(ζ; q) =

(
1 − 1

s + 1

)
π(ζ)(N − ζD)

[
q

12
Ds−1φ1 −

(
1 +

5

12
q

)
(ζN)s−1ψ0

]
+ ζNDφ1ψ0[N

s−2 − (ζD)s−2] + (ζNφ1ψ1 + Dφ0ψ0)[N
s−1 − (ζD)s−1]

+

[
φ0ψ1 +

q

12

(
1 − 1

s + 1

)2 (
1 +

5

12
q

)
π(ζ)2

]
[Ns − (ζD)s],

φ0 :=

(
1 − 2

3
q

)
(π̆(ζ) − π(ζ)), φ1 :=

q

12

[
π̆(ζ) −

(
1 − 1

s + 1

)
π(ζ)

]
,

ψ0 := −π̆(ζ) +

(
1 − 1

s + 1

)(
1 +

5

12
q

)
π(ζ), ψ1 := (1 − q)π̆(ζ) −

(
1 − 2

3
q

)
π(ζ),

π(ζ) = ζ − 1 − q

12
(ζ2 − 8ζ − 5), π̆(ζ) = π(ζ) +

1

s + 1

(
− q

12
ζ2 + 1 +

5

12
q

)
.
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AM, P-circulant.

σ = −(s+1), N(ζ) =

(
1 +

5q

12

)(
1 − 2

3
q +

qζ

6

)
, D(ζ) =

q

12

[(
1 − 2

3
q

)
ζ − 2 − 5

6
q

]
,

d(ζ; q) = π(ζ)(N − ζD)(ğ1D
s−1φ1 + ğs(ζN)s−1ψ0) + ζNDφ1ψ0[N

s−2 − (ζD)s−2]

+ (ζNφ1ψ1 + Dφ0ψ0)[N
s−1 − (ζD)s−1] + (φ0ψ1 − ğ1ğsπ(ζ)2)[Ns − (ζD)s]

(ği := ăi − qb̆i, where ăi and b̆i are given by Table 4.2),

φ0 :=

(
1 − 2

3
q

)
(π̆(ζ) − π(ζ)), φ1 :=

q

12

[
π̆(ζ) −

(
1 +

1

s + 1

)
π(ζ)

]
,

ψ0 := −π̆(ζ) +

(
1 − 1

s + 1

)(
1 +

5

12
q

)
π(ζ), ψ1 := (1 − q)π̆(ζ) −

(
1 − 2

3
q

)
π(ζ),

π(ζ) = ζ − 1 − q

12
(ζ2 − 8ζ − 5), π̆(ζ) = π(ζ) +

1

s + 1

(
q

12
ζ2 + 1 +

5

12
q

)
.

4.2. A first-order analysis. The parameterization of λ as a function of q ob-
tained so far allows us to investigate the behavior of the eigenvalues for q small.

We recall that q = hμ, where h is the time discretization step and μ represents
any eigenvalue of the Jacobian matrix J in (2.4) related to the space discretization.
Thus, a small value of q is a physically meaningful situation, occurring whenever,
e.g., the Jacobian matrix has eigenvalues with a small modulus (as in the examples
sketched in section 5) and/or a small time step is used. A particular care is required
in the latter instance: we stress that s → ∞ as h → 0, so that the polynomial d(ζ; q)
raises its degree, increasing the number of the roots ζ(q). However, the insights given
by the first-order analysis are generally in good agreement with the localization of λ,
as we will see in the numerical experiments of section 6.

In what follows, we present a first-order expansion of λ(q) centered in zero for
all of the three nonpreconditioned methods (MP, S, AM) and for two preconditioners
(P-circulant approximations for MP and AM).

The starting point is the continuity of polynomial roots with respect to coefficients
(provided that the degree remains constant). Hence ζ(q) is very close to ζ(0) for small
q, and its first-order dependence on q can be made explicit.

In the MP method, ζ = ζ(0) is a root of d(ζ; 0) = (−1)s(1 + ζ) + ζ2s+3(1 − ζ),
and therefore

|ζ|2s+3 =

∣∣∣∣1 + ζ

1 − ζ

∣∣∣∣ .
Squaring both sides of the previous equation and letting ζ = ρeiθ, after some algebraic
manipulations, we get

(4.13) cos θ =
1 + ρ2

2ρ
· ρ

4s+6 − 1

ρ4s+6 + 1
.

(4.13) is the equation, in polar coordinates, of a curve containing all of the roots ζ(0)
and lying in the following region of the complex plane:

Ω =

{
θ ∈

(
π

2
,
3

2
π

)
, ρ < 1

}
∪

{
|θ| < π

2
, ρ > 1

}
∪ {±i},

where ±i are exactly the spurious roots for which ζ = ζ2.
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Therefore, λ(0) can be localized through the transformation λ = ζ − 1/ζ of the
previous curve. In particular, since Reλ = (ρ − 1/ρ) cos θ, it is straightforward to
observe that Reλ > 0 whenever ζ ∈ Ω (except for the spurious roots). By continuity,
we have the useful result that the eigenvalues of M lie on C

+ for q small enough.
We recall that projection methods such as GMRES or BiCGstab show often a faster
convergence behavior whenever the matrix of the linear systems we have to solve has
all eigenvalues in one half-plane; see [22].

If we are interested in a deeper analysis, we can check that the roots ζ(0) are
distinct and therefore

ζ(q)
.
= ζ(0) + ζ ′(0)q,

where
.
= denotes a first-order approximation of the function on the left-hand side.

Therefore,

λ(q)
.
= ζ(0) − 1

ζ(0)
+

[
ζ ′(0) +

ζ ′(0)

ζ(0)2
− 2

]
q;

the explicit expression of ζ ′(0), if desired, can be retrieved from the classical theory
on the conditioning of zeros of polynomials (see, e.g., [30, section 5.8]).

The Simpson method has a quite similar analysis. In addition, since the matrix
A is the same as the previous case, the zero-order terms of ζ(q) and λ(q) are exactly
equal to the corresponding ones for MP. On the other hand, the first-order expansion
for S has a different expression, which is reported below:

λ(q)
.
= ζ(0) − 1

ζ(0)
+

[
ζ ′(0) +

ζ ′(0)

ζ(0)2
− 4

3
− ζ(0)

3
− 1

3ζ(0)

]
q,

where ζ ′(0) is different from the MP method.
The analysis of the AM method shows a further complication with respect to the

previous cases. It is evident that d(ζ; q) loses several degrees when q goes to zero, so
that many roots ζ(q) become infinite. Hence we are not able to predict the behavior
of λ(q), unless we apply an appropriate change of variable. For this purpose, let

ξ := q1/2ζ, β := γq,

and rewrite the polynomial d in terms of the new variable ξ. We obtain

qsd(ξ; q) = βs−1

(
1 +

5

12
q

)(
β

(
1 +

5

12
q

)
− 1

3
βq1/2ξ +

5

12
qξ2

)
+ ξ2s+2/36

(
5

4
q − q1/2ξ − 1

4
ξ2

)
,

whence ξ(q)
.
= ξ(0) + ξ′(0)q1/2, where ξ(0) solves the equation

(−12)s − ξ2s+4/144 = 0,

that is, ξ(0) = 2
√

3 exp(i( lπ
s+2 + π

2 )), l = 1, . . . , s + 1. Other values of the index l
would give spurious roots or already obtained values of λ. Taking into account the
change of variable, the behaviors of ζ and λ are, respectively,

ζ(q)
.
= ξ(0)q−1/2 + ξ′(0),

λ(q)
.
= 1 +

i√
3

cos
lπ

s + 2
q1/2 +

[
ξ′(0)

12
+

ξ′(0)

ξ(0)2
− 2

3

]
q.
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Hence, for small values of q, the eigenvalues of M are close to a vertical segment on
C

+ with the midpoint placed at 1.
The main difficulty arising in the preconditioned case is given by the presence

of the spurious divisor N − ζD in all instances of d(ζ; q). In order to perform the

analysis, it is worth considering the quotient d̂(ζ; q) := d(ζ; q)/(N − ζD), studied for
q ≈ 0. Let

Fm(ζ; q) :=
Nm − (ζD)m

N − ζD
=

m−1∑
j=0

N j(ζD)m−j−1;

this expression appears in almost all of the terms of d̂(ζ; q) and will determine the
first-order behavior of the significant roots.

Concerning the P-circulant preconditioner for the MP method, for q = 0 we have
N(ζ) = −ζ, D(ζ) = 1. Therefore,

Fm(ζ; 0) = ζm−1
m−1∑
j=0

(−1)j =

{
ζm−1 if m is odd,

0 otherwise.

Thus, the zero-order localization of the roots ζ(q) strictly depends on the parity of s:
more specifically, when s is odd they solve the equation

(ζ2 − 1)ζs+1 +
2

s + 1
(ζ2 − 1)(ζ2s + 1)

+
1

(s + 1)2
[4ζs+1 − (ζ2 − 1)ζs−1 + 2(ζ2 − 1)(1 − ζ2s)] = 0,

and when s is even the equation becomes

(ζ2 − 1)(1 − ζs − ζ2s) +
1

s + 1
[(ζ2 − 1)(ζ2s + 1) − (ζ2 + 1)ζs] = 0.

For q very small, the eigenvalues of P−1M can be estimated from the roots ζ = ζ(0)
through the relation

λ(0) =
ζ2 − 1

ζ2 − 1 +
1

s + 1
(ζ2 + 1)

.

After more heavy computations we are able to obtain the first-order terms in the
expansions of ζ(q) and λ(q). In section 6 we will present explicit estimates based on
the formulas derived so far and compare them with values obtained numerically.

The difficulties found in the analysis of the AM method arise in the P-circulant
preconditioned case as well. Many ingredients of d(ζ; q) degenerate for q = 0: among
others, polynomials N(ζ), D(ζ), π(ζ), and π̆(ζ) drop their degree. This causes several
roots ζ(q) to go to infinity: also here we need a suitable change of variable.

Let ξ := qζ, and rewrite all of the polynomials N,D, π, π̆, φi, ψi(i = 0, 1) in terms
of the new variable, in particular,

N(ξ) =

(
1 +

5

12
q

)(
1 − 2

3
q +

1

6
ξ

)
, D(ξ) =

1

12

[(
1 − 2

3
q

)
ξ − q

(
2 +

5

6
q

)]
.

The “clean” polynomial d̂ takes the following expression after some algebra:

d̂(ξ; q) = q−s−1ď(ξ; q),
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where ď has constant degree 2s + 2 (independently on q) and its zero-order form is

ď(ξ; 0) =

(
− 1

s + 1

)s

ξs+1

{
− 1

12s+1(s + 1)

[
ξs−3(12 + 2ξ)2 + ξs+1

]
−

(
1 − 1

s + 1

)(
1 +

1

12
ξ

)(
1 +

1

6
ξ

)s}
.

Notice that s + 1 roots of ď are distinct and behave as ξ(q)
.
= ξ(0) + ξ′(0)q, whence

ζ(q)
.
= ξ(0)q−1 + ξ′(0).

These are the roots going to infinity, associated with the values of λ(q) with

λ(0) =
12 + ξ(0)

12 + ξ(0)

(
1 − 1

s + 1

) ;

the same eigenvalues are associated with the corresponding “dual” roots given by
ζ2 = N(ξ)/D(ξ) which are finite for q = 0, as a direct look at N and D shows.
Through the transformation ξ = qζ2 we find the remaining s + 1 roots of ď, which
collapse at the origin.

We will compare these results with numerical estimates for this setting as well;
see section 6.

5. Model problems. As a first benchmark of our analysis, we consider two
simple model problems which encompass two important types of spectra for their
Jacobian matrices: real and negative and pure imaginary eigenvalues, respectively.
Only one-dimensional (1D) problems are considered, but extensions to 2D and 3D
cases are straightforward and not necessary in our setting.

Diffusion equation. As a typical example of a problem whose Jacobian matrix
has negative (real) eigenvalues, we report the variable coefficient 1D diffusion equation
with homogeneous Dirichlet boundary conditions at both ends. Let a = a(x) ≥ 0 be
a suitably smooth function.

(5.1)

⎧⎨⎩
ut − c(a ux)x = 0, x ∈ [0, xmax], t ∈ (0, T ],
u(0, t) = u(xmax, t) = 0 t ∈ (0, T ],
u(x, 0) = g(x), x ∈ [0, xmax].

Discretizing the operator ∂/∂x in (5.1) with centered differences and step size Δx =
xmax/(m + 1) gives a sequence of systems of ODEs parameterized by Δx whose mth
element is given by

(5.2)

{
y′(t) = Tmy(t), t ∈ [0, T ],
y(0) = η, η = (g(x1) . . . g(xm))T ,

where xj = jΔx and

(5.3) Tm =
c

(Δx)2

⎛⎜⎜⎜⎜⎝
a1 b1

b1
. . .

. . .

. . .
. . . bm−1

bm−1 am

⎞⎟⎟⎟⎟⎠ ,
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where

aj = −(a(xj−1/2) + a(xj+1/2)), bj = a(xj+1/2).

The Jacobian matrix Tm is m × m symmetric, tridiagonal, and weakly diagonally
dominant with negative diagonal entries. From an extensive study performed in [15,
28] we get for each eigenvalue μj of Tm the bounds

− 4c

(Δx)2
max

x
{a(x)} ≤ μj ≤ − cπ2

(xmax)2
min
x

{a(x)}.

Note that, as Δx tends to zero, the systems of differential equations (5.2) become in-
creasingly stiff, spreading the eigenvalues of the Jacobian matrix Tm along an interval
in (−4cmaxx{a}/(Δx)2, 0) whose left boundary tends to −∞ with O((Δx)−2).

More precisely, the spectrum is equally distributed [31] as the values of the bi-
variate function a(x)f(θ), where

f(θ) =
2c

(Δx)2
(cos(θ) − 1), θ ∈ (−π, π),

is the so-called “generating function” related to the constant-coefficient version of the
problem. As stated in [27, 24], if a(x) has a zero at the origin of order α, the smallest
eigenvalue shows an asymptotic behavior like (Δx)2/mmax(2,α).

Transport equation. The linear 1D transport equation with periodic boundary
conditions and constant coefficient c > 0 in its simplest form reads:

(5.4)

⎧⎨⎩
ut + c ux = 0,
u(x, 0) = g(x), x ∈ [0, π],
u(π, t) = u(0, t), t ∈ [0, 2π].

Discretizing the partial derivative ∂/∂x with central differences and step size Δx =
π/m, xj = jΔx gives a sequence of systems of ODEs parameterized by Δx whose
mth element is given by

(5.5)

{
y′(t) = Cmy(t), t ∈ [0, 2π],
y(0) = η, η = (g(x0) . . . g(xm−1))

T ,

with

(5.6) Cm =
c

2Δx

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 1

1
. . .

. . .

. . .
. . .

. . .

. . .
. . . −1

−1 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The matrix Cm is circulant m×m with generating function

(5.7) f̃(θ) =
c

2Δx

(
e−iθ − eiθ − e−i(m−1)θ + ei(m−1)θ

)
=

−ic (sin θ − sin(m− 1)θ)

Δx
,

where θ ∈ (−π, π). Therefore, the eigenvalues of Cm are distributed as f̃(θ) in (5.7)
and lie in the purely imaginary (closed) interval

[−2ic/Δx, 2ic/Δx],
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which becomes wider as O(1/Δx) as we refine the discretization. This implies that a
finer mesh for the time-step integrator is required to resolve the (oscillatory) solution
as Δx (the step for the discretization in space) decreases to zero.

An explicit expression of the spectrum of Cm can be obtained by observing that

(5.8) Cm = FΛF ∗,

where Λ is a diagonal matrix containing the eigenvalues μj of Cm and F is the Fourier
matrix; see, e.g., [19]. Thus, from the expression of the eigenvalues of a circulant
matrix, we have

μj = − 2ic

Δx

(
sin

2πj

m

)
, j = 0, . . . ,m− 1,

i.e., the generating function computed in the points θj = 2πj/m, j = 0, . . . ,m− 1, as
usual.

It is worth noting that the Jacobian matrices for both of the proposed model
problems are normal and therefore can be diagonalized by unitary matrices. This
feature is useful in order to use the bounds for the convergence of a Krylov accelerator
which uses the preconditioners analyzed here; see [9, Theorems 3.1 and 3.2]. In
particular, by applying the cited results, for the underlying problems we can predict
convergence in at most O(log s) (preconditioned) iterations.

6. Numerical estimates and comparisons. We compare the results of zero-
and of some first-order approximations presented in section 4.2 with the eigenvalues
computed by Matlab’s QR method for the model problems in section 5. We do not
report plots generated by Simpson’s formula because they are very similar to those
related to the midpoint formula.

In all tests, unless specified otherwise, we consider s = m = 100, c = 1, T = 2π,
xmax = π, t0 = 0. The Jacobian matrix J is taken, in light of Dahlquist’s hypothesis,
as the smallest eigenvalue (in modulus) for each one of the model problems considered
in the previous section. In the variable diffusion model problem, the diffusion function
is of the form a(x) = xk, k > 0 integer; i.e., it has a zero in the origin of multiplicity
k. However, a similar eigenvalue distribution of the preconditioned and nonprecondi-
tioned problems has been observed even in the absence of zeros on the real axis for
various functions such as a(x) = xk + ε, where ε > 0 is a small constant, varying with
O(m−1). We stress that, in both cases, eigenvalues of the Jacobian matrix (5.3), are
negative, but some of them go to zero as the space discretization gets refined. On the
other hand, the same asymptotic behavior holds for some nonzero eigenvalues of the
Jacobian matrix (5.6), although the transport equation has constant coefficients.

Results of some tests are reported in Figures 6.1 (nonpreconditioned case), 6.2,
and 6.3 (preconditioned case). In all three cases, the condition number κ2(X) of the
eigenvector matrix X is modest. Therefore GMRES’ convergence is well described by
the eigenvalues.

Note that in all tests we get that even just zero-order approximations can give
reasonable information on the qualitative behavior of the eigenvalues related to the
smallest eigenvalues (in modulus) of the Jacobian matrix of the differential problem
both in the nonpreconditioned and in the preconditioned cases, for variable and con-
stant coefficient equations, provided that the mesh for the discretization in space is
fine enough.
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Fig. 6.1. MP method, smallest eigenvalue (in modulus) for (a) the diffusion equation with
a(x) = x4, s = 20, m = 20 giving κ2(X) ≈ 7, (b) the transport equation, s = 100, m = 100,
c = 1 giving κ2(X) ≈ 28, and (c) the same equation with c = 0.1 giving κ2(X) ≈ 28; x=order 0,
o=eig(M), �=order 1 approximations.
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Fig. 6.2. MP method with P-circulant preconditioning, smallest eigenvalue (in modulus) for
(a) the diffusion equation with a(x) = x4, s = 100, m = 100 and (b) the transport equation, s = 100,
m = 100; +=order 0, o=eig(P−1M) approximations.

In order to emphasize the effect of the first-order approximations with respect to
zero order, just in Figure 6.1 (left) we use a rougher mesh with s = m = 20 for the
midpoint formula without using preconditioning.

It is surprising that, for the transport equation (upper right plot in Figure 6.1),
the order 1 approximation gives worse approximations than order 0 for some eigen-
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Fig. 6.3. Adams–Moulton with P-circulant preconditioning, smallest eigenvalue (in modulus)
for (a) the diffusion equation with a(x) = x4, s = 100, m = 100 and (b) the transport equation,
s = 100, m = 100; +=order 0, o=eig(P−1M) approximations.

values: the “wrong” values come from roots ζ(0) very close to the real axis (the same
occurs for the derivatives ζ ′(0), ζ ′′(0), etc.). This phenomenon is probably explained
by observing that q is pure imaginary in this setting, so that in the power series∑+∞

j=0 ζ
(j)(0)qj just the even terms contribute to refine the real part, as well as the

odd terms are related only to the imaginary part; this way the convergence radius of
the series could be reduced, and the actual value of q could fall outside the region
of analyticity. On the other hand, continuity still holds so that order 0 is always
meaningful.

Our conjecture is confirmed by the lower right plot in Figure 6.1, where we have
simply set c = 0.1: q has been divided by a factor of 10, and order 1 estimates become
again more accurate than order 0.

For these moderate dimensions, every ζ(0) has been computed through the Matlab
function roots. If one is interested in locating the spectrum of much larger matri-
ces, we suggest the use of more efficient rootfinders specifically designed for sparse
polynomials, such as MPSolve proposed in [11].
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AN INTERPOLATION ERROR ESTIMATE ON ANISOTROPIC
MESHES IN Rn AND OPTIMAL METRICS FOR MESH

REFINEMENT∗

WEIMING CAO†

Abstract. In this paper, we extend the work in [W. Cao, Math. Comp., to appear] to functions
of n dimensions. We measure the anisotropic behavior of higher-order derivative tensors by the
“largest” (in certain sense) ellipse/ellipsoid contained in the level curve/surface of the polynomial for
directional derivatives. Given the anisotropic measure for the interpolated functions, we derive an
error estimate for piecewise polynomial interpolations on meshes that are quasi-uniform under a given
metric. By using the inertia properties for matrix eigenvalues [R. C. Thompson, J. Math. Anal. Appl.,
58 (1977), pp. 572–577] and Hölder’s inequality, we can identify the optimal mesh metrics leading
to the smallest error bound in various norms. Furthermore, we develop a dimensional reduction
method to find the anisotropic measure approximately. We present two numerical examples for
linear and quadratic interpolation on various anisotropic meshes generated with the optimal mesh
metrics developed in this paper. Numerical results show that the smallest interpolation error is
attained exactly on meshes optimal for the corresponding error norm as predicted.

Key words. interpolation error, anisotropic mesh, anisotropic measure, aspect ratio, mesh
alignment, mesh metric
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1. Introduction. It is well known in mesh generation and finite element analysis
communities that in order to minimize linear interpolation errors, the eigenvalues and
eigenvectors of Hessian matrices can be used to determine the element aspect ratio and
mesh alignment direction for anisotropic mesh generation or refinement; see, e.g., [3,
4, 11, 13, 15, 19, 21, 23, 24]. In the case of quadratic or higher-order interpolations, the
error is determined by the third- or higher-order partial derivatives of the interpolated
functions. Measuring their anisotropic behavior is the key for anisotropic mesh design
and refinement [2]. In particular, in order to determine an ideal element orientation
and aspect ratio, one needs to define the “principal direction” and the “strength” to
characterize the anisotropic behavior of the derivative tensors. In a previous paper
[6], the author developed a method to measure the orientation and anisotropic ratio
of the higher-order derivative tensors for two-dimensional functions. The technique is
based on decomposing the homogeneous polynomials for directional derivatives into
the product of linear and nonnegative quadratic polynomials. Then the anisotropic
measure is defined by the directions of the lines and ellipses corresponding to those
factors. An interpolation error estimate is further derived on anisotropic meshes that
are quasi-uniform under given metrics. Optimal mesh metrics can be identified to
minimize the error bound in various norms.

In this paper, we extend the work in [6] to functions of n dimensions. The difficulty
in making such an extension is that it is generally impossible to factor a homogeneous
polynomial in three or higher dimensions into the product of linear and nonnegative
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quadratic functions. However, the idea in [6], which characterizes the anisotropic
behavior of derivative tensors by the largest ellipse contained in the level curve of the
polynomial for directional derivatives (see Remark 2.1 in [6]), is still valid in higher
dimensions. Algebraically, for any positive integer k, let ∇k+1u(x) = ∇(∇ku)(x) be
the (k + 1)th-order tensor for the partial derivatives of function u at a point x. We
may characterize its anisotropic behavior by a suitable n× n positive definite matrix
Q satisfying the following constraint:

|(ξ · ∇)k+1u(x)| ≤ |ξ ·Qξ| k+1
2 ∀ξ ∈ Rn.

Based on the anisotropic measure of the interpolated functions, we derive an error es-
timate for the higher-order polynomial interpolation on meshes that are quasi-uniform
under a given mesh metric. The error bound involves the same convergence rate with
respect to the number of elements as in classical results on quasi-uniform meshes
under Euclidean metrics. However, the constant in the error bound depends on an
interplay between the anisotropic mesh (through the mesh metric) and the anisotropic
behavior of ∇k+1u, which can be much smaller than that in the classical error bound.
Furthermore, by using the inertia properties of matrix eigenvalues proved by Thomp-
son [26] and Hölder’s inequality, we show that the smallest bound for the Wm,p-error
of kth-order interpolations is attained when the metric is defined as

Mk+1,m,p = c(λmax(Q))
mp

(k+1−m)p+n |det(Q)|−
1

(k+1−m)p+n ·Q,

where λmax(Q) is the largest eigenvalue of the matrix Q measuring the anisotropic
behavior of ∇k+1u. In the case of linear interpolation (k = 1), Q can be chosen
as Q = [(∇2u)2]1/2 + δ · In, where δ is a user-specified small parameter and In is
the identity matrix. Then the above optimal metric for minimizing the Lp-error
(i.e., with m = 0) is identical to that presented in Chen, Sun, and Xu [7]. In the
case of higher-order interpolations, the optimal choice of Q relies on a constrained
minimization. We develop a dimensional reduction method to find an approximate Q
to measure the anisotropic behavior of ∇k+1u. To test the optimality of the proposed
mesh metrics, we generated various anisotropic meshes using the black-box anisotropic
mesh generator bamg [3, 16] supplied with the metric Mk+1,m,p. We compare various
error norms for linear and quadratic interpolations in two dimensions. It is found in
all the cases that the smallest error norm is attained exactly with meshes based on
the corresponding optimal mesh metric. We also present a three-dimensional example
to demonstrate that the smallest error norms are attained at the best aspect ratios,
as expected.

An outline of this paper is as follows. In section 2 we present the error estimate
for interpolations on anisotropic meshes that are quasi-uniform under a given metric.
The metrics leading to the smallest error bounds (in various norms) are identified.
In section 3 we introduce the notion of anisotropic measure of higher-order deriva-
tive tensors, and present a dimension reduction algorithm to determine the measure
approximately. In section 4 we present two numerical examples demonstrating the
optimality of the proposed mesh metrics. We conclude the paper with some discussion.

2. Error estimates on anisotropic meshes.

2.1. Basic assumptions and lemmas. We introduce in this subsection some
assumptions regarding the anisotropic behaviors of the meshes and the higher-order
derivative tensors of the interpolated functions, and list several lemmas needed for
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deriving the interpolation error estimates. Denote by {TN} a family of triangulations
of a polygonal domain Ω ∈ Rn into simplicial elements (see [9]). Here N represents
the total number of elements. We study the error estimates for piecewise polynomial
interpolations over a class of anisotropic meshes {TN} that are quasi-uniform under a
given metric. More specifically, let M be a Riemannian metric on Ω. For each element
τ ∈ TN , define Mτ to be the average of M over τ , i.e.,

Mτ =
1

|τ |

∫
τ

M(x)dx.

Since Mτ is an n × n symmetric positive definite matrix, we may express it in its
eigen-decomposition form,

Mτ = Tτ ·Dτ · T ′
τ ,(1)

where Dτ = diag(d1, d2, . . . , dn) is composed of all the eigenvalues of Mτ , and Tτ is
the orthogonal matrix composed of all the eigenvectors. Define

Fτ = TτD
− 1

2
τ .(2)

Clearly (Mτ )
−1 = Fτ ·F ′

τ . Let xc be the center of element τ . Define an affine mapping
x̃ = F−1

τ (x− xc). Then τ is transformed into a simplex element τ̃ with its center at
the origin. We call a family of triangulations {TN} quasi-uniform under metric M if
there exist positive constants c1 and c2 independent of N such that

(i) for all τ ∈ TN , the smallest internal angle of τ̃ = F−1
τ (τ − xc) is bounded

from below by c1, i.e., τ̃ is shape regular; and
(ii) maxτ∈TN

|τ̃ | ≤ c2 minτ∈TN
|τ̃ |.

Note that if {TN} is quasi-uniform under metric M , then the geometric features
of the mesh are determined by M . Specifically, the element size (area/volume) is
proportional to |det(M)|−1/n, the element aspect ratio is proportional to 1/

√
d1 :

1/
√
d2 : · · · : 1/

√
dn, and the element orientation (or mesh alignment) is determined

by the directions of the eigenvectors of M . Indeed, some anisotropic mesh generators,
such as bamg developed by Borouchaki et al. [3] and Hecht [16], take user-specified
metrics to control directly the anisotropic behaviors of the meshes.

We also would like to point out that not all anisotropic meshes can be consid-
ered as quasi-uniform under suitable metrics. For instance, the mesh in Figure 1
is anisotropic. But it cannot be quasi-uniform under any metric, since for a quasi-
uniform mesh there is at most a fixed number of neighboring elements next to each
vertex; otherwise the metric would be singular at certain points. For general meshes
in n dimensions, a necessary condition for a family of triangulations being quasi-
uniform under a metric is that there is an upper limit for the number of neighboring
elements at each element interface (i.e., vertex, edge, and face). We call it the limited
connectivity condition for anisotropic meshes.

In order to derive the continuous form of the interpolation error estimate, we
make an assumption on the smoothness of the mesh metric M .

Assumption A. Let M be a given Riemannian metric on Ω. There exists δ > 0
such that for any neighborhood Nz of any z ∈ Ω with radius (under metric M) less
than δ, the following is true for all x ∈ Nz :

c1 ξ · M̄ξ ≤ ξ ·M(x)ξ ≤ c2 ξ · M̄ξ ∀ξ ∈ Rn,(3)

where M̄ is the average of M over Nz.
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Fig. 1. An example of anisotropic meshes that are not quasi-uniform under any metric.

This assumption means that the metric M is equivalent to its local average over
a sufficiently small neighborhood of each point. It basically requires the continuity
of M . Indeed, if M is uniformly continuous over Ω, the above assumption holds
obviously.

Lemma 2.1. Let M be a metric on Ω satisfying Assumption A. Let F (x)F ′(x) =
[M(x)]−1 be the decomposition of its inverse as given in (2). For any neighborhood
Nz of z ∈ Ω with radius less than δ, we have for all x ∈ Nz that

‖F−1(x)F̄‖ ≤ √
c2, ‖F̄−1F (x)‖≤ 1/

√
c1,(4)

and that

(c1)
n |det(M̄)| ≤ det(M(x)) ≤ (c2)

n |det(M̄)|,(5)

where M̄ is the average of M over Nz, F̄ F̄ ′ = M̄−1 is the decomposition of M̄−1,
and ‖ · ‖ stands for the 2-norm of matrices.

Proof. It is easy to see that

‖F−1(x)F̄‖ = max
ξ∈Rn

‖F−1(x)F̄ξ‖
‖ξ‖ =

[
max
ξ∈Rn

(F̄ξ) ·M(x)(F̄ξ)

ξ · ξ

]1/2

=

[
max
ξ∈Rn

ξ ·M(x)ξ

(F̄−1ξ) · (F̄−1ξ)

]1/2

=

[
max
ξ∈Rn

ξ ·M(x)ξ

ξ · M̄ξ

]1/2

≤ √
c2,

and similarly for the second inequality in (4). To show (5), we note that ciξ · M̄ξ = 1
(i = 1, 2) and ξ · M(x)ξ = 1 are three ellipsoids in Rn, with their volumes being

π[n
2

]

Γ(1+n
2 ) · (ci)

−n
2 · |det(M̄)|−1/2, i = 1, 2, and π[n

2
]

Γ(1+n
2 ) |det(M(x))|−1/2, respectively.

Here [n2 ] represents the integer part of n
2 , and Γ is the Gamma function. Assumption A

means that ellipsoid ξ ·M(x)ξ = 1 lies in between ellipsoids ciξ · M̄ξ = 1 (i = 1, 2).
Thus (5) follows easily from the ordering of their volumes.

Because the error for polynomial interpolations of degree k is determined by
the (k + 1)th derivative tensor ∇k+1u of the interpolated functions u, we make an
assumption on its anisotropic behavior.
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Assumption B. For each x ∈ Ω, there exists a positive definite matrix Q(x) such
that

|(ξ · ∇)k+1u(x)| ≤ |ξ ·Q(x)ξ| k+1
2 ∀ξ ∈ Rn.(6)

Note that pk+1(ξ) ≡ (ξ · ∇)k+1u(x) is a homogeneous polynomial of ξ of degree
k + 1. For ‖ξ‖ = 1, pk+1(ξ) is simply the (k + 1)th-order directional derivative at x
along ξ. The right-hand side is also a homogeneous function of ξ. Thus, geometrically
Assumption B is equivalent to saying that at each x, the ellipse/ellipsoid ξ ·Qξ = 1
is contained in the level curve/surface |pk+1(ξ)| = 1 for directional derivatives.

Some choices of Q can be made readily. For instance, if one is only interested in
isotropic mesh refinement, then we may choose Q(x) = |||∇k+1u(x)||| · In, where

|||∇k+1u(x)||| = max
‖ξ‖=1

|(ξ · ∇)k+1u|

is the largest (k + 1)th-order directional derivative at x, and In is the n× n identity
matrix. This choice corresponds to defining Q by the largest circle/sphere contained
in the level curve/surface. In the case of k = 1 (i.e., linear interpolation), Q can be
chosen as

Q = abs(∇2u) + δ · In,

where abs(A) = [ATA]1/2 is the symmetric matrix of the same eigenvectors as matrix
A, but of eigenvalues equal to the absolute eigenvalues of A. δ is a small positive
constant to avoid Q from being degenerate in case ∇2u(x) becomes singular. Such a
Q is called the majorization matrix for the Hessian ∇2u in Chen, Sun, and Xu [7].

In order to reflect accurately the anisotropic behavior of ∇k+1u at x, the matrix
Q(x) in (6) should be chosen as “small” (in certain sense) as possible. Also, its choice
should be invariant under translation and rotation transforms of the coordinates, since
the anisotropic behavior is so. The best choice will depend on how Assumption B is
used. For minimizing the interpolation error in various norms, we present in section 3.1
an ideal choice of Q. We also present in section 3.2 an algorithm to find an approximate
Q that characterizes roughly the anisotropic behavior of ∇k+1u.

Next, we list two lemmas regarding the anisotropic behavior of ∇k+1u under affine
transforms.

Lemma 2.2. Let |α| =
∑

αi for any multi-index α = (α1, . . . , αn) of nonnegative
integers. For any integer k ≥ 0,

∑
|α|=k+1 |∂αu| is equivalent to |||∇k+1u|||.

Proof. Define

P̄k+1 =

⎧⎨⎩ v(ξ) =
∑

|α|=k+1

Cα(ξ1)
α1 · · · (ξn)αn

∣∣∣∣ ∀Cα ∈ R

⎫⎬⎭ .

The P̄k+1 is a finite-dimensional linear space. It is easy to verify that

‖v‖P̄k+1
= max

‖ξ‖=1
|v(ξ)|

is a norm on P̄k+1. Indeed, if ‖v‖P̄k+1
= 0, then for any ξ 
= 0, |v(ξ)| = ‖ξ‖k+1 ·

|v(ξ/‖ξ‖)| = 0, thus v ≡ 0 and ‖ · ‖P̄k+1
is a norm.

On the other hand,
∑

|α|=k+1 |Cα| is clearly also a norm on P̄k+1. Hence it is

equivalent to ‖v‖P̄k+1
. Now, for pk+1(ξ) = (ξ · ∇)k+1u ∈ P̄k+1, since its coefficients
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Cα are multiples of ∂αu with fixed positive constants, therefore
∑

|α|=k+1 |∂αu| is

equivalent to
∑

|α|=k+1 |Cα|, and to max‖ξ‖=1 |pk+1(ξ)| = |||∇k+1u|||, too.

Lemma 2.3. Let x = Fτ (x̃) + xc be the affine mapping from τ̃ to τ, and define
ũ(x̃) = u(Fτ (x̃) + xc). Denote by ∇̃ the gradient operator with respect to x̃. Then
under Assumption B we have

|||∇̃k+1ũ(x̃)||| ≤ ‖F ′
τQFτ‖

k+1
2 .

Proof. Let p̃k+1(ξ) = (ξ · ∇̃)k+1ũ(x̃). By the fact that Fτ is constant, it follows
from the chain rule for derivatives that ∇̃ = F ′

τ∇ and p̃k+1(ξ) = [ξ · (F ′
τ∇)]k+1u(x) =

pk+1(Fτξ). Hence Assumption B implies that

|||∇̃k+1ũ(x̃)||| = max
‖ξ‖=1

|pk+1(Fτξ)| ≤ max
‖ξ‖=1

|(Fτξ)
′Q(Fτξ)|

k+1
2 = ‖F ′

τQFτ‖
k+1
2 .

Finally, in order to minimize the interpolation errors and to select the optimal
mesh metrics, we need the following inertial properties for matrix eigenvalues estab-
lished in [26] by Thompson and an elementary inequality.

Lemma 2.4. Let A be an n × n symmetric matrix with eigenvalues α1 ≥ · · · ≥
αn ≥ 0, and let S be a nonsingular matrix with singular values s1 ≥ · · · ≥ sn.
Denote the eigenvalues of B = S∗AS by β1 ≥ · · · ≥ βn. Then βi+j−n ≥ s2

iαj for all
1 ≤ i, j ≤ n with i + j > n. In particular, λmax(B) = β1 ≥ max1≤i≤n(si)

2αn+1−i.
Lemma 2.5. Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λn and 0 ≤ α < 1. For t = (t1, t2, . . . , tn),

let

f(t) = |tn|α · max
1≤i≤n

λi

ti
.

Then f attains its infimum on the set

K = { t ∈ Rn | 0 < t1 ≤ t2 ≤ · · · ≤ tn, and Πn
i=1ti = 1 }

if and only if λi

ti
= const. for all i.

Proof. First we show that f attains its infimum on K. Let {t(k)} be a sequence
in K such that lim f(t(k)) = inft∈K f(t) < ∞. Clearly {t(k)} must be bounded;

otherwise there exists a subsequence {t(k′)} whose nth components t
(k′)
n → ∞, while

its ith components t
(k′)
i → 0 for some i, which would imply f(t(k)) → ∞. Therefore,

{t(k)} is bounded and has a cluster point t∗ ∈ K with f(t∗) = inft∈K f(t).
Next we show that

λi

t∗i
≤ λn

t∗n
∀i.(7)

Suppose otherwise; then there exists m ≤ n− 1 such that

max
1≤i≤n

λi

t∗i
=

λm

t∗m
>

λj

t∗j
∀j ≥ m + 1.

For each j ≥ m + 1, since λm ≤ λj , we must have t∗m < t∗j . Let β > 1 and define

t̃ = (t̃1, t̃2, . . . , t̃n) with

t̃i =

{
β1/mt∗i if i ≤ m,
β−1/(n−m)t∗i if i ≥ m + 1.
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For β close enough to 1, we have t̃ ∈ K and

f(t̃) = β−α/(n−m)

·max

[
β−1/m · (t∗n)α max

1≤i≤m

λi

t∗i
, β−1/(n−m) · (t∗n)α max

m+1≤i≤n

λi

t∗i

]
< f(t∗).

Finally we prove that

λi

t∗i
= const. ∀i.(8)

Note that Πn
i=1t

∗
i = 1. It follows from (7) that

Πn
i=1λi ≤

(
λn

t∗n

)n

,

which implies

t∗n ≤
(

Πn
i=1

λn

λi

)1/n

.

In particular, “=” in the above inequality holds if and only if (8) is satisfied. Thus

inf
t∈K

f(t) = f(t∗) = λn(t∗n)α−1 ≥ λn

(
Πn

i=1

λn

λi

)α−1
n

,

and “=” holds if and only if (8) is satisfied.

2.2. Error estimate and optimal mesh metrics. We first recall some clas-
sical results for the interpolation error estimates under Euclidean metrics. Let k be
a positive integer. Denote by Pk the set of all the polynomials of x ∈ Rn of total
degree less than or equal to k. Let Πk be an interpolation operator whose restriction
on each element preserves Pk. It is well known that on any shape regular element τ ,
and for any 0 ≤ m ≤ k and p, q ∈ [1,∞]

|u− Πku|m,p,τ ≤ c|τ |(k+1−m)/n+1/p−1/q|u|k+1,q,τ ,(9)

provided that

W k+1,q(τ) ↪→ Cs(τ) and W k+1,q(τ) ↪→ Wm,p(τ),(10)

where s is the highest degree of derivatives used in defining the interpolation Πk. See,
e.g., Theorem 3.1.5 of [9].

If we further assume that {TN} is a family of quasi-uniform triangulations, i.e.,
all τ ∈ TN , for all N, are shape regular and

max
τ∈TN

|τ | ≤ c min
τ∈TN

|τ |,

then we have globally( ∑
∀τ∈TN

|u− Πku|pm,p,τ

)1/p

≤ cN−(k+1−m)/n−1/p+1/q|u|k+1,q,Ω.(11)
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Now we present the main theorem of this paper on interpolation error estimates
for anisotropic meshes.

Theorem 2.1. Let M be a Riemannian metric on Ω satisfying Assumption A,
and let F (x) F ′(x) = (M(x))−1 be the decomposition of its inverse at each x ∈ Ω. Let
{TN} be a family of triangulations of Ω that is quasi-uniform under metric M . Let k
be a positive integer, and let Πk be an interpolation operator whose restriction on each
element preserves Pk. For any function u satisfying Assumption B, any 0 ≤ m ≤ k,
and p ∈ [1,∞] satisfying (10), we have

(12)( ∑
τ∈TN

|u− Πku|pm,p,τ

)1/p

≤ cN−(k+1−m)/n

{∫
Ω

|det(M)| 12
}(k+1−m)/n {∫

Ω

‖F−1‖mp‖F ′QF‖
(k+1)p

2

}1/p

.

Furthermore, among all the Riemannian metrics, the optimal bound of the above
estimate is attained when M is defined to be

Mk+1,m,p ≡ c(λmax(Q))
mp

(k+1−m)p+n |det(Q)|−
1

(k+1−m)p+n ·Q.(13)

If {TN} is quasi-uniform under Mk+1,m,p, we have( ∑
τ∈TN

|u− Πku|pm,p,τ

)1/p

(14)

≤ cN−(k+1−m)/n ‖ |λmax(Q)|m2 |det(Q)| k+1−m
2n ‖Lnp/[(k+1−m)p+n](Ω).

Proof. Consider an element τ ∈ TN . Denote by Mτ the average of M over τ , and
let Fτ be defined as in (2). By the fact that (see [9])∑

|α|=m

|∂αv(x)| ≤ c‖F−1
τ ‖m ·

∑
|α|=m

|∂αṽ(x̃)| ∀v,

we have

|u− Πku|pm,p,τ =

∫
τ̃

∑
|α|=m

|∂α(u− Πku)(x)|p dx̃

≤ c
|τ |
|τ̃ | ‖F

−1
τ ‖mp |ũ− Π̃kũ|pm,p,τ̃ .

Because τ̃ is shape regular, we have from the classical error estimate (9) that

|ũ− Π̃kũ|m,p,τ̃ ≤ c|τ̃ |(k+1−m)/n |ũ|k+1,p,τ̃ ,

which implies that

|u− Πku|pm,p,τ ≤ c|τ | |τ̃ |(k+1−m)p/n−1 ‖F−1
τ ‖mp|ũ|pk+1,p,τ̃ .
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It follows from Lemmas 2.2 and 2.3 that∑
|α|=k+1

|∂αũ(x̃)| ≤ c |‖∇̃k+1ũ(x̃)|‖ ≤ c ‖F ′
τQ(x)Fτ‖

k+1
2 .

Hence

|u− Πku|pm,p,τ ≤ c|τ | |τ̃ |(k+1−m)p/n−1 ‖F−1
τ ‖mp

∫
τ

‖F ′
τQ(x)Fτ‖

(k+1)p
2 · det

(
∂x̃

∂x

)
dx

≤ c|τ̃ |(k+1−m)p/n ‖F−1
τ ‖mp

∫
τ

‖F ′
τQ(x)Fτ‖

(k+1)p
2 dx.

Now we write Fτ on the right-hand side of the above inequality in terms of M(x)
directly. For each x ∈ τ , decompose M(x) into its eigenvalues and eigenvectors as

M(x) = T (x) ·D(x) · T ′(x),(15)

where D(x) is the diagonal matrix composed of all the eigenvalues d1(x) ≤ d2(x) ≤
· · · ≤ dn(x) and T is the orthogonal matrix composed of all the eigenvectors. Define

also F (x) = T (x)D(x)−
1
2 as in (2). Then by Assumption A about the smoothness of

M , we have from Lemma 2.1 that

‖F ′
τQ(x)Fτ‖ ≤ ‖(F−1(x)Fτ )

′ · (F ′(x)Q(x)F (x)) · (F−1(x)Fτ )‖

≤ ‖F−1(x)Fτ‖2 · ‖F ′(x)Q(x)F (x)‖

≤ c‖F ′(x)Q(x)F (x)‖

and

‖F−1
τ ‖ ≤ ‖F−1

τ F (x)‖ · ‖F−1(x)‖ ≤ c‖F−1(x)‖.

Therefore,

|u− Πku|pm,p,τ ≤ c|τ̃ |(k+1−m)p/n

∫
τ

‖F−1(x)‖mp‖F ′(x)Q(x)F (x)‖
(k+1)p

2 dx.(16)

Summing up the above inequality for all τ ∈ TN , we find that∑
τ∈TN

|u− Πku|pm,p,τ(17)

≤ c

(
max
τ∈TN

|τ̃ |
)(k+1−m)p/n ∫

Ω

‖F−1(x)‖mp‖F ′(x)Q(x)F (x)‖
(k+1)p

2 dx.

Now we estimate |τ̃ |. Note that τ̃ = F−1
τ (τ − xc) and det(F−1

τ ) = |det(Mτ )|1/2. By
the assumption that {TN} is quasi-uniform under metric M , the sizes of all τ̃ ’s are of
the same order. Hence,

max
τ∈TN

|τ̃ | ≤ cN−1
∑

τ∈TN

|τ̃ | = cN−1
∑

τ∈TN

∫
τ

|det(F−1
τ )| dx

= cN−1
∑

τ∈TN

∫
τ

|det(Mτ )|1/2 dx

≤ cN−1
∑

τ∈TN

∫
τ

|det(M(x))|1/2 dx

= cN−1

∫
Ω

|det(M(x))|1/2 dx,
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where in the last inequality we used (5) in Lemma 2.1. Putting the above inequality
into (17), we have the error estimate (12).

Next, we consider for what metric M the error bound on the right-hand side
of (12) is the smallest. We determine M through its eigenvalues and eigenvectors.
Since they are independent of each other, we proceed in three steps as follows. First,
for any x ∈ Ω and a given set of eigenvalues of M(x), we determine the orthogonal
matrix T (x) so that the integrands on the right-hand side of (12) are the smallest
possible. Then we determine the ratios among the eigenvalues to further minimize
the integrands. Finally, the optimal distribution of det(M) on Ω is determined such
that the error bound in (12) is minimized.

First, for fixed x we write Q(x) in its eigen-decomposition form,

Q(x) = S(x) · diag(λ1, λ2, . . . , λn) · S′(x),

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λn are eigenvalues of Q(x) and S is the orthogonal matrix
composed of all its eigenvectors. Applying Lemma 2.4 on the inertia properties of
matrix eigenvalues (with A = Q(x), S = F (x), αi = λn+1−i, and si = (di)

−1/2), we
have

‖F ′(x)Q(x)F (x)‖ = λmax(F
′(x)Q(x)F (x)) ≥ max

1≤i≤n
{λi/di}.

Moreover, the equality in the above relation is attained when T (x) = S(x). Thus, we
conclude that

min
∀T

‖F ′(x)Q(x)F (x)‖ = max
1≤i≤n

{λi/di},

and the minimum value is attained at T (x) = S(x). Since ‖F−1(x)‖ = (dn)1/2 is

independent of T , then for the integrand ‖F−1(x)‖mp‖F ′(x)Q(x)F (x)‖ (k+1)p
2 , this

choice of T (x) is also optimal, with the minimum value

(dn)
mp
2

[
max

1≤i≤n
{λi/di}

] (k+1)p
2

.(18)

Now we consider minimizing (18) with respect to the ratios among eigenvalues of
M(x). For fixed det(M) = Πn

i=1di, it follows from Lemma 2.5 that the expression in
(18) achieves its minimum if and only if

λi/di =
1

μ
∀i = 1, 2, . . . , n,

where μ depends on x and will be determined later. This implies that di = μ · λi for
all i, and

M(x) = μ(x) ·Q(x).(19)

The minimum value of (18) is

μ− (k+1−m)p
2 (λn)

mp
2 .(20)

This is the smallest possible value of the integrand in (17) at x for all possible T (x)
and different ratios among di(x), i = 1, 2, . . . , n. With this optimal choice, the error
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estimate (12) becomes∑
τ∈TN

|u− Πku|pm,p,τ(21)

≤ cN−(k+1−m)p/n

{∫
Ω

μ
n
2 |det(Q)| 12

}(k+1−m)p/n

·
∫

Ω

μ− (k+1−m)p
2 (λn)

mp
2 .

Finally, we determine the distribution of μ on Ω to minimize the right-hand side of
the above error estimate. Let α = (k + 1 −m)p/n, and let

f = μ
n
2 · |det(Q)| 12 ,

g = μ− (k+1−m)p
2 · (λn)

mp
2 .

Then the integrals on the right-hand side of (21) are [
∫
f ]α[

∫
g]. It follows from

Hölder’s inequality that{[∫
f

]α
·
[∫

g

]}1/(α+1)

=

[∫
f

]α/(α+1)

·
[∫

g

]1/(α+1)

= ‖f α
α+1 ‖L(α+1)/α · ‖g 1

α+1 ‖Lα+1

≥
∫
f

α
α+1 · g 1

α+1 ,

and the equality holds if and only if f is a constant multiple of g. In this case

μ = c(λn)
mp

(k+1−m)p+n |det(Q)|−
1

(k+1−m)p+n ,(22)

and the metric M becomes

M = μ ·Q = c(λn)
mp

(k+1−m)p+n |det(Q)|−
1

(k+1−m)p+n ·Q.

With this optimal choice of metric M , we have the smallest error bound

∑
τ∈TN

|u− Πku|pm,p,τ ≤ cN− (k+1−m)p
n

[ ∫
μ

n
2 |det(Q)| 12

]α+1

(23)

≤ cN− (k+1−m)p
n

{ ∫
Ω

(λn)
mp

2(α+1) |det(Q)|
α

2(α+1)

}α+1

.

Let β = p
α+1 = np

(k+1−m)p+n . Then we may write the above inequality in the following

form:

(24)( ∑
τ∈TN

|u− Πku|pm,p,τ

)1/p

≤ cN− k+1−m
n

{∫
Ω

[ (λn)
m
2 |det(Q)| α

2p ]β
}1/β

= cN− k+1−m
n

∥∥∥(λn)
m
2 |det(Q)| k+1−m

2n

∥∥∥
Lnp/[(k+1−m)p+n](Ω)

.

This completes the proof of the theorem.
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Remark 2.1. Theorem 2.1 covers the error estimate on isotropic meshes as a

special case. Indeed, if we choose Q(x) = c |‖∇k+1u(x)|‖ 2
k+1 · In, then the optimal

metric Mk+1,m based on Q becomes c |‖∇k+1u|‖
2p

(k+1−m)p+n · In, and that {TN} is
quasi-uniform under Mk+1,m,p implies it is isotropic. In this case, error estimate (14)
is reduced to( ∑

τ∈TN

|u− Πku|pm,p,τ

) 1
p

≤ cN− k+1−m
n |u|k+1,np/[(k+1−m)p+n],Ω.

The above error bound is sharper than estimate (11) with q = p, since Lp(Ω) ⊂
L

np
(k+1−m)p+n due to m ≤ k.

Remark 2.2. In the case of k = 1, namely for linear interpolation, we may choose
Q = abs(∇2u)+δ ·In, where δ > 0 is a small parameter to avoid Q from being singular.
In this case, the optimal metrics and error estimate with m = 0 (i.e., for Lp-error)
stated in Theorem 2.1 are identical to those in [7] by Chen, Sun, and Xu. They are
also identical to those in [18] by Huang. For the case of k ≥ 2, error estimates and
mesh metrics are also derived in [17, 18] based on the sum of the Hessians of (k−1)th
partial derivatives. It is shown in our previous study [5] that metrics based on the
sum of the Hessians can be problematic for general anisotropic meshes; see Remark 3
in [5] for details.

Remark 2.3. It is easy to see that if {TN} is quasi-uniform under the optimal
metric Mk+1,m,p, then estimate (16) for the Wm,p(τ)-seminorm of the error is of the
same magnitude on each element. In other words, Mk+1,m,p is a matrix which makes
the Wm,p-error evenly distributed over all elements. Therefore, the optimal metrics
and meshes follow also the so-called equidistribution principle. This principle has
been used extensively to justify the selection of optimal or nearly optimal meshes;
see, e.g., [12, 18, 22].

3. Measuring the anisotropic behavior of ∇k+1u(x).

3.1. Definition of anisotropic measure of ∇k+1u(x). It is seen from The-
orem 2.1 that a good interpolation error estimate relies on a proper matrix Q in
Assumption B that characterizes the anisotropic behavior of ∇k+1u at each point.
In order to produce as tight as possible an error estimate, we need to measure as
accurately as possible the anisotropic behavior of ∇k+1u. Note that the optimal error

bound (14) is determined by the function |λmax(Q(x))|m2 |det(Q(x))| k+1−m
2n , where

Q(x) is a positive definite matrix satisfying Assumption B. Therefore, to produce
the tightest error bound, we choose matrix Q(x) in (13) and (14) to be Qk+1,m, the
solution of the following minimization problem:

min
Q∈Vk+1(x)

|λmax(Q)|m2 |det(Q)| k+1−m
2n ,(25)

where Vk+1(x) is the set of all n × n symmetric positive definite matrices Q that
satisfy

|pk+1(ξ)| = |(ξ · ∇)k+1u(x)| ≤ (ξ ·Qξ)
k+1
2 ∀ξ ∈ Rn.(26)

We call Qk+1,m an anisotropic measure of ∇k+1u(x). It depends not only on k, the
interpolation degree, but also on the index m, which is associated with the norm used
to measure the error. In the special case of m = 0 (i.e., for Lp-error estimates), the
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above problem is reduced to minimizing det(Q) for all Q ∈ Vk+1(x). Geometrically,
for any symmetric positive definite matrix Q, the level curve/surface ξ · Qξ = 1 is
an ellipse/ellipsoid of area/volume proportional to |det(Q)|−1/2, and Q ∈ Vk+1(x)
implies that this level curve/surface is enclosed in that of |pk+1(ξ)| = 1. Thus the
solution Qk+1,m to (25) corresponds to the largest ellipse/ellipsoid (in area/volume)
contained in |pk+1(ξ)| = 1.

The above definition of Qk+1,m based on constrained minimization formulation
is not quite convenient for theoretical study and practical use. We may change it
into an unconstrained problem. For this purpose, we write the eigen-decomposition
of each Q ∈ Vk+1(x) in the form

Q = ν · S Λ S′.(27)

Without loss of generality, we assume ν = |det(Q)| 1
n and

Λ = diag(a1, a2, . . . , an−1, [Π
n−1
i=1 ai]

−1)

with 0 < a1 ≤ a2 ≤ · · · ≤ an−1 ≤ [Πn−1
i=1 ai]

−1. Clearly, minimization with respect
to all Q is equivalent to minimization with respect to all ai, ν > 0, and all n × n
orthogonal matrices S. Note that det(Q) = νn and the largest eigenvalue of Q is
λmax(Q) = ν · [Πn−1

i=1 ai]
−1. The objective function in (25) is indeed

|λmax(Q)|m2 · |det(Q)| k+1−m
2n = ν

k+1
2 · |Πn−1

i=1 ai|−
m
2 ,

and the constraint Q ∈ Vk+1(x) becomes

|pk+1(ξ)| ≤ [ ν (S′ξ) · Λ(S′ξ) ]
k+1
2 ∀ξ ∈ Rn.

This condition is equivalent to

|pk+1(SΛ− 1
2η)| ≤ ν

k+1
2 · ‖η‖k+1 ∀η ∈ Rn.

Since pk+1 is a homogeneous polynomial of degree k + 1, it is further equivalent to

|pk+1(SΛ− 1
2η)| ≤ ν

k+1
2 ∀η ∈ Rn with ‖η‖ = 1.

Hence we conclude that the following ν value is optimal:

ν =

[
max
‖η‖=1

|pk+1(SΛ− 1
2η)|

] 2
k+1

,(28)

with which the constraint Q ∈ Vk+1(x) is automatically satisfied. Now the constrained
minimization problem (25) is reduced to finding the minimum of

(Πn−1
i=1 ai)

−m
2 · max

‖η‖=1
|pk+1(SΛ− 1

2 η)|(29)

with respect to all 0 < a1 ≤ a2 ≤ · · · ≤ an−1 ≤ [Πn−1
i=1 ai]

−1 and all orthogonal
matrices S.

It is possible that the minimization problem (29) does not have a solution, or
problem (25) has a solution with some λi = 0. In this case, Q becomes singular, and
the optimal metrics Mk+1,m,p based on it will lead to elements of infinitely large aspect
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ratio. In order to avoid such a degenerate mesh metric in practice, we put a cap on the
ratios of the eigenvalues of Q. More precisely, we may restrict λmin(Q)/λmax(Q) ≥ δ,
where δ ∈ (0, 1] is a user-specified parameter. This requirement is guaranteed when

ai ∈ [δ
1
n , δ−

n−1
n ] for all 1 ≤ i ≤ n − 1. Therefore, we may seek the minimizer to

(29) over all δ
1
n ≤ a1 ≤ a2 ≤ · · · ≤ an−1 ≤ [Πn−1

n=1]
−1 ≤ δ−

n−1
n and all orthogonal

S. Since the set of all these ai’s and T ’s is compact, and the objective function in
(29) is continuous with respect to its variables, a positive definite minimizer Qk+1,m

is guaranteed to exist for any specified 0 < δ ≤ 1.

Examples. We present two examples to explain the definition of Qk+1,m. First
we consider the simplest case, n = 2, k = 1, which corresponds to linear interpolation
in R2. Without loss of generality, suppose

∇2u = Rφ ·
[

μ1

μ2

]
RT

φ

with |μ1| ≤ |μ2|, where Rφ is the matrix of rotation by angle φ counterclockwise. Let

Q = ν ·Rψ ·
[

a
a−1

]
RT

ψ

with 0 < a ≤ a−1 or a ∈ (0, 1]. Then Qk+1,m is defined by the solution (a∗, ψ∗) to
the following problem:

min
a∈(0,1],ψ∈[0,2π]

{
a−

m
2 · max

‖η‖=1
|p2(RψΛ− 1

2η)|
}
.(30)

Note that

max
‖η‖=1

|p2(RψΛ− 1
2η)| = max

‖ξ‖=1

|p2(Rψξ)|
‖Λ 1

2 ξ‖2
.

Using the polar coordinates for ξ ∈ R2, the objective function of (30) can be written
as a−

m
2 · maxt∈[0,2π] J(a, ψ, t), where

J(a, ψ, t) ≡
∣∣∣μ1 cos2(t− φ + ψ) + μ2 sin2(t− φ + ψ)

a · cos2 t + a−1 · sin2 t

∣∣∣.(31)

When μ1 · μ2 ≥ 0, we can show that

max
t∈[0,2π]

J(a, ψ, t) ≥ max
t∈[0,2π]

J(a, φ, t) ∀ψ ∈ [0, 2π].(32)

Indeed, it is easy to see that

max
t∈[0,2π]

J(a, φ, t) = max
t∈[0,2π]

∣∣∣ μ1 cos2 t + μ2 sin2 t

a · cos2 t + a−1 · sin2 t

∣∣∣ = max(|μ1 · a−1|, |μ2 · a|)

since J(a, φ, t) is a rational function of cos2 t ∈ [0, 1]. On the other hand,

max
t∈[0,2π]

J(a, ψ, t) ≥ J(a, ψ, 0) =
∣∣∣μ1 cos2(φ− ψ) + μ2 sin2(φ− ψ)

a

∣∣∣ ≥ |μ1 · a−1|
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since |μ1| ≤ |μ2|, and similarly

max
t∈[0,2π]

J(a, ψ, t) ≥ J
(
a, ψ, φ− ψ +

π

2

)
=

∣∣∣∣ μ2

a · sin2(φ− ψ) + a−1 · cos2(φ− ψ)

∣∣∣∣ ≥ |μ2 · a|

since a ≤ 1. Therefore, we conclude that

min
a∈(0,1],ψ∈[0,2π]

{
a−

m
2 · max

‖η‖=1
|p2(RψΛ− 1

2η)|
}

(33)

= min
a∈(0,1]

{
a−

m
2 · max(|μ1 · a−1|, |μ2 · a|)

}
,

where the minimum is attained at ψ = φ. Furthermore, since m ≤ k = 1, the
minimizer for the right-hand side of the above equation is

a =

√∣∣∣μ1

μ2

∣∣∣,
which implies by (28) that

ν =
√
|μ1 · μ2|(34)

and

Qk+1,m = Rφ ·
[

|μ1|
|μ2|

]
RT

φ = abs(∇2u).(35)

In the case of μ1·μ2 < 0, (32) is not true in general. However, our numerical calculation
shows that in this case the minimum of (30) is still attained at a =

√
|μ1/{μ2}| and

ψ = φ, which results in the same ν and Q as in (34) and (35).
This example confirms from another perspective that the conventional choice is

optimal by using the eigenvalues and eigenvectors of the Hessian matrix to characterize
its anisotropic behavior in mesh generation and refinement for linear interpolation or
linear elements; see [3, 4, 7, 8, 11, 13, 17, 18].

Our second example is for u = 1
6xy

2 in R2 and k = 2 (quadratic interpolation).
In this example, p3(ξ) = ξη2. Matrix Q can be determined as in (27) with a and ψ
being the minimizer to the following problem:

min
a∈(0,1],ψ∈[0,2π]

{
a−

m
2 · max

‖η‖=1
|p3(RψΛ− 1

2η)|
}
.(36)

For each a > 0, it can be shown numerically that

max
‖η‖=1

|p3(Λ
− 1

2η)| ≤ max
‖η‖=1

|p3(RψΛ− 1
2η)| ∀ψ ∈ [0, 2π].

Thus ψ = 0 is an optimal solution, with minimum value a−(m−1)/2 maxt | cos t·sin2 t| =
2
√

3
9 a−(m−1)/2. In this case, problem (36) is reduced to mina∈(0,1]

2
√

3
9 a−(m−1)/2. For

m = 0, which corresponds to Lp-error estimates, the optimal a is 0; while for m = 1
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(corresponding to H1-error estimates), any positive a ≤ 1 is optimal. The optimal ν

value is
3√4
3 .

Applying Theorem 2.1 to the quadratic interpolation of u = 1
6xy

2, we see that the
L2-error bound can be driven to 0 if we increase the aspect ratio of the elements while
keeping their area fixed and alignment direction fixed along the x-axis. The H1-error

bound does not change (since |λmax(Q)|m2 |det(Q)| k+1
2 is a constant independent of

a), which implies that using highly anisotropic triangles does not help reduce the
H1-error. This conclusion coincides with the study in [5] based on the exact formula
for the quadratic interpolation errors; see Remark 2 in [5].

3.2. Estimate of the anisotropic measure: A dimension reduction
method. The definition of the anisotropic measure for ∇k+1u in the previous sub-
section involves a nonlinear minimization (25) with respect to the matrix Q. Solving
this problem could be expensive in practice. Here we describe a method to find a
suboptimal solution to the minimization problem, and give an approximate Q for the
anisotropic measure.

Let λ1, λ2, . . . , λn be the eigenvalues (in ascending order) of Q, and v1,v2, . . . ,
vn be the corresponding eigenvectors. Notice that the objective function in (25),

|λmax(Q)|m2 |det(Q)| k+1−m
2n , is the product of the eigenvalues of Q. We determine an

approximate Q by choosing successively (λi,vi) for i = n, n− 1, . . . , 1, such that each
λi is the smallest possible to have constraint (26) hold. More precisely, we first choose
λn as

λn = |||∇k+1u||| 2
k+1 =

[
max
‖ξ‖=1

|pk+1(ξ)|
] 2

k+1

;

i.e., |λn|
k+1
2 is the largest (k+1)th-order directional derivative of u. The corresponding

eigenvector vn is chosen as the unit vector along which the (k + 1)th directional
derivative is the largest, i.e.,

vn = arg max
‖ξ‖=1

|pk+1(ξ)|.

To determine the rest n− 1 eigenpairs, let ṽ1, . . . , ṽn−1 be a set of orthonormal bases
for the orthogonal complement of span{vn} in Rn. Then any ξ ∈ Rn can be expressed
as

ξ =
n−1∑
i=1

ζiṽi + zvn

for some ζ = [ζ1, . . . , ζn−1]
′ ∈ Rn−1 and z ∈ R. Furthermore, let

Tn−1 =

⎡⎢⎣ ṽ′
1

...
ṽ′
n−1

⎤⎥⎦ · [v1, . . . ,vn−1] , Dn−1 =

⎡⎢⎣ λ1

. . .

λn−1

⎤⎥⎦ ,

and

Qn−1 = Tn−1Dn−1T
′
n−1.

Then

ξ ·Qξ = ζ ·Qn−1ζ + λnz
2,
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and constraint (26) is reduced to

ζ ·Qn−1ζ ≥ h(ζ, z) ≡
∣∣∣∣∣pk+1

(
n−1∑
i=1

ζiṽi + zvn

)∣∣∣∣∣
2

k+1

− λnz
2 ∀ζ ∈ Rn−1,∀z ∈ R.

This condition can be expressed equivalently as

ζ ·Qn−1ζ ≥ g(ζ) ≡ max
z∈R

h(ζ, z) ∀ζ ∈ Rn−1.(37)

It is easy to verify that g(ζ) is a homogeneous function of ζ. Indeed, for any t ∈ R,

g(tζ) = max
z∈R

h(tζ, z) = max
z∈R

h(tζ, tz) = max
z∈R

t2h(ζ, z) = t2g(ζ).

Therefore, to determine Qn−1 under constraint (37) is similar to the original problem
to determine Q under constraint (26), except the former is of one dimension less than
the later. We may repeat this process n − 1 times to arrive at a one-dimensional
problem, whose solution is ready to work out.

In practice, the evaluation of g(ζ) in the constraint (37) can be carried out by
checking the critical points of h(ζ, z) in the z direction. Indeed, for given ζ,

∂

∂z
pk+1(ξ) = (k + 1)(ξ · ∇)k(ṽn · ∇)u.

Thus the critical points (excluding those making pk+1 = 0, which are clearly not
among the maxima of h(ζ, z)) satisfy the following equation:

|pk+1(ξ)|
1−k
k+1 (ξ · ∇)k(ṽn · ∇)u = λnz.

It is equivalent to[
(ξ · ∇)k(ṽn · ∇)u

]k+1
= (λnz)

k+1 ·
[

(ξ · ∇)k+1u
]k−1

,

which is a polynomial equation for z of degree k(k + 1).
Remark 3.1. For two-dimensional problems (n = 2), the author developed in [5, 6]

a method to define a matrix Qk+1 characterizing the anisotropic behavior ∇k+1u by
using the factors of polynomial pk+1(ξ) for directional derivatives. For the cases of
k = 1, 2, it can be shown that Qk+1 given in [5, 6] is equivalent to the matrix Q
produced by the dimension reduction algorithm described here. For k ≥ 3, we believe
they are still equivalent. However, it is yet to be verified.

4. Numerical results. In this section, we present some numerical results to
compare the error in various norms for interpolations based on anisotropic meshes
generated with the optimal metric Mk+1,m,p developed in Theorem 2.1.

Two-dimensional example. We consider linear and quadratic interpolations of the
following function on Ω = [0, 1]2:

(38)

u(x, y) = x2 + y2 + x3 + y3 + exp(−K (y − d1(x))2) + exp(−K (y − d2(x))2),

where K = 10000 and

d1(x) = −x(x− a)/[2(1 − a)] + 1, with a = 1.25;

d2(x) = (x− b)(x− c)/[2(1 − b)(1 − c)], with b = 0.2, c = 1.25.
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Table 1

The error in various norms for linear (in big font) and quadratic (in small font) interpolations
of function (38) based on meshes generated under metrics M2,m,p. Ne and Nv represent the total
number of elements and nodes, respectively.

Ne Nv Metric ‖e‖L1 ‖e‖L2 ‖e‖L∞ |e|H1

1030 550 M2,0,1 8.55865e-03 2.25843e-02 5.65950e-01 1.00987e+01
7.00047e-04 3.38558e-03 2.82878e-01 3.12289e+00

Ne ≈ 1, 000 1021 542 M2,0,2 1.00819e-02 1.91599e-02 4.45866e-01 8.39336e+00
5.39823e-04 2.22625e-03 1.02203e-01 2.17432e+00

1039 546 M2,0,∞ 2.01321e-02 2.80857e-02 2.00845e-01 8.41199e+00
6.22584e-04 1.94362e-03 8.06520e-02 2.00037e+00

1017 535 M2,1,2 2.85871e-02 4.33668e-02 6.68077e-01 7.76100e+00
8.23694e-04 2.50331e-03 1.87979e-01 1.99802e+00

3992 2069 M2,0,1 1.70237e-03 4.38095e-03 1.96297e-01 4.08116e+00
7.02603e-05 3.69513e-04 4.32572e-02 6.95222e-01

Ne ≈ 4, 000 4000 2063 M2,0,2 2.10463e-03 3.44617e-03 7.64404e-02 3.41493e+00
5.62782e-05 2.20319e-04 1.82189e-02 5.33361e-01

4040 2068 M2,0,∞ 6.66663e-03 8.14892e-03 2.83157e-02 3.08884e+00
8.89956e-05 2.19451e-04 6.35742e-03 4.53298e-01

4002 2047 M2,1,2 1.27443e-02 1.74685e-02 1.58691e-01 2.83627e+00
1.43980e-04 2.67353e-04 1.60196e-02 4.16979e-01

15971 8136 M2,0,1 4.09208e-04 2.80185e-03 4.46053e-01 2.44949e+00
1.91768e-05 1.04155e-03 2.30520e-01 8.87463e-01

Ne ≈ 16, 000 16088 8171 M2,0,2 4.91963e-04 8.02090e-04 5.75916e-02 1.54053e+00
8.81760e-06 1.64703e-04 6.68060e-02 2.68500e-01

15994 8088 M2,0,∞ 1.79767e-03 2.06070e-03 5.39628e-03 1.37961e+00
1.54309e-05 4.24226e-05 9.44125e-04 1.43448e-01

16004 8088 M2,1,2 4.44656e-03 5.47114e-03 9.68989e-02 1.25693e+00
3.17102e-05 5.80640e-05 9.69865e-03 1.36711e-01

This function u has steep layers around two parabolas y = di(x), i = 1, 2.
We calculate exactly all the second and third partial derivatives of u and determine

matrix Q for measuring their anisotropic behaviors by using the dimension reduction
algorithm described in section 3.2. Then we form the mesh metric Mk+1,m,p according
to (13), which is optimal for minimizing an upper bound of the Wm,p-norm of the
interpolation error e = u − Πku. The constant multiple c in (13) is used to control
the total number of elements.

We use the two-dimensional mesh generator bamg (bidimensional anisotropic mesh
generator) developed by Borouchaki et al. [3] and Hecht [16] to create the anisotropic
meshes. This package accepts a user-defined metric to create and refine an anisotropic
mesh that is quasi-uniform under the given metric. We choose the following parameter
setting in all our experiments:

"-NoRescaling -NbSmooth 5 -hmax 0.02 -hmin 0.0000005 -ratio 0

-nbv 100000 -v 9"

In order to make the anisotropic mesh as uniform as possible under metric Mk+1,m,p,
we call bamg iteratively with the metrics recalculated over the updated mesh. The
final mesh is the one after 20 iterations for all the cases, where there is little change
of the mesh and the interpolation error.

We consider specifically the linear (k = 1) and quadratic (k = 2) interpolations,
and measure the errors in (i) L1-norm (m = 0, p = 1), (ii) L2-norm (m = 0, p = 2),
(iii) L∞-norm (m = 0, p = ∞), and (iv) H1-seminorm (m = 1, p = 2). These error
norms are calculated using numerical quadratures based on 7 and 28 Fekete points for
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Table 2

The error in various norms for linear (in small font) and quadratic (in big font) interpolations
of function (38) based on meshes generated under metrics M3,m,p. Ne and Nv represent the total
number of elements and nodes, respectively.

Ne Nv Metric ‖e‖L1 ‖e‖L2 ‖e‖L∞ |e|H1

1026 542 M3,0,1 1.19200e-02 2.02953e-02 4.01216e-01 8.96489e+00

5.47899e-04 2.63100e-03 1.41338e-01 2.59358e+00
Ne ≈ 1, 000 1016 534 M3,0,2 1.84082e-02 2.70593e-02 4.59322e-01 8.95022e+00

5.84794e-04 2.15282e-03 1.06775e-01 2.42518e+00
1019 536 M3,0,∞ 2.92068e-02 4.64891e-02 2.47095e-01 8.85002e+00

8.38699e-04 2.23870e-03 3.84038e-02 2.16885e+00
1000 526 M3,1,2 2.86835e-02 4.47000e-02 3.66967e-01 8.01008e+00

8.41909e-04 2.57482e-03 1.39962e-01 2.16436e+00

4002 2060 M3,0,1 2.78079e-03 4.75471e-03 1.63081e-01 4.31546e+00

4.10310e-05 1.86169e-04 1.42471e-02 4.26067e-01
Ne ≈ 4, 000 3963 2033 M3,0,2 4.95528e-03 6.45569e-03 1.04982e-01 4.07441e+00

4.69086e-05 1.34854e-04 6.66449e-03 3.53092e-01
3991 2041 M3,0,∞ 1.50754e-02 2.12624e-02 6.14308e-02 3.97760e+00

1.46617e-04 2.32106e-04 2.95223e-03 3.50702e-01
4013 2051 M3,1,2 1.90713e-02 2.86518e-02 1.09707e-01 3.94508e+00

2.04870e-04 3.38047e-04 1.18358e-02 3.02695e-01

16038 8140 M3,0,1 7.17854e-04 1.33199e-03 4.08086e-02 2.46107e+00

4.04626e-06 1.64799e-05 1.14591e-03 8.76529e-02
Ne ≈ 16, 000 16070 8136 M3,0,2 1.28305e-03 1.70431e-03 2.82953e-02 2.36372e+00

5.01463e-06 1.28541e-05 6.64558e-04 7.34430e-02
16058 8113 M3,0,∞ 4.86946e-03 6.23055e-03 2.06393e-02 2.24020e+00

2.18202e-05 2.97789e-05 2.82230e-04 7.30433e-02
15995 8080 M3,1,2 8.42677e-03 1.14039e-02 3.99892e-02 2.21819e+00

4.88933e-05 7.11500e-05 1.58626e-03 6.24718e-02

linear and quadratic interpolations, respectively; see [25]. We list in Tables 1 and 2 the
linear and quadratic interpolation errors in four norms, and display in Figures 2 and 3
the anisotropic meshes (of about 4, 000 elements). Several observations are clearly at
hand. (a) In all the cases, the smallest Wm,p-norm of the interpolation error is
obtained when the mesh is generated according to the optimal metric Mk+1,m,p. This
indicates not only the optimality of the metric Mk+1,m,p stated in Theorem 2.1, but
also that the matrix Q produced by the dimension reduction algorithm characterizes
fairly accurately the anisotropic behavior of ∇k+1u. (b) When the number of elements
is quadrupled (i.e., the element length scale is halved), the interpolation error is
reduced by a factor 2k+1−m as predicted in the error estimate. (c) The mesh metrics
and the anisotropic meshes ideal for linear interpolation are not necessarily good for
quadratic interpolation, and vice versa.

Three-dimensional example. We present here an example for the quadratic inter-
polation in three dimensions. Consider the following function on Ω = [0, 1]3:

u(x, y, z) = x3 + (μ1y)
3 + (μ2z)

3,(39)

where μ1 = 10, μ2 = 30. For this function, ∇3u is constant over all Ω. By using the
dimension reduction algorithm, it is easy to find the matrix Q that characterizes the
anisotropic behavior of ∇3u as follows:

Q =

⎡⎣ 1
μ1

μ2

⎤⎦ .
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Fig. 2. Anisotropic meshes that are quasi-uniform under respective metrics M2,m,p and their
closeup views.
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Fig. 3. Anisotropic meshes that are quasi-uniform under respective metrics M3,m,p and their
closeup views.
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The optimal mesh metric Mk+1,m,p is a constant multiple of the above matrix. Thus
in an anisotropic mesh that is quasi-uniform under Mk+1,m,p all elements must be of
about the same volume, and all elements must have approximately the same length
scale 1 : 1

μ1
: 1

μ2
in x, y, and z directions. We create meshes of a specified length

scale 1 : 1
Ly

: 1
Lz

in the following way. First we generate a quasi-uniform tetrahedral

mesh using a three-dimensional Delaunay generator gmsh developed by Geuzaine and
Remacle [14] over a rectangular box [0, 1] × [0, Ly] × [0, Lz]. Then it is scaled in y
and z directions by factors Ly and Lz to obtain the anisotropic mesh on Ω. When
Lx = μ1 and Ly = μ2, the obtained mesh is quasi-uniform under Mk+1,m,p. This mesh
should also be the minimizer for the Wm,p-error of interpolation Πk (in this example,
Mk+1,m,p is identical for all m, k, and p). We calculate the error norms by using
a quadrature formula with 24 points supplied by [10], which is exact for numerical
integration of polynomials of degree less than or equal to 6. We vary Ly between
1 ∼ 20 and Lz between 10 ∼ 40 to obtain meshes of different aspect ratios, while
keeping the total number of elements around 40, 000 (by setting the characteristic
length lc in gmsh to be 0.05 3

√
LyLz).

We display in Figure 4 the error contour plots against Ly and Lz in the cases of
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Fig. 4. Contour plot of the (a) L1, (b) L2, (c) L∞, and (d) H1 errors with respect to various
element aspect ratios 1 : 1

Ly
: 1
Lz

. The star-circle mark at (10, 30) indicates the optimal aspect ratio

predicted by the error estimates.
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m = 0, p = 1, 2,∞, and m = 1, p = 2. It is noted that the smallest interpolation error
is achieved when the element aspect ratio is approximately equal to 1 : 1

μ1
: 1
μ2

in all
four cases. This indicates the optimality of the metric Mk+1,m,p. It is also noted that
the error is relatively insensitive to variation of the length scales in y and z directions
when they are close to the optimal values. We believe this is because the anisotropic
behavior of ∇3u in this example is relatively “mild.” For interpolated functions of
stronger anisotropic behaviors, the improvement by using the optimal mesh metrics
can be more drastic. Due to the lack of a reliable anisotropic mesh generator in three
dimensions, we are unable to test the optimality of Mk+1,m,p for u with variable ∇3u.

5. Conclusion and discussions. In the previous sections, we presented an
error estimate for higher-order interpolations over anisotropic meshes in Rn. It in-
volves an interplay of the mesh features controlled by a given mesh metric and the
anisotropic measures of the higher-order derivative tensors of interpolated functions.
Based on the error estimate, we were able to identify the optimal mesh metrics leading
to the smallest error bound for a subset of interpolated functions exhibiting similar
anisotropic behaviors. Numerical results indicate that the meshes generated according
to the optimal metrics produce the smallest interpolation error in the corresponding
norms.

A critical component in applying the error estimate for anisotropic mesh gener-
ation or refinement is to measure the anisotropic behavior of higher-order derivative
tensors. We define such a measure by the “largest” ellipse/ellipsoid contained in the
level curve for directional derivatives. To avoid solving the minimization problem for
defining the anisotropic measure, we developed a dimension reduction algorithm to
produce the measure approximately.

The practical application of the results in this paper is always associated with
the development of a reliable and efficient anisotropic mesh generator. While there
have been many two-dimensional packages available (bamg is clearly among the best
of them), general three-dimensional anisotropic meshing packages are yet to be de-
veloped and tested. Also, it is natural to apply the results in this paper to quadratic
and higher-order finite element methods for solving PDEs. To this end, one needs to
recover the higher-order derivatives of the PDEs solution from its numerical approx-
imation. While there have been extensive studies along this direction for isotropic
triangulations and linear elements [1, 20, 27, 28], the analysis and application for
higher-order elements on anisotropic meshes are yet to be developed.
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AN INF-SUP STABLE AND RESIDUAL-FREE BUBBLE ELEMENT
FOR THE OSEEN EQUATIONS∗
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Abstract. We investigate the residual-free bubble method for the linearized incompressible
Navier–Stokes equations. Starting with a nonconforming inf-sup stable element pair for approxi-
mating the velocity and pressure, we enrich the velocity space by discretely divergence-free bubble
functions to handle the influence of strong convection. An important feature of the method is that the
stabilization does not generate an additional coupling between the mass equation and the momentum
equation as is the case for the streamline upwind Petrov–Galerkin method applied to equal-order
interpolation. Furthermore, the discrete solution is piecewise divergence-free, a property which is
useful for the mass balance in transport equations coupled with the incompressible Navier–Stokes
equations.
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1. Introduction. Finite element approximations of the Oseen equations need
stability for advective-dominated flows and compatibility between the velocity and
pressure spaces. The latter is also necessary for the Stokes flow.

Starting with the streamline upwind Petrov–Galerkin (SUPG) stabilization of
Brooks and Hughes [9] for the advective term, this idea has been extended to the
Stokes equations in [21], where a stabilized method is proposed accommodating low
equal-order interpolation to be stable and convergent. This formulation circumvents
the need to abide by inf-sup condition for many interpolations. In an attempt to get
the stability features of these works, a method is proposed in [14] that at the same
time is advective stable and overcomes the inf-sup restrictions of the standard Galerkin
method. The analysis of these SUPG-type stabilizations, including the case of equal-
order interpolations, can be found in [31]. The drawback of these methods is that
various terms need to be added to the weak formulation. Residual-based stabilization
methods which use inf-sup stable pairs of elements reduce the number of terms which
have to be added to the Galerkin formulation [17, 25]. However, there is still a strong
coupling of the form (∇p, (b · ∇)vh) which is difficult to handle, and an optimal L2

error estimate for the pressure is missing in [17]. Several attempts have been made to
relax the strong coupling of velocity and pressure and to introduce symmetric versions
of the stabilizing terms; for an overview see [5]. Local projection-type methods have
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been introduced for the Stokes problem in [2], extended to the transport equation in
[3], and analyzed for low-order discretizations of the Oseen equations in [4]. They
are designed for equal-order interpolation and allow a separation of the velocity and
pressure in the stabilization terms. The disadvantage is that the finite element stencil
is less compact than for the SUPG-type stabilization. They also suffer from the weak
fulfillment of the incompressiblity constraint which is important for mass conservation
in a transport equation coupled with the Navier–Stokes problem. In the edge-oriented
stabilization technique, introduced in [10], we find the same problem of a much wider
stencil which needs also some special data structure or an implicit defect correction.

Our method of enriching the velocity space of an inf-sup stable pair of finite ele-
ments by discretely divergence-free functions will always suppress additional coupling
terms in the discrete formulation and lead to a separation of the velocity and pressure
in the stabilization terms. Due to the use of inf-sup stable finite element pairs, the
computed velocity field is always discretely divergence-free. As a first step in this
paper, we analyze the simplest version of such an enrichment method, the Crouzeix–
Raviart element of lowest order, i.e., piecewise linear nonconforming velocity and
piecewise constant pressure approximations.

The plan of the paper is as follows. In section 2, the weak formulation of the Oseen
equations and its Galerkin discretization is considered. Next, in section 3, we apply
the residual-free bubble approach and highlight the advantages of using discretely
divergence-free enrichments. The relation to the classical SUPG method is studied in
section 4. Finally, an a priori error estimate for an approximate residual-free bubble
method is derived in section 5. A numerical test example confirms the convergence
rates.

Notations. We use the Sobolev spaces W k,p(D), Hk(D) = W k,2(D), Hk
0 (D),

L2(D) = H0(D), and write Wk,p(D), Hk(D), Hk
0(D), L2(D) for their vector-valued

versions. The norms and seminorms in the scalar and vector-valued versions of
W k,p(D) are denoted by ‖ · ‖k,p,D and | · |k,p,D, respectively [12]. To simplify the
notation, we drop D if D = Ω and p if p = 2. Moreover, we introduce the broken H1

seminorm and norm for piecewise H1 functions defined on a triangulation Th by

|v|1,h :=

( ∑
K∈Th

|v|21,K

)1/2

, ‖v‖1,h :=
(
|v|21,h + ‖v‖2

0

)1/2
.

2. A linearized Navier–Stokes model. We consider the steady linearized
Navier–Stokes model given by

−νΔu + (b · ∇)u + ∇p = f in Ω ⊂ R
d,(2.1)

∇ · u = 0 in Ω,(2.2)

u = 0 on Γ = ∂Ω,(2.3)

where b ∈ W1,∞(Ω) with ∇·b = 0 in Ω, f ∈ L2(Ω), and Ω denotes a bounded domain
in R

d with d = 2 or d = 3. Homogeneous Dirichlet boundary conditions are considered
for simplicity of presentation. The extension to nonhomogeneous Dirichlet boundary
conditions is straightforward when the boundary data are interpolated in the space
of restrictions of discretely divergence-free functions. For smooth boundary data, this
is always possible and requires only additional technical details which do not lead to
further insight into the method. The weak formulation of (2.1)–(2.3) reads:
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Find (u, p) ∈ H1
0(Ω) × L2

0(Ω) such that for all (v, q) ∈ H1
0(Ω) × L2

0(Ω),

a(u,v) + b(u,v) − (p,∇ · v) + (q,∇ · u) = (f ,v),(2.4)

where the bilinear forms a and b are defined by

(2.5) a(u,v) := ν(∇u,∇v), b(u,v) := ((b · ∇)u,v) ∀u,v ∈ H1
0(Ω),

(·, ·) denotes the inner product in L2(Ω) or its vector-valued and tensor-valued ver-
sions, and

L2
0(Ω) = {q ∈ L2(Ω) : (q, 1) = 0}.

The property

b(v,v) = ((b · ∇)v,v) =
1

2
(b · ∇(v · v), 1) = −1

2
(∇ · b,v · v) = 0 ∀v ∈ H1

0(Ω)

of the bilinear form b guarantees that the Lax–Milgram lemma can be applied in
the subspace of divergence-free functions. A unique pressure in L2

0(Ω) follows from
the Babuška–Brezzi condition for the pair (H1

0(Ω), L2
0(Ω)) [18]. Therefore, there is a

unique solution (u, p) of (2.4) for all positive ν.
For the finite element approximation, we use the nonconforming Pnc

1 /P0 element
pair of Crouzeix–Raviart [13]. Let Th be a regular decomposition of the domain
Ω ⊂ R

d into d-dimensional simplices K ∈ Th, where the mesh parameter h represents
the maximum diameter of the elements K ∈ Th. We denote by Eh the set of all
(d − 1)-dimensional faces E of cells K ∈ Th. We choose for any face E ∈ Eh a unit
normal nE with an arbitrary but fixed orientation where nE on boundary faces is
the outer unit normal of Ω. We will write nK for the outer unit normal with respect
to the cell K. For a scalar piecewise continuous function ψ, the jump [ψ]E and the
average {ψ}E on a face E are defined by

[ψ]E : =

{
(ψ|K)|E − (ψ|

K̃
)|E if E �⊂ Γ,

(ψ|K)|E if E ⊂ Γ,

{ψ}E : =

⎧⎨⎩
1
2

(
(ψ|K)|E + (ψ|

K̃
)|E

)
if E �⊂ Γ,

1
2 (ψ|K)|E if E ⊂ Γ,

where K and K̃ are chosen such that E = ∂K ∩ ∂K̃ and nK = nE .
Note that the definition of the jump and the average on a boundary face corre-

sponds to that on an inner face when extending the functions outside of Ω by zero.
Furthermore, we have the relation

[ϕψ]E = [ϕ]E{ψ}E + {ϕ}E [ψ]E

on both inner and boundary faces E. The jump and the average of vector-valued
functions are defined in a componentwise manner.

Now our approximate spaces Vh ≈ H1
0(Ω) and Qh ≈ L2

0(Ω) can be defined to be

Vh : =

{
vh ∈ L2(Ω) : vh

∣∣∣
K

∈ P1(K)d ∀K ∈ Th,
∫
E

[vh]E dγ = 0 ∀E ∈ Eh
}
,(2.6)

Qh : =
{
qh ∈ L2

0(Ω) : qh

∣∣∣
K

∈ P0(K) ∀K ∈ Th
}
,(2.7)
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where Pn(K) is the set of all polynomials on K of degree less than or equal to n. Note
that a function vh ∈ Vh—in general—is discontinuous across the inner faces E and
does not vanish on the boundary.

Now, we introduce the discrete bilinear forms elementwise to be

ah(uh,vh) : = ν
∑

K∈Th

(∇huh,∇hvh)K ,(2.8)

bh(uh,vh) : =
∑

K∈Th

((b · ∇h)uh,vh)K −
∑
E∈Eh

〈b · nE [uh]E , {vh}E〉E .(2.9)

Here, the discrete versions of the gradient and the divergence operators, ∇ and ∇·,
respectively, are understood in the following sense:

(∇hvh)
∣∣
K

: = ∇
(
vh

∣∣
K

)
∀vh ∈ Vh, ∀K ∈ Th,

(∇h · vh)
∣∣
K

: = ∇ ·
(
vh

∣∣
K

)
∀vh ∈ Vh, ∀K ∈ Th,

and 〈·, ·〉E denotes the inner product in L2(E) and its vector-valued versions. To
simplify the notation, we briefly write ∇ instead of ∇h in expressions like (2.8) and
(2.9). Clearly, we have

ah(u,v) = a(u,v), bh(u,v) = b(u,v), u,v ∈ H1(Ω).

The additional term in the elementwise-defined bilinear form bh (compare (2.9)) van-
ishes for vh ∈ H1(Ω). For functions vh belonging to our nonconforming finite element
space Vh, it guarantees that we have

bh(vh,vh) =
1

2

∑
K∈Th

((b · ∇)(vh · vh), 1)K −
∑
E∈Eh

〈b · nE [vh]E , {vh}E〉E

=
∑
E∈Eh

(
1

2
〈b · nE [vh · vh]E , 1〉E − 〈b · nE [vh]E , {vh}E〉E

)
= 0,

in analogy to b(v,v) = 0 for all v ∈ H1
0(Ω).

The standard Galerkin finite element method reads:
Find (uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh,

(2.10) ah(uh,vh) + bh(uh,vh) − (ph,∇h · vh) + (qh,∇h · uh) = (f ,vh).

The finite element pair (Vh, Qh) satisfies the discrete inf-sup stability condition

(2.11) ∃β0 > 0 ∀qh ∈ Qh : β0‖qh‖0 ≤ sup
vh∈Vh

(qh,∇h · vh)

|vh|1,h
;

see [6, 13]. As a result, we have the unique solvability of (2.10). Error estimates which
do not take into consideration the size of ν are standard, e.g., in the energy norm we
have

(2.12) ν1/2|u − uh|1,h + ‖p− ph‖0 ≤ C(ν) h (|u|2 + |p|1)

with a constant C(ν) depending on ν. We are interested in the case of small ν (high
Reynolds numbers) in which numerical experiments show the need for stabilization
[11, 29, 30]. In the next section, we will follow the concept of residual-free bubble sta-
bilizations, which has been already successfully applied to scalar convection-diffusion
equations [1, 7, 8, 16].
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3. Residual-free bubble method. Let us enrich the velocity space Vh by the
space of residual-free bubbles

Bh :=
⊕
K∈Th

H1
0(K)

and denote the enriched space by VRFB . Since a piecewise linear function which
vanishes at the boundary of each cell is identically zero, we conclude VRFB = Vh⊕Bh.
The pair (VRFB , Qh) satisfies the discrete inf-sup stability (2.11) as well. Note that
a function from the bubble space Bh is discretely divergence-free since we have, for
all qh ∈ Qh, vB ∈ Bh,

(qh,∇h · vB) =
∑

K∈Th

qh
∣∣
K

(1,∇ · vB)K =
∑

K∈Th

qh
∣∣
K
〈1,vB · nK〉∂K = 0.

In this sense the inf-sup stability will not be improved by enriching Vh by Bh. Each
element uRFB ∈ VRFB can be uniquely represented in the form

uRFB = uh + uB with uh ∈ Vh, uB ∈ Bh.

The Galerkin approximation of (2.4) with respect to the pair (VRFB , Qh) reads:
Find (uh,uB , ph) ∈ Vh × Bh ×Qh such that

ah(uh,vh) + bh(uh,vh) + bh(uB ,vh) − (ph,∇h · vh) = (f ,vh) ∀vh ∈ Vh,(3.1)

ah(uB ,vB) + bh(uB ,vB) + bh(uh,vB) = (f ,vB) ∀vB ∈ Bh,(3.2)

(qh,∇h · uh) = 0 ∀qh ∈ Qh.(3.3)

Note that in deriving (3.1)–(3.3) we have taken into consideration the orthogonality
property

ah(vB ,wh) = ah(wh,vB) = ν
∑

K∈Th

(∇wh,∇vB)K

= ν
∑

K∈Th

(〈
∂wh

∂nK
,vB

〉
∂K

− (Δwh,vB)K

)
= 0

and the property that uB and vB are discretely divergence-free. Equation (3.2) can
be considered to define uB as a functional of uh. In order to find a representation for
uB , we define M(uh), F (f) ∈ Bh as the solutions of the problems:

Find M(uh), F (f) ∈ Bh such that for all vB ∈ Bh,

ah(M(uh),vB) + bh(M(uh),vB) = −bh(uh,vB),

ah(F (f),vB) + bh(F (f),vB) = (f ,vB).

Then, the solution uB of (3.2) can be represented in the form uB = M(uh) + F (f).
Elimination of uB from (3.1) gives the residual-free bubble method for solving (2.4):

Find (uh, ph) ∈ Vh ×Qh such that

aRFB(uh,vh) − (ph,∇h · vh) = lRFB(vh) ∀vh ∈ Vh,(3.4)

(qh,∇h · uh) = 0 ∀qh ∈ Qh,(3.5)
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where

aRFB(uh,vh) = ah(uh,vh) + bh(uh,vh) + bh(M(uh),vh),(3.6)

lRFB(vh) = (f ,vh) − bh(F (f),vh).(3.7)

The difficulty in realizing the exact residual-free method (3.4)–(3.5) is that we have
to evaluate the terms bh(M(uh),vh) and bh(F (f),vh), which essentially means solving
an infinite-dimensional problem. Therefore, in practice some sort of approximation is
used. We mention in particular the following approaches:

• stabilizing subgrid methods [8],
• pseudo-residual-free bubble method [7],
• two-level and three-level approaches [15, 16, 19, 20].

In the following we will reformulate the method (3.4)–(3.5) by looking at the constant
coefficient case.

4. Relation to other stabilized methods. The case of continuous P1 pressure
and velocity approximations on triangles has been considered in [28]; for a systematic
study on quadrilaterals with a continuous Q1 pressure approximation and a sufficiently
large velocity space see [24]. In that paper the fully nonlinear case of the Navier–Stokes
equations has also been considered.

In the following we consider a discretization within the space (Vh×Qh), i.e., non-
conforming piecewise linear velocity and piecewise constant pressure approximations.
Let us assume that b and f are constants. Moreover, let ϕK ∈ H1

0 (K) be the solution
of the scalar convection-diffusion problem

−νΔϕK + b · ∇ϕK = 1 in K, ϕK = 0 on ∂K.

Then, we obtain

M(uh)
∣∣∣
K

= −(b · ∇)uh

∣∣∣
K

ϕK , F (f)
∣∣∣
K

= f
∣∣∣
K

ϕK .

The terms which appear in (3.6)–(3.7), in addition to the standard Galerkin approach,
become

bh(M(uh),vh) =
∑

K∈Th

((b · ∇)M(uh),vh)K −
∑
E∈Eh

〈b · nE [M(uh)]E , {vh}E〉E

= −
∑

K∈Th

((b · ∇)vh,M(uh))K

=
∑

K∈Th

((b · ∇)vh, (b · ∇)uh ϕK)K

=
∑

K∈Th

τK((b · ∇)vh, (b · ∇)uh)K ,
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−bh(F (f),vh) = −
∑

K∈Th

((b · ∇)F (f),vh)K +
∑
E∈Eh

〈b · nE [F (f)]E , {vh}E〉E

=
∑

K∈Th

((b · ∇)vh, F (f))K

=
∑

K∈Th

((b · ∇)vh, f ϕK)K

=
∑

K∈Th

τK((b · ∇)vh, f)K ,

since M(uh), F (f) ∈ Bh where

τK =
1

|K|

∫
K

ϕK dx.

Thus, the exact residual-free bubble method for constant b and f is equal to:
Find (uh, ph) ∈ Vh ×Qh such that

ãRFB(uh,vh) − (ph,∇h · vh) = l̃RFB(vh) ∀vh ∈ Vh,(4.1)

(qh,∇h · uh) = 0 ∀qh ∈ Qh,(4.2)

where

ãRFB(uh,vh) = ah(uh,vh) + bh(uh,vh) +
∑

K∈Th

τK((b · ∇)uh, (b · ∇)vh)K ,

l̃RFB(vh) = (f ,vh) +
∑

K∈Th

τK(f , (b · ∇)vh)K .

Since on each K ∈ Th it holds that −νΔuh + ∇ph = 0, the method corresponds to
the SUPG method analyzed in [26] for the fully nonlinear case of the Navier–Stokes
equations. However, the influence of small ν on the error constants has not been
investigated in that paper.

5. Error estimate for the generalized Oseen equations. We now turn
to estimates with Reynolds-number-independent constants. It has been shown in
a series of papers [22, 23, 27] that for nonconforming finite element discretizations
applied to scalar convection-diffusion equations, one has to add certain jump terms
to the discretization to recover the error estimates of the SUPG method known for
conforming finite elements. Therefore, we expect to meet the same situation in the
more complex problem of linearized Navier–Stokes equations and add

jh(uh,vh) :=
∑
E∈Eh

γE〈[uh]E , [vh]E〉E

with positive constants γE to the discrete formulation. In the case of a scalar
convection-diffusion equation it turns out that it is enough to choose γE ∼ 1 (see [22]),
but due to the coupling with the pressure we have to choose γE differently; see
Lemma 5.2. Note that the solution (u, p) ∈ H1

0(Ω) × L2
0(Ω) satisfies [u]E = 0 and

consequently jh(u,v) = 0 for all v ∈ H1
0(Ω) + Vh.
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We shall consider and analyze the case of the generalized Oseen equations,

−νΔu + (b · ∇)u + σu + ∇p = f , ∇ · u = 0 in Ω, u = 0 on Γ = ∂Ω

which appears as a result of time discretizations of the nonstationary Navier–Stokes
equations with σ = (1/Δt). Its weak formulation reads:

Find (u, p) ∈ H1
0(Ω) × L2

0(Ω) such that for all (v, q) ∈ H1
0(Ω) × L2

0(Ω),

(5.1) aσ(u,v) + b(u,v) − (p,∇ · v) + (q,∇ · u) = (f ,v),

where the bilinear form a(·, ·) in (2.4) has been replaced by the bilinear form

aσ(u,v) := ν(∇u,∇v) + σ(u,v).

Let us introduce the following notations:

A ((u, p), (v, q)) = aσh(u,v) + bh(u,v) + jh(u,v) +
∑

K∈Th

τK((b · ∇)u, (b · ∇)v)K

− (p,∇h · v) + (q,∇h · u),

L ((v, q)) = (f ,v) +
∑

K∈Th

τK(f , (b · ∇)v)K

with aσh(·, ·) being the discrete analogue of aσ(·, ·), more precisely

aσh(uh,vh) :=
∑

K∈Th

(ν(∇uh,∇vh)K + σ(uh,vh)K) ∀uh,vh ∈ Vh + H1
0(Ω).

The discrete problem to be studied now becomes:
Find (uh, ph) ∈ Vh ×Qh such that for all (vh, qh) ∈ Vh ×Qh,

(5.2) A ((uh, ph), (vh, qh)) = L ((vh, qh)) .

The bilinear form A(·, ·) generates a norm on the product space Vh ×Qh

|||(v, q)||| =

(
ν|v|21,h + σ‖v‖2

0 + (ν + σ)‖q‖2
0

+ jh(v,v) +
∑

K∈Th

τK‖(b · ∇)v‖2
0,K

)1/2

.

First we show an inf-sup condition for the bilinear form A(·, ·) on the product
space Vh ×Qh.

Lemma 5.1. Assume that max(ν, σ, τK , γEhE) ≤ C. Then, there is a positive
constant β independent of ν > 0 such that for all (vh, qh) ∈ Vh ×Qh,

(5.3) |||(vh, qh)||| ≤ 1

β
sup

(wh,rh)∈Vh×Qh

A ((vh, qh), (wh, rh))

|||(wh, rh)||| .

Proof. Let us consider an arbitrary (vh, qh) ∈ Vh × Qh. Choosing (wh, rh) =
(vh, qh), we have

A
(
(vh, qh), (vh, qh)

)
= ν|vh|21,h + σ‖vh‖2

0 + jh(vh,vh) +
∑

K∈Th

τK‖(b · ∇)vh‖2
0,K(5.4)
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due to the property bh(vh,vh) = 0 which has been shown in section 2.
Now let us consider another choice of (wh, rh). For any qh ∈ Qh the discrete

Babuška–Brezzi condition (2.11) guarantees the existence of a function vqh ∈ Vh

such that

(∇h · vqh , qh) = −(qh, qh), ‖vqh‖1,h ≤ C‖qh‖0.

Thus, by choosing (wh, rh) = (vqh , 0) we obtain

A ((vh, qh), (vqh , 0)) = ‖qh‖2
0 + aσh(vh,vqh) + bh(vh,vqh) + jh(vh,vqh)

+
∑

K∈Th

τK((b · ∇)vh, (b · ∇)vqh)K .(5.5)

Now, the second term on the right-hand side of (5.5) can be bounded as follows:

|aσh(vh,vqh)| ≤ C (ν|vh|1,h + σ‖vh‖0) ‖qh‖0

≤ C
(
ν2|vh|21,h + σ2‖vh‖2

0

)
+

1

8
‖qh‖2

0.

Elementwise integration by parts of the third term on the right-hand side of (5.5)
gives

bh(vh,vqh) =
∑
E∈Eh

〈b · nE , [vh · vqh ]E〉E −
∑

K∈Th

((b · ∇)vqh ,vh)K

−
∑
E∈Eh

〈b · nE [vh]E , {vqh}E〉E

=
∑
E∈Eh

〈b · nE [vqh ]E , {vh}E〉E −
∑

K∈Th

((b · ∇)vqh ,vh)K .

Let ω(E) denote the union of the cells K sharing a common face E. For any vh ∈ Vh

we have

‖[vh]E‖0,E ≤ C h
1/2
E |vh|1,h,ω(E), ‖{vh}E‖0,E ≤ C h

−1/2
E ‖vh‖0,ω(E),

from which

|bh(vh,vqh)| ≤ C |vqh |1,h ‖vh‖0 ≤ C ‖qh‖0 ‖vh‖0 ≤ C ‖vh‖2
0 +

1

8
‖qh‖2

0

follows. Similarly, for the fourth term on the right-hand side of (5.5) we obtain

jh(vh,vqh) ≤ C
∑
E∈Eh

γE‖[vh]E‖0,E h
1/2
E |vqh |1,h,ω(E)

≤ C
∑
E∈Eh

γ2
EhE‖[vh]E‖2

0,E +
1

8
‖qh‖2

0.

Finally, the fifth term on the right-hand side of (5.5) is estimated by∣∣∣∣∣ ∑
K∈Th

τK((b · ∇)vh, (b · ∇)vqh)K

∣∣∣∣∣ ≤ ∑
K∈Th

τK‖(b · ∇)vh‖0,K‖(b · ∇)vqh‖0,K

≤ C
∑

K∈Th

τ2
K‖(b · ∇)vh‖2

0,K +
1

8
‖qh‖2

0.
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Combining the inequalities and taking into consideration that ν, τK , and γEhE

are bounded from above, we get from (5.5)

A
(
(vh, qh), (vqh , 0)

)
≥ 1

2
‖qh‖2

0

−C1

[
ν|vh|21,h + ‖vh‖2

0 + jh(vh,vh) +
∑

K∈Th

τK‖(b · ∇)vh‖2
0,K

]
.(5.6)

Multiplying this inequality by (ν + σ), using the estimate ν + σ ≤ C to bound

(ν + σ)ν|vh|21,h ≤ Cν|vh|21,h,
(ν + σ)jh(vh,vh) ≤ Cjh(vh,vh),

(ν + σ)
∑

K∈Th

τK‖(b · ∇)vh‖2
0,K ≤ C

∑
K∈Th

τK‖(b · ∇)vh‖2
0,K ,

and hiding the ν‖vh‖2
0 term by the discrete Poincaré’s inequality

(ν + σ)‖vh‖2
0 = ν‖vh‖2

0 + σ‖vh‖2
0 ≤ Cν|vh|21,h + σ‖vh‖2

0,

we end up with

A
(
(vh, qh), ((ν + σ)vqh , 0)

)
≥ ν + σ

2
‖qh‖2

0

−C2

[
ν|vh|21,h + σ‖vh‖2

0 + jh(vh,vh) +
∑

K∈Th

τK‖(b · ∇)vh‖2
0,K

]
.(5.7)

From (5.4) and (5.7) we get for (wh, rh) := (1 − α)(vh, qh) + α((ν + σ)vqh , 0),

(5.8) A
(
(vh, qh), (wh, rh)) ≥ α

2
|||(vh, qh)|||2

with α = 2/(2C2 + 3) ∈ (0, 1). Moreover, analyzing each individual term in the triple
norm, we can show that

|||(vqh , 0)||| ≤ C‖vqh‖1,h ≤ C‖qh‖0,

and with ν + σ ≤ C
√
ν + σ we conclude that

|||(wh, rh)||| ≤ (1 − α)|||(vh, qh)||| + α(ν + σ)|||(vqh , 0)|||

≤ C3|||(vh, qh)|||

follows. Thus, we obtain (5.3) with β = α/(2C3).
Remark. Note that for σ > 0 we have control over the L2 norm of the velocity

and the pressure uniformly with respect to ν. However, for σ = 0 we lose this uniform
L2 norm control. In this case, the pressure is only controlled by ν1/2‖ · ‖0. Taking
into consideration Poincaré’s inequality we see that the velocity is also controlled by
ν1/2‖ · ‖0. This behavior, that the case σ > 0 leads to a uniform (with respect to
ν) control of the L2 norm of velocity and pressure, can be also observed in other
stabilized methods; see, for example, [11].
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Let the weak solution of the generalized Oseen equations belong additionally to
H2(Ω) × H1(Ω). Our formulation admits the following consistency property, where
the parameter choice satisfies the assumption of Lemma 5.1.

Lemma 5.2. Let (u, p) ∈ (H1
0(Ω) ∩ H2(Ω)) × (L2

0(Ω) ∩ H1(Ω)) be the weak
solution of (5.1) and let (uh, ph) ∈ Vh × Qh be the discrete solution of (5.2). Then,
the consistency error can be represented in the form

R(u, p;wh, rh) : = A ((u − uh, p− ph), (wh, rh))

=
∑
E∈Eh

{〈
ν

∂u

∂nE
, [wh]E

〉
E

− 〈p, [wh]E · nE〉E
}

+
∑

K∈Th

τK(νΔu − σu −∇p, (b · ∇)wh)K .

