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CONVERGENCE ANALYSIS OF A COLOCATED FINITE VOLUME
SCHEME FOR THE INCOMPRESSIBLE NAVIER-STOKES
EQUATIONS ON GENERAL 2D OR 3D MESHES*

R. EYMARD', R. HERBIN*, AND J. C. LATCHES

Abstract. We study a colocated cell-centered finite volume method for the approximation of the
incompressible Navier—Stokes equations posed on a 2D or 3D finite domain. The discrete unknowns
are the components of the velocity and the pressure, all of them colocated at the center of the cells
of a unique mesh; such a configuration is known to lead to stability problems, hence the need for
a stabilization technique, which we choose of the Brezzi—Pitkdranta type. The scheme features two
essential properties: the discrete gradient is the transpose of the divergence terms, and the discrete
trilinear form associated to nonlinear advective terms vanishes on discrete divergence free velocity
fields. As a consequence, the scheme is proved to be unconditionally stable and convergent for the
Stokes problem and for the transient and the steady Navier—Stokes equations. In this latter case,
for a given sequence of approximate solutions computed on meshes the size of which tends to zero,
we prove, up to a subsequence, the L?-convergence of the components of the velocity, and, in the
steady case, the weak L2-convergence of the pressure. The proof relies on the study of space and
time translates of approximate solutions, which allows the application of Kolmogorov’s theorem.
The limit of this subsequence is then shown to be a weak solution of the Navier—Stokes equations.
Numerical examples are performed to obtain numerical convergence rates in both the linear and
nonlinear cases.
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1. Introduction. In this paper we are interested in finding an approximation
of the fields @ = (@");=1 4 : Q2 x[0,T7] — R? and p : Q x [0,T] — R, weak solution
to the incompressible Navier—Stokes equations which we write

d
ou — vAT + 9;p + Zﬂ(j)ajﬂ(i) = ¥ in Q x (0,7), fori=1,...,d,
(1.1) =1

d
divie =Y "9, =0 in Q x (0,7),
i=1

with a homogeneous Dirichlet boundary condition for @ and the initial condition

(1.2) a®(,0)=a" in Qfori=1,...,d.

ini

In the above equations, @9, i = 1,...,d, denotes the components of the velocity of a
fluid which flows in a domain Q during the time (0,7"), p denotes the pressure, and
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v > 0 stands for the viscosity of the fluid. We make the following assumptions:

(1.3) Q) is a polygonal open bounded connected subset of R?, d = 2 or 3,
(1.4) T > 0 is the finite duration of the flow,

(1.5) v e (0,+00),

(1.6) Ui € L?(Q),

(1.7)

e L2(Qx (0,T)), fori=1,....d.

Numerical schemes for the Stokes equations and the Navier—Stokes equations have
been extensively studied; see [21, 33, 34, 35, 23, 22] and the references therein. Among
different schemes, finite element schemes and finite volume schemes are frequently used
for mathematical or engineering studies. An advantage of finite volume schemes is that
the unknowns are approximated by piecewise constant functions: this makes it easy
to take into account additional nonlinear phenomena or the coupling with algebraic or
differential equations, for instance in the case of reactive flows; in particular, one can
find in [33, 25] the presentation of the classical finite volume scheme on rectangular
meshes, which has been the basis of several industrial applications. However, the use
of rectangular grids makes an important limitation to the type of domain which can
be gridded and, more recently, finite volume schemes for the Navier—Stokes equations
on triangular grids have been presented; see, for example, [24] where the vorticity
formulation is used and [4] where primal variables are used with a Chorin-type pro-
jection method to ensure the divergence condition. Proofs of convergence for finite
volume-type schemes for the Stokes and steady-state Navier—Stokes equations have
recently been given for staggered grids [7, 24, 18, 3, 19, 2], following the pioneering
work of Nicolaides [31] and Nicolaides and Wu [32].

In this paper, we propose the mathematical and numerical analysis of a discretiza-
tion method which uses the primitive variables, that is the velocity and pressure, both
approximated by piecewise constant functions on the cells of a 2D or 3D mesh. We
emphasize that the approximate velocity and pressure are colocated, and therefore no
dual grid is needed. The only requirement on the mesh is a geometrical assumption
needed for the consistency of the approximate diffusion flux (see [13] and section 2
for a precise definition of the admissible discretizations).

As far as we know, this work is a first proof of the convergence of a finite volume
scheme, which is of large interest in industry. Indeed, industrial computational fluid
dynamics (CFD) codes (see, e.g., [29, 1]) use colocated cell-centered finite volume
schemes; leaving aside implementation considerations, the principle of these schemes
seems to differ from the present scheme only by the stabilization choice. The main
reasons why this scheme is so popular in industry are

e a colocated arrangement of the unknowns,
e a very cheap assembling step (no numerical integration to perform),
e an easy coupling with other systems of equations.

The finite volume scheme studied here is based on three basic ingredients. First, a
stabilization technique & la Brezzi-Pitkdranta [6] is used to cope with the instability
of colocated velocity/pressure approximation spaces. Second, the discretization of
the pressure gradient in the momentum balance equation is performed to ensure,
by construction, that it is the transpose of the divergence term of the continuity
constraint. Finally, the contribution of the discrete nonlinear advection term to the
kinetic energy balance vanishes for discrete divergence free velocity fields, as in the
continuous case. These features appear to be essential in the proof of convergence.



CONVERGENCE ANALYSIS OF A FINITE VOLUME SCHEME 3

We are then able to prove the stability of the scheme and the convergence of
discrete solutions towards a solution of the continuous problem when the size of the
mesh tends to zero, for the steady linear case (generalized Stokes problem) and the
stationary and transient Navier—Stokes equations, in two and three dimensions. Our
results are valid for general meshes and do not require any assumption on the regu-
larity of the continuous solution nor, in the nonlinear case, any small data condition.
We emphasize that the convergence of the fully discrete (time and space) approxima-
tion is proven here, using an original estimate for the time translates, which yields,
combined with a classical estimate on the space translates, a sufficient relative com-
pactness property.

An error analysis is performed in the steady linear case, under regularity assump-
tions on the solution. An error bound of order 0.5 with respect to the step size is
obtained in the discrete H' norm and the L? norm for, respectively, the velocity and
the pressure. Of course, this is probably not a sharp estimate, as can be seen from
the numerical results shown in section 5. Indeed, a better rate of convergence can be
proven under additional assumptions on the mesh [20].

This paper is organized as follows. In section 2, we introduce the discretization
tools together with some discrete functional analysis tools. Section 3 is devoted to
the linear steady problem (Stokes problem), for which the finite volume scheme is
given and convergence analysis and error estimates are detailed. The complete finite
volume scheme for the nonlinear case is presented in section 4, in both the steady and
transient cases. We then develop the analysis of its convergence to a weak solution
of the continuous problem. We give some numerical results in section 5, and finally
conclude with some remarks on open problems in section 6.

2. Spatial discretization and discrete functional analysis.

2.1. Admissible discretization of Q. We first recall the notion of admissible
discretization for a finite volume method, which is given in [13].

DEFINITION 2.1 (admissible discretization, steady case). Let Q be an open
bounded polygonal (polyhedral if d = 3) subset of RY, and 0 = Q\ ) its boundary. An
admissible finite volume discretization of Q, denoted by D, is given by D = (M, E,P),
where

e M is a finite family of nonempty open polygonal convex disjoint subsets of
Q (the “control volumes”) such that Q = Ugepm K. For any K € M, let
OK = K\ K be the boundary of K and mg > 0 denote the area of K.

e & is a finite family of disjoint subsets of Q (the “edges” of the mesh) such that,
for all o € £, there exists a hyperplane E of R, K € M witha = 0K N E,
and o is a nonempty open subset of E. We then denote by m, > 0 the (d—1)-
dimensional measure of 0. We assume that, for all K € M, there exists a
subset Ex of € such that 0K = Uyeg,a. It then results from the previous
hypotheses that, for all o € £, either o C OQ or there exists (K, L) € M?
with K # L such that K N L = &; we denote in the latter case o = K|L.

e P is a family of points of Q indexed by M, denoted by P = (xx)iem. The
coordinates of v are denoted by a:g?, i =1,...,d. The family P is such that,
for all K € M, xx € K. Furthermore, for all o € £ such that there exists
(K, L) € M? witho = K|L, it is assumed that the straight line (vx, 1) going
through xx and xy, is orthogonal to K|L. For all K € M and all o € £, let
zo be the orthogonal projection of xx on o. We suppose that z, € 0.

An example of two neighboring control volumes K and L of M is depicted in



4 R. EYMARD, R. HERBIN, AND J. C. LATCHE

Figure 2.1.

Fia. 2.1. Notations for an admissible mesh.

The following notations are used. The size of the discretization is defined by
size(D) = sup{diam(K), K € M}.

For all K € M and o € £k, we denote by ng , the unit vector normal to o outward
to K. We denote by dg , the Euclidean distance between zx and o. The set of
interior (resp., boundary) edges is denoted by Eint (resp., Eext), that is, Einy = {0 € &;
o ¢ 90} (resp., Eext = {0 € & 0 C IN}). For all K € M, we denote by Ny the
subset of M of the neighboring control volumes. For all K € M and L € N, we set
ngy = ng k|, and we denote by dg 7, the Euclidean distance between xx and z.

We shall measure the regularity of the mesh through the function regul(D) defined
by

dKO'
(D) =inf{ ————, K
regul(D) = in {diam(K)’ eM, 065}(}

dg Kk|L 1
U{ | LGNK}U{card(E’K)’ Ke/\/l}.

2.2. Discrete functional properties. Finite volume schemes are discrete bal-
ance equations with an adequate approximation of the fluxes; see, e.g., [13]. Recent
works dealing with cell-centered finite volume methods for elliptic problems [16, 14, 19]
introduce an equivalent variational formulation in adequate functional spaces. Here
we shall follow this latter path, also introducing discrete analogues of the continu-
ous Laplace, gradient, divergence, and transport operators, each of them featuring
properties similar to their continuous counterparts.

DEFINITION 2.2. Let Q be an open bounded polygonal subset of R%, with d € N*.
Let D = (M, E,P) be an admissible finite volume discretization of Q in the sense
of Definition 2.1. We denote by Hp(Q)) C L?(Q) the space of functions which are
piecewise constant on each control volume K € M. For all w € Hp(S)) and for
all K € M, we denote by wg the constant value of w in K. The space Hp(2)
is equipped with the following Euclidean structure. For (v,w) € (Hp(2))?, we first
define the following inner product (corresponding to Neumann boundary conditions):

(2.2) <U,U}>D = % Z Z mK|L (’UL — ’UK)(’U)L — wK).

d
KeM LENK KL

(2.1)
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We then define another inner product (corresponding to Dirichlet boundary condi-
tions),

(2.3) [v,w]p = (v, w)p + Z Z C;ng VKWEK .

KeM 0€ERNEaxs 10

Next, we define a seminorm and a norm in Hp(Q) (thanks to the discrete Poincaré
inequality (2.4) given below) by

)1/2 1/2

(wlp = (w,w)p) "™, Jwlp = ([w,w]p)

We define the interpolation operator Pp : C(Q) — Hp(Q) by (Ppy)x = ¢(xk) for
all K € M and for all p € C(Q).

Similarly, for u = (u("))i:L___’d € Hp(Q)?, v = (v(i))izl,___d € Hp(Q)?, and
w = (w(i))izl,...,d S HD(Q)d> we define

d 1/2 d
nmm:(gijme o [ewlp =Y 0@, 0@y,

i=1

and Pp : C(Q)¢ — Hp(Q)? by (Ppp)x = @(xk) for all K € M and for all
v € C(Q)4.
The following discrete Poincaré inequalities (see [13]) hold,

(2.4) [w][L2() < diam(Q)[|w[lp Yw € Hp(Q),

and there exists Co > 0, depending only on €2, such that

(2.5) ]2 < Calwl?, Yw € Hp(9) with / w(z)dz = 0,
Q

Remark 2.1 (on the choice of the inner product). Before we go on with the
definition of the discrete divergence and gradient operators, let us explain on the
simple Laplace equation why the inner product defined by (2.3) is adequate for the
approximation of the diffusion term. The discretization of the Laplace equation using
finite volume methods is now classical (see [26, 13]) and is usually written in terms
of fluxes; more recently [15, 27], a weak form of the scheme was introduced, which
leads to more compact notations. For the sake of completeness, let us recall these
two formulations for the Laplace equation —Aw = f with homogeneous Dirichlet
boundary conditions on €. Integrating this equation on a control volume K yields
fBK —Vw-n = mg fx. Decomposing the boundary of K into edges and approximating
the diffusive flux through an edge ¢ = K|L by a two-point finite difference scheme
yields

(2.6) > Fromgfk,

oc€elk
with F , = ;;TL (wg —wy) if o = KJ|L is an internal edge separating the control
volumes K and L, and Fg, = d‘}t" wy if o is a boundary edge. Let ¢ € Hp(Q),

© = > ke Pi L. Multiplying (2.6) by ¢k, summing over K, and reordering the
summations yields

(27) [mﬂpzljwmem
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Conversely, taking ¢ = 1 in (2.7) yields (2.6). The flux form (2.6) of the scheme is
therefore equivalent to the weak form (2.7) featuring the inner product (2.3).

Let us also remark that a given function u € Hp(Q2), considered only as an
element of L%(Q)), does not have a trace on 9f2. However, since u is constant per
control volume, one may define u, = ug for any edge o € Eqxt, where K is the unique
cell of which o is an edge. One can then immediately deduce from the definition (2.3)
of the inner product that Y, . msu? < hpllul|%,. Therefore, if (Dy,, up, Jnen is a
sequence such that hp, — 0 as n — 400, and up, € Hp, () is such that ||up, ||p,
remains bounded, then - . m,(up,)2 — 0 as n — +oo. We then recover, “at
the limit,” the homogeneous Dirichlet boundary condition.

We define a discrete divergence operator divp : Hp(2)¢ — Hp(Q), by

1
(2.8)  divp(u)(x) = — > Axp-(uk +ug), forae z€KVKeM,
mr LeNKk
with
m — 1
(2.9) AKL:%%:imKM ngr VK € M and VL € Ng.
K|L

We then set Ep(Q2) = {u € Hp(Q)¢,divp(u) = 0}.

Remark 2.2. Thanks to the conservative formulation (2.8), the function divp(u)
satisfies [, divp(u)(z)dz = 0.

Remark 2.3. Any definition of Ax, such that Axr = mg|paxrngr with axr >
0 and axr +arx = 1, combined with the definition divp(u)(z) = ﬁ Y oren (ArL -
ug — Apk - ur), yields a consistent approximation of the normal fluxes, and thus
the same results of convergence as those which are proven in this paper, namely
an order h'/? error estimate. On particular meshes, one can prove a better error
estimate by choosing ax = d(zp, K|L)/dxr (see [20]), which yields an order 2
consistent approximation of the normal flux, and therefore an order h error estimate.
Nevertheless, in the general framework of this paper, there is no specific choice which
improves the convergence result nor the error estimate. Therefore, we set in this paper
axr = 1/2, which corresponds to (2.9). The advantage of this choice is that it leads
to simpler notations and shorter equations.

The adjoint of this discrete divergence defines a discrete gradient Vp : Hp(§2) —
HD(Q)dl

1
(2.10) (VDU)K = mi Z AKL(UL — uK) VK € M and Yu € HD(Q)
K LeNk

This operator Vp then satisfies the following property.

LEMMA 2.3. Let (DU"),.cn be a sequence of admissible discretizations of Q0 in
the sense of Definition 2.1, such that lim,,_ . size(D(m)) = 0. Let us assume that
there exists C > 0 and o € [0,2), a sequence (u™)en such that u™ € Hpm (),
and [u(™[3, < C size(D™)=* for all m € N.