Furthermore, assume that τK ∼ h2
K and γE ∼ h−1

E . Then, there is a positive constant
C independent of ν such that

|R(u, p;wh, rh)| ≤ C h(‖u‖2 + ‖p‖1) |||(wh, rh)||| ∀(wh, rh) ∈ Vh ×Qh.

Proof. The representation follows by testing the strong form of the problem with
wh and (b · ∇)wh, respectively, elementwise integration by parts, and taking into
consideration the definition of A(·, ·), (5.1), and (5.2). Following [13] we have∣∣∣∣∣ ∑

E∈Eh

〈
ν

∂u

∂nE
, [wh]E

〉
E

∣∣∣∣∣ ≤ C hν‖u‖2 |wh|1,h ≤ C h‖u‖2 |||(wh, rh)|||,

∣∣∣∣∣ ∑
E∈Eh

〈p, [wh]E · nE〉E

∣∣∣∣∣ ≤ Ch‖p‖1 |wh|1,h,

which shows that the second estimate does not lead to the desired estimate with a ν
independent constant. Therefore, we bound the term in a different way as follows:∣∣∣∣∣ ∑

E∈Eh

〈p, [wh]E · nE〉E

∣∣∣∣∣ ≤ C
∑
E∈Eh

γ
−1/2
E h

1/2
E |p|1,h,ω(E) γ

1/2
E ‖[wh]E‖0,E

≤ Ch‖p‖1

√
jh(wh,wh).

Concerning the last term of the consistency error, we get∣∣∣∣∣ ∑
K∈Th

τK(νΔu − σu − ∇p, (b · ∇)wh)K

∣∣∣∣∣
≤

∑
K∈Th

τ
1/2
K (‖u‖2,K + ‖p‖1,K) τ

1/2
K ‖(b · ∇)wh‖0,K

≤ Ch (‖u‖2 + ‖p‖1,K)

( ∑
K∈Th

τK‖(b · ∇)wh‖2
0,K

)1/2

.
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Summarizing the individual estimates we obtain the statement of the lemma.
Next we shall investigate the interpolation error. First, note that a discretely

divergence-free function is divergence-free on each cell K. Indeed, if χK denotes
the characteristic function of K, |K| and |Ω| denoting the measure of K and Ω,
respectively, we conclude for a discretely divergence-free function vh ∈ Vh that the
function ∇h · vh is piecewise constant and, thus, by setting qh = χK − |K|/|Ω| ∈ Qh,

0 = (qh,∇h · vh) = (1,∇h · vh)K − |K|
|Ω| (1,∇h · vh)Ω

= |K|
(
∇ · vh

∣∣
K

)
− |K|

|Ω|
∑

K∈Th

〈1,vh · nK〉∂K

= |K|
(
∇ · (vh

∣∣
K

)
)
.

Lemma 5.3. The canonical interpolant Ih : H1
0(Ω) → Vh defined by

1

|E|

∫
E

(Ihv − v) ds = 0 ∀E ∈ Eh

satisfies

(qh,∇h · Ihv) = (qh,∇ · v) ∀ qh ∈ Qh, v ∈ H1
0(Ω),(5.9)

‖v − Ihv‖0,K + hK |v − Ihv|1,K ≤ C h2
K |v|2,K ∀v ∈ H1

0(Ω) ∩ H2(Ω).(5.10)

Proof. For the proof see [13].
Lemma 5.4. Let (u, p) ∈ (H1

0(Ω) ∩ H2(Ω)) × (L2
0(Ω) ∩ H1(Ω)) be the weak

solution of (5.1) and let (uh, ph) ∈ Vh ×Qh be the discrete solution of (5.2). Assume
that τK ∼ h2

K and γE ∼ h−1
E . Then, for the canonical interpolant Ih : H1

0(Ω) → Vh

and the L2 projection Jh : L2
0(Ω) → Qh there is a constant C independent of ν such

that

(5.11) |A ((u − Ihu, p− Jhp), (wh, rh))| ≤ C h(‖u‖2 + ‖p‖1) |||(wh, rh)|||

for all (wh, rh) ∈ Vh ×Qh.
Proof. Taking into consideration the definition of ||| · |||, we estimate each term

in A(·, ·) separately. The estimate

|aσh(u − Ihu,wh)| ≤ C h ‖u‖2 |||(wh, rh)|||

is standard. Using elementwise integration by parts, we obtain

bh(u − Ihu,wh) =
∑
E∈Eh

〈b · nE [wh]E , {u − Ihu}E〉E −
∑

K∈Th

(u − Ihu, (b · ∇)wh)K

(see also the proof of Lemma 5.1). The first term on the right-hand side is estimated
by ∣∣∣ ∑

E∈Eh

〈b · nE [wh]E , {u − Ihu}E〉E
∣∣∣

≤ C
∑
E∈Eh

γ
−1/2
E h

3/2
E ‖u‖2,ω(E) γ

1/2
E ‖[wh]E‖0,E

≤ C h2 ‖u‖2

√
jh(wh,wh)
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and the second one by∣∣∣∣∣ ∑
K∈Th

(u − Ihu, (b · ∇)wh)K

∣∣∣∣∣ ≤ C
∑

K∈Th

τ
−1/2
K h2

K‖u‖2,K τ
1/2
K ‖(b · ∇)wh‖0,K

≤ C h ‖u‖2

( ∑
K∈Th

τK‖(b · ∇)wh‖2
0,K

)1/2

.

The next expression is

|jh(u − Ihu,wh)| ≤ C
∑
E∈Eh

γ
1/2
E h

3/2
E ‖u‖2,ω(E) γ

1/2
E ‖[wh]E‖0,E

≤ C h ‖u‖2

√
jh(wh,wh)

followed by

∑
K∈Th

τK
(
(b · ∇)(u − Ihu), (b · ∇)wh

)
K

≤ C h2 ‖u‖2

( ∑
K∈Th

τK‖(b · ∇)wh‖2
0,K

)1/2

.

The orthogonality of the L2 projection Jh and the property that any discretely
divergence-free function is divergence-free on each cell yield that the last two terms
become zero; i.e.,

(p− Jhp,∇h · wh) = 0 ∀wh ∈ Vh,

(rh,∇h · (u − Ihu)) = 0 ∀rh ∈ Qh.

Collecting all estimates, we get the statement of the lemma.
Theorem 5.5. Let (u, p) ∈ (H1

0(Ω) ∩ H2(Ω)) × (L2
0(Ω) ∩ H1(Ω)) be the weak

solution of (5.1) and let (uh, ph) ∈ Vh ×Qh be the discrete solution of (5.2). Assume
that τK ∼ h2

K and γE ∼ h−1
E . Then, there is a positive constant C independent of ν

such that

(5.12) |||(u − uh, p− ph)||| ≤ C h (‖u‖2 + ‖p‖1).

Proof. Starting with Lemma 5.1 we have

|||(uh − Ihu, ph − Jhp)||| ≤
1

β
sup

(wh,rh)∈Vh×Qh

A((uh − Ihu, ph − Jhp), (wh, rh))

|||(wh, rh)|||

≤ 1

β
sup

(wh,rh)∈Vh×Qh

A((uh − u, ph − p), (wh, rh))

|||(wh, rh)|||

+
1

β
sup

(wh,rh)∈Vh×Qh

A((u − Ihu, p− Jhp), (wh, rh))

|||(wh, rh)||| .

Now, the first term can be bounded by Lemma 5.2 and the second one by Lemma 5.4.
It remains to apply the triangle inequality

|||(u − uh, p− ph)||| ≤ |||(u − Ihu, p− Jhp)||| + |||(uh − Ihu, ph − Jhp)|||
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and the approximation properties of the interpolation operators Ih and Jh.
Remark. According to the definition of the triple norm we have for σ > 0 an

additional control uniformly with respect to ν over the L2 norm of the velocity and
the pressure. For σ = 0 we lose this control for ν → 0.

Remark. In the SUPG method the additional stabilizing term∑
K∈Th

γK(∇ · uh,∇ · vh)K

is often used [17, 31]. In our case of the Crouzeix–Raviart element, discretely diverg-
ence-free functions are piecewise divergence-free, therefore this term vanishes.

Remark. Often the SUPG parameter in the SUPG method is chosen in the
advective regime as τK ∼ hK , which is the correct choice for equal-order interpolation
[9, 14, 31]. However, using inf-sup stable elements with different-order interpolation
in the SUPG method, we have to take τK ∼ h2

K [5].
Numerical test. We consider the generalized Oseen equations (5.2) in Ω =

(0, 1)2 with the prescribed solution

u =

(
2x2(1 − x)2y(1 − y)(1 − 2y)

−2y2(1 − y)2x(1 − x)(1 − 2x)

)
, p = x3 + y3 − 0.5,

the convection field

b =

(
sin(x) sin(y)
cos(x) cos(y)

)
,

and with the parameters ν = 10−3, σ = 100. The choice of σ corresponds to a length
of the time step of 0.01 in the nonstationary Navier–Stokes equations.

The coarsest grid in the computations (level 0) consists of two triangles with the
common edge from (0, 0) to (1, 1). On level 7, the system has 98 816 velocity degrees
of freedom (including Dirichlet nodes) and 32 768 pressure degrees of freedom.

Results for different choices of the parameter γE in the jump term jh(uh,vh) are
presented in Tables 5.1 and 5.2. In Table 5.1, computations without this jump term
(γE = 0) and with the appropriate choice (γE = 1) known from scalar convection-
diffusion equations (cf. [22]) are given. It can be observed that the order of con-
vergence with respect to the natural norms for the Oseen equations is far below the
optimal one in the convection-dominated regime; even an increase of errors occurs.
However, optimal orders are obtained for the choice γE = 1/hE , which is in agreement
with our theoretical results presented in this section; see Table 5.2. In addition, the
optimal order of convergence in the ||| · ||| norm, (5.12), can be seen.

Table 5.1

Results obtained with γE = 0 and γE = 1.

γE = 0 γE = 1
Level ‖∇(u − uh)‖0 Order ‖p− ph‖0 Order ‖∇(u − uh)‖0 Order ‖p− ph‖0 Order

3 3.057e-1 — 2.790e-1 — 2.211e-1 — 2.185e-1 —
4 5.899e-1 −0.949 2.625e-1 0.088 3.377e-1 −0.611 1.601e-1 0.449
5 1.083e+0 −0.876 2.487e-1 0.078 4.549e-1 −0.430 1.077e-1 0.572
6 1.748e+0 −0.691 2.166e-1 0.200 5.336e-1 −0.230 6.433e-2 0.744
7 2.205e+0 −0.335 1.474e-1 0.555 5.486e-1 −0.040 3.410e-2 0.916
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Table 5.2

Results obtained with γE = 1/hE .

Level ‖∇(u − uh)‖0 Order ‖p− ph‖0 Order |||(u − uh, p− ph)||| Order
3 8.610e-2 — 1.176e-1 — 1.179e+0 —
4 5.332e-2 0.691 4.389e-2 1.422 4.409e-1 1.418
5 2.775e-2 0.942 1.776e-2 1.306 1.789e-1 1.301
6 1.386e-2 1.002 8.196e-3 1.115 8.270e-2 1.113
7 6.895e-3 1.001 4.053e-3 1.021 4.090e-2 1.021
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Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpola-
tions, Comput. Methods Appl. Mech. Engrg., 59 (1986), pp. 85–99.

[22] V. John, G. Matthies, F. Schieweck, and L. Tobiska, A streamline-diffusion method for
nonconforming finite element approximations applied to convection-diffusion problems,
Comput. Methods Appl. Mech. Engrg., 166 (1998), pp. 85–97.

[23] V. John, J. Maubach, and L. Tobiska, Nonconforming streamline-diffusion-finite-element-
methods for convection-diffusion problems, Numer. Math., 78 (1997), pp. 165–188.

[24] P. Knobloch and L. Tobiska, Stabilization methods of bubble type for the Q1/Q1-element
applied to the incompressible Navier-Stokes equations, M2AN Math. Model Numer. Anal.,
34 (2000), pp. 85–107.

[25] G. Lube and G. Rapin, Residual-based stabilized higher-order FEM for a generalized Oseen
problem, Math. Models Methods Appl. Sci., 16 (2006), pp. 949–966.

[26] G. Lube and L. Tobiska, A nonconforming finite element method of streamline diffusion type
for the incompressible Navier–Stokes equations, J. Comput. Math., 8 (1990), pp. 147–158.

[27] G. Matthies and L. Tobiska, The streamline diffusion method for conforming and noncon-
forming finite elements of lowest order applied to convection-diffusion problems, Comput-
ing, 66 (2001), pp. 343–364.

[28] A. Russo, Bubble stabilization of finite element methods for the linearized incompressible
Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 132 (1996), pp. 335–343.

[29] F. Schieweck and L. Tobiska, A nonconforming finite element method of upstream type
applied to the stationary Navier-Stokes equation, M2AN Math. Model Numer. Anal., 23
(1989), pp. 627–647.

[30] F. Schieweck and L. Tobiska, An optimal order error estimate for an upwind discretization
of the Navier-Stokes equation, Numer. Methods Partial Differential Equations, 12 (1996),
pp. 407–421.

[31] L. Tobiska and R. Verfürth, Analysis of a streamline diffusion finite element method for
the Stokes and Navier–Stokes equations, SIAM J. Numer. Anal., 33 (1996), pp. 107–127.



SIAM J. NUMER. ANAL. c© 2007 Society for Industrial and Applied Mathematics
Vol. 45, No. 6, pp. 2408–2441

A NEW STICKY PARTICLE METHOD FOR PRESSURELESS GAS
DYNAMICS∗

ALINA CHERTOCK† , ALEXANDER KURGANOV‡ , AND YURII RYKOV§

Abstract. We first present a new sticky particle method for the system of pressureless gas
dynamics. The method is based on the idea of sticky particles, which seems to work perfectly well
for the models with point mass concentrations and strong singularity formations. In this method, the
solution is sought in the form of a linear combination of δ-functions, whose positions and coefficients
represent locations, masses, and momenta of the particles, respectively. The locations of the particles
are then evolved in time according to a system of ODEs, obtained from a weak formulation of the
system of PDEs. The particle velocities are approximated in a special way using global conservative
piecewise polynomial reconstruction technique over an auxiliary Cartesian mesh. This velocities
correction procedure leads to a desired interaction between the particles and hence to clustering
of particles at the singularities followed by the merger of the clustered particles into a new particle
located at their center of mass. The proposed sticky particle method is then analytically studied. We
show that our particle approximation satisfies the original system of pressureless gas dynamics in a
weak sense, but only within a certain residual, which is rigorously estimated. We also explain why the
relevant errors should diminish as the total number of particles increases. Finally, we numerically test
our new sticky particle method on a variety of one- and two-dimensional problems as well as compare
the obtained results with those computed by a high-resolution finite-volume scheme. Our simulations
demonstrate the superiority of the results obtained by the sticky particle method that accurately
tracks the evolution of developing discontinuities and does not smear the developing δ-shocks.

Key words. nonstrictly hyperbolic systems of conservation laws, pressureless gas dynamics,
mass concentration, strong singularities, δ-shock, sticky particle method
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1. Introduction. We consider the Euler equations of pressureless gas dynamics:

(1.1) wt + ∇x · (u ⊗ w) = 0.

Here, x := (x, y, . . .) is an n-dimensional vector of spatial variables, u := (u, v, . . .)
is the corresponding velocity vector, and w ≡ (w1, w2, w3, . . .)T := (ρ, ρu, ρv, . . .)T is
the (n + 1)-dimensional vector of unknown function, where ρ is the density.

This system arises in the modeling of the formation of large-scale structures in the
universe [24]. It can be formally obtained as the limit of the isotropic Euler equations
of gas dynamics as pressure tends to zero or as the macroscopic limit of a Boltzmann
equation when the Maxwellian has zero temperature.
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Even in the simplest one-dimensional (1-D) case, the system (1.1), which can be
rewritten as

(1.2)

{
ρt + (ρu)x = 0,
(ρu)t + (ρu2)x = 0,

is mathematically challenging since it is nonstrictly hyperbolic and its Jacobian is not
diagonalizable. For smooth solutions, the system (1.2) is equivalent to

ρt + (ρu)x = 0,(1.3)

ut + uux = 0.(1.4)

Notice that (1.4) is the inviscid Burgers equation, which is, in fact, decoupled from
(1.3). It is well known that the solution of the initial-value problem associated with
(1.4), as long as it stays smooth, can be easily obtained by the method of charac-
teristics. The density ρ can then be determined from (1.3), which becomes a linear
transport equation. However, if the initial velocity u(x, 0) is not monotone increas-
ing, the characteristics will intersect within a finite time, and the solution will lose
its initial smoothness, and thus it must be understood in a weak sense. As in the
general theory of weak solutions of hyperbolic systems of conservation laws, one has
to introduce discontinuity lines. Let x = ξ(t) be such a line and assume that the
solution accepts finite values u± := u(ξ(t) ± 0, t) and ρ± := ρ(ξ(t) ± 0, t) from both
sides of discontinuity. The jumps then must satisfy the Rankine–Hugoniot conditions,
namely, {

ξ′(t) (ρ+ − ρ−) = ρ+u+ − ρ−u−,

ξ′(t) (ρ+u+ − ρ−u−) = ρ+ (u+)
2 − ρ− (u−)

2
.

After eliminating ξ′ from this system, one obtains ρ+ρ− (u+ − u−)
2

= 0, which implies
u+ = u−. Therefore, in order to support the shock discontinuity in the velocity field,
the density must have a stronger (than a shock) singularity at x = ξ′(t). Since in the
Burgers equation, the characteristic lines impinge each other and thus, as part of the
system (1.2), cause a mass concentration at the velocity discontinuity line, resulting
in the formation of a δ-type singularity in the density field there.

The two-dimensional (2-D) version of (1.1) reads as

(1.5)

⎧⎨⎩
ρt + (ρu)x + (ρv)y = 0,
(ρu)t + (ρu2)x + (ρuv)y = 0,
(ρv)t + (ρuv)x + (ρv2)y = 0.

Compared to the 1-D case, solutions of the 2-D system have a similar but essentially
more sophisticated mechanism of singularities formation due to the dimensionality
factor: strong singularities may now be formed either along surfaces or at separate
points (we expect that in the three space dimensions the situation is even more com-
plex). The system (1.5) has been intensively studied at the theoretical level (see, e.g.,
[2, 4, 6, 7, 8, 20, 21]). However, no more or less complete analytical results concerning
the existence and uniqueness of solutions in the 2-D case are available. This is pri-
marily related to the difficulties in the theoretical description of the collision of 2-D
shocks. (See section 3.2 for an extensive numerical study of this phenomenon.)

Formation and further evolution of singular shocks, their interactions as well as
the emergence of vacuum states, make development of numerical methods for the
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system (1.1) a challenging problem. A numerical method based on the movement of a
system of particles was introduced in [19]. Several finite-volume [17], kinetic [2, 3, 5],
and relaxation [1] methods have been recently proposed. These methods are able to
reasonably accurately capture δ-shocks, but their applicability is rather limited; for
example, most of these methods do not work well for problems where the velocities
change sign in regions where the density varies smoothly [17].

We develop a simple, efficient, and low-dissipative sticky particle method for pres-
sureless gas dynamics. The derivation of our method is based on a weak formulation of
the system (1.5) and can be viewed as a practical implementation of the sticky particle
method from [4]. We first approximate w by a collection of N particles, located at
(xN

i (t), yNi (t)), i = 1, . . . , N , at time t, and carrying fixed masses and momenta. The
particle locations are then evolved according to the corresponding system of ODEs,
derived by plugging the particle approximation into a weak form of (1.1). In order to
prevent the situation, in which approaching particles simply pass by each other with-
out any interaction (such an undesirable situation is obviously impossible in the 1-D
case, but is almost unavoidable in the 2-D case), we divide the computational domain
into a set of auxiliary cells and compute the total mass and momenta in each cell.
The particle velocities are then approximated using the global conservative piecewise
polynomial interpolants of ρ, ρu, and ρv, constructed over an auxiliary Cartesian
mesh. This way an interaction of all particles located in the same cell is guaranteed.
When the particles get even closer to each other, we unite them into a new particle,
located at the center of mass of the original clustered particles. The mass (momen-
tum) of the new particle is simply the sum of the masses (corresponding momenta) of
the replaced particles, and the velocities of the new particle are uniquely determined
from the conservation requirements. This particle merger procedure results in mass
concentration, which is an essential property of pressureless gases.

We would like to note that our 2-D sticky particle method can be extended to
any number of space dimensions in a rather straightforward manner. In this paper,
we restrict our consideration to the 1-D and 2-D cases only, since, to the best of our
knowledge, no analytical results on three-dimensional (3-D) pressureless gas dynamics
system are available, and it is therefore hard to set up convincing 3-D numerical
experiments.

We test our method on a number of 1-D and 2-D numerical examples, in which we
compare the results obtained by the new (nondissipative) sticky particle method and
by the (dissipative) second-order central-upwind scheme from [11]. The latter scheme
is a high-resolution Godunov-type finite-volume method that belongs to a family of
central schemes, which may serve as “black-box” solvers for multidimensional hy-
perbolic systems of conservation laws. The prototype of modern central schemes is
the first-order Lax–Friedrichs scheme [9, 16], which is the most universal method for
solving (multidimensional systems of) time-dependent PDEs. However, its excessive
numerical dissipation prevents sharp resolution and therefore in practice one has to
use higher-order schemes. The first high-resolution nonoscillatory central scheme—the
second-order Nessyahu–Tadmor scheme—was proposed in [18]. The amount of numer-
ical dissipation present in projection-evolution central schemes was further reduced
by incorporating some more upwinding information on local speeds of propagation
into the evolution step [12, 14] (the resulting schemes thus have been referred to as
central-upwind schemes) and, more recently, by enhancing the accuracy of the pro-
jection step [11, 13]. We note that the only upwinding information required by the
central-upwind schemes is the eigenvalues of the Jacobians, and therefore application
of these schemes to nonstrictly hyperbolic systems like (1.5) is straightforward.
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The paper is organized as follows. We start in section 2 by introducing the new
sticky particle method for the system (1.5). We then describe, in section 2.1, the
velocity correction procedure and, in section 2.2, an algorithm of the unification of
clustering particles. The main analytical result in section 2.3 is Theorem 2.1, where
we show that even though our particle solution fails to satisfy (1.1) in a weak sense
defined in [21], the relevant errors can be rigorously estimated. We then provide a
heuristic justification why these errors tend to zero as N → ∞. We conclude in
section 3 with several 1-D and 2-D numerical examples and demonstrate that the new
method accurately tracks the evolution of developing discontinuities. We also compare
solutions computed by the sticky particle method with the corresponding solutions
computed using the second-order semidiscrete central-upwind scheme, developed in
[11, 12, 14]. A brief description of the central-upwind scheme for the pressureless gas
dynamics system (1.5) is provided in Appendix A.

2. Derivation of the sticky particle method. We consider the system (1.1)
subject to the compactly supported (or periodic) initial data,

(2.1) w(x, 0) ≡ (ρ(x, 0), ρu(x, 0), ρv(x, 0))T , x := (x, y)T ,

and look for the solution of the initial-value problem (1.1), (2.1) in the particle form,

(2.2) wN(x, t) =

N∑
i=1

αi(t)δ(x − xN
i (t)), xN

i := (xN
i , yNi )T, αi = (mi,miui,mivi)

T .

Here, N is a total number of particles, xN
i (t) is the location of the ith particle at time

t, and mi,miui, and mivi are its mass, the x-, and the y-momenta, respectively.
In order to study the particle time evolution, we plug (2.2) into the weak formu-

lation of the system (1.1),

(2.3)

∫ ∞

0

∫∫
R2

{
wN · [ϕt + uϕx + vϕy]

}
dxdt−

∫∫
R2

wN (x, 0) ·ϕ(x, 0) dx = 0,

where ϕ is an arbitrary C1
0 test function. As a result, (2.3) reduces to

(2.4)
N∑
i=1

∫ ∞

0

αi(t) ·
{
ϕt + uϕx + vϕy

} ∣∣∣∣∣
(x,t)=(xN

i (t),t)

dt−
N∑
i=1

αi(0) ·ϕ(xN
i (0), 0) = 0,

which should be satisfied for any ϕ. Evolving particle locations according to the
following system of ODEs:

(2.5)
dxN

i (t)

dt
= u(xN

i (t), t),
dyNi (t)

dt
= v(xN

i (t), t), i = 1, . . . , N,

and integrating by parts, we rewrite (2.4) as

N∑
i=1

∫ ∞

0

dαi(t)

dt
·ϕ(xN

i (t), t) dt = 0.

The last equation implies

(2.6)
dαi(t)

dt
= 0, i = 1, . . . , N,
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that is, the particle weights remain constant in time. Thus, the weights can be
determined from the initial conditions, for instance, in the following manner. We
divide the computational domain Ω into N subdomains Ωi, i = 1, . . . , N , and place
an ith particle with

αi :=

∫∫
Ωi

w(x, 0) dx

into the center of Ωi, denoted by xN
i (0) ≡ (xN

i (0), yNi (0)), which will serve as initial
data for the ODE system (2.5).

2.1. Particle velocities. In order to be able to solve the system of ODEs (2.5),
one would need to recover the particle velocities at any given time moment. The
simplest (and the least dissipative) way to compute the velocities is to divide the
corresponding particle momenta by its mass, that is, by taking

(2.7) ui ≡ u(xN
i (t), t) :=

miui

mi
, vi ≡ v(xN

i (t), t) :=
mivi
mi

.

In fact, this means that every particle travels with constant velocity until it collides
with another particle (see section 2.2). This approach can be rigorously justified
through the weak formulation (2.3) and it seems to work perfectly in the 1-D case,
in which collision of approaching particles is unavoidable. However, in the 2-D case,
the probability of collision of two particles approaching the same singularity curve
is zero unless a special symmetry in initial particle locations has been imposed (see
Example 5 in section 3.2).

We propose an alternative way of particle velocities reconstruction, which is in-
dependent of an initial placement of particles. Our approach is based on a global
piecewise polynomial reconstruction technique, which is widely used in finite-volume
framework (see Appendix A and the references therein). To adopt this technique to a
mesh-free particle method we introduce an auxiliary Cartesian grid (which may vary
in time). The grid should be adapted to the particle distribution so that the number
of particles in every cell is about the same. In our numerical experiments, we have
used the simplest strategy: we have adapted the auxiliary grid to the initial (uniform)
particle distribution only by taking the size of the cells to be twice larger than the
distance between the particles. A more sophisticated adaptation strategy may lead to
more accurate results, but its optimization may substantially increase the complexity
of the proposed sticky particle method.

Taking a simple uniform auxiliary grid, xj ≡ jΔx, yk ≡ kΔy, we first compute
the cell averages of the conserved quantities at time t,

(2.8) w̄j,k(t) =
1

ΔxΔy

∑
i:xN

i (t)∈Ij,k

αi, Ij,k = [xj− 1
2
, xj+ 1

2
] × [yk− 1

2
, yk+ 1

2
].

Using these cell averages, we then reconstruct a nonoscillatory piecewise polynomial
interpolant of an appropriate order of accuracy, denoted by

w̃(x, t) := (w1(x, t), w2(x, t), w3(x, t))T ,

which is used to compute the particle velocities,

(2.9) ui :=
w̃2(xN

i (t), t)

w̃1(xN
i (t), t)

, vi :=
w̃3(xN

i (t), t)

w̃1(xN
i (t), t)

.
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Notice that in order to ensure that no mass (momentum) is artificially lost (created)
at this step, the reconstruction must be performed in a conservative manner, namely,
one should guarantee that ∑

i:xN
i (t)∈Ij,k̃

w(xN
i (t), t) = w̄j,k(t).

We achieve the conservation (in fact, while the mass is conserved exactly, only ap-
proximate momentum conservation is guaranteed; see the computation in section 2.3)
by taking w̃ to be a second-order accurate piecewise linear reconstruction centered at
the center of mass of the particles located in the Ij,k cell,

w̃(x, y, t) = w̄j,k + (sx)j,k(x− xCM
j,k (t))

+ (sy)j,k(y − yCM
j,k (t)) for (x, y) ∈ Ij,k,(2.10)

where the coordinates of the center of mass are

(2.11) xCM
j,k (t) :=

∑
i:xN

i (t)∈Ij,k

mix
N
i (t)

∑
i:xN

i (t)∈Ij,k

mi

, yCM
j,k (t) :=

∑
i:xN

i (t)∈Ij,k

miy
N
i (t)

∑
i:xN

i (t)∈Ij,k

mi

,

and the slopes (sx)j,k and (sy)j,k are (at least) first-order approximations of the

derivatives wx(xCM
j,k (t), yCM

j,k (t)) and wy(x
CM
j,k (t), yCM

j,k (t)), respectively.

Finally, in order to ensure a nonoscillatory nature of the reconstruction (2.10),
the slopes (sx)j,k and (sy)j,k should be computed using a nonlinear limiter. In our
numerical experiments, we have used the minmod limiter applied in the following way.

Let us take, for example, the first component of w (density) and consider the four
planes, denoted by πNE

j,k , π
NW
j,k , πSE

j,k, π
SW
j,k , that pass through the following four triplets

of points:

(2.12)

πNE
j,k :

{
(xCM

j,k , yCM
j,k , w̄1

j,k), (xCM
j,k+1, y

CM
j,k+1, w̄

1
j,k+1), (xCM

j+1,k, y
CM
j+1,k, w̄

1
j+1,k)

}
,

πNW
j,k :

{
(xCM

j,k , yCM
j,k , w̄1

j,k), (xCM
j,k+1, y

CM
j,k+1, w̄

1
j,k+1), (xCM

j−1,k, y
CM
j−1,k, w̄

1
j−1,k)

}
,

πSE
j,k :

{
(xCM

j,k , yCM
j,k , w̄1

j,k), (xCM
j,k−1, y

CM
j,k−1, w̄

1
j,k−1), (xCM

j+1,k, y
CM
j+1,k, w̄

1
j+1,k)

}
,

πSW
j,k :

{
(xCM

j,k , yCM
j,k , w̄1

j,k), (xCM
j,k−1, y

CM
j,k−1, w̄

1
j,k−1), (xCM

j−1,k, y
CM
j−1,k, w̄

1
j−1,k)

}
(the dependence of {xCM

j,k } and {yCM
j,k } on t has been omitted here for briefness). We

then denote the gradients of these planes by ((πx)NE
j,k , (πy)

NE
j,k )T , ((πx)NW

j,k , (πy)
NW
j,k )T ,

etc., and take the first component of the slopes in (2.10) to be

(2.13)

(s1
x)j,k = minmod

(
(πx)NE

j,k , (πx)NW
j,k , (πx)SE

j,k, (πx)SW
j,k

)
,

(s1
y)j,k = minmod

(
(πy)

NE
j,k , (πy)

NW
j,k , (πy)

SE
j,k, (πy)

SW
j,k

)
,
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where the minmod function is defined by

(2.14) minmod(c1, c2, . . .) :=

⎧⎨⎩
min(c1, c2, . . .) if ci > 0 ∀i,
max(c1, c2, . . .) if ci < 0 ∀i,
0 otherwise.

The reconstructions for the other two fields of w (momenta) are obtained in a similar
way.

Remarks.
1. It may happen that one of the planes in (2.12) is perpendicular to the (x, y)-

plane or is not uniquely determined. Then this plane is not taken into account,
and its gradient is excluded from the formulae for the slopes in (2.13).

2. As was mentioned in section 1, our velocity recovery procedure ensures that
there is an interaction between the particles, located inside the same auxiliary
grid cell. As is illustrated in our numerical experiments (see section 3.2), this
leads to the desired clustering of particles at the singularities.

2.2. Unification of clustering particles. A major drawback of particle meth-
ods is that, in general, their resolution and efficiency significantly deteriorate when
too many particles cluster near the same point at the singularity. To prevent such an
undesired situation, we unite clustering particles according to the following algorithm.
We choose a certain critical distance dcr and as soon as the distance between any two
particles gets smaller than the critical distance, we unite them into a new “heavier”
particle.

Let us assume that at some time t, the distance between the ith and the jth
particles, |xi(t)−xj(t)|, is smaller than dcr. We then replace these two particles with
a new one of the following total mass and momenta:

(2.15) αnew = αi + αj ,

located at the center of mass of the replaced particles, namely,

(2.16) xN
new =

mix
N
i + mjx

N
j

mi + mj
.

The velocities of the new particle are determined according to the procedure in sec-
tion 2.1. After completing the replacement process (2.15)–(2.16), we check whether
any other two particles are to be united, and if not, the remaining set of particles is
further evolved in time according to (2.2), (2.5), (2.9) until another particle clustering
occurs. Then, the unification procedure is repeated, and so forth.

Remark. The critical distance dcr should be chosen experimentally. In all our
numerical examples, except for Example 4, this distance was taken a quarter of a
minimal initial distance between the particles (note that the initial distribution of
particles is rather uniform in every numerical example below). In Example 4, dcr was
made proportional to the size of the shrinking support of the solution.

We would also like to stress that our numerical experiments clearly indicate that
the presented sticky particle method does not seem to be sensitive to the choice of dcr.

2.3. On convergence of the sticky particle method. In previous sections,
a sequence of approximate solutions {wN}∞N=1 of the system (1.1) for a fixed time
interval [0, T ] has been constructed based on the dynamics of moving particles. In
this section, we show that the measures wN do not satisfy (1.1) in a weak sense.
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Nevertheless, in Theorem 2.1, we obtain rigorous estimates for relevant errors and
further discuss the heuristic justification why these errors tend to zero as N → ∞.

In order to exactly formulate the theorem, let us first describe the interactions of
moving particles in detail. Consider a time interval [t1, t2] ⊂ [0, T ], some number p
of moving particles, and a time moment t0 such that the particles evolve according
to the ODE system (2.5)–(2.6) for t ∈ [t1, t0) and t ∈ (t0, t2], while at time t0 the
particles either coalesce (Case I) or change the velocities according to (2.9) (Case II).

For the considered group of p particles, P, with the total mass

M :=
∑
i∈P

mi,

we introduce the following notation.
• Prior to t = t0 we denote by
αi = (mi,miui,mivi)

T
: weights of the particles,

(xi(t), yi(t)): their locations at time t < t0,
(x0

i , y
0
i ) = (xi(t0), yi(t0)): final locations of the particles at time t = t0.

• At t = t0 the considered p particles either
− coalesce (Case I) and then we denote by
α = (M,MU,MV ): weights of the newly formed particle of mass M ,

U =

∑
i∈P miui∑
i∈P mi

and V =

∑
i∈P mivi∑
i∈P mi

: its x- and y-velocities,

(X0, Y0) = (X(t0), Y (t0)): its initial position at time t = t0,
(X(t), Y (t)): its location at time t > t0;
or
− undergo the velocities correction (Case II) and then we denote by

α̃i = (mi,miũi,miṽi)
T
: new weights of the original p particles,

(xi(t), yi(t)): their locations, which are not instantaneously affected by the
velocities correction procedure and thus change continuously.

We also denote by
(
xCM(t), yCM(t)

)
the location of the center of mass of the

considered group of p particles,

(2.17) xCM(t) =

∑
i∈P

mixi(t)∑
i∈P

mi
, yCM(t) =

∑
i∈P

miyi(t)∑
i∈P

mi
.

Let us call by the event with respect to Case I the situation when some number
of particles coalesce at some time moment and at some location. Suppose EC1 is the
set of such events, and denote by NC1 the number of such events that take place in
the computational domain within the specified time interval. It is obvious that, in
general, NC1 is less than the initial number of particles N since each possible merging
reduces the number of particles by at least one.

Let us call by the event with respect to Case II the situation when the velocities
of a particle change according to (2.9) at some time moment. Suppose EC2 is the
set of such events, and denote by NC2 the number of such events that take place in
the computational domain within the specified time interval. Notice that all existing
particles, whose total number is always less than or equal to N , can undergo the
velocity correction procedure at every time step. The minimal distance between the
particles is controlled by the particle unification procedure and is thus proportional
to 1/

√
N . Due to the CFL condition, the size of each time step is proportional to the
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minimal distance between the particles. Therefore, the total number of time steps in
our 2-D sticky particle method is proportional to

√
N , and hence NC2 � N3/2.

We are now ready to formulate the following theorem.
Theorem 2.1. Let R be the residual of the particle solution wN , that is, let wN

satisfy the equation

wt + (uw)x + (vw)y = R(x, y, z)

in the weak sense defined in [21, Definition 1] for any time interval [t1, t2] ⊂ [0, T ].
If the slopes (sx)j,k and (sy)j,k in the piecewise linear reconstruction (2.9) are set

to be 0 in all cells Ij,k, then the size of the residual can be estimated by

(2.18) |R| ≤ Cε
∑

EC1∪EC2

⎛⎝
∑
i<l

miml (|ui − ul| + |vi − vl|)∑
l

ml
+ ε

∑
i

mi (1 + |ui| + |vi|)

⎞⎠ ,

where the summation is taken over the particles that participate in the specific event
from EC1 or EC2, and ε :=

√
(Δx)2 + (Δy)2 is the diameter of the auxiliary grid cell,

which is assumed to tend to 0 as N → ∞.
In the case where the slopes (sx)j,k and (sy)j,k in (2.9) are defined according to

formulae (2.10)–(2.12), the estimate (2.18) is also true, provided the following bound

(2.19)
∣∣(srx)j,k

(
xi − xCM

j,k

)
+ (sry)j,k

(
yi − yCM

j,k

)∣∣ ≤ Cεw̄r
j,k, r = 1, 2, 3,

is true at each auxiliary Ij,k cell and for each particle such that (xi, yi) ∈ Ij,k. Here,
xCM
j,k and yCM

j,k , given by (2.11), are the coordinates of the center of mass of the par-
ticles, located in Ij,k at the time moment when the velocity correction procedure is
performed.

Remark. The conditions (2.19) are rather technical. It is clear that for the
reconstruction (2.10)–(2.14) they hold in smooth parts of the solution (away from
vacuum), where all the slopes are bounded. In the nonsmooth parts of the solution
and near vacuum, the conditions (2.19) represent a certain nonoscillatory requirement,
which may or may not be satisfied by the reconstruction (2.10)–(2.14).

Proof. We start by observing that there is a finite number (which may be propor-
tional to N) of time moments in the interval [0, T ] at which some particle velocities
change according to either Case I or Case II. Therefore, it is enough to consider such
time intervals [t1, t2] that contain only a single moment t = t0 of the velocities change.

Let us next fix a test function, ψ ≡ (ψ1, ψ2, ψ3)T ∈ C1
0 (R2) and consider the

following two sets of time moments:

T1 := {t1i ∈ [t1, t0], i = 1, . . . , q1} and T2 := {t2i
∈ [t0, t2], i = 1, . . . , q2} ,

such that some particle either enters or leaves the domain

(2.20) Φ := suppψ1 ∪ suppψ2 ∪ suppψ3

at these times.
Notice that it suffices to consider the sets T1 and T2 to be finite. If not, then

the supports of functions ψi, i = 1, 2, 3, can be placed into larger convex sets Λi and
the functions ψi can be extended to Λi by zero. As has been mentioned above, there
is only a finite number of time moments in the interval [0, T ] at which some particle
velocities change according to either Case I or Case II. Between these time moments
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all the particles freely move along straight lines and, due to the convexity of Λi, they
can intersect the boundaries of Λi at most twice. Therefore, replacing suppψi with
Λi in (2.20) will make T1 and T2 finite.

The conservation laws are thus satisfied in any time interval [t1i , t1i+1 ] or [t2k
, t2k+1

]
since no velocities correction procedures are performed and since the test function ψ
vanishes at the points where particles enter or leave the domain Φ. Hence, it is enough
to consider only the particles dynamics in the time interval [maxi t1i

,mink t2k
], such

that at time t = maxi t1i
there are p particles (from P) inside the domain Φ and no

particles enter or leave Φ until t = mink t2k
. In order to simplify the notation, we

again denote such interval by [t1, t2].
Case I. First, we suppose that the particle formed at the time moment t = t0

stays inside the domain Φ. We then plug the particle solution (2.2) into the weak
formulation (in the sense of [21, Definition 1]) of (1.1) over the time interval [t1, t2] to
compute the residuals for the equations of mass and momenta conservation.

• From the mass conservation equation we obtain∫ t0

t1

{∑
i∈P

[
ψ1
x(xi(τ), yi(τ))miui + ψ1

y(xi(τ), yi(τ))mivi
]}

dτ

+

∫ t2

t0

{
ψ1
x(X(τ), Y (τ))MU + ψ1

y(X(τ), Y (τ))MV
}
dτ

=

∫ t0

t1

d

dτ

∑
i∈P

miψ
1(xi(τ), yi(τ)) dτ +

∫ t2

t0

d

dτ
Mψ1(X(τ), Y (τ)) dτ

= Mψ1(X(t2), Y (t2)) −
∑
i∈P

miψ
1(xi(t1), yi(t1)) + R1,

where

(2.21) R1 =
∑
i∈P

miψ
1(x0

i , y
0
i ) −Mψ1(X0, Y0).

Rewriting (2.21), using the Taylor expansion about (X0, Y0) and taking into account
(2.17) for t = t0, we arrive at

R1 =
∑
i∈P

mi

[
ψ1(x0

i , y
0
i ) − ψ1(X0, Y0)

]
=
∑
i∈P

mi

[
ψ1
x(X0, Y0)

(
x0
i −X0

)
+ ψ1

y(X0, Y0)
(
y0
i − Y0

)
+ O(ε2)

]
= ψ1

x(X0, Y0)

[∑
i∈P

mix
0
i −MX0

]
+ ψ1

y(X0, Y0)

[∑
i∈P

miy
0
i −MY0

]
+ M · O(ε2)

= M · O(ε2).(2.22)

• From the x-momentum conservation equation we obtain∫ t0

t1

{∑
i∈P

[
ψ2
x(xi(τ), yi(τ))ui ·miui + ψ2

y(xi(τ), yi(τ))vi ·miui

]}
dτ

+

∫ t2

t0

{
ψ2
x(X(τ), Y (τ))U ·MU + ψ2

y(X(τ), Y (τ))V ·MU
}
dτ
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=

∫ t0

t1

d

dτ

∑
i∈P

miuiψ
2(xi(τ), yi(τ)) dτ +

∫ t2

t0

d

dτ
MUψ2(X(τ), Y (τ)) dτ

= MUψ2(X(t2), Y (t2)) −
∑
i∈P

miuiψ
2(xi(t1), yi(t1)) + R2,

where

(2.23) R2 =
∑
i∈P

miuiψ
2(x0

i , y
0
i ) −MUψ2(X0, Y0).

We now rewrite (2.23) and use the Taylor expansion about (X0, Y0) and (2.17) to
obtain

R2 =
∑
i∈P

miui

[
ψ2(x0

i , y
0
i ) − ψ2(X0, Y0)

]
=
∑
i∈P

miui

[
ψ2
x(X0, Y0)

(
x0
i −X0

)
+ ψ2

y(X0, Y0)
(
y0
i − Y0

)
+ O(ε2)

]
= ψ2

x(X0, Y0)

[∑
i∈P

miuix
0
i −MUX0

]
+ ψ2

y(X0, Y0)

[∑
i∈P

miuiy
0
i −MUY0

]
+ MU · O(ε2)

= ψ2
x(X0, Y0)

⎡⎢⎣∑
i∈P

miuix
0
i −

∑
i∈P

miui ·
∑
l∈P

mlx
0
l∑

l∈P
ml

⎤⎥⎦
+ ψ2

y(X0, Y0)

⎡⎢⎣∑
i∈P

miuiy
0
i −

∑
i∈P

miui ·
∑
l∈P

mly
0
l∑

l∈P
ml

⎤⎥⎦+ MU · O(ε2).

Then, taking into account that

∑
i∈P

miuix
0
i −

∑
i∈P

miui ·
∑
l∈P

mlx
0
l∑

l∈P
ml

=

∑
i,l∈P

(
mlmiuix

0
i −mimluix

0
l

)
∑
l∈P

ml

=

∑
i,l∈P

mimlui

(
x0
i − x0

l

)
∑
l∈P

ml
=

∑
i,l∈P:i<l

[
mimlui

(
x0
i − x0

l

)
+ mlmiul

(
x0
l − x0

i

)]
∑
l∈P

ml

=

∑
i,l∈P:i<l

miml

(
x0
i − x0

l

)
(ui − ul)∑

l∈P
ml

,

we end up with

R2 = ψ2
x(X0, Y0)

∑
i,l∈P:i<l

miml(x
0
i − x0

l )(ui − ul)∑
l∈P

ml

+ ψ2
y(X0, Y0)

∑
i,l∈P:i<l

miml(y
0
i − y0

l )(ui − ul)∑
l∈P

ml
+ MU · O(ε2).(2.24)
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• In a similar manner, we consider the third component of the residual,

(2.25) R3 =
∑
i∈P

miviψ
3(x0

i , y
0
i ) −MV ψ3(X0, Y0),

and then from the y-momentum conservation equation derive

R3 = ψ3
x(X0, Y0)

∑
i,l∈P:i<l

miml(x
0
i − x0

l )(vi − vl)∑
l∈P

ml

+ ψ3
y(X0, Y0)

∑
i,l∈P:i<l

miml(y
0
i − y0

l )(vi − vl)∑
l∈P

ml
+ MV · O(ε2).(2.26)

Finally, combining formulae (2.22), (2.24), and (2.26) and using the fact that the
distance between (x0

i , y
0
i ) and (x0

l , y
0
l ) is less than dcr < ε, we immediately conclude

with the desired estimate (2.18).
Remark. Recall that formulae (2.22), (2.24), and (2.26) were derived under the

assumption that the particle formed at t = t0 stays inside the domain Φ. If not, then
ψ(X0, Y0) = 0 and all the particles from P lie within the distance dcr < ε from the
boundary of ψ. Thus the estimate (2.18) follows (as can be seen from formulae (2.21),
(2.23), and (2.25)) since ψ ∈ C1

0 (R2) and |ψ(x0
i , y

0
i )| < Cε2 for all (x0

i , y
0
i ) ∈ P.

Case II. As in Case I, we plug the particle solution (2.2) into the weak formulation
(in the sense of [21, Definition 1]) of (1.1) over the time interval [t1, t2] to compute
the corresponding residuals. However, since the set of particles participating in the
velocities correction procedure at time t = t0, described in section 2.1, coincides (in
general) with the set of all existing particles (including the ones lying outside the
domain Φ), the residuals computation is carried out as follows.

• From the mass conservation equation we obtain∫ t0

t1

{∑
i∈P

[
ψ1
x(xi(τ), yi(τ))miui + ψ1

y(xi(τ), yi(τ))mivi
]}

dτ

+

∫ t2

t0

{∑
i∈P

[
ψ1
x(xi(τ), yi(τ))miũi + ψ1

y(xi(τ), yi(τ))miṽi
]}

dτ

=

∫ t0

t1

d

dτ

∑
i∈P

miψ
1(xi(τ), yi(τ)) dτ +

∫ t2

t0

d

dτ

∑
i∈P

miψ
1(xi(τ), yi(τ)) dτ

=
∑
i∈P

miψ
1(xi(t2), yi(t2)) −

∑
i∈P

miψ
1(xi(t1), yi(t1)).

Unlike Case I, the particle trajectories are now continuous within the time interval
[t1, t2] because only particle velocities may change at t = t0. Therefore, the first
component of the residual is

(2.27) R1 =
∑
i∈P

miψ
1(x0

i , y
0
i ) −

∑
i∈P

miψ
1(x0

i , y
0
i ) = 0.

• From the x-momentum conservation equation we obtain∫ t0

t1

{∑
i∈P

[
ψ2
x(xi(τ), yi(τ))ui ·miui + ψ2

y(xi(τ), yi(τ))vi ·miui

]}
dτ
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+

∫ t2

t0

{∑
i∈P

[
ψ2
x(xi(τ), yi(τ))ũi ·miũi + ψ2

y(xi(τ), yi(τ))ṽi ·miũi

]}
dτ

=

∫ t0

t1

d

dτ

∑
i∈P

miuiψ
2(xi(τ), yi(τ)) dτ +

∫ t2

t0

d

dτ

∑
i∈P

miũiψ
2(xi(τ), yi(τ)) dτ

=
∑
i∈P

miũiψ
2(xi(t2), yi(t2)) −

∑
i∈P

miuiψ
2(xi(t1), yi(t1)) + R2,

where

(2.28) R2 =
∑
i∈P

ψ2(x0
i , y

0
i )(miui −miũi).

Note that the summation in (2.28) is taken over the particles located in the domain
Φ, which consists of a certain number of auxiliary cells (or their parts) Ij,k. Thus,
the residual R2 can be written as the sum of residuals in each cell Ij,k that contains
(at least) one particle and has a nonempty intersection with Φ. Let us now consider
such a cell, denote the set of particles, located in it at time moment t = t0, by Pj,k,
and the residual in this cell by R2

j,k.

Applying the Taylor expansion about the center of mass (xCM
j,k , yCM

j,k ) given by
(2.11) yields

R2
j,k =

∑
i∈Pj,k

[
ψ2
(
xCM
j,k , yCM

j,k

)
+ ψ2

x

(
xCM
j,k , yCM

j,k

) (
x0
i − xCM

j,k

)
+ψ2

y

(
xCM
j,k , yCM

j,k

) (
y0
i − yCM

j,k

)
+ O(ε2)

]
mi(ui − ũi)

=
[
ψ2
(
xCM
j,k , yCM

j,k

)
+ O(ε2)

] ∑
i∈Pj,k

mi(ui − ũi)

+ψ2
x

(
xCM
j,k , yCM

j,k

) ∑
i∈Pj,k

mi(ui − ũi)
(
x0
i − xCM

j,k

)
+ψ2

y

(
xCM
j,k , yCM

j,k

) ∑
i∈Pj,k

mi(ui − ũi)
(
y0
i − yCM

j,k

)
.(2.29)

Next, we consider each sum on the right-hand side (RHS) of (2.29) separately. For
the first sum, use formulae (2.8)–(2.10) to rewrite

∑
i∈Pj,k

mi(ui − ũi) =
∑

i∈Pj,k

mi

⎡⎣ui −
w̄2

j,k + (s2
x)j,k

(
x0
i − xCM

j,k

)
+ (s2

y)j,k

(
y0
i − yCM

j,k

)
w̄1

j,k + (s1
x)j,k

(
x0
i − xCM

j,k

)
+ (s1

y)j,k

(
y0
i − yCM

j,k

)
⎤⎦

=
∑

i∈Pj,k

mi

{
ui −

1

w̄1
j,k

[
w̄2

j,k + (s2
x)j,k

(
x0
i − xCM

j,k

)
+ (s2

y)j,k
(
y0
i − yCM

j,k

)]

×

⎡⎣1 +
(s1

x)j,k

(
x0
i − xCM

j,k

)
+ (s1

y)j,k

(
y0
i − yCM

j,k

)
w̄1

j,k

⎤⎦−1
⎫⎪⎬⎪⎭ .(2.30)

Taking into account (2.19), the last term in (2.30) is equal to

1 −
(s1

x)j,k

(
x0
i − xCM

j,k

)
+ (s1

y)j,k

(
y0
i − yCM

j,k

)
w̄1

j,k

+ O(ε2),
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and thus ∑
i∈Pj,k

mi(ui − ũi) =
1

w̄1
j,k

{
w̄1

j,k

∑
i∈Pj,k

miui

−
∑

i∈Pj,k

mi

[
w̄2

j,k −
w̄2

j,k

w̄1
j,k

(
(s1

x)j,k
(
x0
i − xCM

j,k

)
+ (s1

y)j,k
(
y0
i − yCM

j,k

))

+ (s2
x)j,k

(
x0
i − xCM

j,k

)
+ (s2

y)j,k
(
y0
i − yCM

j,k

)
+ w̄2

j,kO(ε2)

]}
.

Finally, using the definition of cell averages (2.8) and the fact that the center of mass
(xCM

j,k , yCM
j,k ) satisfies (2.11), we obtain

∑
i∈Pj,k

mi(ui − ũi) =
1

w̄1
j,k

{ ∑
i∈Pj,k

mi

(
x0
i − xCM

j,k

) [ w̄2
j,k

w̄1
j,k

(s1
x)j,k − (s2

x)j,k

]

+
∑

i∈Pj,k

mi

(
y0
i − yCM

j,k

) [ w̄2
j,k

w̄1
j,k

(s1
y)j,k − (s2

y)j,k

]
+ w̄2

j,kO(ε2)
∑

i∈Pj,k

mi

}

= ΔxΔyw̄2
j,kO(ε2) =

∑
i∈Pj,k

miui · O(ε2).(2.31)

Remark. Note that if (sx)j,k = (sy)j,k = 0, then the RHS of (2.31) vanishes

and
∑

i∈Pj,k
mi(ui − ũi) = 0. Otherwise, one has an approximate x-momentum

conservation only.
We next consider the second sum on the RHS of (2.29) and in a similar manner

obtain ∑
i∈Pj,k

mi(ui − ũi)
(
x0
i − xCM

j,k

)
=

1

w̄1
j,k

{
w̄1

j,k

∑
i∈Pj,k

miui

(
x0
i − xCM

j,k

)
−

∑
i∈Pj,k

mi

(
x0
i − xCM

j,k

)(
w̄2

j,k +

[
(s2

x)j,k −
w̄2

j,k

w̄1
j,k

(s1
x)j,k

] (
x0
i − xCM

j,k

)
+

[
(s2

y)j,k −
w̄2

j,k

w̄1
j,k

(s1
y)j,k

] (
y0
i − yCM

j,k

)
+ w̄2

j,kO(ε2)

)}
=

∑
i∈Pj,k

miui

(
x0
i − xCM

j,k

)
+

∑
i∈Pj,k

miui · O(ε2).(2.32)

Then, using the definition of the center of mass (2.11) we rewrite the first term on
the RHS of (2.32) as

∑
i∈Pj,k

miui

(
x0
i − xCM

j,k

)
=

∑
i∈Pj,k

miuix
0
i −

∑
i∈Pj,k

miui

∑
l∈Pj,k

mlx
0
l∑

l∈Pj,k

ml

=

∑
i,l∈Pj,k

(
mlmiuix

0
i −mimluix

0
l

)
∑

l∈Pj,k

ml
=

∑
i,l∈Pj,k:i<l

miml

(
x0
i − x0

l

)
(ui − ul)∑

l∈Pj,k

ml
,
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and conclude with
(2.33)∑
i∈Pj,k

mi(ui−ũi)
(
x0
i − xCM

j,k

)
=

∑
i,l∈Pj,k:i<l

miml

(
x0
i − x0

l

)
(ui − ul)∑

l∈Pj,k

ml
+
∑

i∈Pj,k

miui·O(ε2).

The estimate on the third sum on the RHS of (2.29) is completely analogous:
(2.34)∑
i∈Pj,k

mi(ui−ũi)
(
y0
i − yCM

j,k

)
=

∑
i,l∈Pj,k:i<l

miml

(
y0
i − y0

l

)
(ui − ul)∑

l∈Pj,k

ml
+
∑

i∈Pj,k

miui·O(ε2).

We now substitute (2.31), (2.33), and (2.34) into (2.29) and sum up all R2
j,k to end

up with the following estimate:

(2.35) |R2| ≤ Cε
∑
j,k

⎛⎜⎝
∑

i,l∈Pj,k:i<l

miml|ui − ul|∑
l∈Pj,k

ml
+ ε

∑
i∈Pj,k

mi|ui|

⎞⎟⎠ .

• A similar estimate on R3 is obtained from the y-momentum conservation equa-
tion,

(2.36) |R3| ≤ Cε
∑
j,k

⎛⎜⎝
∑

i,l∈Pj,k:i<l

miml|vi − vl|∑
l∈Pj,k

ml
+ ε

∑
i∈Pj,k

mi|vi|

⎞⎟⎠ .

Finally, adding up (2.27), (2.35), and (2.36), and considering velocity corrections
occurring in different auxiliary cells to be different events from the set EC2, we obtain
the estimate (2.18) in Case II.

This completes the proof of the theorem since in our 2-D sticky particle method
the only contributions to the residual R come from the particle interactions enforced
by the merger (Case I) and velocity correction (Case II) procedures.

Remark. Note that as has been shown in the proof (see the estimate (2.31) and the
remark after it), the use of the second-order reconstruction (2.10) results in additional
errors in momenta conservation equations compared with the first-order ((sx)j,k =
(sy)j,k = 0 for all j, k) approach. However, a more accurate velocity reconstruction
typically leads to a more accurate particle dynamics, while the momenta conservation
errors and their contributions to the corresponding residuals (the second terms on the
RHS of (2.35) and (2.36)) are relatively small.

We conclude this section with a brief discussion of the result established in The-
orem 2.1, which provides us with an estimate on the size of the residual. We view
this result as a step toward the convergence proof of the proposed 2-D sticky particle
method. Completing the proof would require obtaining more precise estimates on the
residual, which, in general, may be rather difficult. However, according to the conjec-
ture in [21], the following scenario of mass concentration occurs. Let us first mention
that the system (1.5) has straight bicharacteristic lines, which usually intersect at
some time moment (analogously to the 1-D case) and form curves in the (x, y)-plane
(their representation in the (t, x, y)-space is not a characteristic surface, but a surface
defined by a generalization of the Hugoniot relations) with a finite mass distributed
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along the curves as a δ-function. These curves then start to impinge each other and
form the singularities with finite masses at separate points. The collisions of the
curves take place, in general, transversally, but no rigorous theoretical description of
such a solution behavior is available. Assuming now that solutions of (1.5) have such
a structure (this assumption has also been supported by the numerical experiments
reported in section 3.2, Examples 7, 8a, and 8b), it is possible to show that |R| → 0
as N → ∞.

Indeed, following the above scenario when particles coalesce (Case I) they form
curves with finite masses. In this case, the differences |ui − ul| and |vi − vl| are finite,
the considered cluster of particles P merges into a particle with mass ∼ ε, while
other, nonclustered, particles have masses ∼ ε2. Also, ml ∼ ε2 and |P| ∼ 1/ε. Thus,∑

l∈P ml ∼ ε,
∑

i,l∈P:i<l miml ∼ ε3, and hence one gets |R| ∼ ε3 · NC1. Finally,

NC1 < C/ε2 since it is bounded by the total number of particles N , and thus we
obtain that |R| ∼ ε, which tends to zero as N tends to infinity.

We now consider the situation of “pure” Case 2, when only the velocities cor-
rection procedure is performed and no particles coalesce. In this case, taking into
account that the corrected velocities are also close and masses of particles are of order
ε2, one has |R| ∼ ε4 ·NC2. But, as has been mentioned before, NC2 ∼ N3/2 ∼ 1/ε3,
and thus we obtain that |R| ∼ ε in Case II as well.

We hope that the presented heuristic convergence arguments can be “upgraded”
to a rigorous convergence proof and we plan to do so in forthcoming papers.

3. Numerical examples. In this section, we test the new sticky particle (SP)
method presented in section 2 on a number of 1-D and 2-D numerical examples.
We also compare solutions computed by the particle method with the corresponding
solutions computed using the second-order semidiscrete central-upwind (CU) scheme,
developed in [11, 12, 14]. A brief description of the CU scheme for the pressureless
gas dynamics system (1.5) is provided in Appendix A. Numerical time integration
has been performed using the strong stability preserving Runge–Kutta method [10].

Note that in all the examples below, we do not reconstruct point values of the
computed density from its particle distribution at the final time but rather plot the
total mass m of each particle. For the purpose of fair comparison, the solutions
computed by the finite-volume CU scheme are always presented in a similar way, that
is, we plot the total mass in each cell rather than the corresponding cell averages.

3.1. One-dimensional examples. The following four examples are devoted to
the 1-D system (1.2). A 1-D version of our SP method can be easily deduced from its
2-D formulation in section 2.

Example 1. In the first numerical test, taken from [5], we solve the system (1.2)
subject to the following Riemann initial data:

(3.1) (ρ(x, 0), u(x, 0)) =

{
(1.00, 0.5) if x < 0,
(0.25,−0.4) if x > 0.

In this example, a δ-shock develops immediately and propagates with speed 0.2.
We take Δx = 0.005 for the CU scheme and the initial uniform distribution

of particles, placed Δx away from each other, for the SP method. In Figure 1,
the particle/cell masses and the corresponding velocities, computed by both the SP
method and the CU scheme, are plotted at time t = 0.5. Note that because of the
point mass concentration occurring at the δ-shock, the masses are presented in the
logarithmic scale so that a more detailed structure of the solution can be seen.
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Fig. 1. Solution of (1.2), (3.1) computed by the SP method and the CU scheme.

Figure 1 demonstrates that both schemes are able to capture the δ-shock with
the correct propagation speed, but one can clearly see the superiority of the results
obtained by the SP method, which does not smear the δ-shock.

Example 2. We consider a test problem of the collision of two compactly sup-
ported clouds. The initial data, prescribed at t = −1, are taken from [17],

(3.2) (ρ(x,−1), u(x,−1)) =

⎧⎨⎩
(2, 1) if −2 < x < −1,
(1,−1) if 1 < x < 5,
(0, 0) otherwise.

The two clouds collide at time t = 0. The left cloud is fully accelerated into the δ-wave
at about t ≈ 1.21 and the right cloud is fully accelerated at about t ≈ 4.25. We use a
uniform spatial grid with Δx = 0.0125 for the CU scheme. The SP method is started
with 400 particles, placed only in the intervals [−2,−1] and [1, 5], where the dust is
initially present. Figures 2 and 3 show the particle/cell masses (in the logarithmic
scale) at times t = −1, −0.5, 0, 0.5, 1, 1.5, 3.5, and 6. As one can observe, both
methods give the same correct location of the δ-wave. However, both the δ-wave and
the contact discontinuities computed by the CU scheme are smeared over a number
of cells, while the resolution achieved by the SP method is almost perfect. We note
that the mass computed by the SP method is concentrated in a single point by time
t = 6.

Example 3. In this example, we demonstrate an interaction of two singular
shocks by numerically solving the system (1.2) subject to the following initial data:

(3.3) (ρ(x, 0), u(x, 0)) =

⎧⎪⎪⎨⎪⎪⎩
(0.25, 1.00) if −2.75 < x < −0.75,
(0.25, 0.50) if −0.75 < x < 0.5,

(1.00,−1.00) if 0.5 < x < 1.5,
(0.00, 0.00) otherwise.

In Figure 4, we plot the particle/cell masses (in the logarithmic scale) computed by
both the SP method and the CU scheme at times t = 0, 0.5, 1, 1.5, 2, and 2.5. We start
the SP method with N = 425 particles, which are uniformly distributed in the interval
[−2.75, 1.5]. For the CU scheme, we use a uniform spatial grid with Δx = 0.01. Again,
one can clearly see that the SP method outperforms the finite-volume CU scheme by
far.
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Fig. 2. Solution (masses) of (1.2), (3.2) computed by the SP method and the CU scheme.

Example 4. The last 1-D example is devoted to a problem where the velocity
u changes its sign in the region with varying density. This significantly increases
the level of complexity of the problem due to a special way the singularity forms, as
demonstrated below.

We consider the system (1.2) subject to the smooth initial data:
(3.4)

ρ(x, 0) =

{
2 − sinx if −π ≤ x ≤ π,

0 otherwise,
u(x, 0) =

{
1 − x if −π ≤ x ≤ π,

0 otherwise,

for which the exact solution can be found analytically as follows. A continuous part
of the solution is obtained by the method of characteristics:

(3.5) u(X(t), t) = 1 − x0, ρ(X(t), t) =
2 − sinx0

1 − t
,

where

(3.6) X(t) = x0 + t(1 − x0)

is the characteristic line starting at x = x0. Obviously, the solution (3.5)–(3.6) is
valid in the domain bounded by the characteristics X−(t) = −π + t(1 + π) and
X+(t) = π + t(1 − π) and thus exists until t = 1 only; see Figure 5.

As t approaches 1, the density tends to infinity, more and more mass is con-
centrated near the point x = 1, and therefore one can anticipate a massive particle
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Fig. 3. Solution (masses) of (1.2), (3.2) computed by the SP method and the CU scheme.

formation at this point. In order to determine a singular part of the solution of (1.2),
(3.4) we use the variational representation of the generalized solution of pressureless
gas dynamics equations introduced in [8]. To this end, we consider the function

F (x0) ≡ F (x0;x, t) :=

∫ x0

0

[s− x + t u(s, 0)] ρ(s, 0) ds(3.7)

=

∫ x0

0

[s− x + t (1 − s)] (2 − sin s) ds,

and according to [8], the smoothness of the solution depends on a number of points
at which the global minimum of F is attained. If F has only one global minimum
point, then the solution is continuous at (x, t); otherwise the solution develops a shock
discontinuity in velocity and a δ-shock in density there. In the latter case, suppose
that there exists a set of points

{
x1

0, x
2
0, . . .

}
at which F assumes its global minimum,

and denote x−
0 := min

{
x1

0, x
2
0, . . .

}
and x+

0 := max
{
x1

0, x
2
0, . . .

}
. Then the left and

right values of ρ and u at (x, t) are computed from (3.5) with x0 = x−
0 and x0 = x+

0 ,
respectively. In addition, the δ-function singularity at this point (“a massive particle”)
has the following mass and momentum:

(3.8) M =

∫ x+
0

x−
0

ρ(s, 0) ds, I =

∫ x+
0

x−
0

u(s, 0)ρ(s, 0) ds,

and according to mass and momentum conservation, the speed of the massive particle
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Fig. 4. Solution (masses) of (1.2), (3.3) computed by the SP method and the CU scheme.

is

(3.9)
dX

dt
=

I

M
.

For the problem under consideration, the singularity is first formed at the point
(x, t) = (1, 1), and for t ≥ 1, the global minimum of F is attained at two points
only: x−

0 = −π and x+
0 = π. Therefore, by t = 1 all the mass is concentrated in

one massive particle with the mass M = 4π and the momentum I = 6π (according
to (3.8)), and the movement of this particle is described, according to (3.9), by the
formula X(t) = (3t− 1)/2, t ≥ 1; see Figure 5.



2428 A. CHERTOCK, A. KURGANOV, AND YU. RYKOV

1

1

x=X- (t) x=X+ (t)

x=X(t)

x

t

−π π

Fig. 5. Characteristics diagram for the initial-value problem (1.2), (3.4).
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Fig. 6. Solution (masses) of (1.2), (3.4) computed by the SP method for t < 1 (left), when the
solution is smooth inside its shrinking support, and for t ≥ 1 (right), when the total mass M = 4π
is concentrated in one particle, propagating with the constant speed I/M = 3/2. Note that due to
a certain arbitrariness in the selection of the unification parameter dcr, the final collapse of the
numerical solution occurs at a slightly later time t ≈ 1.03.

We now turn to the presentation of our numerical results. We start the SP
simulations with 400 particles uniformly distributed over the interval [−π, π]. In
Figure 6, we plot the particle masses computed by the SP method only, since the CU
scheme could not be applied to this problem at large times (t ∼ 1 and larger). We
note that, as indicated in [17], other finite-volume methods are likely to fail to capture
the solution of the initial-value problem (1.2), (3.4) as well.

3.2. Two-dimensional examples.

Example 5. We start by numerically solving the 2-D analogue of the 1-D problem
considered in Example 1, namely, we solve the system (1.5) in the square domain
[−1, 1] × [−1, 1] subject to the 1-D Riemann initial data, artificially extended to two
space dimensions:

(3.10) (ρ(x, y, 0), u(x, y, 0), v(x, y, 0)) =

{
(1.00, 0.5, 0) if x < 0,
(0.25,−0.4, 0) if x > 0.

The purpose of this simple example is to demonstrate the failure of the “standard”
velocity recovery procedure (2.7) and the ability of the alternative procedure (2.9),
developed in section 2.1, to force the desired interaction of nearby particles.
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Recall that in this example a δ-shock develops immediately at the line x = 0
and then propagates to the right with speed 0.2. As has been already mentioned,
the probability of collision of two particles approaching the same singularity curve in
two dimensions is, in general, zero, and therefore using formula (2.7) for computing
velocities requires a special symmetric setting of the initial locations of particles; see
Figure 7 (left). Obviously, if at time t = 0 the particles are placed as shown in Figure 7
(right) and if the unification parameter is reasonably small (dcr < Δy/2), the particles
moving from the left and from the right will never interact and the δ-shock will not
be captured numerically. We note that for a more complicated, truly 2-D initial data
it may be impossible to impose any kind of symmetry, so the situation with the data
as in Figure 7 (right) is generic.

Fig. 7. Initial locations of particles in Example 5: symmetric (left) and asymmetric (right) cases.

On the other hand, the velocity recovery procedure (2.9) ensures an interaction
between particles independently of their initial placement. In Figures 8 and 9, we
show the masses and x-velocities of the particles at time t = 0.5. They are computed
by the SP method with the initial locations of particles as in Figure 7 (left) and Figure
7 (right), respectively. As one can see, in both cases the SP method combined with
the velocity recovery procedure (2.9) leads to the desired clustering of particles at
the singularity. Moreover, the resolution achieved in the case of asymmetric initial
particle distribution is almost as good as in the symmetric case.

Example 6. Next, we turn to genuinely 2-D problems. First, consider the system
(1.5) subject to the following initial data:

(3.11) (ρ(x, y, 0), u(x, y, 0), v(x, y, 0)) =

⎧⎨⎩
(2, 2, 1) if (x, y) ∈ Ω,
(0, 0, 0) if (x, y) ∈ ∂Ω,
(1, 0, 0) otherwise,

where Ω = {x < 0, y < 1} ∪
{
x > 0, y > 0, x2 + y2 < 1

}
∪ {y < 0, 0 < x < 1}. The

initial location of the discontinuity ∂Ω is shown in Figure 10. According to [21], the
exact solution of the initial-value problem (1.5), (3.11) develops a δ-shock in density,
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Fig. 8. Side view on the solution of (1.5), (3.10) computed by the SP method. The initial
location of particles is shown in Figure 7 (left).
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Fig. 9. Side view on the solution of (1.5), (3.10) computed by the SP method. The initial
location of particles is shown in Figure 7 (right).

and the evolution of the shock curve is described by the following system of ODEs:

(3.12)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dX

dt
= u−

√
ρ−√

ρ− +
√
ρ+

=
2
√

2√
2 + 1

,

dY

dt
= v−

√
ρ−√

ρ− +
√
ρ+

=

√
2√

2 + 1
,

where (ρ−, u−, v−) := (2, 2, 1) are the initial values inside the domain Ω and ρ+ := 1
is the initial value of the density on the other side of the initial shock curve.

Numerically, we restrict the initial data (3.11) to the finite domain [−4, 4]×[−4, 4]
and consider the following initial-boundary value problem: (1.5), (3.11) together with
the solid wall boundary conditions. The numerical solutions, computed by the SP
method at time t = 2 with 50 × 50 and 100 × 100 initially uniformly distributed
particles, are plotted in Figure 10. The size of each point in the figure is proportional
to the mass accumulated in the particle located there. The exact solution of the
initial-boundary value problem is not known, but in the domain [0, 4] × [−2, 4] it
coincides with the solution of the original initial-value problem (1.5), (3.11), and as
can be clearly seen in Figure 10, the SP method accurately tracks the evolution of



PARTICLE METHOD FOR PRESSURELESS GAS DYNAMICS 2431

−4 −2 0 2 4
−4

−2

0

2

4

initial shock 
   location   

−4 −2 0 2 4
−4

−2

0

2

4

initial shock 
   location   

Fig. 10. Top view on the solution (masses) of (1.5), (3.11) computed by the SP method with
50× 50 (left) and 100× 100 (right) particles. The solid line is obtained from the initial shock curve
(the dashed line) by the evolution according to (3.12).

the corresponding part of the shock curve described by (3.12). Outside the domain
[0, 4] × [−2, 4], the solution is obviously affected by the boundedness of the cloud,
but the obtained numerical solution looks reasonable, as supported by the performed
mesh refinement study.

Example 7. Next, we consider an example with nonzero mass and momenta at
the initial shock curve. We numerically solve the system (1.5) subject to the following
initial data:

(3.13) (ρ(x, 0), u(x, 0), v(x, 0)) =

⎧⎨⎩
(2, 2, 2) if x ∈ Ω,

(10 δ(dist(x, ∂Ω)), 2, 1) if x ∈ ∂Ω,
(2, 0, 0) otherwise,

where x ≡ (x, y) and the domain Ω is the same as in Example 6: Ω = {x < 0, y < 1}∪{
x > 0, y > 0, x2 +y2 < 1

}
∪{y < 0, 0 < x < 1}. In the practical implementation, we

replace the δ-function along the curve ∂Ω with its approximation by a step function;
namely, we take

ρ(x, 0) =

⎧⎪⎪⎨⎪⎪⎩
10
√

2√
(Δx)

2
+ (Δy)

2
if dist(x, ∂Ω) ≤

√
(Δx)

2
+ (Δy)

2

2
√

2
,

2 otherwise.

The numerical solutions at time t = 1.5 obtained using the SP method with
101 × 101 particles (initially uniformly distributed) and the CU scheme with Δx =
Δy = 0.08 are plotted in Figures 11 and 12. Note that the maximal mass value of the
solution obtained by the CU scheme is 0.6299 while the maximal mass obtained by the
SP method is 2.7009. As before, the size of each point in the figures is proportional
to the mass accumulated in the particle located there.

Even though a complete structure of the exact solution of the initial-value problem
(1.5), (3.13) is not available, the obtained solution behavior has been expected (see
the discussion at the end of section 2). It is instructive to compare the computed
numerical solution with theoretical results presented in [21]. According to [21], if
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Fig. 11. Solution (masses) of (1.5), (3.13) computed by the SP method (left) and the CU
scheme (right).
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Fig. 12. Top view on the solution (masses) of (1.5), (3.13) computed by the SP method (left)
and the CU scheme (right). The solid lines are obtained from the initial shock curve (the dashed
line) by the evolution according to (3.14).

initially a shock curve with mass distribution P0 and velocities (U0, V0) is located
along the line x0(l) = C ≡ const, y0(l) = l, then its location at a later time is given
by

(3.14)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x = C +

[
u

2
−
(

1
2u− U0

)
P0

ρut + P0

]
t,

uy − vx =
(uV0 − vU0)P0

ρu
ln

(
1 +

ρut

P0

)
+ ul − vC,

where ρ, u, and v are the density and the corresponding velocities inside the domain.
If we now consider a part of the initial shock curve ∂Ω, namely, x0 = 1, y0 = l,
0 ≤ l ≤ 1, and substitute the corresponding values of P0 = 10, U0 = 2, V0 = 1, and
ρ = u = v = 2 into the first formula in (3.14), we obtain that at time t = 1.5 the shock
line should be located at x = 3.4375. Similarly, it can be shown that the initial shock
line x0 = l, y0 = 1, 0 ≤ l ≤ 1 should move to y = 2.5 by the time t = 1.5. As one can
see from Figure 12, both methods accurately track the evolution of the corresponding
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parts of the shock curve: in this figure, the horizontal solid line (y = 2.5) and the
vertical solid line (x = 3.4375) represent the exact shock locations, while the dots are
used to plot the numerical solution obtained by the SP method (left) and the CU
scheme (right). One can clearly observe a much better resolution of the discontinuity
achieved by the SP method.

Example 8. We now consider the system (1.5) subject to the following initial
data:

(3.15) (ρ(x, 0), u(x, 0), v(x, 0)) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2, 2, 1) if x ∈ Ω1,
(2, 1, 2) if x ∈ Ω2,
(2, η, η) if x ∈ Ω3,
(0, 0, 0) if x ∈ ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3,
(1, 0, 0) otherwise,

where Ω1 = {x < 0, x/2 + 1 < y < 1}, Ω2 = {y < 0, y/2 + 1 < x < 1}, and
Ω3 = {x < 0, y < x/2 + 1} ∪ {x > 0, y > 0, x2 + y2 < 1} ∪ {y < 0, x < y/2 + 1}.
The initial locations of the discontinuities are shown in Figures 13 and 16. As in
the previous two examples, we restrict the initial data (3.15) to the finite domain
[−4, 4] × [−4, 4] and supplement the initial-value problem (1.5), (3.15) with the solid
wall boundary conditions.

Example 8a. We first take η = 1 in (3.15). In this case, δ-shocks are immediately
formed along the initial shock curves. Then, they propagate and develop stronger δ-
type singularities at two points, which later merge into a single one in the upper right
corner of the computational domain (as in the previous numerical example, the exact
solution of the initial-value problem (1.5), (3.15) is not available, but the obtained
solution behavior is in line with our expectations; see the discussion at the end of
section 2).

We apply the SP method with initially uniformly distributed 100× 100 particles
and present the solutions, computed at times t = 2 and t = 4, in Figures 13 and
14. Once again, the size of each point in the figures is proportional to the mass
accumulated in the particle located there. For comparison purposes, we also apply
the CU scheme with Δx = Δy = 0.08 to the same initial-boundary value problem.
The obtained solution, presented in Figure 15 (left), clearly demonstrates that the
resolution achieved by the SP method is by far superior. However, since the exact
solution of this test problem is unavailable and since there is a very big discrepancy
between the solutions computed by the SP and CU methods, we also apply the CU
scheme on a much finer grid with Δx = Δy = 0.02. The obtained solution, shown
in Figure 15 (right), looks more like the SP solution in Figure 14 (right), but the
resolution is still not as high as the one achieved by our SP method; compare, for
instance, the maximal mass values—7.2927, 3.9223, and 1.0205—of the solutions,
computed by the SP method, the CU scheme on the fine grid, and the CU scheme on
the coarse grid, respectively.

Example 8b. Next, we take η = 2 − 1/
√

2 in (3.15). In this case, we observe
a more clear structure of the formed δ-shocks, which then interact with two contact
waves. This interaction, as in Example 8a, leads to formation of strong singularities.
Such a structure—strong singularities emerging from δ-shock curves—is anticipated
as a typical one for 2-D pressureless gases; see the discussion at the end of section 2.
See also [21] and the references therein.



2434 A. CHERTOCK, A. KURGANOV, AND YU. RYKOV

−4 −2 0 2 4
−4

−2

0

2

4
t=2

Ω
1
 

Ω
3 Ω

2

−4 −2 0 2 4
−4

−2

0

2

4
t=4

Ω
3

Ω
2

Ω
1

Fig. 13. Top view on the solution (masses) of (1.5), (3.15) with η = 1 at t = 2 (left) and t = 4
(right) computed by the SP method. The dashed lines represent the initial location of discontinuities.
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Fig. 14. Solution (masses) of (1.5), (3.15) with η = 1 at t = 2 (left) and t = 4 (right) computed
by the SP method.
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with Δx = Δy = 0.08 (left) and Δx = Δy = 0.02 (right).
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and t = 3 (right) computed by the SP method. The dashed lines represent the initial shock location.
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Fig. 17. Solution (masses) of (1.5), (3.15) with η = 2−1/
√

2 at t = 1.7 (left) and t = 3 (right)
computed by the SP method.

We apply the SP method with initially uniformly distributed 100× 100 particles
and present the solutions, computed at times t = 1.7 and t = 3, in Figures 16 and
17. As before, the size of each point in these figures is proportional to the mass
accumulated in the particle located there. We compare the SP solution, presented in
Figure 17 (right), with the solution computed by the CU scheme with Δx = Δy =
0.08, which is plotted in Figure 18 (left). One can clearly see the superiority of the
results achieved by the SP method. We also apply the CU scheme on a much finer
grid with Δx = Δy = 0.02. The obtained solution, shown in Figure 18 (right), looks
more like the SP solution in Figure 17 (right), but the resolution is still not as high as
the one achieved by the SP method; compare, as before, the maximal mass values—
2.9529, 1.7261, and 0.4724—of the solutions, computed by the SP method, the CU
scheme on the fine grid, and the CU scheme on the coarse grid, respectively.

Example 9. Finally, we consider the system (1.5) subject to the initial data
taken from [1, 23]. In this example, ρ(x, 0) is a Gaussian field, shown in Figures 19
and 20 (a detailed description of its generation can be found in [23, section 5.1]) and
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Fig. 18. Solution (masses) of (1.5), (3.15) with η = 2 − 1/
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2 at t = 3 computed by the CU
scheme with Δx = Δy = 0.08 (left) and Δx = Δy = 0.02 (right).

the initial velocity vector is the solution of the following elliptic problem:

(3.16)

⎧⎨⎩
u = −φx,
v = −φy,
Δφ = 4πG(ρ− ρ̄) in Ω = [0, 251] × [0, 251],

where G is the gravitational constant and ρ̄ = 1
|Ω|

∫
Ω
ρ dx dy. All the boundary condi-

tions are assumed to be periodic. These 2-D physical data are derived from large-scale
structure simulations related to the cosmological model of Zeldovich [24]. In Figures
19 and 20, we observe the formation of the large-scale structures computed by the
SP method and the CU scheme, respectively. We use a uniform spatial grid with
Δx = Δy = 1 for the CU scheme and the uniform initial distribution of 251 × 251
particles. In order to compare the results, the total mass of each cell computed by the
CU scheme has been recalculated at the location of particles. Again, the size of each
point in Figures 19 and 20 is proportional to the total mass at this point, that is, big-
ger points correspond to larger masses. As one can see, for small times both schemes
produce very similar results, while for larger times a numerical diffusion present in
the CU scheme “takes over” (compare the corresponding results at times t = 4000
and t = 15000 in Figures 19 and 20). In fact, the maximum mass accumulated at one
point by the SP method is about 15 times larger than the one accumulated by the CU
scheme. We also would like to point out that, as a result of unification of clustering
particles, the number of particles is decreasing in time and therefore the efficiency of
the SP method is increasing. For instance, the number of particles at times t = 1000,
4000, and 15000 is 2767, 1068, and 454, respectively, while computations using the
CU scheme are being performed on a 251× 251 grid for all times. This also results in
much smaller runtime for the SP method compared to the CU scheme.

4. Concluding remarks. We have presented a new sticky particle (SP) method
for the system of Euler equations of pressureless gas dynamics that arises in the mod-
eling of the formation of large-scale structures in the universe. The main feature of
interest in this problem is the formation of strong singularities (δ-functions along the
surfaces as well as at separate points) and the emergence of vacuum states, and there-
fore particle methods seem to be a natural choice for numerical simulations of such
models. The proposed SP method has been studied both analytically and numerically.
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Fig. 19. Top view on the solution (masses) of (1.5), (3.16) computed by the SP method at
different times.

It has been shown that the particle approximation satisfies the original system of pres-
sureless gas dynamics in a weak sense, but only within a certain residual, which has
been rigorously estimated. It has also been explained why the relevant errors should
diminish as the total number of particles increases. Numerical experiments in one
and two space dimensions have been performed (3-D extension of the SP method is
out of scope of this paper, but it can be carried out rather straightforwardly). The
SP method has been compared to the second-order CU scheme. Our numerical ex-
periments clearly demonstrate the superiority of results obtained by the SP method,
which seems to be a robust, accurate, and efficient alternative to existing numerical
methods for pressureless gas dynamics.

Appendix A. Semidiscrete central-upwind schemes for pressureless gas
dynamics. Here, we briefly describe semidiscrete CU schemes for the 2-D system
of pressureless gas dynamics (1.5), which can be written in the following flux-vector
form:

wt + f(w)x + g(w)y = 0,
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Fig. 20. Top view on the solution (masses) of (1.5), (3.16) computed by the CU scheme at
different times.

where

w :=

⎛⎝ ρ
ρu
ρv

⎞⎠ , f(w) :=

⎛⎝ ρu
ρu2

ρuv

⎞⎠ , g(w) :=

⎛⎝ ρv
ρuv
ρv2

⎞⎠ .

We consider a uniform spatial grid xμ := μΔx, yν := νΔy, and denote the
computed quantities, the cell averages, by

w̄j,k(t) :=
1

ΔxΔy

∫∫
Ij,k

w(ξ, η, t) dη dξ, Ij,k := [xj− 1
2
, xj+ 1

2
] × [yk− 1

2
, yk+ 1

2
].

The cell averages are evolved in time according to the semidiscrete CU scheme

d

dt
w̄j,k(t) = −

Hx
j+ 1

2 ,k
(t) −Hx

j− 1
2 ,k

(t)

Δx
−

Hy

j,k+ 1
2

(t) −Hy

j,k− 1
2

(t)

Δy
,
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where the numerical fluxes Hx
j+ 1

2 ,k
and Hy

j,k+ 1
2

are given by (see [11] for the derivation)

(A.1)

Hx
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
f(wE

j,k) − a−
j+ 1

2 ,k
f(wW

j+1,k)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

[
wW

j+1,k − wE
j,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

− qx
j+ 1

2 ,k

]

and
(A.2)

Hy

j,k+ 1
2

=
b+
j,k+ 1

2

g(wN
j,k) − b−

j,k+ 1
2

g(wS
j,k+1)

b+
j,k+ 1

2

− b−
j,k+ 1

2

+b+
j,k+ 1

2

b−
j,k+ 1

2

[
wS

j,k+1 − wN
j,k

b+
j,k+ 1

2

− b−
j,k+ 1

2

− qy

j,k+ 1
2

]
.

Note that all the quantities in (A.1) and (A.2) depend on t, but we will omit this
dependence in order to simplify the notation.

In (A.1)–(A.2), the point values wE(W,S,N) are to be computed from a conserva-
tive, nonoscillatory piecewise polynomial reconstruction of an appropriate order. For
example, the second-order CU scheme would employ a piecewise linear reconstruction

(A.3) w̃(x, y, t) = w̄j,k(t) + (wx)j,k(x− xj) + (wy)j,k(y − yk) for (x, y) ∈ Ij,k,

and the corresponding point values will be

w
E(W)
j,k := w̄j,k(t) ±

Δx

2
(wx)j,k, w

N(S)
j,k := w̄j,k(t) ±

Δy

2
(wy)j,k.

To ensure a nonoscillatory property of this reconstruction and thus of the second-
order CU scheme, the slopes in (A.3) should be computed with the help of a nonlinear
limiter. In our numerical experiments, we have used a one-parameter family of the
minmod limiters [15, 18, 22]:

(wx)j,k = minmod

(
θ
w̄j+1,k − w̄j,k

Δx
,
w̄j+1,k − w̄j−1,k

2Δx
, θ

w̄j,k − w̄j−1,k

Δx

)
,

(wy)j,k = minmod

(
θ
w̄j,k+1 − w̄j,k

Δy
,
w̄j,k+1 − w̄j,k−1

2Δy
, θ

w̄j,k − w̄j,k−1

Δy

)
,

where θ ∈ [1, 2], and the multivariate minmod function is defined by (2.14). Notice
that larger θ’s correspond to less dissipative but, in general, more oscillatory limiters
(we have used θ = 1.5 in all the reported numerical experiments).

Since all the eigenvalues of the Jacobians ∂f
∂w and ∂g

∂w are of multiplicity 3 and
are equal to u and v, respectively, the one-sided local speeds in (A.1)–(A.2) are easy
to estimate:

a+
j+ 1

2 ,k
:= max

{
uW
j+1,k, u

E
j,k, 0

}
, a−

j+ 1
2 ,k

:= min
{
uW
j+1,k, u

E
j,k, 0

}
,

b+
j,k+ 1

2

:= max
{
vS
j,k+1, v

N
j,k, 0

}
, b−

j,k+ 1
2

:= min
{
vS
j,k+1, v

N
j,k, 0

}
.

Finally, qx
j+ 1

2 ,k
and qy

j,k+ 1
2

are the “antidiffusion” terms that help to reduce numerical

dissipation present at nonoscillatory central schemes [11]:

qx
j+ 1

2 ,k
= minmod

(
wNW

j+1,k − wint
j+ 1

2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,
wint

j+ 1
2 ,k

− wNE
j,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,

wSW
j+1,k − wint

j+ 1
2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,
wint

j+ 1
2 ,k

− wSE
j,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

)
,
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qy

j,k+ 1
2

= minmod

(
wSW

j,k+1 − wint
j,k+ 1

2

b+
j,k+ 1

2

− b−
j,k+ 1

2

,
wint

j,k+ 1
2

− wNW
j,k

b+
j,k+ 1

2

− b−
j,k+ 1

2

,

wSE
j,k+1 − wint

j,k+ 1
2

b+
j,k+ 1

2

− b−
j,k+ 1

2

,
wint

j,k+ 1
2

− wNE
j,k

b+
j,k+ 1

2

− b−
j,k+ 1

2

)
,

where

wint
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
wW

j+1,k − a−
j+ 1

2 ,k
wE

j,k −
{
f(wW

j+1,k) − f(wE
j,k)

}
a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,

wint
j,k+ 1

2
=

b+
j,k+ 1

2

wS
j,k+1 − b−

j,k+ 1
2

wN
j,k −

{
g(wS

j,k+1) − g(wN
j,k)

}
b+
j,k+ 1

2

− b−
j,k+ 1

2

,

and the point values at the cell corners are

w
NE(NW)
j,k := w̄j,k(t) ±

Δx

2
(wx)j,k +

Δy

2
(wy)j,k,

w
SE(SW)
j,k := w̄j,k(t) ±

Δx

2
(wx)j,k − Δy

2
(wy)j,k.
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CENTRAL DISCONTINUOUS GALERKIN METHODS ON
OVERLAPPING CELLS WITH A NONOSCILLATORY

HIERARCHICAL RECONSTRUCTION∗

YINGJIE LIU† , CHI-WANG SHU‡ , EITAN TADMOR§ , AND MENGPING ZHANG¶

Abstract. The central scheme of Nessyahu and Tadmor [J. Comput. Phys., 87 (1990), pp.
408–463] solves hyperbolic conservation laws on a staggered mesh and avoids solving Riemann prob-
lems across cell boundaries. To overcome the difficulty of excessive numerical dissipation for small
time steps, the recent work of Kurganov and Tadmor [J. Comput. Phys., 160 (2000), pp. 241–282]
employs a variable control volume, which in turn yields a semidiscrete nonstaggered central scheme.
Another approach, which we advocate here, is to view the staggered meshes as a collection of over-
lapping cells and to realize the computed solution by its overlapping cell averages. This leads to a
simple technique to avoid the excessive numerical dissipation for small time steps [Y. Liu, J. Com-
put. Phys., 209 (2005), pp. 82–104]. At the heart of the proposed approach is the evolution of two
pieces of information per cell, instead of one cell average which characterizes all central and upwind
Godunov-type finite volume schemes. Overlapping cells lend themselves to the development of a
central-type discontinuous Galerkin (DG) method, following the series of works by Cockburn and
Shu [J. Comput. Phys., 141 (1998), pp. 199–224] and the references therein. In this paper we develop
a central DG technique for hyperbolic conservation laws, where we take advantage of the redundant
representation of the solution on overlapping cells. The use of redundant overlapping cells opens
new possibilities beyond those of Godunov-type schemes. In particular, the central DG is coupled
with a novel reconstruction procedure which removes spurious oscillations in the presence of shocks.
This reconstruction is motivated by the moments limiter of Biswas, Devine, and Flaherty [Appl.
Numer. Math., 14 (1994), pp. 255–283] but is otherwise different in its hierarchical approach. The
new hierarchical reconstruction involves a MUSCL or a second order ENO reconstruction in each
stage of a multilayer reconstruction process without characteristic decomposition. It is compact,
easy to implement over arbitrary meshes, and retains the overall preprocessed order of accuracy
while effectively removing spurious oscillations around shocks.
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TVD scheme
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1. Introduction. The first order Godunov and Lax–Friedrichs (LxF) schemes
are, respectively, the forerunners for the large classes of upwind and central high-
resolution schemes for nonlinear conservation laws and related equations. The Go-
dunov scheme captures shock waves monotonically in narrow transition layers. It is
based on evolving a piecewise cell average representation of the solution by evaluat-
ing the fluxes at the boundaries of each cell which are obtained from the solution
of (approximate) Riemann problems along the boundary interfaces. Various higher
order generalizations of Godunov scheme have been developed since the mid 1970s.
They employ higher order piecewise polynomials which are reconstructed from the
evolving cell averages “in the direction of smoothness.” We mention here the no-
table examples of the high-resolution upwind FCT, MUSCL, TVD, PPM, ENO, and
WENO schemes [8, 49, 19, 16, 20, 35], and this list is far from complete. The use of
intricate Riemann solvers can be avoided at the expense of using the more diffusive
LxF scheme. The excessive numerical dissipation can be reduced significantly, how-
ever, when higher order piecewise polynomial reconstructions are used in conjunction
with the staggered formulation of the LxF scheme. The central scheme of Nessyahu
and Tadmor (NT) [40] provides such a second order generalization of the staggered
LxF scheme. It is based on the same piecewise linear reconstructions of cell averages
used with upwind schemes, yet the solution of (approximate) Riemann problems is
avoided. High-resolution generalizations of the NT scheme were developed since the
1990s as the class of central schemes in, e.g., [43, 3, 22, 21, 36, 6, 25, 2, 27, 28, 32], and
here too the list is far from complete. The relaxation scheme of Jin and Xin [23] pro-
vides another approach which leads to a staggered central stencil for solving nonlinear
conservation laws.

Being free of the (eigenstructure of) the underlying Riemann problems, central
schemes provide black-box–type methods for the approximate solution of nonlinear
hyperbolic conservation laws and other closely related equations [5]. Essentially, one
only needs to supply the flux functions. But the staggered high order central schemes
of order, say, r > 1 still share one disadvantage with the original LxF scheme, namely,
the amplitude of their numerical viscosity of order O((Δx)r+1/Δt). It excludes the use
of small time steps, Δt, which are too small relative to the spatial grid size Δx. The
problem lies with the space-time control volumes which are staggered “Δx/2-away”
from each other. (Similar difficulties occur with the two-dimensional (2D) conservative
front tracking method which was overcome by Glimm et al. in [17] using space-time
cells instead of rezoning.) This problem was addressed by Kurganov and Tadmor
who introduced, in [28], a new type of central scheme whose numerical viscosity is
independent of O(1/Δt)). This was achieved by using variable control volumes so
that cells are staggered only “O(Δt)-away” from each other. The latest version of the
central-upwind scheme has been recently derived in [26]. It allows implementation
of central schemes with arbitrarily small time step, and, in particular, it yields a
semidiscrete formulation which can be conveniently integrated by ODE solvers, e.g.,
the strong stability preserving (SSP) Runge–Kutta methods of [45]; consult, e.g., [18].
Similar advantages of a semidiscrete formulation can be achieved when a local LxF
building block is used over nonstaggered meshes; see, e.g., Shu and Osher [45, 46] and
Liu and Osher [34]. The upwind and central schemes mentioned so far share one thing
in common—they evolve one piece of information per cell, that is, the cell average.
Upwind schemes use Riemann solvers, while central schemes use simpler quadrature
rules. For higher accuracy, they both employ piecewise polynomial representation of
the solution which is reconstructed from these cell averages.

In [38], Y. Liu introduced an alternative technique for controlling the numerical
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dissipation of central schemes. The main idea is to evolve the solution over overlap-
ping cells. That is, two sets of cell averages are realized over interlacing grids. The
solution is then represented as a convex combination—an “O(Δt)-weighted” com-
bination of these overlapping cell averages. The resulting scheme has a numerical
viscosity which is independent of O(1/Δt), and as such it admits a semidiscrete for-
mulation which can be integrated using SSP methods. The use of overlapping cells,
however, is fundamentally different in that it evolves two independent quantities for
each given cell, that is, the two overlapping subcell averages. The use of overlapping
cells opens many new possibilities. For example, instead of the usual reconstructions
such as MUSCL and (W)ENO, overlapping cells offer a more efficient approach for
high-resolution: by adding the two subcell averages, we recover the evolution of a full
cell average, where by taking their difference, we independently evolve an approx-
imate slope, rather than reconstructing it from neighboring averages. This makes
feasible the use of the central discontinuous Galerkin (DG) approach over overlapping
cells, following the series of works by Cockburn and Shu [13, 14, 15]. Thus, in par-
ticular, the use of overlapping cells yields the versatility of finite element (Galerkin)
methods which can be easily formulated on general unstructured meshes with any
formal order, since no reconstruction is involved. In this paper, we further develop
the staggered central DG method introduced in [37] for solving hyperbolic conser-
vation laws. Numerical tests are performed up to third order accuracy on uniform
staggered meshes in one and two dimensions. Stability analysis and error estimates,
and extension of the method for time-dependent and steady state convection-diffusion
equations, constitute ongoing work and will be reported in the future. Here, one does
not reconstruct a piecewise-polynomial representation of the solution; rather it is part
of the evolution of higher moments. Still, a nonlinear limiting procedure is necessary
to reduce spurious oscillations for high order methods. We introduce here such a
general nonoscillatory procedure, the so-called hierarchical reconstruction, interesting
in its own right, which is closely related to the moment limiters of Biswas, Devine,
and Flaherty [7] and to the earlier work of Cockburn and Shu [13]. Since this limiting
procedure requires only linear reconstructions using information from adjacent cells
without characteristic decomposition, it can be easily implemented for any shapes
of the cells and hence is practical also for unstructured meshes or even dynamically
moving meshes (e.g., Tang and Tang [47]), although we do not pursue it in this paper.
We refer the reader to [3] and the references therein for a systematic study of central
schemes on unstructured grids using the framework of discontinuous finite elements.

This paper is organized as follows. In section 2, we briefly describe the central
finite volume scheme on overlapping cells as the background. The natural extension
to the central DG scheme on overlapping cells is discussed in section 3. In subsec-
tion 3.1 we study the numerical convergence rate for a number of linear and nonlinear
equations having smooth solutions. In section 4, we introduce a general nonoscilla-
tory hierarchical reconstruction procedure and use it as a limiter for the central DG
scheme on overlapping cells to control spurious oscillations in the presence of shocks.
Numerical results testing the accuracy of the proposed schemes are included in sec-
tions 3 and 4. Additional numerical results are presented in section 5. Concluding
remarks and a plan for future work are included in section 6.

2. Central schemes on overlapping cells. Consider the scalar one-dimen-
sional (1D) conservation law

(2.1)
∂u

∂t
+

∂f(u)

∂x
= 0, (x, t) ∈ R× (0, T ).
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Set {xi := x0 + iΔx}, let Ci+1/2 := [xi, xi+1) be a uniform partition of R, and let

{Un

i+1/2} denote the set of approximate cell averages U
n

i+1/2≈(1/Δx)
∫
Ci+1/2

u(x, tn)dx.

Similarly, we set Di := [xi−1/2, xi+1/2) as the dual partition and let {V n

i } denote the

corresponding set of approximate cell averages V
n

i ≈ (1/Δx)
∫
Di

u(x, tn)dx. Starting

with these two piecewise-constant approximations,1∑
i

U
n

i+1/21Ci+1/2
(x) and

∑
i

V
n

i 1Di(x),

we proceed to compute our approximate solution at the next time level, tn+1 :=
tn + Δtn. To this end, we reconstruct two higher order nonoscillatory piecewise-
polynomial approximations,

Un(x) =
∑
i

Ui+1/2(x)1Ci+1/2
(x) and V n(x) =

∑
i

Vi(x)1Di(x),

with breakpoints at xi, i = 0,±1,±2, . . . , and, respectively, at xi+1/2, i = 0,±1,
±2, . . . . These piecewise polynomials should be conservative in the sense that∫
Cj+1/2

Un(x)dx = ΔxU
n

j+1/2 and
∫
Dj

V n(x)dx = ΔxV
n

j for all j’s. There are large

libraries for such conservative, accurate, and nonoscillatory reconstructions; we refer,
for example, to the second order example of MUSCL [48], the third order example
of [36], the well-known class of high order (W)ENO reconstructions [20, 44], etc. Fol-
lowing Nessyahu and Tadmor [40], the central scheme associated with these piecewise
polynomials reads

V
n+1

i =
1

Δx

∫
Di

Un(x)dx− Δtn

Δx

[
f(Un+ 1

2 (xi+1/2)) − f(Un+ 1
2 (xi−1/2))

]
,(2.2a)

U
n+1

i+1/2 =
1

Δx

∫
Ci+1/2

V n(x)dx− Δtn

Δx

[
f(V n+ 1

2 (xi+1)) − f(V n+ 1
2 (xi))

]
.(2.2b)

To guarantee second order accuracy, the right-hand sides of (2.2a), (2.2b) require the

approximate values of Un+ 1
2 (xj+1/2) ≈ u(xj+1/2, t

n+ 1
2 ) and V n+ 1

2 (xj) ≈ u(xj , t
n+ 1

2 )
to be evaluated at the midpoint t + Δtn/2. Replacing the midpoint rule with higher
order quadratures yields higher order accuracy; see, e.g., [36, 6].

The central NT scheme (2.2) and its higher order generalizations provide effec-
tive high-resolution “black-box” solvers to a wide variety of nonlinear conservation
laws. However, when Δt is very small, e.g., with Δt = O

(
(Δx)2

)
as required by the

CFL condition for convection-diffusion equations, the numerical dissipation of the NT
schemes becomes excessively large. The excessive dissipation is due to the staggered
grids where, at each time step, cell averages are shifted Δx/2-away from each other:
indeed, at the extreme of f(u) ≡ 0, the central scheme (2.2) is reduced to reaveraging
at every time step. To address this difficulty, Kurganov and Tadmor [28] suggested
removing this excessive dissipation by using staggered grids which are shifted only
O(Δt)-away from each other. This amounts to using control volumes of width O(Δt)
so that the resulting schemes admit a semidiscrete limit as Δt → 0, the so-called
“central-upwind” schemes introduced in [28] and further generalized in [27]. Liu [38]
introduced another modification of the NT scheme which removes its O(1/Δt) depen-
dency of numerical dissipation. In this approach, one takes advantage of the redundant

1Here and below, 1Ω(x) denotes the characteristic function of Ω.
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A B C

Fig. 1. (A) NT scheme; (B) 1D overlapping cells; (C) overlapping cells create self-similarity
for the grid over time and allow a convex combination of the overlapping cell averages to control
the numerical dissipation.

representation of the solution over overlapping cells, V
n

i and U
n

i+1/2. The idea is to
use an O(Δt)-dependent weighted average of U

n

i+1/2 and V
n

i . In fact the difference
between them is the local dissipation error. To simplify our discussion, we momen-
tarily give up on second order accuracy in time, setting Un+ 1

2 = Un and V n+ 1
2 = V n

in (2.2a) and (2.2b). The resulting first order forward-Euler formulation of the new
central scheme (consult Figure 1) reads

V
n+1

i = θ

(
1

Δx

∫
Di

Un(x)dx

)
+ (1 − θ)V

n

i(2.3a)

− Δtn

Δx

[
f(Un(xi+1/2)) − f(Un(xi−1/2))

]
,

U
n+1

i+1/2 = θ

(
1

Δx

∫
Ci+1/2

V n(x)dx

)
+ (1 − θ)U

n

i+1/2(2.3b)

− Δtn

Δx

[
f(V n(xi+1)) − f(V n(xi))

]
.

Here θ := Δtn/Δτn, where Δτn is an upper bound for the time step, dictated by the
CFL condition. We refer the readers to [40] and [38] for more details to facilitate the
full understanding of the sketches in Figure 1. Note that when θ = 1, (2.3a), (2.3b)
is reduced to the first order, forward-Euler–based version of the NT scheme (2.2a),
(2.2b). Moreover, writing

θ

(
1

Δx

∫
Di

Un(x)dx

)
+ (1 − θ)V

n

i = V
n

i +
Δtn

Δτn

(
1

Δx

∫
Di

Un(x)dx− V
n

i

)
,

and recalling that Δτn = O(Δx) due to the CFL restriction, it follows that the local
dissipative error now has a prefactor of order Δtn, and hence the cumulative error will
be independent of O(Δt). The reduced dissipation allows us to pass to a semidiscrete
formulation: subtracting V

n

i and U
n

i+1/2 from both sides, multiplying by 1
Δtn , and

then passing to the limit as Δtn → 0, we end up with

d

dt
V i(t

n) =
1

Δτn

(
1

Δx

∫
Di

Un(x)dx− V
n

i

)
(2.4a)

− 1

Δx

[
f(Un(xi+1/2)) − f(Un(xi−1/2))

]
,

d

dt
U i+1/2(t

n) =
1

Δτn

(
1

Δx

∫
Ci+1/2

V n(x)dx− U
n

i+1/2

)
(2.4b)

− 1

Δx

[
f(V n(xi+1)) − f(V n(xi))

]
.
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x

y

Fig. 2. 2D overlapping cells formed by collapsing the staggered dual cells on two adjacent time
levels to one time level.

The spatial accuracy of the semidiscrete central scheme (2.4) is dictated by the order
of the reconstruction Un(x) and V n(x). The SSP Runge–Kutta methods yield the
matching high order discretization in time.

We conclude this section by quoting [38] regarding the nonoscillatory behavior
of the central scheme (2.4), which is quantified here in terms of the total-variation-
diminishing (TVD) property; see, e.g., [19].

Theorem 1. Consider the central schemes (2.2) and (2.3) which are set with the
same initial values V

n

i and U
n

i+1/2 at t = tn. If the NT scheme is TVD, then so is
the central scheme (2.3).

There are two reconstruction procedures for overlapping cells: one is the standard
procedure to reconstruct the two classes of cell averages {V n

i : i = 0,±1,±2, . . .} and
{Un

i+1/2 : i = 0,±1,±2, . . .}; the other couples these two classes for reconstruction
of the final representation of the solution. Thus, this approach is redundant. At the
same time, numerical examples in [38] have shown that by coupling the reconstruc-
tions, redundancy does provide improved resolution when compared with the one-cell
average evolution approach of Godunov-type schemes.

3. A central discontinuous Galerkin method on overlapping cells for
conservation laws. Following the general strategy of the DG methods (see, e.g.,
Lesaint and Raviart [31], Cockburn [10], and Cockburn and Shu [13, 15]), the central-
type DG method on overlapping cells can be derived [37]. Consider the system of
conservation laws

(3.1)
∂uk

∂t
+ ∇x · fk(u) = 0, (x, t) ∈ Rd × (0, T ), k = 1, . . . ,m,

where u = (u1, . . . , um)�. For simplicity, assume a uniform staggered rectangular
mesh, depicted in Figure 2, for the 2D case, and we note that a similar formulation is
used for irregular staggered meshes, e.g., the Voronoi mesh consisting of a triangular
mesh and its dual.