Then the following property holds:

(211) Tim | (P,p(@)Vp,u™ (@) +ul™ (2)Ve(x) ) de = 0 Ve € CZ(9),

m——+0o0 Q

and therefore

(2.12) lim [ Vp, u™ (z)- Pp, ip(z)de =0V € C(Q)? N E(Q),

m—+oo Jo "
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where E(Q) is defined by (3.5).
Proof. Under the hypotheses stated in Lemma 2.3, let i = 1,...,dand p € C*(Q)
be given. Let us study, for m € N, the term

1" = [ (Po, 0@V, u™ (@) + u™(@)Vo(@)) do.
Q
From (2.9) and (2.10), we get that

™ = Z (ug™ — u%n))mKlL Ry,
0€E&int,0=K|L

where

m3=<;¢ma+w@»— 1(ALﬂ@®@0Hmw

Mg

Thanks to the Cauchy—Schwarz inequality,

2
|T1(m)|2 < ‘u(m)|2Dm Z ’RQL)’ mK\LdKL-
0€Eint,0=K|L

Ome has }° e gpmrjrdrr < d m(€). Thanks to the existence of Cy, > 0,

which depends only on ¢ such that |R(I?LL)| < Oysize(D™), and since a < 2, we then
get that

i 7 =0,
which yields (2.11).

Consider now ¢ € C°(Q)4 N E(2). One may write (2.11) componentwise and
take ¢ = 1; in the i¢th equation. Summing the d resulting equations and using the
fact that ¢ € E(Q) yields (2.12). d

LeEMMA 2.4 (discrete Rellich theorem). Let (D"),.cn be a sequence of admissi-
ble discretizations of ) in the sense of Definition 2.1, such that lim,, .« size(D(m)) =
0. Let us assume that there exist C > 0 and a sequence (u(™),,en such that u(™ €
Hpom (Q) and ||[u™|p, < C for all m € N.

Then, there exist i € HY(Y) and a subsequence of (u\™)men, again denoted by
(™) pen, such that

1. the sequence (u'"™),en converges in L*(Q) to @ as m — 400,
2. for all p € C°(Q), we have

(2.13) lim [u™, Pp, olp, = / Vi(x) - Vi(z)dz,
Q

m——+oo
3. Vp, ul™ weakly converges to Vi in L*(Q)% as m — 400 and (2.11) holds.
Proof. The proof of the first two items is given in [13, proof of Theorem 9.1,
pp. 773-774]. Since we have |u(™)|p < |[ul™|p, , we can apply Lemma 2.3, which

gives the third item. a
Remark 2.4. Following [10], if we denote

Dio={tex +(1—1t)y, t €(0,1), y€ o} VK € M and Vo € &k,
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we may alternatively define a discrete gradient Vp : Hp(Q) — L2(Q)? by

VEKeM,

~ d
VDU(JL’) = E(UL — UK)I’IKL, for a.e. x € DK,K|L UDL,K\L VL € Nk,

Vopu(z) =

= (0 —ug)ng, for ae. z € Di y Vo € Ex N Eext-
K,o

A result similar to that of Lemma 2.4 holds with this definition of a discrete gradient,
and in fact it can be shown that the weak convergence of Vp (™) is equivalent to
the weak convergence of Vp_ u(™.

LEMMA 2.5. Let (D\"™),.cn be a sequence of admissible discretizations of Q in

the sense of Definition 2.1, such that lim,, . size(D(m)) =0.

Let us assume that there exist two sequences, (u(™)pmen and (v0™),,cn, such that
1. for all m € N, u(™ belongs to Hpm () and there exists u € HE(Q) such
that the sequence (u\™),en converges in L?(Q) to @ as m — 400 and

(2.14) im a2, ) = IVall72 gy
2. for all m € N, v(™ belongs to Hpm) () and there exists C > 0 and v €

HY(Q) such that |0 || pemy < C for all m € N and the sequence (v(™)en
converges in L*()) to v as m — +oo.

Then the following convergence result holds:

(2.15) lim  [u™ 0] 50 = / Via(z) - Vo(z)de.
Q

m——+oo
Proof. Under the assumptions of the lemma, let ¢ € C2°(§2). We have

[U(m)»v(m)b<m> = [U(m) - PD<m>%v(m)]D<m> + [Pl)(m)%v(m)]mma

and therefore, thanks to the Cauchy—Schwarz inequality, we get

and

[u™, 0™ 5y > [Pp,, 0, 0™ ] pem — [[ul™ = Ppim @l pom [[00™ || pom)

™ ™) 50 < [Pp,, 0, 0™ pem + [u™ = Ppom @llpem |07 pm -

From (2.14) and thanks to Lemma 2.4, we get that

lim ||u(m) — PD<m>90||%<m> =|Vu - V@Hiz(ﬂ)dv

m——+oo

and thus, passing to the limit m — oo in the two above inequalities, we get that

and

lim inf[u™ o™ 5 > / Vo(z) - Vi(z)de — C||Va — V| 2y
Q

m—00

lim sup[u™, 0™ pmy < / V(z) - Vo(z)dz + C||Va — V|| 2 (0.
Q

m— 00

Letting ¢ tend to @ in H}(Q) in the two above inequalities completes the proof. ]
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3. Approximation of the linear steady problem.

3.1. The Stokes problem. We first study the following linear steady problem:
Find an approximation of u and p, weak solution to the generalized Stokes equations
with homogeneous boundary conditions on 0f2, which read

nu —vAu+Vp = fin Q,
(3.1 diva = 0 in €,
=0 on 0N.

For this problem, the following assumptions are made:

(3.2) Q is a polygonal open bounded connected subset of R?, d = 2 or 3,
(3.3) v e (0,+00), n € [0,+00),

(3.4) feL?()

We then consider the following weak sense for problem (3.1).
DEFINITION 3.1 (weak solution to the steady Stokes equations). Under hypothe-
ses (3.2)-(3.4), let E(QY) be defined by

(3.5) EQ) :={t= (W)= 4 € HY(Q)? divi = 0 a.c. in Q}.

Then (u,p) is called a weak solution of (3.1) (see, e.g., [36] or [5]) if

u € E(Q), pe L*Q) with / p(z)dz =0,
Q

(3.6) 17/912@) <o(x)dx + l//QVﬂ(x) : Vo(z)de
- / (a)divi(z)de = / f@)-o(z)de Vo€ HLQ),
Q Q

where, for all u,v € H}(Q)? and for a.e. x € Q, we use the following notation:
d . .
Vi(z) : Vo(x) = ZVﬂ(l)(aﬁ) Vo (z).
i=1

The existence and uniqueness of the weak solution of (3.1) in the sense of the
above definition is a classical result (see, e.g., [36] or [5]).

3.2. The finite volume scheme. Under hypotheses (3.2)—(3.4), let D be an
admissible discretization of €2 in the sense of Definition 2.1. It is then natural to write
an approximate problem to the Stokes problem (3.6) in the following way (recall that
Ep(Q) = {u € Hp(Q)4,divp(u) = 0}):

u € Ep(Q), p € Hp(Q) with / p(z)dz =0,
Q

(3.7) n/Qu(x) ~v(z)dz + viu,v]p

- / p(x)divp (v)(z)de = / f(x) - v(z)dx Yo € Hp(Q)<.
Q Q
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As we use a colocated approximation for the velocity and the pressure fields, the
scheme must be stabilized. Using a nonconsistent stabilization a la Brezzi-Pitkaranta
[6], we then look for (u,p) such that

(u,p) € Hp(Q)? x Hp(Q) with /Qp(x)dx =0,

7 /Q u(z) - v(z)de + viu,v]p

3.8
(3:8) —/Qp(x)diVD(v)(x)dx = /Qf(x) ~v(z)de Vo € Hp(Q)?,

/QdiVD(u)(;v)q(;v)dx = —\ size(D)” (p,¢)p Vg € Hp(Q),

where A > 0 and « € (0,2) are adjustable parameters of the scheme which will have
to be tuned in order to make a balance between accuracy and stability.