Let {CI+1/2}, I = (i1, i2, . . . , id), be a partition of Rd into uniform square cells,
depicted by solid lines in Figure 2, and tagged by their cell centroids at the half
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integers, xI+1/2 := (I + 1/2)Δx. Let M denote the set of piecewise polynomials of
degree r on the cells {CI+1/2}; no continuity is assumed across cell boundaries. Let
{DI} be the dual mesh which consists of a Δx/2 shift of the CI+1/2’s, depicted by
dashed lines in Figure 2. Let xI be the cell centroid of the cell DI and let N denote
the set of piecewise polynomials of degree r over the cells {DI}; again, no continuity
is assumed across the cell boundary. The weak formulation of (3.1) over these cells
reads

d

dt

∫
CI+1/2

ukφdx =

∫
CI+1/2

fk · ∇xφdx(3.2a)

−
∫
∂CI+1/2

(fk · n)φds ∀φ ∈ M, k = 1, . . . ,m,

d

dt

∫
DI

ukψdx =

∫
DI

fk · ∇xψdx(3.2b)

−
∫
∂DI

(fk · n)ψds ∀ψ ∈ N , k = 1, . . . ,m,

where n is the unit outer normal of the corresponding cell and φ and ψ are test
functions. As in the 1D setup, we let

Un(x) =
∑

I+1/2

Un
I+1/2(x)1CI+1/2

(x) ∈ M and Vn(x) =
∑
I

Vn
I (x)1DI

(x) ∈ N

denote two representations of the numerical solution, approximating u(·, tn) over the
two overlapping grids, {CI+1/2} and {DI}. Observe that each of the two vector
functions, Un with smooth pieces supported on the CI+1/2’s and Vn with smooth
pieces supported on the DI ’s, consists of m components

Un(x) = (Un
1 (x), . . . , Un

m(x))� and Vn(x) = (V n
1 (x), . . . , V n

m(x))�.

Given these conservative, accurate, and nonoscillatory approximations at tn we pro-
ceed to compute the approximate solution at the next time level, tn+1 = tn +Δtn. To
this end, the exact solution u(x, tn) of (3.1) in the right-hand side of (3.2a) is replaced
by Vn(x) = (V n

1 , . . . , V n
m)�; similarly, for the right-hand side of (3.2b) we use the ap-

proximate solution Un(x) = (Un
1 , . . . , U

n
m)�. Further, time derivatives on the left are

replaced by forward-Euler time differencing where we use the same type of θ-weighting
of the Un’s and the Vn’s as in (2.3a), (2.3b). In the resulting central DG method one
seeks piecewise polynomials {Un+1

I+1/2} ∈ M and {Vn+1
I } ∈ N such that for all I’s,

∫
CI+1/2

Un+1
k (x)φ(x)dx = θ

∫
CI+1/2

V n
k (x)φ(x)dx + (1 − θ)

∫
CI+1/2

Un
k (x)φ(x)dx

+ Δtn
∫
CI+1/2

fk(V
n(x)) · ∇xφdx(3.3a)

− Δtn
∫
∂CI+1/2

(fk(V
n(x)) · n)φ(x)ds ∀φ ∈ M, k = 1, . . . ,m,
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DI

V n+1
k (x)ψ(x)dx = θ

∫
DI

Un
k (x)ψ(x)dx + (1 − θ)

∫
DI

V n
k (x)ψ(x)dx

+ Δtn
∫
DI

fk(U
n(x)) · ∇xψ(x)dx(3.3b)

− Δtn
∫
∂DI

(fk(U
n(x)) · n)ψ(x)ds ∀ψ ∈ N , k = 1, . . . ,m.

Here θ = Δtn/Δτn ≤ 1, Δτn is the maximum time step size determined by the CFL
restriction, and Δtn = tn+1 − tn is the current time step size. Δτn = (CFL factor)×
Δx/(maximum characteristic speed), where the CFL factor should be less than 1/2.
At time tn, Δτn is first chosen with a certain CFL factor, then Δtn has the freedom to
take any value in (0,Δτn] without introducing excessive dissipation. The smaller Δτn

is chosen, the larger the numerical dissipation is. We find in numerical experiments
that setting Δτn with CFL factor 0.4 is robust. In some numerical tests with fewer
interactions of discontinuities, we can choose larger Δτn. This forward-Euler step is
going to be used in an SSP Runge–Kutta method of desired order. For the pure hyper-
bolic problem, Δtn can be chosen as large as possible, i.e., Δtn = Δτn for efficiency.

The resulting central DG is the 2D analogue of the 1D central scheme (2.4). And
as in the 1D case, the semidiscrete version of (3.3) can be obtained; higher order
Runge–Kutta time discretization can be used to match the high order accuracy of the
spatial reconstructions. We conclude with the semidiscrete central DG approximation
of (3.1) such that for all admissible test functions φ and ψ and all I’s,

d

dt

∫
CI+1/2

Ukφdx =
1

Δτ

∫
CI+1/2

(Vk(x) − Uk(x))φ(x)dx

+

∫
CI+1/2

fk(V(x)) · ∇xφdx(3.4a)

−
∫
∂CI+1/2

(fk(V(x)) · n)φ(x)ds ∀φ ∈ M, k = 1, . . . ,m,

d

dt

∫
DI

Vkψdx =
1

Δτ

∫
DI

(Uk(x) − Vk(x))ψ(x)dx

+

∫
DI

fk(U(x)) · ∇xψ(x)dx(3.4b)

−
∫
∂DI

(fk(U(x)) · n)ψ(x)ds ∀ψ ∈ N , k = 1, . . . ,m.

For example, consider the piecewise quadratic element in two dimensions; see,
e.g., Figure 2. We use the third order SSP Runge–Kutta method [45] to discretize
(3.4) in time, which ends up with calling the forward-Euler step (3.3) three times. Let
cell CI+1/2 as in (3.3a) be the cell bounded by solid lines in the center of Figure 2,
and let

UI+1/2(x− xI+1/2, y − yI+1/2) = UI+1/2(0, 0) + ∂xUI+1/2(0, 0)(x− xI+1/2)

+ ∂yUI+1/2(0, 0)(y − yI+1/2)

+
1

2
∂xxUI+1/2(0, 0)(x− xI+1/2)

2

+ ∂xyUI+1/2(0, 0)(x− xI+1/2)(y − yI+1/2)

+
1

2
∂yyUI+1/2(0, 0)(y − yI+1/2)

2
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Table 1

P 1 version of the central DG scheme (3.4) for the linear convection equation (3.5).

Δx 1/20 1/40 1/80 1/160 1/320
L1 error 8.91E-3 2.25E-3 5.66E-4 1.42E-4 3.54E-5
order - 1.99 1.99 1.99 2.00

L∞ error 5.92E-3 1.55E-3 3.96E-4 1.00E-4 2.51E-5
order - 1.93 1.97 1.99 1.99

Table 2

P 1 version of the central DG scheme (3.4) for the 2D Burgers equation.

Δx 1/2 1/4 1/8 1/16 1/32
L1 error 6.69E-2 3.29E-2 5.04E-3 1.66E-3 3.88E-4
order - 1.02 2.70 1.60 2.10

L∞ error 3.85E-2 2.05E-2 7.69E-3 1.19E-3 2.75E-4
order - 0.91 1.41 2.69 2.11

be Un+1
k |CI+1/2

, i.e., Un+1
k (x) restricted in cell CI+1/2, where (xI+1/2, yI+1/2) is the

cell centroid of cell CI+1/2. There are six coefficients to be determined in this poly-
nomial in cell CI+1/2, namely,

UI+1/2(0, 0), ∂xUI+1/2(0, 0), ∂yUI+1/2(0, 0),

1

2
∂xxUI+1/2(0, 0), ∂xyUI+1/2(0, 0),

1

2
∂yyUI+1/2(0, 0).

By letting

φ(x) = 1, x− xI+1/2, y − yI+1/2, (x− xI+1/2)
2,

(x− xI+1/2)(y − yI+1/2), or (y − yI+1/2)
2,

we obtain six linear equations in (3.3a) to solve for UI+1/2(x − xI+1/2, y − yI+1/2).
The last two integrals in (3.3a) can be approximated by Gaussian quadratures, such
as the three-point Gaussian quadrature for line integrals. The other integrals on the
right-hand side of (3.3a) can be evaluated exactly.

3.1. Numerical errors for smooth solutions. In this subsection we study the
convergence rate for a number of equations having smooth solutions. The examples
are computed by linear schemes described previously without using any limiter.

Example 1. Let us start with the following linear transport equation with periodic
boundary conditions:

ut + aux = 0, (x, t) ∈ (0, 2) × (0, 2),(3.5)

u(x, 0) = 1 + sin(πx), x ∈ (0, 2),

where a = 1 by default.
The test results at T = 2 for the P 1 (piecewise linear) version of the central DG

scheme on overlapping cells (3.4) are listed in Table 1, with second order Runge–
Kutta time discretization. The CFL factor is 0.4 for choosing Δτ and the actual time
step size Δt is chosen with θ = 0.9. It can be seen that the expected second order
accuracy is achieved. Similar results for the 2D Burgers equation can be found in
Table 2. The results for the P 2 (piecewise quadratic) version of the scheme (3.4) for
the linear convection equation (3.5) are listed in Table 3, with a third order TVD
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Table 3

P 2 version of the central DG scheme (3.4) for the linear convection equation (3.5).

Δx 1/20 1/40 1/80 1/160 1/320
L1 error 6.50E-5 8.12E-6 1.02E-6 1.27E-7 1.59E-8
order - 3.00 2.99 3.01 3.00

L∞ error 4.68E-5 5.90E-6 7.40E-7 9.27E-8 1.16E-8
order - 2.99 3.00 3.00 3.00

Table 4

P 2 version of the central DG scheme (3.4) for (3.5) with a = 0.

Δx 1/20 1/40 1/80 1/160
L∞ error 9.32E-7 5.89E-8 3.70E-9 2.32E-10

order - 3.98 3.99 4.00

L∞ error, Δt = Δx2 9.32E-7 5.89E-8 3.70E-9 2.32E-10
order - 3.98 3.99 4.00

Table 5

P 2 version of the central DG scheme (3.4) for the 1D Burgers equation.

Δx 1/10 1/20 1/40 1/80 1/160
L1 error 2.72E-5 3.41E-6 4.29E-7 5.37E-8 6.78E-9
order - 3.00 2.99 3.00 2.99

L∞ error 4.00E-5 7.06E-6 8.27E-7 1.04E-7 1.31E-8
order - 2.50 3.09 2.99 2.99

Runge–Kutta time discretization [45]. The results for the same equation with a = 0
are listed in Table 4, in which the first row is computed with the previously chosen
Δt and the second row is computed with Δt = Δx2. We observe that the staggered
dissipation error does not increase with a diminishing time step size. We remark that
for this special case with a = 0, the Δτ can be chosen as +∞, since there is no
CFL restriction on the stability time step. With this choice of Δτ , our scheme will
maintain exactly the initial condition for this degenerated PDE. If we choose a finite
Δτn anyway, then the initial solution may not be maintained exactly. As to the order
of accuracy, we can see that the expected third order accuracy is achieved in Table 3,
and fourth order accuracy, which is one order higher than expected, is achieved in
Table 4.

Example 2. We test the scheme for the Burgers equation ut + ( 1
2u

2)x = 0,
u(x, 0) = 1

4 + 1
2 sin(πx). The errors are shown in Table 5 at the final time T = 0.1

when the solution is still smooth.

Example 3. We conduct a convergence test for the P 1 version of the scheme
(3.4) on a 2D problem [11] which is the Burgers equation with periodic initial data:
ut + ( 1

2u
2)x + ( 1

2u
2)y = 0 on [−1, 1] × [−1, 1], u(x, y, 0) = 1

4 + 1
2 sin(π(x + y)). The

numerical solutions are computed at the final time T = 0.1 when the exact solution
is still smooth. The CFL factor is 0.4 for choosing Δτ and the actual time step size
Δt is chosen with θ = 0.9. The errors are shown in Table 2. Again we observe the
expected second order accuracy. Further we test the P 2 version of scheme for the 2D
Burgers equation. The errors are shown in Table 6 at the final time T = 0.1.

Example 4. The solution of the 2D Burgers equation may contain linear waves;
hence we also test the scheme on another 2D equation ut + ( 1

2u
2)x + ( 1

4u
4)y = 0,

u(x, 0) = 1
4 + 1

2 sin(π(x + y)). The accuracy of the numerical solution is shown at
T = 0.1 in Table 7.
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Table 6

P 2 version of the central DG scheme (3.4) for the 2D Burgers equation.

Δx 1/4 1/8 1/16 1/32 1/64
L1 error 8.33E-3 9.58E-4 1.36E-4 1.65E-5 2.14E-6
order - 3.12 2.82 3.04 2.95

L∞ error 4.56E-3 8.20E-4 1.48E-4 1.95E-5 2.58E-6
order - 2.48 2.47 2.92 2.92

Table 7

P 2 version of the central DG scheme (3.4) for the 2D nonlinear equation.

Δx 1/4 1/8 1/16 1/32 1/64
L1 error 5.35E-3 5.75E-4 6.80E-5 7.81E-6 9.77E-7
order - 3.22 3.08 3.12 3.00

L∞ error 2.57E-3 3.16E-4 8.00E-5 1.10E-5 1.53E-6
order - 3.02 1.98 2.86 2.85

It seems that for all these cases the expected third order accuracy is achieved for
the P 2 version of scheme, at least for the L1 errors.

4. A general nonoscillatory hierarchical reconstruction procedure. Com-
pared to finite volume schemes which evolve only cell averages over time, DG methods
compute and evolve a high order polynomial in each cell. The challenge lies in deter-
mining how to take advantage of the extra information provided by the DG method
in each cell and use it in the limiting process where the solution is nonsmooth. The
first idea is given by Cockburn and Shu [13] for the DG method which limits the
variation between a cell edge value and its cell average by the differences between the
cell averages of the current and neighboring cells. The higher Legendre moments are
truncated in a cell if nonsmoothness is detected. This process is shown to be total
variation bounded in the means. A generalization is introduced in Biswas, Devine,
and Flaherty [7], which detects the nonsmoothness in higher degree moments and
applies the limiting when necessary from higher to lower moments. In Qiu and Shu
[42, 41], a high order WENO reconstruction is used as a limiter for the so-called trou-
bled cells, where the polynomial defined at Gaussian points is reconstructed from a
WENO procedure and is projected back to the finite element space to replace the one
computed by the DG method. In [41], the Hermite WENO reconstruction takes not
only cell averages of a function, but also cell averages of its first order derivatives in
order to obtain a compact reconstruction. A similar strategy is used in our nonoscil-
latory hierarchical reconstruction, where cell averages of various orders of derivatives
of a function are to be calculated and used in the reconstruction of linear polyno-
mials at each stage. Our limiting procedure is closely related to that of [7]. Our
departure from [7] begins with a different point of view, where the approximation
in each cell is viewed as a high degree polynomial, instead of the combination of
orthogonal Legendre polynomials advocated in [7]. Instead of a limiting procedure
which is trying to set an acceptable range for the coefficient of the Legendre moments
(by using the coefficients of lower degree moments), we reconstruct the complete set
of coefficients of the m-degree polynomial terms, using a nonoscillatory conservative
reconstruction which involves previous reconstructed terms of degrees above m. The
resulting, so-called hierarchical reconstruction algorithm is easy to implement in a
multidimensional setting, and there is no need to transform an irregular mesh cell
into a rectangular one or use a dimension-by-dimension extension of a 1D limiter. It
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is essentially independent of the shapes of mesh cells and is compact because of the
conservative nonoscillatory linear reconstruction (such as the MUSCL or second order
ENO reconstruction; see [1] for an implementation for unstructured meshes) used at
each stage. We now give the details of this reconstruction procedure. For simplicity
we discuss only the scalar case. For systems a component-by-component extension is
applied without characteristic decomposition.

From scheme (3.4) with the SSP Runge–Kutta methods, we obtain numerical so-
lutions Un(x) and V n(x) at time tn. To simplify the notation we drop the superscript
n and write

U(x) =
∑

I+1/2

UI+1/2(x − xI+1/2)1CI+1/2
(x) ∈ M,

V (x) =
∑
I

VI(x − xI)1DI
(x) ∈ N ,

recalling that xI+1/2 and xI are centroids of cells CI+1/2 and DI , respectively;
UI+1/2(x − xI+1/2) and VI(x − xI) are the polynomials (of degree r) in cells CI+1/2

and DI , respectively.2 The task is to reconstruct a “limited” version of these polyno-
mials, retaining high-resolution and removing spurious oscillations. In the following,
we discuss a hierarchical reconstruction procedure for recomputing the polynomial
UI+1/2(x − xI+1/2) by using polynomials in cells adjacent to cell CI+1/2. For conve-
nience these adjacent cells are renamed as the set {CJ} (which contain cells CI+1/2,
DI , etc.), and the polynomials (of degree r) supported on them are thus renamed
as {UJ(x − xJ)}, respectively, where xJ is the cell centroid of cell CJ . We write
UI+1/2(x − xI+1/2) in terms of its Taylor expansion,

UI+1/2(x − xI+1/2) =

r∑
m=0

∑
|m|=m

1

m!
U

(m)
I+1/2(0)(x − xI+1/2)

m,

where 1
m!U

(m)
I+1/2(0) are the coefficients which participate in its typical m-degree terms,

∑
|m|=m

1

m!
U

(m)
I+1/2(0)(x − xI+1/2)

m, |m| = 0, . . . , r,

m = (m1,m2, . . . ,md) is the multi-index,

|m| =

d∑
i=1

mi, m! =

d∏
i=1

mi!, U
(m)
I+1/2(x) = ∂md

xd
· · · ∂m1

x1
UI+1/2(x),

and x = (x1, . . . , xd). The following hierarchical reconstruction describes a procedure
to compute the new coefficients,

1

m!
Ũ

(m)
I+1/2(0), m = r, r − 1, . . . , 0,

in UI+1/2(x − xI+1/2), iterating from the highest to the lowest degree terms.

2These polynomials could be oscillatory. There could be other methods to compute these poly-
nomials such as a finite volume reconstruction from cell averages.
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Fig. 3. Left: 1D nonoscillatory hierarchical reconstruction for cell 2 involves only overlapping
cells 1, 2, and 3. Right: 2D nonoscillatory hierarchical reconstruction for cell 3 involves only
overlapping cells 1, 2, 3, 4, and 5.

4.1. An example for piecewise quadratic finite element space in one
dimension. Suppose Uj(x−xj) = Uj(0)+U ′

j(0)(x−xj)+
1
2U

′′
j (0)(x−xj)

2, j = 1, 2, 3,
are given at cells C1, C2, and C3, respectively (see Figure 3, left), where xj is the center
of cell Cj . These polynomials could be oscillatory if located near a discontinuity of
the weak solution. The following algorithm computes a new value for each coefficient
in the polynomial defined on cell C2 in order to reduce the oscillation while keeping
the accuracy (in the smooth area) and resolution.

Step 1. (1) Take the first derivative for them to obtain Lj(x − xj) = U ′
j(0) +

U ′′
j (0)(x− xj), j = 1, 2, 3.

(2) Calculate the cell average of Lj(x − xj) on cell Cj to obtain Lj = U ′
j(0),

j = 1, 2, 3.
(3) With the three cell averages one can apply a MUSCL or second order ENO

procedure to reconstruct a nonoscillatory linear polynomial in cell C2. The slope
of this new linear polynomial corresponds to the slope U ′′

2 (0) of the original linear

polynomial L2(x−x2) in cell C2 and is denoted by Ũ ′′
2 (0). The details can be explained

as follows.
Using the technique of [1], let the new linear polynomial L̃2(x− x2) in cell C2 be

determined by solving

(4.1)
1

|Cj |

∫
Cj

L̃2(x− x2)dx = Lj , j = 1, 2.

We now obtain the slope of L̃2(x − x2), which is only a candidate for the new value
of U ′′

2 (0). The set of cells {C1, C2} chosen by Cj in (4.1) is called a stencil for cell C2.
We can similarly determine another candidate for the new value of U ′′

2 (0) by solving
(4.1) with Cj chosen from another stencil {C2, C3} of cells. Finally we let

Ũ ′′
2 (0) = minmod

(
candidates of U ′′

2 (0)
)
,

where

minmod{c1, c2, . . . , cm} =

⎧⎪⎨⎪⎩
min{c1, c2, . . . , cm} if c1, c2, . . . , cm > 0,

max{c1, c2, . . . , cm} if c1, c2, . . . , cm < 0,

0, otherwise.
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Table 8

P 2 version of the central DG scheme (3.4) with the hierarchical reconstruction Algorithm 1 for
the Burgers equation. MUSCL is used in Algorithm 1.

Δx 1/10 1/20 1/40 1/80 1/160
L1 error 4.24E-4 5.33E-5 6.71E-6 8.44E-7 1.07E-7
order - 2.99 2.99 2.99 2.98

L∞ error 5.13E-4 6.20E-5 7.38E-6 1.29E-6 2.66E-7
order - 3.05 3.07 2.52 2.28

Table 9

P 2 version of the central DG scheme (3.4) with the hierarchical reconstruction Algorithm 1 for
the Burgers equation. Second order ENO is used in Algorithm 1.

Δx 1/10 1/20 1/40 1/80 1/160
L1 error 4.51E-4 5.36E-5 6.85E-6 8.54E-7 1.08E-7
order - 3.07 2.97 3.00 2.98

L∞ error 5.24E-4 6.17E-5 1.03E-5 1.81E-6 3.27E-7
order - 3.09 2.58 2.51 2.47

This is a MUSCL reconstruction. To use the second order ENO reconstruction, we
replace the minmod function by the following minmod2 function:

minmod2{c1, c2, . . . , cm} = cj if |cj | = min{|c1|, |c2|, . . . , |cm|}.

In order to find the new value Ũ ′
2(0) for U ′

2(0) by using the above MUSCL or
second order ENO reconstruction, we need to find the cell averages of the linear part
U2(0) + U ′

2(0)(x− x2) on cell C2 and its neighbors C1 and C3.
Step 2. (1) Compute the cell average of Uj(x − xj) on cell Cj to obtain Uj ,

j = 1, 2, 3.
(2) Compute the cell average of the polynomial R̃2(x−x2) = 1

2 Ũ
′′
2 (0)(x−x2)

2 on

cell Cj to obtain Rj , j = 1, 2, 3.
(3) Redefine Lj = Uj − Rj , j = 1, 2, 3. These are the approximate cell averages

of the linear part U2(0) + U ′
2(0)(x− x2) on cells C1, C2, and C3.

(4) Similar to Step 1, we solve (4.1) to obtain a linear polynomial in cell C2. The
slope of this linear polynomial corresponds to the slope U ′

2(0) of the linear polynomial
U2(0)+U ′

2(0)(x−x2) and is only a candidate for the new value of U ′
2(0). Another can-

didate can be obtained by solving (4.1) with Cj chosen from another stencil {C2, C3}
of cells. Finally let

Ũ ′
2(0) = minmod

(
candidates of U ′

2(0)
)
.

For the second order ENO reconstruction, the minmod function can be replaced by
the minmod2 function. To keep the cell average invariant, we let the new value for
U2(0) be Ũ2(0) = L2.

The convergence test results with Algorithm 1 for Example 2 can be found in
Tables 8 and 9. We observe that the order of accuracy is maintained, although (as
expected for any limiter) the magnitude of the error is increased for the same mesh
(see Table 5 for a comparison).

4.2. Hierarchical reconstruction—General description. In the following,
we discuss a hierarchical reconstruction procedure for recomputing the polynomial
UI+1/2(x− xI+1/2) by using polynomials in cells adjacent to cell CI+1/2. Recall that
these adjacent cells are renamed as the set {CJ} and the polynomials (of degree r)
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supported on them are thus renamed as {UJ(x − xJ)}, respectively. The following
hierarchical reconstruction describes a procedure to compute the new coefficients,

1

m!
Ũ

(m)
I+1/2(0), m = r, r − 1, . . . , 0,

in UI+1/2(x − xI+1/2), iterating from the highest to the lowest degree terms.

To reconstruct Ũ
(m)
I+1/2(0), we first compute many candidates of U

(m)
I+1/2(0) (some-

times still denoted as Ũ
(m)
I+1/2(0) with specification), and we then let the new coefficient

for U
(m)
I+1/2(0) be

Ũ
(m)
I+1/2(0) = F

(
candidates of U

(m)
I+1/2(0)

)
,

where F is a convex limiter of its arguments, e.g., the minmod function.

In order to find these candidates of U
(m)
I+1/2(0), |m| = m, we take an (m − 1)th

order partial derivative of UI+1/2(x − xI+1/2) and denote it by

∂m−1UI+1/2(x − xI+1/2) = LI+1/2(x − xI+1/2) + RI+1/2(x − xI+1/2),

where LI+1/2 is the linear part and RI+1/2 contains all second and higher degree
terms of ∂m−1UI+1/2(x−xI+1/2). Clearly, every coefficient in the first degree terms of

LI+1/2 is in the set {U (m)
I+1/2(0) : |m| = m}. And for every m subject to |m| = m, one

can always take some (m−1)th order partial derivatives of UI+1/2(x−xI+1/2) so that

U
(m)
I+1/2(0) is a coefficient in the first degree terms of LI+1/2. Thus, a “candidate” for

a coefficient in the first degree terms of LI+1/2 is the candidate for the corresponding

U
(m)
I+1/2(0).

In order to find the candidates for all the coefficients in the first degree terms of
LI+1/2(x − xI+1/2), we only need to know the cell averages of LI+1/2(x − xI+1/2)
on d + 1 distinct mesh cells adjacent to cell CI+1/2, recalling that d is the spatial

dimension. Assume CJ0 , CJ1 , . . . , CJd
∈ {CJ} are these cells and LJ0

, LJ1
, . . . , LJd

are
the corresponding cell averages. The set of these d + 1 cells with the associated cell
averages is called a stencil. Let a linear polynomial L̃I+1/2(x−xI+1/2) be determined
by

(4.2)
1

|CJl
|

∫
CJl

L̃I+1/2(x − xI+1/2)dx = LJl
, l = 0, 1, . . . , d.

Then the coefficients in the first degree terms of L̃I+1/2(x − xI+1/2) will be the
candidates for the corresponding coefficients of LI+1/2(x − xI+1/2). Therefore, a
stencil located near cell CI+1/2 will determine a set of candidates for all coefficients
in the first degree terms of LI+1/2(x − xI+1/2). The key is to determine the new
approximate cell averages of LI+1/2(x−xI+1/2) on the cells of {CJ}, which is outlined
by the following algorithm.

Algorithm 1.

Step 1. Suppose r ≥ 2. For m = r, r − 1, . . . , 2, do the following:
(a) Take an (m−1)th order partial derivative for each of {UJ(x−xJ)} to obtain

polynomials {∂m−1UJ(x − xJ)}, respectively. In particular, denote ∂m−1UI+1/2(x −
xI+1/2) = LI+1/2(x−xI+1/2) +RI+1/2(x−xI+1/2), where LI+1/2(x−xI+1/2) is the
linear part of ∂m−1UI+1/2(x − xI+1/2) and RI+1/2(x − xI+1/2) is the remainder.
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(b) Calculate the cell averages of {∂m−1UJ(x − xJ)} on cells {CJ} to obtain
{∂m−1UJ}, respectively.

(c) Let R̃I+1/2(x−xI+1/2) be the RI+1/2(x−xI+1/2) with its coefficients replaced

by the corresponding new coefficients.3 Calculate the cell averages of R̃I+1/2(x −
xI+1/2) on cells {CJ} to obtain {RJ}, respectively.

(d) Let LJ = ∂m−1UJ −RJ for all J .

(e) Form stencils out of the new approximate cell averages {LJ} by using a
nonoscillatory finite volume MUSCL or second order ENO strategy. Each stencil
will determine a set of candidates for the coefficients in the first degree terms of

LI+1/2(x − xI+1/2), which are also candidates for the corresponding U
(m)
I+1/2(0)’s,

|m| = m.

(f) Repeat from (a) to (e) until all possible combinations of the (m − 1)th order
partial derivatives are taken. Then the candidates for all coefficients in the mth degree
terms of UI+1/2(x − xI+1/2) have been computed. For each of these coefficients, say
1
m!U

(m)
I+1/2(0), |m| = m, let the new coefficient Ũ

(m)
I+1/2(0) = F (candidates of U

(m)
I+1/2(0)).

Step 2. In order to find the new coefficients in the zeroth and first degree terms
of UI+1/2(x − xI+1/2), we perform the procedure of Step 1(a)–(f) with m = 1, and

make sure that the new approximate cell average LI+1/2 is in each of the stencils,
which ensures that the cell average of UI+1/2(x − xI+1/2) on cell CI+1/2 is not
changed with the new coefficients. The new coefficient in the zeroth degree term of
UI+1/2(x−xI+1/2) is LI+1/2, which ensures that the cell average of UI+1/2(x−xI+1/2)
in cell CI+1/2 is invariant with the new coefficients. At this stage all new coefficients
of UI+1/2(x − xI+1/2) have been found.

Remarks. 1. The coefficients of the polynomials can be updated after Algorithm 1
has been applied to all mesh cells, or at the mth stage when all new coefficients for
those in the mth degree terms of all polynomials have been computed (in this case,
{∂0UJ} used in Step 2 should be the cell averages of the original polynomials to
ensure that they are invariant). The latter case is supposed to be more diffusive. In
numerical experiments we find their results are about the same. All numerical results
presented in this paper are performed with the former implementation.

2. One motivation for us to develop this hierarchical reconstruction is that the
limiting for the DG scheme on nonstaggered meshes is different from that for scheme
(3.4). For the usual DG scheme the time evolution of the cell averages is completely
determined by the fluxes; however, in (3.4), cell interior values are also involved. We
find in numerical experiments that the moment limiter [7] does not work as robustly
for scheme (3.4) as it does for the DG scheme on nonstaggered meshes. The proposed
hierarchical reconstruction process is quite general and could be useful for conventional
DG or even finite volume schemes. These will be explored in the future.

3. Scheme (3.4) with Algorithm 1 and with piecewise linear elements is identical
to the second order central scheme on overlapping cells [38].

4. It is more efficient to apply the hierarchical reconstruction process only in
places where it is needed by using nonsmoothness detectors (see, e.g., [42, 9]). This
will be explored in the future.

3At this stage, we have already found new values for all coefficients in the terms of UI+1/2(x −
xI+1/2) of degree above m. These coefficients remain in RI+1/2(x−xI+1/2) (after taking an (m−1)th
order partial of UI+1/2(x − xI+1/2)). When they are replaced by their corresponding new values,

RI+1/2(x − xI+1/2) becomes R̃I+1/2(x − xI+1/2). See Step 2(2) in section 4.1 as an example.
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The most important point is that even though the linear reconstruction used
in Algorithm 1 is only second order accurate, the approximation order of accuracy
of a polynomial in a cell is unaffected by the algorithm, and we have the following
condition.

Condition 1. Let {xJ0 ,xJ1 , . . . ,xJd
} be the d + 1 cell centroids of a stencil.

Then there is a point among them, say xJ0
, such that the matrix A = 1

Δx [xJ1
− xJ0

,
xJ2

−xJ0 , . . . ,xJd
−xJ0 ] is nonsingular. Further, there is a constant α > 0 independent

of Δx such that ||A−1|| ≤ α.
In two dimensions, this condition means that xJ0 ,xJ1 ,xJ2 are not along a straight

line. Further, the angle between the line passing xJ0 ,xJ1 and the line passing xJ0 ,xJ2

has a positive lower bound independent of Δx. This condition is satisfied for stencils
such as {C3, C1, C2}, {C3, C2, C5}, {C3, C5, C4}, and {C3, C4, C1} in Figure 3 (right),
and is not satisfied for {C1, C3, C5}.

Theorem 2. Suppose {UJ(x−xJ)} in Algorithm 1 approximate a Cr+1 function
u(x) with pointwise error O

(
(Δx)r+1

)
within their respective cell {CJ}, and all cells

in {CJ} are contained in a circle centered at xI+1/2 with radius O(Δx). Let the d+1
cell centroids in every stencil used in Algorithm 1 satisfy Condition 1. Then after the
application of Algorithm 1, the polynomial ŨI+1/2(x−xI+1/2), i.e., UI+1/2(x−xI+1/2)
with its coefficients replaced by the corresponding new values, also approximates the
function u(x) with pointwise error O

(
(Δx)r+1

)
within cell CI+1/2. The cell average

of ŨI+1/2(x − xI+1/2) on cell CI+1/2 is the same as that of UI+1/2(x − xI+1/2).
Proof. From the assumption we know that the coefficients in the mth degree

terms of UI+1/2(x − xI+1/2), 0 ≤ m ≤ r, are the (r −m + 1)th order approximation
to the corresponding coefficients of the Taylor expansion of u(x) at xI+1/2.

Assume that when starting to compute new values for the coefficients of the
mth degree terms of UI+1/2(x − xI+1/2), 1 ≤ m ≤ r, all the computed new values
(if there are any) for the coefficients of the lth degree terms (m < l ≤ r, if they
exist) of UI+1/2(x − xI+1/2) are their (r − l + 1)th order approximations. In fact,
when m = r, there are no new coefficients which have been computed at Step 1(a).
However, the following argument will show that the new coefficients computed at
Step 1(f) for coefficients of the rth degree terms of UI+1/2(x− xI+1/2) are their first
order approximations.

Let LI+1/2(x− xI+1/2) = c0 + c1 · (x− xI+1/2) in Step 1(a) and let L̂(x) = ĉ0 +
ĉ1·(x−xI+1/2) be the corresponding linear part in the Taylor expansion of the same (as
for UJ) (m−1)th partial derivative of u(x) at xI+1/2. Therefore c0 and c1 approximate

ĉ0 and ĉ1 to the order of O
(
(Δx)r−m+2

)
and O

(
(Δx)r−m+1

)
, respectively. Also

from the above assumptions it is easy to see that LJ = ∂m−1UJ − RJ in Step 1(d)

approximates the cell average of L̂(x) on cell CJ to the order of O(Δxr−m+2) for all
cells CJ adjacent to cell CI+1/2.

Reconstructing L̃I+1/2(x−xI+1/2) = c̃0+ c̃1 ·(x−xI+1/2) from a stencil CJ0 , CJ1 ,
. . . , CJd

∈ {CJ} entails finding c̃0 and c̃1 that satisfy the equations (see (4.2))

1

|CJl
|

∫
CJl

(c̃0 + c̃1 · (x − xI+1/2))dx = c̃0 + c̃1 · (xJl
− xI+1/2)(4.3)

= LJl
= ĉ0 + ĉ1 · (xJl

− xI+1/2)

+ O
(
(Δx)r−m+2

)
,

where xJl
is the cell centroid of cell CJl

, l = 0, . . . , d. The solutions are candidates
for c0 and c1, respectively. Subtracting the first equation (l = 0) from the rest of the
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equations in (4.3), we can obtain

AT (c̃1 − ĉ1) = O
(
(Δx)r−m+1

)
,

where A = 1
Δx [xJ1 − xJ0 ,xJ2 − xJ0 , . . . ,xJd

− xJ0 ]. From Condition 1, ||A−1|| is
bounded independently of Δx. We conclude that the candidate

(4.4) c̃1 = ĉ1 + O
(
(Δx)r−m+1

)
.

Also since ||xJl
− xI+1/2|| = O(Δx), l = 0, 1, . . . , d, by substituting the estimate of

the candidate c̃1 back into one of the equations of (4.3), we obtain that the candidate

(4.5) c̃0 = ĉ0 + O
(
(Δx)r−m+2

)
.

Since the function F used in Step 1(f) is a convex combination of its arguments, it does
not change the approximation order of its arguments. Therefore estimate (4.4) implies
that the new values for coefficients of the mth degree terms of UI+1/2(x − xI+1/2)
are their (r−m+ 1)th order approximations. Estimate (4.4) moves the induction till
m = 1 and estimate (4.5) implies that in Step 2 the new value for the coefficient of
the zeroth degree term of UI+1/2(x− xI+1/2) is its O(Δxr+1) approximation. Step 2
clearly ensures that the cell average of UI+1/2(x−xI+1/2) on cell CI+1/2 is unchanged
with the new coefficients. The proof is now complete.

4.3. Implementation for piecewise quadratic finite element space in two
dimensions. Suppose on cell Cj (see Figure 3, right) a quadratic polynomial is given
as

Uj(x− xj , y − yj) = Uj(0, 0) + ∂xUj(0, 0)(x− xj) + ∂yUj(0, 0)(y − yj)

+
1

2
∂xxUj(0, 0)(x− xj)

2

+ ∂xyUj(0, 0)(x− xj)(y − yj) +
1

2
∂yyUj(0, 0)(y − yj)

2,

where (xj , yj) is the cell centroid of cell Cj , j = 1, 2, . . . , 5.
According to Step 1 of Algorithm 1, take the first partial derivative with respect

to x for them to obtain Lj(x − xj , y − yj) = ∂xUj(0, 0) + ∂xxUj(0, 0)(x − xj) +
∂xyUj(0, 0)(y− yj), j = 1, 2, . . . , 5. Calculate the cell average of Lj(x− xj , y− yj) on
cell Cj to obtain Lj = ∂xUj(0, 0), j = 1, 2, . . . , 5 (note that R3(x− x3, y − y3) ≡ 0).
With the five new approximate cell averages {Lj : j = 1, 2, . . . , 5}, one can apply
a MUSCL or a second order ENO procedure to reconstruct a nonoscillatory linear
polynomial

L̃3(x− x3, y − y3) = ∂xŨ3(0, 0) + ∂xxŨ3(0, 0)(x− x3) + ∂xyŨ3(0, 0)(y − y3)

in cell C3. For example, one can form the four stencils {C3, C1, C2}, {C3, C2, C5},
{C3, C5, C4}, and {C3, C4, C1}. For the first stencil, solve the following equations for

∂xxŨ3(0, 0) and ∂xyŨ3(0, 0):

1

|Cj |

∫
Cj

L̃3(x− x3, y − y3)dxdy = L3 + ∂xxŨ3(0, 0)(xj − x3) + ∂xyŨ3(0, 0)(yj − y3)

= Lj ,
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Table 10

P 2 version of the central DG scheme (3.4) with the hierarchical reconstruction Algorithm 1 for
the 2D Burgers equation. Second order ENO is used in Algorithm 1.

Δx 1/4 1/8 1/16 1/32 1/64
L1 error 8.00E-2 1.24E-2 1.58E-3 1.92E-4 2.40E-5
order - 2.69 2.97 3.04 3.00

L∞ error 4.90E-2 9.85E-3 1.68E-3 2.01E-4 2.68E-5
order - 2.31 2.55 3.06 2.91

j = 1, 2; similarly for other stencils. We obtain two sets of candidates for ∂xxU3(0, 0)
and ∂xyU3(0, 0), respectively. By taking the first partial derivative with respect to
y for Uj(x − xj , y − yj), j = 1, 2, . . . , 5, we similarly obtain a set of candidates for
∂yyU3(0, 0) and enlarge the set of candidates for ∂xyU3(0, 0). Putting all candidates
for ∂xxU3(0, 0) into the arguments of the minmod (or minmod2) function, we obtain

the new coefficient ∂xxŨ3(0, 0) for ∂xxU3(0, 0). Applying the same procedure, we

obtain new coefficients ∂xyŨ3(0, 0) and ∂yyŨ3(0, 0).
According to Step 2 of Algorithm 1, we compute the cell average of Uj(x − xj ,

y − yj) on cell Cj to obtain Uj , j = 1, 2, . . . , 5, and compute cell averages of the
polynomial

R̃3(x− x3, y − y3) =
1

2
∂xxŨ3(0, 0)(x− x3)

2 + ∂xyŨ3(0, 0)(x− x3)(y − y3)

+
1

2
∂yyŨ3(0, 0)(y − y3)

2

on cell C1, C2, . . . , C5 to obtain R1, R2, . . . , R5, respectively. Redefine Lj = Uj −Rj ,
j = 1, 2, . . . , 5. The same MUSCL or second order ENO procedure as described pre-
viously can be applied to the five cell averages {Lj : j = 1, 2, . . . , 5} to obtain the new

coefficients ∂xŨ3(0, 0) and ∂yŨ3(0, 0). Finally let the new coefficient Ũ3(0, 0) = L3.
The convergence test results with Algorithm 1 for Example 3 can be found in

Table 10. We again observe that the order of accuracy is maintained, although (as
expected for any limiter) the magnitude of the error is increased for the same mesh
(see Table 6 for a comparison).

5. Additional numerical examples. Scheme (3.4) with the piecewise rth de-
gree polynomial space is referred to as CO-DG-(r+1), where “C” stands for “central”
and “O” stands for “overlapping cells.” When the hierarchical reconstruction Algo-
rithm 1 is applied, it is referred to as CO-DG-hr1-(r+1). To specify whether a linear
MUSCL (with the minmod limiter) or ENO (with the minmod2 limiter) reconstruc-
tion is used in Algorithm 1, we refer it as CO-DG-hr1m-(r+1) or CO-DG-hr1e-(r+1),
respectively.

The corresponding (up to third order) TVD Runge–Kutta time discretization
methods [45] are applied to the above schemes. Only the solution in one class of
the overlapping cells is shown in the graphs throughout this section. For systems of
equations, the componentwise extensions of the scalar schemes (without characteristic
decomposition) have been used in all the computations.

Example 5. We compute the Euler equation with Lax’s initial data. ut+f(u)x = 0
with u = (ρ, ρv,E)T , f(u) = (ρv, ρv2 + p, v(E + p))T , p = (γ− 1)(E− 1

2ρv
2), γ = 1.4.

Initially, the density ρ, momentum ρv, and total energy E are 0.445, 0.311, and 8.928
in (0, 0.5), and are 0.5, 0, and 1.4275 in (0.5, 1). The computed results by CO-DG-
hr1e-3 and CO-DG-hr1m-3 are shown at T = 0.16 in Figure 4, with Δx = 1/200,
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Fig. 4. Lax’s problem, Δx = 1/200. From left to right, top to bottom, (1) density (CO-
DG-hr1e-3); (2) velocity (CO-DG-hr1e-3); (3) pressure (CO-DG-hr1e-3); (4) density (CO-DG-
hr1m-3).

Δτn chosen with a CFL factor 0.4, Δtn = 0.5Δτn. The solid line reference solutions
are analytic solutions to the Riemann problem. We observe that the resolution is
quite good with very small over/undershoots. The only concern is that the contact
discontinuity is much more smeared than that of the regular third order DG scheme
with a total variation bounded limiter (Figure 20 in [12]). We hope to improve this
performance by reducing the usage of the reconstruction limiter through a troubled-
cell indicator in future work.

Example 6. The Woodward and Colella blast wave problem [50] for the Euler
equation computed by CO-DG-hr1e-3. Initially, the density, momentum, and total
energy are 1, 0, 2500 in (0, 0.1); 1, 0, 0.025 in (0.1, 0.9); and 1, 0, 250 in (0.9, 1). The
density, velocity, and pressure profiles are plotted in Figure 5 for T = 0.01 and
T = 0.038. The solid line reference solutions are computed by a third order central
scheme on overlapping cells [38] on a much refined mesh (Δx = 1/2000). Δτn is
chosen with a CFL factor 0.4, Δtn = 1

2Δτn. We observe stable results with good
resolution for this very demanding problem in terms of numerical stability.
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Fig. 5. Woodward and Colella blast wave problem computed by CO-DG-hr1e-3, Δx = 1/400.
Top: density; middle: velocity; bottom: pressure. Left: T = 0.01. Right: T = 0.038.

Example 7. Shu–Osher problem [46]. It is the Euler equation with an initial data

(ρ, v, p) = (3.857143, 2.629369, 10.333333) for x < −4,

(ρ, v, p) = (1 + 0.2 sin(5x), 0, 1) for x ≥ −4.

The density profiles are plotted at T = 1.8, with Δx = 1/40; see Figure 6. Δτn is
chosen with a CFL factor 0.5, Δtn = 0.5Δτn. The solid line is the numerical solution
on a fine mesh (Δx = 1/200) computed by a central scheme on overlapping cells [38].
We observe very good resolution for this example. In order to see the resolution of
the 2D nonoscillatory hierarchical reconstruction algorithm, we put the Shu–Osher
problem to a 2D domain [−5, 5] × [0, 0.25] and solve the 2D Euler equation. Initially
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Fig. 6. Shu–Osher problem, Δx = 1/40. Left: CO-DG-dr1m-3. Right: CO-DG-hr1e-3.

−5

0

5

0

0.05

0.1

0.15

0.2

0.25
0

1

2

3

4

5

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 7. Shu–Osher problem in two dimensions, Δx = Δy = 1/40. CO-DG-hr1e-3. Left:
density in the xy plane. Right: density along the line y = 0.25/3.

the density variation is only along the x direction. The density profiles at T = 1.8
are plotted in Figure 7.

Example 8. 2D Riemann problem [29] for the Euler equation computed by CO-
DG-hr1e-3. The 2D Euler equation can be written as

ut + f(u)x + g(u)y = 0, u = (ρ, ρu, ρv,E)T , p = (γ − 1)(E − 1
2ρ(u

2 + v2)),

f(u) = (ρu, ρu2 + p, ρuv, u(E + p))T , g(u) = (ρv, ρuv, ρv2 + p, v(E + p))T ,

where γ = 1.4. The computational domain is [0, 1] × [0, 1]. The initial states are
constants within each of the 4 quadrants. Counterclockwise from the upper right
quadrant, they are labeled (ρi, ui, vi, pi), i = 1, 2, 3, 4. Initially, ρ1 = 1.1, u1 = 0,
v1 = 0, p1 = 1.1; ρ2 = 0.5065, u2 = 0.8939, v2 = 0, p2 = 0.35; ρ3 = 1.1, u3 = 0.8939,
v3 = 0.8939, p3 = 1.1; and ρ4 = 0.5065, u4 = 0, v4 = 0.8939, p4 = 0.35. The density
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Fig. 8. A 2D Riemann problem [29] computed by CO-DG-hr1e-3. Δx = Δy = 1/400, Left:
density. Right: pressure.
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Fig. 9. A 2D Riemann problem [29]. Density profile along y = 1/3.

and pressure profiles are plotted at T = 0.25 in Figure 8, with 30 equally spaced
contours. The numerical resolution is quite good for this problem. The density profile
along y = 1/3 is plotted in Figure 9. There is no oscillation near the discontinuities.

Example 9. Double Mach reflection [50] computed by CO-DG-hr1e-3. A planar
Mach 10 shock is incident on an oblique wedge at a π/3 angle. The air in front of the
shock has density 1.4, pressure 1, and velocity 0. The boundary condition is described
in [50]. The density and pressure profiles are plotted at T = 0.2 in Figure 10, with
30 equally spaced contours. Δx = Δy = 1/120, Δτn chosen with a CFL factor 0.4,
Δtn = 0.99Δτn. We can see in the lower graph (the cross section density profile along
y = 1/3) that the computed result is nonoscillatory.

6. Concluding remarks and a plan for future work. In this paper we
have developed a central DG method based on staggered overlapping cells, with a
numerical viscosity which stays bounded when the time step size goes to zero. Time
discretization is via the standard TVD Runge–Kutta method. We have also developed
a multilayer hierarchical reconstruction procedure and used it as a limiter for our
central DG scheme. The limiter is able to maintain the original order of accuracy
and can effectively control spurious oscillations for discontinuous solutions. In future
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Fig. 10. Double Mach reflection computed by CO-DG-hr1e-3, Δx = Δy = 1/120. Top: density
contours. Middle: pressure contours. Bottom: density cut along the line y = 1/3.

work we will generalize the method to convection-diffusion equations, improve the
limiter by applying troubled-cell indicators, and also study further the hierarchical
reconstruction procedure as a limiter for the regular DG methods and finite volume
schemes. A stability analysis and error estimates for the central DG scheme as well as
a comparison between the regular DG and central DG schemes will also be performed.

The examples reported in the paper are aimed to show the flexibility of the new
approach to use with a Runge–Kutta method, and its capability to handle small time
steps, without introducing excessive numerical dissipation. The more efficient way to
overcome the small time step restriction with the presence of a diffusion term is to
use implicit-explicit time discretization, e.g., Ascher, Ruuth, and Spiteri [4], Kennedy
and Carpenter [24], and Liotta, Romano, and Russo [33], which treats the advection
part explicitly and the diffusion part implicitly, thus avoiding the O(Δx2) stability
restriction on the time step due to the diffusion term; another way would be to use a
fast explicit Runge–Kutta solver, e.g., Lebedev [30] or Medovikov [39].

Even though in all the numerical examples the reconstruction is performed com-
ponentwisely, we have also performed some preliminary tests on the nonoscillatory hi-
erarchical reconstruction with local characteristic decomposition and have not found
any significant difference. We plan to conduct more careful study on this subject in
the future.
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Abstract. Following encouraging experimental results in quantum control, numerical simu-
lations have known significant improvements through the introduction of efficient optimization al-
gorithms. Yet, the computational cost still prevents using these procedures for high-dimensional
systems often present in quantum chemistry. Using parareal framework, we present here a time par-
allelization of these schemes which allows us to reduce significantly their computational cost while
still finding convenient controls.
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1. Introduction. In the last decade, quantum control has witnessed significant
developments including encouraging experimental results [5, 6, 9, 15, 16, 23, 24, 29, 36].
At the computational level [7, 25], the introduction of the monotonic algorithms of
Krotov (by Tannor [31]), Zhu and Rabitz [37], or the unified form of Maday and
Turinici [21] allows us to design efficient methods to obtain laser fields controlling the
molecular dynamics. On the other hand, parareal scheme (that stands for paralleliza-
tion in real time) has shown a convenient efficiency in the case of the Schrödinger
equation; see, e.g., [2, 33]. In what follows, we combine these two approaches by using
monotonic algorithms as the inner loop of a time-parallelization procedure.

Let us first briefly present the model and the corresponding optimal control frame-
work used in this paper. Consider a quantum system described by its wavefunction
ψ(x, t), also called state in what follows. Here “x” ∈ Ω denotes the relevant spatial
coordinates (the symbol x will often be omitted in what follows for reason of sim-
plicity). The operator V (x) is the potential part. The dynamics of this system is
characterized by its internal Hamiltonian:

H(x) = H0 + V (x).

In this equation H0, the kinetic part, could be

H0 = −1

2

p∑
n=1

1

mn
Δrn ,

where p is the number of particles considered, mn their masses, and Δrn the Laplace
operator with respect to their coordinates.
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16, France (gabriel.turinici@dauphine.fr).

2468



MONOTONIC PARAREAL CONTROL FOR QUANTUM SYSTEMS 2469

A way to control such a system is to light it with a laser pulse. We denote by
ε(t) the intensity of this control field. The contribution of this parameter is taken
into account by introducing a perturbative term in the Hamiltonian which then reads
H(x) − μ(x)ε(t). The evolution of ψε(x, t) is governed by the Schrödinger equation
(we work in atomic units, i.e., � = 1):

(1.1)

{
i ∂
∂tψ

ε(x, t) = (H(x) − μ(x)ε(t))ψε(x, t),

ψε(x, 0) = ψinit(x),

where ψinit is the initial condition for ψε subject to the constraint:

‖ψinit‖L2(Ω) = 1.

Since H is self-adjoint, from (1.1) the norm of the state is constant with respect to
the time. In the numerical simulations, the ground state, i.e., a unitary eigenvector
of H associated with the lowest eigenvalue, is generally taken as initial condition.

The optimal control framework can then be applied to this bilinear control system
to design relevant control fields. The quality of the pulse is evaluated via a cost
functional. A general example of such a function is

(1.2) J(ε) = ‖ψε(T ) − ψtarget‖2
L2(Ω) +

∫ T

0

α(t)ε2(t)dt,

where T is the total time of control, α a positive function, and ψtarget a target state
which has to be reached.

At the minimum of the cost functional J , the Euler–Lagrange critical point equa-
tions are satisfied; a standard way to write these equations is to use a Lagrange
multiplier χε(x, t) called adjoint state. The following critical point equations are thus
obtained [37]: {

i ∂
∂tψ

ε(x, t) = (H(x) − ε(t)μ(x))ψε(x, t),

ψε(x, 0) = ψinit(x),
(1.3) {

i ∂
∂tχ

ε(x, t) = (H(x) − ε(t)μ(x))χε(x, t),

χε(x, T ) = ψtarget(x),
(1.4)

α(t)ε(t) = −Im〈χε(t)|μ|ψε(t)〉,(1.5)

where A is an operator on L2(Ω) and 〈f |A|g〉 =
∫
Ω
f(x)A(g)(x)dx.

Numerous optimization procedures exist to compute iteratively sequences (εk)k∈N

that approximate the solution of (1.3)–(1.5). The common feature of these algorithms
is that they involve repeated resolutions of Schrödinger equations (1.3) and (1.4),
which induce a heavy computational time cost. Depending on their order, the mere
computation of εk can also be time consuming due to the high nonlinearity of the cost
functional. In order to reduce the computation time, some time parallelization of the
resolution of (1.3)–(1.5) can be done. A standard method consists of subdividing the
interval [0, T ] into subintervals and to compute iteratively the corresponding adequate
initial conditions for parallel resolution on each subinterval. This approach is also the
base of the multiple shooting methods (see [22, sect. 17.1] and, e.g., [8]). In [10] a
comparison between these methods shows that the parareal algorithms can be recast
as a multiple shooting algorithm where the Jacobian matrix is approached by a finite
difference method on a coarse grid.
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Another body of related literature was introduced in the pioneering works of
Hackbush; see [11, 12] and also [14, 19, 35]. The parareal method corresponds to
a two-level multigrid with a larger coarsening rate and an unusual smoother which
corresponds to a single phase of a bicolor relaxation scheme.

Such time parallelization procedures have already been associated to optimiza-
tion procedures to tackle control problems, e.g., in the case of ordinary differential
equations [13], or linear control of hyperbolic [17], or parabolic evolution equations
[4, 34]. On the contrary, we present here a new method to treat the bilinear optimal
control of the Schrödinger equation (1.1), and consider a particular decomposition of
J in sub-cost functionals corresponding to the time subdivision. In this framework,
an iterative optimization procedure is designed that converges to a critical point of J .

The paper is organized as follows: parareal optimal control settings corresponding
to our quantum control problem is presented in section 2. In section 3, we give an
algorithm achieving a parallel in time optimization. We prove the convergence of this
procedure towards a critical point of a discrete version of the cost functional J in
section 4 and we finally give some numerical results in section 5.

2. Parareal control setting. Throughout this section the control field ε is
either a function of L2([0, T ]) or its corresponding time discretization.

2.1. Main features of the parallelization. Following Lions, Maday, and
Turinici [18], we now introduce the necessary concepts and tools involved in the time
parallelization proposed by the parareal approach.

2.1.1. Subdivision of [0, T ] and virtual controls. Let N ≥ 1 be an inte-
ger. In order to design the time parallelized optimization procedure, we introduce a
subdivision of [0, T ]:

[0, T ] =

N−1⋃
�=0

[T�, T�+1],

with T0 = 0 and TN = T . Consider also a set Λ = (λ�)�=1,...,N−1 ∈
(
L2(Ω)

)N−1
. In

what follows, Λ will be called the set of virtual controls. For notational simplicity, we
will also denote by λ0 the initial state ψinit and by λN the target state ψtarget. The
resolution of (1.1) is now substituted by the resolution of the N problems:

(2.1)

{
i ∂
∂tψ

ε�
� (x, t) = (H(x) − ε�(t)μ(x))ψε�

� (x, t),

ψε�
� (x, T�) = λ�(x), � = 0, . . . , N − 1,

where ε� is the restriction of ε to [T�, T�+1] (with � = 0, . . . , N − 1). By (2.1), ψε�
�

also depends on λ�. In order to simplify the notations, we omit this dependence. The
solution of (2.1) coincides to that of (1.1) if and only if

(2.2) ∀� = 0, . . . , N − 1, ψε�
� (x, T�+1) = λ�+1(x).

The parareal framework provides different methods to iteratively compute a solution
Λ∗ of (2.1)–(2.2).

2.1.2. Coarse and fine propagators. Suppose that the numerical simulation
of (1.1) can be realized both by a coarse propagator and a fine propagator. Because
the use of the coarse propagator is considered to be cheap, it can be used for the
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resolution of (1.1) over the whole interval of control [0, T ]. On the contrary, the fine
propagator will only be used for parallel resolutions on [T�, T�+1].

The analysis of the algorithm presented below requires that the L2-norm of the
finely approximated solution be constant with respect to the time (as is the case for
the exact solution of (1.1)). Because of its numerical accuracy, we choose to consider
the Strang-second-order split-operator solver [3, 30], that fulfills this property. Let us
present it in some detail.

Consider two parameters of the time discretization n and δt = T
n , and define n0 =

0 < n1 < · · · < n� < · · · < nN = n, the time indexes associated with (T�)�=0,...,N . Let
us also introduce, for � = 0, . . . , N−1, j = n�, . . . , n�+1−1, the discretized control field
ε�,j and for � = 0, . . . , N − 1, j = n�, . . . , n�+1, the discretized state ψε�

�,j that stand,
respectively, for approximations of ε�(jδt) and ψε�

� (jδt). The time discretization of
(2.1) is given by

(2.3)

⎧⎨⎩ ψε�
�,j+1 = e

H0δt
2i e

V −με�,j
i δte

H0δt
2i ψε�

�,j , j = n�, . . . , n�+1 − 1,

ψε�
�,n�

= λ�, � = 0, . . . , N − 1.

We refer the reader to [20] for additional details about the corresponding full discre-
tization.

Remark 1. Though we focus on the Strang-second-order split-operator scheme,
the methodology presented in this paper can be adapted to other time discretizations.
Indeed, the analysis done below requires only that the norm of the wavefunction be
preserved during the propagation.

2.1.3. Parareal strategy. Parareal algorithms aim at computing in parallel on
each subinterval the solution of evolution equations such as (1.1). To do this, they
propose various iterative methods to update the virtual controls after each parallel
propagation. The purpose of what follows is to define an updated algorithm that
allows one to couple the parareal approach with an optimization procedure of quantum
control.

2.2. Parareal cost functionals. Let Λ = (λ�)�=1,...,N−1 be a set of virtual con-
trols and (ψε�

� )�=0,...,N−1 the corresponding time discretized solutions of the parallel
propagations (2.3), with ψε�

� = (ψε�
�,j)j=n�,...,n�+1

. In order to design a formulation
combining optimal control and parareal framework, let us also consider the following
cost functional:

(2.4) J‖(ε,Λ) =

N−1∑
�=0

β�‖ψε�
�,n�+1

− λ�+1‖2
L2(Ω) + δt

N−1∑
�=0

n�+1−1∑
j=n�

αjε
2
�,j ,

where β� = n
n�+1−n�

and αj is an approximation α(jδt). This cost functional can be

decomposed as follows:

J‖(ε,Λ) =

N−1∑
�=0

β�J�(ε�, λ�, λ�+1),

where J� are the parareal cost functionals:

J�(ε�, λ�, λ�+1) = ‖ψε�
�,n�+1

− λ�+1‖2
L2(Ω) + δt

n�+1−1∑
j=n�

α′
�,jε

2
�,j ,
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with:

(2.5) α′
�,j =

αj

β�
.

Note that the optimization problems defined on [T�, T�+1] via J� are similar to the
initial control problem on [0, T ] corresponding to (1.2).

3. Monotonic parareal algorithm. Our aim is to optimize J‖(ε,Λ) with re-
spect to its two variables. We first present the main features of our algorithm and
then give further details on each step.

3.1. Structure of the algorithm. To couple parareal framework and the con-
trol optimization, we propose the following methodology: given ν > 0, consider the
termination criterion c(ε) = J(ε) + ν

∑N−2
�=0 |ε�,n�+1−1 − ε�+1,n�+1

|2. Given an initial
control field εk and a tolerance tol ≥ 0, the computation of εk+1 is done as follows:

1. If c(εk) ≤ tol, then stop.

2. Compute a coarse solution ψk = ψεk of (1.3).

3. Compute a coarse solution χk = χεk of (1.4).
4. Using ψk and χk, compute Λk, which optimizes J‖(ε

k,Λ) with respect to Λ.

5. On each interval [T�, T�+1], compute in parallel some control field εk+1
� , which

optimizes the cost functionals J�(ε�, λ
k
� , λ

k
�+1) with respect to ε�.

6. Define εk+1 as the concatenation of the control fields εk+1
� .

7. Assign k ← k + 1. Return to step 1.
This algorithm is similar to an alternate direction descent algorithm, in the sense

that it alternatively optimizes J‖(ε,Λ) with respect to Λ and to ε.
Of course, to take advantage of the time parallelization, steps 2 and 3 of the

previous algorithm are to be computed using the coarse propagator, whereas step 5
can be done simultaneously and by fine propagations.

Remark 2. Solving (1.4) exploits in an essential manner the time-reversibility
of the Schrödinger equation. Further work is required to extend this algorithm to
nonreversible cases.

3.2. Virtual controls definition. We present in this section some results which
will enable us to achieve efficiently step 4 of the monotonic parareal algorithm. As
we do not intend to deal with the coarse propagator properties, we will consider in
this section that steps 2 and 3 are done with the split-operator method presented in
section 2.1.2, with the (small) time step δt. Even though this is not what we want
to do ultimately, the results below keep a practical interest since the most expensive
part of the algorithm is the update of the control field which will be done in parallel.
Thus, given a control field ε = (εj)j=0,...,n−1, the states ψε = (ψε

j )j=0,...,n and the
adjoint states χε = (χε

j)j=0,...,n are computed by⎧⎨⎩ ψε
j+1 = e

H0δt
2i e

V −μεj
i δte

H0δt
2i ψε

j ,

ψε
0 = ψinit,

(3.1)

⎧⎨⎩ χε
j−1 = e−

H0δt
2i e−

V −μεj−1
i δte−

H0δt
2i χε

j ,

χε
n = ψtarget.

(3.2)

For reasons of simplicity, we use in what follows the following notation:

Fε
j,j′ψ

ε
j = ψε

j′ ,
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where 0 ≤ j, j′ ≤ n are two (time) indices, and ψε = (ψε
j )j=0,...,n is the solution of

(3.1). We still denote by J the time discretized cost functional corresponding to (1.2):

(3.3) J(ε) = ‖ψε
n − ψtarget‖2

L2(Ω) + δt

n−1∑
j=0

αjε
2
j .

The following theorem provides the optimal choice of virtual controls Λ.
Theorem 3.1. With the previous notations, let us define Λε = (λε

�)�=1,...,N−1 by

(3.4) λε
� = (1 − γ�)ψ

ε
n�

+ γ�χ
ε
n�
,

where γ� = n�

n . Then

(3.5) Λε = argminΛ(J‖(ε,Λ)).

Moreover, we have

J‖(ε,Λ
ε) = J(ε).

Proof. For a given Λ = (λ�)�=1,...,N−1, let us first prove that J(ε) is a lower bound
for J‖(ε,Λ). The Cauchy–Schwarz inequality gives

N−1∑
�=0

β�‖ψε�
�,n�+1

− λ�+1‖2
L2(Ω) =

(
N−1∑
�=0

1

β�

)
N−1∑
�=0

β�‖ψε�
�,n�+1

− λ�+1‖2
L2(Ω)(3.6)

≥
(

N−1∑
�=0

‖ψε�
�,n�+1

− λ�+1‖L2(Ω)

)2

.(3.7)

Recalling that Fε is a unitary operator, we have

∀� = 1, . . . , N − 1,

‖ψε�
�,n�+1

− λ�+1‖L2(Ω) = ‖Fε
n�,n�+1

(λ�) − λ�+1‖L2(Ω)

=
∥∥Fε

n�+1,n

(
Fε

n�,n�+1
(λ�) − λ�+1

)∥∥
L2(Ω)

= ‖Fε
n�,n

(λ�) −Fε
n�+1,n

(λ�+1)‖L2(Ω).(3.8)

Hence

N−1∑
�=0

‖ψε�
�,n�+1

− λ�+1‖L2(Ω) =

N−1∑
�=0

‖Fε
n�,n

(λ�) −Fε
n�+1,n

(λ�+1)‖L2(Ω)

≥ ‖Fε
0,n(ψinit) − ψtarget‖L2(Ω).(3.9)

Combining (3.9) and (3.6) we obtain, since Fε
0,n(ψinit) = ψε

n,

J‖(ε,Λ) ≥ J(ε).

By (3.4), we have

ψε�
�,n�+1

− λε
�+1 = Fε

n�,n�+1
(λε

�) − λε
�+1

= Fε
n�,n�+1

(
(1 − γ�)ψ

ε
n�

+ γ�χ
ε
n�

)
−
(
(1 − γl+1)ψ

ε
n�+1

+ γ�+1χ
ε
n�+1

)
(3.10)

= (γ�+1 − γ�)
(
ψε
n�+1

− χε
n�+1

)
.
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Hence,

‖ψε�
�,n�+1

− λε
�+1‖L2(Ω) =

1

β�
‖ψε

n − ψtarget‖L2(Ω).

Combining this equality with (2.4), we obtain the following:

J‖(ε,Λ
ε) =

N−1∑
�=0

1

β�
‖ψε

n − ψtarget‖2
L2(Ω) + δt

N−1∑
�=0

n�+1−1∑
j=n�

αjε
2
�,j ,

= ‖ψε
n − ψtarget‖2

L2(Ω) + δt

N−1∑
�=0

n�+1−1∑
j=n�

αjε
2
�,j ,(3.11)

and the theorem follows.
Remark 3. The trajectory

(
(1 − j

N )ψε
j + j

N χε
j

)
j=0,...,n

is an ideal trajectory

that reaches exactly the target ψtarget. The choice Λ = Λε is equivalent to define
the virtual controls on this trajectory. This interpretation is closely related to the
concept of reference trajectory tracking: through the introduction of the parareal
cost functionals, the initial problem is transformed into N − 1 optimization problems
that aim to minimize on each subinterval the distance between the current trajectory
and this ideal (unknown) trajectory.

Remark 4. An alternative definition for Λ can be

(3.12) λ� =
(1 − γ�)ψ

ε
n�

+ γ�χ
ε
n�

‖(1 − γ�)ψε
n�

+ γ�χε
n�
‖L2(Ω)

,

which has the advantage that the norms of the virtual controls are preserved. Fur-
thermore, it can be proved that λ corresponds to a critical point of J‖(ε,Λ) under the
constraint

∀� = 1, . . . , N − 1, ‖λ�‖L2(Ω) = 1.

3.3. Monotonic schemes. Let us now describe a practical implementation of
step 5 of the monotonic parareal algorithm. Given a set of virtual controls Λ =
(λ�)�=1,...,N−1 (recall that λ0 = ψ0 and λN = ψtarget), the parareal cost functional J�
reads

J�(ε�, λ�, λ�+1) = ‖λ�‖2
L2(Ω) + ‖λ�+1‖2

L2(Ω) − 2Re〈ψ�,n�+1
, λ�+1〉

+ δt

n�+1−1∑
j=n�

α′
�,jε

2
�,j , � = 0, . . . , N − 1.(3.13)

The first two terms of J� will not change during the optimization of ε. An efficient way

to minimize cost functionals of the form J̃(ε) = −2Re〈ψ(T ), ψtarget〉+
∫ T

0
α(t)ε2(t)dt

associated with the Schrödinger equation is to use monotonic schemes [21, 37].
In our case, the time discretized monotonic scheme corresponding to (3.13) can

be defined by the following procedure.
Let us consider (δ, η) ∈ [0, 2[ × [0, 2[ and introduce the notations

χ̃�,j = e
H0δt

2i χ�,j , ψ̆�,j = e
H0δt

2i ψ�,j , χ̆�,j = e−
H0δt

2i χ�,j , ψ̃�,j = e−
H0δt

2i ψ�,j ,
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and μ∗(h), an approximation of μ, defined by

(3.14) μ∗(h) =
e−iμhδt − Id

−ihδt
,

where Id is the identity operator.

Given a control field εk, its restriction εk� to the interval [T�, T�+1] and the corre-
sponding ψk

� = (ψk
�,j)j=n�,...,n�+1

are defined iteratively by

(3.15)

⎧⎨⎩ ψk
�,j+1 = e

H0δt
2i e

V −μεk�,j
i δte

H0δt
2i ψk

�,j , j = n�, . . . , n�+1 − 1,

ψk
�,n�

= λ�, � = 0, . . . , N − 1.

The computation of εk+1
� is performed as follows:

1. For � = 0, . . . , N −1, compute iteratively an intermediate control field ε̃k� and
its corresponding adjoint state χk

� by

(3.16) χk
�,j = e−

H0δt
2i e

−V +με̃k�,j
i δte−

H0δt
2i χk

�,j+1, j = n�, . . . , n�+1 − 1,

where ε̃k�,j is such that

(3.17) ε̃k�,j = (1 − η)εk�,j −
η

α′
�,j

Im〈χ̆k
�,j+1|μ∗(εk�,j − ε̃k�,j)|ψ̃k

�,j+1〉,

with the final condition

χk
�,n�+1

= λ�+1.

2. For � = 0, . . . , N − 1, compute iteratively the control field εk+1
� and its corre-

sponding state ψk+1
� by

ψk+1
�,j+1 = e

H0δt
2i e

V −με
k+1
�,j

i δte
H0δt

2i ψk+1
�,j , j = n�, . . . , n�+1 − 1,

where εk+1
�,j is such that

(3.18) εk+1
�,j = (1 − δ)ε̃k�,j −

δ

α′
�,j

Im〈χ̃k
j |μ∗(εk+1

�,j − ε̃k�,j)|ψ̆k+1
�,j 〉,

with the initial condition

(3.19) ψk+1
�,n�

= λ�.

The implicit equations (3.17) and (3.18) are solved independently for ε̃k�,j and εk+1
�,j ,

respectively, at each time step by a Newton method (all other parameters involved
are known). We refer the reader to [20] for a proof of the existence of solutions and
further details on this scheme.

In what follows, the initial value ε0 of the monotonic scheme is considered fixed.
An important property of this algorithm is given in the following theorem [21].
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Theorem 3.2. For any η, δ ∈ [0, 2] the algorithm given in (3.16)–(3.19) is well
defined and converges monotonically in the sense that

∀� = 0, . . . , N − 1,

J�(ε
k+1
� , λ�, λ�+1) − J�(ε

k
� , λ�, λ�+1) = −δt

n�+1−1∑
j=n�

α′
�,j(ε

k+1
j,� − εkj,�)

2 ≤ 0.(3.20)

This optimization procedure can be done in parallel on each interval [T�, T�+1].

Consequently, the computations can be carried out with fine propagators Fεk+1
� .

Remark 5. As was the case for step 4 (see Remark 3), this step of the algorithm is
also linked to the concept of reference trajectory tracking: in the monotonic schemes,
the control field ε̃k�,j1 (resp., εk+1

�,j ) is chosen such that the distance between the current

states and adjoint state ‖ψk
�,j −χk

�,j‖L2(Ω) (resp., ‖ψk+1
�,j+1 −χk

�,j+1‖L2(Ω)) decreases at
each time step. We refer the reader to [28, 32] for details about the relationship
between the monotonic schemes and local tracking algorithms.

Remark 6. Note that several iterations of this scheme can be done during step 5 of
the monotonic parareal algorithm, especially in case of slow convergence (see Table 5.1
in section 5.4 for numerical results about it).

The algorithm is schematically depicted in Figure 3.1.

χk(t)

ψk(t)

χk+1
0 (t)

χk+1
1 (t)

χk+1
2 (t)

χk+1
3 (t)

χk+1
4 (t)

χk+1
5 (t)

ψinit

ψtarget

λk+1
1

λk+1
2

λk+1
3

λk+1
4

λk+1
5

ψk+1
0 (t)

ψk+1
1 (t)

ψk+1
2 (t)

ψk+1
3 (t)

ψk+1
4 (t)

ψk+1
5 (t)

0 TTime of control

Fig. 3.1. Symbolic representation of one iteration of the monotonic parareal algorithm. The
optimization is achieved in parallel on each subinterval [T�, T�+1]. The virtual controls λk

� are
updated at each iteration.

3.4. Monotonicity of the algorithm. The combination of the two previous
strategies allows us to define

Λk = Λεk
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and εk+1 as the concatenation of the sequence (εk+1
� )�=0,...,N−1. We have thus ob-

tained a global monotonic algorithm since

J(εk+1) = J‖(ε
k+1,Λk+1) ≤ J‖(ε

k+1,Λk) ≤ J‖(ε
k,Λk) = J(εk).

4. Convergence of the algorithm. The convergence of the sequence (εk)k∈N

defined by the previous algorithm is described in the next theorem.
Theorem 4.1. Given an initial control field ε0, consider the sequence (εk)k∈N

obtained by the algorithm (3.16)–(3.19), where the coarse propagator in steps 2–3 is
taken to be the same as the fine propagator. The sequence (εk)k∈N converges towards
a critical point of J .

Proof. Since the proof is very similar to that presented in [26], we give only a
brief overview.

Denote by CJ the set of critical points of J . Using the previous notations, this
set reads

(4.1) CJ =
{
ε/ ∀j = 0, . . . , N − 1, Im〈χ̃ε

j |μ|ψ̆ε
j 〉 + αjεj = 0

}
.

Let Cε0 be the set of limit points of (εk)k∈N.
Since ‖λk

0‖L2(Ω) = ‖λk
N‖L2(Ω) = 1, (3.4) implies that

∀� = 0, . . . , N, ‖λk
� ‖L2(Ω) ≤ 1.

It can then be proved by induction that (see [20, Theorem 3])

(4.2) ∀k ∈ N, ∀j = 0, . . . , n− 1, |εkj | ≤ M,

with

(4.3) M = max

(
‖ε0‖∞,max

(
1,

δ

2 − δ
,

η

2 − η

)
‖μ‖∗

minj=1,...,n−1

(
αj

)) ,

where ‖μ‖∗ denotes the operator norm of μ and ‖ε0‖∞ = maxj=0,...,n−1(|ε0
j |). Con-

sider now a converging subsequence (εkp)p∈N and its limit ε∞ ∈ Cε0 . The corre-
sponding state ψεkp = ψkp and adjoint state χεkp = χkp defined by (3.1) and (3.2)
converge, respectively, towards ψε∞ and χε∞ . By (3.4), the sequence (Λk

p)p∈N con-

verges towards Λε∞ . Then, a similar proof indicates that (ψ
kp

� )p∈N and (χ
kp

� )p∈N

converge towards ψε∞

� and χε∞

� . Thanks to the similar structures of J� and J , one
can adapt the proof of Lemma 3.3 in [26] which shows that

(4.4) ∀� = 0, . . . , N − 1, ∀j = n�, . . . , n�+1 − 1, Im〈χ̃ε∞

�,j |μ|ψ̆ε∞

�,j 〉 + α′
�,jε

∞
�,j = 0.

Another use of (3.4) proves that
(4.5)

∀� = 0, . . . , N − 1, ∀j = n�, . . . , n�+1 − 1,
1

β�
Im〈χ̃ε∞

�,j |μ|ψ̆ε∞

�,j 〉 = Im〈χ̃ε∞

j |μ|ψ̆ε∞

j 〉.

Combining (4.4) and (4.5) with (2.5), we obtain that

(4.6) Cε0 ⊂ CJ .

Since (J(εk))k∈N is a bounded (by 2 + maxj=0,...,n−1(αj)TM) monotonic sequence,
it converges towards a limit denoted by lε0 .
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We are now in the position to reproduce the analysis in Theorem 4.5 of [26] which
shows that

∃θ ∈
]
0,

1

2

]
, ∃κ > 0, ∃k0 ∈ N/ ∀k ≥ k0,

(lε0 − J(εk))θ − (lε0 − J(εk+1))θ ≥ κ‖εk+1 − εk‖2,(4.7)

where ‖.‖2 denotes the usual Euclidean norm on Rn. Hence, the sequence (εk)k∈N is
a Cauchy sequence and by (4.6) the theorem follows.

5. Numerical results.

5.1. Model. In order to test the performance of the algorithm, a case already
treated in the literature has been considered. The system is a molecule of HCN
modelled as a rigid rotator. We refer the reader to [1, 27] for numerical details
concerning this system. The goal is to control the orientation of the system; this is
expressed through the requirement that ‖ψ(T ) − ψtarget‖L2(Ω) is minimized, where
the target function ψtarget corresponds to an orientated state.

5.2. Propagators. All the propagations are done through a Strang-second-
order split-operator type as, e.g., in (3.15). The coarse propagator, corresponding
to (3.1) and (3.2), is used with a large time step, whereas the fine propagator, as it
appears in (3.18) and (3.17), is used with a small time step. The ratio of these two
time steps is 10. We have observed that a renormalization (3.12) slightly reduces the
speed of convergence, but has no effect on the converged control fields.

5.3. Numerical convergence. Let us present some results concerning the con-
vergence of the monotonic parareal algorithm.

5.3.1. Evolution of (εk)k∈N. In a first test, N = 10 identical subintervals are
considered to parallelize the algorithm. Figures 5.1–5.3 show a typical evolution of the
sequence (εk)k∈N computed by our algorithm. Figure 5.4 represents the control field
obtained without parallelization by a monotonic algorithm applied to J . Note that
the discontinuities that are visible on Figure 5.1 and even on Figure 5.2 disappear as
the number of iteration increases.

5.3.2. Variation of the number of subintervals. The control field obtained
at the numerical convergence appears to be independent of the number N of subinter-
vals. This is coherent with Theorem 4.1 which claims that the limit depends only on
the initial cost functional J . In order to evaluate the effect of N on the convergence
of the algorithm, we have run the algorithm for different values of this parameter.
Figure 5.5 shows the evolution of the cost functional values for N = 1, 2, 5, 10, 50, 100.
The convergence speed decreases when N becomes larger. One has thus to find an
optimum between the acceleration obtained by parallelization and the reduction of
the convergence speed induced by it. This compromise depends on the choice of the
coarse and fine propagators. In our case, the parallel optimizations and the coarse
propagations allow us to reach a satisfactory cost functional value with an actual gain
in “wall-clock” time roughly equal to 7. We have not sought to optimize the coarse
and the fine propagators for these numerical tests. In particular, a coarser propagator
should improve this result.

5.4. About the full efficiency. Consider again N = 10 identical subintervals.
An ideal time parallelization should divide the computational time by 10. In order to
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Fig. 5.1. Field of control obtained after
one iteration.
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Fig. 5.2. Field of control obtained after
10 iterations.
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Fig. 5.3. Field of control obtained after
250 iterations. In such nonlinear equations
the typical number of iterations is in the range
102–104 [1, 27].
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Fig. 5.4. Field of control obtained by
a nonparallelized monotonic algorithm (i.e.,
with N = 1) after 250 iterations.
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Table 5.1

Results obtained for several subiterations of the monotonic schemes (3.16)–(3.19) during step 5
of the monotonic parareal algorithm.

k m Comp. time J(εk)
Case 0 100 1 100.10.Tf 0.2983
Case 1 100 1 100.(Tf + TC) 0.2986
Case 2 50 2 50.(2Tf + TC) 0.3062
Case 3 25 4 25.(4Tf + TC) 0.3295

approach such a full efficiency, a strategy would be to increase the parallel computa-
tions (step 5) with respect to the coarse propagations (steps 2 and 3 of the algorithm).
In this perspective, the influence on the convergence of the number of iterations (de-
noted by m) of the monotonic algorithm (3.17)–(3.18) done during step 5 has been
tested (see Remark 6). Let us denote by k the number of iterations of the monotonic
parareal algorithm, by Tf the computational time of one iteration of the monotonic
algorithm in a subinterval, and by TC the computational time of both step 2 and
step 3. Table 5.1 summarizes the cases that have been tested.

Case 0 corresponds to the nonparallelized monotonic algorithm (i.e., with N = 1)
computed with the fine propagator. Figure 5.6 shows that the best strategy corre-
sponds to case 1. Further work is needed to reach the full efficiency (corresponding
in our case to a computational time close to 100.Tf ).
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Fig. 5.6. Evolutions of the cost functional values for different values of m.

REFERENCES

[1] A. Auger, A. Ben Haj Yedder, E. Cances, C. Le Bris, C. M. Dion, A. Keller, and

O. Atabek, Optimal laser control of molecular systems: Methodology and results, Math.
Models Methods Appl. Sci., 12 (2002), pp. 1281–1315.

[2] L. Baffico, S. Benard, Y. Maday, G. Turinici, and G. Zérah, Parallel in time molecular
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Abstract. In this paper, we develop and analyze a general approach to preconditioning lin-
ear systems of equations arising from conforming finite element discretizations of H(curl,Ω)- and
H(div,Ω)-elliptic variational problems. The preconditioners exclusively rely on solvers for discrete
Poisson problems. We prove mesh-independent effectivity of the preconditioners by using the ab-
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1. Introduction. On a polyhedron Ω, scaled such that diam(Ω) = 1, we con-
sider the variational problems

u ∈ H(curl) : (curl u, curl v)0 + τ (u,v)0 = (f ,v)0 ∀v ∈ H(curl,Ω),(1.1)

u ∈ H(div) : (divu,div v)0 + τ (u,v)0 = (f ,v)0 ∀v ∈ H(div,Ω),(1.2)

where f is a vector field in (L2(Ω))3 and τ ≥ 0. We admit both homogeneous natural
and essential boundary conditions; that is, H(div,Ω) and H(curl,Ω) can stand for
either H(curl,Ω) and H(div,Ω) or H0(curl,Ω) and H0(div,Ω), respectively. The
parameter τ controls the relative weight of the second and zero order terms in the
bilinear forms.

More generally, the bilinear forms of (1.1) and (1.2) could feature spatially varying
coefficients. So far, our theoretical analysis can take into account variations in the
coefficients only very crudely. Thus, for the sake of simplicity, we have decided to
focus on the constant coefficient case. Variable coefficients will be covered in some
numerical experiments.

Variational problems of the form (1.1) and (1.2) arise in different applications,
for instance, in

• (1.1) as a variational formulation of the eddy current model in computational
electromagnetics [9], and

• (1.2) in the context of equivalent operator preconditioning for mixed finite
element and first order system least squares (FOSLS) schemes for second
order elliptic problems [3].
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Geometric multigrid approaches to discrete linear problems arising from the
Galerkin finite element discretization of (1.1) and (1.2) are well known [2, 4, 19, 22].
They supply mesh-independent iterative solvers and preconditioners, provided a hi-
erarchy of uniformly shape regular meshes is available. Algebraic multigrid (AMG)
methods that dispense with this requirement have been proposed in [7, 33], but they
noticeably deteriorate on fine meshes, let alone permit a comprehensive theoretical
analysis. The auxiliary space approach [38] allows us to harness powerful and asymp-
totically optimal AMG methods developed for discrete second order elliptic boundary
value problems in order to get fast iterative solvers for discretized H(curl,Ω)- and
H(div,Ω)-elliptic problems. As these auxiliary discrete second order elliptic bound-
ary value problems arise from the use of Lagrangian finite elements, which are known
as nodal finite elements in computational electromagnetism [10], we have tagged this
special auxiliary space technique as nodal.

There is a close relationship between the variational problems (1.1) and (1.2)
(cf. [20, section 2]) which allows a fairly parallel treatment of both. Thus we opt for
a unified presentation, starting from an abstract variational problem

(1.3) u ∈ H(D,Ω) : a(u,v) := (Du,Dv)0 + τ (u,v)0 = f(v) ∀u,v ∈ H(D,Ω),

where f is a continuous linear functional on the Hilbert space H(D,Ω). Relating (1.3)
to (1.1) and (1.2) discloses the meaning of D, f , and H(D,Ω); see also Table 3.1. The
bilinear form a(·, ·) induces the energy norm

‖v‖2
A := a(v,v), v ∈ H(D,Ω),(1.4)

which is merely a seminorm, if τ = 0. The energy norm is closely related to the
Hilbert space norm on H(D,Ω)

‖v‖2
H(D,Ω) := ‖Dv‖2

L2(Ω) + ‖v‖2
L2(Ω) , v ∈ H(D,Ω).(1.5)

The principal challenge confronted in the development of preconditioners for dis-
cretized versions of (1.1) and (1.2) is the presence of a large kernel of D: in contrast
to the case D = grad, these kernels have infinite dimension for D = curl (compris-
ing, e.g., all gradients) and D = div (comprising, e.g., all rotations). This entails a
separate treatment of these kernels by the preconditioner, which can exploit the fact
that in suitable curl- and div-conforming finite element spaces the kernels possess a
convenient representation through potentials. On the complement of the kernel the
variational problem should display strong ellipticity and be amenable to standard el-
liptic preconditioning techniques; cf. the reasoning in [19, section 3] and [5, section 5].

Roughly speaking, on the complement of the kernels, the differential operators
underlying (1.1) and (1.2) can be expected to be spectrally equivalent to a second
order differential operator applied to the components of the vector fields. However,
using a discrete second order differential operator as preconditioner is not possible
immediately, because it does not fit the curl- and div-conforming finite element space.
This is why we need the auxiliary space preconditioning technology [38] to link the
finite element spaces on which (1.3) is discretized and the vectorial H1(Ω)-conforming
finite elements that underlie the preconditioning operator.

The main rationale for pursuing this method in [5] was that the evaluation of the
preconditioner boils down to inverting discrete scalar second order elliptic operators
approximately. Fast AMG methods for this purpose abound; see [36, Appendix A].
Thus, AMG codes can be harnessed for H(curl,Ω)- and H(div,Ω)-elliptic problems.
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The principal idea underlying our approach can be gleaned from the understand-
ing that stable space decompositions are at the heart of preconditioners for symmetric
positive definite variational problems; see section 2 for further explanations. Results
that we have dubbed regular decompositions provide fundamental stable splittings for
the spaces H(D,Ω); see section 3 for details. For instance, for the space H0(curl,Ω)
we have a stable splitting

H0(curl,Ω) = (H1
0 (Ω))3 + gradH1

0 (Ω).

This suggests that a preconditioner for H0(curl,Ω)-elliptic variational problem can
be based on solving H1

0 (Ω)-elliptic variational problems. However, to make this idea
work, the splittings have to be adapted to the discrete setting. Thus, in sections 5
and 6 we establish stable discrete regular decompositions and corresponding norm
equivalences. This yields the desired preconditioners, whose implementation will be
discussed in section 7. In the end, we supplement the asymptotic theoretical estimate
with numerical studies of the performance of the preconditioners. We refer the reader
to [27,28] for more numerical results.

2. Auxiliary space preconditioning: Abstract theory. In this section, we
give a self-contained description of preconditioning techniques based on fictitious or
auxiliary spaces as developed in [18,31,38].

Let V stand for a real Hilbert space with inner product a(·, ·) and (energy) norm
‖·‖A. The fictitious space method targets linear variational problems

u ∈ V : a(u, v) = f(v) ∀v ∈ V.(2.1)

Its main building blocks are
1. a fictitious space V̄ , that is, another real Hilbert space equipped with the

inner product a(·, ·), which induces the norm ‖·‖Ā, and
2. a continuous and surjective linear transfer operator Π : V̄ �→ V .

We tag dual spaces by ′ and adjoint operators by ∗, and we use angle brackets
for duality pairings. Then, writing A : V �→ V ′ and Ā : V̄ �→ V̄ ′ for the isomorphisms
associated with a(·, ·) and a(·, ·), respectively, the fictitious space preconditioner is
given by

B = Π ◦ Ā−1 ◦ Π∗ : V ′ �→ V.(2.2)

Obviously, the operator B is associated with a symmetric bilinear form on the dual
space V ′. The next lemma confirms that this form is actually positive definite, which
renders B a valid preconditioner.

Lemma 2.1. If Π : V̄ �→ V is surjective, then the operator B is an isomorphism.
Proof. Π being surjective means that it is an open mapping and Π∗ is injective.

As a is positive definite, we infer

〈ϕ,Bϕ〉V ′×V =
〈
Π∗ϕ, Ā−1Π∗ϕ

〉
V̄ ′×V̄

> 0 ∀ϕ ∈ V ′ \ {0}.

From this we conclude the assertion of the theorem.
The next theorem is known as the fictitious space lemma [31], for which we provide

the elementary proof for the sake of completeness.
Theorem 2.2 (fictitious space lemma). Assume that Π is surjective and

∃c0 > 0 : ∀v ∈ V : ∃v̄ ∈ V̄ : v = Πv̄ ∧ ‖v̄‖Ā ≤ c0 ‖v‖A ,(2.3)

∃c1 > 0 : ‖Πv̄‖A ≤ c1 ‖v̄‖Ā ∀v̄ ∈ V̄ .(2.4)
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Then

c−2
0 ‖v‖2

A ≤ a(BAv, v) ≤ c21 ‖v‖
2
A ∀v ∈ V.(2.5)

Proof. The proof makes use of only the Cauchy–Schwarz inequality:

a(BAv, v) ≤ a(BAv,BAv)
1/2a(v, v)

1/2

= a(ΠĀ−1Π∗Av,ΠĀ−1Π∗Av)
1/2 ‖v‖A

≤ c1 a(Ā
−1Π∗Av, Ā−1Π∗Av)

1/2 ‖v‖A
= c1

〈
Π∗Av, Ā−1Π∗Av

〉1/2

V̄ ′×V̄
‖v‖A = c1 a(BAv, v)

1/2 ‖v‖A .

Next, we rely on the assumption (2.3) and get

a(v, v) = 〈Av,Πv̄〉V ′×V = 〈Π∗Av, v̄〉V̄ ′×V̄ = a(Ā−1Π∗Av, v̄)

≤ a(Ā−1Π∗Av, Ā−1Π∗Av)
1/2 ‖v̄‖Ā ≤ c0 a(BAv, v)

1/2 ‖v‖A .

From (2.5) we immediately get an estimate for the spectral condition number of
the preconditioned operator A:

κ(BA) :=
λmax(BA)

λmin(BA)
≤ (c0c1)

2.(2.6)

Corollary 2.3. Under the assumptions of the previous theorem, we have the
following estimate for the spectral condition number:

κ((ΠB̄Π∗)A) ≤ κ(B̄Ā)(c0c1)
2,

where B̄ : V̄ ′ �→ V̄ is supposed to be a preconditioner for Ā.
Proof. This result is a consequence of the obvious inequality

κ((ΠB̄Π∗)A) ≤ κ(B̄Ā)κ(BA).

The auxiliary space method as pioneered in [38] can be viewed as a fictitious space
approach relying on the special choice

V̄ = V ×W1 × · · · ×WJ ,(2.7)

where W1, . . . ,WJ , J ∈ N, are Hilbert spaces endowed with inner products aj(·, ·),
j = 1, . . . , J . They provide the so-called auxiliary spaces.

A distinctive feature of the auxiliary space method is the presence of V in (2.7),
but as a component of V̄ the space V will be equipped with an inner product s(·, ·)
different from a(·, ·). The operator S : V �→ V ′ induced by s(·, ·) on V is usually called
the smoother. In other words, the auxiliary space method adopts the fictitious space
approach with the inner product

a(v̄, v̄) := s(v0, v0) +

J∑
j=1

aj(wj , wj),
v̄ = (v0, w1, . . . , wJ) ∈ V̄ ,

v0 ∈ V, wj ∈ Wj .
(2.8)

Furthermore, for each Wj we need a linear transfer operator Πj : Wj �→ V , from
which we build the surjective operator

Π :=

⎛⎜⎜⎜⎝
Id

Π1

. . .

ΠJ

⎞⎟⎟⎟⎠ : V̄ �→ V.(2.9)
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Now, all components of the auxiliary space preconditioner are in place and the formula
(2.2) becomes

B = S−1 +

J∑
j=1

Πj ◦ Ā−1
j ◦ Π∗

j .(2.10)

The verification of the assumptions of Theorem 2.2 for the preconditioner boils
down to three steps.

1. Find bounds cj > 0 for norms of the transfer operators Πj :

‖Πjwj‖A ≤ cja(wj , wj)
1/2, wj ∈ Wj .(2.11)

2. Investigate the continuity of S−1:

∃cs > 0 : ‖v‖A ≤ css(v, v)
1/2 ∀v ∈ V.(2.12)

3. Establish that for every v ∈ V there are v0 ∈ V and wj ∈ Wj such that

v = v0 +
∑J

j=1 Πjwj and

s(v0, v0) +

J∑
j=1

aj(wj , wj) ≤ c20 ‖v‖
2
A ,(2.13)

where c0 > 0 should be small and independent of v.
Then, the assertion of Theorem 2.2 translates to

κ(BA) ≤ c20(c
2
s + c21 + · · · + c2J).(2.14)

It goes without saying that in the spirit of Corollary 2.3, the bilinear forms aj on the
auxiliary spaces Wj can be replaced with spectrally equivalent bilinear forms b̄j ; i.e.,
we may use preconditioners B̄j for the operators Āj . The impact of this approximation
can be gauged as in Corollary 2.3.

In the applications we have in mind all the spaces will be finite element spaces and
will feature bases comprised of locally supported functions. Plugging basis functions
into the bilinear forms a(·, ·) and aj(·, ·), we obtain the Galerkin matrices A ∈ R

N,N ,
N := dimV , Aj ∈ R

Nj ,Nj , Nj := dimWj . The smoother is provided by local relax-
ation procedures: for instance, if Jacobi smoothing is used, an algebraic representation
of the associated operator S is given by the diagonal part DA of the matrix A. Hence,
the algebraic version of the preconditioner from (2.10) reads

B = D−1
A +

J∑
j=1

PjA
−1

j PT
j ,(2.15)

where Pj ∈ R
N,Nj is the matrix representation of Πj . When using symmetric Gauss–

Seidel smoothing D−1
A has to be replaced with L−1

A + L−T
A − L−1

A AL−T
A , where LA

stands for the lower triangular part of (the symmetric matrix) A.
Remark 1. Naturally, we can also try to apply the successive subspace correction

idea [37] to the multiple auxiliary spaces to obtain the following iterative method for
the operator equation Au = f , f ∈ V ′:

(2.16) u ← u + S−1(f − Au), u ← u + ΠjB̄jΠ
∗
j (f − Au), 1 ≤ j ≤ J.
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It is easy to see that a sufficient condition for the convergence of this successive
auxiliary space method is

(2.17) λmax(B̄jĀj) ≤
ω

cj
, 1 ≤ j ≤ J,

for some 0 < ω < 2. Under the above conditions, the convergence rate of the iteration
(2.16) depends only on c0, cs, cj (1 ≤ j ≤ J), ω, and J .

3. Regular decompositions. The abstract theory of the previous section has
identified the uniform stability of decompositions (cf. (2.13)) as a key prerequisite of
successful auxiliary space preconditioning. This connects well with the pivotal role
of certain stable decomposition in the analysis of variational problems linked with
H(curl,Ω) and H(div,Ω) [6,12,14]. In the subsequent discussion, to avoid topological
obstructions, we restrict ourselves to “simple” domains.

Assumption 3.1. We assume that Ω is homotopy equivalent to a ball.
This makes it possible to use potential representations for the kernels of the dif-

ferential operators.
Lemma 3.1 (exact sequence property).

Assumption 3.1 ⇒

H(curl 0,Ω) := {v ∈ H(curl,Ω) : curl v = 0} = gradH1(Ω),
H0(curl 0,Ω) := {v ∈ H0(curl,Ω) : curl v = 0} = gradH1

0 (Ω),
H(div 0,Ω) := {v ∈ H(div,Ω) : div v = 0} = curlH(curl,Ω),
H0(div 0,Ω) := {v ∈ H0(div,Ω) : div v = 0} = curlH0(curl,Ω).

In the unifying framework, this lemma can be recast into

(3.1) Assumption 3.1 ⇒ H(D0,Ω) := {v ∈ H(D,Ω) : Dv = 0} = D−H(D−,Ω),

where D− is the differential operator characterizing the potential space H(D−,Ω); see
the “translation table” Table 3.1.

Table 3.1

Translation table for unifying notational framework, generic case.

D H(D,Ω) D− H(D−,Ω) D+ H1

grad
H1(Ω)
H1

0 (Ω)
Id

{const}
{0} curl

H1(Ω)
H1

0 (Ω)

curl
H(curl,Ω)
H0(curl,Ω)

grad
H1(Ω)
H1

0 (Ω)
div

(H1(Ω))3

(H1
0 (Ω))3

div
H(div,Ω)
H0(div,Ω)

curl
H(curl,Ω)
H0(curl,Ω)

0
(H1(Ω))3

(H1
0 (Ω))3

Remark 2. If Assumption 3.1 fails to hold, De Rham cohomology theory teaches
that the potential representations will be available only up to contributions from
cohomology spaces of a small and finite dimension. They will not matter much for
the overall performance of a preconditioner, and so we decided to forgo a discussion
of general topologies.

The starting point for the development of the auxiliary space preconditioners
presented in this paper is theoretical results that, roughly speaking, state that the
gap between (H1(Ω))3 and H(D,Ω) can be bridged by contributions from the kernel
of D. A rigorous statement is made by the following so-called regular decomposition
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results. In light of the unified treatment we aim for, operators with similar function
will be denoted alike, though they are different in curl- and div-contexts, respectively.

Lemma 3.2 (existence of regular vector potentials [21, Lemma 2.5]). There is a
continuous mapping L : {v ∈ H(div,R3),div v = 0} �→ (H1(R3))3 such that curl Lv =
v and div Lv = 0.

Lemma 3.3 (regular decomposition of H(curl,Ω) [21, Lemma 2.4]). There are
continuous maps R : H(curl,Ω) �→ (H1(Ω))3, Z : H(curl,Ω) �→ H1(Ω) such that
R + grad ◦Z = Id on H(curl,Ω) and Ru = 0 ⇔ curlu = 0.

Lemma 3.4 (regular decomposition of H0(curl,Ω) [32, section 2]). There are
continuous linear operators R : H0(curl,Ω) �→ (H1

0 (Ω))3, Z : H0(curl,Ω) �→ H1
0 (Ω)

such that R + grad ◦Z = Id on H0(curl,Ω) and Ru = 0 ⇔ curlu = 0.
Corollary 3.5. Both operators R introduced in Lemmas 3.3 and 3.4 satisfy

∃C = C(Ω) > 0 : ‖Rv‖H1(Ω) ≤ C ‖curl v‖L2(Ω) ∀v ∈ H(curl).

Lemma 3.6 (existence of regular velocity fields, [17, Corollary 2.4]). There is a
continuous linear operator K : L2

0(Ω) := {v ∈ L2(Ω),
∫
Ω

v dx = 0} �→ (H1
0 (Ω))3 such

that div ◦K = Id on L2
0(Ω).

Lemma 3.7 (regular decomposition of H(div,Ω)). There are continuous linear
operators R : H(div,Ω) �→ (H1(Ω))3, Z : H(div,Ω) �→ (H1(Ω))3 such that R +
curl ◦Z = Id on H(div,Ω) and Ru = 0 ⇔ div u = 0.

Proof. For u ∈ H(div,Ω) perform a trivial extension by zero of div u to an
element of L2(R3). By elementary Fourier transform techniques (see [17, section 3.3])
we establish the existence of w ∈ H(div,R3) such that divw = div u on Ω. Lemma 3.1
finishes the proof.

Lemma 3.8 (regular decomposition of H0(div,Ω)). There are continuous linear
operators R : H0(div,Ω) �→ (H1

0 (Ω))3, Z : H0(div,Ω) �→ (H1
0 (Ω))3 such that R +

curl ◦Z = Id on H0(div,Ω) and Ru = 0 ⇔ div u = 0.
Proof. Observe that div H0(div,Ω) ⊂ L2

0(Ω) and use Lemmas 3.6 and 3.1.
Corollary 3.9. Both operators R introduced in Lemmas 3.7 and 3.8 satisfy

∃C = C(Ω) > 0 : ‖Rv‖H1(Ω) ≤ C ‖div v‖L2(Ω) ∀v ∈ H(div).

Using the operator symbols from Table 3.1, we can summarize the above assertions
in the following lemma.

Lemma 3.10 (stable regular decomposition).

∃R ∈ L(H(D,Ω),H1),

∃Z ∈ L(H(D,Ω),H(D−,Ω)),

∃C = C(Ω) > 0

:

⎧⎪⎨⎪⎩
R + D− ◦ Z = Id on H(D,Ω),

‖Rv‖H1(Ω) ≤ C ‖Dv‖L2(Ω) ∀v ∈ H(D,Ω),

‖Zv‖H(D−,Ω) ≤ C ‖v‖H(D,Ω) ∀v ∈ H(D,Ω).

Proof. The assertion about R rephrases those of Corollaries 3.5 and 3.9. Then∥∥D−Zv
∥∥
L2(Ω)

≤‖Rv‖L2(Ω) + ‖v‖L2(Ω)

≤ C ‖Rv‖H1(Ω) + ‖v‖L2(Ω) ≤ C ‖Dv‖L2(Ω) + ‖v‖L2(Ω) ,

and the estimate for the norm ‖·‖H(D−,Ω) can be inferred from the fact that D− :

H(D−,Ω) �→ L2(Ω) has closed range.
In light of the fictitious space lemma Theorem 2.2, the result of Lemma 3.10 can

be read as follows (we refer the reader to Table 3.1 for the meaning of H1 and write
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(Id − Δ) : H1 �→ (H1)′ for the (second order elliptic) operator associated with the
inner product of H1): the regular decomposition confirms that

B := I ◦ (Id − Δ)−1 ◦ I∗ + D− ◦ (Id + (D−)∗D−)−1 ◦ (D−)∗(3.2)

will supply a “preconditioner” for the operator A : H(D,Ω) �→ H(D,Ω)′ induced by
the bilinear form of (1.3). Here, I designates the trivial injection I : H1 �→ H(D,Ω)
arising from the continuous embedding H1 ⊂ H(D,Ω). Applying Theorem 2.2 and
(2.6) and recalling that ‖Ψ‖H(D,Ω) ≤ ‖Ψ‖H1(Ω), Ψ ∈ H(D−,Ω), and ‖D−ϕ‖H(D,Ω) ≤
‖ϕ‖H(D−,Ω), ϕ ∈ H(D−,Ω), we readily conclude for τ = 1

κ(BA) ≤ ‖R‖2
+ ‖Z‖2

.(3.3)

Of course, “preconditioning” an operator equation set in infinite-dimensional function
spaces is hardly relevant for practical computations. Hence, the main objective of this
paper is to get a discrete version of the above result.

Remark 3. All the above regular decompositions are global in the sense that the
estimates of Corollaries 3.9 and 3.5 do not hold on subsets of Ω.

Remark 4. The regular decompositions outlined above have been widely used in
functional analysis and numerical analysis connected with H(D,Ω). In the study of
function spaces and traces, some of them first appeared in [6] and were later used
in [12, 15]. They have found their way into the theoretical analysis of multilevel
methods [22,26], domain decomposition methods [32], and boundary element methods
[23].

A major shortcoming of the regular decompositions summarized in Lemma 3.10 is
their lack of L2(Ω)-stability. This is obviously guaranteed in the case of the classical
L2(Ω)-orthogonal Helmholtz decomposition

H(D,Ω) = H(D0,Ω) ⊕H(D0,Ω)⊥.(3.4)

However, the L2(Ω)-orthogonal complement generally fails to belong to H1(Ω) or
(H1(Ω))3, respectively. According to [17, section 3.4] this can only be taken for
granted if −Δ with suitable homogeneous Dirichlet or Neumann boundary conditions
is 2-regular on Ω (see [1] for details). We will refer to this situation as the 2-regular
case. Conversely, Table 3.1 gives the meaning of the symbols in the generic case.

Remark 5. Convexity of Ω will ensure the 2-regular case. Moreover, for a convex
Ω, formulas (2.8) and (2.3) in [16] involve the estimate

|Rv|H1(Ω) ≤ ‖Dv‖L2(Ω) ,(3.5)

where |·|H1(Ω) designates the componentwise H1(Ω)-seminorm of a vector field.

However, use of the Helmholtz decomposition (3.4) entails relaxing the boundary
conditions in H(D−,Ω), when boundary conditions are imposed on H(D,Ω). More
precisely, in the 2-regular case the following slightly modified meanings of the notation
from Table 3.1 will be assumed. They are given in Table 3.2, where

H1
t (Ω) := (H1(Ω))3 ∩ H0(curl,Ω), H1

n(Ω) := (H1(Ω))3 ∩ H0(div,Ω).

With (3.4) in mind, in the 2-regular case, the operators Z and R from Lemma (3.10)
can be chosen to satisfy∥∥D−Zv

∥∥2

L2(Ω)
+ ‖Rv‖2

L2(Ω) = ‖v‖2
L2(Ω) ∀v ∈ H(D,Ω).(3.6)
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Table 3.2

Symbols with altered meaning in the 2-regular case.

D H(D,Ω) D− H(D−,Ω) D+ H1

curl H0(curl,Ω) grad H1
0 (Ω) div H1

t (Ω)
div H0(div,Ω) curl H0(curl,Ω) 0 H1

n(Ω)

In particular, Z and D− ◦ Z turn out to be the L2(Ω)-orthogonal projections parallel
to H(D0,Ω) and onto H(D0,Ω), respectively. The estimates of Corollaries 3.9 and 3.5
remain valid [1, section 2]. Thus, in the 2-regular case, Lemma 3.10 still holds with
operators Z and R satisfying (3.6).

Remark 6. If Ω is a polyhedron (i.e., has flat faces), then we learn from Theo-
rem 2.3 in [16] that

‖curl u‖2
L2(Ω) + ‖div u‖2

L2(Ω) = ‖gradu‖2
L2(Ω) ∀u ∈ H1

t (Ω) ∪ H1
n(Ω).(3.7)

Whenever the definition of R is based on the Helmholtz decomposition it will map into
either H1

t (Ω) or H1
n(Ω) in the 2-regular case. Thus, we conclude that on a polyhedron

in the 2-regular case

‖Rv‖H1(Ω) ≤ ‖v‖H(D,Ω) ∀v ∈ H(D,Ω) ⇒ ‖R‖ = 1.(3.8)

4. Finite element spaces. Essentially, the analysis of this paper applies to
all the finite element subspaces of H(curl,Ω) and H(div,Ω) that can be viewed as
discrete differential forms. This includes the so-called first and second families of
edge elements [29,30] and Raviart–Thomas elements and the Brezzi–Douglas–Marini
(BDM) elements [11, Chapter 4]. To keep the presentation focused, we discuss only
the lowest order cases.

Examples for the lowest order H(D,Ω)-conforming finite element spaces on a
tetrahedral mesh Th of Ω are listed in Table 4.1. They can be defined by

Vh(grad) :=

{
vh ∈ H1(Ω)

H1
0 (Ω)

: vh|K(x) = a + b · x, a ∈ R,b ∈ R
3, ∀K ∈ Th

}
,

Vh(curl) :=

{
vh ∈ H(curl,Ω)

H0(curl,Ω)
: vh|K(x) = a + x × b, a,b ∈ R

3, ∀K ∈ Th
}
,

Vh(div) :=

{
vh ∈ H(div,Ω)

H0(div,Ω)
: vh|K(x) = a + βx, a ∈ R

3, β ∈ R,∀K ∈ Th
}
.

Vh(0) :=

{
vh ∈ L2(Ω)

L2
0(Ω)

: vh|K(x) = a, a ∈ R, ∀K ∈ Th
}
.

For a thorough discussion the reader is referred to [21, Chapter 3] and [29]. Resorting
to a unified notation, we use the symbol Vh(D) for these spaces. Its concrete meaning
in different contexts is specified in Table 4.1.

A fundamental property of these families of finite element spaces is that they
permit a discrete counterpart of (3.1):

Assumption 3.1 ⇒ Vh(D0) := {vh ∈ Vh(D) : Dvh = 0} = D−Vh(D−).(4.1)
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Table 4.1

Finite element spaces of Whitney forms.

D H(D,Ω) Vh(D) ⊂ H(D,Ω) FE space Reference

grad
H1(Ω)
H1

0 (Ω)
Vh(grad) linear Lagrangian FE [13]

curl
H(curl,Ω)
H0(curl,Ω)

Vh(curl) edge elements [29]

div
H(div,Ω)
H0(div,Ω)

Vh(div) face elements [29]

0
L2(Ω)
L2

0(Ω)
Vh(0) p.w. constants

Fig. 4.1. Symbolic notation for local degrees of freedom for Vh(grad), Vh(curl), Vh(div), and
Vh(0) (left to right).

These discrete potentials can even be chosen in a stable manner: with constants
depending only on Ω, D, and the shape regularity of Th,

∀vh ∈ Vh(D0) : ∃ph ∈ Vh(D−) : vh = D−ph and ‖ph‖L2(Ω) � ‖vh‖L2(Ω) .

(4.2)

For face elements this is a consequence of discrete Poincaré-type inequalities for
Vh(curl); see [21, Theorem 4.7]. For D = curl and D− = grad, (4.2) is just standard
Poincaré–Friedrichs inequalities in H1(Ω)/R and H1

0 (Ω), respectively.

All the finite element spaces Vh(D) are equipped with bases B(D) comprising
locally supported functions; see [21, section 3.2]. These bases are L2-stable in the
sense that

vh =
∑

b∈B(D)

vb, vb ∈ span{b},
∑

b∈B(D)

‖vb‖2
L2(Ω) ≈ ‖vh‖2

L2(Ω) ∀vh ∈ Vh(D),

(4.3)

with constants1 depending only on the shape regularity of Th; see [24, section 2].

The spaces Vh(D) also feature idempotent nodal interpolation operators ΠD
h whose

range is Vh(D). In the case D = grad this is plain linear interpolation. For D = curl

1By the symbols ≈, �, and � we designate two- or one-sided inequalities, respectively, that hold
up to multiplication of one side with a positive constant. In inequalities involving norms on function
spaces this constant must not depend on the choice of functions. It may not depend on other problem
and discretization parameters, and this will always be made clear.
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the interpolation is based on path integrals along edges

Πcurl
h v =

∑
e∈Eh

∫
e

v · d�s · be,(4.4)

where Eh is the set of (interior) edges of Th and be is the edge element basis function
associated with the edge e. For D = div, the interpolation relies on face fluxes:

Πdiv
h v =

∑
f∈Fh

∫
f

v · dS · bf ,(4.5)

with Fh designating the set of (interior) faces of Th. The relevant domains of inte-
gration for interpolation are depicted in Figure 4.1. Finally, the “interpolation” onto
Vh(0) agrees with L2(Ω)-projection. All these operators are well defined for contin-
uous functions/vector fields, unbounded on H(D,Ω) (except for Vh(0)), and possess
the exceptional commuting diagram property

D ◦ ΠD
h = Π+

h ◦ D on domain of ΠD
h , Π+

h := ΠD+

h .(4.6)

A concise way of writing (4.1) and (4.6) is through combined exact sequences and
commuting diagrams:

0 −−−−→ C∞(Ω)
grad−−−−→ (C∞(Ω))3

curl−−−−→ (C∞(Ω))3
div−−−−→ C∞(Ω) −−−−→ 0⏐⏐�Πgrad

h

⏐⏐�Πcurl
h

⏐⏐�Πdiv
h

⏐⏐�Π0
h

0 −−−−→ Vh(grad)
grad−−−−→ Vh(curl)

curl−−−−→ Vh(div)
div−−−−→ Vh(0) −−−−→ 0.

We write h ∈ L∞(Ω) for the piecewise constant meshwidth function, which as-
sumes value h|K := diam(K) in each cell K of Th. Using this function, we can state
the following interpolation error estimate (see [21, section 3.6] and [21, Lemma 4.6]).

Lemma 4.1. The interpolation operators ΠD
h are bounded on {v ∈ H1, Dv ∈

Vh(D+)} ⊂ H1 and, with constants merely depending on D and the shape regularity
of Th, they satisfy∥∥h−1(Id− ΠD

h )Ψ
∥∥
L2(Ω)

� ‖Ψ‖H1(Ω) ∀Ψ ∈ H1, Dv ∈ Vh(D+).(4.7)

Simple affine equivalence techniques also yield the inverse estimate

‖Dvh‖L2(Ω) �
∥∥h−1vh

∥∥
L2(Ω)

∀v ∈ Vh(D),(4.8)

with a constant depending only on D and the shape regularity of the mesh.
The role of the discrete auxiliary space will be played by the finite element space

Sh ⊂ H1 of continuous functions or vector fields, whose Cartesian components are
piecewise linear. We point out that

DSh ⊂ DVh(D), D ∈ {grad, curl,div}.(4.9)

Thanks to the commuting diagram property, we immediately conclude

DΠD
hΨh = Π+

h DΨh = DΨh ∀Ψh ∈ Sh.(4.10)



2494 RALF HIPTMAIR AND JINCHAO XU

Moreover, straightforward scaling arguments bear out that, with constants depending
only on the shape regularity of Th,∥∥DΠD

hΨh

∥∥
L2(Ω)

� |Ψh|H1(Ω),
∥∥ΠD

hΨh

∥∥
L2(Ω)

� ‖Ψh‖L2(Ω) ∀Ψh ∈ Sh.(4.11)

Finally, we recall the surjective and idempotent quasi-interpolation operators for
Lagrangian finite element spaces introduced in [34]. We may apply them to the
components of vector fields separately. In the generic case (see Table 3.1), this gives

rise to the projectors Q̃h : H1 �→ Sh, which inherit the continuity∥∥∥Q̃hΨ
∥∥∥
H1(Ω)

� ‖Ψ‖H1(Ω) ∀Ψ ∈ H1,(4.12)

respect possible boundary values in the sense that Q̃h(H1
0 (Ω))3 ⊂ (H1

0 (Ω))3, and
satisfy the local projection error estimate∥∥∥h−1(Q̃h − Id)Ψ

∥∥∥
L2(Ω)

� ‖Ψ‖H1(Ω) ∀Ψ ∈ H1.(4.13)

In the 2-regular case (see the end of section 3 for a discussion and Table 3.2 for the

slightly changed meanings of symbols), we will replace Q̃h with the L2(Ω)-orthogonal
projections Qh : (L2(Ω))3 �→ Sh. From interpolation arguments we readily infer the
estimate ∥∥h−1(Qh − Id)Ψ

∥∥
L2(Ω)

� ‖Ψ‖H1(Ω) ∀Ψ ∈ H1,(4.14)

but this time, in contrast to (4.13), the constants will also depend on the quasi-
uniformity of the mesh. So, h in (4.14) should be read as the global meshwidth of Th.
The approximation property also involves the continuity

‖QhΨ‖H1(Ω) � ‖Ψ‖H1(Ω) ∀Ψ ∈ H1,(4.15)

again, with quasi-uniformity of the mesh also entering the constants.
Summing up, whenever we can take quasi-uniformity of the meshes for granted,

Qh can replace Q̃h with the extra benefit of L2(Ω)-continuity.

5. Discrete regular decompositions. Now, following [25], let us derive a dis-
crete version of the above regular decomposition results of section 3. First, we focus
on the generic case; see Table 3.1. We fix a vh ∈ Vh(D) and use the stable regular
decomposition of Lemma 3.10 to split it according to

vh = Ψ + D−p, Ψ := Rvh ∈ H1, p := Zvh ∈ H(D−,Ω).(5.1)

We already know that the functions Ψ and p satisfy

‖Ψ‖H1(Ω) � ‖Dvh‖L2(Ω) ,
∥∥D−p

∥∥
L2(Ω)

� ‖vh‖H(D,Ω) ,(5.2)

with constants depending only on Ω.
So far, (5.1) is useless in the context of practical fictitious space preconditioning,

because both Ψ and p fail to be finite element functions. The challenge is to convert
(5.1) into a purely discrete decomposition without squandering the stability expressed
by (5.2). This can be achieved only by incorporating another “high-frequency” con-
tribution. Eventually, that forces us to incorporate a smoothing procedure into the
algorithm.
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Lemma 5.1. For any vh there is Ψh ∈ Sh, ph ∈ Vh(D−), and ṽh ∈ Vh(D) such
that

vh = ṽh + ΠD
hΨh + D−ph,(5.3)

and ∥∥h−1ṽh

∥∥2

L2(Ω)
+ ‖Ψh‖2

H1(Ω) � ‖Dvh‖2
L2(Ω) , ‖ph‖H(D−,Ω) � ‖vh‖H(D,Ω) .(5.4)

The constants are allowed to depend on Ω and the shape regularity of the mesh.
Proof. First, note that in (5.1) DΨ = Dvh ∈ Vh(D+), and, owing to Lemma 4.1,

ΠD
hΨ is well defined. Further, the commuting diagram property implies

DΠD
hΨ = Π+

h DΨ = DΨ ⇒ D(Id− ΠD
h )Ψ = 0.(5.5)

This confirms that the third term in the splitting

Ψ = ΠD
h (Ψ − Q̃hΨ) + ΠD

h Q̃hΨ + (Id− ΠD
h )Ψ(5.6)

actually belongs to the kernel of D. By (4.1), we conclude

∃q ∈ H(D−,Ω) : (Id− ΠD
h )Ψ = D−q,(5.7)

and (4.7) together with (5.2) yields∥∥h−1D−q
∥∥
L2(Ω)

=
∥∥h−1(Id− ΠD

h )Ψ
∥∥
L2(Ω)

� ‖Ψ‖H1(Ω) � ‖Dvh‖L2(Ω) .(5.8)

Thus, we can define the terms in the decomposition (5.3) as

ṽh := ΠD
h (Ψ − Q̃hΨ) ∈ Vh(D),(5.9)

Ψh := Q̃hΨ ∈ Sh,(5.10)

D−ph := D−(p + q), ph ∈ Vh(D−).(5.11)

Indeed, D−(p + q) ∈ Vh(D) such that we can add a contribution from H(D−,Ω)
to p + q and obtain a discrete function. Thanks to (4.2) we can guarantee that
‖ph‖L2(Ω) � ‖D−ph‖L2(Ω); this will not affect the decomposition. The stability of the

decomposition (5.3) can be established as follows: first, make use of Lemma 4.1 and
(4.13) to obtain∥∥h−1ṽh

∥∥
L2(Ω)

≤
∥∥∥h−1(Id− ΠD

h )(Ψ − Q̃hΨ)
∥∥∥
L2(Ω)

+
∥∥∥h−1(Id− Q̃h)Ψ

∥∥∥
L2(Ω)

�
∥∥∥(Id− Q̃h)Ψ

∥∥∥
H1(Ω)

+ ‖Ψ‖H1(Ω)

� ‖Ψ‖H1(Ω) � ‖Dvh‖L2(Ω) .

Due to the definition (5.10), the next estimate is a simple consequence of (4.12) and
Lemma 3.10:

‖Ψh‖H1(Ω) � ‖Ψ‖H1(Ω) � ‖Dvh‖L2(Ω) .(5.12)

Finally, the estimates established so far plus the triangle inequality yield∥∥D−ph
∥∥
L2(Ω)

� ‖vh‖L2(Ω) + ‖Dvh‖L2(Ω) .(5.13)
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Owing to the discrete Poincaré–Friedrichs inequality (4.2), this implies (5.4).
Remark 7. It is worth noting (see Table 3.1) that homogeneous boundary condi-

tions imposed on H(D,Ω) permit us to choose Sh ⊂ (H1
0 (Ω))3. This means that Ψh

will completely vanish on ∂Ω, though it is only the tangential or normal components
of vh, respectively, that vanish on ∂Ω.

Lemma 5.2. In the 2-regular case (see section 3, Table 3.2) the splitting (5.3)
from Lemma 5.1 can be chosen such that, in addition to the estimates asserted in
Lemma 5.1, we have∥∥D−ph

∥∥
L2(Ω)

� ‖vh‖L2(Ω) , ‖Ψh‖L2(Ω) � ‖vh‖L2(Ω) ,

with constants additionally depending on the quasi-uniformity of the mesh Th.
Proof. We rely on the L2(Ω)-orthogonal Helmholtz decomposition (3.4) to define

p and Ψ in (5.1). Consequently, we can expect

‖Ψ‖L2(Ω) ≤ ‖vh‖L2(Ω) ,
∥∥D−p

∥∥
L2(Ω)

≤ ‖vh‖L2(Ω) .(5.14)

Then follow the proof of Lemma 5.1 and replace the quasi-interpolation Q̃h with
the L2(Ω)-orthogonal projection Qh. Taking into account that h designates a global
meshwidth when the constants are allowed to depend on quasi-uniformity, a glance
at (4.14) and (4.15) confirms that all estimates of Lemma 5.1 remain true.

The replacement of Q̃h is necessary, because Q̃h fails to be continuous with respect
to the L2(Ω)-norm. When using Qh instead, we arrive at the trivial estimate

Ψh := QhΨ ⇒ ‖Ψh‖L2(Ω) ≤ ‖Ψ‖L2(Ω) ≤ ‖vh‖L2(Ω) .(5.15)

In addition, use the interpolation estimate (5.8) and the inverse inequality (4.8):∥∥D−q
∥∥
L2(Ω)

� h ‖Dvh‖L2(Ω) � ‖vh‖L2(Ω) .(5.16)

Again, h denotes the (global) meshwidth of Th. Owing to (5.11) and (5.14), this
finishes the proof.

6. Stable splittings. We first discuss the case 0 < τ ≤ 1; that is, the second
order term in the bilinear form is dominant. The notation refers to the generic case
of Table 3.1.

Theorem 6.1. Assume 0 < τ ≤ 1. For any vh ∈ Vh(D) there is ph ∈ Vh(D−),
Ψh ∈ Sh such that, when vb ∈ span{b}, b ∈ B(D), a locally supported basis function,∑

b∈B(D)

vb + ΠD
hΨh + D−ph = vh,(6.1)

∑
b∈B(D)

‖vb‖2
A + ‖Ψh‖2

H1(Ω) +
∥∥D−ph

∥∥2

A
� ‖vh‖2

A ,(6.2)

with a constant depending only on Ω, D, and the shape regularity of Th, but indepen-
dent of τ ∈ ]0, 1] and quasi-uniformity.

Proof. The contributions Ψh and ph are chosen as in Lemma 5.1. Hence, reusing
the notation of (5.3), ∑

b∈B(D)

vb = ṽh.(6.3)
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By the inverse estimate (4.8), (4.3), and the bound for ‖h−1ṽh‖ from Lemma 5.1∑
b∈B(D)

‖vb‖2
A =

∑
b∈B(D)

‖Dvb‖2
L2(Ω) + τ ‖vb‖2

L2(Ω)

�
∑

b∈B(D)

∥∥h−1vb

∥∥2

L2(Ω)
+ τ

∑
b∈B(D)

‖vb‖2
L2(Ω)

�
∥∥h−1ṽh

∥∥2

L2(Ω)
+ τ ‖ṽh‖2

L2(Ω) � ‖Dvh‖2
L2(Ω) + τ ‖vh‖2

L2(Ω) .

(6.4)

The remaining bounds are immediate from Lemma 5.1 because∥∥D−ph
∥∥2

A
=

∥∥DD−ph
∥∥2

L2(Ω)
+ τ

∥∥D−ph
∥∥2

L2(Ω)
= τ

∥∥D−ph
∥∥2

L2(Ω)
.

All the constants merely depend on Ω and the shape regularity of Th.
The case D = div deserves special attention, because the discrete potential belongs

to Vh(curl). This is not entirely desirable, because it entails solving an H(curl,Ω)-
elliptic problem in Vh(curl) when evaluating the preconditioner. Yet, as curl ◦grad =
0, we can apply the decomposition of Theorem 6.1 recursively and replace ph ∈
Vh(curl) by a Φh ∈ Sh and some “high-frequency” edge element function.

Thus, for D = div and vh ∈ Vh(div), we examine the decomposition

vh =
∑

b∈B(div)

vb + Πdiv
h Ψh + curl ph

=
∑

b∈B(div)

vb + Πdiv
h Ψh +

∑
q∈B(curl)

curl pq + curlΦh,(6.5)

where Ψh,Φh ∈ Sh and

vb ∈ span{b}, b ∈ B(div), pq ∈ span{q}, q ∈ B(curl).

From Theorem 6.1 we conclude that for 0 < τ ≤ 1

∑
b∈B(div)

‖vb‖2
A + ‖Ψh‖2

H1(Ω) + τ
∑

q∈B(curl)

‖curl pq‖2
L2(Ω) + τ ‖Φh‖2

H1(Ω) � ‖vh‖2
A .

(6.6)

From now on we permit dependence of the constants on the variation of h. In
other words, the estimates below hinge on the assumption of quasi-uniformity of the
mesh Th, which permits us to assume a global meshwidth h > 0. Then, we can
establish stability uniformly for all τ > 0.

Theorem 6.2. Assume the 2-regular case. Then, for all vh ∈ Vh(D), we can
find ph ∈ Vh(D−), Ψh ∈ Sh such that, when vb ∈ span{b}, b ∈ B(D),∑

b∈B(D)

vb + ΠD
hΨh + D−ph = vh,(6.7)

∑
b∈B(D)

‖vb‖2
A + ‖Ψh‖2

H1(Ω) + τ ‖Ψh‖2
L2(Ω) +

∥∥D−ph
∥∥2

A
� ‖vh‖2

A ,(6.8)

with a constant depending only on Ω, D, and the shape regularity and quasi-uniformity
of Th, but independent of τ ≥ 0.
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Proof. We rely on the decomposition established in Lemma 5.2,

vh = ṽh + ΠD
hΨh + D−ph,(6.9)

and find, using (4.8), (6.3), and (3.6),∑
b∈B(D)

‖vb‖2
A �

∑
b∈B(D)

h−2 ‖vb‖2
L2(Ω) + τ

∑
b∈B(D)

‖vb‖2
L2(Ω)

� (h−2 + τ) ‖ṽh‖2
L2(Ω) � (h−2 + τ)h2 ‖Dvh‖2

L2(Ω)

� ‖Dvh‖2
L2(Ω) + τ ‖vh‖2

L2(Ω) .

(6.10)

Bounds for the other terms are straightforward from the estimates of Lemmas 5.2 and
5.1.

As regards D = div, in the 2-regular case we also get a τ -uniform estimate for the
splitting (6.5):

(6.11)
∑

b∈B(div)

‖vb‖2
A + ‖Ψh‖2

H1(Ω) + τ ‖Ψh‖2
L2(Ω)

+ τ
∑

b∈B(curl)

‖curl pb‖2
L2(Ω) + τ ‖Φh‖2

H1(Ω) � ‖vh‖2
A .

Remark 8. The theory seems to indicate increased robustness of the precondi-
tioner with respect to τ → ∞ in the 2-regular case. However, the numerical exper-
iments of section 8 send the unequivocal message that the “generic case” version of
the preconditioner does not deteriorate as τ becomes large. Here, theory obviously
falls short of capturing the actual behavior of the method.

7. Auxiliary space preconditioners. We start from the stable decompositions
of Vh(D) introduced in Theorems 6.1 and 6.2 and (6.5) and apply the abstract theory
of section 2 for V = Vh(D) and the energy bilinear form a(·, ·) from (1.3).

Throughout, let AD denote the Galerkin matrix arising from (1.3) with respect
to the standard basis B(D) of Vh(D). We write L for the matrix related to the bilinear
form

(Ψ,Φ) �→ (gradΨ,gradΦ)0 , Φ,Ψ ∈ H1,

on Sh, which is endowed with the usual nodal basis of hat functions (for the compo-
nents of vector fields). The positive definite mass matrix on Sh, that is, the Galerkin
matrix for the L2(Ω)-inner product, will be designated by M. Further, we adopt the
notation PD for the matrix describing the mapping ΠD

h : H1 �→ Vh(D) with respect
to the “hat function basis” of H1 and the basis B(D) of Vh(D).

We restrict ourselves to Jacobi smoothing; that is, the smoothing operator is
characterized by the inner product

s(vh,vh) =
∑

b∈B(D)

a(vb,vb),
∑

b∈B(D)

vb = vh, vb ∈ span{b},(7.1)

and its matrix representation coincides with the diagonal DA of AD. More gen-
erally, one could use any s(·, ·) that features the spectral equivalence s(vh,vh) ≈∥∥h−1vh

∥∥2

L2(Ω)
+ τ‖vh‖2.
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Since the square of the energy norm can be computed by summing local contri-
butions from the cells K of the mesh Th, we find

‖vh‖2
A =

∥∥∥∥∑b∈B(D)
αbb

∥∥∥∥2

A

=
∑

K∈Th

∥∥∥∥∑M

j=1
αKjbK,j

∥∥∥∥2

A

≤ M
∑
K

∑
b∈B(D)

|αb|2 ‖b‖2
A = M

∑
b∈B(D)

|αb|2 ‖b‖2
A = Ms(v,v)

(7.2)

if vh =
∑

b∈B(D) αbb ∈ Vh(D). Here, M bounds the (small) number of basis functions

whose support overlaps with a single element K. This implies that cs in (2.12) can
be chosen as a small universal constant.

For the sake of simplicity, we continue the discussion for the cases D = curl (edge
elements) and D = div (face elements) separately.

7.1. A preconditioner for H(curl,Ω)-elliptic problems. We rely on the
splitting (6.1) to define the preconditioner. This means that, in terms of the concepts
developed in section 2, we have two auxiliary spaces:

1. The space W1 := Sh with inner product a1(Ψh,Ψh) := ‖Ψh‖2
H1(Ω) +

τ ‖Ψh‖2
L2(Ω), which is suggested by (6.2) and (6.8). The corresponding trans-

fer operator is Π1 := Πcurl
h , and, thanks to (4.11), (2.11) holds with constant

c1 depending only on the shape regularity of the mesh.
2. The discrete potential space W2 := Vh(D−) equipped with inner product

a2(ph, ph) := τ |ph|2H1(Ω) and transfer operator Π2 := grad : Vh(D−) �→
Vh(D), whose norm is uniformly bounded by 1.

We write G for the matrix related to grad : Vh(D−) �→ Vh(D) and Δ for the
discrete Laplacian (matrix) on linear Lagrangian finite element space Vh(grad). Then
the matrix of the resulting auxiliary space preconditioner for the H(curl,Ω)-elliptic
problem (1.1) reads

Bcurl := D−1
A + Pcurl(L + τM)−1PT

curl + τ−1G(−Δ)−1GT .(7.3)

Theorem 7.1. For 0 < τ ≤ 1 the spectral condition number κ(BcurlAcurl)
depends only on Ω and the shape regularity of the mesh.

In the 2-regular case κ(BcurlAcurl) is bounded independently of τ , but the quasi-
uniformity of the mesh may affect the bound.

Proof. Theorems 6.1 and 6.2 provide the bound for c0 from (2.13). The constants
cs and c1, c2 have been discussed before. Thus, (2.14) leads to the assertion of the
theorem.

The impact of switching to spectrally equivalent bilinear forms on W1, W2 can
be gauged as in Corollary 2.3.

We point out that the transfers can be realized by purely local operations; see
[5, section 3] and [5, section 5]. In detail, assuming the standard bases, gradient-
matrix G will agree with the edge-vertex incidence matrix of the mesh. The matrix
Pcurl connected with the interpolation Πcurl

h describes a local distribution of vectorial
degrees of freedom attached to the nodes of the mesh to adjacent edges: the edge
connecting vertices with values w1 and w2 receives the value

1
2 (w1 + w2) · e,(7.4)

where e is the direction vector of the edge.
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7.2. A preconditioner for H(div,Ω)-elliptic problems. In this case the de-
composition (6.5) provides the starting point. It suggests that we choose the following
auxiliary spaces:

1. W1 := Sh with inner product a1(Ψh,Ψh) := ‖Ψh‖2
H1(Ω)+τ ‖Ψh‖2

L2(Ω), which

is suggested by (6.6) and (6.11). The corresponding transfer operator is
Π1 := Πdiv

h and, thanks to (4.11), (2.11) holds with constant c1 depending
only on the shape regularity of the mesh. The related interpolation matrix
Pdiv assigns to each face of the mesh with unit normal n and area |F | the
number

1
3 |F | (w1 + w2 + w3) · n,(7.5)

where wi is the vectorial nodal value at vertex i of the face.
2. W2 := Vh(curl) endowed with the localized inner product

a2(wh,wh) := τ
∑

q∈B(curl)

‖curlwq‖2
L2(Ω) ,

∑
q∈B(curl)

wq = wh(7.6)

for wh ∈ Vh(curl). Evidently, the Galerkin discretization of a2 leads to a
diagonal matrix denoted by Dcurl. A closer inspection of B(curl) verifies
that Dcurl can never be singular.
The transfer operator associated with W2 is curl : Vh(curl) �→ Vh(div) and
c2 = 1 is obvious. Its matrix representation C coincides with the incidence
matrix of (interior) edges and faces of the mesh; see [21, section 3.1].

3. W3 := Sh with norm
√
τ ‖·‖H1(Ω) (cf. (6.6) and (6.11)) and transfer operator

curl : Sh �→ Vh(D). Again, we immediately get c3 = 1 for the constant from
(2.11). Owing to the commuting diagram property (4.6) and (4.9), the matrix
associated with this transfer is given by CPcurl.

Summing up, the matrix representation of the auxiliary space preconditioner for
the variational problem (1.2) discretized on Vh(div) is given by

Bdiv := D−1
A + Pdiv(L + τM)−1PT

div + CD−1
curlC

T

+ τ−1CPcurl(L + τM)−1PT
curlC

T .

(7.7)

All transfer operators are purely local.
Theorem 7.2. For 0 < τ ≤ 1 the spectral condition number κ(BdivAdiv) depends

only on Ω and the shape regularity of the mesh.
In the 2-regular case κ(BdivAdiv) is bounded independently of τ , but the quasi-

uniformity of the mesh may affect the bound.
Proof. We merely need to appeal to (6.6), (6.11), and (2.14), because good bounds

for c1, c2, c3, and cs follow from the above arguments.
Remark 9. If boundary conditions are imposed on H(D,Ω), the auxiliary space

Sh should be chosen differently in the 2-regular case: it should comprise piecewise lin-
ear continuous vector fields, for which merely the tangential or normal components,
respectively, vanish on ∂Ω. Of course, this choice can be made in any case, because
enlarging the auxiliary space will not affect the estimates adversely unless the con-
tinuity of Π is destroyed. On the other hand, tangential boundary conditions are
awkward in terms of implementation; cf. the discussion in [5, section 5]. Moreover,
as stressed in Remark 8, there is absolutely no numerical evidence that total zero
boundary conditions for Sh do any harm.
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7.3. Applications to problems with variable coefficients. So far we have
skirted the case of variable coefficients, for instance, when we encounter the bilinear
form

a(u,v) := (α curl u, curl v)0 + (βu,v)0 , u,v ∈ H0(curl,Ω),(7.8)

with coefficient functions α, β ∈ L∞(Ω), because the current theory fails to give any
useful information about how strong variations of α and β affect the quality of the
nodal auxiliary space preconditioners.

We can give only a heuristic recipe for how the algorithms may be adapted to the
general bilinear form from (7.8). The idea is that the coefficient α will be used to define
the matrix L in (7.3). This means that L agrees with the Galerkin matrix of the bilin-
ear form (u,v) �→ (αgradu,gradv)0 on H1. The coefficient β enters the matrices M
and Δ; that is, they represent (u,v) �→ (βu,v)0 and (ϕ,ψ) �→ (β gradϕ,gradψ)0 on
H1 and Vh(grad), respectively. Note that τ is now incorporated into the coefficient
β.

8. Numerical experiments. The theory makes a statement about the asymp-
totic behavior of the nodal auxiliary, but information about concrete condition num-
bers remains hidden in several elusive constants. In this section we wish to demon-
strate that the preconditioner actually achieves reasonably small condition numbers
for relevant model problems. Moreover, we monitor the impact of the relative scaling
of both parts of the bilinear form a(·, ·) from (1.3). Reaching beyond the scope of
the theory, we will also examine the impact of strongly varying coefficients in (7.8).
Throughout, nodal auxiliary spaces with zero boundary values for all vector compo-
nents will be used (“generic case”).

The first series of experiments is conducted in two dimensions. Note that in
two dimensions the operators div and curl acting on vector fields merely differ by a
rotation of π

2 . Therefore, both variational problems (1.1) and (1.2) are covered when
we consider the bilinear form

a(u,v) := (curlu, curlv)0 + τ (u,v)0 , u,v ∈ H0(curl,Ω),(8.1)

where curl is the scalar-valued two-dimensional rotation curlu = ∂u1

∂x2
− ∂u2

∂x1
.

In two dimensions we can study the asymptotics with manageable computational
effort. We emphasize that all the considerations underlying the nodal auxiliary sub-
space approach in three dimensions carry over to (8.1): Galerkin discretization can
be based on edge elements on triangular meshes, for which curl-free functions can
represented as gradients of piecewise linear Lagrangian finite element functions.

In most experiments we used the preconditioner given by the two-dimensional
counterpart of (7.3). A direct solver was employed to realize the multiplications with
the inverse matrices. Extremal eigenvalues were computed by means of a Lanczos
procedure up to an accuracy of at least two digits.

Experiment I. A sequence of meshes of two polygonal domains was created by
the regular refinement of the coarse meshes depicted in Figure 8.1. One domain is
convex, that is, it satisfies the assumptions of the 2-regular case, while the other fails
to do so. Spectral condition numbers of BcurlAcurl, Acurl the edge element Galerkin
matrix related to (8.1), were computed for different choices of τ ; see Tables 8.1 and
8.3. A variant of the preconditioner relying on two steps of Gauss–Seidel smoothing
(see section 2) was tested in the same setting. The measured condition numbers are
listed in Tables 8.5 and 8.6.
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We also keep track of the number of PCG iterations required to solve the discrete
variational problems with bilinear form a(·, ·) from (8.1) and constant vector field
f =

(
1
1

)
as the right-hand side. A relative reduction of the Euclidean norm of the

residual vector by a factor of 106 was used as termination criterion. The results are
recorded in Tables 8.2 and 8.4.
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Fig. 8.1. Coarsest meshes used in Experiment I.

Table 8.1

Condition numbers for Experiment I: Convex polygon.

τ
Level # cells 10−4 10−3 10−2 10−1 1 10 102 103 104

0 171 20.4 20.4 20.3 20.1 18.2 11.7 5.0 2.6 3.7
1 684 25.0 25.0 25.0 24.7 23.0 16.5 8.3 3.6 3.3
2 2736 28.4 28.4 28.4 28.2 26.6 20.8 12.5 6.2 2.9
3 10944 31.2 31.2 31.2 31.0 29.7 24.8 17.5 9.3 4.6
4 43776 33.5 33.5 33.5 33.3 32.2 28.3 22.1 14.2 7.1
5 175104 35.2 35.2 35.2 35.1 34.2 31.1 26.1 19.1 11.0

Table 8.2

Required PCG iterations for Experiment I: Convex polygon.

τ
Level # cells 10−4 10−3 10−2 10−1 1 10 102 103 104

0 171 29 29 29 28 27 24 15 9 11
1 684 33 33 33 33 32 28 20 11 11
2 2736 36 36 36 36 35 31 25 16 10
3 10944 38 38 39 38 38 34 29 20 13
4 43776 41 41 41 41 40 37 32 25 17
5 175104 42 42 43 42 42 39 34 28 21

The condition numbers hardly deteriorate on successively finer meshes. The
slight dependence on the refinement level is a commonly observed preasymptotic phe-
nomenon; cf. Remark 2 in [8]. A similar statement applies to the number of CG
iterations. Robustness in τ is evident though not covered by theory when using a
nodal auxiliary space with zero boundary conditions (“generic setting,” Table 3.1).
Using a Gauss–Seidel smoother instead of Jacobi improves the performance at in-
creased costs for a single application of the preconditioner.

Experiment II. Starting from a coarse mesh on the “L-shaped domain” (Fig-
ure 8.1, right) we generate a sequence of meshes by strictly local refinement; see
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Table 8.3

Condition numbers for Experiment I: L-shaped domain.

τ
Level # cells 10−4 10−3 10−2 10−1 1 10 102 103 104

0 205 63.0 62.9 62.6 59.9 42.5 14.9 4.9 2.6 4.2
1 820 69.5 69.4 69.1 66.2 47.7 18.4 8.7 3.2 3.4
2 3280 71.6 71.6 71.3 68.4 49.5 19.9 12.2 5.9 2.4
3 13120 72.3 72.3 72.0 69.0 50.1 21.2 15.6 9.2 4.0
4 52480 72.5 72.5 72.2 69.2 50.3 23.4 18.9 13.0 7.0
5 209920 72.6 72.6 72.3 69.3 50.4 25.2 21.7 16.7 10.3

Table 8.4

Required PCG iterations for Experiment I: L-shaped domain.

τ
Level # cells 10−4 10−3 10−2 10−1 1 10 102 103 104

0 171 35 35 35 34 33 25 15 9 12
1 684 40 40 40 40 37 30 21 11 11
2 2736 43 43 43 43 40 33 25 16 9
3 10944 46 46 46 46 44 36 28 20 12
4 43776 49 49 49 48 47 38 31 25 17
5 175104 51 51 51 51 49 41 34 28 20

Table 8.5

Experiment I, condition numbers on convex polygon with symmetric GS smoothing.

τ
Level # cells 10−4 10−3 10−2 10−1 1 10 102 103 104

0 171 6.5 6.5 6.5 6.4 5.6 3.1 1.9 2.0 2.0
1 684 9.4 9.4 9.4 9.3 8.4 5.3 2.4 2.0 2.0
2 2736 11.8 11.8 11.8 11.7 10.8 7.6 3.7 2.3 2.0
3 10944 13.7 13.7 13.7 13.6 12.7 9.7 5.7 2.9 2.2
4 43776 15.2 15.2 15.2 15.1 14.4 11.8 8.0 4.2 2.7
5 175104 16.4 16.4 16.4 16.3 15.7 13.6 10.4 6.4 3.2

Table 8.6

Experiment I, condition numbers on L-shaped domain with symmetric GS smoothing.

τ
Level # cells 10−4 10−3 10−2 10−1 1 10 102 103 104

0 171 19.6 19.6 19.5 18.7 13.0 4.1 1.8 2.0 2.0
1 684 28.8 28.8 28.7 27.5 19.6 6.9 2.3 2.0 2.0
2 2736 33.5 33.5 33.4 32.0 23.1 8.8 3.9 2.2 2.0
3 10944 35.3 35.3 35.1 33.7 24.4 9.7 5.7 2.7 2.1
4 43776 35.9 35.9 35.7 34.3 24.9 10.3 7.3 4.1 2.5
5 175104 36.1 36.1 36.0 34.5 25.1 11.4 9.0 6.0 3.1

Figure 8.2. As in the previous experiment we recorded spectral condition numbers
κ(BcurlAcurl); see Figure 8.3. This time, we monitor their dependence on the smallest
size hmin of mesh cells.

The conclusions drawn in Experiment I carry over verbatim.

Experiment III. To study the response of the preconditioner to nonconstant
coefficients, we apply it to the bilinear form

a(u,v) := (α curlu, curlv)0 + τ (βu,v)0 , u,vH0(curl,Ω),(8.2)
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Fig. 8.2. Sequence of locally refined meshes.
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Fig. 8.3. Behavior of auxiliary space preconditioner on locally refined meshes.

with α, β ∈ L∞(Ω). This is the two-dimensional analogue of (7.8). The implementa-
tion of the preconditioner Bcurl follows the policy outlined in section 7.3.

We consider Ω =]− 1, 1[2 with a triangular subdomain Ω1 that is resolved by the
mesh; see Figure 8.4. The coefficient functions behave like

α(x) :=

{
α1 if x ∈ Ω1,

1 elsewhere,
β(x) :=

{
β1 if x ∈ Ω1,

1 elsewhere.
(8.3)

We recorded the condition numbers of the preconditioned stiffness matrices on
sequences of meshes arising from successive regular refinement of the mesh depicted
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Fig. 8.4. Subdomains with piecewise constant coefficients and associated coarsest triangular mesh.

in Figure 8.4; see Tables 8.7 and 8.9. In addition, Tables 8.8 and 8.10 give the number
of CG iterations required for a relative reduction of the Euclidean residual norm by
a factor of 106. As before, zero was used as an initial guess and we chose the source
field f =

(
1
1

)
.

Table 8.7

Condition numbers (two digits) recorded in Experiment III: Discontinuous coefficient α, β1 = 1.

α1

Level # cells 0.001 0.01 0.1 2 5 10 20 50 100 200 1000

0 332 19 18 16 18 21 24 28 31 33 34 35
1 1328 23 21 20 21 24 27 31 36 38 39 40
2 5312 28 27 22 23 25 29 33 37 40 41 42
3 21248 35 32 24 25 26 30 34 38 40 42 43
4 84992 41 36 26 26 27 30 34 38 41 42 43
5 339968 46 39 27 27 28 31 34 39 41 42 43

By and large, we observe that the condition number of the preconditioned system
is not much affected by steep jumps in the coefficients α or β. A slight deterioration
is caused by large values of β inside Ω1. The same holds for the convergence of the
preconditioned CG iterations. It seems that the behavior of the method surpasses the
predictions of the theory.

Experiment IV. In this experiment we study the auxiliary space preconditioner
for genuine three-dimensional boundary value problems of the form (1.1). Zero Dirich-
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Table 8.8

Number of CG-iterations for Experiment III: Discontinuous coefficient α, β1 = 1.

α1

Level # cells 0.001 0.01 0.1 2 5 10 20 50 100 200 1000

0 332 33 32 28 30 31 33 34 36 36 35 37
1 1328 37 35 34 33 36 37 38 39 41 42 42
2 5312 43 42 37 37 38 41 42 44 44 45 46
3 21248 49 48 39 39 41 43 45 47 48 48 50
4 84992 54 52 41 41 42 45 48 50 51 52 53
5 339968 58 56 44 43 45 48 50 52 53 54 55

Table 8.9

Condition numbers (two digits) measured in Experiment III: Discontinuous coefficient β, α1 = 1.

β1

Level # cells 0.001 0.01 0.1 2 5 10 20 50 100 200 1000

0 332 17 17 18 18 18 20 24 32 39 48 64
1 1328 21 21 21 21 21 22 26 35 44 53 73
2 5312 23 23 23 23 23 24 27 36 46 56 78
3 21248 24 25 25 25 25 25 28 37 46 57 80
4 84992 26 26 26 26 26 27 28 37 46 57 80
5 339968 27 27 27 27 27 28 29 37 46 57 81

Table 8.10

Number of CG-iterations for Experiment III: Discontinuous coefficient β, α1 = 1.

β1

Level # cells 0.001 0.01 0.1 2 5 10 20 50 100 200 1000

0 332 30 30 30 30 30 31 33 35 38 39 41
1 1328 35 35 34 34 34 34 38 40 42 43 46
2 5312 38 38 37 37 37 36 40 43 45 47 48
3 21248 39 39 38 38 39 38 40 45 47 50 53
4 84992 41 41 40 40 40 41 42 47 49 51 55
5 339968 43 43 42 42 42 43 44 49 52 54 56

let boundary conditions are used throughout; that is, H(curl,Ω) = H0(curl,Ω).

We consider two different domains; one is the unit cube Ω = Ω := (0, 1)3, and the
other is the unit ball Ω = Ω◦ := {x = (x1, x2, x3) ∈ R3 : x2

1 + x2
2 + x2

3 < 1}. Lowest
order edge elements (cf. section 4) are applied to discretize (1.1) on quasi-uniform
simplicial triangulations of both domains. We apply the preconditioner Bcurl given
in (7.3) to the discretized systems with

1. D−1
A replaced with the approximate inverse corresponding to three iterations

of the symmetric point Gauss–Seidel method for Acurl,
2. (L + τM)−1 replaced with one V-cycle of an AMG method [35] for L + τM,

and
3. (−Δ)−1 replaced with one V-cycle AMG method for matrix −Δ of the dis-

crete vector Laplacian.

The matrices L and M correspond to the generic case; see Table 3.1.

We study the condition number of BcurlAcurl on sequences of uniformly and
regularly refined triangulations of both domains. On the unit cube the coarsest mesh is
obtained by splitting each cell of a uniform tensor product grid into six tetrahedra. For
the sphere, a mesh generator is employed to get a sequence of increasingly finer meshes,
whose tetrahedra all have about the same size and little distortion. Condition number
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estimates are computed by means of the Lanczos method and listed in Tables 8.11
and 8.12 for different values of the scaling parameter τ .

Table 8.11

Unit cube: Spectral condition numbers of BcurlAcurl.

τ
Level # cells 10−4 1 104

1 6 × 83 4.645 4.580 2.943
2 6 × 163 4.689 4.644 2.952
3 6 × 323 4.842 4.817 2.983
4 6 × 483 4.954 4.771 2.969

Table 8.12

Unit ball: Spectral condition numbers of BcurlAcurl.

τ
Level # cells 10−4 1 104

1 2197 2.893 2.911 3.021
2 4462 3.334 3.372 3.317
3 8865 3.280 3.288 3.430
4 17260 3.499 3.494 3.329
5 66402 3.955 3.932 3.431
6 95593 4.132 4.102 5.022
7 148554 4.497 4.246 3.513
8 242588 4.340 4.552 3.391

As before, we also record the the number of iterations required for the PCG
method with the above preconditioner to reduce the Bcurl-norm of the residual by a
factor of 106. The iteration counts for different values of τ are given in Tables 8.13
and 8.14. In both cases a zero initial guess was used and the right-hand side was such
that the corresponding exact solutions of the boundary value problems are

u(x, y, z) =

⎛⎝ xyz(x− 1)(y − 1)(z − 1)
sin(πx) sin(πy) sin(πz)

(1 − ex)(1 − ex−1)(1 − ey)(1 − ey−1)(1 − ez)(1 − ez−1)

⎞⎠ on Ω ,

u(x, y, z) =(x2 + y2 + z2 − 1)1 on Ω◦.

Table 8.13

Number of PCG iterations on unit cube.

τ
Level # cells 10−4 10−3 10−2 10−1 1 10 102 103 104

1 6 × 83 14 14 14 14 14 13 10 10 10
2 6 × 163 14 14 14 14 14 13 11 10 9
3 6 × 323 14 14 14 14 14 13 12 10 9
4 6 × 483 14 14 14 14 14 13 12 10 9

The observations perfectly match those made in two dimensions: the condition
numbers and iteration counts are essentially independent of the meshwidth and τ .
The number of PCG iterations decreases slightly when τ gets larger.

To illustrate the importance of the extra smoothings D−1
A in our preconditioner

(7.3), we recorded the number of iterations of the corresponding PCG method with the
term D−1

A removed from the preconditioner (7.3). The results are given in Table 8.15.
We can see that the number of iterations doubles as the meshwidth gets halved.
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Table 8.14

Number of PCG-iterations on unstructured grids in the unit ball.

τ
Level # cells 10−4 10−3 10−2 10−1 1 10 102 103 104

1 2197 9 10 10 10 11 11 11 11 12
2 4462 10 10 11 11 11 12 11 11 12
3 8865 10 10 11 11 11 11 11 11 11
4 17260 10 11 11 11 12 12 11 10 11
5 66402 11 12 13 13 13 12 11 10 11
6 95593 11 12 13 13 13 12 12 11 12
7 148554 12 12 13 13 13 13 12 12 10
8 242588 12 13 13 14 14 13 12 11 10

Table 8.15

Number of PCG-iterations on the cube without smoothing.

τ
Level # cells 10−4 1 104

1 6 × 83 28 28 138
2 6 × 163 52 53 384
3 6 × 323 106 107 770
4 6 × 483 155 156

Concluding remarks. Nodal auxiliary space preconditioning for discrete
H(curl,Ω)- and H(div,Ω)-elliptic variational problems has a solid theoretical foun-
dation and proves satisfactory in numerical tests. It can pave the way for applying
standard AMG methods to boundary value problems discretized by means of edge or
face finite elements. Numerous improvements of the method that can make use of
better smoothers and refined auxiliary spaces are conceivable.

Acknowledgments. The authors wish to thank Wang Mengyu, Hangzhou Uni-
versity, and Patrick Meury, ETH Zürich, for writing parts of the MATLAB code for
the two-dimensional experiments and also Tan Lin and Shu Shi, Xiangtan University,
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Abstract. We describe a new Chebyshev spectral collocation method for systems of variable-
coefficient linear delay differential equations with a single fixed delay. Computable uniform a poste-
riori bounds are given for this method. When the coefficients are periodic, the system has a unique
compact nonnormal monodromy operator whose spectrum determines the stability of the system.
The spectral method approximates this operator by a dense matrix of modest size. In cases where
the coefficients are smooth we observe spectral convergence of the eigenvalues of that matrix to those
of the operator. Our main result is a computable a posteriori bound on the eigenvalue approximation
error in the case that the coefficients are analytic.
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1. Introduction. Consider the linear delay differential equation (DDE)

(1.1) ẍ + ẋ + (δ + 0.1 cos(πt))x = b x(t− 2),

with δ, b ∈ R. This is a delayed, damped Mathieu equation [21].

Question: For which values of δ, b is (1.1) asymptotically stable in
the sense that all solutions go to zero as t → ∞?

A practical and visual answer to this question, for (δ, b) ∈ [0, 20] × [−10, 10] in
(1.1), is the numerically produced stability chart in Figure 1.1.

Questions like this one arise in the stability analysis of many DDE models,
including nonlinear models. Indeed, linear periodic DDEs frequently occur as the
“variational equation” for perturbations of a periodic solution of a nonlinear DDE
[18], and thus questions of this type are important in nonlinear dynamics as well.
Stability charts like Figure 1.1 are useful in applications, including biology [25] and
engineering [29] stability problems. In the context of machine tool vibrations, for
instance, stability charts allow the choice of parameters which minimize regenerative
vibrations and maximize throughput and quality [20, 37].

The stability chart in Figure 1.1 is produced pixel-by-pixel by numerically approx-
imating the spectral radius of the compact monodromy operator associated to DDE
(1.1). This operator is defined in section 2. Its eigenvalues are called multipliers. For
each (δ, b) parameter pair there is a monodromy operator, and the pixel is marked
as stable if the computed spectral radius is less than one. By “computed spectral
radius” we mean this: Numerical methods applied to equations like (1.1) can usu-
ally be formulated as giving a square matrix which “approximates” the monodromy
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(asymptotically) stable

(δ,b)=(1,1/2)

Fig. 1.1. Stability chart for a delayed, damped Mathieu equation.

operator, in the intended sense that the largest (magnitude) eigenvalues of the matrix
approximate the largest multipliers of the operator [7, 10, 21, 24]. Standard numeri-
cal methods compute the eigenvalues of the matrix [17], and thus we get a computed
spectral radius of the monodromy operator.

An example of the problem which motivates this paper is this: Based on Figure
1.1 we expect that the particular parameter pair (δ, b) = (1, 1/2) will be stable. In
fact, for this parameter pair we get, from the spectral method introduced in this
paper, the numerical value 0.612992319912 for the spectral radius of the monodromy
operator. Based on many computations, by himself and others, of the eigenvalues
of monodromy operators (the “multipliers”) of periodic linear DDEs using spectral
methods [8, 15, 21, 24], the author believes this value is trustworthy. In fact, the
author believes that all twelve digits given are correct. But can one actually bound
the difference between the actual multipliers and their approximations? Is the bound
computable, and is it close to the actual error?

Figure 1.2 shows what we want, namely, to have the computed large eigenvalues
of the matrix approximation within “error circles” in which the actual multipliers are
known to reside. This figure results from applying our main result, which will be
stated in Theorem I. It gives the desired kind of computable bounds for a class of
DDEs which includes (1.1). We see, in particular, that the (δ, b) = (1, 1/2) case of
(1.1) is stable because all error circles are within the unit disc.

This paper is concerned with linear periodic-coefficient DDEs with fixed delays.
For such equations there is a Floquet theory [30] somewhat analogous to that for
ordinary differential equations (ODEs). For constant-coefficient DDEs the multipliers
can be determined, in theory or numerically, by finding the roots of a characteristic
equation. For linear, periodic-coefficient DDEs with “integer” delays [19], if a Floquet
transition matrix for certain linear ODEs associated to the DDE can be found exactly,
then complex variable techniques can also in theory determine the multipliers [19, sec-
tion 8.3]. (The Floquet transition matrix is the fundamental solution evaluated at
one period of the coefficients of a periodic-coefficient linear ODE.) In general, how-
ever, ODE fundamental solutions must themselves be approximated. Furthermore,
an approximation of the monodromy operator itself is of interest in many problems,
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−0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.5

0

0.5

Fig. 1.2. Computed multipliers (dots) of (1.1) with (δ, b) = (1, 1/2). Application of the tech-
nique of this paper (with 76 Chebyshev collocation points, in particular) gives an error radius of 0.016
around the computed multipliers (solid circles) for those actual multipliers μ such that |μ| ≥ 0.2
(dotted circle). The equation is seen to be stable because all eigenvalues are within the unit circle
(dashed).

including in cases where the eigenfunctions of the operator are important.
The DDEs addressed in this paper are d-dimensional systems of the form

(1.2) ẏ = A(t)y + B(t)y(t− τ),

where τ > 0 is fixed and where A(t), B(t) are d × d continuous matrix-valued coeffi-
cients. Higher-order scalar equations like (1.1) can, of course, be written as first-order
systems of form (1.2). The Chebyshev collocation method for initial value problems
(IVPs), described next and in section 3, makes no further restrictions on the form of
the problem. To possess a unique monodromy operator, however, the coefficients A,B
of the DDE must have common period T . We also assume T = τ . The T = τ case
is of importance in applications [20], and it is a technically easier first case in which
to address the computation of error bounds on computed multipliers. To estimate
the eigenvalue approximation error for our spectral method we will require the coeffi-
cients A,B to be analytic. Without some strong smoothness assumption we cannot,
of course, expect spectral convergence of either solutions or eigenvalues.

This paper presents several new techniques for the numerical analysis of DDEs.
First we describe a new Chebyshev spectral collocation method for solving DDE

IVPs of the form (1.2). The modest amount of notation necessary to describe the
method in detail is given in section 3, but the essentials of the method can be com-
municated without it. Indeed, we choose N collocation points and then replace the
DDE (1.2) by its collocation approximation

(1.3) D̂Nv = M̂Av + M̂Bw,

where D̂N , M̂A, and M̂B are square matrices of typically modest size—e.g., 30 to 300
rows—defined in section 3, and where v, w are vectors of collocation values of y(t) and
y(t−τ), respectively. The solution of the linear system (1.3) by Gauss elimination (or
other dense matrix methods) completes the spectral method. We give computable a
posteriori error bounds on the uniform error of this method (Theorem 3.4).
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Second, we make an observation which is almost trivial, but which nonetheless
gives a new spectral method for approximating the monodromy operator associated
to DDE (1.2). We observe that the matrix which computes v from w, in (1.3), is a
matrix approximation of the monodromy operator:

(1.4) UN =
(
D̂N − M̂A

)−1

M̂B .

We have seen in many examples [9, 10] that the eigenvalues of UN are excellent
approximations of the multipliers.

In fact, spectral methods have been applied to DDEs many times in the past
[5, 13, 23, 24]. Though the above specific spectral method is new to our knowledge,
in that it uses collocation at the Chebyshev extreme points, the results just stated
should not be surprising to many readers.

Our third new technique is very different from the existing literature, however. It
says that one can compute bounds on the errors in the eigenvalues of UN .

Theorem I (Theorem 6.4 gives precise statement and proof). If the coefficient
functions A(t), B(t) in (1.2) are analytic on a closed interval of length T, and if the
delay is equal to the period (τ = T ), then the distance from a large multiplier μ to the
nearest of the computed eigenvalues λi of UN is bounded:

min |μ− λi| ≤ ω cond(Ṽ ).

Here “cond(Ṽ )” is a computable condition number coming from a numerical diago-
nalization of UN . The other factor ω comes from a combination of a priori bounds,
derived from properties of the coefficients A,B in (1.2), and a posteriori estimates on
IVPs for (1.2) with predetermined initial functions (namely, Chebyshev polynomials).

We observe in many examples that ω decays exponentially, while cond(Ṽ ) grows
slowly, as the number N of Chebyshev collocation points increases. Thus the estimate
is usably small in these cases, and we give two examples here.

The a posteriori estimates on IVPs just mentioned come from an apparently
new kind of result for spectral methods applied to ODEs (Theorem 3.4). A new
“bootstrapping” method for achieving good a posteriori bounds on the growth of
fundamental solutions to variable-coefficient ODEs is given in section 4. To prove
Theorem I we also give an apparently new theorem on eigenvalue perturbation for
diagonalizable operators on Hilbert spaces (Theorem 5.1 and Corollary 5.2). These
are all technical results for our current purposes, but they may be of independent
interest.

As noted, we address the case where the period of the coefficients T is equal to
the (single, fixed) delay τ . A preprint by the author [8] sketches the generalization
of the results to the situation in which T ≥ τ . Further generalization to multiple
“integer” delays [19] presents only resolvable bookkeeping difficulties [9].

Regarding previous work in this area, spectral methods were first applied to DDE
IVPs in [5] and [23]. More recently, collocation using the Gauss–Legendre points
has been applied to the problem of finding periodic solutions to nonlinear DDEs in
[13]. (Note that our problems have periodic coefficients but they do not, generally,
have periodic solutions.) There is also a substantial engineering literature addressing
stability—as opposed to solutions of IVPs—of ODEs and DDEs by spectral meth-
ods. For ODE problems, Sinha and Wu [28] use a Chebyshev Galerkin method, for
example. Engineering applications led the author and colleagues to use spectral meth-
ods to address DDE stability questions [10]. Luzyanina and Engelborghs address the
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application of spectral methods, among others, to the stability of linear DDEs and
functional differential equations, and numerical evidence for spectral convergence of
the multipliers is given [24, Table 2].

A recent paper by Breda, Maset, and Vermiglio [7] shows that for constant-
coefficient DDEs with fixed discrete and distributed delays, a class of Runge–Kutta
methods approximate the multipliers with a polynomial (in the mesh/step size) rate
of convergence; spectral convergence does not, of course, occur. No computable error
bounds are given.

The Chebyshev spectral method used here for DDEs first appeared in preprint
form in [8]. Gilsinn and Potra [15] have recently sketched an a priori proof of the
convergence of the numerical multipliers by this method. In [15] convergence is under
mesh-refinement (“h-refinement”), based on the proof techniques of [5]. The regularity
of the DDE to which the convergence argument applies is unspecified. No estimate of
the rate of convergence is given.

Mesh-refinement has not been considered in the current paper, as one cannot
achieve the spectral convergence necessary to have good eigenvalue estimation; in this
paper we address only “p-refinement,” where one increases the degree of polynomial
approximation.

We believe that this paper represents the first quantitative technique for bounding
the eigenvalue approximation error for a large class of continuous, infinite-dimensional
systems whose dynamics are represented by nonnormal compact operators which are
not already represented as integral operators with known kernels (compare [1]), or
as Toeplitz operators (see [35] and the literature cited there), or which come from
constant-coefficient equations (e.g., [7]). Note that the monodromy operators here
are described by formula (2.4), so that they are operators of the form (finite rank
operator) plus (integral operator). Finding the kernel of the integral operator part
generally requires approximation of the fundamental solution of a variable-coefficient
ODE, however. This is itself a nontrivial task in general [22].

2. The monodromy operator for a linear, periodic DDE. Consider the
linear DDE system

(2.1) ẏ(t) = A(t) y(t) + B(t) y(t− 2)

for y(t) ∈ C
d. Suppose A,B are continuous matrix-valued functions on I = [−1, 1]

which extend to not-necessarily-continuous periodic functions on the real line with
period T = 2. The normalization of the period and the delay to 2, and the choice
of interval [−1, 1], are convenient for describing the Chebyshev collocation method
(below). This normalization can be achieved by scaling and shifting the independent
variable t in any linear periodic DDE with T = τ , of course.

The monodromy operator U for (2.1) is defined as follows by considering the
IVP [18]. Suppose y(t) solves (2.1) with initial condition y(t) = f(t) for t ∈ I; y(t) is
then defined for t ∈ [−1,∞). For s ≥ 1, define ys(t) = y(t + s − 1) for t ∈ I; this is
standard shift notation for DDEs [18]. Note that ys is a C

d-valued function defined
on I and that y1 = f . Define U to act on a soon-to-be-specified space of functions
on I:

(2.2) Uf = y3.

Note U maps a function on I back to a function on I; such a form is essential if U is
to have a spectrum.
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Thus the monodromy operator acts by solving an ODE IVP

(2.3) ż(t) = A(t)z(t) + B(t)f(t), z(−1) = f(1),

for t ∈ I, to give Uf = z. (Also, z = y3, but we want to clearly show the ODE
IVP.) This linear, nonhomogeneous ODE problem can be solved by integration if the
solution to the corresponding homogeneous ODE problem is known. In fact,

(2.4) (Uf)(t) = ΦA(t)f(1) +

∫ t

−1

ΦA(t)ΦA(s)−1B(s)f(s) ds,

where ΦA(t) is the fundamental solution of ż = A(t)z. (By definition ΦA(t) solves
Φ̇A = AΦA on I and ΦA(−1) = Id, where Id is the identity on C

d.) Note that the
second summand in this formula for the monodromy operator is an integral operator
of Volterra type. Knowledge of the kernel of this integral operator, namely, k(t, s) =
ΦA(t)ΦA(s)−1B(s), generally requires the numerical solution of an ODE problem,
however.

We emphasize that y2n+1 = Unf solves, by “the method of steps,” the IVP
consisting of (2.1) and y(t) = f(t), t ∈ I. More precisely, if 2n − 1 ≤ t ≤ 2n + 1,
then y(t) = (Unf)(t− 2n), and so y(t) is determined by steps for all of [−1,∞). The
(asymptotic) stability of (2.1) is therefore given by the condition that the spectral
radius of U be less than unity. (On the other hand, the degree of nonnormality
of U will determine how much caution is required in extracting meaning from the
multipliers of the linearization (variational equation) of a nonlinear DDE around a
periodic solution; compare [35].)

Note that the solutions of linear DDEs with periodic coefficients are not them-
selves periodic. Also, the solutions are generally only regular in pieces. For instance,
even if the initial function f is smooth on the interval I, and if A,B are smooth on
all of R, nonetheless some derivative of y(t) is generally not continuous at t = 1.

An alternative form for the monodromy operator uses a fundamental solution to
the DDE itself [18, 15]. In the periodic-coefficient case of the current paper, formula
(2.4) is equivalent to, but easier to use than, this alternate form. Our reasons for
the “easier to use” claim are necessarily complicated, but they relate to the piecewise
regularity of the eigenfunctions of the DDE problem. See Lemma 4.3 below.

We still have not specified the space on which U acts, and it is vital to choose a
usable space. Inspection of formula (2.4) shows that if f is continuous on I, then Uf
is continuous on I. It is appropriate to fix notation.

Definition 2.1. Let C(I) be the space of scalar continuous functions on I. Let
C = C(I) ⊗ C

d be the space of C
d-valued continuous functions.

Certainly a monodromy operator U : C → C is well defined from formula (2.4).
Its spectrum determines the stability of DDE (2.1). On the other hand, it will be
desirable to work in a Hilbert space because we need tools for eigenvalue perturbation.
In addition, the output of U is more regular than the input. We will suffer no loss
of generality if we restrict our attention to a Hilbert space which is a subspace of C
because, in particular, the eigenfunctions of U : C → C will in every case be in our
chosen subspace.

The Hilbert space we choose is defined via a well-behaved orthogonal basis of
nonperiodic, smooth functions which do a good job of approximating functions in C,
namely, Chebyshev polynomials with a well-chosen normalization. As is well known,
these polynomials also do an excellent job of interpolating smooth functions on I; see
section 3. In the next two definitions, and the two lemmas which follow, we confine
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ourselves to the scalar case (d = 1) for notational convenience. There will be no actual
loss of generality (as explained after Lemma 2.5).

Definition 2.2. Let L2 be the Hilbert space of complex-valued (measurable)

functions f on I such that
∫ 1

−1
|f(t)|2(1 − t2)−1/2 dt < ∞, and define the inner prod-

uct
〈
f, g

〉
L2 =

∫ 1

−1
f(t) g(t)

(
1 − t2

)−1/2
dt. (Note that “L2” will always refer to

a weighted L2 space.) The (L2-)normalized Chebyshev polynomials are defined as
T̂0(t) = (1/

√
π)T0(t), T̂k(t) = (

√
2/π)Tk(t), where Tk(t) = cos(k arccos t) are the

standard Chebyshev polynomials. The set {T̂k}∞k=0 is an orthonormal (ON) basis of

L2. For f ∈ L2 let f̂k =
〈
T̂k, f

〉
L2 be the (L2-)Chebyshev expansion coefficients of f .

Thus f(t) =
∑∞

k=0 f̂kT̂k(t), with convergence in L2, and ‖f‖2
L2 =

∑∞
k=0 |f̂k|2.

Unfortunately, the monodromy operator U is not bounded on L2. In particular,
(2.4) refers to the point values of the input function. Therefore, we turn to a Hilbert
subspace of L2 ∩ C introduced by Tadmor [31].

Definition 2.3. H1 := {f ∈ L2|
∑∞

k=0(1 + k)2|f̂k|2 < ∞}. For f, g ∈ H1 we

define the inner product
〈
f, g

〉
H1 =

∑∞
k=0(1+k)2f̂k ĝk. Let T̃k(t) = (1+k)−1T̂k(t) be

the H1-normalized Chebyshev polynomials. The set {T̃k}∞k=0 is an ON basis of H1.

The space H1 is a Sobolev space. It is not actually equivalent to W 1,2
T =

{
f ∈

L2
∣∣‖f‖L2 +‖ḟ‖L2 < ∞

}
[31], but we will have no need for such an equivalence. Next,

we see that H1 ⊂ C(I) and pointwise evaluation is bounded.
Lemma 2.4. If f ∈ H1, then f is continuous (it has a continuous representative)

and |f(t)| ≤ 0.9062‖f‖H1 . In particular,

(2.5) δ1f ≡
∞∑
k=0

f̂kT̂k(1) =

∞∑
k=0

∫ 1

−1

T̂k(1)T̂k(t)(1 − t2)−1/2f(t) dt

is a bounded linear functional f 
→ f(1) on H1.
Proof. The proof is a standard exercise for Sobolev spaces. See [8] for a complete

proof.
To use H1 we also need to know that if f is sufficiently regular on I, then f ∈ H1.

We give a criterion via the Fourier series of f(cos θ). In fact, if f ∈ C1(I), then the
even function f(θ) = f(cos θ) is in C1

per[−π, π]; that is, f can be periodically extended

with period 2π to be C1 on R. For k ∈ Z let f̂(k) be the kth Fourier coefficient of

f ; that is, f̂(k) = (2π)−1/2
∫ π

−π
e−ikθf(θ) dθ. Then f̂k = f̂(k) = f̂(−k) for k > 0 and

f̂0 = 2−1/2f̂(0). For functions g on [−π, π] define the norm ‖g‖2
F :=

∫ π

−π
|g(θ)|2 dθ.

Lemma 2.5.

‖f‖2
L2 =

1

2

∞∑
k=−∞

|f̂(k)|2 =
1

2
‖f‖2

F , and(2.6)

‖f‖2
H1 =

1

2

∞∑
k=−∞

(1 + k)2|f̂(k)|2 ≤ ‖f‖2
F + ‖f ′‖2

F .(2.7)

Thus C1(I) ⊂ H1 ⊂ C(I) and

(2.8) ‖f‖2
H1 ≤ 2π‖f‖2

∞ + 2π‖ḟ‖2
∞

if f ∈ C1(I).
Proof. Again the proof is standard and is found in [8].
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Now we return to the general C
d-valued (nonscalar) case. By mild abuse of

notation, we let L2 be the space of C
d-valued measurable functions f for which∫ 1

−1
|f(t)|2(1−t2)−1/2 dt < ∞; there is a corresponding inner product. Again by abuse

of the notation we let H1 be the subspace of L2 for which
∑∞

k=0(1 + k)2|f̂k|2 < ∞,

where f̂k =
〈
T̂k, f

〉
L2 ∈ C

d. We give H1 the obvious inner product.

Since Uf solves IVP (2.3), U maps C to C1 and indeed U : H1 → H1. We can
extract from (2.4) a useful estimate of ‖U‖H1 .

Lemma 2.6. Suppose
∣∣ΦA(t)ΦA(s)−1

∣∣ ≤ CA for all −1 ≤ s ≤ t ≤ 1. Let
a2 = 1 + ‖A‖2

∞ and c = 0.9062. Then

(2.9) ‖U‖H1 ≤
√

2πd
(
caCA + ‖B‖∞

(
c2 + πa2C2

A/2
)1/2)

.

Proof. Suppose f ∈ H1 and let g(t) =
∫ t

−1
ΦA(s)−1B(s)f(s) ds. Note that

‖Uf‖H1 ≤ ‖ΦA(t)f(−1)‖H1 + ‖ΦA(t)g(t)‖H1 . Letting ϕ(t) = ΦA(t)f(−1), we have a
bound from Lemma 2.5:

‖ϕ‖2
H1 ≤ 2π

d∑
k=1

‖ϕk‖2
∞ + ‖(Aϕ)k‖2

∞ ≤ 2πdC2
Aa

2|f(−1)|2.

On the other hand, if ω(t) = ΦA(t)g(t), then ω̇ = Aω + Bf , and so by Lemma 2.5,

‖ω‖2
H1 = 2π

d∑
k=1

‖ωk‖2
∞ + (‖(Aω)k‖∞ + ‖(Bf)k‖∞)

2
.

But

|ω(t)k| ≤ |ω(t)| ≤
∫ 1

−1

max
−1≤s≤t≤1

∣∣ΦA(t)ΦA(s)−1
∣∣ |B(s)| |f(s)| ds

≤ CA‖B‖∞
∫ 1

−1

|f(s)| ds ≤
√

π

2
CA‖B‖∞‖f‖L2 ≤

√
π

2
CA‖B‖∞‖f‖H1

by the Cauchy–Schwarz inequality with weight (1−s2)−1/2 ds. Similarly, |(A(t)ω(t))k|
≤

√
π
2 ‖A‖∞CA‖B‖∞‖f‖H1 . On the other hand, |(B(t)f(t))k| ≤ ‖B‖∞|f(t)| ≤

c‖B‖∞‖f‖H1 . Thus

‖ω(t)‖2
H1 ≤ 2πd‖B‖2

∞

(π
2
C2

A +
π

2
‖A‖2

∞C2
A + c2

)
‖f‖2

H1 .

3. A Chebyshev collocation method for linear DDEs (and ODEs). First
we consider IVPs for (d ≥ 1)-dimensional ODE systems of the form

(3.1) ẏ(t) = A(t)y(t) + u(t)

for y(t), u(t) ∈ C
d, and A(t) a d× d matrix.

Recall that I = [−1, 1] and that C denotes C
d-valued continuous functions on

I. Denote f ∈ C by f = (f1, . . . , fd)
�. For f ∈ C let ‖f‖∞ = maxt∈I |f(t)|, where

“| · |” is the Euclidean norm on C
d. Note that | · | induces a norm on d× d matrices,

also denoted “| · |.” For continuous matrix-valued functions A(t) = (aij(t)) define
‖A‖∞ = maxt∈I |A(t)|.
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To present our spectral method we need to recall the basics of, and give notation
for, polynomial interpolation and collocation at the Chebyshev points.

Definition 3.1. Let PN ⊂ C be the space of C
d-valued polynomials of degree

at most N . Note that PN has dimension l = d(N + 1). The Chebyshev collocation
(extreme) points in I are tj = {cos(jπ/N)} for j = 0, 1, . . . , N [33]. Note that
t0 = 1 > t1 > · · · > tN = −1.

On the function (vector) spaces C and PN we have collocation operators as follows.
Evaluation at N +1 Chebyshev collocation points produces a vector in C

l. We regard
evaluation of continuous functions as a linear operator GN : C → C

l:
(3.2)

GNf = (f1(t0), . . . , fd(t0), f1(t1), . . . , fd(t1), . . . , . . . , . . . , f1(tN ), . . . , fd(tN ))
�
.

We will always order the scalar components of an element of C
l consistently with the

output of GN (if the element refers to the collocation values of a C
d-valued function).

Restricting GN to polynomials gives a bijection EN : PN → C
l. The inverse of EN ,

namely, PN : C
l → PN , “creates” a C

d-valued polynomial from collocation values;
see (3.3) below for a method for computing PN .

The composition of PN and GN is the interpolation operator IN = PN ◦ GN :
C → PN . That is, if p = INf for f ∈ C, then p is a C

d-valued polynomial of degree
N such that p(tj) = f(tj).

One may implement polynomial interpolation by “discrete Chebyshev series.”
Concretely, suppose f ∈ C(I) is a scalar function. Recall that Tk(t) = cos(k arccos t)
are the standard Chebyshev polynomials. Then p = IN (f) is given by

(3.3) p(t) =

N∑
k=0

f̃kTk(t), f̃k =

N∑
j=0

Ckjf(tj), Ckj =
2

Nγjγk
cos

(
πjk

N

)
,

where γj = 2 if j = 0 or j = N and γj = 1 otherwise [26]. These formulas can also be
regarded as computing p = PN ({f(tj)}) if {f(tj)} is an arbitrary vector in C

l. They
may be implemented by a modification of the fast Fourier transform (FFT) [33].

A fundamental observation is that interpolation at the Chebyshev collocation
points is spectrally accurate for analytic functions. Indeed, it converges exponentially
with a known constant as follows. Note that an ellipse as described in the next lemma
always exists because the region of analyticity is open and contains I by assumption.

Lemma 3.2 (see [31]). Suppose f is analytic on the closed set I = [−1, 1]. That
is, suppose f is analytic in an open region R ⊂ C such that I ⊂ R. There exist
constants c > 0 and 0 ≤ ρ < 1 such that for all N ≥ 1 the interpolant p = INf
satisfies ‖f − p‖∞ ≤ cρN . Indeed, if E is an ellipse with foci ±1, and if the interior
of E is contained in R, and if the semimajor/-minor axes of E are of length S and
s, respectively, then ‖f − p‖∞ ≤ c′(S + s)−N for some c′ > 0.

The “Chebyshev (spectral) differentiation matrix” is the map

DN = EN ◦ d

dt
◦ PN : C

l → C
l.

The entries of DN are exactly known for all N [33]. In MATLAB, using cheb.m

from [33], DN = kron(cheb(N),eye(d)). The action of DN can also be computed
efficiently by a modification of the FFT [33].

The matrix DN is not invertible; it has kernel of dimension d. We do not quite
seek its inverse, however, though solving the differential equation (3.1) by the Cheby-
shev spectral method we are about to describe is a closely related task. We need to
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incorporate the initial condition from (3.1) before inverting, so we define D̂N as the
invertible l × l matrix which is equal to DN in its first dN = l − d rows but has

(D̂N )jk =

{
0, 1 ≤ k ≤ dN,

δj−dN,k−dN , dN + 1 ≤ k ≤ l,

for dN +1 ≤ j ≤ l. That is, the last d rows of D̂N are zeroed, except that the identity
Id is inserted in the lower right d× d block.

Now, recalling ODE (3.1), define a block-diagonal matrix and a vector

M̂A =

⎛⎜⎜⎜⎝
A(t0)

. . .

A(tN−1)
0d

⎞⎟⎟⎟⎠ , û =

⎛⎜⎜⎜⎝
u(t0)

...
u(tN−1)

y0

⎞⎟⎟⎟⎠ .

Here “0d” denotes the d× d zero matrix. Both D̂N , M̂A are l × l, while û is l × 1.
Our approximation of the IVP for (3.1) is described by the following lemma. The

proof comes immediately from the definitions of D̂N , M̂A, and û.
Lemma 3.3 (our spectral method for ODE IVPs). Fix N ≥ 1. Suppose A(t)

is a continuous d × d matrix-valued function of t ∈ I, u(t) ∈ C, and y0 ∈ C
d. The

following are equivalent:
• p ∈ PN satisfies

ṗ(tj) = A(tj)p(tj) + u(tj) for 0 ≤ j ≤ N − 1 and p(−1) = y0;

• v ∈ C
l satisfies

(3.4) D̂Nv = M̂Av + û.

The equivalence is p = PNv and v = ENp.
In practice one computes v = (D̂N −M̂A)−1û by Gauss elimination to solve ODE

(3.1). For this spectral method we have the a posteriori estimates given in the next
theorem.

Theorem 3.4. Suppose A(t) is a continuous d × d matrix-valued function of
t ∈ I, u(t) ∈ C, and y0 ∈ C

d. Suppose y ∈ C satisfies the IVP (3.1). Suppose the
fundamental solution satisfies the bound

(3.5)
∣∣ΦA(t)ΦA(s)−1

∣∣ ≤ CA for all − 1 ≤ s ≤ t ≤ 1.

Let N ≥ 1, let p ∈ PN be the C
d-valued polynomial described by Lemma 3.3, and let

Rp = ṗ(−1) −A(−1)y0 − u(−1). Then

(3.6) ‖y − p‖∞ ≤ 2CA

[
‖Ap− IN (Ap)‖∞ + ‖u− IN (u)‖∞ + |Rp|

]
and

(3.7) ‖ẏ − ṗ‖∞ ≤ (2‖A‖∞CA + 1)
[
‖Ap− IN (Ap)‖∞ + ‖u− IN (u)‖∞ + |Rp|

]
.

The proof of Theorem 3.4 will be given momentarily, but some comments are in
order. The estimates on the right sides of (3.6) and (3.7) have the structure

(stiffness) [(sum of uniform interpolation errors) + (initial residual)].
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In fact, we interpret CA as an estimate of the fastest possible exponential change in
solving ẏ = A(t)y, and we interpret Rp as the amount by which (3.1) is not satisfied
at the initial time −1. Section 8 gives practical methods for evaluating the uniform
interpolation errors in (3.6) and (3.7).

To prove Theorem 3.4 we need a bound on the degree N monic polynomial with
roots t0, . . . , tN−1. Such polynomials are uniformly exponentially small as N → ∞.
A proof of the following lemma, which seems not to appear in previous literature, is
given in [8].

Lemma 3.5. For N ≥ 1 let QN (t) = (t − t0) . . . (t − tN−1). For t = cos θ ∈ I =
[−1, 1], QN (t) = 21−N (cos(θ) − 1) sin(Nθ)/ sin(θ). Thus QN (−1) = (−1)NN 22−N

and ‖QN‖∞ = N 22−N on I.
Proof of Theorem 3.4. Let q = IN (Ap) and w = IN (u). Since r = ṗ− q−w ∈ PN

and r(tj) = 0 for j = 0, . . . , N − 1 by Lemma 3.3, it follows that there is z ∈ C
d

such that r = zQN . Evaluating at t = −1, we find Rp = z(−1)NN22−N so |z| =
|Rp| 2N−2/N . On the other hand,

(3.8) ẏ − ṗ = A(y − p) + (Ap− q) + (u− w) − zQN ,

so

y(t) − p(t) =

∫ t

−1

ΦA(t)ΦA(s)−1
[
(Ap(s) − q(s)) + (u(s) − w(s)) − zQN (s)

]
ds.

Note that y(−1) = p(−1). Taking norms, and using Lemma 3.5 to see that ‖zQN‖∞ ≤
|Rp|,

|y(t) − p(t)| ≤ 2CA

[
‖Ap− q‖∞ + ‖u− w‖∞ + |Rp|

]
.

This inequality implies (3.6). Finally, using (3.8) and Lemma 3.5, we find that (3.6)
implies (3.7).

Example 1. We apply Theorem 3.4 to the ODE IVP

(3.9) ẏ = (2t + 1)y + (2t + 1) sin(3(t2 + t)), y(−1) = 1.

The solution can be computed exactly by integration, and note that the solution
y(t) is entire because the coefficients are entire. The effectiveness of estimate (3.6) is
seen in Figure 3.1 below. As N increases, spectral convergence starts to occur only
when polynomial interpolation can “handle” the (complex) exponential rates present
in the fundamental solution ΦA(t) and the nonhomogeneity u(t) on the interval I; this
happens at N ≈ 10 here. The error ‖y − p‖∞ decreases to approximately 10−14, and
this is the level of rounding error because ‖y‖∞ = 9.35. The main point, however, is
that the estimate from (3.6) nicely follows the error, though with a slowly growing
overestimation factor of roughly 103 when N = 40. Both the combined interpolation
error (the sum ‖Ap−IN (Ap)‖∞+‖u−IN (u)‖∞) and the initial residual Rp contribute
nontrivially to the estimate. Note that we use the optimal bound CA = e9/4 when
applying Theorem 3.4 in this example.

Now we return to DDE (2.1), which is our actual interest. Define

M̂B =

⎛⎜⎜⎜⎝
B(t0)

. . .

B(tN−1)
Id 0d

⎞⎟⎟⎟⎠ ,
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Fig. 3.1. Theorem 3.4 applied to scalar ODE (3.9) reveals spectral convergence in uniform
error ‖y − p‖∞ on I (squares), where y is the solution and p is its polynomial approximation. The
a posteriori estimates (circles) (the right side of (3.6)) closely track the actual error. The combined
interpolation error (“+”) and the initial residual (“×”) are also shown; see the text.

where Id and 0d are the d× d identity and zero matrices, respectively. The insertion
of “Id” in the lower left position represents the connection condition for the DDE
method of steps. The Chebyshev collocation approximation of DDE (2.1), or, more
particularly, of formula (2.3), is

(3.10) D̂Nv = M̂Av + M̂Bw

if vj ≈ z(tj) and wj = f(tj). Note the obvious fact that the IVP for DDE (2.1) is of
the same form as ODE (3.1), but with u = Bf . Theorem 3.4 can therefore be applied
to estimating errors in IVPs for (2.1).

The periodicity of the coefficients is not really relevant to solving a DDE of form
(2.1) by the method of steps, when we use method (3.10). (Without periodicity there
is no unique monodromy operator, however.) All that is required to use (3.10) to solve
a nonperiodic DDE is that we must re-evaluate the collocated coefficient matrices M̂A

and M̂B on each successive interval. The length of the interval would usually be equal
to the delay if there is only one delay, in particular.

When the coefficients of (2.1) have period T = τ , the matrix which approximates
U is

(3.11) UN =
(
D̂N − M̂A

)−1

M̂B ∈ C
l×l.

In practice we need to assume that the matrix inverse in (3.11) exists in order to
find the entries of UN , but we naturally observe the computed condition number for
inversion. On the other hand, to compute the eigenvalues and eigenvectors of UN we
do not actually need the inverse. Vectors v such that UNv = λv evidently solve the
generalized eigenproblem

(3.12) M̂Bv = λ
(
D̂N − M̂A

)
v.

The eigenvalues can be approximated by the QZ algorithm [17], for instance.

4. Bounds on ODE fundamental solutions. Before we move on to the main
goal of numerically approximating the monodromy operator and its eigenvalues, we
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must find usable bounds on ODE fundamental solutions. In fact, we believe the results
of this section are of independent interest for those needing computable bounds on
the growth of solutions to variable-coefficient linear ODEs.

We recall existence and analytic continuation. The following result is proven by
a straightforward Picard iteration argument [8].

Lemma 4.1. Suppose A(z) ∈ C
d×d is (entrywise) analytic on a convex open set

E ⊃ I = [−1, 1]. Then there is a unique function ΦA(z), analytic on E, satisfying

(4.1) ΦA(z) = Id +

∫ z

−1

A(ζ)ΦA(ζ) dζ.

If |A(z)| ≤ α for z ∈ E, then |ΦA(z)| ≤ eα|z+1| for z ∈ E. Furthermore, Φ̇A(t) =
A(t)ΦA(t) for t ∈ I.

One can easily show, in addition, that the transition matrix Ω(t) = ΦA(t)ΦA(s)−1,
for −1 ≤ s ≤ t ≤ 1, has an a priori estimate. (Note that Ω satisfies Ω̇(t) = A(t)Ω(t),
Ω(s) = Id.) By Gronwall’s inequality, in fact, |Ω(t)| ≤ eα̃(t−s) if |A(τ)| ≤ α̃ for
τ ∈ [s, t]. Unfortunately, this bound on Ω(t) is frequently not close to the actual max-
imum of |Ω(t)|. We can, however, use the collocation algorithm to approximate the
fundamental solution and then use a posteriori estimates from Theorem 3.4 to bound
the fundamental solution. There is a “bootstrapping” aspect to such a technique:
one must have some bound on the fundamental solution in order to apply Theorem
3.4, which leads to an improved bound. This is the content of the next lemma, for
which one should recall that ΨA(t) = (ΦA(t)−1)� satisfies the “adjoint equation”
Ψ̇A(t) = −A(t)�ΨA(t) with ΨA(−1) = Id.

Lemma 4.2. Consider the following IVPs:

(4.2) ẏs(t) = A(t)ys(t), ys(−1) = es, s = 1, . . . , d,

where {es} is the standard basis for C
d.

Suppose that for each s we have a polynomial approximation ps of ys, and that we
have estimates ‖ys−ps‖∞ ≤ μs; see Theorem 3.4. Note that ΦA(t) =

[
y1(t) . . . yd(t)

]
is the fundamental solution to ẏ = A(t)y. Let ΦN (t) =

[
p1(t) . . . pd(t)

]
, the ap-

proximation of ΦA(t). If ξ2 =
∑d

s=1 μ
2
s, then |ΦA(t)−ΦN (t)| ≤ ξ for all t ∈ I. Simi-

larly, if ΨA(t) =
[
z1(t) . . . zd(t)

]
is the fundamental solution to the adjoint equa-

tion ż = −A(t)�z, and if ΨN (t) =
[
q1(t) . . . qd(t)

]
, where qs(t) are polynomial

approximations to zs(t) satisfying ‖zs − qs‖∞ ≤ νs, so that ΨN (t) is the collocation

approximation of ΨA(t), then |ΨA(t) − ΨN (t)| ≤ ω for t ∈ I, where ω2 =
∑d

s=1 ν
2
s .

Also, ∣∣ΦA(t)ΦA(s)−1
∣∣ ≤ (ξ + ‖ΦN‖∞) (ω + ‖ΨN‖∞) .

Proof. Note that

|ΦA(t)ΦA(s)−1| ≤ (‖ΦA − ΦN‖∞ + ‖ΦN‖∞) (‖ΨA − ΨN‖∞ + ‖ΨN‖∞) .

But

|ΦA(t) − ΦN (t)| = max
|u|=1

∣∣∣∣∣
d∑

s=1

us (ys(t) − ps(t))

∣∣∣∣∣ ≤ max
|u|=1

|u|
(

d∑
s=1

μ2
s

)1/2

= ξ

using the Cauchy–Schwarz inequality, and similarly for |ΨA(t) − ΨN (t)|.
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Example 2. Consider the second-order ODE ẍ + ẋ + (10 + 9 cos(πt))x = 0. It is
a relatively stiff damped Mathieu equation corresponding to

A(t) =

(
0 1

−10 − 9 cos(πt) −1

)
in first-order form. A quick calculation gives ‖A‖∞ ≈ 19.026. Thus C1 = e2‖A‖∞ ≈
3.5381 × 1016 is the a priori bound on |ΦA(t)ΦA(s)−1| from Gronwall. We use the
collocation algorithm with N = 50 to find ΦN (t),ΨN (t) approximating ΦA(t),ΨA(t).
The a posteriori estimates from Theorem 3.4 are computed using CA = C1, and,
as in Lemma 4.2, we find |ΦA(t)ΦA(s)−1| ≤ C2 = 2.7117 × 109. This is a significant
improvement, but also we can now iterate, using CA = C2 in the a posteriori estimates
to generate C3, and so on. The result is a sequence of bounds

|ΦA(t)ΦA(s)−1| ≤ 3.5381 × 1016, 2.7117 × 109, 19.627, 19.587, 19.587, . . . .

Each number on the right is a bound, with an a priori argument for the first and
a posteriori arguments for the remainder. Evidently they converge superlinearly to
about 19.6. By looking at the numerically approximated fundamental solution we see
that this is a nearly optimal bound. In any case, such improvements by many orders
of magnitude make further error estimation using Theorem 3.4 very practical.

In addition to the Lemma 2.6 estimate on the norm of U , we require, for the a pos-
teriori estimation of eigenvalues, an a priori result on the polynomial approximation
of eigenfunctions of U .

These eigenfunctions each solve a homogeneous ODE. In fact, if Ux = μx for
μ ∈ C, then y = μx solves ẏ = Ay + Bx. Thus if μ �= 0, then ẋ =

(
A + μ−1B

)
x.

Let Φμ(t) be the fundamental solution to this ODE, so Φ̇μ = (A + μ−1B)Φμ and
Φμ(−1) = Id. Note that x(t) = Φμ(t)x(−1).

Suppose A(z), B(z) are analytic on an ellipse E with foci ±1. (If A,B are analytic
on the compact set I = [−1, 1], then they have such a common regularity ellipse.)
Define ‖M‖∞E = maxz∈E |M(z)| for continuous matrix-valued functions M(z). From
Lemma 4.1

|Φμ(z)| ≤ exp
(
‖A + μ−1B‖∞E |z + 1|

)
is an a priori bound on the analytic continuation of Φμ(t) to z ∈ E. In fact, when we
consider below those multipliers μ with magnitude greater than a chosen level σ > 0
we will use the bound

(4.3) |Φμ(z)| ≤ Cσ := exp
(
(‖A‖∞E + σ−1‖B‖∞E) (S + 1)

)
,

where S is the major semiaxis of a common regularity ellipse E for A and B. This a
priori bound for |Φμ(z)| turns out to be one of the two troublesome constants in the
main Theorem 6.4 on multiplier estimation.

As announced, we now bound the interpolation error for eigenfunctions of U .
Lemma 4.3. Suppose A,B are analytic d × d matrix-valued functions with a

common regularity ellipse E ⊂ C with foci ±1 and sum of semiaxes eη = S + s > 1.
Suppose Ux = μx for μ �= 0 and ‖x‖H1 = 1. Let Φμ(z) be the unique analytic
continuation of Φμ(t) for z ∈ E and suppose Cμ is a bound of |Φμ(z)| for all z ∈ E.
If p = Ikx, then

(4.4) ‖x− p‖H1 ≤ 8
√
dCμ(sinh η)−1k e−kη.
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Proof. First, x(z) = Φμ(z)x(−1) is the analytic continuation of x(t), t ∈ I, to
z ∈ E. Furthermore, |x(z)| ≤ Cμ|x(−1)|. It follows from (4.16) of [31] that

‖x− p‖2
H1 ≤

d∑
j=1

(
8Cμ|x(−1)|(sinh η)−1ke−kη

)2
= d

(
8Cμ(sinh η)−1ke−kη

)2 |x(−1)|2.

Note that |x(−1)| ≤ 0.9062‖x‖H1 = 0.9062 by Lemma 2.4.

Estimate (4.4), which bounds the polynomial approximation error for eigenfunc-
tions of U , will be of great importance in controlling the eigenvalue approximation
error from our spectral method (Theorem I).

Definition 4.4. Let σ > 0. The a priori eigenfunction approximation error
bound for large eigenvalues of U, for k + 1 point Chebyshev interpolation, is

(4.5) εk = 8
√
dCσ(sinh η)−1k e−kη,

where Cσ > 0 is a bound on the analytic continuation of fundamental solutions:

|Φμ(z)| ≤ Cσ for all z ∈ E and |μ| ≤ σ.

The crucial fact to note is that εk decays exponentially with increasing k and that
the rate of decay is related to the size of the regularity ellipse E. Not surprisingly, in
other words, if the coefficients of the DDE are more regular, then the spectral method
is better at approximating the eigenfunctions. On the other hand, the constant Cσ

generally increases rapidly as E is expanded.

5. Eigenvalue perturbation for operators on Hilbert spaces. The eigen-
value perturbation result in this section generalizes the well-known Bauer–Fike the-
orem for matrices [4]. It may not be new. It is fairly close to the definition of the
eigenvalue condition number itself, introduced in [36]. It is also close to Proposi-
tion 1.15 in [11]. Nonetheless we need a precise statement, especially of Corollary 5.2,
and we cannot find such in the literature.

Recall that a separable infinite-dimensional Hilbert space is isometrically isomor-
phic to the space of sequences l2 = {a = (a1, a2, . . . )

∣∣ aj ∈ C,
∑

|aj |2 < ∞}. Denote
the standard basis elements of l2 by δj . By definition, a bounded operator Λ ∈ L(l2)
is diagonal in the standard basis if for each j, Λδj = λjδj for some λj ∈ C.

Theorem 5.1. Let X be a separable infinite-dimensional complex Hilbert space.
Suppose A ∈ L(X ) is diagonalizable in the sense that there is a linear, bounded map
V : l2 → X with bounded inverse and a diagonal (in the standard basis) operator
Λ ∈ L(l2) such that A = V ΛV −1. Let B ∈ L(X ). If Bx = μx for μ ∈ C and ‖x‖ = 1,
then

(5.1) min
λ∈σ(A)

|μ− λ| ≤ ‖V ‖‖V −1‖‖(B −A)x‖.

Proof. If μ ∈ σ(A) there is nothing to prove. Otherwise, let RA = (A− μI)
−1

and

RΛ = (Λ − μI)
−1

. Note that RA = V RΛV
−1 so that ‖RΛ‖−1 ≤ ‖V ‖ ‖V −1‖ / ‖RA‖.

Also, RΛ is diagonal and bounded with

‖RΛ‖ ≤ sup
j

|λj − μ|−1 = max
λ∈σ(A)

|λ− μ|−1 =

(
min

λ∈σ(A)
|λ− μ|

)−1

,
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where {λi} are the diagonal entries of Λ. Thus

(5.2) min
λ∈σ(A)

|λ− μ| ≤ ‖RA‖−1‖V ‖‖V −1‖.

On the other hand, if μ is an eigenvalue of B and x ∈ H1 satisfies Bx = μx
and ‖x‖ = 1, then (B − A)x = −(A − μI)x, or x = − (A− μI)

−1
(B − A)x. Taking

norms, it follows that 1 ≤ ‖RA‖‖(B − A)x‖. Combine this with inequality (5.2) to
get estimate (5.1).

An easy modification of Theorem 5.1 applies to X ∼= C
d, and the result obviously

implies the classical Bauer–Fike theorem. The hypotheses of Theorem 5.1 imply
that σ(A) is the closure of the set of diagonal entries of Λ. Because the spectrum
σ(A) ⊂ C is compact for any bounded operator A ∈ L(X ), the “min” in estimate
(5.1) is appropriate.

Theorem 5.1 can be generalized to Banach spaces which are isomorphic to se-
quence spaces (i.e., lp spaces). Specifically, we need to hypothesize an operator Λ, sim-
ilar to A in the sense used in Theorem 5.1, for which ‖(Λ−μI)−1‖ ≤ supλi

|λi−μ|−1,
where {λi} is a dense subset of σ(A). Assuming A is similar to a diagonal operator
on lp suffices, for instance. (We will not use this generalization.)

Recall that if the coefficients A,B in DDE (2.1) are analytic, then there exist poly-
nomials very close to the eigenfunctions of the monodromy operator U (see Lemma
4.3). This motivates the following corollary.

Corollary 5.2. Suppose the hypotheses of Theorem 5.1 hold. Suppose also that
p ∈ X satisfies ‖x− p‖ < ε. Then

min
λ∈σ(A)

|μ− λ| ≤ ‖V ‖‖V −1‖
[
ε(‖B‖ + ‖A‖) + ‖(B −A)p‖

]
.

Proof. Note that ‖(B −A)x‖ ≤ ‖(B −A)(x− p)‖ + ‖(B −A)p‖.
Let us describe how this corollary will be used, and in so doing sketch the strategy

for proving Theorem I. In section 3 we described a spectral method which produces
an l × l matrix approximation UN which approximates the monodromy operator U
for DDE (2.1). We will numerically diagonalize UN by standard methods for matrices
of modest size, for instance, by the QR or QZ algorithms for eigenvalues and inverse
iteration for eigenvectors [17]. Typically l is in the range 30 to 300 and UN is dense.
Thus it is a reasonable task to fully diagonalize UN in practice. (Note that in stating
our results we do not include errors made in these standard computations of finite-
dimensional linear algebra.)

We want to know how close the unknown eigenvalues of U (the multipliers) are
to the computed eigenvalues of UN . The operators U and UN act on different spaces,
the former on a Hilbert–Sobolev space H1 and the latter on C

l. It turns out, how-
ever, that we can extend UN to an operator ŨN which acts on H1. Furthermore, it
turns out (next section) that a diagonalization of UN can be boosted to an operator
diagonalization of ŨN .

A numerical diagonalization of UN is, of course, an invertible matrix V ∈ C
l×l

and a diagonal matrix Λ ∈ C
l×l such that UN = V ΛV −1. We do not assert that UN

is diagonalizable in every case. Rather, we assert that diagonalizability is the generic
case [34]. We necessarily incorporate the conditioning of the eigenvalue problem
for UN , and specifically the condition number ‖Ṽ ‖‖Ṽ −1‖ where Ṽ is the operator
formed from the eigenfunctions of ŨN . The above informal definitions, made precise
in the next section, allow us to outline our strategy for estimating the error in the
approximate multipliers:
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(i) given a DDE of form (2.1), compute UN as described in section 3;
(ii) numerically diagonalize UN = V ΛV −1; denote the polynomial described by

the kth column of V by “pk”;
(iii) thereby diagonalize ŨN = Ṽ Λ̃Ṽ −1, where ŨN is an operator on the same

space as U ; compute bounds for ‖Ṽ ‖, ‖Ṽ −1‖ (Lemma 6.2);
(iv) consider only the eigenvalues μ of U which satisfy |μ| ≥ σ for some σ > 0,

and, for the finitely many normalized eigenfunctions of U with multipliers μ
satisfying |μ| ≥ σ, note the a priori bound on degree k (≤ N) polynomial
interpolation at the Chebyshev points (Lemma 4.3 and Definition 4.4);

(v) write each pk as a linear combination of the H1-normalized Chebyshev poly-
nomials T̃0, . . . , T̃N ;

(vi) by simply applying UN , approximately solve DDE IVPs with each initial
function T̃0, . . . , T̃N ; record a posteriori estimates from Theorem 3.4;

(vii) use Corollary 5.2 with X = H1, A = ŨN , and B = U ; estimate norm ‖U‖
from Lemma 2.6; bound ‖(B − A)p‖ = ‖(U − ŨN )p‖ by estimates in steps
(iv) and (vi);

(viii) conclude with an upper bound on the distance min |μ− λi| as λi ranges over
the approximate multipliers (Theorem 6.4).

6. Complete statement and proof of Theorem I. The expression (3.11) for
UN , or of the corresponding generalized eigenproblem (3.12), is all that is needed to
rapidly approximate the monodromy operator and compute approximate multipliers.
This section is devoted to the additional task of producing computable error estimates
for the approximate multipliers.

We start with some definitions and a technical lemma in which we make the
diagonalized l × l matrix UN into a diagonalized operator ŨN which acts on H1 (as
does the monodromy operator U). This will allow us to apply Corollary 5.2 with
A = ŨN and B = U .

Recall that the polynomials PN are a subspace of our Hilbert space H1. Let
ΠN ∈ L(H1) be orthogonal projection onto PN . Using the operator notation of
section 3, define the (finite rank) approximate monodromy operator

(6.1) ŨN = PNUNENΠN ∈ L(H1).

We now have two operators on H1 (U and ŨN ) and an l× l matrix (UN ). Lemma
6.2 below shows that a numerical diagonalization of UN yields a diagonalization of
ŨN . To prove this we will need to consider how to expand a C

d-valued polynomial
p(t) of degree N into the basis {T̃j ⊗es} for j = 0, . . . , N and s = 1, . . . , d, where {es}
is the standard basis for C

d. In fact, if

(6.2) p(t) =
∑

j=0,...,N
s=1,...,d

γj,sT̃j(t) ⊗ es =
∑
j, s

γj,s
zj√

π(1 + j)
Tj(t) ⊗ es,

where zj =
√

2 if j ≥ 1 and z0 = 1, and if {e∗s} is the dual basis to {es}, then

(6.3) γj,s =
√
π(1 + j)z−1

j

N∑
r=0

Cjre
∗
s (p(tr)) ,

where C = {Cjr} is the matrix in (3.3). Thus we can find the expansion coefficients
of p(t) given the values of p(t) at the collocation points. Formulas (6.2) and (6.3) are
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perhaps memorable if we call them “H1-normalized discrete Chebyshev series for C
d-

valued polynomials.” The next definition gives notation for the expansion coefficients
associated to the diagonalization of UN .

Definition 6.1. Suppose UN = V ΛV −1 with Λ = (λj)
l
j=1 diagonal. Let vk be

the kth column of V (1 ≤ k ≤ l). Define pk(t) = PNvk, a C
d-valued polynomial of

degree N . Expand pk(t) in discrete Chebyshev series

pk(t) =
∑

ΓV
jd+s,kT̃j(t) ⊗ es,

where the matrix of coefficients is defined by

ΓV
jd+s,k =

√
π(1 + j)z−1

j

N∑
r=0

Cjre
∗
s (pk(tr)) =

√
π(1 + j)z−1

j

N∑
r=0

Cjr(vk)rd+s,

where C = {Cjr} is given by (3.3). Equivalently,

ΓV =
(
C̃ ⊗ Id

)
V, where C̃ =

√
π/2 diag

(
2−1/2, 2, 3, . . . , N + 1

)
C.

Note that ΓV is an invertible (l × l) matrix because V and C are invertible.
In the next lemma we diagonalize the operator ŨN . Recall that our meaning for

such a diagonalization is given in the statement of Theorem 5.1. Denote a typical
element of l2 by a = (asj), j = 0, 1, . . . , 1 ≤ s ≤ d, with asj ∈ C. Informally, the next

lemma describes an operator Ṽ : l2 → H1 which has matrix form

Ṽ =

(
ΓV 0
0 I

)
in the basis {T̃j ⊗ es} for H1 and the standard basis for l2. Here “I” is the isometry
on rows l + 1, l + 2, . . . ,∞.

Lemma 6.2. Let Ṽ : l2 → H1 be defined by

Ṽ a =
∑

j=0,...,N
s=1,...,d

asj pjd+s(t) +
∑
j>N

s=1,...,d

asj T̃j(t) ⊗ es.

Then Ṽ is bounded and boundedly invertible, and, recalling that“| · |” is the matrix
2-norm,

(6.4) ‖Ṽ ‖ ≤ |ΓV | + 1, ‖Ṽ −1‖ ≤ |(ΓV )−1| + 1.

Define Λ̃ ∈ L(l2) by (Λ̃a)jd+s = λjd+sa
s
j if j < N and s = 1, . . . , d, while if k > l then

(Λ̃a)k = 0. Then Λ̃ is a diagonal operator on l2 of rank at most l, and we have the
diagonalization ŨN = Ṽ Λ̃Ṽ −1.

Proof. First we compute Ṽ −1 : H1 → l2 by its action on the basis {T̃j ⊗ es}:

Ṽ −1
(
T̃j ⊗ es

)
=

{(
(ΓV )−1

1,jd+s, . . . , (Γ
V )−1

l,jd+s, 0, . . .
)
, 0 ≤ j ≤ N,

δjd+s, j > N,

if {δk}∞k=1 is the standard basis for l2. It is routine to check Ṽ −1Ṽ a = a for all a ∈ l2.

Estimates (6.4) follow from the definition of ΓV and the fact that Ṽ and Ṽ −1 act
isometrically between P�

N ⊂ H1 and the corresponding subspace of l2.
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Now, UNV = V Λ if and only if UNENpk = λkENpk for k = 1, . . . , l. Note that
Ṽ δk = pk if k ≤ l and Ṽ δk = T̃j ⊗ es, where k = jd + s, if k > l. Note that
k = jd + s > l if and only if j > N . Thus if k ≤ l, then

ŨN Ṽ δk = PNUNENΠNpk = PNUNENpk = λkpk =
(
Ṽ Λ

)
δk,

while if k > l, then ŨN Ṽ δk = PNUNENΠN (T̃j ⊗ es) = 0. Thus ŨN = Ṽ Λ̃Ṽ −1.

We will use the obvious bound ‖ŨN‖ ≤ (max1≤j≤l |λj |) ‖Ṽ ‖‖Ṽ −1‖.
To get a posteriori estimates on eigenvalues we need a posteriori estimates on

specific IVPs for DDE (2.1). The following lemma summarizes the application of
Theorem 3.4 for this purpose.

Lemma 6.3. Suppose f ∈ H1 and let u(t) = B(t)f(t). Let p ∈ PN be the
approximation of y found from the spectral method applied to ẏ = Ay+u, y(−1) = f(1)
(Lemma 3.3). Then

(6.5) ‖Uf − ŨNf‖H1 ≤
√

2πd
(
(2CA)2 + (2‖A‖∞CA + 1)2

)1/2
Z,

where CA satisfies (3.5) and where

Z = ‖Ap− IN (Ap)‖∞ + ‖Bf − IN (Bf)‖∞ + |ṗ(−1) −A(−1)f(1) −B(−1)f(−1)|.

Proof. Note that Uf = y and ŨNf = p. Now combine the result of Theorem 3.4
with inequality (2.8) in Lemma 2.5.

We now give our main theorem on the multipliers of DDE (2.1).

Theorem 6.4 (precise form of Theorem I). Suppose that A,B in (2.1) are ana-
lytic d× d matrix-valued functions with common regularity ellipse E ⊃ I. Let N ≥ 1
and l = d(N +1). Let σ > 0 and recall the definition of the a priori eigenfunction ap-
proximation error bounds for large eigenvalues, denoted εk (Definition 4.4). Assume
that UN , defined by formula (3.11), is diagonalized: UN = V ΛV −1 with V invertible

and Λ = (λi)
l
i=1 diagonal. Order the eigenvalues |λ1| ≥ |λ2| ≥ · · · ≥ 0. Suppose

we have a posteriori estimates for IVPs using the Chebyshev polynomials as initial
functions:

(6.6) ‖U(T̃j ⊗ es) − ŨN (T̃j ⊗ es)‖H1 ≤ νsj ,

where j = 0, . . . , N and s = 1, . . . , d (Lemma 6.3; note that ŨN is defined by (6.1)).

Let ξ2
k =

∑k
j=0

∑d
s=1(ν

s
j )

2.

Consider a large eigenvalue μ ∈ C of U : Ux = μx for x ∈ H1, ‖x‖ = 1, and
|μ| ≥ σ. Let

ωk = εk

(
‖U‖ + |λ1| cond(Ṽ )

)
+ (1 + εk)ξk

for k = 1, . . . , N . Then

(6.7) min
i=1,...,l

|μ− λi| ≤ min {ω1, . . . , ωN} cond(Ṽ ).

Note that ‖U‖ is estimated in Lemma 2.6 and cond(Ṽ ) = ‖Ṽ ‖‖Ṽ −1‖ is estimated
in Lemma 6.2.
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Proof. By Lemma 4.3, for each k = 1, . . . , N we have ‖x − qk‖H1 < εk, where
qk = Ikx. Apply Corollary 5.2 with X = H1, A = ŨN , B = U , p = qk, and ε = εk:

(6.8) min |μ− λi| ≤ cond(Ṽ )
(
εk(‖U‖ + ‖ŨN‖) + ‖(U − ŨN )qk‖

)
.

On the other hand, qk =
∑k

j=0

∑d
s=1 α

js
k T̃j ⊗es is a linear combination of Cheby-

shev polynomials, so from the a posteriori bounds νsj ,

‖(U − ŨN )qk‖H1 ≤
k∑

j=0

d∑
s=1

|αjs
k |νsj ≤ ‖qk‖H1ξk

≤ (‖x‖H1 + ‖qk − xk‖H1) ξk ≤ (1 + εk)ξk

by Cauchy–Schwarz. From (6.8) and Lemma 6.2 we conclude with estimate
(6.7).

The idea in Theorem 6.4 is that all quantities on the right side of inequality
(6.7) are known a priori, can be computed by a matrix eigenvalue package, or can
be computed a posteriori (Theorem 3.4). Furthermore, the quantities εk and ξk are
exponentially small, though for the latter this is in an a posteriori and fixed-precision-
limited sense. Thus the computed eigenvalues of the matrix UN can be shown to be
exponentially close to those of the operator U as long as UN is “well diagonalizable”
in the sense that cond(Ṽ ) is small (which follows if cond(V ) is small). Unfortunately,
cond(Ṽ ), which depends on N , and Cσ, which does not, can be large. We observe
below in two examples that cond(Ṽ ) grows slowly with N , however.

Bounds on fundamental solutions appear several times, at least implicitly, in
the statement of Theorem 6.4. Recall that Lemma 2.6 estimates ‖U‖ in terms of a
bound CA on |ΦA(t)ΦA(s)−1|, s, t ∈ I, where ΦA(t) is the fundamental solution to
ẋ(t) = A(t)x(t). Also, Theorem 3.4 uses CA in the a posteriori bounds on IVPs.
Fortunately, section 4 gives a technique for computing good bounds CA. Thus the
estimate for ‖U‖ is reasonable and the a posteriori quantities νsj are very small in
practice (within a few orders of magnitude of machine precision). On the other hand,
as noted, the bound Cσ on the analytic continuation Φμ(z) of the fundamental solution
Φμ(t) to ẋ(t) = (A(t) + B(t)/μ)x(t), for the large multipliers with |μ| ≥ σ, which
appears in Definition 4.4 of εk, is still a priori. Such a bound will inevitably be large.
The result is that εk is large for small k but that εk decreases exponentially with k.

The a posteriori quantities ξk are, in practice, bounded below because precision
is fixed. In Example 3 below using double precision, ξk ≈ 10−10 for k << N and thus
ωk ≥ 10−10. But cond(Ṽ ) ≈ 108, so min{ωk} cond(Ṽ ) ≈ 10−2, which gives only two
digits of accuracy for the largest eigenvalue in that example. Application of Theorem
6.4 is a situation where 128-bit or 256-bit floating point representation would have
substantial consequences.

7. An example of the application of Theorem I. Let us apply Theorem 6.4
to the damped delayed Mathieu equation (1.1).

Example 3. Consider the parameter values (δ, b) = (1, 1/2) in (1.1). Using the

same method as in Example 2, we find an a priori bound C
(0)
A = e2

√
2+1.12 ≈ 35.99

on the norm of Ω = ΦA(t)ΦA(s)−1. We improve this bound by a posteriori iterations
as in section 4 to a new bound CA = 4.613.

Recall that if x is an eigenfunction of U corresponding to eigenvalue μ, then
ẋ = (A + B/μ)x. Suppose we consider those eigenvalues |μ| ≥ σ = 0.2. Note that
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Fig. 7.1. Behavior of constants (left figure) when Theorem 6.4 is applied to the delayed, damped
Mathieu equation (1.1) with (δ, b) = (1, 1/2) and N = 75. The minimum of ωk is about 5 × 10−11.
Right figure: The estimate on cond(Ṽ ) from Lemma 6.2 (circles) and the 2-norm condition number
of V (dots), as functions of N .

A,B are entire, so we are free to choose any common regularity ellipse E ⊃ I with
foci ±1. The analytic continuation Φμ(z) for z ∈ E of the fundamental solution Φμ(t)
of ẋ = (A + B/μ)x is bounded by Cσ as in (4.3). Let S = 1.996 (a choice explained
below) and s =

√
S2 − 1 be semiaxes of E. Then from (4.3), Cσ = 1.303 × 1011; see

below. Note that eη = S + s = 3.724 determines the exponential rate of decrease
of εk.

We now apply Theorem 6.4 with N = 75. The approximate multipliers are shown
in Figure 1.2. The right side of (6.7) gives 0.01595, which is the radius of the small
eigenvalue error bound circles in Figure 1.2.