System (3.8) is equivalent to finding the family of vectors of RY, (ur)xer, and
scalars, (pr)rem, solution to the system of equations obtained by writing for each
control volume K of M

Mg My
N Mg Ug — V p l (up, —ug) —v Z 7 (0 —ug)
LeENK K|L o €EK NEoxt Ko
(3.9) +L€ZN Ak (pr —pK) = /Kf(x)dl“,
K

m
Z Ak - (ug +ug) — X size(D)” Z dK‘L (pr —pK) =0,
LeNk LeENk K|L

supplemented by the relation

(3.10) > mg pr =0.
KeM

Defining p, = (px +pr)/2 if 0 = K|L, and p, = px if 0 € Eext N Ek, and using
the fact that ZJE&( m,ng , = 0, one notices that ZLe/\/’K Ak (pr — pk) is in fact
equal to » o MyP,N,q, thus yielding a conservative form, which shows that (3.9)
is indeed a finite volume scheme.

The existence of a solution to (3.8) will be proven below.

3.3. Study of the scheme in the linear case. We first prove a stability
estimate for the velocity.

LEMMA 3.2 (discrete H} estimate for the velocity). Under hypotheses (3.2)—
(3.4), let D be an admissible discretization of Q0 in the sense of Definition 2.1. Let
A € (0,4+00) and a € (0,2) be given. Let (u,p) € Hp(Q)? x Hp() be a solution to
(3.8). Then the following inequalities hold:

(3.11) V|ullp < diam(Q)[|f]| £z (e
and
(3.12) v X size(D)” |p|5 < diam(Q)QHfHQLQ(Q)d.

Proof. Setting v = and ¢ = p in (3.8), we get

n/gu(a:)gdx—i—uHuHQD—/Qp(ac)diVD(u)(x)dx:/Qf(x)-u(x)d:z:.
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Since 1 > 0, the second equation of (3.8) with ¢ = p and Young’s inequality yields

n/u@&u+ﬂm%+xmamam%
Q

diam(2)? . v 5
<, Iflza@e + m\\uﬂm(md-
Using the Poincaré inequality (2.4) gives

- 2
lully + X size(D) ol < S0 gy s g,
which leads to (3.11) and (3.12). 0
We can now state the existence and uniqueness of a discrete solution to (3.8).
COROLLARY 3.3 (existence and uniqueness of a solution to the finite volume
scheme). Under hypotheses (3.2)—(3.4), let D be an admissible discretization of ) in
the sense of Definition 2.1. Let A € (0,4+00) and o € (0,2) be given. Then there
exists a unique solution to (3.8).
Proof. Let us define the finite dimensional vector space

V= {(u7p) € Hp(Q)? x Hp(Q), / p(z) de = 0} .
Q
Let (u,p) € V be given, and let us define (@, p) € Hp(Q2)? x Hp(Q) by

/Qﬂ(x) co(z)dr = n/szu(x) ~v(z)dz + viu,v]p — /Qp(a:)divD(v)(x)dsc
Vv € Hp(Q)4,
/ p(x)q(x)dx = / divp (u)(x)q(x)dx + A size(D)” (p,q)p Yq € Hp ().
Q Q

Taking ¢ = 1q shows that [, p(x) dz = 0 (see Remark 2.2), and therefore (u,p) € V.
Hence we define the linear mapping ¥ : V — V such that ¥(u,p) = (@,p). From
Lemma 3.2, we get that ¥(u,p) = 0 implies u = 0 and p = 0. This proves that ¥(-) is
one to one. This concludes the proof of existence and uniqueness of the (u, p) solution
to (3.8), since ux = é [ f(x)da and px = 0 for all K € M obviously define an
element of V. a0

We then prove the following strong estimate for the pressure.

LEMMA 3.4 (L? estimate for the pressure). Under hypotheses (3.2)—(3.4), let
D be an admissible discretization of €0 in the sense of Definition 2.1 and let ¢ > 0
be such that regul(D) > (. Let A € (0,400) and o € (0,2) be given. Let (u,p) €
Hp(Q)? x Hp(2) be a solution to (3.8). Then there exists Cy , depending only on d,
Q,n, v, A\, a, and ¢, and not on size(D), such that the following inequality holds:

(3.13) pllzz) < C1llfllL2)e-

Proof. We first apply a result by Necas [30]: thanks to fQ p(x)da = 0, there exists
Co > 0, which depends only on d and 2, and v € H}(Q)¢ such that divo(z) = p(z)
for a.e. x € Q and

(3.14) 10l )2 < C2llpll22(0)-
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We then set

Vg = — / v(z)dy(z) Vo € &

My

(note that v, = 0 for all ¢ € E) and define v € Hp(2)? by

(3.15) Vg = — /K@(x)dx VK € M.

mg

Applying the results given in [13, p. 777], we get that there exists C5 > 0, depending
only on d and ¢, such that

(3.16) ') — )2 < ¢y %/ (Vo (z))2da Vi = 1,...,d,
ms K

and

(3.17) [vllp < Cs[[0]| g2 )e < C3 C2[[pllrzo)-

We then have

/ p(z)divpu(z)de = Z DK Z Agr - (vk +vp) =To + T3,
Q KeM LeENK

where
T, = Z PK Z 2AKk1 - vK|L
KeM LeNk
= Z DK Z/ o(x) - ngrdy(z)
KeM LeNk KL
= | ple)ivo(e)ts = ol oy
and

1
Ty = > px Y, Mg (2(UK + ) —UKL> ‘DL

KeM LeNKk

1
= > mgnlpx —pr) 5K +oL) = vk | kL.
o=K|LEEn

We then have, thanks to the Cauchy—Schwarz inequality,
1 2
T3 < |plp Z mp Ldir (Q(UK +ovr) — UK|L) .
o=K|LEEns

Applying inequality (3.16) and thanks to (§(vk +vr) — vk r)? < 3((vk — vk|n)? +
(v — vK|L)2)7 we get that

d
1 . —(i
T? < 5 % Z drrCs sme(D)/K LZ(VU(')(m))de.
ULi=1

o=K|LEEint
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This in turn implies the existence of Cy > 0, depending only on d and (, such that
2 . 20,12 152
T3 < Cusize(D)? |pf 0% 0y

Thanks to (3.14), we then get, by gathering the previous results,
318 [ ple)divou(e)ds > Il - Casize()lpinC ] o

We then introduce v as a test function in (3.8). We get

(3.19) /Q p(2)divp (v)(z)dz = n /

Q

u(x) - v(x)dz + viu,v]p — /Qf(x) ~v(z)da.

Applying the discrete Poincaré inequality, (3.17), and (3.18), we get the existence of
Cs, depending only on d, Q, f, n, v, and (, such that

||pHQL2(Q) — Cysize(D)|p|pCs ||P||L2(sz) <Cs (HUHD + Hf”Lz(sz)d) ||PHL2(Q)'
We now apply (3.11) and (3.12). Since size(D)? < size(D)*diam(2)?~“, the condition

a < 2 is sufficient to yield (3.13) from the above inequality, a factor 1/ being
introduced in the expression of Cy (it is therefore not possible to let A tend to 0

in (3.13)). O
We then have the following result, which states the convergence of the scheme
(3.8).

LEMMA 3.5 (convergence in the linear case). Under hypotheses (3.2)—(3.4), let
(u,p) be the unique weak solution of the Stokes problem (3.1) in the sense of Definition
3.1. Let A € (0,4+0), a € (0,2), and ¢ > 0 be given, and let D be an admissible
discretization of ) in the sense of Definition 2.1 such that regul(D) > (. Let (u,p) €
Hp(Q)4 x Hp(Q) be the unique solution to (3.8).

Then w converges to @ in L*(Q)?, |uD|p converges to |[Va'D|p2(qya for all
i=1,...,d, and p converges to p in L*() as size(D) tends to 0.

Remark 3.1. The convergence of |[u()||p to ||[Va()||2(qyaxa as size(D) tends to
0 is sufficient to prove the convergence of some discrete gradient of u(? to Va(® in
L2(Q)? (see [15]).

Proof. Under the hypotheses of the above lemma, let (D(m))meN be a sequence
of admissible discretizations of €2 in the sense of Definition 2.1 such that

lim size(D™) =0
m—0o0
and such that regul(D(™)) > ¢ for all m € N.

Let (u(™),p™) € Hpm ()% x Hpm () be given by (3.8) for all m € N. We
shall prove in a first step the existence of a subsequence of (D(m))meN such that
the corresponding sequence (u(™)),, ey converges in L?*(Q)¢ to some function @ and
the sequence (p{™),,cn weakly converges in L?(Q)¢ to some function p, as m — oo.
We then show that (@, p) is the solution of (3.8). Then, in a second step, following
some ideas of [15], we again extract a subsequence such that ||u("™||pm converges
to ||Vl g2 (q)axa and p(™ strongly converges to p in L*(Q) as m — oco. The proof is
then complete since the solution (@, p) of (3.8) is unique and therefore the convergence
property holds for the whole sequence.

Step 1. Convergence of the velocity.
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Using (3.11), we obtain (see [12, 13]) an estimate for the translates of u("™): for
all m € N, there exists Cs > 0, depending only on 2, v, f, and g, such that

ooy L@+ =™ @) e < Co el 6]+ size(D),
for k=1,...,d V¢ € RY,

where u(™*) denotes the kth component of (™). We may then apply Kolmogorov’s
theorem and obtain the existence of a subsequence of (D"),,cn and of @ € HE(Q)?
such that (u("™),,en converges to @ in L?(Q)?. Thanks to Lemma 3.4, we extract
from this subsequence another one (still denoted by (D™),,cy) such that (p(™),,en
weakly converges to some function p in L?(Q). In order to conclude the proof of the
convergence of the scheme, there only remains to prove that (u,p) is the solution of
(3.6).

Let ¢ € C°(Q)?%. For m large enough, and thus size(D("™) small enough, dK N

92 = () holds for all K € M such that KN support(yp) # (. Let us take v = Ppm)
n (3.8). Applying Lemma 2.4, we get

m—0Q

lim [u™)] Pp ) @] pem / Va(z) : Vo(x)de.
Q

Moreover, it is clear that

tim_ [ f(a) Pocrp(o)d [ fa)-olade

m—00 O

and

lim 77/Qu(m)(m)-PD@,L)cp(x)dxn/ a(z) - p(z)dx.

m-—00 Q

Thanks to the weak convergence of the sequence of approximate pressures, to (3.12)
and to the hypothesis a < 2 we now apply Lemma 2.3, which gives

(3.21) lim [ p")(2)divpm) (Ppom @) (x)dz = / p(x)divep(z)da.
Q

m—00 O

Let us now prove that div(z) = 0 almost everywhere in Q. Let ¢ € C°(Q) be
given and let us take ¢ = Ppm)¢ in (3.8). We get T4(m) = —Tém), where

T = / divpom (@) (™) Ppom p(z)dz
Q
and
7™ = X size(DU™)* (p™), Pry 9)p.

On one hand, the third item of Lemma 2.4 yields

d
lim 7™ :Z/ o(x)d;aVd.
=179

m—00
On the other hand, using the Cauchy—Schwarz inequality, we get

Tém) < size(D™) ™) | iy

P’D('rn) (p|'D(7n) .
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Therefore, thanks to (3.12) and to the regularity of ¢ (that implies that |Ppm@|p

remains bounded independently of size(D(™)) we obtain lim,, Tém = 0. This in
turn implies that

d
(3.22) Z /Q o(x)0;a) (z)dz =0V ¢ € C(),

which proves that @ € E().
Step 2. Strong convergence of the pressure.
As in the proof of Lemma 3.2, we set v = u(™) and ¢ = p™) in (3.8). We get

[ ) e o i + A e (D) (b = [ f(a)- 0 (@)

Passing to the limit in the above equation provides

n/ a(z)?dz + vlim sup ||u(m)||%(m> < / f(@) - a(x)de,
Q Q

m—0oQ0

and therefore, since @ is the solution of the continuous problem (3.6), we have

limsupHu(m)HQDm) S/(Vﬁ($>)2dx'
Q

m— 00

Thanks to the fact that
lim inf ™ 12,0, > / (Va® (2))2de Vi = 1,.. . d,
m—0o0 Q

proved in [28, Lemma 2.2], we get that

(3.23) lim [Ju®™ 2., = / (Vi (z))2dz Vi=1,...,d.
m— 00 Q

Following the same line as in the proof of Lemma 3.4, we now consider a function
o™ ¢ H}(Q)? such that divo(™ (z) = p(™)(x) for a.e. € Q and

||17(m)||Hg(sz)d < Co [P L2 ()

We then define v("™ € Hpem) () by

v%n) = L/ 7™ (z)dz VK € M.
meg Jg
Thanks to (3.13) and applying Lemma 2.4, we get the existence of a subsequence of
(D), e, and of 5 € H(Q)¢ such that (v(™),,en converges to @ in L?(Q)9. Passing
to the limit m — oo shows that divo(x) = p(z) for a.e. x € Q.
Using the relations (3.18) and (3.19) obtained in the proof of Lemma 3.4, we get

Ip"™ |72 () — Casize(DT™) [p™ | pim Cs P || 120

< n/ u™ (z) - o™ (2)dz + v[u™ 0™ s — / f() - o™ (z)dz.
Q Q
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Thanks to (3.12) and (3.13), we have

lim Cysize(D")|p"™ | iy Cs [[p™]| £2(02) = 0.

m— 00

In addition, using (3.23), we have from Lemma 2.5 that

lim [u™, 0™ 50 = / Va(z) : Vo(z)de.
Q

m——+oo

Therefore, passing to the limit m — oo in the above inequality yields

lim sup ||p(7”)||%2(9) < 77/9&(90) - 0(x)dx + V/Q Va(z) : Vo(z)dz — /Q f(z) - v(z)dz.

m—00

Taking ¢ as test function in (3.6) gives
n/{zﬁ(z) -v(z)dx + l//QVﬂ(x) : Vio(x)de — /Qﬁ(x)de = /Qf(:c) - 0(x)d,

and therefore limsup,, .. [|p™ 172() < [Pl172q)- Since, classically, we get from the
weak convergence of p(™ to p in L?(Q) that liminf,, . ||p(m)||%2(g) > [|pl|72 (0 We
thus obtain that lim,, . Hp(m)H%z(Q) = Hﬁ”%z(m. This completes the proof of the
strong convergence of p(™) to p in L?(Q). O

3.4. An error estimate. The following result states an error estimate for the
scheme (3.8).

LEMMA 3.6 (error estimate in the linear case). Under hypotheses (3.2)—(3.4),
we assume that the weak solution (u,p) of the Stokes problem (3.1) in the sense of
Definition 3.1 is such that (u,p) € H?(Q)? x H (). Let X € (0,+00) and a € (0,2)
be given, let D be an admissible discretization of ) in the sense of Definition 2.1, and
let ¢ > 0 such that regul(D™)) > ¢. Let (u,p) € Hp(Q)? x Hp(Q) be the solution to
(3.8). Then there exists C7 , which depends only on d, Q, v, n, and ¢ such that

(3.24) |lu — Ppa|3 < Cre(\,size(D),p, ),
(3.25) [l — a||2L2(Q) < Cre(N,size(D), p, a),
(3.26) A size(D)® |p|% < Cre(),size(D), p, 0),
(3.27) lp = Bll720) < Cre(Xsize(D), p, w),
where

. o . o 1. o _ _
g(\, size(D), p, ) = max (/\sme(D) , Xs1ze(D)2 ) (||p||?{1(g) + ||u||§12(9)) )
(3.28)

Proof. The proof is divided into three steps: we first state the equation controlling
the errors, then we prove the estimates (3.24)—(3.26) and, finally, (3.27).