The constants εk, ξk, and ωk which appear in the statement of Theorem 6.4 are
shown in Figure 7.1. For this value of N the condition number estimate for Ṽ given
in Lemma 6.2 is 3.5× 108. The estimate of cond(Ṽ ) from Lemma 6.2 depends on N ,
as shown in Figure 7.1. We observe that it grows relatively slowly for large N . (The
conditioning of the multipliers will be addressed in section 8.) In any case, the error
bound (6.7) shows that the actual multipliers which exceed σ = 0.2 in magnitude lie
within the error bound circles around the approximate multipliers in Figure 7.1. The
DDE is, in particular, stable.

It is revealing to ask how to choose the regularity ellipse E ⊃ I in the case when
A(z), B(z) are analytic in large neighborhoods of I or even when A,B are both entire.
Such is the case if A,B are constant, for instance. The significance of the choice of
E to Theorem 6.4 is that the sum of its semiaxes eη = S + s controls the rate of
exponential decay of the a priori quantities εk, but also that the size of E affects the
a priori bound Cσ which appears in Definition 4.4.

Fix σ > 0 and define Cσ as in Definition 4.4. Then, noting that the minor semiaxis
s =

√
S2 − 1 is a function of S, from (4.5) we find that εk is a function of S:

(7.1) εk(S) = 16
√
d k

exp ([‖A‖∞E + ‖B‖∞E/σ](S + 1))

((S + s)2 − 1) (S + s)k−1
.

In general, ‖A‖∞E , ‖B‖∞E depend on S.
Based on the evidence in examples like the one above, for sufficiently large N the

a posteriori estimates ξk on IVPs first increase significantly at about k = 3N/4. We
therefore choose S by seeking to minimize ε3N/4(S).
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Example 4 (continuation of Example 3). For (1.1) with (δ, b) = (1, 1/2) we have
|A(z)|2F ≤ 2 + (1 + | cosπz|)2. On E with foci ±1 and semiaxes S, s, it follows that

‖A‖∞E ≤ max
z∈E

|A(z)|F ≤
(
2 + (1 +

√
1 + eπs)2

)1/2
.

The minor semiaxis s of E appears in this expression because the magnitude of cos(πz)
grows exponentially in the imaginary direction. Note that ‖B‖∞E = 1/2. To find the
best S one must solve the problem

min
S>1

exp
([(

2 + (1 +
√

1 + eπs)2
)1/2

+ (2σ)−1
]

(S + 1)
)

((S + s)2 − 1) (S + s)(3N/4)−1
.

Upon inspection we see that this is a smooth and convex single-variable minimization
problem. The minimum S = 1.996 is used above.

8. Discussion. We start with another example of the use of the spectral method
to compute the multipliers of a DDE, and of Theorem 6.4 to estimate the errors in
the multipliers.

Example 5. Consider the simple scalar DDE

(8.1) ẋ = −x + x(t− 2).

The multipliers are exactly known in the following sense [18, Theorem A.5]: The
characteristic equation of (8.1) is λ = −1 + e−2λ. The roots of this equation are the
“exponents,” and μ = e2λ are the multipliers. Supposing λ = α+iβ, the characteristic
equation can be written as a pair of real equations

(8.2) α = −1 + e−2α cos 2β, β = −e−2α sin 2β.

We find a single real exponent λ0 = 0. All other exponents are complex and have imag-
inary parts β satisfying the transcendental equation −β = sin(2β) exp(2 + 2β cot 2β),
which follows from (8.2). The solutions of this equation are easily seen to be simple
roots βk lying in the intervals (k − 1/2)π < βk < kπ for k = 1, 2, . . . . They can be
found by the usual highly reliable numerical methods (e.g., bisection). The multipli-
ers are then μ0 = 1 and μ±k = exp(αk ∓ iβk), where αk is found from βk by the
first equation of (8.2). Note that these multipliers are already ordered by decreasing
magnitude.

On the other hand, we can form UN by the methods of this paper and find its

N + 1 eigenvalues μ
(N)
k . The comparison of these numerical multipliers to the correct

values for N = 40 (N = 80) is seen in Figure 8.1. We observe that the largest 10
(30, respectively) multipliers are accurate to full precision. The remaining smaller
multipliers are quite inaccurate. This occurrence is no surprise as the eigenfunc-
tions corresponding to the small multipliers are highly oscillatory and exponentially
damped. (It is well known that Chebyshev interpolation requires somewhat more
than 2 points per wavelength to achieve spectral accuracy [33, section 7].)

How does the impressive accuracy of the largest approximate eigenvalues compare
to estimate (6.7) from Theorem 6.4? As also shown in Figure 8.1, if σ = 0.1, then
estimate (6.7) decreases exponentially as a function of N to a minimum of 10−7 or
so at N ≈ 55. Thus the estimate remains roughly 8 orders of magnitude above the
actual errors in the large multipliers. This difference has two sources. First, the a
posteriori error estimates (6.6) coming from IVPs are too large by a few orders of
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Fig. 8.1. Left: Error in numerical multipliers for DDE (8.1) when N = 40 (circles) and N = 80
(dots). Right: Error bound (6.7) from Theorem 6.4, as a function of N, when σ = 0.1.
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Fig. 8.2. Condition numbers s
(N)
k of the approximate multipliers μ

(N)
k for N = 40; cond2(V ) =

|V | |V −1| (dashed line) and estimate of cond(Ṽ ) (dotted line) from Lemma 6.2 are also shown.

magnitude; compare Example 1 in section 3. Second, the estimate of cond(Ṽ ) is in
the range 103–105 for 30 ≤ N ≤ 80.

In fact, how badly conditioned are the computed multipliers in the above example?

Recall that s
(N)
k = |w∗

kvk|−1 are the condition numbers of the eigenvalues μ
(N)
k of UN

if wk and vk are the associated normalized left and right eigenvectors, respectively [36,

p. 68]. Figure 8.2 shows the computed s
(N)
k for N = 40. We see that for k ≤ N/2 the

condition numbers s
(N)
k are small (≈ 101). For k ≈ N , however, the condition numbers

reach a maximum greater than 103. Recalling that these eigenvalues are ordered by
decreasing size, we see that the difficult-to-approximate eigenvalues are the very small
ones. These eigenvalues correspond to rapidly oscillating eigenfunctions for which we
cannot expect our spectral method to do a good job anyway. Note that a priori
estimates of these condition numbers, for the approximating matrix UN or for the
monodromy operator U , are not known.

A follow-up question is this: How does the conditioning of the individual eigen-
values relate to the matrix condition number used in Theorem 6.4? Figure 8.2
also shows cond2(V ) = |V | |V −1| for the numerical diagonalization UN = V ΛV −1.
We have an illustration of a quite general phenomenon: for any matrix, max sk
is always within a small factor of cond2(V ) [12]. Here the factor is about five.
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The figure also shows our estimate of cond(Ṽ ) = ‖Ṽ ‖ ‖Ṽ −1‖ from Lemma 6.2.
We see that our estimate of cond(Ṽ ) is not problematic in this example. Indeed,
max sk ≤ (estimate of cond(Ṽ ) from Lemma 6.2) ≤ cond2(V ) in this and all other
examples computed by the author. (A general proof of this fact is not known.)

We are led to a question which we can state somewhat imprecisely as follows:

Let μk be the eigenvalues of a compact operator U , and let μ
(N)
k be the eigenvalues

of a matrix UN which approximates U . Is there a theorem which uses the computed

condition numbers s
(N)
k to bound the errors |μk − μ

(N)
k |? One might say that esti-

mate (6.7) is uniform in k, because our analysis is based on a Bauer–Fike-type result

(Corollary 5.2), while Figure 8.2 suggests |μk − μ
(N)
k | should depend on k.

Let us address the practical computation of the bounds in this paper. First, a
common task in computing the bound in Theorem 6.4 is the evaluation of a polynomial
on the interval I = [−1, 1] given its Chebyshev collocation values. This should be
done by barycentric interpolation [27, 6]. A comparison of barycentric interpolation
to more naive methods in computing the bounds here, which clearly shows the better
performance of the barycentric method, is given in [8].

Also, in using Theorem 3.4 we need estimates of ‖α‖∞ where α(t) is a polynomial
or an analytic function on I. For such norms a transform technique is useful. Consider
the polynomial case first, as follows. Recall that Tk(t) = cos(k arccos t) is the standard
kth Chebyshev polynomial and that |Tk(t)| ≤ 1 for t ∈ I. If p is a polynomial and we

want ‖p‖∞, then we start by expanding p(t) =
∑N

k=0 akTk(t) by discrete Chebyshev
series (3.3). It follows that

(8.3) ‖α‖∞ ≤
N∑

k=0

|ak|.

Estimate (8.3) uses the coefficients ak in the Chebyshev expansion of p. These are
easily calculated by the FFT [33]. Indeed, if v is a column vector of the collocation
values of p(t), then ‖p‖∞ ≤ sum(abs(coefft(v))), where “coefft” is the MATLAB
function

function a = coefft(v)

N = length(v)-1; if N==0, a=v; return, end

U = fft([v; flipud(v(2:N))])/N; % do t -> theta then FFT

a = ([.5 ones(1,N-1) .5])’.*U(1:N+1);

If α(t) is analytic on I, then we estimate ‖α‖∞ by using (8.3) on a high degree
polynomial interpolant of α(t). Concretely, we start with a modest value of M for

Chebyshev interpolation and evaluate α(t) at collocation points t
(M)
j = cos(πj/M),

j = 0, . . . ,M . Efficiency in the FFT suggests using M which is one less than a power
of two, so perhaps M = 15. We use the FFT as above to calculate the coefficients ak
of the corresponding polynomial. We then determine whether the last few coefficients
are small. For example, if max{|aM−3|, . . . , |aM |} < 10 εm, where εm is machine
precision, then we accept the estimate ‖α‖∞ ≈ ‖p‖∞ and use (8.3). If not, we double
M—actually, Mnew = 2(Mold + 1) − 1 for efficiency in the FFT—and try again. We
might stop if M = 212 − 1, for example. (A very similar issue to the one addressed in
this paragraph appears in [3], and the technique here mimics the one there.)

Example 6. Consider estimating ‖u− I5u‖∞ on I for u(t) = sin(2t). Our proce-
dure with α = u− I5u stops at N = 31 with estimate ‖u− I5u‖∞ ≤ 7.1 × 10−4. By
contrast, the use of 1000 equally spaced points in [−1, 1] and barycentric interpolation
of p(t) = (I5u)(t) yields ‖u− I5u‖∞ ≈ 6.8 × 10−4 at substantially greater cost.
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A final technical concern is worth raising. It relates to the application of this paper
to some of the periodic-coefficient linear DDEs which appear in practice. If DDE (2.1)
came originally from an approximate periodic solution of a nonlinear DDE, as, for
instance, when using the techniques of [13] or [14], then the period T is known only
approximately (in general). The coefficients A,B are also known only approximately.
Errors in the multipliers of the linear DDE in such cases may well be dominated by
errors in computing the periodic solution to the original (nonlinear) DDE or by errors
in computing the coefficients in (2.1).

9. Conclusion. We have introduced what we believe is a new spectral method
for linear DDEs with a single fixed delay. The method uses collocation at the Cheby-
shev extreme points [33]. Extension of this method to multiple fixed delays is straight-
forward and has been implemented in MATLAB [9]. In the periodic-coefficient case,
with period equal to the delay for technical convenience, we use the spectral method
to compute a square matrix approximation to the monodromy operator associated to
the DDE. The eigenvalues of this matrix approximation are seen in examples to be
spectrally convergent to the eigenvalues of the monodromy operator (the multipliers).

Our main result uses new eigenvalue perturbation and a posteriori estimation
techniques to give computable error bounds on the eigenvalue approximation error.

Now, one would obviously like an a priori proof of the spectral convergence of our
collocation method when the coefficients of the DDE are analytic, but this is open.
That is, one would want to show spectral convergence, as the degree of polynomial
collocation increases, for the approximate solutions of ODEs and DDEs and for the
approximate eigenvalues of the monodromy operator.

We can list some open questions related to the approximation of the multipliers
by the technique of this paper:

• How can we get a better norm bound Cσ on Φμ(z), the analytical continuation
of the fundamental solution to ẋ = (A + B/μ)x, for |μ| ≥ σ > 0 and z in a
common regularity ellipse of A and B? (See Definition 4.4.)

• What is the best norm in which to compute cond(Ṽ ), the condition number
of the infinite “matrix” of approximate eigenfunctions?

An additional question about the conditioning of the multipliers appears in section 8.

We have questions about the the monodromy operator U itself. For example,
under what conditions does U actually diagonalize? Better yet, what a priori estimates
can be computed for the conditioning of its eigenvalue problem? What can generally
be said about the pseudospectra [32] of U? Do the eigenfunctions of U generically
form a Riesz basis [2, 16] or some other strongly linearly independent basis for H1?
These latter questions do not affect our a posteriori methods, however.
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1. Introduction. Recently, there has been increasing interest in seeking finite
element solutions of Maxwell’s equations; see [5, 7, 16, 21, 22, 23, 26] and references
therein. As a typical model, the curl-div magnetostatic problem plays a central role in
the study of finite element methods for Maxwell’s equations and other mathematical
subjects such as existence-uniqueness and regularity-singularity [1, 7, 15, 28]. Let us
first recall this model. For a domain Ω of R

3 filled with anisotropic nonhomogeneous
materials described by a tensor ε, given two functions g ∈ (L2(Ω))3 and f ∈ L2(Ω),
with u the unknown field, the curl-div magnetostatic problem reads as follows [6, 7]:

(1.1) curl u = g, div (εu) = f in Ω.

In this paper we shall consider a least-squares C0 finite element method to solve
(1.1) numerically. Although (1.1) is simple in appearance, the C0 finite element
discretization is not straightforward generally. To illustrate this we consider a simple
case below. Let Ω be a Lipschitz polyhedron of R

3 with boundary ∂ Ω, ε = 1, and
assuming a boundary condition u · n = 0 on ∂ Ω. Let XT := {v ∈ (L2(Ω))3; curl v ∈
(L2(Ω))3,divv ∈ L2(Ω),v ·n|∂ Ω = 0}, equipped with the norm ||v||2XT

= ||curl v||20 +
||divv||20 + ||v||20, where || · ||0 is the L2 norm. Equation (1.1) can be formulated as a
standard least-squares variational problem (see [22, 23]): Find u ∈ XT such that, for
all v ∈ XT ,

(1.2) L(u,v) := (curl u, curl v) + (divu,divv) = (g, curl v) + (f,divv),
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where (·, ·) denotes the L2 inner product. As is well known, L is coercive on XT with
respect to the norm || · ||XT

(cf. [2, 15, 20]). Then it seems to be natural to employ the
C0 finite element method for problem (1.2). This is indeed true for smooth domains or
for convex polyhedra (see [12, 22, 23, 27]). However, when the domain is nonsmooth
(Ω contains reentrant corners or edges), it turns out that the C0 finite element method
of problem (1.2) does not usually yield correct approximations (cf. [5, 15, 16]). Here
we provide an intuitive interpretation. A more accurate interpretation may be found
in [5, 15, 16, 24]. Let uh be the C0 finite element solution of (1.2), where h > 0 denotes
the mesh-parameter of the simplex partition of Ω. The classical C0 finite element and
interpolation theory [8, 13] leads to an error estimate: ||u−uh||XT

≤ C ||u− ũ||XT
≤

C hr ||u||1+r, for all r ≥ 0, where ũ is an interpolant of u in a continuous piecewise Pr

polynomial of order not greater than r. This error estimate indicates that u should
be at least in H1 in order to have a convergence. But, for nonsmooth domains, u may
not be in H1 (see [15]).

Nonetheless, this is not necessarily the problem of the use of C0 finite elements.
In fact, any function in L2 (even in L1) can be well approximated by C0 elements,
and we have

(1.3) ||u − ũ||0 ≤ C hs ||u||s

when u is in Hs with 0 ≤ s < 1 (see [3, 8, 13, 14, 29]). Since C0 finite elements
are good enough for Hs (0 ≤ s < 1) functions, the use of the formulation (1.2) is
the source of trouble when C0 finite elements are used for the problem with singular
(nonsmooth) solutions whose singularities generally result from nonsmoothness of
domains or heterogeneities of materials filling the domain or both. This motivates
the design of more suitable formulations to replace (1.2) so that C0 finite elements may
concurrently work for nonsmooth solutions (not in H1) as well as smooth solutions
(at least in H1). Meanwhile, new formulations should still have the same merits as
(1.2): (a) the resulting linear system is symmetric and positive definite; (b) a globally
continuous solution can be produced. See a survey [4] on least-squares finite element
methods.

There are a few modified formulations available. A weighted formulation, pro-
posed in [16], may be employed. See also an earlier paper [17]. The weighted least-
squares method is theoretically and numerically proven to be convergent correctly.
A property of this method is that a positive weight function of nonpolynomials is
applied to the div operator appearing in (1.2). In two dimensions the weight func-
tion may be taken in the form of rγ , where r is the distance to the reentrant corner
with opening angle greater than π, and γ is an index that characterizes the singu-
larity of the exact solution. It becomes, however, rather complicated to determine
the weight function in three dimensions, due to the more complex characterization of
the singularity information for three-dimensional domains. Another property is that
the C0 finite element space is required to contain the gradient of some C1 finite ele-
ment space. This excludes the use of some simpler C0 finite elements (e.g., the linear
element). Several C1 finite element spaces are available in two dimensions (cf. [13]),
but, to our knowledge, few C1 finite elements are known in three dimensions. So it is
unclear how to choose a reasonable three-dimensional C0 finite element space. There
are other least-squares methods available—for example, the FOSLL∗ method [11, 25]
and the negative norm method [9, 10]. Of a scaled version of (1.1) (setting u∗ = ε1/2 u
and g = 0) the FOSLL∗ method first seeks the solution of a dual problem associated
with the dual operator of the differential operator of the scaled problem of (1.1), and
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then the solution u∗ is obtained by differentiating the dual solution. This FOSLL∗

method [25] is in essence a scalar potential method and the approximation of u∗ is
always discontinuous because of the differentiation. The negative norm method [9],
to accommodate the case of nonsmooth solutions, formulates (1.1) in suitable dual
norms (assuming that Ω is simply connected, ∂ Ω has no disconnected components,
ε = 1, and the boundary condition u · n|∂ Ω = 0):

(curl u, curl v)(H−1(Ω))3 + (divu,divv)(H1(Ω))∗

= (g, curl v)(H−1(Ω))3 + (f,divv)(H1(Ω))∗ ,

where (H−1(Ω))3 is the dual space of (H1
0 (Ω))3, with H1

0 (Ω) = {v ∈ H1(Ω); v|∂ Ω =
0}, and (H1(Ω))∗ is the dual space of H1(Ω), and (·, ·)(H−1(Ω))3 and (·, ·)(H1(Ω))∗

denote the inner products of (H−1(Ω))3 and (H1(Ω))∗, respectively. In the discrete
level this method is something like adding the inverse of the discrete Laplace operator
or its preconditioner in front of both curl and div operators in (1.2). The error estimate
of the finite element approximation for nonsmooth solutions may be obtained from
this method, but at the expense of multiple applications of the inverse of the discrete
Laplacian or its preconditioner. The programming is rather tricky in practice as well.

In this paper, we develop new least-squares methods with the use of C0 finite el-
ements. The main idea is to apply local L2 projectors to both curl and div operators
appearing in (1.2), with a few extra mesh-dependent stabilization terms added. Specif-
ically, let Rh and R̆h be L2 projectors defined relative to L2 inner products (·, ·)h, and
let Sh(·, ·) be a mesh-dependent bilinear form; we define a new least-squares bilinear
form:

Lh(u,v) = (Rh(curl u), Rh(curl v))h(1.4)

+ (R̆h(div (εu)), R̆h(div (εv)))h + Sh(u,v).

These Rh and R̆h are defined as local L2 projectors or pseudolocal L2 projectors.
Local L2 projectors are defined element-by-element onto the discontinuous piecewise
constant finite element spaces and pseudolocal L2 projectors are defined onto the con-
tinuous piecewise linear finite element spaces with respect to the trapezoidal quadra-
ture scheme of the standard L2 inner product (Note that the L2 projectors defined in
this way are essentially local. See Remark 3.1 of this paper.) We prove that both L2

projected least-squares methods, labeled as the local L2 projection method and the
pseudolocal L2 projection method, are coercive:

(1.5) Lh(v,v) ≥ C ||v||20.

As a result, any C0 finite elements can be employed. We also prove that the condition
number of the resulting linear system is O(h−2). To show the idea, we focus on
the error analysis of linear C0 finite elements in three dimensions. We employ the
linear element enriched face bubbles for the local L2 projection method and the linear
element enriched with element bubbles for the pseudolocal L2 projection method. We
can construct an interpolant ũ of the exact solution u that satisfies not only the usual
interpolation error estimation (1.3) but also the exclusive interpolation property:

(1.6) ||Rh(curl (u − ũ))||h = ||R̆h(div (ε (u − ũ)))||h = 0.

We thus obtain mainly from (1.5) and (1.6) the following desirable error estimates:

(1.7) ||u − uh||0 ≤ C ||u − ũ||0,
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where uh is the finite element solution associated with (1.4). Equation (1.7) means
that the finite element solution is almost the best approximation to the exact solution.
In the case that u ∈ Hs, an L2 optimal error bound O(hs) follows directly from (1.7)
and (1.3). We point out that the role of the face bubbles and the element bubbles is
to make (1.6) hold. For higher order C0 finite elements (cubic elements and above),
additional bubbles are not always needed, since they usually have face or/and element
bubbles of their own.

Before closing this section, we would like to give several remarks. The implemen-
tation of the L2 projected least-squares method of this paper is almost as easy as
that of the standard least-squares method (1.2). But, the former allows less regular
solution. In comparison with the weighted least-squares method, it does not need any
a priori singularity information of the solution and allows the use of both lower-order
(maybe enriched with suitable bubbles) and higher-order C0 elements in both two
and three dimensions. Also, it is not clear if there is an improved L2 error bound
for both the standard and the weighted methods in the case where the solution is
smooth but the domain is nonsmooth, since to obtain an improved L2 error bound
one has to resort to the well-known Aubin–Nitsche duality argument [8, 13], but this
argument usually requires the domain to be smooth enough in order that the associ-
ated auxiliary variational problem admits a solution with an appropriate regularity.
Unlike the negative norm least-squares method which involves a preconditioner for
second-order elliptic problems, the method here deals only with local L2 projectors,
so the practical implementation is simpler. Compared with the FOSLL∗ method,
the method here avoids the differentiation of approximate solutions of potentials and
obtains continuous approximate solutions.

The outline of this paper is as follows. In section 2, we review the curl-div
magnetostatic problem and recall the L2 orthogonal decomposition of vector fields.
In section 3, two L2 projected least-squares C0 finite element methods are described.
In section 4, coercivity is established and condition number is estimated. In section 5,
the error estimate of the method is obtained. In the last section, some numerical tests
are performed to demonstrate the theoretical results obtained.

2. The magnetostatic problem and L2 decomposition. Let Ω of R
3 be

an open, bounded, and possible multiconnected Lipschitz polyhedron, with boundary
Γ = ∂Ω and n the outward unit normal vector to Γ. Let ε = (εij) ∈ R

3×3 satisfy
εij = εji, 1 ≤ i, j ≤ 3, and

C

3∑
i=1

ξ2
i ≤

3∑
i,j=1

εijξiξj ≤ C−1
3∑

i=1

ξ2
i a.e. in Ω̄ ∀ξ = (ξi) ∈ R

3.

For the sake of simplicity, we always assume that ε is Lipschitz continuous over Ω̄.
With a few modifications, the method of this paper can deal with the case ε being
piecewise Lipschitz continuous but not globally continuous (see Remark 5.4).

We now describe the curl-div system of magnetostatic problems.
Given g ∈ (L2(Ω))3 and f ∈ L2(Ω), the curl-div magnetostatic problem is to find

u such that

curl u = g, div (εu) = f in Ω,(2.1)

(εu) · n = 0 on Γ,(2.2)

where curl v = �× v, divv = � · v, and � is the gradient operator.
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ΣΣ 1 2

Fig. 1. A multiply connected domain Ω.

The solution of problem (2.1)–(2.2) may not be unique when Ω is multiconnected.
In that case, to ensure the uniqueness of the solution we need to introduce additional
constraints on the so-called cuts. (Roughly speaking, these cuts “cut” the multicon-
nected domain into a simply connected one.) Note that when Ω is simply connected,
problem (2.1)–(2.2) has a unique solution. (Of course, g and f are required to satisfy
necessary compatible conditions, e.g., divg = 0,

∫
Ω
f = 0, etc.)

To that goal, as done in [2, 28], we assume that there is a set of N cuts Σj ,

1 ≤ j ≤ N , such that
◦
Ω= Ω \ Σ (where Σ =

⋃N
j=1 Σj) is pseudoLipschitz and simply

connected, where Σ̄j ⊂ Ω is a compact and connected two-dimensional Lipschitz
manifold with boundary ∂Σj ⊂ Γ, and Σ̄i ∩ Σ̄j = ∅ if i 
= j, and Σj is globally two-

sided, denoted by Σ+
j and Σ−

j , and ∂
◦
Ω= Γ∪Σ+ ∪Σ−. As an illustrating example we

consider a multiply connected domain shown in Figure 1. Cutting along Σ1 and Σ2

we get a simply connected domain
◦
Ω with boundary Γ ∪ Σ+

1 ∪ Σ−
1 ∪ Σ+

2 ∪ Σ−
2 , where

Σ±
i are the upper and lower (relative to ni, the unit normals in Σi) sheets of Σi.

Additional constraints can be thus given by [2, 28]

(2.3)

∫
Σj

(εu) · n = 0, 1 ≤ j ≤ N.

Problem (2.1)–(2.3) then admits a unique solution, with compatible conditions satis-
fied by g and f . Readers may refer to [1, 6, 7, 28] for more details.

We next introduce some Hilbert spaces.
Let D ⊆ Ω. Denote by H1(D), H1(D)/R, and H1

0 (D) the usual Hilbert spaces.
We also need H(div; Ω) = {v ∈ (L2(Ω))3,divv ∈ L2(Ω)}, H(div0; Ω) = {v ∈
H(div; Ω); divv = 0}, HΓ(div; Ω) = {v ∈ H(div; Ω),v · n|Γ = 0}, HΓ(div0; Ω) =
HΓ(div; Ω) ∩H(div0; Ω), H(curl; Ω) = {v ∈ (L2(Ω))3, curl v ∈ (L2(Ω))3}, HΓ(curl;
Ω) = {v ∈ H(curl; Ω),v × n|Γ = 0}, and

U = {v ∈ (L2(Ω))3; div(εv) ∈ L2(Ω), curlv ∈ (L2(Ω))3, (εv) · n|Γ ∈ L2(Γ)},(2.4)

Hflux,Σ(div0; Ω) =

{
v ∈ H(div0; Ω);

∫
Σj

v · n = 0, 1 ≤ j ≤ N

}
,(2.5)

H = {v ∈ U ; curl v = 0,div (εv) = 0, (εv) · n|Γ = 0}.(2.6)

The H, referred to as “harmonic space,” may not be trivial in the case of multicon-
nected domains and accounts for why the solution of problem (2.1)–(2.2) may not
be unique. The H has a finite dimension and can be characterized as the space of
gradients of a finite number of scalar functions (See Proposition 2.1 below).
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Proposition 2.1 (see [2, 28]). For any Π ∈ H, there is a q ∈ H1
( ◦

Ω
)

such that

� q = Π in
◦
Ω and ||q||

H1
(◦
Ω
) ≤ C ||Π||0, where q satisfies

div (ε � q) = 0 in
◦
Ω, (ε � q) · n

∣∣∣
Γ∩∂

◦
Ω

= 0,

[q]|Σj = constant, [(ε � q) · n]
∣∣∣
Σj

= 0, 1 ≤ j ≤ N,

where [v]|Σj denotes the jump in v across Σj.
Denote by (ε ·, ·) the ε-weighted L2 inner product, i.e.,

(εu,v) :=

∫
Ω

εuv.

We now recall the L2 orthogonal decomposition.
Proposition 2.2 (see [2, 28]). For any v ∈ (L2(Ω))3, it can be written as the

following L2 orthogonal decomposition, with respect to (ε ·, ·) :

v = � p + Π + ε−1 curlψ,

where p ∈ H1(Ω)/R, Π ∈ H, ψ ∈ HΓ(curl; Ω) ∩Hflux,Σ(div0; Ω), and

||ψ||0 ≤ C ||curlψ||0, ||ε 1
2 v||20 = ||ε 1

2 � p||20 + ||ε 1
2 Π||20 + ||ε− 1

2 curlψ||20.

Above and below, the letter C (with or without subscripts) stands for a generic
constant which is independent of the mesh-parameter h and may take different values
at different occurrences. Denote by (·, ·)0,D and || · ||0,D the inner product and the
norm of L2(D) or (L2(D))3, and (·, ·) := (·, ·)0,Ω, || · ||0 := || · ||0,Ω.

We finally recall Green’s formula of integrating by parts:

(divv, q) = −(v,� q) +

∫
Γ

v · n q ∀v ∈ H(div; Ω),∀q ∈ H1(Ω);

(curl u,v) = (u, curl v) +

∫
Γ

u × n · v ∀u ∈ H(curl; Ω),∀v ∈ (H1(Ω))3.

3. The L2 projected least-squares finite element methods. In this section,
we shall describe two L2 projected least-squares finite element methods: (1) the local
L2 projection method; (2) the pseudolocal L2 projection method.

3.1. Bubbles and some finite dimensional spaces. Let Ch denote a regular
triangulation of Ω̄ into tetrahedra, with diameters hK for all K ∈ Ch bounded by h
[8, 13]. We assume that the closure of each cut in {Σj ; 1 ≤ j ≤ N} is the union of the
closure of some faces of tetrahedra in Ch.

Let E0
h be the set of all the interior faces in Ch, E∂

h the set of all the faces on
Γ, and Eh = E0

h

⋃
E∂
h the set of all faces in Ch. We define Mh as the collection of

macroelements in the following way. Each macroelement in Mh corresponds to a face
F ∈ Eh one-by-one: (1) if F ∈ E0

h, then the macroelement in Mh is the union of the
two tetrahedra sharing F ; (2) if F ∈ E∂

h , then the macroelement is the tetrahedron
including F as a face. Note that some macroelements in Mh, corresponding to dif-
ferent faces, are allowed to be identical and that the number of all macroelements is
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the same as that of all faces. To emphasize the dependence on F , sometimes we write
M as MF .

We now introduce some bubbles. If K is a tetrahedron with vertices ai, 1 ≤ i ≤ 4,
we denote by λi the barycoordinate of ai, and by Fi the face opposite ai, and then
we introduce the face bubbles

(3.1) bF1 = λ2λ3λ4, bF2
= λ3λ4λ1, bF3

= λ4λ1λ2, bF4
= λ1λ2λ3

and the usual element bubble on K,

(3.2) bK = λ1λ2λ3λ4 ∈ H1
0 (K).

We would have

(3.3) bFi ∈ H1
0 (Fi), bFi |Fj = 0 ∀j 
= i.

For any MF ∈ Mh, corresponding to F ∈ Eh, we introduce the macroelement bubble
bMF

as follows.
(1) If F ∈ E0

h, i.e., MF = K1 ∪K2 with K1,K2 ∈ Ch sharing F , we denote by bK1

F

and bK2

F the face bubble of F in K1 and K2, respectively. We set

(3.4) bMF
(x),=

⎧⎪⎨⎪⎩
bK1

F (x), x ∈ K1,

bK2

F (x), x ∈ K2,

0 elsewhere.

It can be seen that bMF
∈ H1

0 (MF ) and

(3.5) bMF
|F ∈ H1

0 (F ), bMF
|F ′ = 0 ∀F ′(
= F ) ∈ Eh.

(2) If F ∈ E∂
h , i.e., MF = K, with K ∈ Ch sharing F with Γ, we set

(3.6) bMF
(x) =

{
bF (x), x ∈ K,

0 elsewhere.

Also, we have (3.5), but bMF

∈ H1

0 (MF ).
Let Pr be the space of polynomials of order not greater than r ≥ 0. We define

P(MF ) := span{ε (P0(MF ))3, (P0(MF ))3} = span{pF,l; 1 ≤ l ≤ mF },(3.7)

P(K) := span{ε (P0(K))3, (P0(K))3} = span{pl; 1 ≤ l ≤ mK},(3.8)

where mF and mK are positive integers standing for the dimensions of P(MF ) and
P(K), respectively, and we define the following bubble spaces:

Φh :=

{
v ∈ (H1(Ω))3;v =

∑
F∈Eh

mF∑
l=1

cF,l pF,l bMF
∀cF,l ∈ R

}
,(3.9)

Ψh := {v ∈ (H1
0 (Ω))3;v|K ∈ P(K) bK ∀K ∈ Ch}.(3.10)

We also need some additional finite dimensional spaces which will be used in the next
section. First, let

(3.11) Ph := {q ∈ H1(Ω); q|K ∈ P1(K) ∀K ∈ Ch}.
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Second, let q0
i , 1 ≤ i ≤ N , be the piecewise linear polynomial function, taking value

“1” at the nodes on one side of Σi, say, Σ+
i , and “0” at all other nodes (including

those on Σ−
i , the other side of Σi). Let Ah := span{q0

i , i = 1, . . . , N}; we define

Vh := Ph + Ah,(3.12)

Wh := (Ph ∩H1
0 (Ω))3,(3.13)

where Vh and Wh will be used only for the pseudolocal L2 projection method below.

3.2. Finite element method. Let Uh be the finite element space. The L2

projected least-squares finite element method is to find uh ∈ Uh such that

(3.14) Lh(uh,v) = Fh(v) ∀v ∈ Uh,

where

Lh(u,v) := (R̆h(div(εu)), R̆h(div(εv)))h(3.15)

+ (Rh(curl u), Rh(curl v))h + Sh(u,v),

Fh(v) := (f, R̆h(div (εv))) + (g, Rh(curl v)) + Zh(f,g;v),(3.16)

Sh(u,v) is a mesh-dependent semipositive definite bilinear form on Uh×Uh, Zh(f,g;v)
is a mesh-dependent linear form on Uh, (·, ·)h is an approximation of L2 inner product
(·, ·), and R̆h, Rh are L2 projectors. These are to be defined below.

We first describe the local L2 projection method.
We define (·, ·)h := (·, ·) and

Uh := (Ph)3 + Φh,(3.17)

R̆h(div (εu))|K :=
1

|K|

∫
K

div (εu) ∀K ∈ Ch,(3.18)

Rh(curl u)|K :=
1

|K|

∫
K

curl u ∀K ∈ Ch,(3.19)

RΓ
h((εu) · n)|F :=

1

|F |

∫
F

(εu) · n ∀F ⊂ Γ,(3.20)

where u is assumed to belong to U defined in (2.4), |K| and |F | respectively denote
the volumes of K and F ,

Sh(u,v) :=

∫
Γ

RΓ
h((εu) · n)RΓ

h((εv) · n) + Sh,div(u,v)(3.21)

+Sh,curl(u,v) + Sh,Γ(u,v) + Sflux,Σ(u,v),

Zh(f,g;v) := Zh,div(f ;v) + Zh,curl(g;v) + Zh,Γ(f ;v),(3.22)

where the definitions of those mesh-dependent bilinear and linear forms of

(3.23) Sh,div(u,v), Sh,curl(u,v), Sh,Γ(u,v), Sflux,Σ(u,v)
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and

(3.24) Zh,div(f ;v), Zh,curl(g;v), Zh,Γ(f ;v)

will be concretely given in section 3.3.
We next describe the pseudolocal L2 projection method.
We define

(p, q)h :=
∑

K∈Ch

|K|
4

4∑
i=1

p(ai) q(ai) (trapezoidal quadrature),(3.25)

Uh := (Ph)3 + Ψh,(3.26)

(R̆h(div (εu)), q)h = −
∑

K∈Ch

(εu,� q)0,K ∀q ∈ Vh,(3.27)

(Rh(curl u),v)h = (u, curl v) ∀v ∈ Wh,(3.28)

where u is assumed to belong to (L2(Ω))3, Vh and Wh are given by (3.12) and (3.13),
and

Sh(u,v) := Sh,div(u,v) + Sh,curl(u,v) + Sh,Γ(u,v),(3.29)

Zh(f,g;v) := Zh,div(f ;v) + Zh,curl(g;v) + Zh,Γ(f ;v).(3.30)

Remark 3.1. Noting that the resulting matrix of the trapezoidal quadrature
scheme defined by (3.25) is diagonal, for this reason we call Rh and R̆h, defined by
(3.27) and (3.28), pseudolocal L2 projectors.

3.3. Mesh-dependent bilinear and linear forms. In this subsection we shall
define those mesh-dependent bilinear and linear forms as in (3.23) and (3.24).

We need to introduce some local spaces of some suitable functions.
Let FK : K̂ → K denote the invertible mapping from the reference element K̂

onto K ∈ Ch, i.e., K = FK(K̂), which associates the function q defined on K with
the function q̂ defined on K̂ by q = q̂ ◦F−1

K . On K̂ we introduce three spaces of some
suitable functions as follows:

(3.31)

⎧⎪⎨⎪⎩
Sdiv(K̂) := span{v̂l; 1 ≤ l ≤ mdiv} ⊂ L2(K̂),

SΓ(K̂) := span{ẑl; 1 ≤ l ≤ mΓ} ⊂ L2(K̂),

Scurl(K̂) := span{ŵl; 1 ≤ l ≤ mcurl} ⊂ (L2(K̂))3,

where three integers mdiv,mΓ,mcurl denoting the dimensions of corresponding spaces
and these functions v̂, ẑ, ŵ are determined according to Hypothesis H1 in section 4.1.
Using FK we obtain on K ∈ Ch three local spaces as follows:
(3.32) ⎧⎪⎨⎪⎩

Sdiv(K) := Sdiv(K̂) ◦ F−1
K = span{vK,l := v̂l ◦ F−1

K ; 1 ≤ l ≤ mdiv},
SΓ(K) := SΓ(K̂) ◦ F−1

K = span{zK,l := ẑl ◦ F−1
K ; 1 ≤ l ≤ mΓ},

Scurl(K) := Scurl(K̂) ◦ F−1
K = span{wK,l := ŵl ◦ F−1

K ; 1 ≤ l ≤ mcurl}.

Remark 3.2. Consider ε = 1 on K. For the local L2 projection method we may
choose

Sdiv(K) = P2(K), SΓ(K) = P3(K), Scurl(K) = (P2(K))3.
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For the pseudolocal L2 projection method we can choose

Sdiv(K) = P0(K) + span

{
∂bK
∂x

,
∂bK
∂y

,
∂bK
∂z

}
, SΓ(K) = P1(K),

Scurl(K) = (P0(K))3

+ span

{(
c3

∂bK
∂y

− c2
∂bK
∂z

, c1
∂bK
∂z

− c3
∂bK
∂x

, c2
∂bK
∂x

− c1
∂bK
∂y

)t

∀(c1, c2, c3) ∈ R
3

}
.

Note that, in general, Sdiv(K), SΓ(K), and Scurl(K) are not spaces of polynomials.
However, if ε is piecewise smooth, we may replace ε by its suitable piecewise polyno-
mial approximation, say, εh. With this εh, then Sdiv(K), SΓ(K), and Scurl(K) are of
course chosen as piecewise polynomials. See also Remarks 5.4 and 5.5.

We are now in a position to define the mesh-dependent bilinear and linear forms:

Sh,div(u,v) :=
∑

K∈Ch

∑mdiv

l=1 (εu,� (vK,l bK))0,K (εv,� (vK,l bK))0,K∑mdiv

l=1 || � (vK,l bK)||20,K
,(3.33)

Zh,div(f ;v) := −
∑

K∈Ch

∑mdiv

l=1 (f, vK,l bK)0,K (εv,� (vK,l bK))0,K∑mdiv

l=1 || � (vK,l bK)||20,K
,(3.34)

Sh,curl(u;v) :=
∑

K∈Ch

∑mcurl

l=1 (u, curl (wK,l bK))0,K (v, curl (wK,l bK))0,K∑mcurl

l=1 ‖curl (wK,l bK)‖2
0,K

,(3.35)

Zh,curl(g;v) :=
∑

K∈Ch

∑mcurl

l=1 (g,wK,l bK)0,K (v, curl (wK,l bK))0,K∑mcurl

l=1 ||curl (wK,l bK)||20,K
,(3.36)

Sh,Γ(u,v) :=
∑
F⊂Γ

with F⊂∂K

∑mΓ

l=1 (εu,� (zK,l bF ))0,K (εv,� (zK,l bF ))0,K∑mΓ

l=1 || � (zK,l bF )||20,K
,(3.37)

Zh,Γ(f ;v) := −
∑
F⊂Γ

with F⊂∂K

∑mΓ

l=1 (f, zK,l bF )0,K (εv,� (zK,l bF ))0,K∑mΓ

l=1 || � (zK,l bF )||20,K
,(3.38)

Sflux,Σ(u,v) :=

N∑
j=1

1

|Σj |

∫
Σj

(εu) · n
∫

Σj

(εv) · n.(3.39)

Remark 3.3. Note that bK ∈ H1
0 (K) is the element bubble defined as in (3.2)

and that bF ∈ H1
0 (F ) is the face bubble defined as in (3.1); we have vK,l bK ∈ H1

0 (K),
wK,l bK ∈ (H1

0 (K))3 and zK,l bF ∈ H1
0 (F ), zK,l bF |F ′ = 0 for F ′(
= F ) ⊂ ∂ K, so all

the denominators above are not zero on any tetrahedron.

4. Coercivity and condition number. In this section we shall investigate
the coercivity property and the condition number associated with the finite element
problem described in the previous section.
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4.1. Mesh-dependent norm. In this subsection we give some properties of the
mesh-dependent bilinear forms in Propositions 4.1 and 4.2 below.

Proposition 4.1. We have

|Sh,div(u,v)| ≤ ||εu||0 ||εv||0,

|Sh,curl(u,v)| ≤ ||u||0 ||v||0,

|Sh,Γ(u,v)| ≤ ||εu||0 ||εv||0,

0 ≤ Sh,div(v,v) ≤ C
∑

K∈Ch

h2
K ||div (εv)||20,K ,

0 ≤ Sh,curl(v,v) ≤ C
∑

K∈Ch

h2
K ||curl v||20,K ,

0 ≤ Sh,Γ(v,v) ≤ C

( ∑
K∈Ch

h2
K ||div (εv)||20,K +

∑
F⊂Γ

hF

∫
F

|(εv) · n|2
)
.

Here hF stands for the diameter of F .

Proof. The first three inequalities and the left-hand sides of the last three ineq-
ualities easily follow from the definitions given as in (3.33), (3.35), and (3.37). Here
we show only the right-hand side of the last inequality as an example. Using Green’s
formula of integrating by parts, we have

Sh,Γ(v,v) =
∑
F⊂Γ

with F⊂∂ K

∑mΓ

l=1 ((εv,� (zK,l bF ))0,K)
2∑mΓ

l=1 || � (zK,l bF )||20,K

=
∑
F⊂Γ

with F⊂∂K

∑mΓ

l=1 (−(div (εv), zK,l bF )0,K + ((εv) · n, zK,l bF )0,F )
2∑mΓ

l=1 || � (zK,l bF )||20,K

≤ C
∑
F⊂Γ

with F⊂∂K

∑mΓ

l=1 (((εv) · n, zK,l bF )0,F )
2∑mΓ

l=1 || � (zK,l bF )||20,K

+C
∑
F⊂Γ

with F⊂∂K

∑mΓ

l=1 ((div (εv), zK,l bF )0,K)
2∑mΓ

l=1 || � (zK,l bF )||20,K
,

where, by a standard scaling argument [13, 8],

mΓ∑
l=1

((div (εv), zK,l bF )0,K)
2≤ ||div (εv)||20,K

mΓ∑
l=1

||zK,l bF ||20,K

≤ C h3
K ||div (εv)||20,K ,
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mΓ∑
l=1

(((εv) · n, zK,l bF )0,F )
2≤ ||(εv) · n||20,F

mΓ∑
l=1

||zK,l bF ||20,F

≤ C h2
F ||(εv) · n||20,F ,

mΓ∑
l=1

|| � (zK,l bF )||20,K≥ C hK ,

where the last three constants C depend on the L2 or H1 norms of given functions
ẑl b̂F̂ on the reference element K̂, 1 ≤ l ≤ mΓ, with b̂F̂ = bF ◦ (FK |F ), but they are
independent of h and K. It follows that the right-hand side of the last inequality in
Proposition 4.1 holds.

We define

||v||2Ch
:=

∑
K∈Ch

h2
K ||div (εv)||20,K +

∑
K∈Ch

h2
K ||curl v||20,K(4.1)

+
∑
F⊂Γ

hF

∫
F

|(εv) · n|2.

Hypothesis H1. We assume that, for any u ∈ Uh, the following local inclusions
hold:

div ((εu)|K) ∈ Sdiv(K) = span{vK,l; 1 ≤ l ≤ mdiv} ∀K ∈ Ch,(4.2)

(εu) · n|F ∈ SΓ(K)|F = span{zF,l = zK,l|F ; 1 ≤ l ≤ mΓ} ∀F ⊂ Γ,(4.3)

curl (u|K) ∈ Scurl(K) = span{wK,l; 1 ≤ l ≤ mcurl} ∀K ∈ Ch.(4.4)

We additionally assume that vK,l, 1 ≤ l ≤ mdiv, constitutes a group of linearly
independent basis and assume the same for zF,l, 1 ≤ l ≤ mΓ, and wK,l, 1 ≤ l ≤ mcurl.

Remark 4.1. Considering the example in Remark 3.2, we see that Hypothesis H1
holds.

Proposition 4.2. Assume Hypothesis H1 holds. We have on Uh

Sh,div(v,v)≥ C
∑

K∈Ch

h2
K ||div (εv)||20,K ,(4.5)

Sh,curl(v,v)≥ C
∑

K∈Ch

h2
K ||curl v||20,K ,(4.6)

Sh,Γ(v,v)≥ C1

∑
F⊂Γ

hF

∫
F

|(εv) · n|2 − C2

∑
K∈Ch

h2
K ||div (εv)||20,K .(4.7)

Consequently, we have

(4.8) Sh,div(v,v) + Sh,curl(v,v) + Sh,Γ(v,v) ≥ C ||v||2Ch
∀v ∈ Uh.
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Proof. We first show (4.5). From (4.2) we write div (εv)|K =
∑mdiv

l=1 cl vK,l. We
have

mdiv∑
l=1

((εv,� (vK,l bK))0,K)
2

=

mdiv∑
l=1

((div (εv), vK,l bK)0,K)
2

=

mdiv∑
l=1

(ct dl)
2 = ct A2

K c,

where c = (c1, . . . , cmdiv
)t ∈ R

mdiv , dl = (d1l, . . . , dmdivl)
t ∈ R

mdiv , with dil =
(vK,i, vK,l bK)0,K , i = 1, . . . ,mdiv, and AK is the mass matrix and AK = [d1, . . . ,
dmdiv

] ∈ R
mdiv×mdiv . Clearly, AK is symmetric and positive definite. Let T ∈

R
mdiv×mdiv be the orthogonal matrix such that AK = T t diag (λ1, . . . , λmdiv

)T , where
0 < λ1 < · · · < λmdiv

are the eigenvalues of AK . It can be easily seen that λ1 ≥ C |K|.
Let c̄ := T c = (c̄1, . . . , c̄mdiv

)t ∈ R
mdiv ; we have

∑mdiv

l=1 ((εv,� (vK,l bK))0,K)
2

=∑mdiv

l=1 (c̄l λl)
2. By a similar argument we have (div (εv),div (εv) bK)0,K =

∑mdiv

l=1

(c̄l)
2 λl. We then obtain

mdiv∑
l=1

((εv,� (vK,l bK))0,K)
2

=

mdiv∑
l=1

(c̄l λl)
2 ≥ λ1

mdiv∑
l=1

(c̄l)
2 λl

= λ1 (div (εv),div (εv) bK)0,K ≥ C |K| (div (εv),div (εv))0,K .

Here we used the equivalence C−1
∫
K

|g| ≤
∫
K

|g| bK ≤ C
∫
K

|g| for any function g
in deriving the last inequality. Noting that

∑mdiv

l=1 || � (vK,l bK)||20,K ≤ C hK (where

C depends on the H1 norms of v̂l b̂, with b̂ = bK ◦ FK and 1 ≤ l ≤ mdiv, but it is

independent of h and K), over Ch we take the sum of
∑mdiv

l=1 ((εv,	 (vK,l bK))0,K)2∑mdiv
l=1 ||	 (vK,l bK)||20,K

≥
C h2

K ||div (εv)||20,K to get (4.5), with Sh,div(·, ·) defined by (3.33).
The inequality (4.6) can be similarly established from the local inclusion condition

(4.4). We next show (4.7). From the definition of Sh,Γ(·, ·) as in (3.37), using Green’s
formula of integrating by parts, we have

Sh,Γ(v,v) =
∑
F⊂Γ

with F⊂∂ K

∑mΓ

l=1 ((εv,� (zK,l bF ))0,K)
2∑mΓ

l=1 || � (zK,l bF )||20,K

=
∑
F⊂Γ

with F⊂∂K

∑mΓ

l=1 (−(div (εv), zK,l bF )0,K + ((εv) · n, zK,l bF )0,F )
2∑mΓ

l=1 || � (zK,l bF )||20,K

≥ C3

∑
F⊂Γ

with F⊂∂K

∑mΓ

l=1 (((εv) · n, zK,l bF )0,F )
2∑mΓ

l=1 || � (zK,l bF )||20,K

−C4

∑
F⊂Γ

with F⊂∂K

∑mΓ

l=1 ((div (εv), zK,l bF )0,K)
2∑mΓ

l=1 || � (zK,l bF )||20,K
,

where, using a similar argument for proving (4.5), we have from the local inclusion
condition (4.3)∑

F⊂Γ
with F⊂∂K

∑mΓ

l=1 (((εv) · n, zF,l bF )0,F )
2∑mΓ

l=1 || � (zK,l bF )||20,K
≥ C

∑
F⊂Γ

hF ||(εv) · n||20,F ,
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and from Proposition 4.1 we have

∑
F⊂Γ

with F⊂∂K

∑mΓ

l=1 ((div (εv), zK,l bF )0,K)
2∑mΓ

l=1 || � (zK,l bF )||20,K
≤ C

∑
K∈Ch

h2
K ||div (εv)||20,K .

The estimate (4.7) thus follows.
Remark 4.2. Propositions 4.1 and 4.2 imply that, instead of using Sh,div(u,v),

Sh,curl(u,v), and Sh,Γ(u,v), one may equivalently use (u,v)Ch
which corresponds to

the mesh-dependent norm (4.1). However, when deriving the error estimates of C0

finite elements, one can bound only ||curl ũ||0 by ||u||1; here ũ is the C0 finite element
interpolant of u, but u is not generally in H1 in the case of nonsmooth domains. The
use of Sh,div(u,v), Sh,curl(u,v), and Sh,Γ(u,v) allows the solution to be in Hs with
0 ≤ s < 1. This can easily be seen from the first three inequalities in Proposition 4.1.

Lemma 4.1. Under the same hypotheses as in Proposition 4.2, for the local L2

projection method we have

Sh(v,v) ≥ C
{
||RΓ

h((εv) · n)||20,Γ + Sflux,Σ(v,v) + ||v||2Ch

}
∀v ∈ Uh.

We can have a similar estimate for the pseudolocal L2 projection method.

4.2. Coercivity. This subsection is devoted to the coercivity property of Lh.
Hypothesis H2. We assume that for any ψ ∈ HΓ(curl; Ω)∩Hflux,Σ(div0; Ω), it can

be written as a regular-singular decomposition,

ψ = ψ0 + ψ1, ψ0 ∈ HΓ(curl; Ω) ∩ (H1(Ω))3, curlψ1 = 0,

where ψ0 is the regular part and ψ1 the singular part, with

||ψ0||1 ≤ C {||ψ||0 + ||curlψ||0}.

Remark 4.3. From [5] any ψ ∈ HΓ(curl; Ω) ∩ H(div; Ω) can be written as the
following “regular-singular” decomposition:

ψ = ψ∗ + � p, p ∈ H1
0 (Ω),

with ψ∗ ∈ HΓ(curl; Ω) ∩ (H1(Ω))3 and

||ψ∗||1 ≤ C {||ψ||0 + ||curlψ||0 + ||divψ||0}.

We may take ψ0 := ψ∗ and ψ1 := � p, and then verify Hypothesis H2.
Theorem 4.1. Let Hypotheses H1 and H2 hold. We have

(4.9) Lh(u,u) ≥ C ||u||20 ∀u ∈ Uh.

Therefore, the finite element problem has a unique solution.
Proof. We consider only the local L2 projection method. The following argument

can easily be applied to the pseudolocal L2 projection method, with minor modifica-
tions.

We first show

(4.10)

{
||R̆h(div (εu))||20 + ||Rh(curl u)||20
≥ C5 ||u||20 − C6 (||RΓ

h((εu) · n)||20,Γ + Sflux,Σ(u,u) + ||u||2Ch
),
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and then use Lemma 4.1 to obtain (4.9).

To show (4.10), we need to use the L2 orthogonal decomposition of u. From
Proposition 2.2 we write u as

(4.11) u = � p + Π + ε−1 curlψ,

with p ∈ H1(Ω)/R, Π ∈ H, ψ ∈ HΓ(curl; Ω) ∩Hflux,Σ(div0; Ω), and

(4.12) ||ψ||0 ≤ C ||curlψ||0, ||ε 1
2 u||20 = ||ε 1

2 � p||20+||ε 1
2 Π||20+||ε− 1

2 curlψ||20.

From Hypothesis H2 we further write ψ as

(4.13) ψ = ψ0 + ψ1,

where

ψ0 ∈ HΓ(curl; Ω) ∩ (H1(Ω))3, curlψ1 = 0,(4.14)

||ψ0||1 ≤ C {||ψ||0 + ||curlψ||0} ≤ C ||curlψ||0.(4.15)

In what follows we divide the proof of (4.10) into three steps according to the
three components (p,Π, ψ) from the decomposition (4.11).

Step 1. We consider Π.

From Proposition 2.1, let q ∈ H1
( ◦

Ω
)

such that � q = Π in
◦
Ω and ||q||

H1(
◦
Ω)

≤
C ||Π||0. Let q̃ and q̄ be piecewise constants such that [18, 19, 20]

q̃|K =
1

|K|

∫
K

q, ||q̃||0,K ≤ ||q||0,K ∀K ∈ Ch,(4.16)

( ∑
K∈Ch

h−2
K ||q̃ − q||20,K

)1/2

≤ C ||q||
H1

(◦
Ω
)
,

(4.17)

and

q̄|F =
1

|F |

∫
F

q, ||q̄||0,F ≤ ||q||0,F ∀F ⊂ Γ,(4.18)

(∑
F⊂Γ

h−1
F ||q̄ − q||20,F

)1/2

≤ C ||q||
H1

(◦
Ω
).(4.19)
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Let ε1 > 0 be a constant to be determined. We have

||R̆h(div(εu))||20 = ||R̆h(div(εu)) + ε1q̃||20 − ε21||q̃||20 − 2ε1 (R̆h(div(εu)), q̃),(4.20)

||q̃||0 ≤ C ||q||
L2
(◦
Ω
) ≤ C ||q||

H1
(◦
Ω
) ≤ C ||Π||0 ≤ C ||ε 1

2 Π||0,(4.21)

−2 ε1 (R̆h(div (εu)), q̃) =−2 ε1
∑

K∈Ch
(div (εu), q̃)0,K

= 2 ε1
∑

K∈Ch
(div (εu), q − q̃)0,K

−2 ε1
∑

K∈Ch
(div (εu), q)0,K ,

(4.22)

−2 ε1
∑

K∈Ch
(div (εu), q)0,K = 2 ε1

∑
K∈Ch

(εu,� q)0,K

−2 ε1
∑

F⊂Γ

∫
F

(εu) · n q

−2 ε1
∑N

j=1

∫
Σj

(εu) · n [q],

(4.23)

2 ε1
∑

K∈Ch

(εu,� q)0,K = 2 ε1 (εu,Π) = 2 ε1 (εΠ,Π) = 2 ε1 ||ε
1
2 Π||20,(4.24)

−2 ε1
∑
F⊂Γ

∫
F

(εu) · nq = 2ε1
∑
F⊂Γ

∫
F

(εu) · n(q̄ − q) − 2ε1
∑
F⊂Γ

∫
F

(εu) · n q̄,(4.25)

and

−2 ε1
∑
F⊂Γ

∫
F

(εu) · n q̄ = −2 ε1

∫
Γ

RΓ
h((εu) · n) q̄(4.26)

≥ −ε1 C ||RΓ
h((εu) · n)||0,Γ ||q̄||0,Γ

≥ −ε1 C ||RΓ
h((εu) · n)||0,Γ ||q||0,Γ

≥ −ε1 C ||RΓ
h((εu) · n)||0,Γ ||q||

H1
(◦
Ω
)

≥ −ε2 ||RΓ
h((εu) · n)||20,Γ − C ε21

ε2
||ε 1

2 Π||20.

Here we have used ||q||
H1(

◦
Ω)

≤ C ||Π||0 ≤ C ||ε 1
2 Π||0 and the trace theorem,

||q||0,Γ ≤ C ||q||
L2
(
∂

◦
Ω
) ≤ C ||q||

H1
(◦
Ω
),

and Young’s inequality,

|a| |b| ≤ ε |a|2 +
1

4 ε
|b|2 ∀a, b ∈ R,∀ε > 0,

with ε = ε2 a constant to be determined.
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We also have

2 ε1
∑

K∈Ch

(div (εu), q − q̃)0,K + 2 ε1
∑
F⊂Γ

∫
F

(εu) · n (q̄ − q)(4.27)

≥ −ε1 C

( ∑
K∈Ch

h2
K ||div (εu)||20,K +

∑
F⊂Γ

hF ||(εu) · n||20,F

) 1
2

×
( ∑

K∈Ch

h−2
K ||q − q̃||20,K +

∑
F⊂Γ

h−1
F ||q̄ − q||20,F

) 1
2

≥ −ε1 C ||u||Ch
||q||

H1
(◦
Ω
) ≥ −ε1 C ||u||Ch

||ε 1
2 Π||0

≥ −ε2 ||u||2Ch
− C ε21

ε2
||ε 1

2 Π||20

and

−2 ε1

N∑
j=1

∫
Σj

(εu) · n [q] ≥ −2 ε1

N∑
j=1

|Σj |−1/2

∣∣∣∣∣
∫

Σj

(εu) · n
∣∣∣∣∣ |Σj |1/2 |[q]|(4.28)

≥ −2 ε1

⎛⎝ N∑
j=1

1

|Σj |

(∫
Σj

(εu) · n
)2

⎞⎠1/2

×

⎛⎝ N∑
j=1

∫
Σj

|[q]|2
⎞⎠1/2

= −2 ε1 (Sflux,Σ(u,u))
1/2

⎛⎝ N∑
j=1

∫
Σj

|[q]|2
⎞⎠1/2

≥ −2 ε1 C (Sflux,Σ(u,u))
1/2 ||q||

L2
(
∂

◦
Ω
)

≥ −2 ε1 C (Sflux,Σ(u,u))
1/2 ||q||

H1
(◦
Ω
)

≥ −ε2 Sflux,Σ(u,u) − C ε21
ε2

||ε 1
2 Π||20.

Equations (4.20)–(4.28) yield

||R̆h(div (εu))||20 ≥ ε1

(
2 − C ε1 −

C ε1
ε2

)
||ε 1

2 Π||20(4.29)

− ε2
(
||RΓ

h((εu) · n)||20,Γ + Sflux,Σ(u,u) + ||u||2Ch

)
.

Step 2. We consider p.
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By a similar argument as that used in proving (4.29) with Π replaced by � p, we
have

(4.30)

⎧⎨⎩ ||R̆h(div (εu))||20 ≥ ε1

(
2 − C ε1 − C ε1

ε2

)
||ε 1

2 � p||20

−ε2
(
||RΓ

h((εu) · n)||20,Γ + ||u||2Ch

)
.

Step 3. We consider ψ.
Let ψ̃0 be a piecewise constant vector such that

ψ̃0|K =
1

|K|

∫
K

ψ0, ||ψ̃0||0,K ≤ ||ψ0||0,K ∀K ∈ Ch,(4.31)

( ∑
K∈Ch

h−2
K ||ψ0 − ψ̃0||20,K

)1/2

≤ C ||ψ0||1.(4.32)

We have

||Rh(curlu)||20 = ||Rh(curlu) − ε1ψ̃0||20 − ε21 ||ψ̃0||20 + 2 ε1 (Rh(curl u), ψ̃0),(4.33)

||ψ̃0||0 ≤ ||ψ0||1 ≤ C ||curlψ||0 ≤ C ||ε− 1
2 curlψ||0,(4.34)

2 ε1 (Rh(curl u), ψ̃0) = 2 ε1
∑

K∈Ch
(curl u, ψ̃0)0,K

= 2 ε1
∑

K∈Ch
(curl u, ψ̃0 − ψ0)0,K

+ 2 ε1
∑

K∈Ch
(curl u, ψ0)0,K ,

(4.35)

2 ε1
∑

K∈Ch
(curl u, ψ0)0,K = 2 ε1 (u, curlψ0) = 2 ε1 (u, curlψ)

= 2 ε1 (ε−1 curlψ, curlψ)

= 2 ε1 ||ε−
1
2 curlψ||20,

(4.36)

and using Young’s inequality,

2 ε1
∑

K∈Ch

(ψ̃0 − ψ0, curl u) ≥ −ε1 C

( ∑
K∈Ch

h−2
K ||ψ̃0 − ψ0||20,K

) 1
2

(4.37)

×
( ∑

K∈Ch

h2
K ||curl u||20,K

) 1
2

≥ −ε1 C ||ψ0||1 ||u||Ch

≥ −ε1 C ||ε− 1
2 curlψ||0 ||u||Ch

≥ −ε2 ||u||2Ch
− C ε21

ε2
||ε− 1

2 curlψ||20.

Summarizing (4.33)–(4.37), we have

(4.38) ||Rh(curl u)||20 ≥ ε1

(
2 − C ε1 −

C ε1
ε2

)
||ε− 1

2 curlψ||20 − ε2 ||u||2Ch
.
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Combining (4.29), (4.30), and (4.38), we obtain

2 ||R̆h(div (εu))||20 + ||Rh(curl u)||20(4.39)

≥ ε1

(
2 − C ε1 −

C ε1
ε2

)
×
(
||ε 1

2 � p||20 + ||ε 1
2 Π||20 + ||ε− 1

2 curlψ||20
)

−ε2 C (||RΓ
h((εu) · n)||20,Γ + Sflux,Σ(u,u) + ||u||2Ch

).

We therefore obtain (4.10), taking suitable values for εi, i = 1, 2.

4.3. Condition number. We finally estimate the condition number of the
resulting linear system. We here again consider only the local L2 projection method.

Theorem 4.2. In addition to the same hypotheses as in Theorem 4.1, we assume
uniform meshes. The condition number, associated with the resulting linear system,
is O(h−2).

Proof. Since, for all v ∈ Uh,

(Sh,div(v,v))
1/2

+ (Sh,curl(v,v))
1/2

+ (Sh,Γ(v,v))
1/2 ≤ C ||v||0,(4.40)

||Rh(curl v)||0 ≤ ||curl v||0 ≤ C h−1 ||v||0,(4.41)

||R̆h(div (εv))||0 ≤ C ||ε||∞

( ∑
K∈Ch

h−1
K ||v||20,∂ K

) 1
2

≤ C h−1 ||v||0,(4.42)

||RΓ
h((εv) · n)||0,Γ ≤

(∑
F⊂Γ

||(εv) · n||20,F

)1/2

≤ C h−1 ||v||0,(4.43)

(Sflux,Σ(v,v))
1/2 ≤ C h−1 ||v||0,(4.44)

we have

(4.45) Lh(v,v) ≤ C h−2 ||v||20 ∀v ∈ Uh,

which, together with the coercivity property (4.9) and the symmetry property of Lh,
leads to the conclusion.

5. Error bounds. In this section we shall establish the error bounds. We ana-
lyze only the local L2 projection method. The analysis is similar for the pseudolocal
L2 projection method.

Lemma 5.1. Let u ∈ U and uh ∈ Uh be the exact solution and the finite element
solution to the local L2 projection method. We have

(5.1) Lh(u − uh,vh) = 0 ∀vh ∈ Uh.

Proof. Equation (5.1) holds, since

Sh(u,vh) = Zh(f,g;vh),(5.2)

(R̆h(div(εu)), R̆h(div(εvh))) = (div(εu), R̆h(div(εvh))) = (f, R̆h(div(εvh))),(5.3)

(Rh(curl u), Rh(curl vh)) = (curl u, Rh(curl vh)) = (g, Rh(curl vh)).(5.4)
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Lemma 5.2. Assume that u ∈ (Hs(Ω))3 with s > 1
2 . Then, there exists a ũ ∈ Uh

such that

||R̆h(div (ε (u − ũ)))||20 = ||Rh(curl (u − ũ))||20 = 0,(5.5)

||RΓ
h((ε (u − ũ)) · n)||20,Γ = Sflux,Σ(u − ũ,u − ũ) = 0,(5.6)

||u − ũ||0 ≤ C hs ||u||s.(5.7)

Proof. We first let u0 ∈ (Ph)3 be such that [3, 14, 29]

(5.8) ||u − u0||0 +

( ∑
F⊂Eh

hF ||u − u0||20,F

) 1
2

≤ C hs ||u||s, s >
1

2
.

We then define ũ ∈ Uh such that

ũ(a) = u0(a) for all vertices a,(5.9)

∫
F

(ũ − u) · p = 0 ∀p ∈ P(MF ),∀F ∈ Eh,(5.10)

where P(MF ) is defined by (3.7). We write

(5.11) ũ = u0 +
∑
F∈Eh

mF∑
l=1

cF,l pF,l bMF
.

Noting that for any given F ∈ Eh,

(5.12)
∑

F ′∈Eh,F ′ �=F

∫
F

mF ′∑
l=1

cF ′,l pF ′,l bMF ′ = 0,

from (5.10) we obtain

(5.13)

mF∑
l=1

cF,l

∫
F

pF,l · pF,i bMF
=

∫
F

(u − u0) · pF,i, 1 ≤ i ≤ mF ∀F ∈ Eh,

which uniquely determines the coefficients cF,l, 1 ≤ l ≤ mF , F ∈ Eh. Also, note
that

∑
F∈Eh

∑mF

l=1 cF,l pF,l bMF
is zero at all vertices, and (5.9) and (5.10) uniquely

determine ũ.

Let M be any given macroelement in Mh corresponding to a face F ∈ Eh. We
write M and F as MF1 and F1. We first consider the case MF1 = K1 ∪ K2, with
K1 ∩K2 = F1 ∈ E0

h. For convenience we number all the faces in ∂MF1 by Fi, one-to-
one corresponding to MFi , 2 ≤ i ≤ 7. Denote ci := (cFi1, . . . , cFimFi

)t ∈ R
mFi , and

Li := [pFi1, . . . ,pFimFi
] ∈ R

mFi
×mFi ; by a standard scaling argument we then have
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from (5.12) and (5.13)

∫
MF1

( ∑
F∈Eh

mF∑
l=1

cF,l pF,l bMF

)2

=

∫
MF1

(
7∑

i=1

mFi∑
l=1

cFi,l pFi,l bMFi

)2

(5.14)

=

∫
MF1

∣∣∣∣∣
7∑

i=1

Li ci bMFi

∣∣∣∣∣
2

≤ C

7∑
i=1

|ci|2
∫
MF1

(
7∑

i=1

mFi∑
l=1

|pFi,l bMFi
|2
)

≤ C |MF1
|

7∑
i=1

|ci|2 ≤ C

7∑
i=1

hFi
||u − u0||20,Fi

.

We thus obtain

(5.15) ||u − ũ||0,M ≤ C ||u − u0||0,M + C

7∑
i=1

h
1
2

Fi
||u − u0||0,Fi .

Similarly, if M is the tetrahedron sharing an F with Γ, we have

(5.16) ||u − ũ||0,M ≤ C ||u − u0||0,M + C
∑

F⊂∂ M

h
1
2

F ||u − u0||0,F .

Hence, from (5.15), (5.16), and (5.8), we obtain

(5.17) ||u − ũ||0 ≤ C ||u − u0||0 + C

( ∑
F⊂Eh

hF ||u − u0||20,F

) 1
2

≤ C hs ||u||s.

Finally, noting that n is a constant vector and

(5.18) P0(M) εn ⊂ P(M), (P0(M))3 × n ⊂ P(M),

by virtue of (5.10) we can easily verify (5.5) and (5.6).
Theorem 5.1. Assume that Hypotheses H1 and H2 hold and that u ∈ (Hs(Ω))3

with s > 1
2 . Let u ∈ U and uh ∈ Uh be the exact solution and the finite element

solution to the local L2 projection method. We have

(5.19) ||u − uh||0 ≤ C hs ||u||s.

Proof. Let ũ ∈ Uh be constructed as in Lemma 5.2. We have from Lemma 5.1

|||uh − ũ|||2 := Lh(uh − ũ,uh − ũ) = Lh(u − ũ,uh − ũ)(5.20)

≤ |||u − ũ||| |||uh − ũ|||;

that is,

(5.21) |||uh − ũ||| ≤ |||u − ũ|||.
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On the other hand, from Lemma 5.2 and Proposition 4.1,

|||u − ũ|||2 = Lh(u − ũ,u − ũ)(5.22)

= ||R̆h(div (ε (u − ũ)))||20 + ||Rh(curl (u − ũ))||20

+ ||RΓ
h((ε (u − ũ)) · n)||20,Γ + Sh,div(u − ũ,u − ũ)

+Sh,curl(u − ũ,u − ũ)

+Sh,Γ(u − ũ,u − ũ) + Sflux,Σ(u − ũ,u − ũ)

= Sh,div(u − ũ,u − ũ) + Sh,curl(u − ũ,u − ũ)

+Sh,Γ(u − ũ,u − ũ)

≤ C ||u − ũ||20.

Using the triangle inequality, Theorem 4.1, (5.21), (5.22), and Lemma 5.2, we obtain

||u − uh||0 ≤ ||u − ũ||0 + ||uh − ũ||0(5.23)

≤ ||u − ũ||0 + C |||uh − ũ|||

≤ ||u − ũ||0 + C |||u − ũ|||

≤ C ||u − ũ||0 ≤ C hs ||u||s.

Remark 5.1. From [2] we know that, in the case of ε = 1, the solution of problem
(2.1)–(2.3) is in (Hs(Ω))3 with s > 1

2 .
Remark 5.2. Regarding the pseudolocal L2 projected method, following a similar

argument in Lemma 5.2, we can find an interpolant ũ ∈ Uh of u ∈ (Hs(Ω))3 with
s ≥ 0 such that ||u− ũ||0 ≤ C hs ||u||s, and ũ satisfies interpolation properties similar
to (5.5) and (5.6). Let u and uh be the exact solution and the finite element solution
to the pseudolocal L2 projection method. Following the same argument in Theorem
5.1, we can obtain

(5.24) ||u − uh||0 ≤ C hs ||u||s ∀s ≥ 0.

Remark 5.3. The pseudolocal L2 projection method admits u ∈ (Hs(Ω))3 for
all s ≥ 0. The local L2 projection method requires a little more regularity of u, i.e.,
u ∈ (Hs(Ω))3 for all s > 1

2 . This is because the latter error estimates on element faces
are involved with the trace theorem that requires s > 1

2 ; see [12, 14]. However, it is
allowed that u has weaker regularity; i.e., u ∈ (W s,r(Ω))3 with s > 1

r and 2 ≤ r ≤ ∞.
Then (5.19) would become

(5.25) ||u − uh||0 ≤ C hs ||u||s,r, s >
1

r
, and 2 ≤ r ≤ ∞.

Remark 5.4. In the case when ε is not globally continuous, we assume that ε is
a piecewise Lipschitz continuous function. This determines a partition P of Ω into
a finite set of subdomains Ω1, . . . ,ΩL (which are assumed to be polyhedra). In each
Ωl the restriction of ε is Lipschitz continuous. We denote by Γij the faces of Ωi ∩ Ωj

and assume that all Γij are contained in Ω. As usual, the triangulation Ch should be
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conformed with these material interfaces so that each material interface is the union
of the element faces in Ch. Let Einter,Γ ⊂ Eh denote the set of all element faces on Γ
and on interfaces Γij , and let Minter,Γ ⊂ Mh be the set of macroelements deduced
from Einter,Γ in a similar way as that for Mh in subsection 3.1. The few modifications
to our L2 projected methods for the case of discontinuous materials are as follows.
We need only modify (3.20) by

(5.26) Rinter,Γ
h ([(εu) · n])|F :=

1

|F |

∫
F

[(εu) · n] ∀F ∈ Einter,Γ,

modify the mesh-dependent terms Sh,Γ(·, ·), Zh,Γ(·; ·) in (3.37) and (3.38) by Sh,inter,Γ

(·, ·), Zh,inter,Γ(·; ·):
Sh,inter,Γ(u,v)(5.27)

:=
∑

F∈Einter,Γ
M∈Minter,Γ,M=K1∪K2,

and ∂K1∩∂K2=F
orM=K,∂K∩Γ=F

∑minter,Γ

l=1 (εu,� (zM,l bM ))0,M (εv,� (zM,l bM ))0,M∑minter,Γ

l=1 || � (zM,l bM )||20,M
,

Zh,inter,Γ(f ;v)(5.28)

:= −
∑

F∈Einter,Γ
M∈Minter,Γ,M=K1∪K2,

and ∂K1∩∂K2=F
orM=K,∂K∩Γ=F

∑minter,Γ

l=1 (f, zM,l bM )0,M (εv,� (zM,l bM ))0,M∑minter,Γ

l=1 || � (zM,l bM )||20,M
,

modify the term
∫
Γ
RΓ

h((εu) · n)RΓ
h((εv) · n) in (3.21) by

(5.29)
∑

F∈Einter,Γ

(Rinter,Γ
h ([(εu) · n]), Rinter,Γ

h ([(εv) · n]))0,F ,

and finally modify the notation SΓ in (3.31), (3.32), and (4.3) by Sinter,Γ. With these
modifications, one may follow the same routine in the previous sections to obtain
similar stability results and error estimates.

Remark 5.5. In Remark 3.2, we mentioned that, to consider that Sdiv(K), SΓ(K),
and Scurl(K) are simpler polynomial spaces, one may replace ε by a suitable piecewise
polynomial approximation, say, εh. This replacement does not affect the theory of
stability analysis and error estimates. Simply, one need only work with εh, but note
that such replacement introduces inconsistent error terms in Lemma 5.1 as follows:

(div ((ε− εh)u), R̆h(div(εh vh))) for the local L2 projection method,(5.30) ∑
K∈Ch

((ε− εh)u,� R̆h(div(εh vh)))0,K for the pseudolocal L2 projection method,(5.31)

∑
K∈Ch

∑mdiv

l=1 ((ε− εh)u,� (vK,l bK))0,K (εh vh,� (vK,l bK))0,K∑mdiv

l=1 || � (vK,l bK)||20,K
,(5.32)

∑
F⊂Γ

with F⊂∂K

∑mΓ

l=1 ((ε− εh)u,� (zK,l bF ))0,K (εh vh,� (zK,l bF ))0,K∑mΓ

l=1 || � (zK,l bF )||20,K
,(5.33)

N∑
j=1

1

|Σj |

∫
Σj

((ε− εh)u) · n
∫

Σj

(εh vh) · n for the local L2 projection method.(5.34)
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Assume that ε is smooth enough, say, εij ∈ H
5
2 , 1 ≤ i, j ≤ 3. Let εh be taken

as a C0 finite element interpolant to ε: for the pseudolocal L2 projection method,
εij,h|K ∈ P+

2 (K) for all K ∈ Ch, where P+
2 (K) denotes the quadratic element P2(K)

plus one element bubble, while for the local L2 projection method, εij,h|K ∈ P�
2 (K)

for all K ∈ Ch, where P�
2 (K) denotes the quadratic element P2(K) plus four face

bubbles. Recall that K ∈ Ch is a tetrahedron. These bubbles ensure that εij,h, 1 ≤ i,
j ≤ 3, satisfy the interpolation property

(5.35)

∫
K

(εij − εij,h) = 0 ∀K ∈ Ch for the pseudolocal L2 projection method

and
(5.36)∫

F

(εij − εij,h) = 0 ∀F ∈ ∂ K,∀K ∈ Ch, for the local L2 projection method.

We have from [13, 20] that

(5.37) ||ε− εh||0,K + hK |ε− εh|1,K ≤ C h
5
2

K |ε| 5
2 ,K

∀K ∈ Ch,

where | · |1 denotes the seminorm of H1. Note that εh satisfies the same uniform
ellipticity property as ε for a suitably small h.

It suffices to explain how to estimate (5.30) for the local L2 projection method
and (5.31) for the pseudolocal L2 projection method. Error terms (5.32)–(5.34) can
be estimated similarly. We first consider (5.30). Since we have assumed that u ∈
(Hs(Ω))3 with s > 1

2 , letting

(5.38) ū|K =
1

|K|

∫
K

u ∀K ∈ Ch,

we can obtain

(5.39)

(div ((ε− εh)u), R̆h(div(εh vh))) =
∑

K∈Ch

R̆h(div(εh vh))
∑

F⊂∂ K

∫
F

((ε− εh)u) · n

=
∑

K∈Ch

R̆h(div(εh vh))
∑

F⊂∂ K

∫
F

((ε− εh) (u − ū)) · n

≤ C hs ||u||s ||R̆h(div(εh vh))||0.

We next consider (5.31). Since u ∈ (Hs(Ω))3 with s ≥ 0, we have

(5.40)∑
K∈Ch

((ε− εh)u,� R̆h(div(εh vh)))0,K =
∑

K∈Ch

� R̆h(div(εh vh)) ·
∫
K

(ε− εh)u

=
∑

K∈Ch

� R̆h(div(εh vh)) ·
∫
K

(ε− εh) (u − ū)

≤ C hs ||u||s ||R̆h(div(εh vh))||h,
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Fig. 2. L-domain and uniform partition Ch.

where we have used the norm equivalence between || · ||0 and || · ||h (since || · ||h is a
norm induced from the trapezoidal quadrature scheme in (3.25)); see [13, 8].

If assuming εij ∈ W 1,∞, 1 ≤ i, j ≤ 3, then for the pseudolocal L2 projection
method, we may choose εh as a piecewise linear (plus one element bubble) continuous
approximation with εij,h|K ∈ P+

1 (K), where P+
1 (K) denotes the linear polynomial

space plus one element bubble (so εij,h|K can satisfy (5.35)). From [3, 19, 13] we have
||ε−εh||0,∞,K ≤ C hK |ε|1,∞,K for all K ∈ Ch, and we can obtain an estimate similar to
(5.40); while for the local L2 projection method, we may choose εh as a piecewise linear
(plus four face bubbles) continuous approximation of ε with εij,h|K ∈ P�

1 (K), where
P�

1 (K) denotes the linear polynomial space plus four face bubbles (so εij,h|K can

satisfy (5.36)). From [3, 19, 13] we have ||ε−εh||0,K +hK |ε−εh|1,K ≤ C h
5/2
K |ε|1,∞,K

for all K ∈ Ch, and we can obtain an estimate similar to (5.39).
Note that we may also choose εh as a suitable discontinuous piecewise polynomial

approximation to ε, provided that (5.35) (or (5.36)) and the corresponding interpo-
lation error estimates are satisfied. For example, for the pseudolocal L2 projection
method, we may choose a discontinuous piecewise constant εh, with εij,h|K ∈ P0(K)
for all K ∈ Ch. In that case, one should work with εh following a similar modifying
routine for discontinuous materials as highlighted in Remark 5.4.

6. Numerical experiments. In this section we perform some numerical tests
for the local L2 projection method. We consider a two-dimensional problem, with an
L domain Ω = [−1, 1] × [−1, 1] \ [0, 1] × [−1, 0] (see Figure 2).

The continuous problem reads: Find u such that

curlu = g, div u = f in Ω, u · n = χ on Γ = ∂ Ω.

We first consider a case of nonsmooth solution and take

u = �
(
r

2
3 cos

(
2 θ

3

))
,

where x = r cos(θ), y = r sin(θ), and r is the distance to the reentrant corner (0, 0)
(at the origin) of opening angle 3π/2. We determine g := curlu, f := div u, and
χ := u · n|Γ. We also consider a case of smooth solution and take

u = (sin(πx) cos(πy)/2π, cos(πx) sin(πy)/2π)t.

The regularity for the first u is (H
2
3−ε)2 for any ε ∈ (0, 1), and from the theoretical

result obtained the error reduction ratio should be approximately 22/3 ≈ 1.586. The
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Table 1

Relative errors in L2 norm for nonsmooth solution.

h=0.5 h=0.25 h=0.125 h=0.0625
||u−uh||0

||u||0 0.119837950 0.075507231 0.047692602 0.030055711

Table 2

Relative errors in L2 norm for smooth solution.

h=0.5 h=0.25 h=0.125 h=0.0625
||u−uh||0

||u||0 0.053623993 0.008008719 0.001067674 1.361203187 × 10−4

second u is infinitely smooth; the error reduction ratio should be around 8 since Uh

corresponds to a quadratic element. (In two dimensions, the linear element enriched
with edge bubbles is none other than the quadratic element.) The calculated results
are listed in Tables 1 and 2 as follows. From Table 1 we see that the error reduction
ratio is consistent with the predicted value 1.586, and from Table 2 we see that the
error reduction ratio is approximately the predicted value 8 as h decreases. These
computational results confirm our theoretical estimates.

Acknowledgment. The authors are very thankful to the anonymous referees
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Abstract. A general concept for the reduction of cancellation problems in the evaluation of
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1. Taylor sections of entire functions: Cancellation and how to reduce
it. Let f be an entire function given by its Taylor series

f(z) =
∞∑
ν=0

aνz
ν =

∞∑
ν=0

f (ν)(0)

ν!
zν (z ∈ C)

with respect to the origin. Of course, one idea to numerically evaluate f(z) is to
truncate the series, that is, to take, for n sufficiently large,

sn(f, z) :=

n∑
ν=0

aνz
ν

as an approximation to f(z). However, it turns out that, in many interesting cases,
serious cancellation problems arise (for a discussion of cancellation effects in general,
see, e.g., [SW]), if z is not restricted to a more or less small neighborhood of the
origin. The main reason is that the maximal term

μ(r) := μf (r) := max
ν∈N0

|aν | rν (r ≥ 0)

may happen to be much larger than the modulus of the function value f(z) (where
|z| = r) itself.

How can this phenomenon be quantified?
We write

sn,p(f, z) :=

n∑
ν=0

aνz
ν

for the nth partial sum of the above Taylor series of f if the computations are per-
formed in floating point arithmetic with a precision of p decimal digits and with input
data aν and z given with an accuracy of p digits. In this situation, the loss of exact
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digits in the evaluation of at least one of the values Re sN(z),p(f, z) and Im sN(z),p(f, z)
may be approximately measured by

df (z) := log10 μf (|z|) − log10 |f(z)|

for N(z) sufficiently large (actually, as is seen, e.g., from [He, p. 27], a more precise
lower bound would be [df (z)− log10(2

√
2)] with [x] denoting the greatest integer not

exceeding a real number x, but for our considerations this difference can be ignored).
We always assume that the number of terms N(z) = Nf (z) is taken so large that

errors do not result from truncation of the series (so, increasing the number of terms
does not improve the exactness).

This implies that the number of exact digits (here and in what follows always
understood in the sense of the minimal number in both the real and the imaginary
part) is approximately given by max(p− df (z), 0) in the case of computations with p
exact figures. So one can run into serious problems, if df (z) turns out to be large.

Our aim is to reduce such problems by modifying f in an appropriate way. Before
we go into the details, we first describe df , for entire functions of finite order and type
and of regular growth, approximately in terms of the indicator function of f . For that
purpose we recall some definitions and facts concerning the growth of entire functions.

The order ρ = ρf of a (transcendental) entire function f is given by

ρf := lim sup
r→∞

log logMf (r)

log r
,

where

Mf (r) := max
|z|=r

|f(z)|.

We suppose that 0 < ρ < ∞. Then the type τ = τf of f is defined as

τf := lim sup
r→∞

logMf (r)

rρ
.

Since

logμf (r)/ logMf (r) → 1 (r → ∞)

(see, e.g., [Ru, Theorem 10.1]), we can replace Mf (r) in the above definitions by μf (r).
Moreover, the growth of f along rays emanating from the origin is asymptotically
described by its indicator function h = hf , given by

hf (ϑ) := lim sup
r→∞

log |f(reiϑ)|
rρ

(ϑ ∈ [−π, π]).

It is well known that hf is continuous and that max[−π,π] hf (ϑ) = τ .
Finally, if f has completely regular growth (for a definition, see, e.g., [Le]), the

lim supr→∞ in the above definitions can be replaced by lim r→∞
r/∈E

, where E is a so-called

C0-set, that is, E is the union of circles {z : |z − zj | < rj} with

lim
R→∞

1

R

∑
|zj |<R

rj = 0.
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Fig. 1. Indicator function of f(z) = erfc(−z).

Hence

lim
r→∞
r/∈E

log(10) · df (reiϑ)

rρ
= τf − hf (ϑ) =: δf (ϑ),

which means that the loss of exact decimal digits for z = reiϑ is (up to exceptional
values, e.g., near the zeros of f) asymptotically described by δf (ϑ) in the sense that

df (reiϑ) ∼ δf (ϑ)rρ/ log(10) (r → ∞, r �∈ E).

Let us consider the following example.
Example. Suppose that f(z) := 1 + erf(z), where erf denotes the (complex) error

function; that is,

erf(z) :=
2√
π

∫ z

0

e−t2dt .

Then, by the definition of the complementary error function erfc, we have

f(z) = erfc(−z) .

Moreover, from the asymptotic behavior of erfc near ∞ (see, e.g., [AS, Eq. 7.1.23]),
we obtain that ρf = 2 and

hf (ϑ) =

{
0, |ϑ| ≤ π/4,

− cos(2ϑ), |ϑ| > π/4.

See Figure 1. In Algorithm 680 of Poppe and Wijers (see [PW1], [PW2]), which
is based on Gautschi’s algorithm [Ga] and which may be viewed as a benchmark for
algorithms concerning the evaluation of the complex error function (see, e.g., [Wei]),
truncation of the Taylor series

(1) f(z) = 1 + erf(z) = 1 +
2√
π

∞∑
ν=0

(−1)νz2ν+1

(2ν + 1)ν!

is performed in the second quadrant

S = {z = reiϑ : r ≥ 0, π/2 ≤ ϑ ≤ π}
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Fig. 2. 16 − δf (ϑ)r2/ log(10) in the second quadrant S.
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Fig. 3. ef,sN(z),16(f,·)(z) in S.

and for |z| = r sufficiently small. Moreover, the calculation in the remaining quadrants
is reduced to the second one by elementary operations.

According to the above considerations, we are faced with a loss of significant
decimal digits of about

δf (ϑ)r2/ log(10) =

{
r2/ log(10), |ϑ| ≤ π/4,

(1 + cos(2ϑ))r2/ log(10), |ϑ| > π/4,

for z = reiϑ and r large. So in S, the Taylor sections behave well on the imaginary
axis, and the “worst case” appears in the neighborhood of the negative semiaxis
(where erfc(−z) is very small).

Figure 2 shows the values of 16− δf (ϑ)r2/ log(10) which, according to the above
remarks, may be viewed as a theoretical measure for the exact digits if computations
are performed in floating point arithmetic with a fixed precision of 16 decimal digits.

Moreover, Figure 3 shows ef,sN(z),16(f,·)(z), where

(2) ef,g(z) := − log10

(
|f(z) − g(z)|

|f(z)|

)
,

that is, the decimal logarithm of the relative error when replacing f(z) by g(z). The
value ef,sN(z),16(f,·)(z) measures approximately the smaller of the two numbers of
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exact digits of the real part and the imaginary part of f(z), if f(z) is approximated
by sN(z),16(f, z) and the computations are performed in double precision arithmetic,
providing an accuracy of about 16 decimal digits.

The reference values for f(z) were produced using exact arithmetic from IRRAM
(see [Mue1]). Since the usual accuracy requirement of special function routines is 15
digits in double precision, we have cut off the error at a level of 15 digits. Therefore,
all values on the 15-digit level represent approximations within the usual tolerance.

The numerical results shown in Figure 3 essentially fit to the theoretical values
from Figure 2 and thus support the above considerations about the loss of exact
decimal digits.

How can such cancellation problems be reduced? One idea is to modify the
function f in such a way that, at least for certain parts of the complex plane, the
order of magnitude of the modified f̃ and μf̃ do not differ as much as for the function

f . Then the Taylor sections sn(f̃ , z) can be computed with less cancellation, and
an approximation of f(z) may be obtained from sn(f̃ , z). Such a modification may
consist in a multiplication of f by a certain elementary function. More precisely, the
general idea is the following: Suppose that S ⊂ C is a given set (where f is to be
numerically evaluated).

(i) Choose an elementary (entire) function ϕ = ϕS so that

dfϕ(z) = log10 μfϕ(|z|) − log10 |f(z)ϕ(z)|

is “small” for z ∈ S and ϕ(z) �= 0 in S.
(ii) Take 1

ϕ(z)sN(z),p(fϕ, z) (for N(z) sufficiently large) as an approximation of

f(z) for z ∈ S.
Of course, the question arises of how to choose ϕ appropriately. If f and ϕ are of the
same order ρ (and of completely regular growth), then

hfϕ = hf + hϕ,

and therefore

δfϕ = τfϕ − hf − hϕ.

If S = {reiϑ : r ≥ 0, ϑ ∈ Θ} is given, then ϕ = ϕS should be chosen in such a way
that

max
ϑ∈Θ

δfϕ(ϑ) = max
ϑ∈Θ

( max
[−π,π]

(hf + hϕ) − hf (ϑ) − hϕ(ϑ))

is small (compare also the considerations in [Mue2]).
If ϕ is taken from a parametrized family Φ = {ϕ(a, ·) : a ∈ A}, we can try to

solve the problem

max
ϑ∈Θ

( max
[−π,π]

(hf + hϕ(a,·)) − hf (ϑ) − hϕ(a,·)(ϑ)) → min
a∈A

.(3)

In the next section we study the case of f being the (complementary) error function
in some detail.

2. The error function: Reducing errors. We again consider the complemen-
tary error function

f(z) = erfc(−z) (z ∈ C).
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Since f is of order 2, an evident choice for Φ is

Φ = {ϕ(a, ·) : a ∈ A}, ϕ(a, z) := eaz
2

(z ∈ C),

where A ⊂ C. We (first) restrict our investigations to the case A = R. Then

hϕ(a,·)(ϑ) = a cos(2ϑ) (ϑ ∈ [−π, π]),

and thus, according to section 1,

(hf + hϕ(a,·))(ϑ) =

{
a · cos(2ϑ), |ϑ| ≤ π/4,

(a− 1) cos(2ϑ), |ϑ| > π/4.

In particular, we obtain

max
[−π,π]

(hf + hϕ(a,·)) = max(a, |a− 1|) =: τ(a),

and so the optimization problem (3) here reads as

max
ϑ∈Θ

(
τ(a) − (hf + hϕ(a,·))(ϑ)

)
→ min

a∈R

.(4)

If Θ contains one of the points ±π/4 or ±3π/4 (where hf − hϕ(a,·) vanishes), then
obviously the maximum in (4) is ≥ τ(a), which is minimal exactly for a = 1/2. For
a = 1/2 and |ϑ| ≤ 3π/4 we find

τ(a) − (hf + hϕ(a,·))(ϑ) =
1

2
(1 − | cos(2ϑ)|) ≤ 1

2
,

so a = 1/2 turns out to be the (unique) solution of (4) for all subsets Θ of the interval
[−3π/4, 3π/4], with {±π/4,±3π/4} ∩ Θ �= ∅.

As already mentioned above, in the algorithm of Poppe and Wijers, truncation
of the Taylor series

f(z) = 1 +
2√
π

∞∑
ν=0

(−1)νz2ν+1

(2ν + 1)ν!

is performed in the second quadrant S = {z = reiϑ : r ≥ 0, π/2 ≤ ϑ ≤ π} and for
|z| = r sufficiently small.

From the above considerations, the advice is to use Taylor sections of

(5) (fϕ)(z) := f(z)ϕ

(
1

2
, z

)
= erfc(−z)ez

2/2

instead.
The following figures show the indicator function of fϕ and the corresponding

approximation for the number of exact digits.
For the computation of the Taylor sections of (5) it is important to have a rea-

sonable representation for the coefficients.
Proposition 1. For z ∈ C we have

(fϕ)(z) = f(z)ϕ

(
1

2
, z

)
=

∞∑
ν=0

bνz
ν ,
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with

(6) bν =

⎧⎪⎪⎨⎪⎪⎩
1
l!2l

if ν = 2l,

1
Γ(l + 3/2) 2l

l∑
k=0

(
k − 1/2

k

)
(−1)k if ν = 2l + 1.

Proof. For α > 0 the function

Mα(z) :=

∞∑
k=0

zk

Γ(k/α + 1)
(z ∈ C)

is called the Mittag–Leffler function of order α. It is well known that for α = 2
the Mittag–Leffler function is closely related to the complementary error function
according to

erfc(−z) = M2(z)e
−z2

.

Hence, in terms of the Cauchy product we get

f(z)ϕ

(
1

2
, z

)
= M2(z)e

− 1
2 z

2

=

∞∑
ν=0

bνz
ν ,

with

(7) bν =

⎧⎪⎪⎨⎪⎪⎩
1
l!2l

if ν = 2l,

1
Γ(l + 3/2)

l∑
k=0

(
l + 1/2

k

)(−1

2

)k

if ν = 2l + 1.

So it remains to consider the case ν = 2l + 1.
The binomial theorem and an index shift show that, for x ∈ R, z ∈ C, and

n ∈ N0, we have

n∑
k=0

(
x− n + k

k

)
zk(1 + z)n−k =

n∑
μ=0

zμ
μ∑

k=0

(
x− n + k

k

)(
n− k

μ− k

)
.

Furthermore, we obtain for a, b ∈ C, μ ∈ N0

μ∑
k=0

(
a + k

k

)(
b + μ− k

μ− k

)
=

(
a + b + μ + 1

μ

)
.

Setting a = x− n, b = n− μ we have

(8)
n∑

k=0

(
x + 1

k

)
zk =

n∑
k=0

(
x− n + k

k

)
zk(1 + z)n−k.

Then applying (8) and setting x = l− 1/2, n = l, z = −1/2 in (7), we finally get
the assertion.

For

mk :=

(
k − 1/2

k

)
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Fig. 4. ef,sN(z),16(fϕ,·)/ϕ(z) (solid line) and ef,sN(z),16(f,·)(z) (dotted line) in S.
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Fig. 5. 16− δfϕ(ϑ)r2/ log(10) (solid line) and 16− δf (ϑ)r2/ log(10) (dotted line) in the second
quadrant S.

we have mk+1 = k+1/2
k+1 mk, k ∈ N0. Thus, the sum

∑l
k=0

(
k−1/2

k

)
(−1)k in (6) and

therefore also the Taylor coefficients bν of (5) can be evaluated recursively (note that
Γ(l + 3

2 ) = (l + 1
2 )(l − 1

2 ) . . . 1
2

√
π).

Even more suitable for numerical purposes is the two-term recursion

(ν + 1)(ν + 2)bν+2 = bν + bν−2, b−2 := b−1 := 0, b0 = 1, b1 =
2√
π

for the coefficients bν , which may be found by applying the above relations twice. More
directly, this recursion follows from the fact that F := fϕ satisfies the differential
equation F ′′ = (1 + z2)F (which was pointed out by one of the referees).

We take 1
ϕ(z)sN(z),16(fϕ, z) (for N(z) sufficiently large) as an approximation of

f(z) for z ∈ S of small modulus and compare the results with the exact values of
f(z), which again were produced using exact arithmetic (IRRAM).

The numerical results shown in Figure 4 support our theoretical considerations
which are illustrated in Figure 5 and demonstrate the advantages of this method
compared to the computation of the Taylor sections of f (see Figures 2 and 3).

Although there is an improvement, the Taylor sections of fϕ also turn out to be
numerically unstable with respect to cancellation near the negative axis, where δfϕ is
maximal (cf. Figure 6). So the question arises whether there is an appropriate entire
function ψ such that δfψ(ϑ) is smaller than δfϕ(ϑ) for ϑ ≈ π.



2572 W. GAWRONSKI, J. MÜLLER, AND M. REINHARD

Fig. 6. The indicator functions of fϕ (solid curve) and f (dotted curve).

−1

0

1

−π −π/4 ππ/4

Fig. 7. The indicator functions of fψ (solid curve) and f (dotted curve).

If we take

ψ(z) = erfc(z) e2z2

,

then we obtain for the indicator function

hfψ(ϑ) =

{
0, π/4 ≤ |ϑ| ≤ 3π/4,

cos(2ϑ), otherwise,

and therefore δfψ(π) = 0. See Figure 7.
Thus it is reasonable to take 1

ψ(z)sN(z),16(fψ, z) as an approximation of f(z)

in particular close to the negative real axis (see Figure 8). The multiplication by
1/ψ(z) in the second quadrant S requires the evaluation of erfc(w) in the fourth (or
the first) quadrant. In this part of the plane, the Taylor sections of fϕ from (5)
turn out to be sufficiently well behaved. So we actually replace ψ(z) by ψ̃(z) :=

e2z2

sN(−z),16(fϕ,−z)/ϕ(−z).
In order to find the Taylor coefficients of fψ with respect to the origin we just

have to apply the Cauchy product again. This leads to

(9) (fψ)(z) = erfc(−z)ψ(z) = M2(z) M2(−z) =

∞∑
ν=0

cνz
ν ,
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Fig. 8. 16 − δfψ(ϑ)r2/ log(10) (solid line) and 16 − δf (ϑ)r2/ log(10)(dotted line) in S.

with

cν =

⎧⎪⎨⎪⎩
0 if ν is odd,
ν∑

μ=0

(−1)μ

Γ( 1
2μ + 1)Γ( 1

2 (ν − μ) + 1)
if ν is even.

As in the case of fϕ above, the coefficients cν , ν even, can be evaluated by
recursion.

Setting r := ν/2, we write

dr :=

2r∑
μ=0

(−1)μ

Γ( 1
2μ + 1)Γ(r + 1 − 1

2μ)
, r ∈ N0.

We get

(10) dr =
2r

r!
− sr−1,

with

sn :=

n∑
ν=0

1

Γ(ν + 3
2 )Γ(n− ν + 3

2 )
, n ∈ N0, and s0 =

4

π
.

Then we can obtain that

(11) sn+1 =
2

n + 2
sn +

1

(n + 2)Γ( 3
2 )Γ(n + 5

2 )
, n ∈ N0, s0 =

4

π
.

If we understand (11) as a difference equation, we get

(12) sn =
2n

(n + 1)!

n∑
ν=0

ν!

2νΓ( 3
2 )Γ(ν + 3

2 )
.

For the recursion to evaluate the coefficients dr we obtain

dr+1 −
2

r + 1
dr =

2r+1

(r + 1)!
− sr −

2r+1

(r + 1)!
+

2

r + 1
sr−1 = − 1

(r + 1)Γ( 3
2 )Γ(r + 3

2 )
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and therefore

dr+1 =
2

r + 1
dr −

2

(r + 1)π

r∏
ν=0

2

2ν + 1
, r ∈ N0, a0 = 1.

It turns out, however, that this recursion tends to be unstable if performed upwards.
Fortunately, this problem no longer occurs if we apply it in the backward direction,
that is, we compute with an appropriate starting value dR(z) (or an approximation

d̃R(z))

dr =
r + 1

2
dr+1 +

1

π

r∏
ν=0

2

2ν + 1

for r = R(z) − 1, . . . , 1, 0. Of course, in this case the question arises of how to get
the starting value. Since dr tends to 0 very rapidly as r tends to ∞, it is possible to
simply take d̃R(z) = 0 for R(z) sufficiently large.

In our case suitable values of R(z) could be computed explicitly by using the
representation

(13) dr =
4

πr!

∫ 1

0

(1 − ξ2)r

1 + ξ2
dξ, r ∈ N0,

which follows from (10) and (12) after some routine calculations employing Euler’s
Beta integral. From (13) we also have the estimate

√
r r! dr ≤ 2√

π

being asymptotically sharp as r → ∞.
Similarly as in the case of fϕ, a two-term recursion for the coefficients cν can be

obtained from the fact that the function G := fψ satisfies the differential equation

G′′ = 4(1 − 2z2)G + 6zG′ − 8

π

(also pointed out by the referee), namely,

(ν + 1)(ν + 2)cν+2 = (4 + 6ν)cν − 8cν−2.

This recursion is again stable (only) in the backward direction. Since now we have a
second-order homogeneous equation, and since the exact value c0 = 1 is known, the
backward recurrence may be started with the (false) values ĉK = 1 and ĉK+2 = 0
(for K large enough), and then the exact values are obtained by rescaling with factor
c0/ĉ0 = 1/ĉ0 (Miller’s algorithm; cf. [Wi, section 4]).

The numerical results shown in Figure 9 demonstrate the efficiency of the proposed
method for the evaluation f(z) in particular near the negative real axis.

Obviously, the question arises of how the proposed method compares with the
existing software for the computation of the error function. Algorithm 680 of Poppe
and Wijers works with νth convergents of a certain continued fraction of f(z) for
z outside of a bounded region (and with ν depending on z). As already mentioned
above, for z near the origin partial sums of the series (1) are used as an approximation.
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Fig. 9. ef,sN(z),16(fψ,·)/ψ̃(z) (solid line) and ef,sN(z),16(f,·)(z) (dotted line) in S.

Moreover, there is an intermediate region in which Taylor sections not centered at the
origin are applied. In this case, the computation of the coefficients is again based on
continued fractions. Thus, the most challenging part is the intermediate region.

A combination of the continued fractions in the outer region as in Algorithm 680
and the approximations based on the Taylor expansions of fϕ and fψ as above yields
an accuracy of at least 14 digits in the second quadrant near the axis but not in an
intermediate part close to the line arg(z) = 3π/4.

It turns out that a further improvement concerning the accuracy is possible.
Multiplication of fψ with ϕ(−1/2, z) = e−z2/2 results in the indicator function

hfψϕ(−1/2,·)(ϑ) =
1

2
| cos(2ϑ)| .

The above theory shows that fψϕ(−1/2, ·) shares the advantages of fϕ and fψ con-
cerning the reduction of cancellation. We were, however, not able to find a reasonable
recursion relation for the coefficients, and, unfortunately, the computation from the
coefficients of fψ and ϕ(−1/2, ·) by convolution leads again to cancellation. So it
seems necessary to evaluate the coefficients using exact arithmetic and then to imple-
ment them as data.

If we agree with the same disadvantage, then we can do even better in the area
in which we are interested, namely, near the line arg(z) = 3π/4.

With

a := e3πi/4 − 1/2

and ϕ(a, z) = eaz
2

, we obtain for fψϕ(a, ·) the indicator function

hfψϕ(a,·)(ϑ) = hfψϕ(−1/2,·)(ϑ) + cos(2ϑ− 3π/2)

(see Figure 10), which is comparably ”large” for ϑ ≈ 3π/4.
Numerical experiments confirm that a combination of the four types of approxi-

mants based on the continued fractions and the Taylor series of fϕ, fψ, and fψϕ(a, ·)
provide a reasonable method in the sense that at least 14 exact figures are reached in
the second quandrant (and thus in all of the complex plane; cf. [PW1]).
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Fig. 10. Indicator function of fψϕ(a, ·).

Conclusion. The above numerical results have shown that an essential improve-
ment with respect to cancellation is possible in the case of the error function if the
growth of the function (measured in terms of the indicator function) is taken into
account. Of course, similar ideas apply to other entire functions as, for example,
confluent hypergeometric functions or Mittag–Leffler functions. In these cases, the
corresponding indicator functions are also easily derived from the asymptotic behav-
ior.

Acknowledgment. The authors express their gratitude to two referees whose
expertise led to an improvement of the paper.
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CONVERGENCE OF A VARIANT OF THE ZIPPER ALGORITHM
FOR CONFORMAL MAPPING∗

DONALD E. MARSHALL† AND STEFFEN ROHDE†

Abstract. In the early 1980s an elementary algorithm for computing conformal maps was
discovered by R. Kühnau and the first author. The algorithm is fast and accurate, but convergence
was not known. Given points z0, . . . , zn in the plane, the algorithm computes an explicit conformal
map of the unit disk onto a region bounded by a Jordan curve γ with z0, . . . , zn ∈ γ. We prove
convergence for Jordan regions in the sense of uniformly close boundaries and give corresponding
uniform estimates on the closed region and the closed disc for the mapping functions and their
inverses. Improved estimates are obtained if the data points lie on a C1 curve or a K-quasicircle.
The algorithm was discovered as an approximate method for conformal welding; however, it can also
be viewed as a discretization of the Loewner differential equation.

Key words. numerical conformal mapping, zipper algorithm, hyperbolic geodesics

AMS subject classifications. Primary, 30C30; Secondary, 65E05

DOI. 10.1137/060659119

Introduction. Conformal maps have applications to problems in physics, engi-
neering, and mathematics, but how do you find a conformal map, say, of the upper-half
plane H to a complicated region? Rather few maps can be given explicitly by hand,
so that a computer must be used to find the map approximately. One reasonable way
to describe a region numerically is to give a large number of points on the boundary
(see Figure 1). One way to say that a computed map defined on H is “close” to a
map to the region is to require that the boundary of the image be uniformly close to
the polygonal curve through the data points. Indeed, the only information we may
have about the boundary of a region is this collection of data points.

In the early 1980s an elementary algorithm was discovered independently by
Kühnau [K] and the first author. The algorithm is fast and accurate, but conver-
gence was not known. The purpose of this paper is to prove convergence in the sense
of uniformly close boundaries and discuss related numerical issues. In many applica-
tions both the conformal map and its inverse are required. One important aspect of
the algorithm that sets it apart from others is that this algorithm finds both maps
simultaneously.

The algorithm can be viewed as an approximate solution to a conformal welding
problem or as a discretization of the Loewner differential equation. The approxima-
tion to the conformal map is obtained as a composition of conformal maps onto slit
half planes. Osculation methods also approximate a conformal map by repeated com-
position of simple maps. See Henrici [H] for a discussion of osculation methods and
uniform convergence on compact sets. The algorithms of the present article follow the
boundary of a given region much more closely than, for instance, the Koebe algorithm
and give uniform convergence on all of H rather than just on compact subsets. Uni-
form convergence on the closure of the region is particularly important in applications
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0201435 and DMS-0244408.
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that involve boundary values of functions defined on the region. It is possible to use
the techniques of this paper to prove that a version of the algorithm is an osculation
method for smooth curves, and therefore by the results in [H] repeated applications
converge, in the weaker sense, uniformly on compact subsets. However, prior to this
article, even a proof that these methods satisfied the osculation family conditions was
not known.