Step 1. Statement of the control equation for the errors.

We define (u,p) € Hp()? x Hp(Q) by @ = Ppi, which means iy = u(zrx) for
all K € M, and pr = 51— [ p(x)dz for all K € M.
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Integrating the first equation of (3.1) on K € M gives

) | /K LIS <_V / Va(z) - nxody(z) + / p(@nmdm))
| iy

K

We introduce for K € M the following consistency residuals:

1
R, K—uK——/ u(x)de,
mg Jg

1 =N 1 _

for L € Nx, Ra kL = d—(uL —Ug) — Via(z) - ng gpdy(z),

) K|L ME|L JK|L
for 0 € Exc N Euxts Raw = ——(0 — fig) — — / Vi(z) - nx.ody (@),

dK,J ms /o

1, . - 1 _

for L € Nk, Ry k1 = 5(101{ +Dr) — pz)dy(z),
Mg|L JK|L

1
for 0 € €k N€ext, Rv,o =Dk — . / p(z)dy(z).

(2 [ea

Using these notations and the relation .. m,ng, =0, we get from (3.29)

N m mg _
anUK_V<Z ML @y, —ag) + > d (O—UK>>

d
LeNk K|L o €EKNEext Ko

+ Z Akr (ﬁL*ﬁK):/ f(z)dz + mg Ry,
LeENKk K

with
Rk =nR ! > myRao+ ! > m, R
K =1 o, K Vm Mg 1A o m My v sNK o-
o€l o€k

We set fu =4 — u and ép = p — p. We then get, subtracting the first relation of the

scheme (3.9) from the above equation, for all v € Hp ()<,

(3.30) /&L x)dx + v]u, va/(Sp )divp (v)(x )dz:/R(m)vdx,
Q
and, setting v = u in this relation,
0 / fu(z)2dz + v|6ul]% — / p()div (6u) () da = / R(x)u(x)dz.
Q Q Q
We now integrate the second equation of (3.1) on K € M. This gives
> / u(z) - ng dy(z) = 0.
el V7
Since @ vanishes on the boundary of €2, we then obtain

> Agp-(ix +1r) = Y mgjpRavxr VK € M
LeNk LeNK
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with

1 ~
Raiv x| = (2(UK +ur) — —

/ u(a:)d*y(x)) ‘ngr VK € M andVL € Nk.
KL

We then have, subtracting the second relation of the scheme (3.9) from the above
equation,

/Q divp(8u) (2)8p(x)dz = A size(D) (p,5—php+ 3 1y Rawo (1 — p1).

o€Eint

Gathering the above results, we get
1 [ uw)?de + vjsuly + X size(D)" [of
Q

= X size(D)® (p,p)p + /Q R(zx) - bu(x)dx + Z m, Raiv,o (px — opr).

o€&in

(3.31)

Step 2. Proof of the bounds (3.24)—(3.26).

Let us study the terms at the right-hand side of the above equation. We have,
using the Young inequality,

1 1 i
(3.32) (p.)p < ZIplD + P1D < 1 1plD + Cs 015 (0)-

We then decompose [, R(z) - bu(x)dz as [, R(x) - 6u(z)dx = Tg + Tr + Ty, with
Ts =n / Ro(x) - bu(z)dx,
Q

Tr=v Z ( Z mp L RBa kL + Z mURA,U> “ur,

KeM \LeNk 0€EKNEext

Ty = Z Z m, Ry oNg - OUk.

KeMoelk

Thanks to interpolation results proven in [13] and to (2.4) (see also [20] for a compre-
hensive exposition of consistency estimates, although with slightly different projection
operators), we obtain

. _ 14
Ty < Cysize(D)?[[ullfpa(aya + 7|8,
. _ 14
(3.33) Ty < Crosize(D)? |32y + 7 ull,

. _ 1%
Ty < Chy size(D)?||pll 3 oy + ZII&LH%
We then have
Z maRdiv,a(épK - @L) - T9 - TIO

0€Eint
with
(3.34) Ty = Z m, Raiv,o (Px — pr) < Crasize(D) (Hﬁ”?{l(g) + ||ﬂ\|%{2(9)d) ;

0€Eint
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and

TlO - Z ma'Rdiv,U(pK - pL)
(3.35) fiefmt .
< (A size(D)” [plp + g Xsize(D)Q‘allﬂH?mmd'

Gathering equations (3.31)—(3.35) gives

16ull3 + A size(D)* [plp < Cra (X, size(D), p, w),

19

where (A, size(D),p, @) is defined by (3.28). This in turn yields (3.24) (and thus

(3.25) thanks to the Poincaré inequality) and (3.26).
Step 3. Proof of the bound (3.27).
We then again follow the method used in the proof of Lemma 3.4.

Using [, p(z)dz = 0, and therefore [, p(z)dz =0, let v € H} ()¢ be given such

that divo(z) = ép(z) for a.e. x €  and

(3.36) 0]l 2 @) < C2 18l 2(0)-
We again set

o) = 1 / 79 (z)dy(z) Vo € £ and Vi = 1,... ,d,

My
and we define v € Hp(Q2)? by

, 1 4
v%) = —/ fD(Z)(x)dx VK eMandVi=1,...,d.
K

mg

The same method gives

18p]12: 0y < /Q () diva (v) (2)de + C size(D) plp o] 13 0y

. . 1
< [ ladivp(o)(e)de + Cussize(DPlpfp + 1[0
Q

We now use v as test function in (3.30). We get

/Qép(m)divD(v)(x)d:c = 77/Q Su(z)v(x)dx + v[bu, v]p Jr/QR(m)vdx.

Gathering the two above relations, (3.33) and (3.36) yield
1 . _ _
||5PH%2(Q) < 5”51?”%2(9) + Cyg size(D)? <||p||?{1(9) + ||u||§—12(§2)d)
+Ci7 [|8ul + C1s size(D)? [plp.

Applying (3.25) and (3.26) then gives (3.27). d

Remark 3.2. In the above result, letting o = 1, we get an order 1/2 for the
convergence of the scheme. We recall that this result is not sharp, and that the

numerical results show a much better order of convergence.



20 R. EYMARD, R. HERBIN, AND J. C. LATCHE

4. The finite volume scheme for the Navier—Stokes equations. Before
handling the transient nonlinear case, we first address in the following section the
steady-state case.

4.1. The steady-state case. For the continuous equations

d

naY — vATY + 9;p + Za(j)aja(i) =fDinQ, fori=1,...,d,
(4.1) p =1

divi = Zaia(“ =0in

i=1
with homogeneous Dirichlet boundary conditions for the velocity, we define the fol-
lowing weak sense.
DEFINITION 4.1 (weak solution to the steady Navier—Stokes equations). Under

hypotheses (3.2)—(3.4), let E(Q)) be defined by (3.5). Then (u,p) is called a weak
solution of (4.1) if

u € E(Q), pe L*Q) with / x =0,

(4.2) 77/ u(z) da:+y/Vu (z)dz
_/Qp(x)dlvv( z)dx + b(a, @, v) /f co(x)dx Yo e Hi(Q)Y,

where the trilinear form b(-,-,-) is defined, for all i, v,w € HE(Q)?, by

b(a, v, w) ZZ/ 2)0;0® ()™ () dz.

k=1li=1

The existence of a weak solution of (4.2) in the sense of the above definition, in
two or three dimensions, is a classical result (again, see, e.g., [36]). Note that the
uniqueness of the solution holds only under small data conditions.