Depending on the type of slit (hyperbolic geodesic, straight line segment, or cir-
cular arc) we actually obtain different versions of this algorithm. These are described
in section 1. We then focus our attention on the “geodesic algorithm” and study its
behavior in different situations. The easiest case is discussed in section 2: If the data
points z0, z1, . . . are the consecutive contact points of a chain of disjoint discs (see
Figures 7 and 8 below), then a simple but very useful reinterpretation of the algo-
rithm, together with the hyperbolic convexity of discs in simply connected domains
(Jørgensen’s theorem), implies that the curve produced by the algorithm is confined
to the chain of discs (Theorem 2.2). One consequence is that for any bounded simply
connected domain Ω, the geodesic algorithm can be used to compute a conformal map
to a Jordan region Ωc (“c” is for “computed”) so that the Hausdorff distance between
∂Ω and ∂Ωc is as small as desired (Theorem 2.4).

In section 3, we describe an extension of the ideas of section 2 that applies to
a variety of domains such as smooth domains or quasiconformal discs with small
constants, with better estimates. For instance, if ∂Ω is a C1 curve, then the geodesic
algorithm can be used to compute a conformal map to a Jordan region Ωc with
∂Ωc ∈ C1 so that the boundaries are uniformly close and so that the unit tangent
vectors are uniformly close (Theorem 3.10). The heart of the convergence proof in
these cases comprises the technical “self-improvement” in Lemmas 3.5 and 3.6. In
fact, this approach constituted our first convergence proof.

In sections 4 and 5, we show how estimates on the distance between boundaries
of Jordan regions give estimates for the uniform distance between the corresponding
conformal maps to D, and we apply these estimates to obtain bounds for the conver-
gence of the conformal maps produced by the algorithm. We summarize some of our
results as follows: If ∂Ω is contained in a chain of discs of radius ≤ ε with the data
points being the contact points of the discs, or if ∂Ω is a K-quasicircle with K close
to one and the data points are consecutive points on ∂Ω of distance comparable to ε,
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then the Hausdorff distance between ∂Ω and the boundary of the domain computed
by the geodesic algorithm, ∂Ωc, is at most ε. Moreover, the conformal maps ϕ,ϕc

onto D satisfy

sup
Ω∩Ωc

|ϕ− ϕc| ≤ Cεp,

where any p < 1/2 works in the disc-chain case, and p is close to one if K is close to
one. In the case of quasicircles, we also have

sup
D

|ϕ−1 − ϕ−1
c | ≤ Cεp

with p close to one. Better estimates are obtained for regions bounded by smoother
Jordan curves.

Section 6 contains a brief discussion of numerical results. The appendix has a
simple self-contained proof of Jørgensen’s theorem.

In a forthcoming paper we plan to address the convergence of the slit and zipper
variants of the algorithm. The basic conformal maps and their inverses used in the
geodesic algorithm are given in terms of linear fractional transformations, squares,
and square roots. The slit and zipper algorithms use elementary maps whose inverses
cannot be written in terms of elementary maps. In that paper we will discuss how
to divide the plane into four regions so that Newton’s method applied to variants of
the inverses will converge quadratically in each region. Newton’s method converges
so rapidly that it virtually provides a formula for the inverses.

1. Conformal mapping algorithms. The geodesic algorithm. The most
elementary version of the conformal mapping algorithm is based on the simple map
fa : H \ γ −→ H, where γ is an arc of a circle from 0 to a ∈ H which is orthogonal to
R at 0.

This map can be realized by a composition of a linear fractional transformation,
the square, and the square root map, as illustrated in Figure 2. The orthogonal circle

H \ γ H

γ
a

b

c−c

ic

c20

0

0

0

fa

z

1 − z/b

z2 + c2

√
z

Fig. 2. The basic map fa.
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√

(z − z1)/(z − z0)

ϕ2 = fζ2

ϕ3 = fζ3 ϕn = fζn

ϕn+1 = −
(

z

1 − z/ζn+1

)2

H

0

0

0

0

0

Ωc

ζn+1

Fig. 3. The geodesic algorithm.

also meets R orthogonally at a point b = |a|2/Re a and is illustrated by a dashed
curve in Figure 2. In Figure 2, c = |a|2/ Im a. Observe that the arc γ is opened to
two adjacent intervals at 0 with a, the tip of γ, mapped to 0. The inverse f−1

a can be
easily found by composing the inverses of these elementary maps in the reverse order.

Now suppose that z0, z1, . . . , zn are points in the plane. The basic maps fa can
be used to compute a conformal map of H onto a region Ωc bounded by a Jordan
curve which passes through the data points, as illustrated in Figure 3.

The complement in the extended plane of the line segment from z0 to z1 can be
mapped onto H with the map

ϕ1(z) = i

√
z − z1

z − z0
,

ϕ1(z1) = 0, and ϕ1(z0) = ∞. Set ζ2 = ϕ1(z2) and ϕ2 = fζ2 . Repeating this process,
define

ζk = ϕk−1 ◦ ϕk−2 ◦ · · · ◦ ϕ1(zk)

and

ϕk = fζk

for k = 2, . . . , n. Finally, map a half disc to H by letting

ζn+1 = ϕn ◦ · · · ◦ ϕ1(z0) ∈ R
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be the image of z0, and set

ϕn+1 = ±
(

z

1 − z/ζn+1

)2

.

The + sign is chosen in the definition of ϕn+1 if the data points have a negative
winding number (clockwise) around an interior point of ∂Ω, and otherwise the − sign
is chosen. Set

ϕ = ϕn+1 ◦ ϕn ◦ · · · ◦ ϕ2 ◦ ϕ1

and

ϕ−1 = ϕ−1
1 ◦ ϕ−1

2 ◦ · · · ◦ ϕ−1
n+1.

Then ϕ−1 is a conformal map of H onto a region Ωc such that zj ∈ ∂Ωc, j =
0, . . . , n. The portion γj of ∂Ωc between zj and zj+1 is the image of the arc of a circle
in the upper-half plane by the analytic map ϕ−1

1 ◦ · · · ◦ ϕ−1
j . In more picturesque

language, after applying ϕ1, we grab the ends of the displayed horizontal line segment
and pull, splitting apart or unzipping the curve at 0. The remaining data points move
down until they hit 0, and then each splits into two points, one on each side of 0,
moving further apart as we continue to pull.

As an aside, we make a few comments. As mentioned, ∂Ωc is piecewise analytic. A
curve is called C1 if the arc length parameterization has a continuous first derivative.
In other words, the direction of the unit tangent vector is continuous. It is easy to
see that ∂Ωc is also C1 since the inverse of the basic map fa in Figure 2 doubles
angles at 0 and halves angles at ±c. In fact, it is also C

3
2 (see Proposition 3.12). If

the data points {zj} lie on the boundary of a given region ∂Ω, the analyticity of ∂Ωc

also allows us in many situations (see Proposition 2.5 and Corollary 3.9) to extend
ϕc analytically across ∂Ωc so that the extended map is a conformal map of Ω onto
a region with boundary very close to ∂D. Note also that ϕ is a conformal map of
the complement of Ωc, C

∗ \ Ωc, onto the lower-half plane, C \ H, where C
∗ denotes

the extended plane. Simply follow the unshaded region in H in Figure 3. Finally,
we remark that it is easier to use geodesic arcs in the right-half plane instead of in
the upper-half plane when coding the algorithm because of the usual convention that
−π

2 < arg
√
z ≤ π

2 .
The slit algorithm. Given a region Ω, we can select boundary points z0, . . . , zn

on ∂Ω and apply the geodesic algorithm. We can view the circular arcs γ for the basic
maps fa as approximating the image of the boundary of Ω between 0 and a with a
circular arc at each stage. We can improve the approximation by using straight lines
instead of orthogonal arcs. So in the slit algorithm we replace the inverse of the maps
fa by conformal maps ga : H −→ H \ L, where L is a line segment from 0 to a.
Explicitly

ga(z) = C(z − p)p(z + 1 − p)1−p,

where p = arg a/π and C = |a|/pp(1 − p)1−p.
One way to see that ga is a conformal map is to note that as x traces the real line

from −∞ to +∞, ga(x) traces the boundary of H \L and ga(z) ∼ Cz for large z, and
then apply the argument principle. Another method would be to construct Re log ga
using harmonic measure, as in the first two pages of [GM]. As in the basic maps of the
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H

L

H \ L

p− 1 p 00

a

ga(z)

πp

Fig. 4. The slit maps.

geodesic algorithm, the line segment from 0 to a is opened to two adjacent intervals
on R by fa = g−1

a with fa(a) = 0 and fa(∞) = ∞. The map fa cannot be written
in terms of elementary functions, but an effective and rapid numerical inverse will be
described in a subsequent paper.

We note that, as in the geodesic algorithm, the boundary of the region Ωc com-
puted with the slit algorithm will be piecewise analytic. However, it will not be C1.
Indeed, if ga is the map illustrated by Figure 4, and if gb is another such map, then
gb ◦ ga forms a curve with angles 2πp and 2π(1 − p) on either side of the curve at
b = gb(0). Since analytic maps preserve angles, the boundary of the computed region
consists of analytic arcs with endpoints at the data points, and angles determined by
the basic maps. This will allow us to accurately compute conformal maps to regions
with (a finite number of) “corners” or “bends.”

The zipper algorithm. We can further improve the approximation by replacing
the linear slits with arcs of (nonorthogonal) circles. In this version we assume there
is an even number of boundary points, z0, z1, . . . , z2n+1. The first map is replaced by

ϕ1(z) =

√
(z − z2)(z1 − z0)

(z − z0)(z1 − z2)
,

which maps the complement in the extended plane of the circular arc through z0, z1, z2

onto H. At each subsequent stage, instead of pulling down one point ζk, we can find a
unique circular arc through 0 and the (images of) the next two data points ζ2k−1 and
ζ2k. By a linear fractional transformation 	a which preserves H, this arc is mapped
to a line segment (assuming the arc is not tangent to R at 0). See Figure 5.

The complement of this segment in H can then be mapped to H as described in
the slit algorithm, using g−1

d , where d = a/(1−a/b). The composition ha,c = g−1
d ◦ 	a

then maps the complement of the circular arc in H onto H. Thus at each stage we are
giving a “quadratic approximation” instead of a linear approximation to the (image
of) the boundary. The last map ϕn+1 is a conformal map of the intersection of a disc
with H where the boundary circular arc passes through 0, the image of z2n+1, and
the image of z0 by the composition ϕn ◦ · · · ◦ ϕ1. See Figure 6.

If the zipper algorithm is used to approximate the boundary of a region with
bends or angles at some boundary points, then better accuracy is obtained if the
bends occur only at even numbered vertices {z2n}, n 	= 0.

Conformal welding. The discovery of the slit algorithm by the first author came
from considering conformal weldings. (The simpler geodesic algorithm was discovered
later.) A decreasing continuous function h : [0,+∞) → (−∞, 0] with h(0) = 0 is
called a conformal welding if there is a conformal map f of H onto C \ γ, where γ is
a Jordan arc from 0 to ∞ such that f(x) = f(h(x)) for x ∈ [0,+∞). In other words,
the map f pastes the negative and positive real half lines together according to the
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Fig. 5. The circular slit maps.
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Fig. 6. The zipper algorithm.
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prescription h to form a curve. One way to approximate a conformal welding is to
prescribe the map h at finitely many points and then construct a conformal mapping
of H which identifies the associated intervals.

A related problem, which the first author considered in joint work with L. Car-
leson, is as follows: Given angles α1, α2, . . . , αn and 0 < x1 < x2 < · · · < xn, find
points yn < · · · < y1 < 0 so that there is a Schwarz–Christoffel map f of H onto a
region bounded by a polygonal arc tending to ∞ with angles αj , 2π−αj at the jth ver-
tex f(xj) = f(yj). This map welds the intervals [xj , xj+1] and [yj+1, yj ], j = 1, . . . , n.
Unfortunately, at the time the best Schwarz–Christoffel method was only fast enough
to do this problem with polygonal curves with up to 20 bends.

The basic maps ga can be used to compute the conformal maps of weldings.
Indeed, suppose y1 < 0 < x1, let a = x1/(x1−y1), and apply the map ga(z/(x1−y1)).
This map identifies the intervals [y1, 0] and [0, x1] by mapping them to the two “sides”
of a line segment L ⊂ H. Composing maps of this form will give a conformal map
ϕ : H → C \ γ such that ϕ([xj , xj+1]) = ϕ([yj+1, yj ]). The final intervals are welded
together using the map z2. The numerical computation of these maps is easily fast
enough to compose 105 basic maps, thereby giving an approximation to almost any
conformal welding. Conversely, given a Jordan arc γ connecting 0 to ∞, the associated
welding can be found approximately by using the slit algorithm to approximate the
conformal map from H to the complement of γ.

From this point of view, the slit or the geodesic algorithms find the conformal
welding of a curve (approximately). From the point of view of increasing the boundary
via a small curve γj from zj to zj+1, the algorithms are discrete solutions of Loewner’s
differential equation.

The idea of closing up such a region using a map of the form ϕn+1 was suggested
by L. Carleson, for which we thank him.

2. Disc-chains. The geodesic algorithm can be applied to any sequence of data
points z0, z1, . . . , zn, unless the points are out of order in the sense that a data point
zj belongs to the geodesic from zk−1 to zk for some k < j. In this section we
will give a simple condition on the data points z0, z1, . . . , zn which is sufficient to
guarantee that the curve computed by the geodesic algorithm is close to the polygon
with vertices {zj}.

Definition 2.1. A disc-chain D0, D1, . . . , Dn is a sequence of pairwise disjoint
open discs such that ∂Dj is tangent to ∂Dj+1 for j = 0, . . . , n−1. A closed disc-chain
is a disc-chain such that ∂Dn is tangent to ∂D0.

Any closed Jordan polygon P , for example, can be covered by (the closure of) a
closed disc-chain with arbitrarily small radii and centers on P (see Figure 7). There
are several ways to accomplish this, but one straightforward method is the following:
Given ε > 0, find pairwise disjoint discs {Bj} centered at each vertex and of radius
less than ε so that Bj ∩ P is connected for each j. Then

P \
⋃
j

Bj =
⋃

Lk,

where {Lk} are pairwise disjoint closed line segments. Cover each Lk with a disc-chain
centered on Lk tangent to the corresponding Bj at the ends, and radius less than half
the distance to any other Li, and less than ε.

Another method for constructing a disc-chain is to draw a Jordan curve using only
line segments of length 2−n parallel to the coordinate axes. The circles with radius
2−n−1 centered at the endpoints of these segments form a disc-chain. The points of
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Fig. 7. Disc-chain covering a polygon.

tangency are the midpoints of the line segments. Such curves arise from the Whitney
decomposition of a simply connected domain, which can be described as follows (see
also [GM, p. 21]). If Q is a square, let 2Q denote the square with the same center and
twice the diameter. Suppose Ω is a simply connected domain contained in the unit
square. Divide the unit square into four equal squares.

(a) Discard any square which does not intersect Ω.
(b) If Q is one of the remaining squares for which 2Q 	⊂ Ω, then divide Q into

four equal squares.
(c) Repeat (a), (b), and (c) for the squares obtained in (b).

If this process is repeated ad infinitum, we obtain a decomposition of Ω into squares
with the property that for each such square, the distance of the square to the boundary
of Ω is comparable to the side length of the square: 2Q ⊂ Ω and 5Q ∩ ∂Ω 	= ∅. Fix
n and z0 ∈ Ω with dist(z0, ∂Ω) > 2−n. Let Un be the union of all squares Q in the
Whitney decomposition with side length at least 2−n and let Ωn be the component of
the interior of Un containing z0. Then ∂Ωn is a polygonal Jordan curve consisting of
segments of length 2−n. The discs of radius 2−n−1 centered at the endpoints of these
segments form a disc-chain and the points of tangency are the midpoints of these
segments.

Yet another method for constructing a disc-chain would be to start with a hexag-
onal grid of tangent discs, all of the same size, and then select a sequence of these
discs which form a disc-chain. The boundary circles of a circle packing of a simply
connected domain can also be used to form a disc-chain. See, for example, any of the
pictures in Stephenson [SK].

If D0, D1, . . . , Dn is a closed disc-chain, set

zj = ∂Dj ∩ ∂Dj+1

for j = 0, . . . , n, where Dn+1 ≡ D0.
Theorem 2.2. If D0, D1, . . . , Dn is a closed disc-chain, then the geodesic al-

gorithm applied to the data z0, z1, . . . , zn produces a conformal map ϕ−1
c from the

upper-half plane H to a region bounded by a C1 and piecewise analytic Jordan curve
γ with

γ ⊂
n⋃
0

(Dj ∪ zj).

Proof. An arc of a circle which is orthogonal to R is a hyperbolic geodesic in
the upper-half plane H. Let γj denote the portion of the computed boundary, ∂Ωc,



2586 DONALD E. MARSHALL AND STEFFEN ROHDE

between zj and zj+1. Since hyperbolic geodesics are preserved by conformal maps, γj
is a hyperbolic geodesic in

C
∗ \

j−1⋃
k=0

γk.

For this reason, we call the algorithm the “geodesic” algorithm.
Using the notation of Figure 2, each map f−1

a is analytic across R \ {±c}, where

f−1
a (±c) = 0, and f−1

a is approximated by a square root near ±c. If f−1
b is another

basic map, then f−1
b is analytic and asymptotic to a multiple of z2 near 0. Thus

f−1
b ◦ f−1

a preserves angles at ±c. The geodesic γj then is an analytic arc which
meets γj−1 at zj with angle π. Thus the computed boundary ∂Ω is C1 and piecewise
analytic. The first arc γ0 is a chord of D0 and hence not tangent to ∂D0. Since the
angle at z1 between γ0 and γ1 is π, γ1 must enter D1, and so by Jørgensen’s theorem
(see Theorem A.1 in the appendix)

γ1 ⊂ D1,

and γ1 is not tangent to ∂D1. By induction

γj ⊂ Dj ,

j = 0, 1, . . . , n.
Disc-chains can be used to approximate the boundary of an arbitrary simply

connected domain.
Lemma 2.3. Suppose that Ω is a bounded simply connected domain. If ε > 0,

then there is a disc-chain D0, . . . , Dn so that the radius of each Dj is at most ε and
∂Ω is contained in an ε-neighborhood of

⋃
Dj.

Proof. We may suppose that Ω is contained in the unit square. Then for n
sufficiently large, the disc-chain constructed using the Whitney squares with side
length at least 2−n, as described above, satisfies the conclusions of Lemma 2.3.

The Hausdorff distance dH in a metric ρ between two sets A and B is the smallest
number d such that every point of A is within ρ-distance d of B, and every point of
B is within ρ-distance d of A. The ρ-metrics we will consider in this article are the
Euclidean and spherical metrics.

A consequence is the following theorem.
Theorem 2.4. If Ω is a bounded simply connected domain, then, for any ε > 0,

the geodesic algorithm can be used to find a conformal map fc of D onto a Jordan
region Ωc so that

(2.1) dH(∂Ω, ∂Ωc) < ε,

where dH is the Hausdorff distance in the Euclidean metric. If ∂Ω is a Jordan curve,
then we can find fc so that

sup
z∈D

|f(z) − fc(z)| < ε,

where f is a conformal map of D onto Ω.
Proof. The first statement follows immediately from Theorem 2.2 and Lemma 2.3.

To prove the second statement, note that the boundary of the regions constructed with
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Fig. 8. Approximating the von Koch snowflake.

the Whitney decomposition converges to ∂Ω in the Fréchet sense. By a theorem of
Courant [T, p. 383], the mapping functions can be chosen to be uniformly close.

We note that if Ω is unbounded, Lemma 2.3 and Theorem 2.4 remain true if we
use the spherical metric instead of the Euclidean metric to measure the radii of the
discs and the distance to ∂Ω.

There are other ways besides using the Whitney decomposition to approximate
the boundary of a region by a disc-chain and hence to approximate the mapping
function. However, Theorem 2.4 does not give an explicit estimate of the distance
between mapping functions in terms of the geometry of the regions. This issue will
be explored in greater detail in sections 4 and 5.

The von Koch snowflake is an example of a simply connected Jordan-domain
whose boundary has Hausdorff dimension > 1. The standard construction of the
von Koch snowflake provides a sequence of polygons which approximate it (see Fig-
ure 8). By Theorem 2.4 the mapping functions constructed from these disc-chains
converge uniformly to the conformal map to the snowflake.

It is somewhat amusing and perhaps known that a constructive proof of the
Riemann mapping theorem (without the use of normal families) then follows. Using
linear fractional transformations and a square root map, we may suppose Ω is a
bounded simply connected domain. Using the disc-chains associated with increasing
levels of the Whitney decomposition, for instance, Ω can be exhausted by an increasing
sequence of domains Ωn for which the geodesic algorithm can be used to compute the
conformal map ϕn of Ωn onto D with ϕn(z0) = 0 and ϕ′

n(z0) > 0. Then by Schwarz’s
lemma

un(w) = log

∣∣∣∣ϕm(w)

ϕn(w)

∣∣∣∣
for n = m + 1,m + 2, . . . is an increasing sequence of positive harmonic functions
on Ωm which is bounded above at z0 by Schwarz’s lemma applied to ϕ−1

n , since Ω is
bounded. By Harnack’s estimate un is bounded on compact subsets of Ω, and by the

Herglotz integral formula, log ϕm(w)
ϕn(w) converges uniformly on closed discs contained in

Ωm. Thus ϕn converges uniformly on compact subsets of Ω to an analytic function ϕ.
By Hurwitz’s theorem ϕ is one-to-one. Similarly, log |ϕ ◦ ϕ−1

m (z)/z| is an increasing
sequence of negative harmonic functions on D which tend to 0 at z = 0. By Harnack
again, |ϕ ◦ ϕ−1

m (z)| converges to |z| uniformly on compact subsets of D. If s < 1,
then |ϕ ◦ ϕ−1

m (z)| > s for |z| sufficiently close to 1, so by the argument principle,
{w : |w| < s} ⊂ ϕ(Ω), and since s is arbitrary, ϕ(Ω) = D.

In the geodesic algorithm, we have viewed the maps ϕc and ϕ−1
c as conformal maps
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Fig. 9. Proof of Proposition 2.5.

between H and a region Ωc whose boundary contains the data points. If we are given
a region Ω and choose data points {zk} ∈ ∂Ω properly, then the next proposition says
that the computed maps ϕc and ϕ−1

c are also conformal maps between the original
region Ω and a region “close” to H.

Proposition 2.5. If D0, . . . , Dn is a closed disc-chain with points of tangency
{zk}, and if Ω is a simply connected domain such that

∂Ω ⊂
n⋃

k=0

Dk,

then the computed map ϕc for the data points {zk}n0 extends to be conformal on Ω.
We remark that changing the sign of the last map ϕn+1 in the construction of ϕc

gives a conformal map of the complement of the computed region onto H. We choose
the sign so that the computed boundary winds once around a given interior point
of Ω.

Proof (see Figure 9). Without loss of generality Ω ⊃
⋃n

k=0 Dk, and hence ∂Ω ⊂⋃
∂Dk. The basic map fa in Figure 2 extends by reflection to be a conformal map of

C
∗ \ (γ ∪ γR) onto C

∗ \ [−c, c], where γR is the reflection of γ about R. We will first
describe the image of C

∗ \ {D0 ∪ · · · ∪Dn} using these reflected maps. Set

ψk ≡ ϕk ◦ · · · ◦ ϕ1

and

Wk = ψk(C
∗ \ {D0 ∪ · · · ∪Dn}).

Then we claim C
∗ \{Wk∪WR

k } consists of 2(n+1) pairwise disjoint simply connected
regions:

C
∗ \ {Wk ∪WR

k } =

n⋃
j=k

ψk(Dj) ∪ ψk(Dj)
R ∪

2k⋃
j=1

Uk,j ,
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where each region Uk,j is symmetric about R and R ⊂
⋃2k

j=1 Uk,j . The case k = 1
follows since ψ1(C

∗ \D0) is bounded by two lines from 0 to ∞. The region ψk(Dk)
is a subset of H with 0 and ψk(zk+1) on its boundary and containing the circular arc
from 0 to ψk(zk+1) which is orthogonal to R. Then

ϕk

(
C

∗ \ (ψk−1(Dk−1) ∪ ψk−1(Dk−1)
R)

)
consists of two regions V and −V = {−z : z ∈ V } with 0 and ck ∈ ∂V ∩ R and
−ck ∈ ∂(−V ) ∩ R. Set Uk,2k = V , Uk,2k−1 = −V , and Uk,p = ϕk(Uk−1,p) for
p ≤ 2k − 2. The claim now follows by induction.

Finally, we describe the extension of our maps to Ω ⊃
⋃

j Dj . The map ϕk is

the composition of a linear fractional transformation τk and the map
√

z2 + c2k (see
Figure 2). Note that δk = τk ◦ ψk−1(∂Ω ∩ ∂Dk−1) is a curve in H connecting 0 to
ick. The map

√
z2 + c2k is one-to-one and analytic on C

∗ \ (δk ∪ −δk) with image
C

∗ \ (σk ∪ −σk), where σk is a curve connecting 0 to ck ∈ R. Thus ϕk extends to be

one-to-one and analytic on Ω with image contained in H ∪
⋃2k

j=1 Uk,j . By induction,
ψn is one-to-one and analytic on Ω. By direct inspection, the final map ϕn+1 extends
to be one-to-one and analytic, completing the proof of Proposition 2.5.

As one might surmise from the proof of Proposition 2.5, care must be taken in
any numerical implementation to ensure that the proper branch of

√
z2 + c2 is chosen

at each stage in order to find the analytic extension of the computed map to all of Ω.
For this reason, in the numerical implementation of the geodesic algorithm we define
our maps using the right-half plane H

+ = {z : Re z > 0} instead of H.

3. Diamond-chains and pacmen. If we have more control than the disc-chain
condition on the behavior of the boundary of a region, then we show in this section
that the geodesic algorithm approximates the boundary with better estimates. The
computed curve always has a continuously turning tangent direction. The goal in
this section is to show that if enough data points are taken on a C1 Jordan curve,
then not only is the computed curve uniformly close, but also the tangent directions
are uniformly close to the tangent directions of the given curve. If a subcollection
zk, zk+1, . . . , zp of the data points all lie along a line segment, then it is conceivable
that the computed curve passing through the data points is oscillating alternately up
and down between the data points, and then if zp+1 is off the line, it could conceivably
cause subsequent oscillations to worsen. Over the long run, the oscillations might then
become so large that the curve is no longer a C1 approximation to the given curve.
The key lemma, Lemma 3.5 below, shows that the tangent direction at the end of
the geodesic arc actually improves if zp+1 is not too far from the line. It is this fixed
fractional improvement which does not depend on the number of data points that
allows us to iterate the argument.

We will first restrict our attention to domains of the form C \ γ, where γ is a
Jordan arc tending to ∞.

Definition 3.1. An ε-diamond D(a, b) is an open rhombus with opposite vertices
a and b and interior angle 2ε at a and at b. If a = ∞, then an ε-diamond D(∞, b) is
a sector {z : |arg(z− b)−θ| < ε}. An ε-diamond-chain is a pairwise disjoint sequence
of ε-diamonds D(z0, z1), D(z1, z2), . . . , D(zn−1, zn). A closed ε-diamond-chain is an
ε-diamond-chain with zn = z0.

See Figure 10. Let B(z,R) denote the disc centered at z with radius R.
Definition 3.2. A pacman is a region of the form

P = B(z0, R) \ {z : |arg(λ(z − z0))| ≤ ε}
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Fig. 10. A diamond-chain and a pacman.

for some radius R < ∞, center z0, opening 2ε > 0, and rotation λ, |λ| = 1.
Let C1 be a constant to be chosen later (see Lemma 3.7), and let z0 = ∞.
Definition 3.3. An ε-diamond-chain D(∞, z1), D(z1, z2), . . . , D(zn−1, zn) sat-

isfies the ε-pacman condition if for each 1 ≤ k ≤ n− 1 the pacman

Pk = B(zk, Rk) \
{
z :

∣∣∣∣arg

(
z − zk

zk − zk+1

)∣∣∣∣ ≤ ε

}
with radius Rk = C1|zk+1 − zk|/ε2 satisfies(

k−2⋃
j=0

D(zj , zj+1)

)
∩ Pk = ∅.

The pacman Pk in Definition 3.3 is chosen to be symmetric about the segment
between zk and zk+1 with opening 2ε equal to the interior angle 2ε in the diamond-
chain. Note that the ε-diamond D(zk−1, zk) may intersect Pk.

The pacman condition is a quantitative method of estimating how “flat” the
polygonal curve through the data points is and prevents the data point zk from being
too close to zp for larger p (relative to |zk − zk+1|), as might happen if the polygon
almost folded back onto itself as in Figure 7. The requirement is more stringent
than the disc-chain condition, and it will allow us to control the smoothness of the
unit tangent vector on the boundary of the computed region. If we start with a C1

curve, then we can select data points that satisfy the pacman condition by making
the spacing between successive data points smaller in places where the tangent vector
is changing rapidly and where the curve almost folds back on itself.

When z0 = ∞, the first map in the geodesic algorithm is replaced by ϕ1(z) =
λ
√
z − z1. The argument of λ can be chosen so that ϕ1(z2) is purely imaginary, in

which case the boundary of the constructed region contains the half line from z2

through z1 and ∞. We will henceforth assume that

D(∞, z1) =

{
z :

∣∣∣∣arg

(
z − z1

z1 − z2

)∣∣∣∣ < ε

}
.

Theorem 3.4. There exist universal constants ε0 > 0 and C1 such that if an
ε-diamond-chain

D(∞, z1), D(z1, z2), . . . , D(zn−1, zn)
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satisfies the ε-pacman condition with ε < ε0, and if

(3.1)

∣∣∣∣∣arg

(
zk+1 − zk
zk − zk−1

)∣∣∣∣∣ < ε

10

for k = 2, . . . , n − 1, then the boundary curve γc computed by the geodesic algorithm
with the data z0 = ∞, z1, . . . , zn satisfies

γc ⊂
n⋃

k=1

(
D(zk−1, zk) ∪ {zk}

)
.

Moreover, the argument θ of the tangent to γc between zk and zk+1 satisfies

|θ − arg(zk+1 − zk)| < 3ε.

To prove Theorem 3.4, we first give several lemmas. To understand the motivation
for the lemmas, perhaps it is helpful to point out that the computed boundary ∂Ω has
a smoothly turning tangent, so that if γj ⊂ D(zj , zj+1) were tangent to ∂D(zj , zj+1)
at zj+1, then, if zj+2 were even slightly off the continuation of the straight line from
zj to zj+1 (on one side), γj+1 would not be contained in D(zj+1, zj+2). This is why
we need the improvement provided by the lemmas.

Lemma 3.5. There exists ε0 > 0 such that if ε < ε0, and if Ω is a simply
connected region bounded by a Jordan arc ∂Ω from 0 to ∞ with

{z : |arg z| < π − ε} ⊂ Ω,

then the conformal map f of H
+ = {z : Re z > 0} onto Ω normalized so that f(0) = 0

and f(∞) = ∞ satisfies

(3.2) |arg z2
0f

′(z0)| <
5ε

6
,

where z0 = f−1(1).
The circle Cz0

, which is orthogonal to the imaginary axis at 0 and passes through
z0, has a tangent vector at z0 with argument equal to 2 arg z0. The quantity arg z2

0f
′(z0)

in (3.2) is the argument of the tangent vector to f(Cz0) at f(z0).
Proof. We may suppose that |z0| = 1. Set

g(z) = log
f(z)

z2
.

Then |Im g(z)| ≤ ε on ∂H
+ and hence also on H

+, and |arg z0| ≤ ε
2 , since f(z0) = 1.

Set α = π
2ε and

A = eαg(z0) = z−2α
0 ,

ϕ(z) =
eαz −A

eαz + A
,

and

τ(z) =
1 + z

1 − z
Re z0 + i Im z0.
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Then τ is a conformal map of D onto H
+ such that τ(0) = z0 and ϕ is a conformal

map of the strip {|Im z| < ε} onto D so that ϕ(g(z0)) = 0. Thus h = ϕ ◦ g ◦ τ is
analytic on D and bounded by 1 and h(0) = 0, so that by Schwarz’s lemma

|ϕ′(g(z0))| |g′(z0)| |τ ′(0)| = |h′(0)| ≤ 1.

Consequently ∣∣∣∣f ′(z0)

f(z0)
− 2

z0

∣∣∣∣ = |g′(z0)| ≤
2ε|ReA|
πRe z0

≤ 2ε

π cos ε
2

,

and hence

|arg z2
0f

′(z0)| =

∣∣∣∣arg z0 + arg
z0f

′(z0)

f(z0)

∣∣∣∣
≤ ε

2
+ sin−1

(
ε

π cos ε
2

)
=

(
1

2
+

1

π

)
ε + O(ε2).

This proves Lemma 3.5 if ε is sufficiently small.
Lemma 3.6. Let Ω satisfy the hypotheses of Lemma 3.5. If ε < ε0/2, then the

hyperbolic geodesic γ from 0 to 1 for the region Ω lies in the kite

P = {z : |arg z| < ε} ∩
{
z : |arg(1 − z)| < 5ε

6

}
,

and the tangent vectors to γ have argument less than 8
3ε.

Proof. By Jørgensen’s theorem, γ is contained in the closed disc through 1 and 0
which has slope tan ε at 0. Likewise γ is contained in the reflection of this disc about
R, and hence |arg z| < ε on γ. This also shows that γ is contained in a kite like P
but with angles ε at both 0 and 1. In the proof of Theorem 3.4, however, we need the
improvement to 5ε

6 of the angle at 1.
By Lemma 3.5, a portion of γ near 1 lies in P . Suppose w1 ∈ γ with |argw1| =

δ < ε and then apply Lemma 3.5 to the region 1
w1

Ω with ε replaced by ε + δ. Then
the tangent vector to γ at w1 has argument θ, where

(3.3) |θ − argw1| <
5

6
(ε + |argw1|).

Since |argw1| < ε, we have |θ| ≤ 8
3ε. Moreover, (3.3) also implies θ < 5

6ε when
argw1 ≤ 0 and θ > − 5

6ε when argw1 ≥ 0. But if w1 is the last point on γ∩∂P before
reaching 1, this is impossible. Thus γ ⊂ P , proving the lemma.

The next lemma improves Lemma 3.5 by requiring only that the portion of ∂Ω
in a large disc lies inside a small sector.

Lemma 3.7. There is a constant C1 so that if ε < ε0/2 and if ∂Ω is a Jordan
arc such that 0 ∈ ∂Ω, ∂Ω ∩ {|z| > C1/ε

2} 	= ∅, and

Pε =

{
z : |arg z| < π − ε and |z| ≤ C1

ε2

}
⊂ Ω,

then the conformal map f : H
+ −→ Ω with f(0) = 0 and |f(∞)| > C1

ε2 satisfies

(3.4) |arg z2
0f

′(z0)| <
9ε

10
,



CONVERGENCE OF A VARIANT OF THE ZIPPER ALGORITHM 2593

where z0 = f−1(1).
Proof. Set R = C1

ε2 and BR = B(0, R) = {|z| < R}. Let UR be the component
of Ω ∩ BR containing the point 1. Then f−1(UR) ⊂ H

+ is bounded by a set F ⊂ iR
and curves σj ⊂ H

+ on which |f | = R. Since 0 ∈ ∂f−1(UR) and f(∞) /∈ BR, exactly
one of the curves (call it σ1) will connect the positive imaginary axis to the negative
imaginary axis. The function u(z) = arg f(z) − arg z2 is harmonic on the simply
connected region f−1(UR) with |u| ≤ 2π + ε. Then ∂Ω ∩ BR contains a subarc δ
connecting 0 to ∂BR and |u| < ε on f−1(δ). It is possible that BR contains other
subarcs of ∂Ω, none of which intersect Pε. We may suppose that Pε ∩ ∂BR ⊂ f(σ1),
for if Pε ∩ ∂BR ⊂ f(σj), j 	= 1, then σj separates a point z1 ∈ iR from f−1(UR).
Then

g(ζ) = f

(
ζ

1 + ζ/z1

)
satisfies the hypotheses of the lemma and Pε ∩ ∂BR is a subset of the image of
the corresponding curve in H

+ connecting the positive and negative imaginary axes.
Moreover, a direct computation shows that

ζ2
0g

′(ζ0) = z2
0f

′(z0),

where ζ0 = z0/(1 − z0/z1).
We conclude |u(z)| < ε at the endpoints of each σj because Pε ⊂ UR. Since

u is continuous on the closure of f−1(UR), and |arg f | > π − ε on ∂f−1(UR) ∩ iR,
and arg z2 is the same at each endpoint of σj , j > 1, we conclude that |u| < ε on
∂f−1(UR) ∩ iR. By the maximum principle

|u(z)| ≤ ε + (2π + ε)ω(f(z), ∂Br, UR)

for z ∈ f−1(UR), where ω(z, E, V ) is the harmonic measure at z for E ∩ V in V \ E.
By Beurling’s projection theorem [GM, p. 105] and a direct computation (see [GM,
Corollary III.9.3])

(3.5) ω(1, ∂BR,Ω) ≤ ω(1, ∂BR, BR \ [−R, 0]) =
4

π
tan−1

(
1

R
1
2

)
.

Evaluating at z0 = f−1(1), we obtain

|u(z0)| = |− arg z2
0 | ≤ ε + (2π + ε)

4

π
tan−1

(
ε

C
1
2
1

)
<

11ε

10

for C1 sufficiently large. Thus

(3.6) |arg z0| ≤
11ε

20
.

Next we show that there is a large half disc contained in f−1(Ω ∩ BR). We may
suppose that |z0| = 1. Set

S = inf{|w − i Im z0| : w ∈ H
+ and f(w) ∈ ∂BR}.

Using the map

z − i Im z0 − S

z − i Im z0 + S
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of H
+ onto D and Beurling’s projection theorem again,

ω(z0, f
−1(∂BR),H+) ≥ ω(z0, [S,∞) + i Im z0,H

+).

Then by (3.5), (3.6), and an explicit computation

4

π
tan−1

(
ε

C
1
2
1

)
≥ 2

π
tan−1

(
Re z0√

S2 − Re z2
0

)
.

For ε sufficiently small, this implies

B

(
0,

C
1
2
1

2ε

)
∩ H

+ ⊂ f−1

(
Ω ∩B

(
0,

C1

ε2

))
.

Now follow the proof of Lemma 3.5 replacing τ with a conformal map of D onto

H
+ ∩ {|z| < C

1/2
1

2ε } such that τ(0) = z0. Then τ ′(0) = 2 Re z0 + O( ε

C
1/2
1

), and for C1

sufficiently large, (3.4) holds.
Following the proof of Lemma 3.6 (replacing 5/6 by 9/10), the next corollary is

obtained.
Corollary 3.8. Suppose ∂Ω is a Jordan arc such that 0 ∈ ∂Ω, ∂Ω ∩ {|z| >

C1/ε
2} 	= ∅, and {

z : |arg z| < π − ε and |z| ≤ C1

ε2

}
⊂ Ω.

If ε < ε0/2, then the hyperbolic geodesic γ from 0 to 1 for the region Ω lies in the kite

(3.7) P = {z : |arg z| ≤ ε} ∩
{
z : |arg(1 − z)| ≤ 9ε

10

}
.

Moreover, the tangent vectors to this geodesic have argument at most 3ε.
Proof of Theorem 3.4. Use the constant C1 from Lemma 3.7 in Definition 3.3. As

in Theorem 2.2, let γj denote the portion of the computed boundary ∂Ωc between zj
and zj+1. By construction γ0 ∪ γ1 is a half line through z0 = ∞, z1, and z2. Make
the inductive hypotheses that

(3.8)

k−1⋃
j=0

γj ⊂
k−1⋃
j=0

D(zj , zj+1)

and

(3.9) γk−1 ∩ Pk = ∅.

Since the ε-diamond-chain D(∞, z1), D(z1, z2), . . . , D(zn−1, zn) satisfies the ε-pacman
condition, (3.8) and (3.9) show that the hypotheses of Corollary 3.8 hold for the curve

γ =
⋃k−1

0 γj and hence γk ⊂ D(zk, zk+1). Also, by Corollary 3.8 and (3.1),

γk ∩ Pk+1 = ∅.

By induction, the theorem follows.
If the hypotheses of Theorem 3.4 hold, then the proof of Proposition 2.5 gives the

following corollary.
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Corollary 3.9. If Ω and the diamond-chain D(zk, zk+1) satisfy the hypotheses
of Theorem 3.4, then the conformal map ϕc computed in the geodesic algorithm extends
to be conformal on Ω ∪

⋃n
k=0 D(zk, zk+1).

The next theorem says that for a region Ω bounded by a C1 curve, the geodesic
algorithm with data points z0, z1, . . . , zn produces a region Ωc whose boundary is a
C1 approximation to ∂Ω.

Theorem 3.10. Suppose Ω is a Jordan region bounded by a C1 curve ∂Ω. Then
there exists δ0 > 0 depending on ∂Ω so that for δ < δ0,

∂Ω ⊂
⋃
k

(
D(zk, zk+1) ∪ {zk}

)
,

where D =
⋃
D(zk, zk+1) is a δ-diamond-chain, and so that ∂Ωc, the boundary of the

region computed by the geodesic algorithm, is contained in D ∪ (
⋃

k {zk}). Moreover,
if ζ ∈ ∂Ωc and if α ∈ ∂Ω with |ζ − α| < δ, then

(3.10) |ηζ − ηα| < 6δ,

where ηζ and ηα are the unit tangent vectors to ∂Ω and ∂Ωc at ζ and α, respectively.
Proof. There were two reasons for requiring that z0 = ∞ in Theorem 3.4. The

first reason was to ensure that

(3.11)

(
k−1⋃
0

γj

)
∩ (C \B(zk, Rk)) 	= ∅,

as needed for Lemma 3.7. The second reason is the difficulty in closing the curve,
since Lemma 3.7 does not apply. The difficulty is that a pacman centered at zn will
contain z0 if z0 is too close to zn. Since ∂Ω ∈ C1, we may suppose that the δ-diamond-
chain D(z0, z1), D(z1, z2), . . . , D(zn−1, zn) satisfies the pacman condition. Note that
this requires zn to be much closer to zn−1 than to z0. Since ∂Ω ∈ C1, if |zn − z0| is
sufficiently small, we can find two discs

Δp ⊂ C \
n−1⋃

0

D(zk, zk+1)

for p = 1, 2 with

{z0, zn} = ∂Δ1 ∩ ∂Δ2 and Δ1 ∩ Δ2 ⊂ D(zn, z0),

where D(zn, z0) is a δ-diamond. By Jørgensen’s theorem, as in the proof of Theo-
rem 2.2, the geodesic γn between zn and z0 is contained in Δ1 ∩ Δ2. Then by the
proof of Theorem 3.4, ∂Ωc is contained in the δ-diamond-chain. The statement about
tangent vectors now follows from Corollary 3.8.

We say that {zk} are locally evenly spaced if

(3.12)
1

D
≤

∣∣∣∣zk − zk−1

zk − zk+1

∣∣∣∣ ≤ D

for some constant D < ∞. Note that the spacing between points can still grow or
decay geometrically. We define the mesh size μ of the data points {zj} to be

μ({zj}) = sup
k

|zk − zk+1|.
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We say that a Jordan curve Γ in the extended plane C
∗ is a K-quasicircle if for

some linear fractional transformation τ

(3.13)
|w1 − w| + |w − w2|

|w1 − w2|
≤ K

for all w1, w2 ∈ τ(Γ) and for all w on the subarc of τ(Γ) with smaller diameter. Thus
circles and lines are 1-quasicircles. Quasicircles look very flat on all scales if K is close
to 1, but for any K > 1 they can contain a dense set of spirals. See, for example,
Figure 8.

If Γ satisfies (3.13) with K = 1+δ and small δ and if {zk} ⊂ τ(Γ) is locally evenly
spaced, then

(3.14)

∣∣∣∣arg

(
zk − zk−1

zk+1 − zk

)∣∣∣∣ ≤ Cδ
1
2

for some constant C, depending on D. The referee suggested that a proof of this
fact might help the reader. Note that (3.12), (3.13), and (3.14) are invariant under
translations and dilations, so that we may assume zk−1 = −1 and zk = 0 and write
zk+1 = ζ. Then (3.13), with w1 = −1, w = 0, and w2 = ζ, shows that

1 + |ζ| ≤ (1 + δ)|1 + ζ|.

Writing ζ = reiθ and squaring yield

1 − cos θ ≤ (2δ + δ2)
(1 + r)2

2r
.

By (3.12) D−1 ≤ |ζ| = r ≤ D so that

θ2

2
≤ (2δ + δ2)

(1 + D)2

2D
,

and ∣∣∣∣arg

(
zk − zk−1

zk+1 − zk

)∣∣∣∣ = |θ| ≤ Cδ
1
2 .

Theorem 3.11. There is a constant K0 > 1 so that if Γ is a K-quasicircle
with K = 1 + δ < K0 and if {zk} are locally evenly spaced on Γ, then the geodesic
algorithm finds a conformal map of H onto a region Ωc bounded by a C(K)-quasicircle
containing the data points {zk}, where C(K) is a constant depending only on K.

We can choose C(K) so that C(K) → 1 as K → 1. Moreover, given η > 0, if the
mesh size μ({zk}) is sufficiently small, then

dH(Γ, ∂Ωc) < η,

where dH is the Hausdorff distance in the spherical metric.
Proof. We may suppose that Γ satisfies (3.13) with K = 1 + δ and δ small. Note

that ∞ ∈ Γ. If {zk}n1 are locally evenly spaced points on ∂Ω, with μ = max |zk−zk−1|
sufficiently small, then (3.14) holds and D(∞, z1), D(z1, z2), . . . , D(zn−1, zn), D(zn,∞)

is a Cδ
1
2 -diamond-chain, where the main axis of the cone D(∞, z1) is in the direc-

tion z1 − z2 and the main axis of D(zn,∞) is in the direction zn − zn−1. Moreover,
D(∞, z1), D(z1, z2), . . . , D(zn−1, zn) satisfies the ε-pacman condition if

ε ≥ Cδ
1
4
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for some universal constant C. Now apply Theorem 3.4 to obtain γj ⊂ D(zj−1, zj),
j = 1, . . . , n − 1. By an argument similar to the proof of Theorem 3.10, we can also
find a geodesic arc for C \ (

⋃n−1
0 γj) from zn to ∞ contained in D(zn,∞). Then the

computed curve will be a C(K)-quasicircle.
Note that if w1, w, and w2 are data points, then by assumption (3.13) holds with

K = 1 + δ. By Corollary 3.8, the tangent directions to the computed curve change
by no more than Cδ

1
4 between the data points, and hence the computed curve is a

(1 + C ′δ
1
4 )-quasicircle.

As noted before, the boundary of the region computed with the geodesic algo-
rithm, ∂Ωc, is a C1 curve. We end this section by proving that ∂Ωc is slightly better
than C1. If 0 < α < 1, we say that a curve Γ belongs to C1+α if arc length parame-
terization γ(s) of Γ satisfies

|γ′(s1) − γ′(s2)| ≤ C|s1 − s2|α

for some constant C < ∞.
We say that a conformal map f defined on a region Ω belongs to C1+α(Ω),

0 < α < 1, provided f and f ′ extend to be continuous on Ω and there is a con-
stant C so that

|f ′(z1) − f ′(z2)| ≤ C|z1 − z2|α

for all z1, z2 in Ω.
Proposition 3.12. If the bounded Jordan region Ωc is the image of the unit disc

by the geodesic algorithm, then

∂Ωc ∈ C3/2,

and ∂Ωc /∈ C1+α for α > 1/2, unless Ωc is a circle or a line. Moreover, ϕ ∈ C3/2(Ωc)
and ϕ−1 ∈ C3/2(D).

Proof. To prove the first statement, it is enough to show that if γ is an arc of a
circle in H which meets R orthogonally at 0 (constructed by application of one of the
maps f−1

a as in Figure 2), then the curve σ which is the image of [−1, 1]∪γ by the map

S(z) =
√
z2 − d2 is C

3
2 (and no better class) in a neighborhood of S(0) = id. Indeed,

subsequent maps in the composition ϕ−1 are conformal in H and hence preserve
smoothness. For d > 0, the function

ψ(z) =

√√√√( √
z2 − c2

1 +
√
z2 − c2/b

)2

− d2 = id+
i

2d
(z2 − c2)− i

bd
(z2 − c2)

3
2 +O((z2 − c2)2)

for some choice of b ∈ R and c > 0 is a conformal map of the upper-half plane onto a
region whose complement contains the curve σ. Clearly ψ ∈ C

3
2 near z = ±c, and so

by a theorem of Kellogg (see [GM, p. 62]), σ ∈ C
3
2 . The same theorem implies σ is

not in Cα for α > 3
2 unless 1/b = 0. This argument also shows that ϕc ∈ C3/2(Ω). To

prove ϕ−1
c ∈ C

3
2 (D), apply the same ideas above to the inverse maps. Alternatively,

this last fact can be proved by following the proof of Lemma II.4.4 in [GM].

4. Estimates for conformal maps onto nearby domains. We begin this
section with a discussion of the following question. Consider two simply connected
planar domains Ωj with 0 ∈ Ωj and conformal maps ϕj : Ωj → D fixing 0, suitably
normalized (for instance, positive derivative at 0). If Ω1 and Ω2 are “close,” what can
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z1

z2

z3
Ω1

Fig. 11. Small Hausdorff distance.

be said about |ϕ1 −ϕ2| on Ω1 ∩Ω2, or about |ϕ−1
1 −ϕ−1

2 | on D? The article [W] gives
an overview and numerous results in this direction. How should “closeness” of the
two domains be measured? Simple examples show that the Hausdorff distance in the
Euclidean or spherical metric between the boundaries does not give uniform estimates
for either ||ϕ1 − ϕ2||∞ or ||ϕ−1

1 − ϕ−1
2 ||∞. For example, in Figure 11, Ω1 contains a

disc of radius 1 − δ, where δ is small, and hence for Ω2 = D, dH(Ω1,Ω2) ≤ δ, but
|ϕ1(z1)− ϕ1(z2)| is large and |ϕ1(z2)− ϕ1(z3)| is small so that neither ||ϕ1(z)− z||∞
nor ||ϕ−1

1 (z) − z||∞ is small.
Mainly for ease of notation, we will assume throughout this section that the

Ωj are Jordan-domains, and denote by γj : ∂D → ∂Ωj an orientation preserving
parameterization. Even the more refined distance

inf
α

||γ1 − γ2 ◦ α||∞,

where the infimum is over all homeomorphisms α of ∂D, does not control ||ϕ−1
1 −

ϕ−1
2 ||∞ or ||ϕ1 − ϕ2||∞. For example, let Ω2 be a small rotation of the region Ω1

in Figure 11. What is needed is some control on the “roughness” of the boundary.
Following [W], for a simply connected domain Ω we define

η(δ) = ηΩ(δ) = sup
C

diamT (C),

where the supremum is over all crosscuts of Ω with diamC ≤ δ, and where T (C) is
the component of Ω \ C that does not contain 0. Notice that η(δ) → 0 as δ → 0
is equivalent to saying that ∂Ω is locally connected, and the condition η(δ) ≤ Kδ
for some constant K is equivalent to saying that Ω is a John-domain (see, e.g., [P,
Chapter 5]). It is not difficult to control the modulus of continuity of ϕ−1 : D → Ω
in terms of η; see [W, Theorem I]. This can be used to estimate ||ϕ−1

1 − ϕ−1
2 ||∞ in

terms of the Hausdorff distance between the boundaries, for example.
Theorem 4.1 (Warschawski [W, Theorem VI]). If Ω1 and Ω2 are John-domains,

ηj(δ) ≤ κδ for j = 1, 2, and if dH(∂Ω1, ∂Ω2) ≤ ε, then

||ϕ−1
1 − ϕ−1

2 ||∞ ≤ Cεα

with α = α(κ) and C = C(κ,dist(0, ∂Ω1 ∪ ∂Ω2)).
In fact, Warschawski proves that every α < 2/(π2κ2) will work (with C = C(α)).

Using the Hölder continuity of quasiconformal maps, his proof can easily be modified
to give the following better estimate if Ω1 and Ω2 are K-quasidiscs with K near 1. A
K-quasidisc is a Jordan region bounded by a K-quasicircle.
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Corollary 4.2. If Ω1 and Ω2 are K-quasidiscs, and if dH(∂Ω1, ∂Ω2) ≤ ε, then

||ϕ−1
1 − ϕ−1

2 ||∞ ≤ Cεα

with α = α(K) → 1 as K → 1.
As for estimates of ||ϕ1 − ϕ2||∞, Warschawski shows [W, Theorem VII] that

sup
Ω1

|ϕ1 − ϕ2| ≤ Cε1/2 log
2

ε

if Ω1 ⊂ Ω2 and if Ω1 is a John-domain, with C depending on κ and on dist(0,
∂Ω1 ∪ ∂Ω2). However, his result does not apply without the assumption of inclusion
Ω1 ⊂ Ω2. To treat the general case the trick of controlling |ϕ1 − ϕ2| by passing to
the conformal map ϕ of the component Ω of Ω1 ∩ Ω2 containing 0 (which now is
included in Ωj) does not seem to work, as the geometry of Ω cannot be controlled.
Nevertheless, for the case of disc-chain domains, the above estimate can be proved,
even without any further assumption on the geometry on the disk-chain.

Theorem 4.3. Let D1, D2, . . . , Dn be a closed ε-disc-chain surrounding 0. Sup-
pose ∂Ωj ⊂

⋃
k Dk for j = 1, 2, and let ϕj : Ωj → D be conformal maps with

ϕ1(0) = ϕ2(0) = 0 and ϕ1(p) = ϕ2(p) for a point p ∈ ∂Ω1 ∩ ∂Ω2. Then

sup
w∈Ω1∩Ω2

|ϕ1(w) − ϕ2(w)| ≤ Cε1/2 log
1

ε
,

where C depends on dist(0,
⋃

k Dk) only.
In case we have control on the geometry of the domains, we have the following

counterpart to Corollary 4.2.
Theorem 4.4. If Ω1 and Ω2 are K-quasidiscs, if dH(∂Ω1, ∂Ω2) ≤ ε, and if

ϕ1(p1) = ϕ2(p2) for a pair of points pj ∈ ∂Ωj with |p1 − p2| ≤ ε, then

sup
w∈Ω

|ϕ1(w) − ϕ2(w)| ≤ Cεα

with α = α(K) → 1 as K → 1, where Ω is the component of Ω1 ∩ Ω2 containing 0.
The proofs of both theorems rely on the following harmonic measure estimate,

which is an immediate consequence of a theorem of Marchenko [M] (see [W, section 3]
for the statement and a proof). To keep this paper self-contained, we include a simple
proof, shown to us by John Garnett, for which we thank him.

Lemma 4.5. Let 0 < θ < π, 0 < ε < 1/2, and set D = D \ {reit : −θ ≤ t ≤ θ,
1 − ε ≤ r < 1}, A = ∂D \ ∂D. Then

ω(0, A,D) ≤ θ

π
+ Cε log

1

ε

for some universal constant C.
Proof. Set ω(z) = ω(z,A,D) for z ∈ D. By the mean value property, it is enough

to show that

ω(z) ≤ C
ε

t− θ

for z = (1 − ε)eit and θ + ε ≤ t ≤ π. To this end, set I = {eiτ : −θ ≤ τ ≤ θ} and
consider the circular arc {ζ : ω(ζ, I,D) = 1

3}. If ε < ε0 for some universal ε0 (for
ε ≥ ε0 there is nothing to prove), then A is disjoint from this arc and it follows that
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ω(ζ, I,D) ≥ 1
3 on A. The maximum principle implies ω(ζ) ≤ 3ω(ζ, I,D) on D. Now

the desired inequality follows from

ω((1−ε)eit, I,D) =
1

2π

∫ θ

−θ

1 − (1 − ε)2

|(1 − ε)eit − eiτ |2 dτ ≤ Cε

∫ θ

−θ

1

(t− τ)2
dτ < C

ε

t− θ
.

Proof of Theorem 4.3. We may assume that ϕj(p) = 1. We will first assume that p
is one of the points Dk∩Dk+1. Denote by Ω the largest simply connected domain ⊂ C

containing 0 whose boundary is contained in
⋃

k Dk (thus Ω is the union of
⋃

k Dk

and the bounded component of C \
⋃

k Dk), and ϕ is the conformal map from Ω to
D with ϕ(0) = 0 and ϕ(p) = 1. First, let z ∈ ∂Ω1 ∩ ∂Ω. Denote by B, respectively,
B1, the arc of ∂Ω (∂Ω1) from p to z. By the Beurling projection theorem (or the
distortion theorem), every ϕ(Dj) has diameter ≤ C

√
ε. Therefore, ϕ(B1) is an arc in

D, with the same endpoints as ϕ(B), that is contained in S = {reit : 1−C
√
ε ≤ r < 1,

−C
√
ε < t < argϕ(z) + C

√
ε}. Denote A = ∂S. By Lemma 4.5,

ω(0, B1,Ω1) ≤ ω(0, B1,Ω \B1) ≤ ω(0, A,D \A) ≤ 1

2π
argϕ(z) + 2C

√
ε+C

√
ε log

1√
ε

and we obtain

argϕ1(z) = 2πω(0, B1,Ω1) ≤ argϕ(z) + Cε1/2 log
1

ε
.

The same argument, applied to the other arc from p to z, gives the opposite inequality,
and together it follows that

|ϕ(z) − ϕ1(z)| ≤ Cε1/2 log
1

ε
.

Now let z ∈ ∂Ω1 be arbitrary. If z′ is a point of ∂Ω1 ∩ ∂Ω in the same disc Dj as
z, then we have

|ϕ(z)−ϕ1(z)| ≤ |ϕ(z)−ϕ(z′)|+|ϕ(z′)−ϕ1(z
′)|+|ϕ1(z)−ϕ1(z

′)| ≤ 2C
√
ε+Cε1/2 log

1

ε
.

The maximum principle yields |ϕ − ϕ1| ≤ Cε1/2 log 1
ε on Ω1. The same argument

applies to |ϕ− ϕ2|, and the theorem follows from the triangle inequality.
If p ∈ ∂Ω1 ∩ ∂Ω2 is arbitrary, let p′ be one of the points Dk ∩Dk+1 in the same

disc Dj as p. Then the above estimate, applied to a rotation of ϕ1, ϕ2, and p′, gives
|ϕ2(p

′)/ϕ1(p
′)ϕ1 −ϕ2| ≤ Cε1/2 log 2

ε , and the theorem follows from |ϕj(p)−ϕj(p
′)| ≤

C
√
ε.
The following lemma is another easy consequence of the aforementioned theorem

of Marchenko [M] (see [W, section 3]).
Lemma 4.6. Let H ⊂ D be a K-quasidisc with 0 ∈ H such that ∂H ⊂ {1 − ε <

|z| < 1}, and let h be a conformal map from D to H with h(0) = 0 and |h(p)− p| < ε
for some p ∈ ∂D. Then

|h(z) − z| ≤ Cε log
1

ε
,

where C depends on K only.
Proof. We may assume that p = 1. Let z = eiτ and consider the arc A = {h(eit) :

0 ≤ t ≤ τ} ⊂ ∂H of harmonic measure τ/2π. For a suitable constant C, depending
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on K, we have that D = D \ {reit : −Cε ≤ t ≤ arg h(z) +Cε, 1− ε ≤ r < 1} contains
A. By the maximum principle and Lemma 4.5,

τ/2π = ω(0, A,H) ≤ ω(0, ∂D ∩ D, D) ≤ arg h(z)/2π + Cε log
1

ε
.

Applying the same reasoning to ∂H \ A, the lemma follows for all z ∈ ∂D and thus
for all z ∈ D.

Note that the conclusion of Lemma 4.6 is true if, instead of assuming that H is
a K-quasidisc, we assume only that arg z is increasing on ∂H.

Proof of Theorem 4.4. Because Ω1 and Ω2 are K-quasidiscs, ϕ1 and ϕ2 have K2-
quasiconformal extensions to C (see [L, Chapter I.6]). In particular, they are Hölder
continuous with exponent 1/K2 (see [A]), and it follows that with α = 1/K2 and
r = 1 − Cεα, we have ϕ−1

1 ({|z| ≤ r}) ⊂ Ω2. In particular, h(z) = ϕ2(ϕ
−1
1 (rz)) is a

conformal map from D onto a K4-quasidisc H ⊂ D, and by the Hölder continuity of ϕ2

and ϕ−1
1 we have ∂H ⊂ {1−Cεα

3

< |z| < 1}. Now Lemma 4.6 yields |h(z)−z| ≤ Cεβ

for any β < α3 and C = C(β). For w ∈ Ω ⊂ Ω1 ∩ Ω2, let z = ϕ1(w); then

|ϕ1(w) − ϕ2(w)| = |z − ϕ2(ϕ
−1
1 (z))|

≤ |z − ϕ2(ϕ
−1
1 (rz))| + |ϕ2(ϕ

−1
1 (rz)) − ϕ2(ϕ

−1
1 (z))| ≤ Cεβ ,

where again we have used the Hölder continuity of ϕ2 and ϕ−1
1 . The theorem fol-

lows.

5. Convergence of the mapping functions. We will now combine the results
of sections 2 and 3 with the estimates of the previous section to obtain quantitative
estimates on the convergence of the geodesic algorithm. Throughout this section, Ω
will denote a given simply connected domain containing 0, bounded by a Jordan curve
∂Ω, z0, . . . , zn are consecutive points on ∂Ω, Ωc is the domain and ϕc : Ωc → D is
the map computed by the geodesic algorithm, and ϕ : Ω → D is a conformal map,
normalized so that ϕc(0) = ϕ(0) = 0 and ϕc(p0) = ϕ(p0) for some p0 ∈ ∂Ω ∩ ∂Ωc.

Combining Theorems 2.2 and 4.3 and Propositions 2.5 and 3.12 we immediately
obtain the following theorem.

Theorem 5.1. If ∂Ω is contained in a closed ε-disc-chain
⋃n

j=0 Dj and if zj =

∂Dj ∩ ∂Dj+1, then ∂Ωc is a smooth (C
3
2 ) piecewise analytic Jordan curve contained

in
⋃n

j=0 Dj ∪ zj, the map ϕc extends to be conformal on Ω ∪ Ωc, and

sup
w∈Ω

|ϕ(w) − ϕc(w)| ≤ Cε1/2 log
1

ε
.

Now assume that ∂Ω is a K-quasicircle with K < K0, and assume approximate
equal spacing of the zj , say, 1

2ε < |zj+1 − zj | < 2ε. Then

(5.1)
C

ε
≤ n ≤ C

εd
,

where d (essentially the Minkowski dimension) is close to 1 when K is close to 1.
Combining Theorem 3.11 with Corollary 4.2 and Theorem 4.4, we have the following
theorem.

Theorem 5.2. Suppose ∂Ω is a K-quasicircle with K < K0. The Hausdorff dis-
tance between ∂Ω and ∂Ωc is bounded by C ′(K)ε, where C ′(K) is a constant depending
upon K that tends to 0 as K tends to 1 and n to infinity. Furthermore,

||ϕ−1 − ϕ−1
c ||∞ ≤ Cεα
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and

sup
w∈Ω0

|ϕ(w) − ϕc(w)| ≤ Cεα

with α = α(K) → 1 as K → 1, where Ω0 is the component of Ω ∩ Ωc containing 0.
The best possible exponent in (5.1) in terms of the standard definition of K(∂Ω),

which slightly differs from our geometric definition, is given by Smirnov’s (unpub-
lished) proof of Astala’s conjecture,

d ≤ 1 +

(
K − 1

K + 1

)2

.

This allows us to easily convert estimates given in terms of ε, as in Theorem 5.2, into
estimates involving n.

Finally, assume that ∂Ω is a smooth closed Jordan curve. Then Ω is a K-
quasicircle and a John-domain by the uniform continuity of the derivative of the
arc length parameterization of ∂Ω. The quasiconformal norm K(∂Ω) and the John
constant depend on the global geometry, as does the ε-pacman condition when there
are not very many data points. As the example in Figure 11 shows, even an infinitely
differentiable boundary can have a large quasiconformal constant and a large John
constant. However, the ε-pacman condition becomes a local condition if the mesh size
μ({zk}) = maxk |zk+1 − zk| of the data points is sufficiently small. The radii of the
balls in the definition of the ε-pacman condition

(5.2) Rk = C1
|zk+1 − zk|

ε2

increase as ε decreases but can be chosen small for a fixed ε if the mesh size μ is small.
To apply the geodesic algorithm we suppose that the data points have small mesh size
and, as in the proof of Theorem 3.10, |(z0 − zn)/(zn−1 − zn)| is sufficiently large so
that the ε-diamond-chain D(z0, z1), . . . , D(zn−1, zn) satisfies the ε-pacman condition
and

∂Ω ⊂
n⋃

k=0

D(zk, zk+1),

where D(zn, zn+1) = D(zn, z0) is an ε-diamond. This can be accomplished for smooth
curves by taking data points z0, . . . , zn, z0 with small mesh size and discarding the last
few zn−n1

, . . . , zn, where n1 is an integer depending on ε and on ∂Ω. The remaining
subset still has small mesh size (albeit larger). This process of removing the last few
data points is necessary to apply the proof of Theorem 3.10, but in practice it is
omitted. We view it only as a defect in the method of proof.

If ∂Ω ∈ C1 and if ϕ is a conformal map of Ω onto D, then arg (ϕ−1)′ is continuous.
Indeed, it gives the direction of the unit tangent vector. However, there are examples
of C1 boundaries where ϕ′ and (ϕ−1)′ are not continuous. In fact, it is possible for
both to be unbounded. If we make the slightly stronger assumption that ∂Ω ∈ C1+α

for some 0 < α < 1, then ϕ ∈ C1+α and ϕ−1 ∈ C1+α by Kellogg’s theorem (see
[GM, p. 62]). In particular, the derivatives are bounded above and below on Ω and
D, respectively. Because of Proposition 3.12, we will consider the case 1 + α = 3/2.
Similar results are true for 1 + α < 3/2.
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Theorem 5.3. Suppose ∂Ω is a closed Jordan curve in C3/2 and ϕ is a conformal
map of Ω onto D. Suppose z0, z1, . . . , zn, z0 are data points on ∂Ω with mesh size
μ = max |zj − zj+1|. Then there is a constant C1 depending on the geometry of ∂Ω,
so that the Hausdorff distance between ∂Ω and ∂Ωc satisfies

(5.3) dH(∂Ω, ∂Ωc) ≤ C1μ
3/2

and the conformal map ϕc satisfies

(5.4) ||ϕ−1 − ϕ−1
c ||∞ ≤ Cμp

and

(5.5) sup
z∈Ω∩Ωc

|ϕ(z) − ϕc(z)| ≤ Cμp

for every p < 3/2.
For example, if n data points are approximately evenly spaced on ∂Ω, so that

μ = C/n, then the error estimates are of the form C/n3/2 in (5.3) and C/np for
p < 3/2 in (5.4) and (5.5). While Theorem 5.3 gives simple estimates in terms of the
mesh size or the number of data points, smaller error estimates can be obtained with
fewer data points if the data points are distributed so that there are fewer on subarcs
where ∂Ω is flat and more where the boundary bends or where it folds back on itself.
In other words, construct diamond-chains with angles εk satisfying the εk-pacman
condition centered at zk for each k. The errors will then be given by

max
k

(
εk|zk − zk+1|

)p
.

Proof. It is not hard to see from (5.2) that ∂Ω satisfies the ε-pacman condition
with

ε = Cμ1/2

for C sufficiently large. By the proof of Theorem 3.10, ∂Ωc is contained in the union
of the diamonds. The diamonds D(zk, zk+1) have angle Cμ1/2 and width bounded by
Cμ, and therefore (5.3) holds.

Let ψ be a conformal map of D onto the complement of Ω, C
∗ \ Ω. Then by

Kellogg’s theorem, as mentioned above, ψ ∈ C3/2. In particular, |ψ′| is bounded
above and below on 1/2 < |z| < 1. By the Koebe distortion theorem there are
constants C1, C2 so that

C1(1 − |z|) ≤ dist(ψ(z), ∂Ω) ≤ C2(1 − |z|)

for all z with 1/2 < |z| < 1. Thus we can choose r = 1 − C3μ
3/2 so that the image

of the circle of radius r, Ir = ψ({|z| = r}), does not intersect the diamond-chain and
dH(Ir, ∂Ω) ∼ μ3/2. Then the bounded component of the complement of Ir is a Jordan
region Ur containing Ω and bounded by Ir ∈ C3/2, with C3/2 norm dependent only
on ∂Ω, and the bounds on |ψ′|.

Let σ be a conformal map of Ur onto D. Inequality (5.4) now follows from [W,
Theorem VIII] by comparing the conformal maps ϕ−1 and ϕ−1

c to the conformal map
σ−1, where σ : Ur → D and where all three (inverse) conformal maps are normalized
to have positive derivative at 0 and map 0 to the same point in Ω.
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To see (5.5), note that

σ(∂Ω ∪ ∂Ωc) ⊂ {z : 1 − |z| < cμ3/2}.

Moreover, because ∂Ω ∪ ∂Ωc is contained in the diamond-chain, and because both
σ ∈ C3/2 and σ−1 ∈ C3/2, arg σ(ζ) is increasing along ∂Ω for μ sufficiently small. By
the remark after the proof of Lemma 4.6,

|ω(0, γ, σ(Ω)) − ω(0, γ∗,D)| ≤ Cμ3/2 logμ

for every subarc γ of σ(∂Ω), where γ∗ denotes the radial projection of γ onto ∂D. The
same statements are true for ∂Ωc. Then (5.5) follows because the harmonic measure
of the subarc γp of ∂Ω from p0 to p is given by

ω(0, γp,Ω) =
1

2π
arg

(
ϕ(p)

ϕ(p0)

)
,

and a similar statement is true for ϕc.
The constant C in Theorem 5.3 depends on the quasiconformality constant K =

K(∂Ω), p, diam(Ω), dist(0, ∂Ω), and

M = sup
1/2<|z|<1

(
|ψ′|, 1/|ψ′|

)
,

where ψ is a conformal map of the complement of Ω to D. If Ir = ψ({|z| = r})
is replaced by a C3/2 curve which is constructed geometrically instead of using the
conformal map ψ, then the constant C can be taken to depend only on the geometry
of the region Ω.

Similar results, albeit more complicated, for uniform convergence of the deriva-
tives of the computed maps and the derivatives of their inverses could also be obtained
from the results in [W2, Theorems III and V].

6. Some numerical results. An in-depth comparision of the algorithms in this
article with other methods of conformal mapping and convergence rates will be written
separately. To give the reader a sense of the speed and accuracy of computations, if
10,000 data points are given, it takes about 25 seconds with the geodesic algorithm
to compute the conformal maps to the interior, the exterior, and their inverses on a
3.2 GHz Pentium IV computer. Since all of the basic maps are given explicitly in
terms of elementary maps, the speed depends only on the number of points and not
the shape of the region or the distribution of the data points. The accuracy can be
measured if the true conformal map is known. For example,

f(z) =
rz

1 − (rz)2
,

where r < 1 maps the unit disc into an inverted ellipse. See Figure 12.
The region was chosen because it almost pinches off at 0, and because the stretch-

ing/compression given by max |f ′| /min |f ′| is big for r near 1. This is sometimes
called the “crowding phenomenon.” We chose r = .95 and used as data points the
image by f of 10,000 equally spaced points on the unit circle, and we compared
the corresponding points on the unit circle computed by the geodesic algorithm with
10,000 equally spaced points. The errors were less than 1.8·10−6. The same procedure
using the zipper algorithm took 84 seconds and had errors less than 9.2 · 10−8. When



CONVERGENCE OF A VARIANT OF THE ZIPPER ALGORITHM 2605

Fig. 12. Inverted ellipse with r = .95.

the number of data points was increased to 100,000, the time to run the geodesic
algorithm increased to 25 minutes with errors less than 2 · 10−8. In this example,
the difference between successive (given) boundary data points on the inverted ellipse
ranged from .025 to 3 ·10−6 so that perhaps a better distribution of data points would
have given even smaller errors.

In practice, the choice of data points corresponding to equally spaced points on
the circle is not available. An alternative approach to this example is to select data
points on the inverted ellipse which are approximately equally spaced in arc length.
However, if we choose 10,000 points in this manner, then three consecutive points at
the inward pointing “tips” of the region form a “turning angle” of more than 100◦

because the curvature is so large. This leads to relatively large errors in the map since
the tip has large harmonic measure. Another method is to select data points so that
the “turning angle” ∣∣∣∣arg

(
zk+1 − zk
zk − zk−1

)∣∣∣∣
is not too big. This results in inaccuracies for this region because the curvature rapidly
decreases to zero near the tips, and hence the data points are not very “evenly spaced.”

A better method is to use a combination of these ideas. We generated a list of
106 points on the boundary of the inverted ellipse and then selected a subset using the
following criteria: Having selected z1, . . . , zk, choose zk+1 to be the first data point in
the list after zk satisfying ∣∣∣∣arg

(
zk+1 − zk
zk − zk−1

)∣∣∣∣ > δ

or

log

∣∣∣∣zk+1 − zk
zk − zk−1

∣∣∣∣ > δ.

To compare with our previous results, we selected δ = .0025 and thereby obtained
9,890 data points with the property that the “turning angle” is small and the ratio
of lengths of successive arcs is close to 1. We compared the points on the unit circle
obtained from the geodesic algorithm with the true inverse images. The maximal
error was less than 5.3 × 10−6. It is interesting to note that the maximal distance
between successive points on the unit circle is 4.2× 10−2 so that the errors are much
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Fig. 13. Tenerife.

smaller than the harmonic measure of the corresponding arcs. This technique can be
applied to any region where the boundary is known at a very large number of points.

Figure 13 shows the conformal map of a Carleson grid on the disc to both the
interior and exterior of the island Tenerife (Canary Islands). We chose this region to
illustrate the method on a nonsmooth region where no symmetry is involved. The
center of the interior is the volcano Teide. It also shows both the original data for the
coastline, connected with straight line segments, and the boundary curve connecting
the data points using the zipper algorithm. At this resolution, it is not possible to
see the difference between these curves. The zipper algorithm was applied to 6,168
data points and took 36 seconds. The image of 24,673 points on the unit circle took
48 seconds, and all of these points were within 9 · 10−5 of the polygon formed by
connecting the 6,168 data points. The points on the circle corresponding to the 6,168
vertices were mapped to points within 10−10 of the vertices. This error is due to the
tolerance set for Newton’s method, round-off error, and the compression/expansion of
harmonic measure. The image of 8,160 vertices in the Carleson grid took 25 seconds
to be mapped to the interior and 25 seconds to the exterior.

The first objection one might have in applying these algorithms with a large
number of data points is that compositions of even very simple analytic maps can be
quite chaotic. Indeed, this is the subject of the field of complex dynamics. We could
redefine the basic maps fa by composing with a linear fractional transformation of
the upper-half plane so that the composed map is asymptotic to z as z → ∞. This
will not affect the computed curve in these algorithms since the next basic map begins
with a linear fractional transformation (albeit altered). However, if we formulate the
basic maps in this way, then because the maps are nearly linear near ∞, the numerical
errors will accumulate only linearly.

Banjai and Trefethen [BT] adapted fast multipole techniques to the Schwarz–
Christoffel algorithm and successfully computed the conformal map to a region which
is bounded by a polygon with about 105 edges. They used a 12-fold symmetry in
the region to immediately reduce the parameter problem to size 104. Any other
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conformal mapping technique can also use symmetry and obtain a 12-fold reduction
in the number of data points required; however, their work does show at least that
Schwarz–Christoffel is possible with 104 vertices, though convergence of the algorithm
to solve the parameter problem is not always ensured. The time it takes to run the
zipper algorithm and the resulting accuracy for these snowflake regions is very close
to the timing and accuracy for the fast multipole improvements in the Schwarz–
Christoffel method. The geodesic algorithm is almost as good and has the advantage
that it is very easy to code and convergence can be proved. For a region bounded
by a polygon with a small number of vertices, where high accuracy is desired (for
instance, errors on the order of 10−14), the Schwarz–Christoffel method is preferable.
It would be interesting to try to prove convergence of the technique used in [BT]
to find the prevertices in the Schwarz–Christoffel representation for polygons which
are K-quasicircles in terms of K. It would be interesting as well to apply multipole
techniques to the zipper algorithm. A first step in this direction can be found in
Kennedy [KT].

One additional observation worth repeating in this context is that the geodesic
and zipper algorithms always compute a conformal map of H to a region bounded
by a Jordan curve passing through the data points, even if the disc-chain or pacman
conditions are not met. The image region can be found by evaluating the function
at a large number of points on the real line. By Proposition 2.5 and Corollary 3.9,
if the data points {zj} satisfy the hypotheses of Theorem 2.2 or 3.4, then ϕ can be
analytically extended to be a conformal map of the original region Ω to a region very
close to D. To do so requires careful consideration of the appropriate branch of

√
z

at each stage of the composition.
Theorems 2.2 and 3.4 and their proofs suggest how to select points on the bound-

ary of a region to give good accuracy for the mapping functions. Roughly speaking,
points need to be chosen closer together where the region comes close to folding back
on itself. See Figure 12, for example. Greater accuracy can be obtained by placing
more points on the boundary near the center and fewer on the big lobes. See also the
remarks after Theorem 5.3 in this regard. In practice, the zipper map works well if
points are distributed so that

(6.1) B(zk, 5|zk+1 − zk|) ∩ ∂Ω

is connected.
When the boundary of the given region is not smooth, then one of the processes

described in section 2 should be used to generate the boundary data, if the geodesic
algorithm is to be used. For example, if nothing is known about the boundary except
for a list of data points, then we preprocess the data by taking data points along the
line segments between the original data points, so that these new points correspond
to points of tangency of disjoint circles centered on the line segments, including circles
centered at the original data points. Note that the original boundary points are not
among these new data points. The geodesic algorithm then finds a conformal map to
a region with the new data points on the boundary. The boundary of the new region
will be close to the polygonal curve through the original data points but will not pass
through the original data points. This boundary is “rounded” near the original data
points. Indeed, it is a smooth curve.

When the boundary of the desired region is less smooth, for example, with “cor-
ners,” then the zipper or slit algorithms should be used. In this case additional points
are placed along the line segments between the data points, with at least five points
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per edge and satisfying (6.1). In practice, at least 500 points are chosen on the bound-
ary so that the image of the circle will be close to the polygonal line through the data
points. Since two data points are pulled down to the real line with each basic map
in the zipper algorithm, the original data points should occur at even numbered in-
dices in the resulting data set (the first data point is called z0). Then the computed
boundary Ωc will have corners at each of the original data points, with angles very
close to the angles of the polygon through the original data points.

Fortran programs for a version of the zipper algorithm can be obtained from [MD].
Also included is a graphics program, written in C with X-11 graphics by Mike Stark,
for the display of the conformal maps. There are also several demo programs applying
the algorithm to problems in elementary fluid flow, extremal length, and hyperbolic
geometry. Extensive testing of the geodesic algorithm [MM] and an early version
of the zipper algorithm was done in the 1980s with Morrow. In particular, that
experimentation suggested the initial function ϕ0 in the zipper algorithm which maps
the complement of a circular arc through z0, z1, and z2 onto H.

Appendix. Jørgensen’s theorem. Since Jørgensen’s theorem is a key com-
ponent of the proof of the convergence of the geodesic algorithm, we include a short
self-contained proof. It says that discs are strictly convex in the hyperbolic geometry
of a simply connected domain Ω (unless ∂Ω is contained in the boundary of the disk).

Theorem A.1 (Jørgensen [J]). Suppose Ω is a simply connected domain. If Δ
is an open disc contained in Ω and if γ is a hyperbolic geodesic in Ω, then γ ∩ Δ is
connected, and if it is nonempty, it is not tangent to ∂Δ in Ω.

Proof (see [P, pp. 91–93]). Applying a linear fractional transformation to Ω, we
replace the disc Δ by the upper-half plane H. Suppose x ∈ R and suppose that f
is a conformal map of D onto Ω such that f(0) = x and f ′(0) > 0. We will use the
auxiliary function z + 1/z, which is real-valued on ∂D ∪ (−1, 1). Then

Im

(
f ′(0)

f(z) − x
−
(

1

z
+ z

))
is a bounded harmonic function on D which is greater than or equal to 0 by the

maximum principle. Thus Im f ′(0)
f(z)−x ≥ 0 on (−1, 1), and hence Im f(z) ≤ 0 on the

diameter (−1, 1). The condition f ′(0) > 0 means that the geodesic f
(
(−1, 1)

)
is

tangent to R at x. Two circles which are orthogonal to ∂D can meet in D in at most
one point, and hence hyperbolic geodesics in simply connected domains (images of
orthogonal circles) meet in at most one point and are not tangent. Thus if γ is a
geodesic in Ω which intersects H and contains the point x, then it cannot be tangent
to R at x and cannot re-enter H after leaving it at x because it is separated from H

by the geodesic f
(
(−1, 1)

)
. The theorem follows.

In section 2, we commented that a constructive proof of the Riemann mapping
theorem followed from the proof of Theorem 2.2. The application of Jørgensen’s
theorem in the proof of Theorem 2.2 is only to domains for which the Riemann map
has been explicitly constructed.
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focused on spectral cut-off and Tikhonov-type estimators. Spectral cut-off estimators achieve min-
imax rates for a broad range of smoothness classes and operators, but their practical usefulness is
limited by the fact that they require a complete spectral decomposition of the operator. Tikhonov
estimators are simpler to compute but still involve the inversion of an operator and achieve mini-
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1. Introduction. This paper is concerned with estimating an element f of a
Hilbert space H1 from indirect noisy measurements

(1.1) Y = Kf + “noise”

related to f by a (known) operator K : H1 → H2 mapping H1 to another Hilbert
space H2. The operator K is assumed to be linear, bounded, and injective, but not
necessarily compact. We are interested in the case that the operator equation (1.1) is
ill-posed in the sense that the Moore–Penrose inverse of K is unbounded. The analysis
of regularization methods for the stable solution of (1.1) depends on the mathematical
model for the noise term on the right-hand side of (1.1): If the noise is considered as a
deterministic quantity, it is natural to study the worst-case error. In the literature a
number of efficient methods for the solution of (1.1) have been developed, and it has
been shown under certain conditions that the worst-case error converges at optimal
order as the noise level tends to 0 (see Engl, Hanke, and Neubauer [14]). If the noise is

modeled as a random quantity, the convergence of estimators f̂ of f should be studied
in statistical terms. Here we consider the expected square error E ‖f̂ − f‖2, also
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called the mean integrated square error (MISE). This problem has also been studied
extensively in the statistical literature, but the numerical efficiency has not been a
major issue so far. It is the purpose of this paper to provide an analysis of a class
of computationally efficient regularization methods including Landweber iteration,
ν-methods, and iterated Tikhonov regularization, which is applicable to linear inverse
problems with random noise as they occur, for example, in parameter identification
problems in partial differential equations (PDEs), deconvolution, or errors in variable
models.

There exists a considerable amount of literature on regularization methods for
linear inverse problems with random noise. For surveys we refer to O’Sullivan [37],
Nychka and Cox [36], Evans and Stark [16], and Kaipio and Somersalo [26]. A large
part of the literature focuses on methods which require the explicit knowledge of
a spectral decomposition of the operator K∗K. The simplest of these methods is
spectral cut-off (or truncated singular value decomposition (SVD) for compact opera-
tors) where an estimator is constructed by a truncated expansion of f with respect to
(w.r.t.) the eigenfunctions of K∗K (see, e.g., Diggle and Hall [10] and Healy, Hendriks,
and Kim [21]). It has been shown in a number of papers that spectral cut-off esti-
mators are order optimal in a minimax sense under certain conditions (see, e.g., Mair
and Ruymgaart [30], Efromovich [13], and Kim and Koo [27]). Based on an SVD of K
it is also possible to construct exact minimax estimators for given smoothness classes
(see Johnstone and Silverman [25]).

Another major approach is wavelet-vaguelette (and vaguelette-wavelet)-based
methods which lead to estimators of a functional form similar to that of SVD meth-
ods. In general these estimators are based on expansions of f and Kf w.r.t. different
bases of the respective function spaces than those provided by the SVD of K (see,
e.g., Donoho [12], Abramovich and Silverman [1], and Johnstone et al. [24]).

A well-known method both in the statistical and the deterministic inverse prob-
lems literature is Tikhonov regularization. This has been studied for certain classes
of linear statistical inverse problems by Cox [9], Nychka and Cox [36], and Mathé and
Pereverzev [31, 33].

The main restriction of the usefulness of spectral cut-off and related estimators
is the need of the spectral data of the operator (i.e., an SVD if K is compact) to
implement these estimators. This is known explicitly only in a limited number of spe-
cial cases, and numerical computation of the spectral data is prohibitively expensive
for many situations. Although Tikhonov regularization does not require the spec-
tral data of the operator, there is still the requirement of setting up and inverting
a matrix representing the operator. For iterative regularization methods such as
Landweber iteration or ν-methods (see Nemirovskii and Polyak [35], Brakhage [6],
and Engl, Hanke, and Neubauer [14]) only matrix-vector multiplications are required.
Furthermore, it is known that Tikhonov regularization achieves minimax rates of con-
vergence only in a restricted number of smoothness classes, which is highlighted by
the fact that its qualification number is 1, whereas Landweber iteration has infinitely
large qualification, and ν-methods with qualification ν are available for every ν > 0
(see [14]).

Iterative regularization methods are particularly attractive for inverse problems
in PDEs. Here the operator K maps an unknown parameter f in a PDE to (part of)
the solution to this PDE. Hence, applying K to a vector f simply means solving the
PDE with the parameter f , whereas inverting or even setting up the matrix for K is
often not feasible. We will discuss two linear inverse problem for PDEs (the backwards
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heat equation and satellite gradiometry) in section 5. However, most inverse problems
for PDEs are nonlinear even if the PDE is linear. Such problems are often solved by
regularized Newton methods. In this case the methods and the analysis of this paper
can be applied to the linearized operator equations in each Newton step as discussed
in the forthcoming paper [2].

In this paper we will show that general spectral regularization methods as defined
in section 2 achieve the same rates of convergence of the MISE as spectral cut-off,
which is known to be optimal in most cases (see above). Whereas the bias or approx-
imation error is exactly the same in a deterministic and a statistical framework, the
analysis significantly differs in the estimation of the noise term. In spectral cut-off
for compact operators, the noise (or variance) part of the estimators f̂α belongs to
a finite-dimensional space of “low-frequencies.” The main difficulty in the analysis
of general spectral regularization methods is the estimation of the “high frequency”
components of the noise. Unlike in a deterministic framework, the bound on the noise
term depends not only on the regularization parameter, but also on the distribution
of the singular values of K (if K is compact). Therefore, a statistical analysis has
to impose additional conditions on the operator. We will verify these conditions for
several important problems, including inverse problems in PDEs and errors in vari-
able models. As an example of particular interest in the machine learning context
we obtain optimal rates of convergence of L2-boosting by interpreting L2-boosting
as a Landweber iteration (see also Bühlmann and Yu [7] and Yao, Rosasco, and
Caponnetto [42]).

The plan of this paper is as follows: Section 2 gives a brief overview of regulariza-
tion methods and source conditions and introduces an abstract noise model. Section 3
contains the main results of this paper on the rates of convergence of general spectral
regularization methods. In section 4 we demonstrate how a number of commonly
used statistical noise models fit into our general framework. Finally, in section 5 we
discuss the application of our results to the backwards heat equation, satellite gra-
diometry, errors in variable models with dependent random variables, L2-boosting,
and operators in Hilbert scales. Proofs of section 3 are collected in section 6.

2. Framework. We first review some basic notions of regularization theory.

2.1. Spectral theorem. Halmos’s version of the spectral theorem (see, for
instance, Halmos [20] and Taylor [40]) turns out to be particularly convenient for
the construction and statistical analysis of regularized inverses of a self-adjoint oper-
ator. This has been demonstrated by Mair and Ruymgaart [30] for the spectral cut-
off estimator. The theorem claims that for a (not necessarily bounded) self-adjoint
operator A : D(A) → H defined on a dense subset D(A) of a separable Hilbert space
H there exists a σ-compact space S, a Borel measure Σ on S, a unitary operator
U : H → L2(Σ), and a measurable function ρ : S → R such that

(2.1) UAf = ρ · Uf, Σ-a.e.,

for all f ∈ D(A). Introducing the multiplication operator Mρ : D(Mρ) → L2(Σ),
Mρϕ := ρ ·ϕ defined on D(Mρ) := {ϕ ∈ L2(Σ) : ρϕ ∈ L2(Σ)}, we can rewrite (2.1) as
A = U∗MρU , i.e., A is unitarily equivalent to a multiplication operator. The essential
range of ρ is the spectrum σ(A) of A. If A is bounded and positive definite as below,
then 0 < ρ ≤ ‖A‖, Σ-a.e.

Remark 1. In the special case that A is compact, a well-known version of the
spectral theorem states that A has a complete orthonormal system of eigenvectors
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ui with corresponding eigenvalues ρi, and Af =
∑∞

j=0 ρj 〈uj , f〉uj . This can be
rewritten in the multiplicative form (2.1) by choosing Σ as the counting measure on
S = N, i.e., L2(Σ) = l2(N), the multiplicator function as ρ(i) = ρi, i ∈ N, and defining
the unitary operator U : H → l2(N) by (Uf)(i) := 〈f, ui〉, i ∈ N.

2.2. Regularized estimators. Recall Halmos’s spectral theorem from section
2.1. For a self-adjoint operator A : D(A) → H and a bounded, measurable function
Φ : σ(A) → R one defines an operator Φ(A) ∈ L(H) by

(2.2) Φ(A) = U∗MΦ(ρ)U

(see, e.g., Taylor [40]). The mapping Φ �→ Φ(A), called the functional calculus at A,
is an algebra homomorphism from the algebra of bounded measurable functions on
σ(A) to the algebra L(H) of bounded linear operators on H, and

(2.3) ‖Φ(A)‖ ≤ sup
λ∈σ(A)

|Φ(λ)|,

with equality if Φ is continuous. We will construct estimators of the input function
by regularization methods of the form

(2.4) f̂α,σ = Φα(K∗K)K∗Y.

Here Φα : σ(K∗K) → R is a collection of bounded filter functions approximating the
unbounded function t �→ 1

t on σ(K∗K), which are parametrized by a regularization
parameter α > 0.

A particular example of a regularization method of the form (2.4) is the spectral
cut-off estimator (also known as truncated SVD) described by the functions

ΦSC
α (t) :=

{
t−1, t ≥ α,

0, t < α.

As explained in the introduction, we will focus on regularization methods which
can be implemented without explicit knowledge of the spectral decomposition of the
operator K∗K. This includes both implicit methods such as Tikhonov regularization
(Φα(t) = (α + t)−1), iterated Tikhonov regularization, and Lardy’s method, which
involve the inversion of an operator, and explicit methods such as Landweber iteration
(Φ1/(k+1)(t) =

∑k−1
j=0 (1 − βt)j , where β ∈ (0, ‖K∗K‖−2) is a step-length parameter,

and ν-methods, which require only matrix-vector products in a discrete setting. For
a derivation and discussion of these methods we refer to the monograph [14].

2.3. Smoothness classes. We will measure the smoothness of the input func-
tion f relative to the smoothing properties of K in terms of source conditions: Let
Λ : [0,∞) → [0,∞) be a continuous, strictly increasing function with Λ(0) = 0, and
assume that there exists a “source” w ∈ H1 such that

(2.5) f = Λ(K∗K)w

(see [14, 15, 32]). The set of all f satisfying this condition with ‖w‖H1
≤ w, w > 0

will be denoted by FΛ,w,K∗K := {Λ(K∗K)w : w ∈ H1, ‖w‖ ≤ w}. We will shorten
this to FΛ,w := FΛ,w,K∗K if there is no ambiguity. The most common choice, which
is usually appropriate for finitely smoothing operators K, is

(2.6) Λ(t) = tν , ν > 0.
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In particular, (2.5) with Λ(t) =
√
t is equivalent to f = K∗v, ‖v‖H2

≤ 1 (see Engl,
Hanke, and Neubauer [14, Prop. 2.18]). For exponentially ill-posed problems such as
the backwards heat equation, (2.6) is usually too restrictive, and logarithmic source
conditions corresponding to the choice

(2.7) Λ(t) = (− ln t)−p, p > 0,

are more appropriate (see Hohage [23] and Mair [29]). Since Λ is singular at t = 1,
we assume that the norms in H1 and H2 are scaled such that ‖K∗K‖ < 1 in this
case. For a further discussion of source conditions and interpretations as smoothness
conditions in Sobolev spaces we refer to the applications in section 5.

If f belongs to the smoothness class FΛ,w and we are given exact data Y = g,
then the error is bounded by

‖Φα(K∗K)K∗g − f‖ = ‖(Φα(K∗K)K∗K − I)Λ(K∗K)w‖(2.8)

≤ sup
t∈σ(K∗K)

|(Φα(t)t− 1)Λ(t)|w,

where we have used (2.3).

2.4. Assumptions on smoothness and the regularization method. In
the following we discuss a number of standard assumptions on the filter functions Φα

satisfied for all commonly used regularization methods, in particular those discussed
in section 2.2 (see [14]). First, we assume that there exists a constant C2 > 0 such
that

(2.9a) sup
t∈σ(K∗K)

|tΦα(t)| ≤ C2, uniformly in α > 0.

To bound the so-called propagated deterministic noise error τ‖Φα(K∗K)K∗ξ‖, we
impose the following condition:

(2.9b) there exists C3 > 0 : sup
α>0

sup
t∈σ(K∗K)

|αΦα(t)| ≤ C3.

In view of the bound (2.8) on the approximation error, we also assume that there
exists a number ν0 > 0 called qualification of the method and constants γν > 0 such
that

(2.9c) sup
t∈σ(K∗K)

|tν(1 − tΦα(t))| ≤ γνα
ν for all α and all 0 ≤ ν ≤ ν0.

The qualification of a method is a measure of the maximal degree of smoothness in
terms of the Hölder-type conditions (2.5), (2.6) under which the approximation error
(2.8) converges at optimal order. The following are qualifications of some commonly
used methods: Tikhonov regularization: 1; K-times iterated Tikhonov regularization:
K; Landweber iteration: ∞ (in the sense that it is greater than any real number);
ν-methods: ν (where ν > 0 is a parameter in the method); see references in the
introduction.

Note that the condition (2.9c) with ν0 > 0 implies that limα↘0 Φα(t) = 1
t for all

t ∈ σ(K∗K). For ν = 0 the condition (2.9c) implies (2.9a) with C2 = 1+γ0. However,
this value of C2 is usually not optimal since for most regularization methods (2.9a)
holds true with C2 = 1.
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For general source conditions we assume that there exists a constant γΛ such that

(2.10) sup
t∈σ(K∗K)

|Λ(t)(1 − tΦα(t))| ≤ γΛΛ(α), α ↘ 0.

Under Hölder-type source conditions (2.6) this holds true for ν ≤ ν0 by assumption
(2.9c). For the choice Λ(t) = (− ln t)−p, it has been shown in Hohage [23] that (2.9c)
with ν0 > 0 implies (2.10). For more general functions Λ we refer to Mathé and
Pereverzev [32] for similar implications.

2.5. Noise model. In this subsection we introduce an abstract noise model
which will be used in the proof of our main result. In section 4 we will demonstrate
that several noise models commonly encountered in statistical modeling fit into this
general framework.

Following Mathé and Pereverzev [31], we assume that our given data can be
written as

(2.11) Y = g + σε + τξ, g := Kf,

where ξ ∈ H2, ‖ξ‖ ≤ 1 is a deterministic error, ε is a stochastic error, and τ, σ > 0
are the corresponding noise levels. Note that model (2.11) allows for stochastic and
deterministic noise, simultaneously.

Often, the stochastic error is modeled as a Hilbert space–valued random variable
Ξ, i.e., a measurable function Ξ : Ω → H2, where (Ω,P, P ) is the underlying probabil-
ity space. However, we will assume more generally that it is a Hilbert-space process,
i.e., a continuous linear operator

ε : H2 → L2(Ω,P, P ).

Every Hilbert space–valued random variable Ξ with finite second moments, E ‖Ξ‖2 <
∞, can be identified with a Hilbert-space process ϕ �→ 〈Ξ, ϕ〉, ϕ ∈ H2, but not vice
versa. We will use the notation 〈ε, ϕ〉 := εϕ, ϕ ∈ H2. The covariance Covε : H2 → H2

of a Hilbert-space process ε : H2 → L2(Ω,P, P ) is the bounded linear operator defined
implicitly by 〈Covεϕ1, ϕ2〉 = Cov (〈ε, ϕ1〉 , 〈ε, ϕ2〉), ϕ1, ϕ2 ∈ H2. We call ε a white
noise process if Covε = I and E 〈ε, ϕ〉 = 0 for all ϕ ∈ H2. Note that a Gaussian
white noise process in an infinite-dimensional Hilbert space cannot be identified with
a Hilbert space–valued random variable.

If ε : H2 → L2(Ω,P, P ) is a Hilbert-space process and A : H2 → H1 is a bounded
linear operator, we define the Hilbert-space process Aε : H1 → L2(Ω,P, P ) by
〈Aε, ϕ〉 := 〈ε,A∗ϕ〉, ϕ ∈ H1. Its covariance operator is given by CovAε = ACovεA

∗.
Assumption 1. In the noise model (2.11) ξ ∈ H2 is a deterministic vector with

‖ξ‖ = 1, and ε is a Hilbert-space process such that

(2.12) E 〈ε, ϕ〉 = 0, ‖Covε‖ ≤ 1

for all ϕ ∈ H2. Moreover, K∗ε is a Hilbert space–valued random variable satisfying

(2.13) E ‖K∗ε‖2 < ∞,

and there exists a spectral decomposition (2.1) of K∗K such that for almost all s ∈ S

(2.14) Var (UK∗ε(s)) ≤ ρ(s).
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The first condition in (2.12) is not a restriction since an expected value different
from zero can be included in τξ, and the second condition is a scaling condition anal-
ogous to ‖ξ‖ ≤ 1. Assumption (2.13) ensures that the estimators defined in (2.4) are
Hilbert space–valued random variables with finite second moments. Inequality (2.13)
is usually a mild assumption, but it excludes, e.g., very mildly ill-posed problems in
combination with white noise. The following lemma implies that (2.14) is a condition
on the choice of U in the Halmos representation (2.1) rather than a condition on
the noise model. Moreover, we can arrange that ρ ∈ L1(Σ), as required in section 3
below. Noise models with a finite number of observations satisfying Assumption 1 are
discussed in section 4 below.

Lemma 2. If ε is a Hilbert-space process satisfying (2.12), K∗ε is a Hilbert space–
valued random variable satisfying (2.13), and K is injective, then there exists a spectral
decomposition (2.1) of K∗K such that (2.14) holds true, and ρ ∈ L1(Σ).

Proof. According to Halmos’s spectral theorem there exists a Borel measure Σ̃
on a σ-compact space S, and a unitary operator Ũ : L2(Rd) → L2(Σ̃) such that
K∗K = Ũ∗MρŨ . For any Σ̃-measurable function χ > 0 on S we can construct

another Halmos representation of K∗K by introducing the Borel measure Σ := χΣ̃
on S and the mapping U : L2(Rd) → L2(Σ), Uf := χ−1/2 · Ũf since U is unitary and
UK∗Kf = ρ · Uf , Σ-a.e., for all f ∈ H1. In particular, we may define
(2.15)

χ(s) :=
Var (ŨK∗ε)(s)

ρ(s)
for s ∈ M, M := {s ∈ S : Var (ŨK∗ε)(s) > 0}.

Here we use that ρ > 0, Σ̃-a.e., since K and hence K∗K is injective by assumption.
We first consider the case Σ̃(M c) = 0, where M c := S \ M . Then (2.14) holds true
for s ∈ M as Var (UK∗ε)(s) = χ(s)−1Var (ŨK∗ε)(s) = ρ(s). Moreover,

(2.16)

∫
ρdΣ =

∫
Var (UK∗ε) dΣ = E

∫
|UK∗ε|2 dΣ = E ‖K∗ε‖2 < ∞,

which is the assertion. Now assume that Σ̃(M c) > 0. Let ψ be an arbitrary strictly

positive function in L1(Σ̃), e.g., ψ(s) :=
(
j(s)2Σ̃(Aj(s))

)−1
, where j(s) := min{j :

s ∈ Aj} for a sequence A1 ⊂ A2 ⊂ · · · ⊂ Ω with Σ̃(Aj) < ∞ and Σ̃(S \
⋃

j Aj) = 0.

Such a sequence exists because Σ̃ is σ-finite. We define χ(s) by (2.15) for s ∈ M

and χ(s) := ψ(s)
ρ(s) for s ∈ M c. Then (2.14) is trivially satisfied for s ∈ M c, and

ρ ∈ L1(Σ) since
∫
M

ρdΣ < ∞ as in (2.16) and
∫
Mc ρdΣ ≤

∫
ψ dΣ̃ < ∞. This finishes

the proof.

3. MISE estimates. In this section the main results of this paper are presented.
Recall the definition of the estimator f̂α,σ of the input function f in (2.4). Since
EΦα(K∗K)K∗ε = 0, the MISE satisfies the bias-variance decomposition

(3.1) E ‖f̂α,σ − f‖2 = B (f̂α,σ)2 + E ‖f̂α,σ − E f̂α,σ‖2,

with the bias term B (f̂α,σ) := ‖E f̂α,σ − f‖. As discussed in the introduction, the
bias term can be bounded by standard estimates, whereas the variance term requires
a special treatment involving a splitting in the frequency domain.

3.1. Estimation of the bias. The bias in our model coincides with the error
in a deterministic setting and can be estimated by standard techniques (see [14]).
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Using the triangle inequality, the noise model (2.11), (2.12), and the definition (2.4)

of f̂α,σ, we get

B (f̂α,σ) ≤ ‖Φα(K∗K)K∗Kf − f‖ + τ‖Φα(K∗K)K∗ξ‖.

The first term (called the approximation error) is bounded by γΛΛ(α)w due to (2.8)
and (2.10). For the second term (called the propagated deterministic noise error) we
obtain the bound

(3.2) ‖Φα(K∗K)K∗ξ‖2 = 〈Φα(KK∗)ξ,KK∗Φα(KK∗)ξ〉 ≤ C2C3

α

using the identity Φα(K∗K)K∗ = K∗Φα(KK∗) (see [14, eq. (2.43)]) and (2.9). Hence,

(3.3) B (f̂α,σ) ≤ γΛΛ(α)w +

√
C2C3

α
τ.

Since we aim to show optimality of general regularization methods by comparison to
spectral cut-off (see the introduction and section 3.3), we now compare the approxi-
mation errors of general regularization methods and spectral cut-off. To this end, we
introduce the following notation.

Notation. For two real-valued functions f, g defined on an interval (0, ᾱ] we write

f(α) ∼ g(α) (or f(α) ∼< g(α)) , as α ↘ 0,

if g(α) �= 0 for α in some neighborhood of 0 and limα↘0
f(α)
g(α) = 1 or lim supα↘0

f(α)
g(α) ≤

1. Furthermore, we write

f(α) � g(α), as α ↘ 0,

if there exist constants ᾱ > 0 and Cᾱ ≥ 1 such that (1/Cᾱ)f(α) ≤ g(α) ≤ Cᾱf(α)
for 0 < α ≤ ᾱ.

Recall that Λ : [0,∞) → [0,∞) is assumed to be a strictly increasing, continuous
function with Λ(0) = 0 and that 1− tΦSC

α (t) = χ[0,α](t), i.e., (I −K∗KΦSC
α (K∗K)) is

an orthogonal projection operator. Therefore,

sup
f∈FΛ,w

‖(I −K∗KΦSC
α (K∗K))f‖ = sup

t∈σ(K∗K)

(1 − tΦSC
α (t))Λ(t)w ∼ Λ(α)w, α ↘ 0.

The last relation holds since 0 is not an isolated point of the spectrum σ(K∗K) for
ill-posed operator equations. Using (2.8) and (2.10) we obtain the estimate

sup
f∈FΛ,w

‖(I −K∗KΦα(K∗K))f‖(3.4)

≤ γΛΛ(α)w ∼ γΛ sup
f∈FΛ,w

‖(I −K∗KΦSC
α (K∗K))f‖

as α ↘ 0. For many regularization methods and smoothness classes we have γΛ ≤ 1.

3.2. Estimation of the integrated variance and rate of convergence of
the MISE. The more difficult part is the estimation of the integrated variance of
the error f̂α,σ − f . Under Assumption 1 we have

(3.5) E ‖f̂α,σ − E f̂α,σ‖2 = σ2E ‖Φα(ρ)UK∗ε‖2 ≤ σ2

∫
S

Φ2
α(ρ)ρdΣ.
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A crucial point in the following analysis is the estimation of the tails of the spectral
function ρ. To this end, we bound the variance in terms of the function

(3.6) R(α) := Σ({ρ ≥ α}) for α > 0.

In order to control the MISE of f̂α,σ as α ↘ 0 it is tempting to assume that R is
smooth in a neighborhood around 0. However, this is not true in general. Therefore,
we will pose instead that R can be approximated suitably by a smooth function S with
properties similar to those of R as α ↘ 0. Obviously, R is monotonically decreasing
(see (3.8a) below). If ρ ≥ 0 belongs to L1(Σ), then −

∫∞
0

α dR(α) =
∫

S
ρdΣ < ∞

(see (3.8b)), and it follows from Lebesgue’s dominated convergence theorem that
limα↘0 αR(α) = limα↘0

∫
S
α 1{ρ≥α} dΣ = 0 (see (3.8c)).

Assumption 2. There exists a constant ᾱ ∈ (0, ‖ρ‖∞] and a function S ∈
C2((0, ᾱ]) such that

R(α) ∼ S(α), as α ↘ 0,(3.7)

with R defined by (3.6) in terms of the spectral decomposition (2.1), and S satisfies

S′ < 0,(3.8a)

−αS′(α) is integrable on (0, ᾱ],(3.8b)

lim
α↘0

αS(α) = 0,(3.8c)

∃γS ∈ (0, 2) for all α ∈ (0, ᾱ] :
S′′(α)

−S′(α)
≤ γS

α
.(3.8d)

We will show in section 5 for a number of examples that this assumption is
satisfied. Now we are in a position to give an estimate of the MISE. The estimate
of the MISE in the image space H2 in (3.10) is needed in the analysis of L2-boosting
(section 5.4) and for nonlinear inverse problems.

Theorem 3. Consider the model (2.11), and let Assumptions 1 and 2 hold true.

We define a general spectral estimator f̂α,σ by (2.4) and assume that Φα satisfies (2.9).
1. If condition (2.10) is satisfied for the function Λ defining the smoothness

class FΛ,w,K∗K , then for all f ∈ FΛ,w,K∗K the MISE can be asymptotically
bounded by

E ‖f̂α,σ − f‖2
H1 ∼<

(
γΛΛ(α)w +

√
C2C3

α
τ

)2

(3.9)

+
(C2

2 + C2
3 )σ2

α2

∫ α

0

S(β) dβ, as α ↘ 0.