We now give the finite volume scheme for this problem. Under hypotheses (3.2)—
(3.4), let D be an admissible discretization of ) in the sense of Definition 2.1. We
introduce Bernoulli’s pressure p + %u2 instead of p, again denoted by p, and for any
real value A > 0 and « € (0,2) we look for (u,p) such that

(u,p) € Hp(Q)? x Hp(Q) with /Qp(x)dx =0,

1 .
n/ﬂu(x) ~v(x)dz + vu,v]p + 5 -/Q u(z)?divp (v)(z)dz
f/ﬂp(x)divD( v)(x)dx + bp(u, u, v) /f (z)dz Yov € Hp(Q)?,

/QdiVD(u)(x)q(x)dx = =M\ size(D)* (p,¢)p Vg € Hp(Q),

d

where, for u,v,w € HD(Q) we define the following approximation for b(u,v,w):

(4.4) bp (u, v, w) Z Z (Arr - (uk +ur)) ((vp — vk) - wk).
KGM LeNk
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System (4.3) is equivalent to finding the family of vectors of RY, (ur)xer, and
scalars, (pr)rem, solution to the system of equations obtained by writing for each
control volume K of M

m m,
anuK—yZ dKlL(uL—uK)—V Z 7 (0 —ug)
Lenx “KIE CEERNEny T
1
+ Z (AKL . <2(UK +uL)>> (up, — uk)
(4.5) LeNx )
+ D Axr (pr —px) - 5 > Axr (uf —uk) =/ f(z)dz,
LeNx LeNx K
m
Z Axr - (ur +ur) — X size(D)” dK‘L (pr —pr) =0,
LENK LenNyx KL

supplemented by the relation

Z mg pr = 0.

KeM

Defining px = pr — ui /2 and p, = (b +pr)/2 if 0 = K|L, py = px if
0 € Eext N €k, and using the fact that degK m,ng , = 0, one again notices that
ZLeNK Ak (pr—pPr) is in fact equal to degk m,p,NK,q, thus yielding a conserva-
tive form for the fifth and sixth terms of the left-hand side of the discrete momentum
equation in (4.5). Defining u, = (ux +ur)/2if 0 = K|L, uy = 0if 0 € Eext NEK, OneE
obtains that the nonlinear advective term Y-, o\, (Axr - (5(uk +ur))) (ug —uk) is
equal to ZUGSK m, (Mg, - Uy )Ue — MU (divpu) ; one may note that (divpu)x =
Yoo £ MoNK o - Uy. Hence the nonlinear advective term is the sum of a conserva-
tive form and a source term due to the stabilization (this source term vanishes for a
discrete divergence free function u).

Let us then study some properties of the trilinear form bp(-,-,-). First note that
the quantity bp(u, v, w) also states that

(46) bp(u,v,w) = % Z (AKL . (UK + uL)) ((UL — ’UK) . (wL + ’U)K))
K|LEEn:

We thus get that, for all u,v € Hp(Q2)4,

bp(u,v,v) = % Z (Akr - (ug +ur))((ve)? = (vk)?)

K|L€EEint

_ _% /Q v(@)? divp (u)(z) de.

(4.7)

We get, in particular, that, for all u € Ep(Q), bp(u,u,u) = 0, which is the discrete
equivalent of the continuous property.

Remark 4.1 (upstream weighting versions of the scheme). The results of this
paper are still valid setting Fixr(u) = Axy, - (ux +ur) and considering, for u, v, w €
Hp(Q)4,

o 1
prs(u,U,w):bp(u,v,w)—i—i Z Okr|Frr(u)| (v —vk) - (wr, — wk),
K|LEEint
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with, for example, © ;, = max(1 — 21/2;'5 |Frr(u)l,0).

We then get, for all u,v € Hp(2)?, the inequality

by (u,v,v) > —%/ v(x)3divp (u)(z)d,
Q

which is sufficient to get all the estimates of this paper, together with the convergence

properties of the scheme. The use of such a local upwinding technique may help avoid

the development of nonphysical oscillations only when meshes are too coarse.

The following technical estimates are crucial to prove the convergence properties
of the scheme.

LEMMA 4.2 (estimates on bp(+, -, -) by discrete Sobolev norms). Under hypotheses
(1.3)—(1.7), let D be an admissible discretization of Q@ in the sense of Definition 2.1,
and ¢ > 0 such that regul(D) > (. Then there exist C1g > 0 and C19 > 0, depending
only on d, ¢, and 2, such that

(4.8)  bp(u,0,w) < Cig |[ulla@ye [0l [wllLs@ye < Cro llullp vl [[w]lp-

Proof. The quantity bp(u, v, w) reads

bp(u,v,w) = iKZ%A LZN (wg - (v, — vK)) I;IZILL ((rp —rx) - (ur +ur)).

Applying the Cauchy—Schwarz inequality twice and using the fact that (v, — xx)% =

d2%, , and that, for any admissible discretization, LeNk %“LL d3, <d %, yields

bp(u,v,w)? < Ca <Z 3 mK'L<wK>2<zLxK>2<2<uK>2+2<uL>2>>

KeM LENK

( > D I;IKM(UL - UK)2>

KeM LeENK KL

1/2 1/2
<Oy (Z mK|wK4> <Z mK|UK4> [v]15-

KeM KeM

The inequality (4.8) is now a straightforward consequence of the following discrete
Sobolev inequality, which holds under the same regularity assumptions on the mesh
(see proof in [8] or [13, pp. 790-791])):

(4.9) [ull @) < Ca2 lullp. O

Remark 4.2 (2D case). In the case d = 2, it may be proven setting o = 2,p =
p’ = 2 in the proof of [13, p. 791] that

1/2 1/2
taryallully

lullLa(ye < Cos |lull

and therefore that there exists Co4 > 0, depending only on d and 2, such that
1/2

bp(u,v,w) < Coq |v]lp ([[ullp ullp2@ye [wllp [[wllL2@ya) "

This is a discrete analogue to the classical continuous estimate for the trilinear form.
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The existence of a solution to the scheme (4.3) is obtained through a so-called
“topological degree” argument. For the sake of completeness, we recall this argument
(which was first used for numerical schemes in [11]) in the finite dimensional case in
the following theorem and refer to [9] for the general case.

THEOREM 4.3 (application of the topological degree, finite dimensional case).
Let V' be a finite dimensional vector space on R, and g be a continuous function from
V to V. Let us assume that there exists a continuous function F from V x [0,1] to V
satisfying the following:

1. F(-,1) =g, F(-,0) is an affine function.
2. There exists R > 0 such that, for any (v,p) € V x [0,1], if F(v,p) =0, then
[ollv # R.
3. The equation F(v,0) =0 has a solution v € V such that ||v|v < R.
Then there exists at least a solution v € V' such that g(v) =0 and ||Jv||v < R.

Here g(v) = 0 represents the nonlinear system (4.3), and we are now going to
construct the function F and show the required estimates. Note that here the use of
Bernouilli’s pressure leads to simpler calculations.

LEMMA 4.4 (discrete H} estimate for the velocity). Under hypotheses (3.2)—
(3.4), let D be an admissible discretization of Q0 in the sense of Definition 2.1. Let
A € (0,+00) and a € (0,2) be given. Let p € [0,1] be given, and let (u,p) € Hp()? x
Hp(Q) be a solution to the following system of equations (which reduces to (4.3) as
p=1andto (3.8) as p=10):

(u,p) € Hp(Q)? x Hp(Q) with /Qp(x)dx =0,

n/ﬂu(:c) ~v(z)de + vu,v]p + g/ u(z)?divp (v)(x)dz

Q
+ p bp(u,u,v) — /Qp(:c)divD(U)(x)dx = /Qf(x) ~v(x)dz Yo € Hp(Q)4,

A divp (u)(z)g(x)dz = — X size(D)” (p,¢)p Vg € Hp(Q).
(4.10)

Then u and p satisfy the following estimates, which are the same inequalities as 0b-
tained in the linear case (inequalities (3.11) and (3.12)):

vijullp < diam(Q)|[fllz2(0)e,

v X size(D)” |p|5 < diam(Q)ngH%%Q)d'

Proof. The proof is similar to that of Lemma 3.2, using the property (4.7) on the
discrete trilinear form. O

We are now in position to prove the existence of at least one solution to scheme
(4.3).

LEMMA 4.5 (existence of a discrete solution). Under hypotheses (3.2)—(3.4), let
D be an admissible discretization of  in the sense of Definition 2.1. Let X € (0, +00)
and a € (0,2) be given. Then there exists at least one (u,p) € Hp(Q) x Hp(R),
solution to (4.3).