2. Assume that g ∈ FΛ̃,w,KK∗ ⊂ H2 and that Λ̃ satisfies (2.10). (If g = Kf with

f ∈ FΛ,w,K∗K , then Λ̃(t) :=
√
tΛ(t), but we do not assume g ∈ R(K) here!)

Then

E ‖Kf̂α,σ − g‖2
H2 ∼<

(
γΛ̃Λ̃(α)w + C2τ

)2

(3.10)

+
(C2

2 + C2
3 )σ2

α2

∫ α

0

βS(β) dβ, as α ↘ 0.
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Note that for statistical inverse problems, as opposed to deterministic inverse
problems, the estimates of the noise term and hence the rates of convergence of the
MISE do not depend only on the relative smoothness of the solution (i.e., on Λ), but
also on the operator (i.e., on S).

Remark 4. We comment on the choice of the regularization parameter α > 0. If
the noise levels σ and τ , the spectral properties of K∗K (i.e., S), and the smoothness
of f (i.e., Λ) are known, one can choose α by minimizing the right-hand side of
(3.9). Since typically the smoothness of the solution is not known a priori, so-called
adaptive methods must be employed for the selection of α. We do not intend to review
the considerable amount of literature on this topic here but want to mention that the
explicit bounds on the variance given in Theorem 3 allow the application of the Lepskij
balancing principle as proposed for inverse problems by Mathé and Pereverzev [32, 33]
and Bauer and Pereverzev [3]. We will discuss this in more detail elsewhere. With
this method one typically loses a log factor in the asymptotic rates of convergence.
In most cases this can be avoided by using Akaike’s method as studied for spectral
cut-off and related methods by Cavalier et al. [8]. Unfortunately, Assumption 2 in
this paper is not satisfied for the methods discussed here.

3.3. Comparison with spectral cut-off. To show that with an optimal choice
of α our estimators can achieve the best possible order of convergence among all
estimators as σ ↘ 0, we compare them to the spectral cut-off estimator for which
minimax results are known in many situations (see references in the introduction).
Since we are mainly interested in the case that the statistical noise is asymptotically
dominant, we will assume that τ = 0 for simplicity. Moreover, we assume in addition
to (2.14) that the lower bound

(3.11) Var (UK∗ε(s)) ≥ γvarρ(s)

holds true for some constant γvar > 0. For the white noise model this is satisfied
with γvar = 1 and for the inverse regression model with γvar = Cv,l/C1 (see (4.13)).
Moreover, we need the following assumption to prove optimal rates in many mildly
ill-posed problems.

Assumption 3. There exists a constant C4 > 0 such that for all α ∈ (0, ᾱ]

(3.12)
C4

α
≤ −S′(α)

S(α)
.

Theorem 5. Let Assumptions 1 and 2 and the lower bound (3.11) hold true and
assume that the family of functions {Φα} satisfies (2.9). Moreover, assume that either
S = R or Assumption 3 holds true. Then the integrated variance of the estimator
f̂α,σ is bounded by the integrated variance of the spectral cut-off estimator f̂SC

α,σ,

(3.13) E ‖f̂α,σ − E f̂α,σ‖2 ∼<
C2

2 + κC2
3

γvar
E ‖f̂SC

α,σ − E f̂SC
α,σ‖2, as α ↘ 0,

with C2 and C3 as in Theorem 3 and κ := γS/(2 − γS), γS defined in (3.8d). Moreover,
if condition (2.10) is satisfied for the function Λ defining the smoothness class FΛ,w

and if τ = 0, then there exists a constant C > 0 such that

(3.14) sup
f∈FΛ,w

E ‖f̂α,σ − f‖2 ≤ C sup
f∈FΛ,w

E ‖f̂SC
α,σ − f‖2

for all σ > 0 and all α > 0 sufficiently small.
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Whereas condition (3.12) is usually satisfied for mildly ill-posed problems, it is
not satisfied for exponentially ill-posed problems where S(α) ∼ c(− lnα)q for con-
stants c, q > 0. Nevertheless, the error bounds in Theorem 3 yield optimal rates of
convergence in the limit σ ↘ 0 for logarithmic source conditions after taking the
infimum over all α. This is made precise in the following result, which relies on a
comparison of the rates for general regularization methods and bounds on the spec-
tral cut-off rates, which are known to be optimal in many situations (see, e.g., Mair
and Ruymgaart [30]).

Theorem 6. Under the assumptions of Theorem 3, Part 1 with τ = 0, define the
increasing functions γ1(α) := −

∫ ᾱ

α
1
β dR(β) and γ2(α) := 1

α2

∫ α

0
S(β) dβ and assume

that

(3.15) Λ (γ2(γ1(α))) ∼< CΛ(α), as α ↘ 0,

with the inverse function γ2 of γ2 and a constant C > 0. Then

inf
α>0

E ‖f̂α,σ − f‖2 ∼< inf
α>0

(
(CγΛΛ(α)w)2 + (C2

3 + C2
2 )σ2γ1(α)

)
, as σ ↘ 0;

i.e., if we choose the optimal value of α for every noise level σ, all spectral regulariza-
tion methods achieve the same rate of convergence of the MISE as spectral cut-off.

Assumption (3.15) is satisfied if Λ(t) = (− ln t)−p and γ1(α) ≤ γ2(α
2) since

Λ(γ2(γ1(α))) ≤ Λ(α2) = (−2 lnα)−p = 2−pΛ(α).

4. Noise models satisfying Assumption 1. In this section we show that
several commonly used noise models fit into the general framework described in
Assumption 1. We start with an (infinite-dimensional) white noise model, and then
continue with several models based on finitely many observations.

4.1. White noise. A frequently used model is to assume that ε in (2.11) is a
white noise process in H2 (see, e.g., Donoho [11, 12] and Mathé and Pereverzev [31]).
Moreover, we assume that K∗K is a trace-class operator; i.e., it is compact and the
eigenvalues ρj of K∗K satisfy tr(K∗K) :=

∑∞
j=0 ρj < ∞. Then CovK∗ε = K∗K, so

E ‖K∗ε‖2 = tr(CovK∗ε) = tr(K∗K) < ∞.

Therefore, K∗ε can be identified with a Hilbert space–valued random variable. Using
the notation introduced in Remark 1 and defining ej : N → R by ej(k) := δjk,
uj = U∗ej ∈ H1 is a unit-length eigenvector of K∗K to the eigenvalue ρj , and

Var (UK∗ε(j)) = Var 〈UK∗ε, ej〉 = Var 〈ε,Kuj〉 = ‖Kuj‖2 = ρj

for j = 0, 1, 2, . . . . Therefore, (2.14) is satisfied with equality.

4.2. Quasi deconvolution, errors in variable, noncompact operators.
Suppose we want to estimate the density f of a random variable Z with values in
R

d, but we can observe only a random variable X = Z + W perturbed by a random
variable W . Hence, our data are

(4.1) X1, . . . , Xn
i.i.d.∼ X = Z + W.

The density g of X is given by

(4.2) g =

∫
Rd

h(· − z|z)f(z) dz =: Kf,
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where h(·|z) is the conditional density of W given Z = z. If Z and W are stochas-
tically independent, K is a convolution operator. The recovering of f is known as
the deconvolution problem and has been studied extensively (see, e.g., Stefanski and
Carroll [38], Fan [17], and Diggle and Hall [10]). Dependent Z and W in (4.1) occur in
many scientific applications, e.g., brightness determination of extragalactic star clus-
ters in astrophysics, where the variance σ2 of the noise W increases monotonically
with decreasing brightness of the object Z. Here, a reasonable model is described by
h(y|z) = (2πσ2(z))−1/2 exp(−y2/σ2(z)) (see Bissantz [4]).

We assume that f ∈ L2(Rd) and that K is a bounded, injective operator in
L2(Rd). As opposed to the previous section, in general, K is not compact here.
Obviously, an unbiased estimator of q := K∗g is given by

(4.3) q̂n(y) :=
1

n

n∑
j=1

h(Xj − y|y).

To fit this into our general framework, we show that q̂n = q+K∗ε̃ for a Hilbert-space
process ε̃ : L2(Rd) → L2(Ω,P, P ) defined by

(4.4) 〈ε̃, ϕ〉 :=
1

n

n∑
j=1

ϕ(Xj) − 〈g, ϕ〉 .

In fact, for ψ ∈ L2(Rd),

〈K∗ε̃, ψ〉 = 〈ε̃, Kψ〉 =
1

n

n∑
j=1

∫
Rd

h(Xj − z|z)ψ(z) dz − 〈K∗g, ψ〉 = 〈q̂n − q, ψ〉 .

The next result states that Assumption 1 is satisfied.
Proposition 7. Assume that the operator K defined by (4.2) is injective and

satisfies ‖K‖2,2 < ∞ and ‖K‖2,∞ < ∞, where ‖K‖r,s is defined as the operator norm
of K : Lr(Rd) → Ls(Rd). Moreover, let q̂n and ε̃ be defined by (4.3) and (4.4), and
let

(4.5) σ :=
1√
n

(
‖g‖L∞ + ‖g‖2

L2

)1/2
and ε := ε̃/σ.

Then ε satisfies Assumption 1, and q̂n = q + σK∗ε.
Proof. We have to show that (2.12)–(2.14) hold true. Since the Xj are assumed

to be independent, it suffices to consider the case n = 1. The first part of (2.12), i.e.,
〈ε, ϕ〉 = 0 for ϕ ∈ L2(Rd), follows from Eϕ(X) =

∫
ϕg dx. Since

Cov(〈ε̃, ϕ1〉 , 〈ε̃, ϕ2〉) =

∫
Rd

ϕ1ϕ2g dx− 〈g, ϕ1〉 〈g, ϕ2〉 for all ϕ1, ϕ2 ∈ H2,

the covariance operator of ε̃ is given by Covε̃ = Mg − g ⊗ g, where Mg means
multiplication by g, and g ⊗ g : L2(Rd) → L2(Rd) is the rank-1 operator defined
by (g ⊗ g)ϕ := g 〈ϕ, g〉. Now ‖Covε‖ ≤ 1 follows from the estimate ‖Covε̃‖ ≤
‖g‖L∞ + ‖g‖2

L2 , which completes the proof of (2.12).
To show (2.13), i.e., E ‖q̂n − q‖2 < ∞, note that

Covq̂1 = K∗Covε̃K = K∗MgK − (K∗g) ⊗ (K∗g).
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We have to show that this is a trace-class operator. Obviously (K∗g)⊗ (K∗g) is trace
class as a rank-1 operator. It is not obvious, however, that K∗MgK is trace class since
neither K nor Mg are even compact in general. To show this, we rewrite the kernel
of K as k(x, z) := h(x− z|z) and note that ess sup ‖k(x, ·)‖L2 = ‖K‖2,∞ < ∞. Since
g ≥ 0, the operator K∗MgK is self-adjoint and positive semidefinite. Let {ϕj : j ∈ N}
be a complete orthonormal system in the separable Hilbert space L2(Rd). The B. Levi
theorem yields∑

j∈N

〈ϕj ,K
∗MgKϕj〉 =

∑
j∈N

∫
g(x)|(Kϕj)(x)|2dx

=
∑
j∈N

∫
g(x)| 〈k(x, ·), ϕj〉 |2dx ≤ ‖g‖L1 ess sup

x∈X2

‖k(x, ·)‖2
L2 < ∞,

which implies that K∗MgK is trace class with tr(K∗MgK) ≤ ‖K‖2
2,∞. Finally, (2.14)

follows from Lemma 2.
If K is a convolution operator with convolution kernel w(x−z), then the canonical

choice of the unitary operator U in the Halmos decomposition is the Fourier transform

(4.6) (Uϕ)(ξ) = (Fϕ)(ξ) =

∫
Rd

ϕ(x)e−2πiξ·xdx,

and the multiplier function is then ρ = |Fw|2. In this case the condition (2.14) in
Assumption 1 can be verified explicitly; see Mair and Ruymgaart [30].

4.3. Inverse regression. We now review another commonly used noise model
(see Wabha [41], O’Sullivan [37], Nychka and Cox [36], and Bissantz, Hohage, and
Munk [5]) and show how it is related to the model (2.11). Suppose that Hi = L2(μi)
are L2-spaces w.r.t. measure spaces (Xi,Xi, μi), i = 1, 2, H1 is separable, and K :
L2(μ1) → L2(μ2) is an integral operator

(4.7) (Kf)(x) :=

∫
X1

k(x, y)f(y) dμ1(y), x ∈ X2,

with kernel k. Recall that K∗K is trace class if and only if K is Hilbert–Schmidt and
that K is a Hilbert–Schmidt operator if and only if k ∈ L2(μ2 ×μ1) (see Taylor [39]).
The latter condition is easy to verify in most applications.

We will assume in the following that the measure space H2 is finite. Then we can
arrange that μ2(X2) = 1. We consider the regression model

(4.8) Yi = (Kf)(Xi) + εi, f ∈ H1, i = 1, . . . , n,

where we assume for simplicity that the random variables Xi ∈ X2 have uniform
distribution on X2 (see also Remark 9). Moreover, we assume that (Yi, Xi) ∼ (Y,X),
i = 1, . . . , n, are independent and identically distributed random variables with values
in R × X2 such that

(4.9) E [Y |X] = (Kf)(X),

and hence E [ε|X] = 0 for ε := Y − (Kf)(X). Finally we assume that that v(X) :=√
E [ε2|X] satisfies

(4.10) 0 < Cv,l ≤ v(X) ≤ Cv,u < ∞ a.s.
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for some constants Cv,l, Cv,u > 0. A straightforward computation shows that

(4.11) q̂n =
1

n

n∑
i=1

Yik(Xi, ·)

is an unbiased estimator of the vector q := K∗Kf . To fit the inverse regression model
with random design in our general framework, we introduce the Hilbert-space (noise)
process ε̃ : H2 → L2(Ω,P, P ) by

(4.12) 〈ε̃, ϕ〉 :=
1

n

n∑
j=1

Yjϕ(Xj) − 〈g, ϕ〉 , ϕ ∈ H2,

and show that

〈K∗ε̃, ψ〉 = 〈ε̃, Kψ〉 =
1

n

n∑
j=1

Yj

∫
Xj

k(Xj , y)ψ(y) dμ1(y) − 〈K∗g, ψ〉 = 〈q̂n − q, ψ〉

for all ψ ∈ H1, i.e., q̂n = q + K∗ε̃.
Proposition 8. Assume the inverse regression model (4.7)–(4.10), and let q̂n

and ε̃ be defined by (4.11) and (4.12). Moreover, let K : L2(μ1) → L2(μ2) be Hilbert–
Schmidt, and μ2 − ess sup ‖k(x, ·)‖L2(μ1) < ∞. Define

σ :=

√
C1

n
and ε := ε̃/σ,

with C1 := Cv,u+‖g‖2
L∞(μ2)

+‖g‖2
L2(μ2)

. Then ε satisfies Assumption 1 for the unitary
transform U defined in Remark 1, and q̂n = q + σK∗ε. Moreover,

(4.13)
Cv,l

n
ρ(j) ≤ Var ((Uq̂n)(j)), j = 0, 1, 2, . . . .

Proof. It suffices to prove this for n = 1. Since X is uniformly distributed and
(4.9) holds true, we have

E (Y ϕ(X)) = E (E [ε|X]ϕ(X)) + E (g(X)ϕ(X)) =

∫
gϕdμ2 = 〈g, ϕ〉

for all ϕ ∈ H2, and hence the first part of (2.12) holds true. Using once more the
same properties of X and Y we find that

Cov(〈ε̃, ϕ1〉 , 〈ε̃, ϕ2〉) = E
{
Y 2ϕ1(X)ϕ2(X)

}
− 〈g, ϕ1〉 〈g, ϕ2〉

= E
{
(ε2 + 2εg(X) + g(X)2)ϕ1(X)ϕ2(X)

}
− 〈g, ϕ1〉 〈g, ϕ2〉

=

∫
ϕ1

(
v2 + g2

)
ϕ2 dμ2 − 〈g, ϕ1〉 〈g, ϕ2〉

for all ϕ1, ϕ2 ∈ H2. Hence, Covε̃ = Mv2+g2 − g ⊗ g, where Mv2+g2ϕ := (v2 + g2) · ϕ
and (g ⊗ g)ϕ := 〈g, ϕ〉 g. This implies ‖Covε̃‖ ≤ C1 and finishes the proof of (2.12).
Using the notation of Remark 1, condition (2.13) can be seen as follows:

E ‖q̂1 − q‖2 = tr (Covq̂1−q) =

∞∑
j=0

〈Kuj ,Covε̃Kuj〉

≤ C1

∞∑
j=0

‖Kuj‖2 = C1 tr(K∗K) < ∞.
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Since

Var (Uq̂1)(j) = 〈uj ,Covq̂1uj〉 = 〈Kuj ,Covε̃Kuj〉 ≤ C1‖Kuj‖2 = C1ρj ,

we obtain the bound (2.14). The lower bound in (4.13) holds true since the operator
M2

g − g ⊗ g is positive definite as covariance operator of ε̃ for the case ε ≡ 0.
In contrast to [30] we do not need the assumption that the singular vectors uj ∈

H1 and vj ∈ H2 in the SVD Kf =
∑∞

j=0

√
ρj 〈f, uj〉H1

vj are uniformly bounded
sequences in L∞(μ1) and L∞(μ2), respectively. We require only that μ2 − ess sup
‖k(x, ·)‖L2(μ1) < ∞. This condition is often less restrictive and easier to verify.

Remark 9. Generalizations:
1. We can replace L2(μ1) by an arbitrary Hilbert space H1 (e.g., a Sobolev

space) by replacing k(x, ·) by k̃(x) :=
∑∞

j=0

√
ρ
j
v(x)uj , x ∈ X2. Then

(4.7) and (4.11) read (Kf)(x) = 〈k̃(x), f〉H1
and q̂n = 1

n

∑n
i=1 Yik̃(Xi), re-

spectively. Proposition 8 remains valid with literally the same proof if L2(X1)
is replaced by H1.

2. (Deterministic and nonuniform design.) The noise model (2.11) also allows
us to treat models of the form (4.8) where the measurement points are either

nonuniformly distributed on X2 or xi = x
(n)
i are deterministic quantities (see,

for instance, Nychka and Cox [36] and O’Sullivan [37]). For conditions on the
design density see Munk [34].

5. Applications. In this section we discuss how Assumption 2 of our main result
(Theorem 5) can be verified for some specific operators A of practical interest.

A remarkable number of interesting inverse problem can be expressed in the form

(5.1) K∗K = Θ(−Δ)

in terms of the Laplace operator Δ on some compact, smooth d-dimensional Rieman-
nian manifold M with a (possibly empty) boundary ∂M . Our first three examples
are of this form. Here Θ : [0,∞) → (0,∞) is a function satisfying limλ→∞ Θ(λ) = 0.
Under the given assumptions the Laplace operator −Δ defined on D(−Δ) := H1

0 (M)∩
H2(M) ⊂ L2(M) (i.e., with Dirichlet condition on ∂M) is a positive, self-adjoint op-
erator, which has a complete orthonormal system of eigenvectors ui in L2(M) with
corresponding eigenvalues λi (see, e.g., Taylor [40, Chap. 8.2]). Hence the opera-
tor on the right-hand side of (5.1) defined in (2.2) can be written as Θ(−Δ)f =∑

i Θ(λi) 〈f, ui〉ui for f ∈ L2(M). Due to a famous result of Weyl (see Taylor [40,
Chap. 8, Thm. 3.1., and Cor. 3.5]), the distribution of the eigenvalues

N(λ) := #{λi : λi ≤ λ}, λ ≥ 0,

has the asymptotic behavior

(5.2) N(λ) ∼ cMλd/2, cM :=
volM

Γ
(
d
2 + 1

)
(4π)d/2

as λ → ∞, where volM =
∫
M

1 dx denotes the volume of M . Under the given
assumptions the operator A is compact as operator norm limit of the finite rank oper-
ators

∑k
i=1 Θ(λi) 〈ui, ·〉ui as k → ∞. Assume that Θ(λ) is monotonically decreasing

for λ ≥ λ0 and that Θ(λ) > α0 := Θ(λ0) for λ < λ0. As limλ→∞ Θ(λ) = 0, the
inverse function Θ : (0, α0] → [λ0,∞) satisfies limα↘0 Θ(α) = ∞. If the spectral
decomposition of A is chosen as in Remark 1, then the function R defined in (3.6)
satisfies

(5.3) R(α) = #{λi : Θ(λi) ≥ α} = N
(
Θ(α)

)
∼ cM

(
Θ(α)

)d/2
, as α ↘ 0.
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5.1. Backwards heat equation. We consider the inverse problem of recon-
structing the temperature at time t = 0 on M from measurements of the temperature
at time t = T . The forward problem is described by the parabolic equation

∂tu(x, t) = Δu(x, t), x ∈ M, t ∈ (0, T ),

u(x, t) = 0, x ∈ ∂M, t ∈ (0, T ],

u(x, 0) = f(x), x ∈ M,

(5.4)

with an initial temperature f ∈ L2(M) and the final temperature in g(x) := u(x, T ),
x ∈ M . We have g = exp(−TΔ)f , i.e., K = exp(−TΔ) ∈ L(L2(M)) and K∗K =
exp(−2TΔ). Hence,

Θ(λ) = exp(−2Tλ)

in (5.1). By virtue of (5.3) the condition R ∼ S is satisfied for

S(α) := cM

(
− 1

2T
lnα

)d/2

.

It is easy to check that this function satisfies the conditions (3.8). In particular

(5.5)
S′′(α)

−S′(α)
=

1

α

(
1 − d− 2

2

1

lnα

)
,

so (3.8d) holds with any γS ∈ (1, 2) for sufficiently small ᾱ if d ≥ 3 and with γS = 1
for all ᾱ < 1 for d ≤ 2.

If M is a compact Riemannian manifold without boundary, then the smoothness
class FΛ,1 for a logarithmic source condition (2.7) is the unit ball in the Sobolev space
H2p(M) w.r.t. some equivalent norm (see Hohage [23]). Similar results hold true if M
has a boundary with a Dirichlet or Neumann condition. In this case we additionally
need to impose boundary conditions. Hence, if the initial temperature is bounded
in some Sobolev norm, ‖f‖Hs ≤ C, s = 2p > 0, if the regularization parameter is
chosen such that α � σ, and if τ = O(σμ) with μ > 1

2 as σ ↘ 0, then it follows from
Theorem 3 after some elementary computations that the MISE decays like

E ‖f̂α,σ − f‖2
L2 = O

(
(− lnσ)−s

)
, as σ ↘ 0,

for all regularization methods satisfying (2.9).

5.2. Satellite gradiometry. In satellite gradiometry measurements of the grav-
itational force of the earth at a distance a from the center are used to reconstruct
the gravitational potential u at the surface of the earth (see Hohage [23], Bauer and
Pereverzev [3], and the references therein). Let the earth be described by E := {x :
|x| < 1}, and let M := ∂E denote the surface of the earth. Then u satisfies the
Laplace equation

Δu(x) = 0, x ∈ R
3 \ E,

and decays like |u(x)| = O
(
|x|−1

)
as |x| → ∞. The available data consist of noisy

measurements of the rate of change of the gravitational force −∇u in radial direction
r = |x|, i.e.,

g(x) :=
∂2u

∂r2
(x) for |x| = a.
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A discussion of the measurement errors shows that they are mainly random in nature
(see [3]). The problem is to determine the potential f = u

∣∣
M

at the surface M of the

earth. Introducing the operator K : L2(M) → L2(aM) mapping the solution f to the
data g, we can write K∗K in the form (5.1) with Θ(λ) = Φ(Λ(λ)) and

Φ(t) := c

(
1

2
+ t

)2 (
3

2
+ t

)2

a−2t, Λ(λ) :=

√
λ +

1

2

(see Hohage [23]). It is easy to show that Φ(t) is decreasing for sufficiently large t
and that Λ(λ) is monotonic increasing for all λ > 0. Obviously, Θ(α) = Λ

(
Φ(α)

)
=

Φ(α)2 − 1
2 . The function Φ(α) cannot be computed explicitly, but we can estimate

its asymptotic behavior as α ↘ 0. Writing t = Φ(α) for α sufficiently small and

p(t) := c
(

1
2 + t

)2 ( 3
2 + t

)2
, we obtain

Φ(α) = − loga α
t

− loga α
= − loga α

t

− loga (p(t)a−2t)

= − loga α

(
t

− loga(p(t)) + 2t

)
∼ − lnα

2 ln a
,

as α ↘ 0. Therefore, using (5.3), we get

R(α) = cMΘ(α) ∼
(
− lnα

2 ln a

)2

, as α ↘ 0.

The function S(α) :=
(
− lnα

2 ln a

)2
satisfies the conditions (3.8) (see (5.5)). Moreover,

the smoothness classes FΛ,1 for logarithmic source conditions (2.7) are unit balls
in the Sobolev spaces Hp(M) w.r.t. equivalent norms (see Hohage [23]). Since the
gravitational potential satisfies the Poisson equation Δu = −φ in R

3 and since the
mass density φ of the earth E belongs to L2(E), it follows from elliptic regularity
results that u ∈ H2(E), so f = u|M ∈ H3/2(M) in the sense of the trace operator
(see, e.g., Taylor [39]). Therefore,

E ‖f̂α,σ − f‖2
L2 = O

(
(− lnσ)−3

)
, as σ ↘ 0,

if τ = O(σ) and if we choose α � σ.

5.3. Operators in Hilbert scales. In the following we show that our assump-
tions are satisfied for operators acting in Hilbert scales (see Mair and Ruymgaart
[30] and Mathé and Pereverzev [31]). Hence, spectral regularization methods yield
optimal rates of convergence for this class of operators.

Let L : D(L) ⊂ H → H be an unbounded, positive, self-adjoint operator defined
on a dense domain D(L) ⊂ H, and assume the inverse L−1 : H → H is bounded.
Then L generates a scale of Hilbert spaces Hμ, μ ∈ R, defined as completion of⋂

n∈N
D(Ln) under the norm generated by the inner product 〈f, g〉μ := 〈Lμf, Lμg〉.

We have Hμ ⊂ Hλ for μ, λ ∈ R with μ > λ. A prototype is L =
√
I − Δ with the

Laplace operator Δ on a closed manifold M , which leads to the usual Sobolev spaces
on M .

We assume that K is a-times smoothing (a > 0) in (part of) the Hilbert scale
(Hμ), i.e., K : Hμ−a → Hμ is a bounded operator for all μ ∈ [μ, μ] which has a

bounded inverse K−1 : Hμ → Hμ−a. This is equivalent to 1
Cμ

‖f‖μ−a ≤ ‖Kf‖μ ≤
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Cμ‖f‖μ−a for all f ∈ Hμ−a and some constants Cμ ≥ 1. Such conditions are satisfied
for many boundary integral operators, multiplication operators, convolution opera-
tors, and compositions of such operators (see also the discussion after (5.10)). We do
not assume here that K is self-adjoint or that K∗K and L commute, i.e., that they
can be diagonalized by the same unitary operator U .

Usually the nature of the noise dictates the choice H2 = H0, and one is interested
in error bounds for the estimator in the positive norm, i.e., H1 = Hμ−a for μ ≥ a.
Then the operator equation Kf = g is ill-posed with K = K0←μ−a considered as an
operator from Hμ−a to H0.

To verify Assumptions 2 and 3 with R ∼ S in (3.7) replaced by R � S (see
Remark 14), we assume that L has a complete orthonormal system of eigenvectors
with eigenvalues 0 < λ0 ≤ λ1 ≤ λ2 ≤ · · · tending to infinity. Then the embedding
operator J : Hμ ↪→ H0 is compact, and its singular values are given by σj(J) = λ−μ

j .
It follows from the decomposition K0←μ−a = JKμ←μ−a and the Courant minimax
characterization of the singular values σj = σj(K0←μ−a) (see, e.g., Kress [28]) that

1

‖K−1‖μ−a←μ
λ−μ
j ≤ σj(K0←μ−a) ≤ ‖K‖μ←μ−aλ

−μ
j , j = 0, 1, . . . .

Hence if N(λ) := #{λj : λj ≤ λ} and C := max(‖K‖μ←μ−a, ‖K−1‖μ−a←μ), then
R(α) := {σj : σ2

j ≥ α} satisfies

N
(
(α/C2)−1/2μ

)
≤ R(α) ≤ N

(
(C2α)−1/2μ

)
.

If the counting function has the asymptotic behavior N(λ) � λd for some d > 0, then
R(α) � α−d/2μ. For the case L =

√
I − Δ, d is the space dimension (see (5.2)). A

straightforward computation shows that S(α) := α−d/2μ satisfies (3.8) and (3.12) in
Assumptions 2 and 3 if and only if d/(2μ) ∈ (0, 1). Under this condition, it follows
from Remark 14 that Theorems 3 and 5 hold true with different constants.

It remains to discuss the Hölder-type source conditions (2.6) in this setting. To
do this we assume for simplicity that H1 = H2 = H0. Let K∗ denote the adjoint of K
w.r.t. the inner product in H0. It is easy to show that K∗ : H−μ → H−μ+a is bounded
and boundedly invertible for all μ ∈ [μ, μ]. Let l ∈ N such that [−2al + 1, 2al − 1] ⊂
[μ, μ]. Then there exists a constant γ ≥ 1 such that

γ−1‖L2alf‖H0 ≤ ‖(K∗K)−lf‖H0
≤ γ‖L2alf‖H0

for all f ∈ H2al. It follows from the Heinz inequality (see Engl, Hanke, and Neubauer
[14] and Heinz [22]) that

γ−σ‖L2aσlf‖H0 ≤ ‖(K∗K)−σlf‖H0 ≤ γσ‖L2aσlf‖H0

for all σ ∈ [0, 1] and f ∈ H2aσl. Therefore, the source condition f = (K∗K)νw,
w ∈ H0, is equivalent to f ∈ H2aν . Let u := 2aν and f ∈ Hu. Then

E ‖f̂α,σ − f‖2
H0

= O
(
σ

2u
u+a+d/2

)
, as σ ↘ 0,

for the choice α � σ
2a

u+a+d/2 if τ = O
(
σ

u+a
u+a+d/2

)
and μ0 ≥ u/2a.
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5.4. L2-boosting. Boosting algorithms include a large class of iterative proce-
dures which improve stagewise the performance of estimators. They have attracted
significant interest in the context of machine learning and more recently in statistics
(see Freund and Schapire [18] or Friedman [19], among many others). One of the
main challenges is to provide a proper convergence analysis and proper stopping rules
for the iteration depth (see Zhang and Yu [43]). L2-boosting has been introduced in
the context of regression analysis by Bühlmann and Yu [7] for classification and more
general learning problems. We consider the inverse regression problem described in
section 4.3 if K is an embedding operator and X2 is a d-dimensional smooth, compact
Riemannian manifold (e.g., a smooth compact subset of R

d). Consider a weak learner
of the form

(5.6) f̂0,n =
1

n

n∑
j=1

Yik(y,Xj),

with a continuous, symmetric kernel k : X2 ×X2 → R such that the integral operator
K̃ : L2(X2) → L2(X2) with kernel k is compact and strictly positive definite with
eigenvalues κ0 ≥ κ1 ≥ · · · and satisfies

(5.7) ess supx∈X2
k(x, x) < ∞ and #{κj ≥ α} � α−d/(2μ0), as α → 0,

for some μ0 > 0. Further, let Hμ, μ ∈ R be the Hilbert scale generated by the

operator L := K̃−1/(2μ0) as described in section 5.3. If we set H1 := Hμ0 and H2 =
H0 = L2(X2), then H1 ⊂ H2, and the adjoint of the embedding operator K : H1 ↪→ H2

is given by K∗ϕ = K̃ϕ since 〈ϕ, K̃ψ〉H1 = 〈Lμ0ϕ,Lμ0K̃ψ〉L2 = 〈ϕ,ψ〉L2 for all ψ ∈
L2(X2) and all ϕ ∈ H1. By a similar reasoning one can show that H1 is a reproducing
kernel Hilbert space (RKHS) with reproducing kernel k(·, x). A typical example of a
weak learner is a spline smoother which leads to Sobolev spaces Hμ (see [7]).

Note that the weak learner (5.6) can be abbreviated as f̂0,n = K∗Y . Boosting
this learner results in a recursive iteration,

(5.8) f̂j+1,n = f̂j,n − βK∗(Y −Kf̂j,n), j = 0, 1, 2, . . . ,

which is in fact a Landweber iteration (see section 2.2). Hence, Theorem 3 gives the
following bound.

Corollary 10. Assume that k satisfies (5.7) with μ0 > d
2 , let g ∈ Hμ with

μ > 0, and let β ∈ (0, ‖KK∗‖2]. Then the MISE is bounded by

(5.9) E ‖f̂j,n − g‖2
L2(X2)

≤ C
(
(j + 1)−μ/μ0 + n−1(j + 1)d/(2μ0)

)
.

For the optimal stopping index j∗(n) � n2μ0/(2μ+d) we obtain the rate E ‖f̂j∗(n),n −
f‖2

L2(X2)
≤ Cn−2μ/(2μ+d), which is the well-known minimax rate in the case of Sobolev

spaces.
Proof. It follows easily from the definitions that g ∈ Hμ is equivalent to g ∈ FΛ̃,w

with Λ̃(t) = tμ/2μ0 for some w > 0. Since Landweber iteration has infinite qualification
(see [14]), Λ̃ satisfies (2.10). Moreover, as the singular values of K are σj(K) =√
κj , (5.7) implies that R(α) = #{σj(K)2 ≥ α} � S(α) with S(α) := α−d/2μ0 ,

and S satisfies (3.8) in Assumption 2 for μ0 > d
2 . To verify the assumptions of

Proposition 8, we note that tr(K∗K) = −
∫∞
0

α dR(α) < ∞ for μ0 > d
2 (i.e., K is

Hilbert–Schmidt) and that ess supx∈X2
‖k(x, ·)‖H1 = ess supx∈X2

√
〈k(x, ·), k(x, ·)〉H1 =
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ess supx∈X2

√
k(x, x) < ∞. Therefore, Proposition 8 and Remark 9, Part 1 imply

that Assumption 1 is satisfied with σ � n−1/2. Hence (5.9) follows from (3.10) in
Theorem 3 with α = (j + 1)−1 and Remark 14.

Corollary 10 immediately applies to all other regularization methods covered by
Theorem 3. In particular, ν-methods require only the square root of the number of
Landweber iterations to achieve the optimal rate, but they seem to be unknown in
statistics and machine learning.

Often a discretized sample variant of the iteration (5.8) is considered. Conver-
gence of this algorithm has been analyzed by Yao, Rosasco, and Caponnetto [42], but
without optimal rates. It is still an open problem whether this discretized version
achieves the minimax rates of Corollary 10 in the general context of RKHS, as was
shown in [7] for the particular case of spline learning.

5.5. Errors in variable problems. We now further discuss the errors in vari-
able problems introduced in section 4.2. Our aim is to establish rates of convergence of
estimators of the density f of Z ∈ R

d as the sample size n tends to infinity. Therefore,
with a slight abuse of notation, we will write f̂α,n = f̂α,σ(n,g) in this context. It follows
from the definition (4.5) of σ and the boundedness of ‖Λ(K∗K)‖2,2 that

sup
f∈FΛ,w

σ(n,Kf) = sup
‖w‖=w

σ(n,KΛ(K∗K)w)

≤ w√
n

(
‖KΛ(K∗K)‖2

2,∞ + ‖KΛ(K∗K)‖2
2,2

)
,

where the expression in parenthesis is finite under the assumptions of Proposition 7.
We first consider two important special cases

h1(y|z) = w1(y) := exp(−π‖y‖2
2), h2(y|z) = w2(y) := cd exp(−‖y‖2), y, z ∈ R

d,

with normalization constant cd := π−d/2Γ(d/2+1)/Γ(d+1) corresponding to an error
variable W independent of Z. Here K is a convolution operator, the canonical unitary
transformation U in the spectral decomposition is the Fourier transform F defined
in (4.6), and the multiplier function is ρj = |Fwj |2, i.e., ρ1(ξ) = exp(−2π‖ξ‖2

2), and
ρ2(ξ) = (1 + 4π2‖ξ‖2)−d−1. Hence, the corresponding functions R are given by

R1(α) = Vd

(
− 1

2π
lnα

)d/2

, R2(α) = Vd(2π)−d
(
α−1/(d+1) − 1

)d/2

, 0 < α < 1,

where Vd denotes the volume of the unit ball in R
d. Hence, Assumption 2 is satis-

fied for R1 with S = R1 (see (5.5)) and for R2 with S(α) = Vd(2π)−dα−d/(2d+2).
Since the norm of the Sobolev space Hs(Rd) is defined by ‖f‖Hs(Rd) = (

∫
(1 +

|ξ|2)s|Ff(ξ)|2 dξ)1/2, a simple computation shows that in the first case a logarith-
mic source condition (2.7) is equivalent to f ∈ H2p(Rd), and in the second case a
Hölder-type source condition (2.6) is equivalent to f ∈ H2(d+1)ν(Rd). Suppose that
f ∈ Hs(Rd). Then we find in the first case for the choice α � n−1/2 the asymptotic
rates

E ‖f̂α,n − f‖2
L2 = O

(
(lnn)−s

)
, as n → ∞,

and in the second case the rate

E ‖f̂α,n − f‖2
L2 = O

(
n− s

s+3d/2+1

)
, as n → ∞,
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for the choice α � n− d+1
s+3d/2+1 . This generalizes results in Mair and Ruymgaart [30] for

spectral cut-off to arbitrary regularization methods and to the multivariate setting.
We now consider the case that the random variables Z and W are not stochasti-

cally independent. We assume that the conditional density h is of the form

(5.10) h(x− z|z) = w(x− z) + p(x, z),

where c(1 + ‖ξ‖2
2)

−a ≤ |Fw(ξ)|2 ≤ c(1 + ‖ξ‖2
2)

−a for some constants a, c, c > 0, and
p is C∞-smooth and decays exponentially as ‖x‖, ‖z‖ → ∞. Then the convolution
operator K̃ with kernel w is bounded and boundedly invertible from Hμ−a(Rd) to
Hμ(Rd) for all μ ∈ R, and the integral operator P with kernel p is compact from
Hμ−a(Rd) to Hμ(Rd) for all μ ∈ R. Under our general assumption that K = K̃+P is
injective, it follows from Riesz theory that K : Hμ−a(Rd) → Hμ(Rd) has a bounded
inverse. Hence, it follows from the arguments of the previous paragraph that Hölder
source condition (2.6) for K is equivalent to f ∈ H2aν(Rd). If we additionally assume
periodicity of w and p with arbitrary size of the periodicity interval, then it follows
from our results on operators in Hilbert scales that also Assumptions 1 and 2 are
satisfied.

6. Appendix: Proofs and auxiliary results. This section contains the proofs
of our main results on the MISE. First, we require some technical lemmas.

Lemma 11. If Assumption 1 holds true and the family of functions {Φα} satisfies
(2.9), then

E ‖f̂α,σ − E f̂α,σ‖2 ≤ − (σC3)
2

α2

∫ α

0

β dR(β) − (σC2)
2

∫ ∞

α

1

β
dR(β),(6.1a)

E ‖Kf̂α,σ − EKf̂α,σ‖2 ≤ (σC2)
2R(α) − (σC3)

2

α2

∫ α

0

β2 dR(β).(6.1b)

(Recall that R is decreasing, i.e., the right-hand sides of the inequalities above are
nonnegative.)

Proof. Recall the bound (3.5) on E ‖f̂α,σ − E f̂α,σ‖2. We split the integral on
the right-hand side of (3.5) of the variance over the “frequency domain” S into low
frequency components {ρ ≥ α} and high frequency components {ρ < α}. The low
frequency components are bounded by∫

{ρ≥α}
Φα(ρ)2ρdΣ ≤ C2

2

∫
{ρ≥α}

1

ρ
dΣ = −C2

2

∫ ∞

α

1

β
dR(β),

where the latter equality holds by a transformation of the integral on the left-hand
side to an integral w.r.t. the image measure Σρ, and subsequent reformulation as the
Lebesgue–Stieltjes integral given on the right-hand side of the equation. Similarly,
the high frequency components of the variance can be estimated by∫

{ρ<α}
Φα(ρ)2ρdΣ ≤ C2

3

α2

∫
{ρ<α}

ρdΣ = −C2
3

α2

∫ α

0

β dR(β)

using (2.9b). This completes the proof of (6.1a).

In analogy to (3.5) we have E ‖Kf̂α,σ − EKf̂α,σ‖2 ≤ σ2
∫

S
Φα(ρ)2ρ2 dΣ, and

the right-hand side of this inequality can be estimated as above to establish the
bound (6.1b).
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The next lemma shows that for R = S the high frequency components of the vari-
ance are asymptotically bounded by low frequency components and that the relative
magnitude of these components is determined by the constant γS in (3.8d).

Lemma 12. Assume that S ∈ C2((0, ᾱ]) satisfies (3.8), and define κ := γS

2−γS
,

i.e., 2κ
κ+1 = γS. Then

− 1

α2

∫ α

0

β dS(β) ≤ −κ

∫ ᾱ

α

1

β
dS(β) − κ + 1

2
S′(ᾱ), α ∈ (0, ᾱ].(6.2)

Proof. We rewrite (3.8d) as (κ + 1)S′′(α) ≤ 2κ−S′(α)
α . Integrating this inequality

from α to ᾱ yields (κ + 1)(S′(ᾱ) − S′(α)) ≤ 2κ
∫ ᾱ

α
−S′(β)

β dβ, or equivalently

(6.3) 0 ≤ αS′(α) + καS′(α) + 2κα

∫ ᾱ

α

−S′(β)

β
dβ − α(κ + 1)S′(ᾱ).

It follows that

(6.4) 0 ≤
∫ α

0

β dS(β) − κα2

∫ ᾱ

α

1

β
dS(β) − α2

2
(κ + 1)S′(ᾱ), α ∈ (0, ᾱ].

To verify this we check that the derivative of the right-hand side of (6.4) is the
right-hand side of (6.3) and that the limit of the right-hand side of (6.4) as α ↘ 0
is nonnegative by assumptions (3.8a) and (3.8b). Inequality (6.4) is equivalent to
(6.2).

Next we show under an additional assumption that the asymptotic balance be-
tween high and low frequency components of the variance also holds true if R is not
smooth.

Lemma 13. If Assumption 2 holds true, then for j ∈ {1, 2}

− 1

α2

∫ α

0

βj dS(β) ≤ 1

α2

∫ α

0

jβj−1S(β) dβ,(6.5a)

∣∣∣∣ 1

α2

∫ α

0

βj d(R− S)(β)

∣∣∣∣ = o

(
1

α2

∫ α

0

jβj−1S(β) dβ

)
,(6.5b)

−
∫ ᾱ

α

1

β
dS(β) ≤ 1

α
S(α),(6.5c)

∣∣∣∣∫ ᾱ

α

1

β
d(R− S)(β)

∣∣∣∣ = o

(
1

α
S(α)

)
,(6.5d)

as α ↘ 0. If additionally Assumption 3 is satisfied, then

− 1

α2

∫ α

0

βj dR(β) ∼ − 1

α2

∫ α

0

βj dS(β),(6.6a)

−
∫ ᾱ

α

1

β
dR(β) ∼ −

∫ ᾱ

α

1

β
dS(β).(6.6b)

Proof. Using (3.8c), a partial integration yields

(6.7) −
∫ α

0

βj dT (β) = −αjT (α)+

∫ α

0

jβj−1T (β) dβ for T = S and T = R−S.
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Due to assumption (3.7) and (3.8b), the left-hand side of (6.7), and hence
∫ α

0
jβj−1

T (β) dβ, is finite. Inequality (6.5a) follows from (6.7) with T = S since R(α), and
hence S(α), are positive for small α. By assumption (3.7), there exists for all ε > 0 a
δ = δ(ε) > 0 such that

(6.8) |R(α) − S(α)| ≤ εS(α) for α < δ.

Therefore, using (6.7) with T = S −R,∣∣∣∣∫ α

0

βj d(S(β) −R(β))

∣∣∣∣ ≤ εαjS(α) + ε

∫ α

0

jβj−1S(β) dβ

for α < δ. As αjS(α) =
∫ α

0
jβj−1S(α) dβ ≤

∫ α

0
jβj−1S(β) dβ due to (3.8a), we obtain

(6.5b).
To prove (6.5c) and (6.5d), again partial integration yields for T = S or T = R−S

(6.9) −
∫ ᾱ

α

1

β
dT (β) =

1

α
T (α) − 1

ᾱ
T (ᾱ) −

∫ ᾱ

α

1

β2
T (β) dβ.

For T = S this yields (6.5c). Let ε > 0 and choose δ1 := δ(ε) according to (6.8) and
δ2 := δ1ε. Then∣∣∣∣∫ ᾱ

α

R(β) − S(β)

β2
dβ

∣∣∣∣ ≤ ε

∫ δ1

α

S(β)

β2
dβ +

∫ ᾱ

δ1

S(β)

β2
dβ +

∫ ᾱ

δ1

R(β)

β2
dβ

for α ≤ δ2. Due to the monotonicity of S we have∫ ᾱ

α

S(β)

β2
dβ ≥

∫ δ1

δ2

S(β)

β2
dβ ≥ S(δ1)

∫ δ1

δ2

dβ

β2
= S(δ1)

(
1

δ2
− 1

δ1

)
=

1 − ε

ε

S(δ1)

δ1
,

so ∫ ᾱ

δ1

S(β)

β2
dβ ≤ S(δ1)

∫ ∞

δ1

dβ

β2
=

S(δ1)

δ1
≤ ε

1 − ε

∫ ᾱ

α

S(β)

β2
dβ,

∫ ᾱ

δ1

R(β)

β2
dβ ≤ 1

δ1
R(δ1) ≤ (1 + ε)

S(δ1)

δ1
≤ ε

1 + ε

1 − ε

∫ ᾱ

α

S(β)

β2
dβ.

Since S(α) > 0 for all α ∈ (0, ᾱ] due to (3.12) we can extend the integrals over [δ2, δ1]
and [α, δ1] to [α, ᾱ] and obtain∣∣∣∣∫ ᾱ

α

R(β) − S(β)

β2
dβ

∣∣∣∣ ≤ ε

(
1 +

1

1 − ε
+

1 + ε

1 − ε

)∫ ᾱ

α

S(β)

β2
dβ

for ε < 1 and α ≤ δ2. Since
∫ ᾱ

α
S(β)
β2 dβ ≤ S(α)/α − S(ᾱ)/ᾱ ∼< S(α)/α due to (6.9)

and (3.8a), we obtain (6.5d).
Assume now that Assumption 3 holds true. Written as −αjS′(α) ≥ C4α

j−1S(α)
and integrated from 0 to α, (3.12) yields

−
∫ α

0

βj dS(β) ≥ C4

∫ α

0

βj−1S(β) dβ for α ∈ (0, ᾱ].
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Together with (6.5b) this implies (6.6a). Writing (3.12) as −S′(α)/α ≥ C4(S(α)/α2)
and adding C4(−S′(α)/α) on both sides, we obtain

(C4 + 1)
−S′(α)

α
≥ C4

(
−S′(α)

α
+

S(α)

α2

)
= C4

d

dα

{
− 1

α
S(α)

}
.

Integrating this inequality from α to ᾱ and multiplying by (C4 + 1)−1 yields

−
∫ ᾱ

α

1

β
dS(β) ≥ C4

C4 + 1

(
1

α
S(α) − 1

ᾱ
S(ᾱ)

)
∼>

C4

C4 + 1

S(α)

α
, as α ↘ 0.

This together with (6.5d) implies (6.6b).
Remark 14. Assume

(6.10) R(α) � S(α), as α ↘ 0;

i.e., there exist constants C ≥ 1 and ᾱ > 0 such that (1/C)R(α) ≤ S(α) ≤ CR(α)
for 0 < α ≤ ᾱ. In this case (6.8) holds true with δ = ᾱ and ε = max(C − 1, 1− 1/C).
Proceeding as in the proof of Lemma 13 and choosing δ1 = δ2 = ᾱ, we find that (6.5)
holds true with o (. . .) replaced by O (. . .) if S satisfies (3.8). If additionally (3.12)
holds true, then

− 1

α2

∫ α

0

β dR(β) � 1

α2

∫ α

0

S(β) dβ � − 1

α2

∫ α

0

β dS(β),

−
∫ ᾱ

α

1

β
dR(β) � 1

α
S(α) � −

∫ ᾱ

α

1

β
dS(β).

Therefore similar convergence rate results with different constants can be shown if
condition (3.7) in Assumption 2 is replaced by (6.10).

Proof of Theorem 3. To prove (3.9), we use the bias-variance decomposition (3.1)
and the bound (3.3) of the bias. To bound the variance we start from (6.1a) in
Lemma 11. From (6.5a) and (6.5b) we obtain −α−2

∫ α

0
β dR(β) ∼< α−2

∫ α

0
S(β) dβ.

For the second term in (6.1a) the partial integration (6.9) with T = R and ᾱ > ‖K∗K‖
and (3.7) yield

−
∫ ∞

α

1

β
dR(β) ≤ 1

α
R(α) ∼ 1

α
S(α), as α ↘ 0.

Using the partial integration (6.7) with T = S and (3.8a) we obtain

1

α
S(α) =

1

α2

∫ α

0

β dS(β) +
1

α2

∫ α

0

S(β) dβ ≤ 1

α2

∫ α

0

S(β) dβ.

This completes the proof of (3.9). The proof of (3.10) also relies on the bias-variance

decomposition E ‖Kf̂α,σ − g‖2 = B2 + V , where the bias term satisfies

B = ‖EKf̂α,σ − g‖ ≤ ‖KΦα(K∗K)K∗g − g‖ + τ‖KΦα(K∗K)Kξ‖

≤ ‖(Φα(KK∗)KK∗ − I)Λ̃(KK∗)w‖ + τ‖Φα(KK∗)KK∗‖ ≤ γΛ̃Λ̃(α)w + τC2.

The bound on the variance term V = E ‖Kf̂α,σ − EKf̂α,σ‖2 we start from (6.1b)
in Lemma 11. By (6.5a) and (6.5b), the first term on the right-hand side satisfies
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0
β2 dR(β)

<∼ 1
α2

∫ α

0
jβj−1S(β) dβ, and for the second term we obtain R(α) ∼

S(α) = α−2
∫ α

0
2βS(α) dβ ≤ α−2

∫ α

0
2βS(β) dβ due to (3.8a). This shows that

V ≤ (σ/α)2(C2
2 + C2

3 )
∫ α

0
2βS(β) dβ and finishes the proof of (3.10).

Proof of Theorem 5. Using (3.11) we can bound the variance of the spectral cut-off
estimator as follows:

σ−2E ‖f̂SC
α,σ − E f̂SC

α,σ‖2 =

∫
S

ΦSC
α (ρ)2Var (UK∗ε) dΣ

≥ γvar

∫
{ρ≥α}

1

ρ
dΣ = −γvar

∫ ∞

α

1

β
dR(β).

On the other hand, using Lemmas 12 and 13 we can bound the first term on the
right-hand side of (6.1a) as follows:

− 1

α2

∫ α

0

β dR(β) ∼ − 1

α2

∫ α

0

β dS(β) ∼< −κ

∫ ᾱ

α

1

β
dS(β) ∼< −κ

∫ ∞

α

1

β
dR(β).

This yields (3.13). Inequality (3.14) follows from (3.1), (3.4), and (3.13).
Proof of Theorem 6. Using the substitution α = γ2(γ1(β)) and Theorem 3, this

follows from

inf
α>0

E ‖f̂α,σ − f‖2 ∼< inf
α>0

(
γ2
ΛΛ(α)2w2 + (C2

3 + C2
2 )σ2γ2(α)

)
= inf

β>0

(
γ2
ΛΛ(γ2(γ1(β)))2w2 + (C2

3 + C2
2 )σ2γ1(β)

)
≤ inf

β>0

(
Cγ2

ΛΛ(β)2w2 + (C2
3 + C2

2 )σ2γ1(β)
)
.
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helpful discussions on L2-boosting. Moreover, we are grateful to the anonymous
referees for their valuable comments, which helped to improve the presentation of the
material.

REFERENCES

[1] F. Abramovich and B. W. Silverman, Wavelet decomposition approaches to statistical inverse
problems, Biometrika, 85 (1998), pp. 115–129.

[2] F. Bauer, T. Hohage, and A. Munk, Regularized Newton methods for nonlinear inverse
problems with random noise, in preparation.

[3] F. Bauer and S. Pereverzev, Regularization without preliminary knowledge of smoothness
and error behavior, European J. Appl. Math., 16 (2005), pp. 303–317.

[4] N. Bissantz, Iterative inversion methods for statistical inverse problems, in Phystat05: Pro-
ceedings of the Conference on Statistical Problems in Particle Physics, Astrophysics and
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NUMERICAL ANALYSIS OF A UNILATERAL PROBLEM IN
PLANAR THERMOELASTICITY∗

M. I. M. COPETTI†

Abstract. We consider in this paper the numerical approximation of a quasi-static contact
problem in linear thermoelasticity that models the evolution of the temperature and displacement of
an elastic, homogeneous, and isotropic body that may come in contact with an elastic obstacle. We
propose a finite element method to numerically approximate the continuous solution. Convergence
without any regularity assumptions is proved and error estimates are obtained if the continuous
solution is sufficiently regular.

Key words. planar thermoelasticity, contact problem, finite element approximation
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1. Introduction. Let Ω ⊂ R2 be a convex polygonal bounded domain which
represents the reference configuration of a thermoelastic, homogeneous, and isotropic
body, and assume that the boundary ∂Ω is divided into three mutually disjoint parts
Γ0, Γt, Γc such that ∂Ω = Γ0 ∪ Γt ∪ Γc, Γ0 �= ∅, and Γc �= ∅.

The equations that describe the evolution of the system under consideration are
(see [15], [17])

θt −� θ = −m divut in Ω, t > 0,(1.1)

divσ(u) = 0 in Ω, t > 0,(1.2)

where θ = θ(x, t) is the body temperature, u = u(x, t) = (u1(x, t), u2(x, t))
t is the

displacement from the reference configuration, and σ(u) = λ divuI+2μ ε(u)−mθ I
is the stress. Here λ, μ > 0 are the Lamé constants, m > 0 is the coefficient of
thermal expansion, I is the 2 × 2 identity matrix, ε = ε(u) = 0.5(∇u + (∇u)t) is
the linearized 2 × 2 strain function, and divσ is the 2-vector with ith component
{divσ}i =

∑2
j=1 σij,j . The index j that follows the comma indicates a partial deriva-

tive with respect to xj .
The body is held fixed on Γ0 and tractions are zero on Γt so that

u = 0 on Γ0, σν = 0 on Γt, t > 0,(1.3)

with ν = (ν1, ν2)
t the normal unit vector pointing out of Ω. At Γc the body may come

in contact with an elastic obstacle with rigidity 1
ε > 0 located initially at distance

g(x) ≥ 0 from Γc. At the region of contact the normal stress is compressive, the
contact is frictionless, and the body can penetrate the obstacle:

σT = σν − σνν = 0,
σν = − 1

ε [uν − g]+

}
on Γc, t > 0,(1.4)
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where σν = (σν) ·ν, uν = u ·ν, and [χ]+ ≡ max{χ, 0}. For simplicity, we assume that
the temperature is equal to zero at the boundary of Ω and it is initially prescribed:

θ = 0 on ∂Ω, θ(x, 0) = θ0(x), x ∈ Ω.(1.5)

This problem, for a nonisotropic, nonhomogeneous elastic body was used by
Rivera and Racke [15] as a penalization to the contact problem with a rigid obstacle
where (1.4) is replaced by the so-called Signorini contact condition

uν ≤ g, σν = (σν) · ν ≤ 0,
σν(uν − g) = 0, σT = σν − σνν = 0

}
on Γc, t > 0.(1.6)

One dimensional quasi-static contact problems with various boundary conditions
for the temperature have been extensively studied by mathematicians and engineers
both theoretically and numerically. In particular, existence and uniqueness results
were obtained by Gilbert, Shi, and Shillor [12] and Shi and Shillor [16]. Finite element
approximations were analyzed by Copetti and Elliott [10] and Copetti [8], [9]. Error
estimates were given and numerical experiments performed. In [14], the stability of
steady-state solutions was considered.

Multidimensional contact problems are more complex due to the presence of the
elasticity equations. An existence result for the Signorini contact problem, with either
a Dirichlet or a heat exchange condition for the temperature, was proved by Shi
and Shillor [17] using truncation and compactness arguments, while uniqueness was
established by Ames and Payne [1]. Quasi-static and dynamic problems with Barber’s
heat exchange condition were studied by Xu [19] and Bien [3], respectively. The papers
[2], [5], and [6] provide error analysis for some contact problems in elasticity. A static
problem in thermoelasticity with many bodies in contact is numerically approximated
by the finite element method in [13]. To our knowledge, the present paper is the first
work dealing with the numerical approximation of problem (1.1)–(1.5).

Let us introduce the spaces L2(Ω) = {L2(Ω)}2, Hs(Ω) = {Hs(Ω)}2, and H1
E(Ω) =

{v ∈ H1(Ω) | v = 0 on Γ0}. We indicate the inner product in {L2(Ω)}n, n = 1, 2, by
(·, ·) and the norms of {L2(Ω)}n and {Hs(Ω)}n by ‖ · ‖ and ‖ · ‖s, respectively.

Throughout the paper, the letter C is used to denote a positive constant which
depends on the data and is independent of mesh sizes.

If σ and τ are 2 × 2 matrix-valued functions, we define

σ : τ =

2∑
i,j=1

σijτij ,

and we consider on H1
E(Ω) the inner product

b(u,v) =

∫
Ω

ε(u) : ε(v)dx

and let ‖v‖b = (b(v,v))
1
2 be the associated norm. Since Γ0 �= ∅, the Korn inequality

[4]

‖v‖b ≥ C‖v‖1 ∀v ∈ H1
E(Ω)(1.7)

implies that the bounded bilinear form a(v,w) ≡ λ(div v,div w) + 2μ b(v,w) is coer-
cive.



TWO DIMENSIONAL THERMOELASTIC CONTACT PROBLEM 2639

The following result holds [1], [15].

Theorem 1.1. If θ0 ∈ H1
0 (Ω), g ∈ H

1
2 (Γc), and m is sufficiently small, there

exists a unique solution to (1.1)–(1.5) such that

θ ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)), θt ∈ L2(0, T ;L2(Ω)),

u ∈ L2(0, T ;H1
E(Ω)), ut ∈ L2(0, T ;H1(Ω)),

{divσ(u)}i ∈ L2(0, T ;L2(Ω)), i = 1, 2.

Given any w ∈ H1
0 (Ω) and v ∈ H1

E(Ω), the weak form

(θt, w) + (∇θ,∇w) = −m(div ut, w),(1.8)

λ(divu,div v) + 2μ b(u,v) −m(θ, div v) +
1

ε
([uν − g]+, vν)Γc

= 0(1.9)

will be the base of our numerical method. We define u(x, 0) ≡ u0(x) as the unique
solution in H1

E(Ω) of (1.2)–(1.4) when θ = θ0.

2. Numerical approximation. Let Th be a regular family of triangulations of
Ω, Ω =

⋃
τ∈Th τ with mesh size h such that any point where the boundary condition

changes is a vertex of the triangulations. Let Sh ⊂ H1(Ω) and Sh ⊂ H1(Ω) be finite
element spaces of continuous functions on Ω which are linear on each τ ∈ Th. We
introduce the spaces

Sh
0 = {v ∈ Sh | v = 0 on ∂Ω} and Sh

E = {v ∈ Sh | v = 0 on Γ0}

and the projection Ph
E : H1

E → Sh
E defined by a(v − Ph

Ev,w) = 0 ∀w ∈ Sh
E . As a

consequence of Korn’s inequality (1.7) we have

‖v − Ph
Ev‖1 ≤ C inf

w∈Sh
E

‖v − w‖1.(2.1)

We will also use the elliptic projection Ph
0 : H1

0 → Sh
0 , (∇(η − Ph

0 η),∇χ) = 0
∀χ ∈ Sh

0 , and the L2-projection Ph : L2 → Sh
E , (ζ − Phζ,φ) = 0 ∀φ ∈ Sh

E , which
satisfy [18]

‖η − Ph
0 η‖ + h‖∇(η − Ph

0 η)‖ ≤ Chs‖η‖s, 1 ≤ s ≤ 2,(2.2)

‖ζ − Phζ‖ ≤ Chs‖ζ‖s, 1 ≤ s ≤ 2.(2.3)

For continuous functions v, we denote by Ihv the interpolant of v in Sh
E with

respect to the triangulation Th. The following approximation property holds [18]:

‖v − Ihv‖ + h‖∇(v − Ihv)‖ ≤ Chs‖v‖s, 1 ≤ s ≤ 2.(2.4)

The finite element approximation to (1.1)–(1.5) is to find Θn ∈ Sh
0 , U

n ∈ Sh
E ,

n = 1, 2, . . . , N, such that ∀W ∈ Sh
0 and ∀V ∈ Sh

E

1

Δt
(Θn − Θn−1,W ) + (∇Θn,∇W ) = − m

Δt
(div (Un −Un−1),W ),(2.5)

λ(divUn,divV ) + 2μ b(Un,V ) −m(Θn,divV ) +
1

ε
([Un

ν − g]+, Vν)Γc = 0.(2.6)

Here Δt = T/N and Θ0, U0 are approximations to θ0 and u0, respectively.
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Suppose that {Θn,Un} and {Θ̃n, Ũ
n} are two solutions of (2.5)–(2.6), and define

ψ = Θn − Θ̃n,η = Un − Ũ
n
. Thus, ∀W ∈ Sh

0 and ∀V ∈ Sh
E ,

(ψ,W ) + Δt(∇ψ,∇W ) = −m(divη,W ),

λ(divη,divV ) + 2μ b(η,V ) −m(ψ,divV ) +
1

ε
([Un

ν − g]+ − [Ũn
ν − g]+, Vν)Γc = 0,

and

‖ψ‖2 +Δt‖∇ψ‖2 +λ‖divη‖2 +2μ ‖η‖2
b = −1

ε
([Un

ν − g]+ − [Ũn
ν − g]+, U

n
ν − Ũn

ν )Γc
≤ 0

since the functional [·]+ is monotone. It follows that (2.5)–(2.6) has a unique solution.

2.1. Implementation. To compute the numerical solution we used the iterative
procedure

1

Δt
(Θn,l − Θn−1,W ) + (∇Θn,l,∇W ) = − m

Δt
(div (Un,l−1 −Un−1),W ),

λ(divUn,l,divV ) + 2μ b(Un,l,V ) −m(Θn,l,divV ) +
1

ε
([Un,l−1

ν − g]+, Vν)Γc = 0,

where Un,0 = Un−1. At each iteration l, two systems of linear equations need to be
solved. Since the coefficient matrices are symmetric positive definite, these systems
have unique solutions and the Gauss–Seidel method can be used to solve them.

Theorem 2.1. If μ is sufficiently large and m is sufficiently small, the sequences
{Θn,l} and {Un,l} converge to the unique solution of (2.5)–(2.6).

Proof. Let pl = Θn,l − Θn,l−1 and ql = Un,l −Un,l−1. We have

‖pl‖2 + Δt‖∇pl‖2 + λ‖div ql‖2 + 2μ ‖ql‖2
b = m(div (ql − ql−1), pl)

− 1

ε
([Un,l−1

ν − g]+ − [Un,l−2
ν − g]+, q

l
ν)Γc .

Using Sobolev’s trace theorem and (1.7) we find that, for α > 0,

1

ε
([Un,l−1

ν − g]+ − [Un,l−2
ν − g]+, q

l
ν)Γc ≤ 1

ε
‖ql−1

ν ‖L2(Γc) ‖qlν‖L2(Γc)

≤ C

ε
‖ql−1‖b ‖ql‖b ≤

αC

2ε
‖ql−1‖2

b +
C

2αε
‖ql‖2

b .

Therefore, for δ > 0,

‖ pl‖2 + Δt‖∇pl‖2 + λ‖div ql‖2 + 2μ ‖ql‖2
b ≤ δm2

2
‖div (ql − ql−1)‖2

+
1

2δ
‖pl‖2 +

αC

2ε
‖ql−1‖2

b +
C

2αε
‖ql‖2

b

≤ δm2C
(
‖ql‖2

b + ‖ql−1‖2
b

)
+

1

2δ
‖pl‖2 +

αC

2ε
‖ql−1‖2

b +
C

2αε
‖ql‖2

b .

It follows that(
1 − 1

2δ

)
‖pl‖2 + Δt‖∇pl‖2 + λ‖div ql‖2 +

(
2μ− δm2C − C

2αε

)
‖ql‖2

b

≤
(
δm2C +

αC

2ε

)
‖ql−1‖2

b .



TWO DIMENSIONAL THERMOELASTIC CONTACT PROBLEM 2641

Taking δ = α = 1 results in(
2μ−m2C − C

2ε

)
‖ql‖2

b ≤
(
m2C +

C

2ε

)
‖ql−1‖2

b .

Thus, for sufficiently large μ and sufficiently small m, 2μ − m2C − C/(2ε) > 0 and
there exists M , 0 < M < 1, such that

‖ql‖2
b ≤ M‖ql−1‖2

b ,

which proves the result.
We choose the initial displacement U0 as the unique solution of (2.6) when Θn =

Θ0. To find U0 we iterate in the nonlinear term. Convergence follows as in the
previous theorem.

3. Convergence. In this section, a convergence analysis and an error estimate
are presented. We follow the work of Copetti and French [11].

Let us define tn = nΔt, θn = θ(·, tn), un = u(·, tn), and

θ̂n =

∫ tn

0

θ(·, t)dt, ūn =
1

Δt

∫ tn

tn−1

u(·, t)dt, θ̄n =
1

Δt

∫ tn

tn−1

θ(·, t)dt,

βε(χ) =
1

ε
[χ]+, β̄n

ε (χ) =
1

Δt

∫ tn

tn−1

βε(χ)dt,

εj = Δt

j∑
i=1

Θi − Ph
0 θ̂

j , j = 1, . . . , n, ε0 = 0,

and note that

εn − εn−1 = Δt(Θn − Ph
0 θ̄

n).(3.1)

Theorem 3.1. Let E(θ,u) be defined by

E(θ,u) =

∥∥∥∥∥
∫ T

0

∇θ(·, t)dt− Δt

N∑
i=1

∇Θi

∥∥∥∥∥
2

+ Δt

N∑
i=1

‖Θi − θ(·, ti)‖2

+ λΔt

N∑
i=1

‖div (U i − u(·, ti))‖2 + μΔt

N∑
i=1

‖U i − u(·, ti)‖2
b .

Then,

E(θ,u) ≤ C(λ, μ, ε)

(
‖Θ0 − θ0‖2 +

1

Δt
‖U0 − u0‖2 + (Δt)2 + h4

+

(
1

Δt
+ 1

)
Δt

N∑
i=1

‖ui − Ph
Eu

i‖2
1

)
.

Proof. Integrating (1.8) from 0 to tn and adding (2.5) from 1 to n (1 ≤ n ≤ N),
we find, ∀W ∈ Sh

0 ,

(Θn − θn,W ) +

(
Δt

n∑
i=1

∇Θi −∇θ̂n,∇W

)
= −m(div (Un − un),W )

+ (Θ0 − θ0,W ) + m(div (U0 − u0),W ),
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which can be written as

1

Δt
(εn − εn−1,W ) + (∇εn,∇W ) = −m(div (Un − un),W )

+ (Θ0 − θ0,W ) + m(div (U0 − u0),W ) + (θn − Ph
0 θ̄

n,W ).

Taking W = εn−εn−1

Δt results in

1

(Δt)2
‖εn − εn−1‖2 +

1

2Δt

(
‖∇εn −∇εn−1‖2 + ‖∇εn‖2 − ‖∇εn−1‖2

)
= − m

Δt
(div (Un − un), εn − εn−1) +

1

Δt
(Θ0 − θ0, ε

n − εn−1)

+
m

Δt
(div (U0 − u0), ε

n − εn−1) +
1

Δt
(θn − Ph

0 θ̄
n, εn − εn−1).(3.2)

Integrating (1.9) from tn−1 to tn and subtracting the result from (2.6), we get

λ(div (Un − ūn),divV ) + 2μ b(Un − ūn,V ) −m(Θn − θ̄n,divV )

+
(
βε(U

n
ν − g) − β̄n

ε (uν − g), Vν

)
Γc

= 0,

and the definition of Ph
E yields

λ(div en,divV ) + 2μ b(en,V ) −m(Θn − θ̄n,divV )

+
(
βε(U

n
ν − g) − β̄n

ε (uν − g), Vν

)
Γc

= λ(div (ūn − un),divV ) + 2μ b(ūn − un,V ),(3.3)

where en = Un − Ph
Eu

n. Let us observe that

βε(U
n
ν −g)−β̄n

ε (uν−g) = βε(U
n
ν −g)−βε((P

h
Eu

n)ν−g)+βε((P
h
Eu

n)ν−g)−β̄n
ε (uν−g)

and that

(βε(χ) − βε(η), χ− η) ≥ 0.

Taking V = en in (3.3), we can write

λ‖div en‖2 + 2μ‖en‖2
b +

(
βε((P

h
Eu

n)ν − g) − β̄n
ε (uν − g), enν

)
Γc

≤ λ(div (ūn − un),div en) + 2μ b(ūn − un, en) + m(Θn − θ̄n,div en)

≤ λ(div (ūn − un),div en) + 2μ b(ūn − un, en)

+ m(Θn − Ph
0 θ̄

n,div (Un − un)) + m(θ̄n − Ph
0 θ̄

n,div (un −Un))

+ m(Θn − Ph
0 θ̄

n + Ph
0 θ̄

n − θ̄n,div (un − Ph
Eu

n)).(3.4)

Adding (3.2) and (3.4) and recalling (3.1) result in

1

(Δt)2
‖εn − εn−1‖2 +

1

2Δt

(
‖∇εn −∇εn−1‖2 + ‖∇εn‖2 − ‖∇εn−1‖2

)
+ λ‖div en‖2

+ 2μ‖en‖2
b ≤ 1

Δt
(Θ0 − θ0, ε

n − εn−1) +
m

Δt
(div (U0 − u0), ε

n − εn−1)

+
1

Δt
(θn − Ph

0 θ̄
n, εn − εn−1) + λ(div (ūn − un),div en)

+ 2μ b(ūn − un, en) + m(θ̄n − Ph
0 θ̄

n,div (Ph
Eu

n −Un))

+
m

Δt
(εn − εn−1,div (un − Ph

Eu
n)) +

(
β̄n
ε (uν − g) − βε((P

h
Eu

n)ν − g), enν
)
Γc

.
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Thus

1

2(Δt)2
‖εn − εn−1‖2 +

1

4Δt

(
‖∇εn −∇εn−1‖2

)
+

1

2Δt

(
‖∇εn‖2 − ‖∇εn−1‖2

)
+

λ

2
‖div en‖2 + μ‖en‖2

b ≤ ‖Θ0 − θ0‖2 +
2m2

Δt
‖U0 − u0‖2 + ‖θn − Ph

0 θ̄
n‖2

+ λ‖div (ūn − un)‖2 + μ‖ūn − un‖2
b +

2m2

Δt
‖un − Ph

Eu
n‖2 +

m2

λ
‖θ̄n − Ph

0 θ̄
n‖2

+
1

2
‖div (un − Ph

Eu
n)‖2 +

(
β̄n
ε (uν − g) − βε((P

h
Eu

n)ν − g), enν
)
Γc

,(3.5)

where we used that (div v, w) = −(v,∇w), w ∈ H1
0 (Ω).

Let us estimate the last seven terms in the latter inequality. Thus

I1 ≡ ‖θn − Ph
0 θ̄

n‖2 = ‖θn − θ̄n + θ̄n − Ph
0 θ̄

n‖2

≤ 2

∥∥∥∥∥ 1

Δt

∫ tn

tn−1

∫ tn

t

θt(·, s)dsdt
∥∥∥∥∥

2

+ 2

∥∥∥∥∥ 1

Δt

∫ tn

tn−1

(θ − Ph
0 θ)(·, t)dt

∥∥∥∥∥
2

≤ C

(
Δt

∫ tn

tn−1

‖θt‖2dt +
h4

Δt

∫ tn

tn−1

‖θ‖2
2dt

)
,

I2 ≡ λ‖div (ūn − un)‖2 ≤ CΔt

∫ tn

tn−1

‖divut‖2dt,

I3 ≡ μ‖ūn − un‖2
b ≤ Cμ‖ūn − un‖2

1 ≤ CμΔt

∫ tn

tn−1

‖ut‖2
1dt,

I4 ≡ 2m2

Δt
‖un − Ph

Eu
n‖2 ≤ C

Δt
‖un − Ph

Eu
n‖2

1,

I5 ≡ m2

λ
‖θ̄n − Ph

0 θ̄
n‖2 ≤ Ch4

λΔt

∫ tn

tn−1

‖θ‖2
2dt,

I6 ≡ 1

2
‖div (un − Ph

Eu
n)‖2 ≤ C‖un − Ph

Eu
n‖2

1,

I7 ≡
(
β̄n
ε (uν − g) − βε((P

h
Eu

n)ν − g), enν
)
Γc

=
(
β̄n
ε (uν − g) − βε(u

n
ν − g) + βε(u

n
ν − g) − βε((P

h
Eu

n)ν − g), enν
)
Γc

.

We have, using Sobolev’s trace theorem and (1.7),(
β̄n
ε (uν − g) − βε(u

n
ν − g), enν

)
Γc

≤ ‖β̄n
ε (uν − g) − βε(u

n
ν − g)‖L2(Γc) ‖enν‖L2(Γc)

≤ ‖β̄n
ε (uν − g) − βε(u

n
ν − g)‖L2(Γc) ‖en‖L2(Γc) ≤ C‖β̄n

ε (uν − g) − βε(u
n
ν − g)‖L2(Γc) ‖en‖1

≤ C

μ
‖β̄n

ε (uν − g) − βε(u
n
ν − g)‖2

L2(Γc)
+

μ

4
‖en‖2

b

and

‖β̄n
ε (uν − g) − βε(u

n
ν − g)‖2

L2(Γc)
=

∥∥∥∥∥ 1

Δt

∫ tn

tn−1

(βε(uν − g) − βε(u
n
ν − g)) dt

∥∥∥∥∥
2

L2(Γc)

≤
∥∥∥∥∥ 1

εΔt

∫ tn

tn−1

|uν − un
ν |dt

∥∥∥∥∥
2

L2(Γc)

≤
∥∥∥∥∥ 1

εΔt

∫ tn

tn−1

∣∣∣∣∫ t

tn

uνt(·, s)ds
∣∣∣∣ dt

∥∥∥∥∥
2

L2(Γc)
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≤ CΔt

ε2

∫ tn

tn−1

‖ut‖2
1dt.

On the other hand,(
βε(u

n
ν − g) − βε((P

h
Eu

n)ν − g), enν
)
Γc

≤ 1

μ

∥∥βε(u
n
ν − g) − βε((P

h
Eu

n)ν − g)
∥∥2

L2(Γc)
+

μ

4
‖enν‖2

L2(Γc)

≤ 1

ε2μ

∥∥un
ν − (Ph

Eu
n)ν

∥∥2

L2(Γc)
+

μ

4
‖enν‖2

L2(Γc)
≤ C

ε2μ

∥∥un − Ph
Eu

n
∥∥2

1
+

μ

4
‖en‖2

b .

Collecting all the bounds and summing (3.5) over n result in

Δt
n∑

i=1

∥∥∥∥εi − εi−1

Δt

∥∥∥∥2

+

n∑
i=1

‖∇(εi − εi−1)‖2 + ‖∇εn‖2 + λΔt

n∑
i=1

‖div ei‖2

+ μΔt

n∑
i=1

‖ei‖2
b ≤ C(λ, μ, ε)

(
‖∇ε0‖2 + ‖Θ0 − θ0‖2 +

1

Δt
‖U0 − u0‖2

+ (Δt)2
∫ tn

0

‖θt‖2dt + h4

∫ tn

0

‖θ‖2
2dt + (Δt)2

∫ tn

0

‖divut‖2dt

+ (Δt)2
∫ tn

0

‖ut‖2
1dt +

(
1

Δt
+ 1

)
Δt

n∑
i=1

‖ui − Ph
Eu

i‖2
1

)
.

The definition of ε0 and the regularity of θ and u yield

Δt

n∑
i=1

∥∥∥∥εi − εi−1

Δt

∥∥∥∥2

+ ‖∇εn‖2 + λΔt

n∑
i=1

‖div ei‖2 + μΔt

n∑
i=1

‖ei‖2
b

≤ C(λ, μ, ε)

(
‖Θ0 − θ0‖2 +

1

Δt
‖U0 − u0‖2 + (Δt)2 + h4

+

(
1

Δt
+ 1

)
Δt

n∑
i=1

‖ui − Ph
Eu

i‖2
1

)
,

and the result follows observing that∥∥∥∥∥
∫ tn

0

∇θ(·, t)dt− Δt

n∑
i=1

∇Θi

∥∥∥∥∥
2

=
∥∥∥∇(θ̂n − Ph

0 θ̂
n) −∇εn

∥∥∥2

,

Δt
n∑

i=1

‖Θi − θ(·, ti)‖2 = Δt

n∑
i=1

∥∥∥∥εi − εi−1

Δt
+ Ph

0 θ̄
i − θi

∥∥∥∥2

,

λΔt

n∑
i=1

‖div (U i − u(·, ti))‖2 ≤ λΔt

n∑
i=1

‖div (ei + Ph
Eu

i − ui)‖2

and

μΔt

n∑
i=1

‖U i − u(·, ti)‖2
b ≤ CμΔt

n∑
i=1

‖ei + Ph
Eu

i − ui‖2
b .
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Fig. 1. The contact problem setting.

Corollary 3.2. Let Θ0 = Ph
0 θ0, U0 = Phu0, and Δt = O(h). Under the

assumptions of Theorem 3.1,

E(θ,u) → 0 as h → 0.

Proof. We follow Ciarlet [7]. Given ε
′
> 0, since H2(Ω) ∩ H1

E(Ω) is dense in
H1

E(Ω), there exists ũ ∈ H2(Ω) ∩ H1
E(Ω) such that

‖un − ũ‖2
1 ≤ ε

′
.

Thus, using (2.1) and (2.4),

‖un − Ph
Eu

n‖2
1 ≤ C‖un − ũ + ũ− Ihũ‖2

1 ≤ C(ε
′
+ h2‖ũ‖2

2).

Recalling (2.2) and (2.3), the convergence result is obtained taking ε
′
= O(h2).

Corollary 3.3. Suppose that u ∈ L∞(0, T ;H2(Ω)), θ0 ∈ H2(Ω), and u0 ∈
H2(Ω). Let Θ0 = Ph

0 θ0 and U0 = Phu0. Then the error estimate

E(θ,u) ≤ C(λ, μ, ε)

(
h4

Δt
+ (Δt)2 + h4 +

h2

Δt
+ h2

)
holds and the error bound is O(h) if Δt = h.

Proof. The estimate is a consequence of the additional assumed regularity.

4. Numerical experiments. In our experiments, the reference configuration is
the square Ω = (0, 1) × (0, 1) with ΓC = {(1, x2) | 0 < x2 < 1} and Γ0 the remaining
boundary of Ω. The elastic obstacle is located at distance g(x) = 0.02 from ΓC (see
Figure 1) and the initial temperature Θ0 is the linear interpolant of θ0(x) = 20000x1x2

(x1 − 1)(x2 − 1). We let λ = 1, μ = 30, and m = 0.008, and tolerance of 1 × 10−7

was used to stop the iterative procedures. A uniform triangulation of Ω was obtained
by dividing the square into M × M squares with side h = 1/M and connecting the
north-west vertex to the south-east vertex of each square.
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Fig. 2. The evolution of the displacement components when ε = 0.1. The left and right columns
show u1 and u2, respectively, at t = 0, 0.01, and 0.1.



TWO DIMENSIONAL THERMOELASTIC CONTACT PROBLEM 2647

0

0.02

0.04

0

0.02

0

0.02

0.04

0

0.02

0

0.02

0.04

0

0.02

Fig. 3. The evolution of the displacement components when ε = 0.01. The left and right columns
show u1 and u2, respectively, at t = 0, 0.01, and 0.1.
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Fig. 4. The displacement component u1 at t = 0 for x = (1, x2) and x = (0.25, x2).
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Fig. 5. The displacement component u2 at t = 0 for x = (1, x2) and x = (0.25, x2).
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Fig. 6. The temperature at t = 0, 0.01, and 0.1.
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Table 1

The computed errors for T = 0.2 and ε = 0.1.

h = Δt Δt
∑N

i=1
‖Θi − θ(·, ti)‖2 Rate Δt

∑N

i=1
‖U i − u(·, ti)‖2

b Rate

1/10 2.05 × 103 1.68 × 10−5

1/20 8.29 × 102 1.30 6.21 × 10−6 1.44
1/40 2.61 × 102 1.67 1.64 × 10−6 1.92
1/80 7.39 × 10 1.82 5.25 × 10−7 1.64
1/160 1.98 × 10 1.90 2.51 × 10−7 1.07

In the first experiment, M = 80, Δt = 1 × 10−5, and we took two values for the
parameter ε, ε = 0.1 and ε = 0.01. The results are shown in Figures 2–6. At t = 0
the body is in contact with the obstacle and the evolution is toward the state θ = 0,
u = 0. As expected, when ε decreases the obstacle becomes more rigid and penetration
is more difficult. Note that there is a region where the body has contracted. The
temperature profiles were virtually the same in both cases.

In order to test the error estimates, we compared the numerical solutions on coarse
meshes with the solution obtained with the finer mesh (M = 320 and Δt = 1×10−5).
The computed errors for T = 0.2 and ε = 0.1 are reported in Table 1, where we
observe convergence rates larger than those given by Corollary 3.3.

5. Remark on the Signorini problem. In [11], Copetti and French considered
the numerical approximation of the one dimensional Signorini problem with viscosity
effects and proved error estimates using the decomposition

θ − Θn = θ − θε + θε − Θn,

u− Un = u− uε + uε − Un,

where {θ, u} represents the solution to the Signorini problem, {θε, uε} the solution to
the penalized problem, and {Θn, Un} the numerical solution based on the penaliza-
tion.

In the two dimensional case, similar results can be obtained if the solutions to
the continuous problems are sufficiently smooth. We can show that∫ T

0

‖θ − θε‖2dt +
1

2

∥∥∥∥∥
∫ T

0

∇(θ − θε)dt

∥∥∥∥∥
2

+ λ

∫ T

0

‖div (u− uε)‖2dt

+ 2μ

∫ T

0

‖u− uε‖2
bdt +

1

ε

∫ T

0

‖uν − uε
ν ||2L2(Γc)

dt ≤ ε

2

∫ T

0

‖σν‖2
L2(Γc)

dt,

which together with Corollary 3.3 yields error bounds for the numerical approximation
of (1.1)–(1.3) and (1.5)–(1.6) by the discrete solution {Θn,Un}.

Acknowledgment. The author wishes to thank the referees for their valuable
comments which improved the manuscript.
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SPECTRAL DISCRETIZATION OF A NAGHDI SHELL MODEL∗

CHRISTINE BERNARDI† AND ADEL BLOUZA‡

Abstract. We consider the Naghdi equations which model a thin three-dimensional shell. We
propose a spectral discretization of this problem in the case where the midsurface of the shell is
weakly regular. We perform the numerical analysis of the discrete problem and prove optimal error
estimates.
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1. Introduction. We consider a formulation of Naghdi’s shell model in Carte-
sian coordinates which is appropriate for linearly elastic shells that present curvature
discontinuities. The aim of this paper is to propose a spectral discretization of the
mixed formulation of this problem and to perform its numerical analysis.

The formulation of Naghdi’s model which is used here was introduced in [7], [11].
This formulation relies on the idea of using a local basis-free formulation in which the
unknowns are described in Cartesian coordinates instead of covariant or contravariant
components as is usually done in shell theory; see, for example, [2]. Such a formu-
lation is able to handle shells with a W 2,∞-midsurface, thus allowing for curvature
discontinuities, as opposed to C 3 in the classical formalism (see [15, Chap. 7] and the
references therein), and leads to much simpler expressions. Even though it is proved
in [11] to be well-posed and to be the natural limit of the classical formulation when a
sequence of regular midsurfaces converges to a W 2,∞-midsurface, the new formulation
has not been used in a numerical spectral setting to the best of our knowledge. For
simplicity, we only consider the case of a shell with a W 2,∞-midsurface.

The literature on finite element approximation of two-dimensional shell models is
large. Let us mention a few approaches. Concerning conforming methods, the Ganev
and Argyris triangles provide interpolation by polynomials of degree 4 and 5, with
high order convergence in c h4 when the solution is smooth enough. These elements
are used, for example, to study the linear Koiter model for C 3-shells in the classical
covariant formulation; see [1, Part II, Chap. 1]. This method is applied to approximate
geometrically exact shell models in [13]. The Argyris elements are also used in [18] for
numerical analysis of Koiter’s model with little regularity in the Cartesian formulation
proposed in [10]. We also mention the three-dimensional shell element approach; see
[14]. Still in the context of shells with little regularity, i.e., when the midsurface is
of W 2,∞-regularity, a nonconforming discrete Kirchhoff triangle (DKT) element is
used in [21] to approximate a Koiter equation similar to the model introduced in
[10]. Other works [19], [20] concern the finite element discretization of shell problems
with domain decomposition. The main difficulty of all these discretizations is that, in
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most situations, a locking phenomenon appears when the choice of the discretization
parameter is not sufficient to handle the thickness of the shell.

In this paper, we propose a spectral discretization of Naghdi’s model. It relies
on a mixed variational formulation of the corresponding equation proposed in [9]: A
Lagrange multiplier is introduced to enforce the tangency requirement on one of the
unknowns. A further penalization term is also added in order to stabilize the system.
We first describe the discrete problem which is constructed from the variational for-
mulation of the model by the Galerkin method with numerical integration (see [4, sect.
15] or [6, Chap. V] for a detailed presentation of this procedure). Under some further
but likely regularity assumptions on the midsurface of the shell, we prove that it is
well-posed. Finally, relying on standard polynomial approximation and interpolation
results, we prove error estimates which are fully optimal from a numerical point of
view for a fixed thickness of the shell.

The extension of this study to the case of a piecewise regular shell discretized by
the spectral element method is under consideration. Numerical experiments should
confirm the interest of this discretization.

An outline of the paper is as follows.
• In section 2, we recall the geometry of the midsurface and Naghdi’s shell

formulation. We introduce a mixed version of Naghdi’s model intended to
approximate the above mentioned tangency. We prove the existence and
uniqueness of the solution.

• Section 3 is devoted to the description of the spectral discrete problem. We
also prove its well-posedness.

• Error estimates are derived in section 4.

2. Presentation of the model. Greek indices and exponents take their values
in the set {1, 2}, and Latin indices and exponents take their values in the set {1, 2, 3}.
Unless otherwise specified, the summation convention for repeated indices and expo-
nents according to this set of values is assumed. Let {e1, e2, e3} be the canonical
orthonormal basis of the Euclidean space R

3. We denote by u · v the inner product
of R

3, |u| =
√
u · u the associated Euclidean norm, and u ∧ v the vector product of

u and v.
Let ω be a bounded connected domain of R

2 with a Lipschitz-continuous boundary
∂ω. We consider a shell whose midsurface is given by S = ϕ(ω̄), where ϕ is a one-to-
one mapping in W 2,∞(ω)3 such that the two vectors aα(x) = (∂αϕ)(x) are linearly
independent at each point x of ω̄. Thus,

a3(x) =
a1(x) ∧ a2(x)

|a1(x) ∧ a2(x)|
is the unit normal vector on the midsurface at point ϕ(x). The vectors ai(x) define
the local covariant basis at point ϕ(x). The contravariant basis ai(x) is defined by
the relations ai · aj = δji , where δji is the Kronecker symbol. In particular a3(x)
coincides with a3(x). Note that all of these vectors belong to W 1,∞(ω)3. We set
a(x) = |a1(x) ∧ a2(x)|2 so that

√
a(x) is the area element of the midsurface in

the chart ϕ. Finally, the first fundamental form of the surface is given in covariant
components by aαβ = aα · aβ .

Let u be a midsurface displacement in H1(ω)3 and r be a rotation vector in
H1(ω)3 such that r is tangential to the midsurface. These functions are given in
covariant and Cartesian components by

u(x) = ui(x)ai(x) = uc
i (x)ei, with ui = u · ai and uc

i = u · ei,
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and

r(x) = rα(x)aα(x) = rci (x)ei, with rα = r · aα and rci = r · ei.

Note that the tangency requirement is easily expressed in covariant coordinates, as it
simply reads r3 = 0, whereas it becomes rci (x)ac3,i(x) = 0 in ω in Cartesian coordi-
nates.

Let aαβρσ denote the coefficients of the elasticity tensor. In the case of homo-
geneous, isotropic material with Young modulus E > 0 and Poisson coefficient ν,
0 ≤ ν < 1

2 , these coefficients are given by

(2.1) aαβρσ =
E

2(1 + ν)
(aαρaβσ + aασaβρ) +

Eν

1 − ν2
aαβaρσ,

where aαβ = aα ·aβ are the contravariant components of the first fundamental form.
We note that each coefficient of this tensor belongs to L∞(ω). Moreover, it satisfies
the usual symmetry properties

(2.2) aαβρσ(x) = aρσαβ(x) = aβαρσ(x) for a.e. x ∈ ω

and is uniformly strictly positive: There exists a positive constant c0 such that, for
all symmetric tensors τ = (ταβ) in R

2×2,

(2.3) aαβρσ(x)ταβτρσ ≥ c0 |τ |2 for a.e. x ∈ ω.

In this context, the covariant components of the change of metric tensor read

(2.4) γαβ(u) =
1

2
(∂αu · aβ + ∂βu · aα),

the covariant components of the change of transverse shear tensor read

(2.5) δα3(u, r) =
1

2
(∂αu · a3 + r · aα),

and the covariant components of the change of curvature tensor read

(2.6) χαβ(u, r) =
1

2
(∂αu · ∂βa3 + ∂βu · ∂αa3 + ∂αr · aβ + ∂βr · aα);

see [7], [11]. Note that all these quantities make sense for shells with little regu-
larity and are easily expressed with the Cartesian coordinates of the unknowns and
geometrical data. For instance, we have

∂αu · aβ = (∂αu
c
i ) a

c
β,i,

and so on.
We assume that the boundary ∂ω of the chart domain is divided into two parts:

γ0, which has a finite number of connected components and a strictly positive one-
dimensional measure and on which the shell is clamped, and the complementary part
γ1 = ∂ω \ γ0, on which the shell is subjected to applied tractions and moments.

To take into account the boundary conditions, we define the space

(2.7) H1
γ0

(ω) =
{
μ ∈ H1(ω); μ = 0 on γ0

}
.

We also denote by H
1
2
00(γ1) the space of functions in H

1
2 (γ1) such that their extension

by zero to ∂ω belongs to H
1
2 (∂ω); see [22, Chap. 1, sect. 11]. Let us now consider

the function space, introduced in [7], [11], which is appropriate in the context of
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shells with little regularity

(2.8) V(ω) =
{
(v, s) ∈ H1

γ0
(ω)3 ×H1

γ0
(ω)3; s · a3 = 0 in ω

}
.

This space is endowed with the natural Hilbert norm

(2.9) ‖(v, s)‖V(ω) =
(
‖v‖2

H1(ω)3 + ‖s‖2
H1(ω)3

)1/2
.

We now recall the variational formulation of the problem corresponding to the
linear Naghdi model for shells with little regularity. It reads:

Find (u, r) in V(ω) such that

(2.10) ∀(v, s) ∈ V(ω), a
(
(u, r); (v, s)

)
= L((v, s)),

where the bilinear form a(·; ·) is defined by

(2.11)
a
(
(u, r); (v, s)

)
=

∫
ω

{
eaαβρσ

[
γρσ(v) +

e2

12
χαβ(u, r)χρσ(v, s)

]
+ 2e

E

1 + ν
aαβδα3(u, r)δβ3(v, s)

}√
a dx,

and the linear form L(·) is given by

(2.12) L((v, s)) =

∫
ω

f · v
√
a dx +

∫
γ1

(M · v + N · s) dτ.

The three terms in a(·, ·) represent the membrane, bending, and shear deformations,
respectively. The data f , M , and N represent a given resultant force density, an
applied moment density, and an applied traction density (so that usually N · a3 = 0),
respectively. Finally the thickness of the shell which is assumed to be constant is
denoted by e, 0 < e < 1.

We refer to [7], [11] for the proof of the well-posedness of this problem which is
stated in the next theorem. Since a3 belongs to W 1,∞(ω)3, the form a(·; ·) is obviously
continuous on V(ω) × V(ω), with the norm smaller than c e. Similarly, the form L is
continuous on V(ω), and its norm satisfies, with obvious notation,

(2.13) ‖L‖ ≤ c
(
‖f‖H1

γ0
(ω)3′ + ‖M‖

H
1
2
00(sγ1)3′

+ ‖N‖
H

1
2
00(γ1)3′

)
.

So the well-posedness mainly relies on the following ellipticity property which is proved
in [11, Lem. 3.6]: There exists a constant c∗ > 0 such that

(2.14) ∀(v, s) ∈ V(ω), a
(
(v, s); (v, s)

)
≥ c∗ e

3 ‖(v, s)‖2
V(ω).

Theorem 2.1. For any data (f ,M ,N) in H1
γ0

(ω)3′ × H
1
2
00(γ1)

3′ × H
1
2
00(γ1)

3′,
problem (2.10) admits a unique solution (u, r) in V(ω). Moreover this solution satis-
fies

(2.15) ‖(u, r)‖V(ω) ≤ c e−3 ‖L‖.

However, since the purpose of the present work is to approximate the solution
of problem (2.10) with a spectral method and to proceed in the simplest possible
way, we immediately encounter a problem: The tangency constraint s · a3 = 0 which
appears in the definition of V(ω) clearly cannot be implemented in a standard way
for a general shell. So the idea, already proposed in [9], consists in handling this
constraint via the introduction of a Lagrange multiplier. We thus consider a mixed
Naghdi problem in which the unknowns are the displacement u and the rotation r,
which belong to H1

γ0
(ω)3 without any orthogonality constraint on r, and the Lagrange
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multiplier λ, which belongs to the space H1
γ0

(ω) and is aimed to enforce the tangency
constraint r · a3 = 0. In view of the discretization, we also possibly add a stabilizing
term. Its usefulness appears in the next section.

Let us introduce the relaxed function space

(2.16) X(ω) = H1
γ0

(ω)3 ×H1
γ0

(ω)3,

still equipped with the norm defined in (2.9) which is now denoted by ‖ · ‖X(ω). We
also set M(ω) = H1

γ0
(ω). For simplicity, we use an extension of the forms a(·; ·) and

L(·) defined in (2.11) and (2.12), respectively, to X(ω) × X(ω) and X(ω).
For a nonnegative parameter η, we consider the variational problem:
Find (Uη, ψη) in X(ω) × M(ω) such that

(2.17)
∀V ∈ X(ω), a(Uη;V ) + η ã(Uη;V ) + b(V ;ψη) = L(V ),
∀χ ∈ M(ω), b(Uη;χ) = 0,

where the bilinear forms ã(·; ·) and b(·; ·) are defined by, with the notation U = (u, r)
and V = (v, s),

(2.18) ã(U ;V ) =

∫
ω

∂α(r · a3)∂α(s · a3) dx, b(V ;χ) =

∫
ω

∂α(s · a3)∂αχdx.

Remark. Since we are aiming for simplicity of implementation, we have made
no attempt to make the duality term intrinsic. In fact, it does depend on the chart,
whereas the other terms do not. This could arguably be considered to be a poor
choice, especially if a chart was used that gave much more weight to one part of the
shell compared to the rest. An intrinsic choice that obviously works is

b̃(V ;χ) =

∫
ω

aαβ∂α(s · a3)∂βχ
√
a dx.

Remark. In the case η = 0, it can be checked that ψ = ψ0 is the solution of the
Laplace equation

−
2∑

α=1

∂2
αψ =

e3

12
aαβρσ χαβ(u, r) bρσ

√
a in ω,

with mixed Dirichlet boundary conditions on γ0 and Neumann conditions on γ1 and
the bρσ are the components of the second fundamental form of the surface. Thus
the function ψ seems to have no physical meaning and is only useful to handle the
tangency condition.

It must be observed that, since a3 belongs to W 1,∞(ω)3, the forms ã(·; ·) and
b(·; ·) are continuous on X(ω) × X(ω) and X(ω) × M(ω), respectively. Moreover, the
following identity is readily checked:

(2.19) V(ω) =
{
V = (v, s) ∈ X(ω); ∀χ ∈ M(ω), b(V ;χ) = 0

}
.

The next ellipticity property

(2.20) ∀V ∈ V(ω), a(V ;V ) + η ã(V ;V ) ≥ c∗ e
3 ‖V ‖2

X(ω),

is an obvious consequence of (2.14), and it can be checked thanks to exactly the same
argument as in [9] that an analogous property still holds for all V in X(ω) whenever
η is positive. We now investigate the inf-sup condition on the form b(·; ·).
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Proposition 2.2. There exists a positive constant c	 such that the following
inf-sup condition holds:

(2.21) ∀χ ∈ M(ω), sup
V ∈X(ω)

b(V ;χ)

‖V ‖X(ω)
≥ c	 ‖χ‖H1(ω).

Proof. Let χ be an arbitrary element of M(ω). Since χ vanishes on γ0 and a3

belongs to W 1,∞(ω)3, it is readily checked that V = (0, χa3) belongs to X(ω). Using
the fact that χa3 · a3 is equal to χ, we have with this choice of V

b(V ;χ) ≥ |χ|2H1(ω),

so that, thanks to a generalized Poincaré–Friedrichs inequality,

b(V ;χ) ≥ c ‖χ‖2
H1(ω).

On the other hand, we observe that, owing to the regularity of a3,

‖V ‖X(ω) ≤ ‖χa3‖H1(ω)3 ≤ c ‖χ‖H1(ω).

Combining the last two inequalities gives the desired inf-sup condition.
We are now in a position to prove the main result of this section.

Theorem 2.3. For any data (f ,M,N) in H1
γ0

(ω)3′ × H
1
2
00(γ1)

3′ × H
1
2
00(γ1)

3′,
problem (2.17) admits a unique solution (Uη, ψη) in X(ω) × M(ω). Moreover this
solution satisfies

(2.22) ‖Uη‖X(ω) + ‖ψη‖H1(ω) ≤ c e−3 ‖L‖.

Moreover, the part Uη of this solution is equal to the solution U of problem (2.10).
Proof. The existence and uniqueness of the solution (Uη, ψη), together with esti-

mate (2.22), are a direct consequence of properties (2.20) and (2.21); see [12, Chap.
II, Thm. 1.1] and [16, Chap. I, Cor. 4.1], for instance. Moreover, Uη belongs to V(ω),
and it is readily checked that, for any V in V(ω), ã(Uη;V ) is zero, so that Uη satisfies
(2.10).

3. The spectral discrete problem and its well-posedness. To describe the
discrete problem, we now assume that ω is the square ] − 1, 1[2 (this can induce a
further diffeomorphism; however, for simplicity we keep the notation ϕ for the chart).
We assume that γ0 is the union of one, two, three, or four whole edges of ω.

For each nonnegative integer n, we denote by Pn(ω) the space of restrictions to
ω of polynomials with two variables and degree ≤ n with respect to each variable. In
order to take into account the boundary conditions of the problem, we introduce the
space P

γ0
n (ω) = Pn(ω) ∩H1

γ0
(ω). Next, for a fixed integer N ≥ 2 and another integer

L, 2 ≤ L ≤ N , we define the discrete spaces

(3.1) XN = P
γ0

N (ω)3 × P
γ0

N (ω)3, MN = P
γ0

L (ω).

The reason for using two different parameters L and N is explained later.
We also make use of the Gauss–Lobatto formula on the interval ] − 1, 1[. Let

Pn(−1, 1) denote the space of restrictions to ]− 1, 1[ of polynomials with degree ≤ n.
For a third integer M ≥ N , we set: ξ0 = −1 and ξM = 1. We recall that there exist
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M − 1 nodes ξj , 1 ≤ j ≤ M − 1, in ] − 1, 1[, with ξ0 < ξ1 < · · · < ξM , and M + 1
positive weights ρj , 0 ≤ j ≤ M , such that

(3.2) ∀Φ ∈ P2M−1(−1, 1),

∫ 1

−1

Φ(ζ) dζ =

M∑
j=0

Φ(ξj) ρj .

Moreover the following property holds [4, Form. (13.20)]:

(3.3) ∀ϕ ∈ PM (−1, 1), ‖ϕ‖2
L2(−1,1) ≤

M∑
j=0

ϕ2(ξj) ρj ≤ 3 ‖ϕ‖2
L2(−1,1).

The interest of using “overintegration,” i.e., taking M > N , in the case of nonconstant
coefficients has been fully brought to light in [23].

This leads to define a discrete product on ω: For any continuous functions u and
v on ω̄,

(3.4) (u, v)M =

M∑
i=0

M∑
j=0

u(ξi, ξj)v(ξi, ξj) ρiρj .

It follows from (3.3) that this product is a scalar product on PM (ω). We also introduce
the Lagrange interpolation operator IM at the nodes (ξi, ξj), 0 ≤ i, j ≤ M , with values
in PM (ω). Finally, the discrete product (·, ·)γ1

M is defined according to the geometry
of γ1: For any continuous functions u and v on γ̄1, if γ1 is the edge {−1}×] − 1, 1[,

(3.5) (u, v)γ1

M =

M∑
j=0

u(−1, ξj)v(−1, ξj) ρj ,

while, if γ1 is the union of the two edges {−1}×] − 1, 1] and [−1, 1[×{1},

(3.6) (u, v)γ1

M =

M∑
j=0

u(−1, ξj)v(−1, ξj) ρj +

M∑
j=0

u(ξj , 1)v(ξj , 1) ρj ,

and so on. The Lagrange interpolation operator iγ1

M is simply defined as the trace of
IM on γ1.

From now on, we make the further nonrestrictive hypothesis.
Assumption 3.1. The aα, α = 1 and 2, belong to Hs0(ω)3 and a3 belongs to

Hs0+1(ω)3 for a real number s0 > 1.
In order to take into account this rather weak regularity, we introduce the H1(ω)-

projection akN of each ak onto PN (ω)3, which satisfies

(3.7)
∀vN ∈ PN (ω)3, (∂αakN , ∂αvN )M =

∫
ω

(∂αak)(∂αvN ) dx,

(akN , 1)M =

∫
ω

ak(x) dx.

In a similar way, we define the cβN as the solution of the same problem with ak

replaced by ∂βa3. It follows from (3.3) that the akN and cβN are uniquely defined
from these equations. This leads to the following discrete forms of the tensors:

(3.8) γN
αβ(u) =

1

2
(∂αu · aβN + ∂βu · aαN ),
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(3.9) δNα3(U) =
1

2
(∂αu · a3N + r · aαN ),

(3.10) χN
αβ(U) =

1

2
(∂αu · cβN + ∂βu · cαN + ∂αr · aβN + ∂βr · aαN ).

Up to the replacement of the ak by akN and also of the ∂βa3 by cβN , the dis-
crete problem is now constructed from (2.17) by the Galerkin method with numerical
integration. It reads:

Find (UN , ψN ) in XN × MN such that

(3.11)
∀VN ∈ XN , aM (UN ;VN ) + η ãM (UN ;VN ) + bM (VN ;ψN ) = LM (VN ),
∀χN ∈ MN , bM (UN ;χN ) = 0,

where the bilinear forms aM (·; ·), ãM (·; ·), and bM (·; ·) are defined, with the notation
UN = (uN , rN ) and VN = (vN , sN ), by

(3.12)

aM (UN ;VN ) = e
(
aαβρσ γN

αβ(uN ), γN
ρσ(vN )

√
a
)
M

+
e3

12

(
aαβρσ χN

αβ(UN ), χN
ρσ(VN )

√
a
)
M

+ 2e
E

1 + ν

(
aαβδNα3(UN ), δNβ3(VN )

√
a
)
M
,

ãM (UN ;VN ) =
(
∂αIM (rN · a3N ), ∂αIM (sN · a3N )

)
M
,

bM (VN ;χN ) =
(
∂αIM (sN · a3N ), ∂αχN

)
M
.

The linear form LM (·) is given by

(3.13) LM (VN ) = (f ,vN

√
a
)
M

+ (M,vN )γ1

M + (N, sN )γ1

M .

Remark. The discrete problem (3.11) differs from the standard spectral discretiza-
tion of elliptic problems in two ways.

• The idea for the replacement of the ak by akN and of the ∂βa3 by cβN in the
definition of the forms aM (·, ·) and bM (·, ·) comes from the lack of regularity
of the ak. Indeed, if one of the aα is not replaced by aαN , the continuity
of these forms would require the boundedness of IMaα at least in H1(ω)3,
which would require that aα belongs to Hs(ω)3 for some s > 3

2 . We prefer to
avoid this restriction.

• It is usual in spectral methods to take M equal to N , in order that the mass
matrix is diagonal. The choice of an M possibly larger than N here is due
to the fact that the coefficients involved in the previous forms depend on the
space variable and are not very smooth (see [23] for more details). However, if
ξ∗j denote the nodes ξj for M equal to N and ϕ∗

j are the associated Lagrange
polynomials, the unknown UN admits the expansion

(3.14) UN (x, y) =

N∑
i=0

N∑
j=0

UN (ξ∗i , ξ
∗
j )ϕ∗

i (x)ϕ∗
j (y).

So computing the values of UN and ∂αUN at the nodes (ξj , ξj) only requires
the knowledge of the two matrices made of the ϕ∗

i (ξk) and of the ϕ∗′
i (ξk),

respectively.
The analysis of problem (3.11) relies on a number of properties of the previous

forms. We begin with their continuity. In a preliminary step, we establish some results
concerning the new coefficients akN and cβN .
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Lemma 3.2. There exists a constant c independent of N such that, for any real
number p, 2 ≤ p ≤ 2

2−s0
,

(3.15) ‖aα − aαN‖L∞(ω)3 ≤ cN1−s0 (log N)
1
2 ‖aα‖Hs0 (ω)3 ,

(3.16) ‖a3 − a3N‖L∞(ω)3 ≤ cN−s0 (log N)
1
2 ‖a3‖Hs0+1(ω)3 ,

(3.17) ‖a3 − a3N‖W 1,p(ω)3 ≤ cN4( 1
2−

1
p )−s0 ‖a3‖Hs0+1(ω)3 ,

(3.18) ‖∂βa3 − cβN‖L∞(ω)3 ≤ cN1−s0 (log N)
1
2 ‖a3‖Hs0+1(ω)3 .

Proof. There exists [4, Thm. 7.4] a polynomial ãkN in PN (ω)3 such that, for all
real numbers s, 0 ≤ s ≤ s0,

(3.19) ‖aα − ãαN‖Hs(ω)3 ≤ cNs−s0 ‖aα‖Hs0 (ω)3 .

To prove the first estimate, we use the triangle inequality

‖aα − aαN‖L∞(ω)3 ≤ ‖aα − ãαN‖L∞(ω)3 + ‖aαN − ãαN‖L∞(ω)3 .

To bound the first quantity, we recall from [17] that, for all ε, 0 < ε < s0 − 1, the

norm of the Sobolev embedding of H1+ε(ω) into L∞(ω) is bounded by c ε−
1
2 for a

constant c independent of ε. Combining this result with (3.20) with s = 1 + ε gives

‖aα − ãαN‖L∞(ω)3 ≤ c ε−
1
2 ‖aα − ãαN‖H1+ε(ω)3 ≤ c′ ε−

1
2 Nε+1−s0 ‖aα‖Hs0 (ω)3 .

Evaluating the second one relies on the inverse inequality (see [3, Chap. III, Prop.
3.1]), valid for any p < +∞,

‖aαN − ãαN‖L∞(ω)3 ≤ cN
4
p ‖aαN − ãαN‖Lp(ω)3 .

We recall from [25] that the norm of the embedding of H1(ω) into Lp(ω) behaves like

c p
1
2 for a constant c independent of p. This yields

‖aαN − ãαN‖L∞(ω)3 ≤ c p
1
2 N

4
p ‖aαN − ãαN‖H1(ω)3

≤ c p
1
2 N

4
p
(
‖aα − aαN‖H1(ω)3 + ‖aα − ãαN‖H1(ω)3

)
.

It follows from the definition of aαN that

(3.20) ‖aα − aαN‖H1(ω)3 ≤ cN1−s0 ‖aα‖Hs0 (ω)3 .

Combining this with (3.19) for s = 1 thus leads to

‖aαN − ãαN‖L∞(ω)3 ≤ c p
1
2 N

4
p+1−s0 ‖aα‖Hs0 (ω)3 .

Thus estimate (3.15) follows from the previous lines by taking ε = 4
p = 1

log N . Esti-

mates (3.16) and (3.18) rely on exactly the same arguments with s0 replaced or not by
s0 +1. To prove (3.17), we first take s such that 1

p = 2−s
2 , so that Hs(ω) is embedded

in W 1,p(ω) and use an analogous inverse inequality as previously (see again [3, Chap.
III, Prop. 3.1]), which gives

‖a3 − a3N‖W 1,p(ω)3 ≤ c ‖a3 − ã3N‖Hs(ω)3 + c′ N4( 1
2−

1
p ) ‖a3N − ã3N‖H1(ω)3 .
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Thus, we deduce from the analogues of (3.19) and (3.20), with s0 replaced by s0 + 1,
that

‖a3 − a3N‖W 1,p(ω)3 ≤ c (Ns−s0−1 + N4( 1
2−

1
p )−s0)‖a3‖Hs0+1(ω)3 .

Noting that s − s0 − 1 is equal to 2( 1
2 − 1

p ) − s0, hence smaller than 4( 1
2 − 1

p ) − s0,
gives the desired result.

As a consequence of the previous lemma, the norms of the coefficients akN and
cβN in L∞(ω)3 and also of a3N in W 1,p(ω)3 are bounded independently of N . This
leads to the following continuity results.

Lemma 3.3. There exists a constant c independent of N and M ≥ N such that
the following continuity property holds:

(3.21) ∀UN ∈ XN ,∀VN ∈ XN , |aM (UN ;VN )| ≤ c e ‖UN‖X(ω)‖VN‖X(ω).

Proof. Since the coefficients aαβρσ and also
√
a are bounded, we derive by a

Cauchy–Schwarz inequality

e
∣∣(aαβρσ γN

αβ(uN ), γN
ρσ(vN )

√
a
)
M

∣∣ ≤ c e (γN
αβ(uN ), γN

αβ(uN ))
1
2

M (γN
ρσ(vN ), γN

ρσ(vN ))
1
2

M .

Thanks to Lemma 3.2, we observe that, at each node (ξi, ξj), 0 ≤ i, j ≤ M ,

γN
αβ(uN )(ξi, ξj) ≤ c

(
|(∂αuN )(ξi, ξj)| + |(∂βuN )(ξi, ξj)|

)
,

so that

(γN
αβ(uN ), γN

αβ(uN ))M ≤ c′
(
(∂αuN , ∂αuN )M + (∂βuN , ∂βuN )M

)
.

Using (3.3) and a similar estimate for (γN
ρσ(vN ), γN

ρσ(vN ))M leads to

e
∣∣(aαβρσ γN

αβ(uN ), γN
ρσ(vN )

√
a
)
M

∣∣ ≤ c e ‖uN‖H1(ω)3‖vN‖H1(ω)3 .

Similar arguments also yield the desired estimates for the second and third terms in
aM (UN , VN ).

Lemma 3.4. There exists a constant c independent of N and M ≥ N such that
the following continuity property holds:

(3.22) ∀UN ∈ XN ,∀VN ∈ XN , |ãM (UN ;VN )| ≤ c ‖UN‖X(ω)‖VN‖X(ω).

Proof. We derive from (3.3) that

|ãM (UN ;VN )| ≤ 3 |IM (rN · a3N )|H1(ω)|IM (sN · a3N )|H1(ω).

We recall from [4, Forms. (13.27) and (13.28)] the following property, valid for all
integers K:

(3.23) ∀wK ∈ PK(ω), |IMwK |H1(ω) ≤ c

(
1 +

K

M

)
|wK |H1(ω).

Since both rN · a3N and sN · a3N are polynomials with degree smaller than 2N , this
implies

|ãM (UN ;VN )| ≤ c |rN · a3N |H1(ω)|sN · a3N |H1(ω).
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Then we observe that

∂α(rN · a3N ) = ∂αrN · a3N + rN · ∂αa3N .

This yields, for the p such that 4(1
2 − 1

p ) < s0 and q given by 1
p + 1

q = 1
2 ,

|rN · a3N |H1(ω) ≤ |rN |H1(ω)3‖a3N‖L∞(ω)3 + ‖rN‖Lq(ω)3‖a3N‖W 1,p(ω)3 .

By combining Lemma 3.2 with the embedding of H1(ω) into Lq(ω), we obtain

|rN · a3N |H1(ω) ≤ c ‖rN‖H1(ω)3‖a3‖Hs0+1(ω)3 .

A similar estimate holds for |sN ·a3N |H1(ω), which yields the desired continuity prop-
erty.

The continuity of bM (·; ·) relies on the same arguments, so we omit the proof of
the next lemma.

Lemma 3.5. There exists a constant c independent of N and M ≥ N such that
the following continuity property holds:

(3.24) ∀VN ∈ XN ,∀χN ∈ MN , |bM (VN ;χN )| ≤ c ‖VN‖X(ω)‖χN‖H1(ω).

Finally we derive from (3.3) that, if ‖LM‖N denotes the norm of LM in the space
of linear forms on XN ,

(3.25) ‖LM‖N ≤ c
(
‖IM f‖L2(ω)3 + ‖iγ1

MM‖L2(γ1)3 + ‖iγ1

MN‖L2(γ1)3
)
.

To go further, we introduce the kernel

(3.26) VN =
{
VN = (vN , sN ) ∈ XN ; ∀χN ∈ MN , bM (VN ;χN ) = 0

}
.

It is readily checked that VN is not contained in V(ω) in the general case. So the
proof of the next ellipticity property relies on the following result, due to [9, Lem.
3.3]: For a constant c� > 0,

(3.27) ∀V ∈ X(ω), [V ]2 + ã(V ;V ) ≥ c� ‖V ‖2
X(ω),

where the seminorm [·] is defined by

[V ] =

⎛⎝ 2∑
α=1

2∑
β=1

‖γαβ(v)‖2
L2(ω) +

2∑
α=1

2∑
β=1

‖χαβ(v, s)‖2
L2(ω) +

2∑
α=1

‖δα3(v, s)‖2
L2(ω)

⎞⎠
1
2

.

Let us also consider its discrete analogue on XN :

(3.28)
[VN ]M =

((
γN
αβ(vN ), γN

αβ(vN )
)
M

+
(
χN
αβ(vN , sN ), χN

αβ(vN , sN )
)
M

+
(
δNα3(vN , sN ), δNα3(vN , sN )

)
M

) 1
2

.

From now on, denoting by �·� the integer part, we choose L and M such that, for
fixed real numbers λ and μ, 0 < λ < 1 and 0 < μ ≤ 1,

(3.29) L = �(1 − λ)N� and M = �(1 + μ)N�.
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Proposition 3.6. There exist a positive integer N∗ and a positive constant c̃∗
such that, for all N ≥ N∗, the following ellipticity property holds:

(3.30) ∀VN ∈ XN , aM (VN ;VN ) + η ãM (VN ;VN ) ≥ c̃∗ min{e3, η} ‖VN‖2
X(ω).

Proof. It is readily checked from (2.3) that, for all VN in XN ,

(3.31) aM (VN ;VN ) + η ãM (VN ;VN ) ≥ c̃∗ min{e3, η}
(
[VN ]2M + ãM (VN ;VN )

)
.

On the other hand, since XN is contained in X(ω), it follows from (3.27) that

(3.32) [VN ]2 + ã(VN ;VN ) ≥ c� ‖VN‖2
X(ω).

So it remains to compare [VN ] and [VN ]M and also ã(VN ;VN ) and ãM (VN ;VN ). Let K
denote the integer part of μN − 1 (we assume N large enough for K to be positive).

(1) Let aαK denote an approximation of aα in PK(ω)3 which still satisfies (3.15),
and let γK

αβ(vN ) be defined as in (3.8) with aαN replaced by aαK . It follows from the
exactness property (3.2) that(

γK
αβ(vN ), γK

αβ(vN )
)
M

= ‖γK
αβ(vN )‖2

L2(ω)2×2 .

Then we use the inequalities(
γN
αβ(vN ), γN

αβ(vN )
)
M

≥
(
γK
αβ(vN ), γK

αβ(vN )
)
M

+ 2
(
(γN

αβ − γK
αβ)(vN ), γK

αβ(vN )
)
M
,

and

‖γK
αβ(vN )‖2

L2(ω)2×2 ≥ ‖γαβ(vN )‖2
L2(ω)2×2 − 2

∫
Ω

(
γαβ(vN ) − γK

αβ(vN )
)
γαβ(vN ) dx.

On the other hand, the same arguments as for Lemma 3.3 yield that

∣∣((γN
αβ − γK

αβ)(vN ), γK
αβ(vN )

)
M

∣∣ ≤ c

2∑
α=1

‖aαN − aαK‖L∞(ω)3 ‖vN‖2
H1(ω)3 ,

while it is readily checked that∣∣∣∣∫
Ω

(
γαβ(vN ) − γK

αβ(vN )
)
γαβ(vN ) dx

∣∣∣∣ ≤ c

2∑
α=1

‖aα − aαK‖L∞(ω)3 ‖vN‖2
H1(ω)3 .

All of this yields(
γN
αβ(vN ), γN

αβ(vN )
)
M

≥ ‖γαβ(vN )‖2
L2(ω)2×2

−c

2∑
α=1

(‖aα − aαN‖L∞(ω)3 + ‖aα − aαK‖L∞(ω)3)‖vN‖2
H1(ω)3 .

Using the same arguments for estimating the two other terms together with Lemma
3.2 leads to

(3.33) [VN ]2M ≥ [VN ]2 − cN1−s0 (log N)
1
2 ‖VN‖2

X(ω).

(2) Similarly, let a3K denote an approximation of a3 in PK(ω)3 which still satisfies
(3.17). Since sN ·a3K now belongs to PM (ω), it is equal to IM (sN ·a3K) and, moreover,(

∂αIM (sN · a3K), ∂αIM (sN · a3K)
)
M

=

∫
ω

∂α(sN · a3K)∂α(sN · a3K) dx.
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Thus, the same arguments as for Lemma 3.4 (see (3.23)) yield that

ãM (VN ;VN ) ≥ ã(VN , VN )

− c

2∑
α=1

(
‖∂α(sN · (a3 − a3N ))‖L2(ω)3 + ‖∂α(sN · (a3 − a3K))‖L2(ω)3

)
‖sN‖H1(ω)3 .

Using once more Lemma 3.2 (with p such that 4(1
2 − 1

p ) ≤ 1) leads to

(3.34) ãM (VN ;VN ) ≥ ã(VN , VN ) − cN1−s0 (log N)
1
2 ‖sN‖2

H1(ω)3 .

Combining (3.32) to (3.34) gives

[VN ]2M + ãM (VN ;VN ) ≥
(
c� − cN1−s0 (log N)

1
2

)
‖VN‖2

X(ω).

We choose N∗ such that cN1−s0
∗ (log N∗)

1
2 ≤ c�

2 . Thus, the desired property follows
from (3.31).

Proving the inf-sup condition on bM (·, ·) is performed in two steps. Note that it
requires the choice of L made in (3.30) (we refer to [5, sect. 3] for proving an inf-sup
condition with such a choice in a completely different context).

Lemma 3.7. There exist a positive integer N	 and a positive constant c̃	 such
that, for all N ≥ N	, the following inf-sup condition holds:

(3.35) ∀χN ∈ MN , sup
V ∈XN

b(VN ;χN )

‖VN‖X(ω)
≥ c̃	 ‖χN‖H1(ω).

Proof. Let χN be any element of MN . Let now K ′ stand for the integer part of
λN − 1. We introduce an approximation a3K′ of a3 in PK′(ω)3 which satisfies (3.16)
and (3.17). It follows from the definition (3.1) of MN and the choice (3.29) of L that,
for any χN in MN , the function sN = χN a3K′ belongs to PN (ω)3. Since χN vanishes
on γ0, the function VN = (0, sN ) belongs to XN and satisfies

b(VN ;χN ) =

∫
ω

∂α(χN a3K′ · a3)∂αχN dx.

Since a3 · a3 is equal to 1, this gives

b(VN ;χN ) = |χN |2H1(ω) −
∫
ω

∂α(χN (a3 − a3K′) · a3)∂αχN dx.

Combining the Poincaré–Friedrichs inequality with the continuity of b(·; ·) yields

b(VN ;χN ) ≥ c ‖χN‖2
H1(ω) − |χN (a3 − a3K′) · a3)|H1(ω)|χN |H1(ω).

We have, for an appropriate value of p and with 1
p + 1

q = 1
2 ,

‖∂α(χN (a3 − a3K′) · a3)‖L2(ω) ≤ |χN |H1(ω)‖a3‖L∞(ω)3‖a3 − a3K′‖L∞(ω)3

+ ‖χN‖L2(ω)‖a3‖W 1,∞(ω)3‖a3 − a3K′‖L∞(ω)3

+ ‖χN‖Lq(Ω)‖a3‖L∞(ω)3‖a3 − a3K′‖W 1,p(ω)3 .

Using the fact [25] that the norm of the embedding of H1(ω) into Lq(ω) behaves like

c q
1
2 , combined with (3.16) and (3.17), and taking q equal to log N lead to

b(VN ;χN ) ≥
(
c− c′ N−s0 (log N)

1
2

)
‖χN‖2

H1(ω),
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whence, for N large enough,

b(VN ;χN ) ≥ c

2
‖χN‖2

H1(ω).

On the other hand, the usual arguments combined with (3.16) and (3.17) give
‖sN‖H1(ω)3 ≤ c ‖χN‖H1(ω), which yields the desired inf-sup condition.

Thanks to Lemma 3.7, the proof of the next proposition relies on the same argu-
ments as for Proposition 3.6.

Proposition 3.8. There exist a positive integer N		 and a positive constant c̃		
such that, for all N ≥ N		, the following inf-sup condition holds:

(3.36) ∀χN ∈ MN , sup
V ∈XN

bM (VN ;χN )

‖VN‖X(ω)
≥ c̃		 ‖χN‖H1(ω).

The well-posedness result is now a direct consequence of Propositions 3.6 and 3.8.
The stability estimate also requires (3.25).

Theorem 3.9. There exists a positive integer N0 such that, for any data (f ,M,N)
in C 0(ω)3 ×C 0(γ1)

3 ×C 0(γ1)
3 and for N ≥ N0, problem (3.11) admits a unique so-

lution (UN , ψN ) in XN × MN . Moreover this solution satisfies

(3.37) ‖UN‖X(ω) + ‖ψN‖H1(ω) ≤ c max{e−3, η−1} ‖LM‖N .

4. Error estimates. The error estimate that we now prove is derived from
Proposition 3.6 and requires the integer N∗ introduced there. Indeed we are not
interested in the evaluation of the error concerning the Lagrange multiplier ψ. We
first prove the following version of the second Strang’s lemma.

Proposition 4.1. For any integer N ≥ N∗, the following error estimate holds
between the solution (Uη, ψη) of problem (2.17) and the solution (UN , ψN ) of problem
(3.11):

(4.1)
‖Uη − UN‖X(ω) ≤ c max{e−3, η−1}(

inf
WN∈VN

(
max{e, η} ‖Uη −WN‖X(ω) + sup

VN∈XN

Ea
M (WN ;VN ) + η Ẽa

M (WN ;VN )

‖VN‖X(ω)

)
+ inf

χN∈MN

(
‖ψη − χN‖H1(ω) + sup

VN∈XN

Eb
M (VN ;χN )

‖VN‖X(ω)

)
+ sup

VN∈XN

EL
M (VN )

‖VN‖X(ω)

)
,

where the four quantities Ea
M , Ẽa

M , Eb
M , and EL

M are defined by

(4.2)
Ea

M (WN ;VN ) = (a− aM )(WN ;VN ), Ẽa
M (WN ;VN ) = (ã− ãM )(WN ;VN ),

Eb
M (VN ;χN ) = (b− bM )(VN ;χN ), EL

M (VN ) = (L − LM )(VN ).

Proof. Let VN and WN be any functions in VN . We derive from problem (3.11)
that

aM (UN−WN ;VN )+η ãM (UN−WN ;VN ) = LM (VN )−aM (WN ;VN )−η ãM (WN ;VN ).

Then, using problem (2.17) yields for any χN in MN (note that bM (VN ;χN ) is equal
to zero)

aM (UN −WN ;VN ) + η ãM (UN −WN ;VN )
= −EL

M (VN ) + a(Uη −WN ;VN ) + Ea
M (WN ;VN )

+ η ã(Uη −WN ;VN ) + η Ẽa
M (WN ;VN ) + b(VN ;ψη − χN ) + Eb

M (VN ;χN ).
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Next, we take VN equal to UN − WN (which belongs to VN ) and use the ellipticity
property (3.30). Since the norm of a(·; ·) is smaller than c e, this gives the desired
estimate for the term ‖UN −WN‖X(ω). We conclude thanks to a triangle inequality
by noting that e max{e−3, η−1} is larger than 1.

The two terms infWN∈VN
‖Uη − WN‖X(ω) and infχN∈MN

‖ψη − χN‖H1(ω) repre-
sent the approximation errors, while the four other terms are issued from numerical
integration and the replacement of the coefficients of the initial problem by discrete
ones. We begin with the first approximation error.

Lemma 4.2. For any integer N ≥ N		, there exists a constant c independent of
N such that, for all U in V(ω),

(4.3) inf
WN∈VN

‖U −WN‖X(ω) ≤ c inf
ZN∈XN

(
‖U − ZN‖X(ω) + sup

ωN∈MN

Eb
M (ZN ;ωN )

‖ωN‖H1(ω)

)
.

Proof. Let ZN be any element of XN . It follows from the inf-sup condition (3.36)
(see [16, Chap. I, Lem. 4.1]) that there exists a Z̃N in XN such that

(4.4)

∀ωN ∈ MN , bM (Z̃N ;ωN ) = bM (ZN ;ωN )

and ‖Z̃N‖X(ω) ≤ c̃−1
		 sup

ωN∈MN

bM (ZN ;ωN )

‖ωN‖H1(ω)
.

Then the function WN = ZN − Z̃N belongs to VN . Moreover, we obtain the desired
estimate by using the triangle inequality

‖U −WN‖X(ω) ≤ ‖U − ZN‖X(ω) + ‖Z̃N‖X(ω),

combined with (4.4), the identity

bM (ZN ;ωN ) = −b(U − ZN ;ωN ) − Eb
M (ZN ;ωN ),

and the continuity of b(·; ·).
Since γ0 is the union of whole edges of ω, the following estimates are standard;

see [4, sect. 7], for instance: If the solution (Uη, ψη) belongs to HS(ω)3×3 × HS(ω)
for a real number S ≥ 1,

(4.5)
inf

ZN∈XN

‖Uη − ZN‖X(ω) ≤ cN1−S ‖Uη‖HS(ω)3×3 ,

inf
χN∈MN

‖ψη − χN‖H1(ω) ≤ cN1−S ‖ψη‖HS(ω).

So it remains to investigate the four terms defined in (4.2). This involves the real
number s0 introduced in Assumption 3.1.

Lemma 4.3. There exists a constant c only depending on the norms of the aα in
Hs0(ω)3 and of a3 in Hs0+1(ω)3 such that

(4.6) ∀WN ∈ XN , sup
VN∈XN

Ea
M (WN ;VN )

‖VN‖X(ω)
≤ c eN1−s0 (log N)

1
2 ‖WN‖X(ω).

Proof. Let K ′′ now denote the integral part of μN−1
2 . It follows from the definition

of the aαβρσ and also of a that all of these coefficients and also
√
a belong to Hs0(ω).

We denote by aαK′′ , aαβρσK′′ and (
√
a)K′′ some approximations of the aα, aαβρσ, and

√
a

in PK′′(ω)3 or in PK′′(ω) which still satisfy (3.15). We then derive from the exactness
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property (3.2) and with obvious notation

(
aαβρσK′′ γK′′

αβ (wN ), γK′′

ρσ (vN ) (
√
a)K′′

)
M

=

∫
ω

aαβρσK′′ γK′′

aβ (wN )γK′′

ρσ (vN ) (
√
a)K′′ dx.

Inserting this equality in the definition of aM (·; ·) and similar ones for the other terms
of a(·; ·) and aM (·; ·) leads to the following bound:

Ea
M (WN ;VN ) ≤ c κN ‖WN‖X(ω)‖VN‖X(ω),

where the quantity κN is equal to

κN = max
{
‖ak − akK′′‖L∞(ω)3 , ‖ak − akN‖L∞(ω)3 ,

‖∂αa3 − cαK′′‖L∞(ω)3 , ‖∂αa3 − cαN‖L∞(ω)3 ,

‖aαβρσ − aαβρσK′′ ‖L∞(ω), ‖
√
a− (

√
a)K′′‖L∞(ω)

}
.

So the desired estimate is obviously derived from (3.15), (3.16), and (3.18).
Lemma 4.4. There exists a constant c only depending on the norms of a3 in

Hs0+1(ω)3 such that

(4.7) ∀WN ∈ XN , sup
VN∈XN

Ẽa
M (WN ;VN )

‖VN‖X(ω)
≤ cN−s0 (log N)

1
2 ‖WN‖X(ω).

Proof. We set WN = (wN , tN ) and VN = (vN , sN ). As in the proof of Proposition
3.6, we take K equal to the integer part of μN − 1 and consider an approximation
a3K of a3 in PK(ω)3 which still satisfies (3.16) and (3.17). Thus, IM (tN · a3K) and
IM (sN · a3K) are equal to tN · a3K and sN · a3K , respectively, whence

(
∂αIM (tN · a3K), ∂αIM (sN · a3K)

)
M

=

∫
ω

∂α(tN · a3K)∂α(sN · a3K) dx.

Adding and subtracting this equality and using the continuity of ãM (·; ·) proved in
Lemma 3.4, we derive

Ẽa
M (WN ;VN )
‖VN‖X(ω)

≤ c
(
‖WN‖X(ω)

(
‖sN · (a3N − a3K)‖H1(ω) + ‖sN · (a3 − a3K)‖H1(ω)

)
+ ‖VN‖X(ω)

(
‖tN · (a3N − a3K)‖H1(ω) + ‖tN · (a3 − a3K)‖H1(ω)

))
.

Then we use the inequality, with 1
p + 1

q = 1
2 ,

‖sN ·(a3−a3K)‖H1(ω) ≤ ‖sN‖H1(ω)3‖a3−a3K‖L∞(ω)3 +‖sN‖Lq(ω)3‖a3−a3K‖W 1,p(ω)3

and similar ones for the other terms. Combining this with (3.16) and (3.17), using
once more the fact that the norm of the embedding of H1(ω) into Lq(ω) is smaller

than c q
1
2 and taking q equal to log N , gives the desired result.

The proof of the next lemma relies on exactly the same arguments as for Propo-
sition 3.6. So we omit it.
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Lemma 4.5. There exists a constant c only depending on the norms of a3 in
Hs0+1(ω)3 such that

(4.8) ∀χN ∈ MN , sup
VN∈XN

Eb
M (VN ;χN )

‖VN‖X(ω)
≤ cN−s0 (log N)

1
2 ‖χN‖H1(ω),

and

(4.9) ∀ZN ∈ XN , sup
ωN∈MN

Eb
M (ZN ;ωN )

‖ωN‖H1(ω)
≤ cN−s0 (log N)

1
2 ‖ZN‖X(ω).

Lemma 4.6. Assume that the data (f ,M,N) belong to Hs1(ω)3 × Hs1(γ1)
3 ×

Hs1(γ1)
3 for a real number s1 > 1. There exists a constant c̃ only depending on the

norms of the aα in Hs0(ω)3 such that

(4.10) sup
VN∈XN

EL
M (VN )

‖VN‖X(ω)
≤ c

(
c̃ N1−s0 (log N)

1
2 + c(f ,M,N)N−s1

)
,

with the quantity c(f ,M,N) equal to ‖f‖Hs1 (ω)3 + ‖M‖Hs1 (γ1)3 + ‖N‖Hs1 (γ1)3 .
Proof. If K denotes the integer part of μN − 1 and (

√
a)K an approximation of√

a in PK(ω) which satisfies (3.15) (we recall that
√
a belongs to Hs0(ω)), we derive

from (3.2) the identity, for all VN = (vN , sN ) in XN ,(
f ,vN (

√
a)K

)
M

=

∫
ω

IM f · vN (
√
a )K dx,

whence∣∣∣∣∫
ω

f · vN

√
a dx − (f ,vN

√
a
)
M

∣∣∣∣
≤

(
‖
√
a− (

√
a)K‖L∞(ω)‖f‖L2(ω)3 + ‖(

√
a)K‖L∞(ω)‖f − IM f‖L2(ω)3

)
‖vN‖L2(ω)3 .

Similar but simpler arguments also yield analogous estimates for the terms involving
M and N. So estimate (4.10) is a direct consequence of (3.15) and the approximation
properties of the operators IM and iγ1

M ; see [4, Thms. 13.4 and 14.2].
To conclude, we insert (4.3) into (4.1). Next, we use (4.5) and Lemmas 4.3–4.6

to bound all of the terms on the right-hand side.
Theorem 4.7. Assume that:
(i) the solution (Uη, ψη) of problem (2.17) belongs to HS(ω)3×3 × HS(ω) for a

real number S ≥ 1, and
(ii) the data (f ,M,N) belongs to Hs1(ω)3×Hs1(γ1)

3×Hs1(γ1)
3 for a real number

s1 > 1.
Then, for any integer N ≥ N0, the following error estimate holds between this solution
(Uη, ψη) and the solution (UN , ψN ) of problem (3.11):

(4.11)
‖Uη − UN‖X(ω) ≤ c max{e−3, η−1}(

c(Uη, ψη) max{e, η}N1−S + c̃ N1−s0 (log N)
1
2 + c(f ,M,N)N−s1

)
,

where s0 is introduced in Assumption 3.1, the quantity c(Uη, ψη) is equal to
‖Uη‖HS(ω)3×3 + ‖ψη‖HS(ω), the constant c̃ only depends on the coefficients involved
in problem (2.10), and the quantity c(f ,M,N) is introduced in Lemma 4.6.

Estimate (4.11) is optimal and proves the convergence of the method without any
restriction, for a fixed value of e. So taking N large enough gives an error smaller
than any fixed tolerance.
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limites elliptiques, Collection “Mathématiques et Applications” 45, Springer, Berlin, 2004.
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662.

[14] D. Chapelle, A. Ferent, and K. J. Bathe, 3D-shell elements and their underlying mathe-
matical model, Math. Models Methods Appl. Sci., 14 (2004), pp. 105–142.

[15] P. G. Ciarlet, Mathematical Elasticity, Volume III: Theory of Shells, North-Holland, Ams-
terdam, 2000.

[16] V. Girault and P.-A. Raviart, Finite Element Methods for Navier–Stokes Equations, Theory
and Algorithms, Springer, Berlin, 1986.

[17] A. Haraux, A Sharp Norm Estimate for an Almost Critical Sobolev Imbedding, manuscript.
[18] N. Kerdid and P. M. Eiroa, Conforming finite element approximation for shells with little

regularity, Comput. Methods Appl. Mech. Engrg., 188 (2000), pp. 95–107.
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ADJOINT CONSISTENCY ANALYSIS OF DISCONTINUOUS
GALERKIN DISCRETIZATIONS∗
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Abstract. This paper is concerned with the adjoint consistency of discontinuous Galerkin (DG)
discretizations. Adjoint consistency—in addition to consistency—is the key requirement for DG
discretizations to be of optimal order in L2 as well as measured in terms of target functionals. We
provide a general framework for analyzing the adjoint consistency of DG discretizations which is
also useful for the derivation of adjoint consistent methods. This analysis will be performed for
the DG discretizations of the linear advection equation, the interior penalty DG method for elliptic
problems, and the DG discretization of the compressible Euler equations. This framework is then
used to derive an adjoint consistent DG discretization of the compressible Navier–Stokes equations.
Numerical experiments demonstrate the link of adjoint consistency to the accuracy of numerical flow
solutions and the smoothness of discrete adjoint solutions.
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1. Introduction. The past few years have seen considerable progress in the
development and analysis of discontinuous Galerkin (DG) methods. In addition to
consistency in numerical analysis the so-called adjoint consistency property of dis-
cretizations has experienced increasing interest [1, 11, 12, 24]. Adjoint consistency is
the key property of discretizations that ensures optimal order of convergence of the
error measured in L2 as well as in terms of specific target functionals J(·). A typical
situation is given by the interior penalty discontinuous Galerkin methods. While both
the symmetric version (SIPG) and the nonsymmetric version (NIPG) are of optimal
order O(hp) measured in H1, only the symmetric version is adjoint consistent which
allows employment of a duality argument resulting in an optimal O(hp+1) order of
convergence in L2. In contrast to that, the nonsymmetric interior penalty method is
suboptimal, O(hp) in L2. Similarly, adjoint consistency in conjunction with a duality
argument leads to the so-called order doubling in the error measured in target func-
tionals J(·). Whereas the adjoint consistency of the SIPG method results in O(h2p)
of the error in J(·), the nonsymmetric version (NIPG) lacks adjoint consistency and
target functionals behave like O(hp). Adjoint consistency is closely linked to the
smoothness of the discrete adjoint solutions. For adjoint consistent discretizations
the discrete adjoint problem represents a consistent discretization of the continu-
ous adjoint problem. Consequently, discrete adjoint solutions inherit the smoothness
properties of the continuous adjoint solutions. Conversely, it has been seen that ad-
joint inconsistent discretizations exhibit some nonsmoothness. In particular, in [12]
it has been shown that the discrete adjoint solutions arising from the SIPG method
are essentially continuous. In contrast to that, the adjoint solutions arising from the
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NIPG method are discontinuous between element interfaces where the jumps in the
adjoint solutions persist even as the mesh is refined. The lack of regularity of the
adjoint solution leads to the suboptimal rate of convergence of the NIPG method.

Adjoint consistency has been considered (cf. [1]) for linear elliptic problems with
homogeneous boundary conditions which results in a characterization of element and
interior face terms while ignoring the discretization of boundary terms. However, ad-
joint consistency is equally important for the discretization of boundary terms and for
the discretization of target functionals J(·). In [11] it has been shown that the interior
penalty method for Poisson’s equation with nonhomogeneous Dirichlet in combination
with a specific target functional J(·) results in an adjoint inconsistent discretization of
boundary conditions and a nonsmooth adjoint solution even for the SIPG discretiza-
tion, which is known to be adjoint consistent in the interior of the domain. Only after
an appropriate modification of the target functional have adjoint consistency, smooth-
ness of the adjoint solution, and optimal convergence rates in J(·) been recovered; see
also [23] for elliptic problems discretized by the BR2 scheme [5]. First results for the
compressible Euler equations in [23, 24] indicate that adjoint consistency is of similar
importance for nonlinear problems. Whereas adjoint inconsistent discretizations of
boundary terms [4, 15] lead to irregular adjoint solutions near a reflective boundary,
it has been shown in [23, 24, 14] that a specific discretization of boundary conditions
and target functionals is required for recovering the adjoint consistency property and
a smooth discrete adjoint solution.

We note that adjoint consistency is of importance also in continuous finite element
methods. In [18] it was shown that, for the streamline diffusion (SD) discretization
of the linear advection equation, the discrete adjoint problem is not a consistent
discretization of the continuous adjoint problem; i.e., the SD discretization is not
adjoint consistent. It is, however, asymptotically adjoint consistent.

As outlined so far, adjoint consistency is a desirable property which, however,
involves several issues. In addition to the adjoint consistency of element and interior
face terms, it involves the discretization of boundary conditions and target functionals.
The purpose of this paper is to give a general framework for analyzing the adjoint con-
sistency property of DG discretizations for linear as well as nonlinear problems. This
framework includes the derivation of the continuous adjoint problems and boundary
conditions provided the primal problems and the target functionals satisfy a com-
patibility condition. Furthermore, it includes the derivation of the discrete adjoint
problems and of primal and adjoint residuals and a discussion of under which con-
ditions the residuals vanish for the exact primal and adjoint solutions, respectively.
Additionally, a so-called consistent modification of target functionals is introduced.
The analysis is performed for various model problems, recovering properties and con-
clusions drawn in [1, 11, 24]. In addition, this framework is used to derive an adjoint
consistent DG discretization of the compressible Navier–Stokes equations. Altogether,
this publication provides a general framework of an adjoint consistency analysis which
can be applied to a wide range of (more complex) linear and nonlinear problems.

The paper is structured as follows: We begin by outlining the main ingredients of
the framework in section 2, including the definition of adjoint consistency for linear
and nonlinear problems. Then in sections 3, 4, and 5 the DG discretization of the
linear advection equation, the interior penalty DG method for Poisson’s equation,
and the DG discretization of the compressible Euler equations are analyzed. Then
in section 6 it is shown that the interior penalty DG discretization of the compress-
ible Navier–Stokes equations in [16] is not adjoint consistent. Within the framework
appropriate modifications are derived for recovering adjoint consistency. These mod-
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ifications include a specific treatment of convective and diffusive fluxes at boundaries
and a consistent modification of total force coefficients. Then in section 7 we show
some numerical results demonstrating the effect of adjoint consistency on the accuracy
of the flow solution and on the smoothness of the discrete adjoint solution.

2. General framework. We begin by defining the adjoint consistency for linear
and nonlinear problems. Let Ω be a bounded open domain in R

d with boundary Γ.

2.1. Linear problems. For f ∈ L2(Ω) and g ∈ L2(Γ) consider the following
linear problem:

Lu = f in Ω, Bu = g on Γ,(2.1)

where L denotes a linear differential operator on Ω and B denotes a linear differential
(boundary) operator on Γ. Let J be a linear target functional given by

(2.2) J(u) =

∫
Ω

jΩ u dx +

∫
Γ

jΓ Cu ds,

where jΩ ∈ L2(Ω), jΓ ∈ L2(Γ), and C is a differential (boundary) operator on Γ. We
say that the target functional (2.2) is compatible with (2.1), provided the following
compatibility condition based on Green’s formula holds (see, e.g., [2, 22] for elliptic
problems):

(2.3) (Lu, z)Ω + (Bu,C∗z)Γ = (u, L∗z)Ω + (Cu,B∗z)Γ,

where L∗, B∗, and C∗ denote the adjoint operators to L, B, and C, respectively,
and (·, ·)Ω and (·, ·)Γ denote the L2(Ω) and L2(Γ) scalar products, respectively. We
note that, for given operators L and B associated with the primal problem (2.1),
only some target functionals (2.2) with operators C are compatible, whereas others
are not. However, assuming that (2.3) holds the adjoint problem associated to (2.1),
(2.2) is given by

L∗z = jΩ in Ω, B∗z = jΓ on Γ.(2.4)

In an adjoint-based optimization framework (see, e.g., [10]) this ensures that

(2.5)
J(u) = (u, jΩ)Ω + (Cu, jΓ)Γ = (u, L∗z)Ω + (Cu,B∗z)Γ

= (Lu, z)Ω + (Bu,C∗z)Γ = (f, z)Ω + (g, C∗z)Γ.

Let Ω be subdivided into shape-regular meshes Th = {κ} consisting of elements κ,
and let Vh be a discrete function space on Th. Furthermore, let V be a broken Sobolev
space on Th appropriately chosen such that Vh ⊂ V and u, z ∈ V , where u and z are
the solutions to (2.1) and (2.4), respectively. A typical situation is V = H2(Th), with
Vh ⊂ V and u, z ∈ H2(Ω) ⊂ V ; see, e.g., [1, 6]. Finally, let B : V × V → R be a
bilinear form such that problem (2.1) is discretized as follows: Find uh ∈ Vh such that

(2.6) B(uh, v) = F(v) ∀v ∈ Vh,

where F : V → R is a linear form including the prescribed force and boundary data
functions f and g. Then the discretization (2.6) is said to be consistent if the exact
solution u ∈ V to the primal problem (2.1) satisfies:

(2.7) B(u, v) = F(v) ∀v ∈ V,



2674 RALF HARTMANN

which can then be viewed as a (broken) weak formulation of (2.1); see [6]. We note
that defining B via the discretization scheme (2.6) instead of the weak formulation
(2.7) allows us to represent also inconsistent DG discretizations; see, e.g., [1].

Similarly, the discretization (2.6) is said to be adjoint consistent if the exact
solution z ∈ V to the adjoint problem (2.4) satisfies:

(2.8) B(w, z) = J(w) ∀w ∈ V.

In the following we generalize this definition to nonlinear problems.

2.2. Nonlinear problems. We now consider the nonlinear problem

Nu = 0 in Ω, Bu = 0 on Γ,(2.9)

where N is a nonlinear differential (and Fréchet-differentiable) operator and B is a
(possibly nonlinear) boundary operator. Let J(·) be a nonlinear target functional

(2.10) J(u) =

∫
Ω

jΩ(u) dx +

∫
Γ

jΓ(Cu) ds,

with Fréchet derivative

(2.11) J ′[u](w) =

∫
Ω

j′Ω[u]w dx +

∫
Γ

j′Γ[Cu]C ′[u]w ds,

where jΩ(·) and jΓ(·) may be nonlinear with derivatives j′Ω and j′Γ, respectively, and
C is a differential boundary operator on Γ and may be nonlinear with derivative C ′.
Here ′ denotes the (total) Fréchet derivative, and the square bracket [·] denotes the
state about which linearization is performed. Again, we say that the target functional
(2.10) is compatible with (2.9) provided the following compatibility condition holds:

(2.12) (N ′[u]w, z)Ω + (B′[u]w, (C ′[u])∗z)Γ = (w, (N ′[u])∗z)Ω + (C ′[u]w, (B′[u])∗z)Γ,

where (N ′[u])∗, (B′[u])∗, and (C ′[u])∗ denote the adjoint operators to N ′[u], B′[u], and
C ′[u], respectively. This condition is analogous to (2.3), with L, B, and C replaced
by N ′[u], B′[u], and C ′[u], respectively. Assuming that (2.12) holds, the continuous
adjoint problem associated to (2.9) and (2.11) is given by

(N ′[u])∗z = j′Ω[u] in Ω, (B′[u])∗z = j′Γ[Cu] on Γ.(2.13)

We note that, in an optimization framework [10], this ensures, analogous to (2.5),
that

J ′[u](w) = (w, j′Ω[u])Ω + (C ′[u]w, j′Γ[Cu])Γ = (w, (N ′[u])∗z)Ω + (C ′[u]w, (B′[u])∗z)Γ

= (N ′[u]w, z)Ω + (B′[u]w, (C ′[u])∗z)Γ.(2.14)

Let N : V ×V → R be a semilinear form, nonlinear in its first and linear in its second
argument, such that the nonlinear problem (2.9) is discretized as follows: Find uh ∈ Vh

such that

(2.15) N (uh, v) = 0 ∀v ∈ Vh.

Then the discretization (2.15) is said to be consistent if the exact solution u ∈ V to
the primal problem (2.9) satisfies the following equation:

(2.16) N (u, v) = 0 ∀v ∈ V.
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Furthermore, the discretization (2.15) is said to be adjoint consistent if the exact
solutions u, z ∈ V to the primal and adjoint problems (2.9) and (2.13), respectively,
satisfy the following equation:

(2.17) N ′[u](w, z) = J ′[u](w) ∀w ∈ V,

where N ′[u] denotes the Fréchet derivatives of N (u, v) with respect to u.
In other words, a discretization is adjoint consistent if the discrete adjoint problem

is a consistent discretization of the continuous adjoint problem. Finally, we note
that, in the case of a linear problem and target functional, the definition of adjoint
consistency in (2.17) reduces to the definition of linear adjoint consistency given in
section 2.1.

2.3. The adjoint consistency analysis. Based on the definition of adjoint
consistency in the previous two sections, we outline a framework of analyzing the
adjoint consistency of discontinuous Galerkin discretizations. This framework can
also be used to derive adjoint consistent DG discretizations.

2.3.1. Derivation of the continuous adjoint problem. Let the primal prob-
lem be given by (2.1) or by (2.9) in the nonlinear case. Furthermore, assume that J(·)
is a linear (2.2) or linearized (2.11) compatible target functional. Then we derive the
continuous adjoint problem (2.4) or (2.13) including adjoint boundary conditions.

We note that the derivation of the adjoint operator (N ′[u])∗ for nonlinear systems
is a considerably more complicated task than deriving L∗ for scalar linear problems.
Still more involved is the derivation of the adjoint boundary operators (B′[u])∗. In
the framework of optimal design, [10] gives a general approach of deriving (B′[u])∗

and (C ′[u])∗ assumed to be connected to B, C, N , and (N ′[u])∗ through (2.12). This
approach is based on a matrix representation of boundary operators which for systems
of equations leads to lengthy and error prone derivations. In contrast to optimization
where both (B′[u])∗ and C∗ are required, in the following analysis we require only the
adjoint operator (B′[u])∗. Due to this we can circumvent the approach described in
[10] and use a simpler way of deriving the adjoint boundary operators (B′[u])∗.

2.3.2. Consistency analysis of the discrete primal problem. We rewrite
the discontinuous Galerkin discretization (2.15) of problem (2.9) in the following
element-based primal residual form: Find uh ∈ Vh such that

(2.18)
∑
κ∈Th

∫
κ

R(uh)v dx +
∑
κ∈Th

∫
∂κ\Γ

r(uh)v ds +

∫
Γ

rΓ(uh)v ds = 0 ∀v ∈ Vh,

where R(uh), r(uh), and rΓ(uh) denote the element, interior face, and boundary
residuals, respectively. According to (2.16), the discretization (2.15) is consistent if
the exact solution u to (2.9) satisfies

(2.19)
∑
κ∈Th

∫
κ

R(u)v dx +
∑
κ∈Th

∫
∂κ\Γ

r(u)v ds +

∫
Γ

rΓ(u)v ds = 0 ∀v ∈ V,

which holds, provided u satisfies

R(u) = 0 in κ, κ ∈ Th, r(u) = 0 on ∂κ \ Γ, κ ∈ Th, rΓ(u) = 0 on Γ.(2.20)

2.3.3. Derivation of the discrete adjoint problem. Given the discretization
(2.15), the target functional (2.10), and its linearization (2.11), we derive the discrete
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adjoint problem: Find zh ∈ Vh such that

(2.21) N ′[uh](w, zh) = J ′[uh](w) ∀w ∈ Vh.

N ′[uh] is called the Jacobian of the numerical scheme and is required also for implicit
and adjoint methods, e.g., Newton iteration, a posteriori error estimation, adjoint-
based adaptation (see [13]), and for optimization.

2.3.4. Adjoint consistency of element, interior face, and boundary terms.
We rewrite the discrete adjoint problem (2.21) in element-based adjoint residual form:
Find zh ∈ Vh such that

(2.22)
∑
κ∈Th

∫
κ

wR∗[uh](zh) dx +
∑
κ∈Th

∫
∂κ\Γ

w r∗[uh](zh) ds +

∫
Γ

w r∗Γ[uh](zh) ds = 0

for all w ∈ Vh, where R∗[uh](zh), r∗[uh](zh), and r∗Γ[uh](zh) denote the element,
interior face, and boundary adjoint residuals, respectively. According to (2.17), the
discretization (2.15) is adjoint consistent if the exact solutions u and z satisfy

∑
κ∈Th

∫
κ

wR∗[u](z) dx +
∑
κ∈Th

∫
∂κ\Γ

w r∗[u](z) ds +

∫
Γ

w r∗Γ[u](z) ds = 0 ∀w ∈ V,

(2.23)

which holds, provided u and z satisfy

R∗[u](z) = 0 in κ, r∗[u](z) = 0 on ∂κ \ Γ, κ ∈ Th, r∗Γ[u](z) = 0 on Γ.(2.24)

We note that the adjoint problem and consequently the adjoint consistency of a dis-
cretization depend on the specific target functional J(·) under consideration. Given
a target functional of the form (2.10), we see that R∗[u](z) depends on jΩ(·) and
r∗Γ[u](z) depends on jΓ(·). For obtaining an adjoint consistent discretization it is,
in some cases (see following sections) necessary to modify the target functional as
follows:

(2.25) J̃(uh) = J(i(uh)) +

∫
Γ

rJ(uh) ds,

where i(·) and rJ(·) are functions to be specified. A modification of a target functional
is called consistent if J̃(u) = J(u) holds for the exact solution u. Thereby, the modi-
fication in (2.25) is consistent if the exact solution u satisfies i(u) = u and rJ(u) = 0.
Although the true value of the target functional is unchanged, J̃(u) = J(u), the com-
puted value J(uh) of the target functional is modified, and, more importantly, J̃ ′[uh]
differs from J ′[uh]. This modification can be used to recover an adjoint consistent
discretization. We note that (2.25) is not a unique choice of a consistent modifica-
tion of J(·); other examples are J̃(uh) = J(uh) +

∫
Ω
RJ(uh) dx, with RJ(u) = 0, or

J̃(uh) = m(J(uh), J(i(uh))), with i(u) = u and m(j, j) = j. However, the consistent
modification as given in (2.25) will be sufficient for the purposes of this work.

3. The linear advection equation. We consider the linear advection equation

∇ · (bu) + cu = f in Ω, u = g on Γ−,(3.1)
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where f ∈ L2(Ω) and c ∈ L∞(Ω) are real-valued and b = {βi}di=1 is a vector function
whose entries βi are Lipschitz continuous real-valued functions on Ω. By Γ− = {x ∈
Γ,b · n < 0} we denote the inflow part of the boundary Γ = ∂Ω. Furthermore, we
adopt the following hypothesis: There exists a c0 ∈ L∞(Ω) and a number γ0 > 0 such
that c(x) + 1

2∇ · b(x) = c20(x) ≥ γ0 > 0. To demonstrate the similarities with the
compressible Euler equations in section 5, we consider the linear advection equation
in conservative form which is equivalent to the nonconservative form b · ∇u+ c̃u = f
(see, e.g., [19]), with c̃− 1

2∇ · b = c20 and c̃ = c + ∇ · b.
In order to derive the continuous adjoint problem, we multiply the left-hand side

of (3.1) by z and integrate by parts over the domain Ω. Thereby, we obtain

(3.2) (∇ · (bu) + cu, z)Ω + (u,−b · nz)Γ−
= (u,−b · ∇z + cz)Ω + (u,b · nz)Γ+

.

From (2.3) we see that, for Lu = ∇ · (bu) + cu in Ω, and Bu = u and Cu = 0 on
Γ−, and Bu = 0 and Cu = u on Γ+, we have L∗z = −b · ∇z + cz in Ω, B∗z = 0 and
C∗z = −b ·nz on Γ−, and B∗z = b ·nz and C∗z = 0 on Γ+. In particular, the target
functional J(u) =

∫
Ω
jΩ u dx +

∫
Γ+

jΓ u ds is compatible, and the adjoint problem is

given by

−b · ∇z + cz = jΩ in Ω, b · n z = jΓ on Γ+.(3.3)

Let Ω be subdivided into shape-regular meshes Th = {κ} consisting of elements
κ, and let V p

h be the discrete function space consisting of discontinuous piecewise
polynomial functions of degree p ≥ 0. Suppose that v|κ ∈ H1(κ) for each κ ∈ Th. Let
κ+ and κ− be two adjacent elements of Th and x be an arbitrary point on the interior
edge e = ∂κ+ ∩ ∂κ− ⊂ ΓI , where ΓI denotes the union of all interior edges of Th.
Moreover, let v and φ be a scalar and a d-vector-valued function, respectively, that
are smooth inside each element κ±. By u± := u|∂κ± and φ± := φ|∂κ± we denote the
traces of u and φ, respectively, on e taken from within the interior of κ±. Then we
define the averages at x ∈ e by {v} = (v+ +v−)/2 and {φ} = (φ+ +φ−)/2. Similarly,
the jump at x ∈ e is given by [[v]] = v+n+ + v−n− and by [[φ]] = φ+ · n+ + φ− · n−.
On a boundary edge e ⊂ Γ the average and jump operators are defined by {v} = v+,
{φ} = φ+, [[v]] = v+n+, and [[φ]] = φ+ · n+.

The DG discretization of (3.1) (e.g., [12, 7]) is given by: Find uh ∈ V p
h such that

(3.4)

B(uh, v) ≡ −
∫

Ω

uhb · ∇hv dx +

∫
Ω

cuhv dx +
∑
κ∈Th

∫
∂κ−\Γ

b · nu−
h v

+ ds

+
∑
κ∈Th

∫
∂κ+

b · nu+
h v

+ ds =

∫
Ω

fv dx −
∫

Γ−

b · n gv+ ds

for all v ∈ V p
h . Then integration by parts on each κ ∈ Th yields: Find uh ∈ V p

h :∫
Ω

(∇h · (buh) + cuh) v dx −
∑
κ∈Th

∫
∂κ−

b · [[uh]]v+ ds =

∫
Ω

fv dx −
∫

Γ−

b · n gv+ ds

for all v ∈ V p
h . Hence we have the primal residual form (2.18) with

R(uh) = f −∇h · (buh) − cuh in κ, κ ∈ Th,
r(uh) = b · [[uh]] on ∂κ \ Γ, κ ∈ Th,

rΓ(uh) = b · n (uh − g) on Γ−,
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and rΓ(uh) ≡ 0 on Γ+. As (2.19) holds for the exact solution u to (3.1), we conclude
that (3.4) is a consistent discretization of (3.1). Substituting∑

κ∈Th

∫
∂κ−\Γ

b · nu−
h v

+ ds = −
∑
κ∈Th

∫
∂κ+\Γ

b · nu+
h v

− ds

in (3.4), we find that the discrete adjoint problem to the discretization (3.4) is given
by: Find zh ∈ Vh such that

B(w, zh) ≡
∫

Ω

w (−b · ∇hzh + czh) dx +
∑
κ

∫
∂κ+\Γ

w+ b · [[zh]] ds = J(w)

for all w ∈ Vh. Hence we have the adjoint residual form (2.22) with

R∗(zh) = jΩ + b · ∇hzh − czh in κ, κ ∈ Th,
r∗(zh) = −b · [[zh]] on ∂κ \ Γ, κ ∈ Th,(3.5)

r∗Γ(zh) = jΓ − b · n zh on Γ+,(3.6)

and r∗Γ(zh) ≡ 0 on Γ−. As the adjoint residuals vanish for the exact solution z to
(3.3), we conclude that (3.4) is an adjoint consistent discretization of (3.1).

4. Poisson’s equation. We now consider the elliptic model problem

−Δu = f in Ω, u = gD on ΓD, n · ∇u = gN on ΓN ,(4.1)

where f ∈ L2(Ω), gD ∈ L2(ΓD), and gN ∈ L2(ΓN ) are given functions. We assume
that ΓD and ΓN are disjoint subsets with union Γ. We also assume that ΓD is
nonempty.

In order to derive the continuous adjoint problem we multiply the left-hand side
of (4.1) by z and integrate twice by parts over the domain Ω. Thereby, we obtain

(−Δu, z)Ω+(u,−n·∇z)ΓD
+(n·∇u, z)ΓN

= (u,−Δz)Ω+(n·∇u,−z)ΓD
+(u,n·∇z)ΓN

.

From (2.3) we see that, for Lu = −Δu in Ω, Bu = u and Cu = n · ∇u on ΓD,
and Bu = n · ∇u and Cu = u on ΓN , we have L∗z = −Δz in Ω, B∗z = −z and
C∗z = −n · ∇z on ΓD, and B∗z = n · ∇z and C∗z = z on ΓN . Then (2.2) reduces to

J(u) =

∫
Ω

jΩ u dx +

∫
ΓD

jD n · ∇u ds +

∫
ΓN

jN u ds.(4.2)

This target functional is compatible, and the continuous adjoint problem is given by

−Δz = jΩ in Ω, z = jD on ΓD, n · ∇z = jN on ΓN .(4.3)

The method by Baumann–Oden and the symmetric and nonsymmetric interior
penalty methods can be expressed as follows (see, e.g., [25]): Find uh ∈ V p

h such that

B(uh, v) ≡
∫

Ω

∇huh · ∇hv dx

+

∫
ΓI∪ΓD

(θ[[uh]] · {∇hv} − {∇huh} · [[v]]) ds +

∫
ΓI∪ΓD

δ[[uh]] · [[v]] ds

=

∫
Ω

fv dx +

∫
ΓD

θgDn · ∇v ds +

∫
ΓD

δgDv ds +

∫
ΓN

gNv ds(4.4)
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for all v ∈ V p
h , where the constants θ and δ are given by θ = 1, δ = 0 for Baumann–

Oden, by θ = 1, δ > 0 for NIPG, and by θ = −1, δ > δ0 > 0 for SIPG.
The scheme in (4.4) is given in face-based form including integrals over all interior

faces ΓI . Rewriting the interior face terms in element-based form, we obtain

B(uh, v) =

∫
Ω

∇huh · ∇hv dx +
∑
κ

∫
∂κ\Γ

1

2
θ[[uh]] · ∇hv ds

−
∑
κ

∫
∂κ\ΓN

{∇huh} · n v ds +
∑
κ

∫
∂κ

δ[[uh]] · nv ds +

∫
ΓD

θuhn · ∇hv ds.(4.5)

Using integration by parts and the relation

(4.6) ∇hu
+ · n+v+ = {∇hu} · n+v+ +

1

2
[[∇hu]]v+,

we can rewrite (4.4) as follows: Find uh ∈ V p
h such that

B(uh, v) ≡ −
∫

Ω

Δhuhv dx +

∫
ΓN

∇huh · n v ds +
∑
κ

∫
∂κ\Γ

1

2
θ[[uh]] · ∇hv ds

+
∑
κ

∫
∂κ\Γ

(
1

2
[[∇huh]] + δ[[uh]] · n

)
v ds +

∫
ΓD

θuhn · ∇hv ds +

∫
ΓD

δuhv ds

=

∫
Ω

fv dx +

∫
ΓD

θgDn · ∇v ds +

∫
ΓD

δgDv ds +

∫
ΓN

gNv ds(4.7)

for all v ∈ V p
h . Hence we have the element-based primal residual form

(4.8)

∫
Ω

R(uh)v dx +
∑
κ∈Th

∫
∂κ\Γ

r(uh)v + ρ(uh) · ∇v ds

+

∫
Γ

rΓ(uh)v + ρΓ(uh) · ∇v ds = 0 ∀v ∈ Vh,

where the residuals are given by R(uh) = f + Δhuh in Ω, and

r(uh) = − 1
2 [[∇huh]] − δ[[uh]] · n, ρ(u) = − 1

2θ[[uh]] on ∂κ \ Γ, κ ∈ Th,
rΓ(uh) = δ(gD − uh), ρΓ(uh) = θ(gD − uh)n on ΓD,(4.9)

rΓ(uh) = gN − n · ∇huh, ρΓ(uh) = 0 on ΓN .

We note that (4.8) is a generalization to (2.18) to include ∇v terms. Furthermore, we
note that the discretization is consistent as the residuals in (4.9) vanish for the exact
solution u to (4.1). Given the target functional defined in (4.2), the discrete adjoint
problem (2.8) to the discretization (4.4) is given by: Find zh ∈ Vh such that∫

Ω

∇hw · ∇hzh dx +

∫
ΓI∪ΓD

(θ[[w]] · {∇hzh} − {∇hw} · [[zh]] + δ[[w]] · [[zh]]) ds = J(w)

for all w ∈ Vh. Then in element-based form we have: Find zh ∈ Vh such that∫
Ω

∇hw · ∇hzh dx +
∑
κ

∫
∂κ\ΓN

w (θn · {∇hzh} + δ[[zh]] · n) ds

− 1

2

∑
κ

∫
∂κ\Γ

∇hw · [[zh]] ds−
∫

ΓD

∇hw · nzh ds = J(w) ∀w ∈ Vh.
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Using integration by parts and (4.6) with uh and v replaced by zh and w yields

−
∫

Ω

wΔhzh dx +
∑
κ

∫
∂κ\Γ

w

(
1

2
[[∇hzh]] + (1 + θ)n · {∇hzh} + δ[[zh]] · n

)
ds

−
∑
κ

∫
∂κ\Γ

1

2
∇hw · [[zh]] ds +

∫
ΓN

wn · ∇hzh ds

+

∫
ΓD

w ((1 + θ)n · ∇hzh + δzh) ds−
∫

ΓD

∇hw · nzh ds

=

∫
Ω

w jΩ dx +

∫
ΓD

∇w · n jD ds +

∫
ΓN

w jN ds,

and we obtain the element-based adjoint residual form: Find zh ∈ Vh such that

(4.10)

∫
Ω

wR∗(zh) dx +
∑
κ∈Th

∫
∂κ\Γ

w r∗(zh) + ∇w · ρ∗(zh) ds

+

∫
Γ

w r∗Γ(zh) + ∇w · ρ∗
Γ(zh) ds = 0 ∀w ∈ Vh,

where the adjoint residuals are given by R∗(zh) = jΩ + Δhzh in Ω, by

r∗(zh) = − 1
2 [[∇hzh]] − (1 + θ)n · {∇hz} − δ[[zh]] · n, ρ∗(zh) = 1

2 [[zh]],(4.11)

on interior faces ∂κ \ Γ, κ ∈ Th, and by

r∗Γ(zh) = −(1 + θ)n · ∇hzh − δzh, ρ∗
Γ(zh) = (jD + zh)n on ΓD,

r∗Γ(zh) = jN − n · ∇hzh, ρ∗
Γ(zh) = 0 on ΓN .(4.12)

From (4.11) we see that the exact solution z to the adjoint problem (4.3) satisfies
r∗(z) = 0, provided θ = −1. Furthermore, we have R∗(z) = 0. This shows the
well-known result (see, e.g., [1]) that the method by Baumann–Oden and NIPG are
not adjoint consistent whereas the interior face terms of SIPG are adjoint consistent.
In fact, in [12] it has been demonstrated that the lack of adjoint consistency of the
NIPG method leads to nonsmooth adjoint solutions and a suboptimal convergence of
the method for the primal problem. In contrast to that, the adjoint consistent SIPG
method shows an optimal order of convergence.

As r∗Γ(z) = 0 and ρ∗
Γ(z) = 0 on ΓN the SIPG method is also adjoint consistent

on ΓN . However, on ΓD the requirements r∗Γ(z) = 0 and ρ∗
Γ(z) = 0 reduce to the

conditions z = 0 (note that θ = −1) and z = −jD, respectively, which are compatible
for jD = 0 but conflict for jD 
= 0. This incompatibility can be resolved by modifying
the target functional according to (2.25), with i(uh) = uh and

(4.13) rJ(uh) = −δ(uh − gD)jD,

which in the following will be denoted by the IP modification of the target functional.
This modification is consistent, as i(u) = u and rJ(u) = 0 hold for the exact solution
u to (4.1). As the modified functional is not linear in uh (it is affine), the discrete
adjoint problem includes its linearization as follows: Find zh ∈ Vh such that

(4.14) B(w, zh) = J̃ ′[u](w) ∀w ∈ Vh,
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where

(4.15) J̃ ′[u](w) = J ′[u](w) +

∫
ΓD

r′J [u](w) ds = J(w) −
∫

ΓD

w δjD ds.

Then the adjoint residuals on ΓD are given by

r∗Γ(zh) = −δjD − (1 + θ)n · ∇hzh − δzh, ρ∗
Γ(zh) = (jD + zh)n on ΓD,(4.16)

which vanish for z = −jD. Hence the SIPG method is adjoint consistent also on ΓD.
In contrast to the presentation in [11, 12], where the 1

2 [[∇hz]] term in the inter-
element conditions analogous to (4.11) has been omitted, we see that for θ = −1
there is a clear correspondence of the adjoint residuals to the primal residuals (4.9).
In fact, the discrete adjoint equations correspond to the discrete primal equations
with u, f , gD, and gN replaced by z, jΩ, −jD, and jN , respectively; i.e., the discrete
adjoint equation to the SIPG discretization represents an SIPG discretization of the
continuous adjoint equation.

Furthermore, we note that [11] considers the target functional J(u) =
∫
Γ0

n ·
∇ujD ds, Γ0 ⊂ ΓD, which is a special case of (4.2) with jΩ ≡ 0 in Ω, jN ≡ 0 on
ΓN , and jD ≡ 0 on ΓD \ Γ0. Numerical experiments in [11] have shown that the
discrete adjoint solution associated with this target functional is nonsmooth near Γ0.
Furthermore, it has been demonstrated that, either by setting δ = 0 on Γ0 or by
modifying the target functional appropriately, this effect vanishes, and the adjoint
solution becomes smooth. We note that the modification of the target functional
proposed in [11] is connected to (4.15). However, here we derive (4.15) in the more
general framework of consistent modifications of target functionals; see (2.25).

5. The compressible Euler equations. In this section we consider the two-
dimensional stationary compressible Euler equations

(5.1) ∇ · Fc(u) = 0 in Ω,

subject to various boundary conditions, e.g., slip-wall boundary conditions at solid
wall boundaries ΓW ⊂ Γ, with vanishing normal velocity n ·v = n1v1 +n2v2 = 0; i.e.,

(5.2) Bu = n1u2 + n2u3 = 0 on ΓW

is imposed, where the vector of conservative variables u = (u1, u2, u3, u4)
� and the

convective fluxes Fc(u) = (f c1 (u), f c2 (u)) are defined by

(5.3) u =

⎡⎢⎢⎣
ρ
ρv1

ρv2

ρE

⎤⎥⎥⎦ , f c1 (u) =

⎡⎢⎢⎣
ρv1

ρv2
1 + p

ρv1v2

ρHv1

⎤⎥⎥⎦ , and f c2 (u) =

⎡⎢⎢⎣
ρv2

ρv1v2

ρv2
2 + p

ρHv2

⎤⎥⎥⎦ ,

and ρ, v = (v1, v2)
�, p, and E denote the density, velocity vector, pressure, and

specific total energy, respectively. Additionally, H is the total enthalpy given by
H = E + p

ρ = e + 1
2v

2 + p
ρ , where e is the specific static internal energy, and the

pressure is determined by the equation of state of an ideal gas p = (γ − 1)ρe, where
γ = cp/cv is the ratio of specific heat capacities at constant pressure cp and constant
volume cv; for dry air γ = 1.4. Let us consider the target functional

(5.4) J(u) =

∫
Γ

j(Cu) ds =

∫
ΓW

p(u)n ·ψΓW
ds,
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with Cu = p(u), j(p) = pn · ψΓW
on ΓW and j(p) ≡ 0 elsewhere, and ψΓW

∈
[L2(ΓW )]2. As we will see later, this target functional is compatible with (5.1) and
(5.2). The most important target quantities of type (5.4) in inviscid compressible flows
are the pressure-induced drag and lift coefficients cdp and clp, where ψΓW

= 1
C∞

ψ.

Here ψ is given by ψd = (cos(α), sin(α))� and ψl = (− sin(α), cos(α))� for the drag

and lift coefficients, respectively. Furthermore, C∞ = 1
2γp∞M2

∞ l̄ = 1
2γ

|v∞|2
c2∞

p∞ l̄ =
1
2ρ∞|v∞|2 l̄, where M∞ denotes the Mach number at free-stream conditions, c∞ is the
speed of sound defined by c2∞ = γp∞/ρ∞, and l̄ denotes a reference length.

In order to derive the continuous adjoint problem, we multiply the left-hand side
of (5.1) by z, integrate by parts, and linearize about u to obtain

(5.5) (∇ · (Fc
u[u](w)) , z)Ω = − (Fc

u[u](w),∇z)Ω + (n · Fc
u[u](w), z)Γ ,

where Fc
u[u] := (Fc)

′
[u] denotes the Fréchet derivative of Fc with respect to u. Here

we already use the subscript u notation which we require in section 6 to distinguish
from subscript ∇u denoting the derivative with respect to ∇u. Thereby, the variational
formulation of the continuous adjoint problem is given by: Find z such that

(5.6) −
(
w, (Fc

u[u])
� ∇z

)
Ω

+
(
w, (n · Fc

u[u])
�

z
)

Γ
= J ′[u](w) ∀w ∈ V,

and the continuous adjoint problem is given by

− (Fc
u[u])

� ∇z = 0 in Ω, (n · Fc
u[u])

�
z = j′[u] on Γ.(5.7)

Using Fc(u) · n = p(0, n1, n2, 0)� on ΓW and the definition of j in (5.4), we obtain

p′[u](0, n1, n2, 0) · z =
1

C∞
p′[u]n ·ψ on ΓW ,

which reduces to the boundary condition of the adjoint compressible Euler equations

(5.8) (B′[u])∗z = n1z2 + n2z3 =
1

C∞
n ·ψ on ΓW .

Comparing (5.5) with (2.12) we see that the target functional (5.4) is compatible. Fur-
thermore, we note that the adjoint boundary condition (5.8) has first been derived in
[20]. In the framework of matrix representations of adjoint boundary operators related
to (2.3), they have been derived in [10]; see also [9] for a more detailed derivation.

Let Vp
h be a discrete function space consisting of discontinuous piecewise vector-

valued polynomial functions of degree p ≥ 0. Then the discontinuous Galerkin dis-
cretization in element-based form of (5.1) is given by: Find uh ∈ Vp

h such that

(5.9)

N (uh,v) ≡ −
∫

Ω

Fc(uh) : ∇hv dx +
∑
κ∈Th

∫
∂κ\Γ

H(u+
h ,u

−
h ,n

+)v+ ds

+

∫
Γ

H̃(u+
h ,uΓ(u+

h ),n+)v+ ds = 0 ∀v ∈ Vp
h,

where H and H̃ may be any Lipschitz continuous, consistent, and conservative nu-
merical flux functions approximating the normal flux n · Fc(uh). On interior faces,
H takes into account the possible discontinuities of uh at element interfaces. On the
boundary Γ, H̃ may depend on the interior trace u+

h and a consistent boundary func-

tion uΓ(u+
h ). We note that H̃ may be different from H. In fact, we will see below



ADJOINT CONSISTENCY ANALYSIS OF DG DISCRETIZATIONS 2683

that, depending on the specific choice of H̃, the discontinuous Galerkin discretization
(5.9) may be adjoint consistent or not.

Using integration by parts we obtain the residual form: Find uh ∈ Vp
h such that

(5.10)

∫
Ω

R(uh) ·v dx +
∑
κ∈Th

∫
∂κ\Γ

r(uh) ·v+ ds+

∫
Γ

rΓ(uh) ·v+ ds = 0 ∀v ∈ Vp
h,

where the primal residuals are given by

R(uh) = −∇ · Fc(uh) in κ, κ ∈ Th,
r(uh) = n · Fc(u+

h ) −H(u+
h ,u

−
h ,n

+) on ∂κ \ Γ, κ ∈ Th,(5.11)

rΓ(uh) = n · Fc(u+
h ) − H̃(u+

h ,uΓ(u+
h ),n+) on Γ.

Given the consistency of the numerical flux H(w,w,n) = n · Fc(w) and the consis-
tency of the boundary function, i.e., uΓ(u) = u for the exact solution u to (5.1), we
find that u satisfies the following equations:

R(u) = 0 in κ, κ ∈ Th, r(u) = 0 on ∂κ \ Γ, κ ∈ Th, rΓ(u) = 0 on Γ.(5.12)

We conclude that (5.9) is a consistent discretization of (5.1).
For the target functional J(·) defined in (5.4) with Fréchet derivative J ′[u](·), the

discrete adjoint problem is given by: Find zh ∈ Vp
h such that

(5.13) N ′[uh](w, zh) = J ′[uh](w) ∀w ∈ Vp
h,

where

(5.14)

N ′[uh](w, zh) ≡ −
∫

Ω

(Fc
u[uh]w) : ∇hzh dx

+
∑
κ∈Th

∫
∂κ\Γ

(
H′

u+(u+
h ,u

−
h ,n

+)w+ + H′
u−(u+

h ,u
−
h ,n

+)w−) z+
h ds

+

∫
Γ

(
H̃′

u+

(
u+
h ,uΓ(u+

h ),n+
)

+ H̃′
u−

(
u+
h ,uΓ(u+

h ),n+
)
u′

Γ[u+
h ]
)
w+z+

h ds.

Here v → H′
u+(v+,v−,n) and v → H′

u−(v+,v−,n) denote the derivatives of the flux
function H(·, ·, ·) with respect to its first and second arguments, respectively. As the
numerical flux is conservative H(v,w,n) = −H(w,v,−n), we obtain H′

u−(v,w,n) =
∂wH(v,w,n) = −∂wH(w,v,−n) = −H′

u+(w,v,−n), and

(5.15)

∫
ΓI

H′
u−(u+

h ,u
−
h ,n

+)w−z+ ds = −
∫

ΓI

H′
u+(u−

h ,u
+
h ,n

−)w−z+ ds

= −
∫

ΓI

H′
u+(u+

h ,u
−
h ,n

+)w+z− ds,

where we exchanged notations + and − on ΓI . Then the discrete adjoint problem
(5.13) with (5.14) is given in adjoint residual form as follows: Find zh ∈ Vp

h such that

(5.16)

∫
Ω

w·R∗[uh](zh) dx+
∑
κ∈Th

∫
∂κ\Γ

w+ ·r∗[uh](zh) ds+

∫
Γ

w+ ·r∗Γ[uh](zh) ds = 0
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for all w ∈ Vp
h, where the adjoint residuals are given by

R∗[uh](zh) =(Fc
u[uh])�∇zh in κ, κ ∈ Th,

r∗[uh](zh) = −
(
H′

u+(u+
h ,u

−
h ,n

+)
)�

[[zh]] · n on ∂κ \ Γ, κ ∈ Th,

r∗Γ[uh](zh) =j′[uh] −
(
H̃′

u+ + H̃′
u−u′

Γ[uh]
)�

z+
h on Γ,(5.17)

where H̃′
u+ := H̃′

u+(u+
h ,uΓ(u+

h ),n+) and H̃′
u− := H̃′

u−(u+
h ,uΓ(u+

h ),n+).
Comparing the discrete adjoint boundary condition

(5.18)
(
H̃′

u+ + H̃′
u−u′

Γ[uh]
)�

z+
h = j′[uh] on Γ

and the continuous adjoint boundary condition in (5.7), we notice that not all choices
of H̃ give rise to an adjoint consistent discretization. In fact, we require H̃ to have
the following properties: In order to incorporate boundary conditions in the primal
discretization (5.9), H̃ must depend on uΓ(u+

h ); hence, H̃′
u− 
= 0. Furthermore, we

require H̃′
u+ = 0 as otherwise the left-hand side in (5.17) involves two summands

which is in contrast to the continuous adjoint boundary condition in (5.7). Finally,
we recall that H̃ is consistent H̃(v,v,n) = n · Fc(v) and conclude that H̃ is given
by H̃(u+

h ,uΓ(u+
h ),n) = n · Fc(uΓ(u+

h )). Employing a modified target functional

J̃(uh) = J(i(uh)), i.e., (2.25) with rj(uh) ≡ 0, (5.18) yields

(5.19)
(
n ·

(
Fc

u[uΓ(u+
h )]

)
u′

Γ[u+
h ]
)�

z = j′[i(u+
h )]i′[u+

h ].

We find the modification i(uh) = uΓ(uh), which is consistent as i(u) = uΓ(u) = u
holds for the exact solution u. Thereby (5.19) reduces to

(5.20)
(
n · Fc

u[uΓ(u+
h )]

)�
z = j′[uΓ(u+

h )],

which represents a discretization of the continuous adjoint boundary condition in
(5.7). In order to obtain a discretization of the adjoint boundary condition at solid
wall boundaries (5.8), we require BuΓ(u+

h ) = 0 on ΓW . This condition is satisfied by

(5.21) uΓ(u) =

⎛⎜⎜⎝
1 0 0 0
0 1 − n2

1 −n1n2 0
0 −n1n2 1 − n2

2 0
0 0 0 1

⎞⎟⎟⎠u on ΓW ,

which originates from u by subtracting the normal velocity component of u; i.e.,
v = (v1, v2) is replaced by vΓ = v − (v · n)n which ensures that the normal velocity
component vanishes: vΓ · n = 0.

In summary, let uΓ be given by (5.21) and H̃ and J̃ be defined by

H̃(u+
h ,uΓ(u+

h ),n) = n · Fc
Γ(u+

h ), J̃(uh) = JΓ(uh),(5.22)

respectively, where Fc
Γ(u+

h ) := Fc(uΓ(u+
h )), JΓ(uh) := J(uΓ(uh)), and jΓ(uh) :=

j(uΓ(uh)); then the adjoint residuals (5.17) are given by

R∗[uh](zh) =(Fc
u[uh])�∇zh in κ, κ ∈ Th,

r∗[uh](zh) = −
(
H′

u+(u+
h ,u

−
h ,n

+)
)�

[[zh]] · n on ∂κ \ Γ, κ ∈ Th,

r∗Γ[uh](zh) =j′Γ[u+
h ] −

(
n · Fc

Γ,u[u+
h ]
)�

z+
h on Γ.(5.23)
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In particular, the discretization (5.9) together with (5.22) is adjoint consistent as the
exact solutions u and z to (5.1) and (5.7), respectively, satisfy

R∗[u](z) = 0 in κ, κ ∈ Th, r∗[u](z) = 0 on ∂κ \ Γ, κ ∈ Th, r∗Γ[u](z) = 0 on Γ.

Note that the adjoint residuals in (5.23) reduce to the adjoint residuals (3.5) of
the linear advection equation with b = 0, when setting Fc(u) = bu and H′

u+ = b · n.
Also note that the standard discontinuous Galerkin discretizations for the com-

pressible Euler equations (see, e.g., [4, 15, 16] among several others) take the same
numerical flux function on the boundary Γ as in the interior of the domain, and
simply replace u−

h in H(u+
h ,u

−
h ,n) by the boundary function uΓ(u+

h ), resulting in

H̃(u+
h ,uΓ(u+

h ),n). Furthermore, the definition of uΓ in [4, 15] based on vΓ = v −
2(v ·n)n ensures a vanishing average normal velocity v̄ ·n = 1

2 (v + vΓ) ·n = 0. How-

ever, vΓ · n = 0 and BuΓ(u+
h ) = 0, as required in (5.20), are not satisfied. Thereby,

the discontinuous Galerkin discretization based on the standard choice of H̃ and uΓ

is not adjoint consistent. In fact, already the numerical experiments in [15] indicated
large gradients, i.e., an irregular adjoint solution near solid wall boundaries. The lack
of adjoint consistency of this standard approach was first analyzed by Lu [23, 24],
who also proposed the adjoint consistent approach (5.22) and demonstrated that this
approach gives rise to smooth adjoint solutions for an inviscid compressible flow over
a Gaussian bump. The smoothness of the discrete adjoint has been confirmed in [14]
for an inviscid compressible flow around a NACA0012 airfoil. Furthermore, [14] stud-
ies the effect of adjoint consistency on the accuracy of the flow solution and on error
cancellation in an a posteriori error estimation approach.

6. The compressible Navier–Stokes equations. In this section we consider
the two-dimensional stationary compressible Navier–Stokes equations

(6.1) ∇ · (Fc(u) −Fv(u,∇u)) = 0 in Ω,

subject to various boundary conditions, e.g., no-slip wall boundary conditions with
vanishing velocity v = (v1, v2)

� = 0 at isothermal walls Γiso where T = Twall or at
adiabatic walls Γadia where n · ∇T = 0. The vector of conservative variables u and
the convective fluxes Fc(u) are as defined in (5.3). Furthermore, the viscous fluxes
Fv(u,∇u) = (fv1 (u,∇u), fv2 (u,∇u)) are defined by

(6.2) fv1 (u,∇u) =

⎡⎢⎢⎣
0
τ11
τ21

τ1jvj + KTx1

⎤⎥⎥⎦ and fv2 (u,∇u) =

⎡⎢⎢⎣
0
τ12
τ22

τ2jvj + KTx2

⎤⎥⎥⎦ .

Here T denotes the temperature given by e = cvT , K is the thermal conductivity
coefficient, and τ is the viscous stress tensor defined by τ = μ(∇v+(∇v)�− 2

3 (∇·v)I),
where μ is the dynamic viscosity coefficient. Using the homogeneity tensor G (e.g.,
[16]) with Gij(u) = ∂fvi (u,∇u)/∂uxj , for i, j = 1, 2, the viscous fluxes are fvi (u,∇u) =
Gij(u)∂u/∂xj , i = 1, 2, and Fv(u,∇u) = G(u)∇u. Consider the target functional

(6.3) J(u) =

∫
Γ

j(Cu) ds =

∫
ΓW

(pn − τ n) ·ψΓW
ds,
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where (Cu)ij = p(u)δij−τij(u,∇u), j(Cu) = (Cu)ijnj(ψΓW
)i on ΓW , and j(Cu) ≡ 0

elsewhere, with ψΓW
∈ [L2(ΓW )]2. Important target quantities of type (6.3) in viscous

compressible flows are the (total) drag and lift coefficients cd and cl, which include
both pressure-induced and viscous forces. Then ψΓW

= 1
C∞

ψ, and C∞ and ψ are as
in (5.4).

In order to derive the adjoint problem, we multiply the left-hand side of (6.1) by
z, integrate by parts, and linearize about u to obtain

(∇ · (Fc
uw −Fv

uw −Fv
∇u∇w) , z)Ω

= − ((Fc
u −Fv

u)w −Fv
∇u∇w,∇z)Ω + (n · (Fc

uw −Fv
uw −Fv

∇u∇w) , z)Γ ,

where Fv
u := ∂uFv(u,∇u) = G′[u]∇u and Fv

∇u := ∂∇uFv(u,∇u) = G(u) denote the
derivatives of Fv with respect to u and ∇u, respectively. Using integration by parts
once more we obtain the following variational formulation of the continuous adjoint
problem: Find z such that

−
(
w, (Fc

u −Fv
u)

� ∇z
)

Ω
−
(
w,∇ ·

(
(Fv

∇u)
� ∇z

))
Ω

+
(
w,n ·

(
(Fv

∇u)
� ∇z

))
Γ

+
(
w, (n · (Fc

u −Fv
u))

�
z
)

Γ
−
(
∇w, (n · Fv

∇u)
�

z
)

Γ
= J ′[u](w) ∀w ∈ V.

Given that

(6.4)

J ′[u](w) =
1

C∞

∫
ΓW

(pu[u]n − τu[u]n) ·ψw − (τ∇u[u]n) ·ψ∇w ds

=

(
w,

1

C∞
(pu n − τu n) ·ψ

)
ΓW

−
(
∇w,

1

C∞
(τ∇u n) ·ψ

)
ΓW

,

we see that the adjoint solution z satisfies the following equation:

(6.5) − (Fc
u −Fv

u)
� ∇z −∇ ·

(
(Fv

∇u)
� ∇z

)
= 0,

subject to the boundary conditions on ΓW = Γiso ∪ Γadia,

(n · (Fc
u −Fv

u))
�

z + n ·
(
(Fv

∇u)
� ∇z

)
=

1

C∞
(pu n − τu n) ·ψ,(6.6)

(n · Fv
∇u)

�
z =

1

C∞
(τ∇u n) ·ψ.(6.7)

At wall boundaries ΓW where v = (v1, v2)
� = 0, the normal viscous flux reduces to

n ·Fv(u,∇u) = (0, (τn)1, (τn)2,n ·∇T )�. Hence (6.7) is fulfilled, provided z satisfies

(6.8)

⎛⎜⎜⎝
0

(τ∇un)1 z2

(τ∇un)2 z3

(n · ∇T∇u) z4

⎞⎟⎟⎠ =
1

C∞

⎛⎜⎜⎝
0

(τ∇un)1 ψ1

(τ∇un)2 ψ2

0

⎞⎟⎟⎠ ,

which reduces to the conditions z2 = 1
C∞

ψ1 on ΓW , z3 = 1
C∞

ψ2 on ΓW , and z4 = 0
on Γiso. At adiabatic boundaries we have n · ∇T = 0, and the last condition in (6.8)
vanishes. Substituted into (6.6) we obtain n · ((Fv

∇u)�∇z) = 0 on ΓW , which at
adiabatic boundaries reduces to n · ∇z4 = 0. On isothermal boundaries no additional
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boundary condition is obtained. In summary, the boundary conditions of the adjoint
problem (6.5) to the compressible Navier–Stokes equations are given by

z2 =
1

C∞
ψ1, z3 =

1

C∞
ψ2 on ΓW , z4 = 0 on Γiso, n · ∇z4 = 0 on Γadia.(6.9)

These boundary conditions have been derived by computing the adjoint equations of
each of the four primal equations separately in [21] and [8].

In addition to the notation introduced in section 3, we use the standard notation
σ : τ =

∑m
k=1

∑n
l=1 σklτkl for matrices σ, τ ∈ R

m×n, m,n ≥ 1; additionally, for
vectors v ∈ R

m,w ∈ R
n, the matrix v ⊗ w ∈ R

m×n is defined by (v ⊗ w)kl = vk wl.
According to [16, 17] the interior penalty discontinuous Galerkin discretization of

the compressible Navier–Stokes equations (6.1) is given by: Find uh ∈ Vp
h such that

N (uh,v) ≡ −
∫

Ω

Fc(uh) : ∇hv dx +
∑
κ∈Th

∫
∂κ\Γ

H(u+
h ,u

−
h ,n

+) · v+ ds

+

∫
Ω

Fv(uh,∇huh) : ∇hv dx −
∫

ΓI

{Fv(uh,∇huh)} : [[v]] ds

+

∫
ΓI

θ{G�(uh)∇hv} : [[uh]] ds +

∫
ΓI

δ[[uh]] : [[v]] ds + NΓ(uh,v) = 0(6.10)

for all v in Vp
h. Here NΓ(uh,v) includes all boundary terms which will be specified

in the following. Recalling the discussion at the end of section 5, we know that the
discretization of boundary terms in [16] is not adjoint consistent. In fact, [16] uses the
standard discretization of convective boundary fluxes as opposed to the adjoint consis-
tent discretization given in (5.22). Thereby, in the following we consider the boundary
terms like in [16] but with an adjoint consistent treatment of convective fluxes like in
(5.22). Furthermore, we treat the viscous fluxes analogous to the convective fluxes;
i.e., we replace the viscous boundary flux Fv by Fv

Γ, where

(6.11) Fv
Γ(uh,∇uh) = Fv(uΓ(uh),∇uh) = GΓ(uh)∇uh = G(uΓ(uh))∇uh.

Thereby, the discretization of boundary terms is given by

(6.12)

NΓ(uh,v) =

∫
Γ

n · Fc
Γ(u+

h )v+ ds +

∫
Γ

δ
(
u+
h − uΓ(u+

h )
)
· v+ ds

−
∫

Γ

n · Fv
Γ(u+

h ,∇u+
h )v+ ds

+ θ

∫
Γ

(
G�

Γ (u+
h )∇v+

h

)
:
(
u+
h − uΓ(u+

h )
)
⊗ nds,

where on adiabatic boundaries Γadia ⊂ ΓW the viscous flux Fv
Γ and the corresponding

homogeneity tensor GΓ are modified such that n ·∇T = 0. Using integration by parts
in (6.10), we obtain the primal residual form as follows: Find uh ∈ Vp

h such that

(6.13)

∫
Ω

R(uh) · v dx +
∑
κ∈Th

∫
∂κ\Γ

r(uh) · v+ + ρ(uh) : ∇v+ ds

+

∫
Γ

rΓ(uh) · v+ + ρΓ(uh) : ∇v+ ds = 0 ∀v ∈ Vp
h,
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where the primal residuals are given by

R(uh) = −∇ · Fc(uh) + ∇ · Fv(uh,∇huh) in κ, κ ∈ Th,

r(uh) = n · Fc(u+
h ) −H(u+

h ,u
−
h ,n

+) − 1

2
[[Fv(uh,∇huh)]] − δ[[uh]] · n,

ρ(uh) = −θ

2

(
G(uh)[[uh]]

)�
on ∂κ \ Γ, κ ∈ Th,

rΓ(uh) = n · (Fc(u+
h )−Fc

Γ(u+
h )−Fv(u+

h ,∇u+
h )+ Fv

Γ(u+
h ,∇u+

h ))−δ(u+
h −uΓ(u+

h )),

ρΓ(uh) = −θ
(
G�

Γ (u+
h ) :

(
u+
h − uΓ(u+

h )
)
⊗ n

)�
on Γ.

We see that the exact solution u to (6.1) satisfies

R(u) = 0, r(u) = 0, ρ(u) = 0, rΓ(u) = 0, ρΓ(u) = 0,

where we used consistency of the numerical flux H(w,w,n) = n · Fc(w), continuity
of u, and the consistency of the boundary function, i.e., u satisfies uΓ(u) = u on Γ.
We conclude that the discretization given in (6.10) and (6.12) is consistent.

Given the target quantity J(·) defined in (6.3) with Fréchet derivative (6.4), we
consider the following modification of J(·):

(6.14) J̃(uh) = J(i(uh)) +

∫
Γ

rJ(uh) ds = JΓ(uh) +

∫
Γ

rJ(uh) ds.

As in section 5, here we set i(uh) = uΓ(uh) and JΓ(uh) = J(uΓ(uh)); rJ(uh) will be
specified later. Noting that uΓ(u) = u holds for the exact solution u, J̃(·) in (6.14) is
a consistent modification of J(·), provided that u satisfies rJ(u) = 0; see also (2.25).

Rewriting N (uh,v) in (6.10) in terms of the homogeneity tensor G and recalling
(5.15), we see that the discrete adjoint problem is given by: Find zh ∈ Vh such that

(6.15) N ′[uh](w, zh) = J̃ ′[uh](w) ∀w ∈ V,

where N ′[u](w, z) is given by

N ′[u](w, z) = −
∫

Ω

(Fc
u[u]w) : ∇hz dx +

∑
κ∈Th

∫
∂κ\Γ

H′
u+(u+,u−,n+)w+[[z]] · nds

+

∫
Ω

(G′[u]w∇hu) : ∇hz dx +

∫
Ω

(G(u)∇hw) : ∇hzdx

−
∫

ΓI

{G′[u]w∇hu} : [[z]] ds−
∫

ΓI

{G(u)∇hw} : [[z]] ds

+

∫
ΓI

θ{
(
G�)′[u]w∇hz} : [[u]] ds +

∫
ΓI

θ{G�(u)∇hz} : [[w]] ds

+

∫
ΓI

δ[[w]] : [[z]] ds + N ′
Γ[u](w, z).(6.16)
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Using integration by parts, this can be rewritten as follows:

−
∫

Ω

w (Fc
u[u])

� ∇hz dx +
∑
κ∈Th

∫
∂κ\Γ

w+
(
H′

u+(u+,u−,n+)
)�

[[z]] · nds

+

∫
Ω

w (G′[u]∇hu)
� ∇hz dx −

∫
Ω

w∇h ·
(
G�(u)∇hz

)
dx

− 1

2

∑
κ∈Th

∫
∂κ\Γ

(G′[u]w∇hu) : [[z]] ds− 1

2

∑
κ∈Th

∫
∂κ\Γ

(G(u)∇hw) : [[z]] ds

+
1

2
θ
∑
κ∈Th

∫
∂κ\Γ

((
G�)′[u]w∇hz

)
: [[u]] ds +

1

2

∑
κ∈Th

∫
∂κ\Γ

w[[G�(u)∇hz]] ds

+ (1 + θ)
∑
κ∈Th

∫
∂κ\Γ

(w ⊗ n) : {G�(u)∇hz}ds +
∑
κ∈Th

∫
∂κ\Γ

δw[[z]] · nds

+

∫
Γ

(w ⊗ n) :
(
G�(u)∇hz

)
ds + N ′

Γ[u](w, z).(6.17)

Hence the discrete adjoint problem (6.15) in adjoint residual form is given as follows:
Find zh ∈ Vh such that

(6.18)

∫
Ω

w · R∗[uh](zh) dx +
∑
κ∈Th

∫
∂κ\Γ

w · r∗[uh](zh) + ∇w : ρ∗[uh](zh) ds

+

∫
Γ

w · r∗Γ[uh](zh) + ∇w : ρ∗
Γ[uh](zh) ds = 0 ∀w ∈ Vh,

where the adjoint residuals are given by

R∗[uh](zh) = (Fc
u(uh) −G′[uh]∇uh)

� ∇hzh + ∇h ·
(
G�(uh)∇hzh

)
in κ, κ ∈ Th,

r∗[uh](zh) = −
(
H′

u+(u+
h ,u

−
h ,n

+)
)�

[[zh]] · n

− 1

2
[[G�(uh)∇zh]] − (1 + θ)n · {G�(uh)∇hzh} − δ[[zh]] · n(6.19)

+
1

2
(G′[uh]∇uh)

�
[[zh]] − 1

2
θ
(
G′[uh][[uh]]

)�
∇hzh on ∂κ \ Γ, κ ∈ Th,

ρ∗[uh](zh) =
1

2
G�[uh][[zh]] on ∂κ \ Γ, κ ∈ Th.

The adjoint boundary residuals r∗Γ and ρ∗
Γ will be specified below. Recalling that

Fv
u = G′[u]∇u and Fv

∇u = G(u), we see that the exact solution z to the continuous
adjoint problem (6.5) satisfies R∗[u](z) = 0. In the three lines in (6.19) representing
the face residual term r∗[uh](zh), we recognize the jump −(H′

u+)�[[zh]] · n due to the
convective part of the equations (cf. (5.23)); furthermore, the terms in the second
line correspond to the adjoint face residuals of Poisson’s equation (cf. (4.11)); and
finally the two terms in the third line are due to the nonlinearity of the compressible
Navier–Stokes equations. Whereas the last term in the third line vanishes for a smooth
exact primal solution u, all other terms vanish for the exact solution z to the adjoint
problem (6.5), provided θ = −1. Thereby, the adjoint solution z satisfies r∗[u](z) = 0,
provided that θ = −1. Furthermore, z satisfies ρ∗[u](z) = 0. In summary, we see that,
like for Poisson’s equation, the element and interior face terms of the IP discretization
of the compressible Navier–Stokes equation are adjoint consistent for the symmetric
(θ = −1) but not for the nonsymmetric (θ = 1) version.
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The boundary terms of the discrete adjoint problem are given by

N ′
Γ[uh](w, zh)+

∫
Γ

(w ⊗ n) :
(
G�

Γ (uh)∇hzh
)

ds ≡

+

∫
Γ

n ·
(
Fc

Γ,u[uh](w)
)
zh ds +

∫
Γ

δ (w − u′
Γ[uh]w) · zds,

−
∫

Γ

n ·
(
Fv

Γ,u[uh,∇huh](w) + Fv
Γ,∇u[uh,∇huh](∇hw)

)
zh ds

+ θ

∫
Γ

(((
G�

Γ

)′
[uh]w

)
∇hzh

)
: (uh − uΓ(uh))⊗nds

+ θ

∫
Γ

(
G�

Γ (uh)∇hzh
)

: (w − u′
Γ[uh]w) ⊗ nds

+

∫
Γ

(w ⊗ n) :
(
G�

Γ (uh)∇hzh
)

ds = J̃ ′[uh](w).

Thus the adjoint boundary residuals in (6.18) on ΓW are given by

r∗Γ[uh](zh) =
1

C∞
(pu n − τu n) · ψ −

(
n ·

(
Fc

Γ,u −Fv
Γ,u

))�
zh − n ·

(
G�

Γ∇zh
)

+ r′J [uh] − δ (I − u′
Γ[uh])

�
zh − θ (G′

Γ[uh] : (uh − uΓ(uh)) ⊗ n)
�∇hzh

− θ (GΓ(uh) : (I − u′
Γ[uh]) ⊗ n)

� ∇hzh,(6.20)

(6.21)

ρ∗
Γ[uh](zh) = − 1

C∞
(τ∇un) · ψ +

(
n · Fv

Γ,∇u

)�
zh.

We recall (6.7), Fv
Γ,∇u = GΓ(u), and see that the exact solutions u and z to the primal

problem (6.1) and the continuous adjoint problem (6.5)–(6.9) satisfy ρ∗
Γ[u](z) = 0.

We now choose the modification rJ(uh) of the target functional in (6.14) as fol-
lows:

(6.22) rJ(uh) = δ
(
u+
h − uΓ(u+

h )
)
· zΓ + θ

(
G�

Γ (u+
h )∇hzΓ

)
:
(
u+
h − uΓ(u+

h )
)
⊗ n,

with Fréchet derivative

r′J [uh](w) = δ (I − u′
Γ[uh])w · zΓ + θ (G′

Γ[uh] : (u − uΓ(uh)) ⊗ n)
� ∇hzΓ

+ θ (GΓ(uh) : (I − u′
Γ[uh]) ⊗ n)

� ∇hzΓ.

As the exact solution u to the primal problem satisfies uΓ(u) = u, we have rJ(u) = 0.
Hence (6.22) is a consistent modification of the target functional. Recalling (6.6) we
see that the exact solutions u and z satisfy

r∗Γ[u](z) = δ (I − u′
Γ[u])

�
(zΓ − z) + θ (G′[u] : (u − uΓ(u)) ⊗ n)

�
(∇zΓ −∇z)

+ θ (G(u) : (I − u′
Γ[u]) ⊗ n)

�
(∇zΓ −∇z) .(6.23)

Furthermore, setting zΓ = z on ΓW we obtain r∗Γ[u](z) = 0 and conclude that the
discretization of boundary terms is adjoint consistent.

Due to n · (G�
Γ (u+

h )∇z) = n · ((Fv
∇u)�∇z) = 0 on ΓW the second term in (6.22)

vanishes. Furthermore, on adiabatic boundaries Γadia we have (u+
h − uΓ(u+

h ))i = 0,
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i = 1, 4, and on isothermal boundaries Γiso we have (u+
h − uΓ(u+

h ))1 = 0. Together
with (6.9) the consistent modification (6.22) reduces to

(6.24)

rJ(uh) = δ
(
u+
h − uΓ(u+

h )
)
· zΓ

= δ
(
u+
h − uΓ(u+

h )
)
2

1

C∞
ψ1 + δ

(
u+
h − uΓ(u+

h )
)
3

1

C∞
ψ2,

which completes the adjoint consistency analysis of the interior penalty discontinuous
Galerkin discretization of the compressible Navier–Stokes equations. Finally, we note
that the consistent modification rJ(uh) given in (6.24) corresponds to the IP modifi-
cation of target functionals for Poisson’s equation where rJ(uh) = δ(uh − gD)zΓ with
zΓ = −jD; see (4.13).

In summary, we have shown that the adjoint element and interior residuals
R∗[uh](zh), r∗[uh](zh), and ρ∗[uh](zh) (see (6.19)) vanish for the exact solutions
u and z to (6.1) and (6.5), respectively, provided θ = −1. Additionally, using an
adjoint consistent treatment of convective and diffusive boundary fluxes,

n · Fc
Γ(u+

h ) = n · Fc(uΓ(u+
h )), n · Fv

Γ(u+
h ) = n · Fv(uΓ(u+

h ),∇hu
+
h ),(6.25)

and using the following consistent modification of the target functional:

(6.26) J̃(uh) = J(uΓ(uh)) +

∫
ΓW

δ
(
u+
h − uΓ(u+

h )
)
· zΓ ds,

with zΓ = 1
C∞

(0, ψ1, ψ2, 0)�, for J(·) representing a total force coefficient defined in
(6.3), the adjoint boundary residuals r∗Γ[uh](zh) and ρ∗

Γ[uh](zh) (see (6.20) and (6.21))
vanish for the exact solutions u and z. Thereby, using the modifications given in (6.25)
and (6.26) we recover an adjoint consistent symmetric interior penalty discontinuous
Galerkin discretization of the compressible Navier–Stokes equations in conjunction
with total force coefficients. Finally, we note that arguments given in [23] en route to
obtaining an adjoint consistent discretization based on the BR2 scheme [5] can also
be covered within the presented framework and lead to analogous modifications.

7. Numerical experiments for the compressible Navier–Stokes equa-
tions. In this section we will demonstrate the effect on the smoothness of the discrete
adjoint solution when employing the adjoint consistent SIPG discretization based on
(6.25) and (6.26) in comparison to the original SIPG discretization of the compressible
Navier–Stokes equations [16], which instead uses

H(u+
h ,uΓ(u+

h ),n), n · Fv(u+
h ,∇hu

+
h ) on Γ, and J(uh).(7.1)

Furthermore, we compare the accuracy of the original formulation and the adjoint
consistent discretization on a sequence of globally refined meshes.

To this end, we revisit the standard test case [3, 16, 17] of a M = 0.5 viscous
flow at Re = 5000 and at zero angle of attack around the NACA0012 airfoil with
adiabatic no-slip boundary conditions imposed on the profile. Figure 7.1 shows the
primal flow solution based on the adjoint consistent discretization on a (locally) refined
mesh created by repeated refinement of the coarse C-type mesh depicted in Figure
7.2. Then, in Figure 7.3 we show the components z1–z4 of the corresponding discrete
adjoint solution zh. In particular, we find that the second and third components
z2 ≈ 1/C∞ = 40/7 and z3 ≈ 0 are constant on the profile. Furthermore, we see that
n · ∇z4 ≈ 0 as required by the continuous adjoint boundary conditions (6.9).
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Fig. 7.1. Adjoint consistent DG discretization of the M = 0.5, α = 0◦,Re = 5000 flow around
the NACA0012 airfoil: Mach isolines (0.02i, i ∈ N) of the (primal) flow solution.
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Fig. 7.2. Computational mesh with 3072 element: (left) full and (right) detailed view.

For comparison, Figure 7.4 shows the z4 component of the discrete adjoint to the
original DG discretization [16]. We clearly see an irregular adjoint solution at the
profile boundary. In contrast, the discrete adjoint solution (see Figure 7.3) based on
the adjoint consistent discretization is entirely smooth. The components zi, i = 1, 2, 3,
show a similar behavior.

For a quantitative comparison of the original and the adjoint consistent discretiza-
tion, we collect the errors of the computed solutions on a sequence of globally refined
meshes in Table 7.1. Here we show the number of elements, the number of degrees
of freedom, and the error J(u) − J(uh) of the flow solution for three different dis-
cretizations. The error of uh ∈ V1

h is measured in terms of the total drag coefficient
cd where the reference value J(u) ≈ 0.05482 is based on very fine grid computations.
In columns (a) and (b) we collect the errors and rates of convergence of the original
SIPG formulation (7.1) (cf. [16]) and for the adjoint consistent discretization based
on (6.25) and (6.26), respectively. We see that the adjoint consistent discretization is
by a factor of about 2–400 more accurate than the original discretization on the same
mesh and with the same numerical complexity. Furthermore the adjoint consistent
discretization shows an O(h5) order of convergence which is significantly higher than
that of the original discretization. In order to demonstrate the relevance of the IP
modification (6.24) of the target functional, in column (c) of Table 7.1 we collect the
respective errors based on the same discretization as in column (b) while omitting
the IP modification; i.e., column (c) is based on (6.25) and J̃(uh) = J(uΓ(uh)). The
accuracy is significantly reduced, partly even below the accuracy of the original dis-
cretization. From this, we see that the IP modification is essential for the adjoint
consistency of the discretization and the accuracy of the numerical flow solution. A
similar behavior is seen for uh ∈ V2

h in Table 7.2. Here the original discretization
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Fig. 7.3. Adjoint consistent DG discretization of the M = 0.5, α = 0◦,Re = 5000 flow around
the NACA0012 airfoil: ith row: Isolines of component zi, i = 1, . . . , 4, of the adjoint sol. z for cd.
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Fig. 7.4. Original DG discretization [16] of the M = 0.5, α = 0◦,Re = 5000 flow around the
NACA0012 airfoil: Isolines of component z4 of the adjoint solution z for cd.

shows an O(h3) convergence on average, whereas the convergence of the adjoint con-
sistent discretization is O(h6).

We note that independently Lu [23] demonstrated, for a M = 0.5 viscous com-
pressible flow around the NACA0012 airfoil at Re = 5000 and α = 2◦ angle of attack,
that the discrete adjoint solution to the adjoint consistent discretization based on the
BR2 scheme [5] is smooth whereas that to the standard discretization is not. Fur-
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Table 7.1

Error J(u) − J(uh) and rate of convergence of uh ∈ V1
h measured in terms of cd (see (6.3))

for (a) the original SIPG formulation based on (7.1) (cf. [16]), for (b) the adjoint consistent dis-
cretization based on (6.25) and (6.26), and for (c) the adjoint consistent discretization without the
IP modification of the target functional, i.e., based on (6.25) and J̃(uh) = J(uΓ(uh)).

# Cells # Dofs (a) Error rate (b) Error rate (c) Error rate
3072 49152 -3.164e-03 - 1.502e-03 - -1.243e-03 -

12288 196608 8.048e-04 3.9 3.682e-05 40.8 6.994e-04 1.8
49152 786432 4.519e-04 1.8 -1.139e-06 32.3 4.795e-04 1.5

Table 7.2

Error J(u) − J(uh) and rate of convergence of uh ∈ V2
h measured in terms of cd (see (6.3))

for (a) the original SIPG formulation based on (7.1) (cf. [16]), for (b) the adjoint consistent dis-
cretization based on (6.25) and (6.26), and for (c) the adjoint consistent discretization without the
IP modification of the target functional, i.e., based on (6.25) and J̃(uh) = J(uΓ(uh)).

# Cells # Dofs (a) Error rate (b) Error rate (c) Error rate
768 27648 -3.903e-02 - 5.565e-03 - -2.054e-02 -

3072 110592 8.663e-04 45.1 6.234e-05 89.3 4.216e-04 48.7
12288 442368 4.987e-04 1.7 9.789e-07 63.7 4.139e-04 1.02

thermore, [23] showed optimal order of convergence results for the adjoint consistent
discretization in comparison to reduced ones for the standard discretization which
lacks adjoint consistency.

8. Conclusion. A discretization is adjoint consistent if the discrete adjoint prob-
lem is a consistent discretization of the continuous adjoint problem. In fact, adjoint
consistency is the link between the so-called continuous adjoint approach (which dis-
cretizes the adjoint equations) and the discrete adjoint approach (which takes the ad-
joint of the discrete equations) in that the solutions to both approaches coincide. In
particular, adjoint consistency is the key requirement for optimal order duality-based
error estimates in L2 as well as measured in terms of target functionals. Further-
more, adjoint consistency is closely related to the smoothness of the discrete adjoint
solutions. However, in addition to the adjoint consistency of element and interior
face terms, an adjoint consistent treatment of boundary terms as well as of target
functionals is required for an adjoint consistent discontinuous Galerkin discretization.

In this article we have introduced a framework for analyzing consistency and
adjoint consistency of discontinuous Galerkin discretizations of linear and nonlinear
problems. This framework includes the derivation of the continuous adjoint prob-
lems and adjoint boundary conditions, provided the primal problem and the target
functional satisfy a compatibility condition. It includes the derivation of the discrete
adjoint problems and primal and adjoint residuals and a discussion of under which
conditions the residuals vanish for the exact primal and adjoint solutions. In addition,
we have introduced so-called consistent modifications of target functionals which al-
low us to modify (and possibly improve) computed target quantities without changing
their exact values. We then analyzed the DG discretization of the linear advection
equation, the interior penalty (IP)DG discretization of Poisson’s equation, and the
DG discretization of the compressible Euler equations. While recovering properties
and conclusions drawn in [1, 11, 24], the outlined framework gives a unified analysis
of these discretizations, including the definition of consistent modification of a target
functional such as the so-called IP modification as well as a consistent modification
of the force coefficients for inviscid compressible flows.
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This framework has then been used to analyze the adjoint consistency prop-
erty of the symmetric interior penalty discontinuous Galerkin discretization of the
compressible Navier–Stokes equations. While the original formulation of the SIPG
discretization [16] has been shown to be adjoint inconsistent, the analysis revealed
that a special treatment of boundary terms as well as an IP modification of viscous
force coefficients is required for recovering an adjoint consistent DG discretization
of the compressible Navier–Stokes equations. Numerical experiments have confirmed
that, in contrast to the original formulation in [16], the discrete adjoint solution to
the adjoint consistent discretization is entirely smooth. Furthermore, numerical tests
on globally refined meshes have shown that the adjoint consistent discretization is by
a factor of 2–400 more accurate measured in terms of viscous force coefficients than
the original formulation. Also, a significantly improved order of convergence has been
observed.
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uous Galerkin finite element methods, Comput. Methods Appl. Mech. Engrg., 195 (2006),
pp. 3293–3310.
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methods with interior penalty for partial differential equations with nonnegative character-
istic form, in Recent Advances in Scientific Computing and Partial Differential Equations,
Contemporary Mathematics 330, AMS, Providence, RI, 2003, pp. 89–119.

[13] R. Hartmann, The role of the Jacobian in the adaptive Discontinuous Galerkin method for the
compressible Euler equations, in Analysis and Numerics for Conservation Laws, G. War-
necke, ed., Springer-Verlag, Berlin, 2005, pp. 301–316.

[14] R. Hartmann, Derivation of an adjoint consistent discontinuous Galerkin discretization of the
compressible Euler equations, in Proceedings of the BAIL 2006 conference, G. Lube and
G. Rapin, eds., 2006.

[15] R. Hartmann and P. Houston, Adaptive discontinuous Galerkin finite element methods for
the compressible Euler equations, J. Comput. Phys., 183 (2002), pp. 508–532.

[16] R. Hartmann and P. Houston, Symmetric interior penalty DG methods for the compressible
Navier–Stokes equations I: Method formulation, Int. J. Numer. Anal. Model., 3 (2006),
pp. 1–20.



2696 RALF HARTMANN

[17] R. Hartmann and P. Houston, Symmetric interior penalty DG methods for the compressible
Navier–Stokes equations II: Goal–oriented a posteriori error estimation, Int. J. Numer.
Anal. Model., 3 (2006), pp. 141–162.
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