Proof. Let us define V = {(u,p) € Hp(Q)?x Hp () s.t. [, p(z)dz = 0}. Consider
the continuous mapping F : V x [0,1] — V such that, for a given (u,p) € V and
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p € [0,1], (u,p) = F(u,p, p) is defined by

/Qﬂ(x) cv(z)dr = T]/Qu(x) ~v(z)dz + viu,v]p — / p(z)divp (v)(z)dz

Q

+p <; /Q u(z)?divp (v)(z)dz + bp(u, u, u)>

- /Q f(x) - v(x)dx Vv € Hp(Q)4,
/ P(a) - g(x)dz = / divp(u) (2)g(2)dz + A size(D)* (p,q)p Vg € Hp(R).
Q Q

It is easily checked that the two above relations uniquely define the function F(-,-, ).
Indeed, the value of aﬁ? and pg for a given K € M and i = 1,...,d are readily
obtained by setting v = 15, vl =0 for j # 4, and ¢ = 1x.

The mapping F(.,.,.) is continuous, and, for a given (u, p) such that F(u,p,p) =
(0,0), we can apply Lemma 4.4, which proves that (u, p) is bounded independently on
p. Since F'(u,p,0) is an affine function of (u, p) and F(u, p,0) = 0 admits one solution
(see Corollary 3.3), we may apply Theorem 4.3 and conclude the existence of at least
one solution (u,p) to (4.3). 0

We then have the following strong estimate for the pressure.

LEMMA 4.6 (L?(2) estimate for the pressure). Under hypotheses (3.2)—(3.4),
let D be an admissible discretization of €2 in the sense of Definition 2.1, and let
¢ > 0 such that regul(D) > ¢. Let A € (0,400) and o € (0,2) be given. Let
(u,p) € Hp(Q)? x Hp(Q) be a solution to (4.3). Then there exists Cas, depending
only ond, Q, n, v, \, o, and ¢, and not on size(D), such that the following inequality
holds:

2
(4.11) Ipllz2@) < Cos (Ifllzaye + (Ifllr2ye)”) -

Proof. We may follow the proof of Lemma 3.4 until (3.19), which is changed to

/ p(z)divp (v)(z)dz = 77/ u(z) - v(z)dz + v|u,v]p — / f(z) - v(z)dz
(4.12) 7° ¢ ¢

1

+ 3 / u(z)?divp (v)(2)dx + bp(u, u, v).
Q

We again apply the discrete Poincaré inequality (2.4), (3.17), (3.18), and we use (4.8).

We get the existence of Cyg, depending only on d, Q, f, n, v, A, and (, such that

||P||i2(9) — Cysize(D)|plpC2 [|pll L2 (0
<Oy (||U||D + 11 £l 22y + ||U||%) ol z2(0)-

We now apply (3.11) and (3.12), which yields the conclusion. O

We now can state the convergence of scheme (4.3).

THEOREM 4.7 (convergence of the scheme). Under hypotheses (3.2)—(3.4), let
(D) en be a sequence of admissible discretizations of 0 in the sense of Definition
2.1, such that size(D™) tends to 0 as m — oo and such that there exists ¢ > 0 with
regul(D(™)) > ¢ for all m € N. Let \ € (0,+00) and a € (0,2) be given. Let, for all
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m e N, (u™,p"™) € Hpom (Q)4 x Hpom (Q) be a solution to (4.3) with D = D).
Then there exists a weak solution (u,p) of (4.1) in the sense of Definition 4.1 and a
subsequence of (D"),.cn, again denoted by (D™)),,en, such that the corresponding
subsequence of solutions (u'™)en converges to @ in L*(Q) and (p(™ — L (u(™)?),,en
weakly converges to p in L?(Q2).

Proof. Since the same estimates as in the linear case are available in the steady
nonlinear case, the first step of the proof of Lemma 3.5 holds for all the terms of (4.2),
which are present in (3.6). We have to prove only that for a given ¢ € C°(Q2)%, as
m — 400,

Tl({n) :/u(m)(x)2diVD<m>(PD<m)g0)(x)dx tends to /ﬂ(x)zdiwp(x)dx
Q Q

and
Tl(;n) = b’D (u(m)’ u(m)7 PD<7"> gp) tends to b(a; u, 90)

Thanks to the convergence in L?(Q)¢ of (u(™),,en to @ and to the discrete Sobolev
inequalities [|v||req) < Cor |[v]|pem for all v € Hpu () and all ¢ < 6 (see [13,
p. 790]), we get, using the first stability estimate of Lemma 4.4, the convergence
in L2(Q) of (u(™)?),,en to @?. We now remark that for i = 1,...,d the sequence
(Ppom) go(i))meN satisfies the hypotheses of Lemma 2.4. Hence, Vp(m) Ppm) ¢ weakly
converges to Vo in L2(2)?. One has divpu = Z?Zl Vg)u(i) for all u € Hp(Q)?
such that ug = 0 if Ex N Eext # 0. Hence divpm) (Ppom) @) weakly converges to divep
in L?(Q), thus providing the limit of Tl(in).
Thanks to (4.6), dropping for short some indices (m), we have

with

TG = Z Z (Axr - ur)((ur —uk) - p(zK))

KeM LeNK
d d ]
=33 [ W@V ) @) o (@)
k=1i=1 "%
T =2 Y (Axe (mn— w0 (ur — i) - (plak) — o).
K|L€EEnt

Thanks to the convergence in L?(Q)) of (u(m)(i)PDm)(p(j))meN to aWel), 4,5 =
1,...,d, we get from Lemma 2.4 that

d d
lim 7y5Y =33 / D (2)9;u® ()" (2)dz = b(a, u, ¢).
Q

m— oo
k=1li=1

We have

T = iKLZ:esim dir, (r;lfflj ngy - (ur — UK)) ((ur —uk) - (p(rx) — w(zL))),
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and therefore, since |¢(zx) — ¢(x1)| < dx 1 Cysize(D), where C,, is a bound of Vi in
L ()44 and since dx 1, < 2 size(D), the following estimate holds:

TS| < 4 size(D)2Cy ||u)|3.
Therefore, the second estimate of Lemma 4.4 yields
lim T =0,
which concludes the proof of convergence. ]

4.2. The transient case. We now turn to the study of the finite volume scheme
for the transient Navier—Stokes equations, the weak formulation of which is in the
following definition.

DEFINITION 4.8 (weak solution to the transient Navier-Stokes equations). Under
hypotheses (1.3)—(1.7), let E(Q) be defined by (3.5). Then 4 is called a weak solution
of (1.1)~(1.2) if u € L*(0,T; E(Q)) N L>=(0,T; L*()?) and

Vo € L*(0,T; B(Q) N C2(Q x (—o0,T))?,

_/T/ﬂ(x,t)~3t<p(x,t)dmdt—/ﬂini(x)'@(xao)dx

T
+u/ /Vux 1) : Ve(r, t) de dt +/0 b, 1), (1), (- £)) dt

/ /f p(x,t)dedt.

The existence of a weak solution of (4.13) in the sense of the above definition, in
two or three dimensions, is a classical result (again, see, e.g., [36] or [5]). Note that
the uniqueness of the solution holds in two dimensions, and that it has only been
proven in three dimensions under small data conditions.

Remark 4.3. From (4.13), we get that a weak solution u of (1.1)—(1.2) in the sense
of Definition 4.8 satisfies d,u € L*4(0,T; E(Q)') and is therefore a weak solution
in the classical sense, such that @(-,0) is the orthogonal L?-projection of i, on
{v € L3(Q)%,dive = 0, trace(v - npg, 9Q) = 0} (see, for example, [36] or [5]).

We first give the definition of an admissible discretization for a space-time domain.

DEFINITION 4.9 (admissible discretization, transient case). Let Q be an open
bounded polygonal (polyhedral if d = 3) subset of R%, and 0Q = Q \ Q its boundary,
and let T > 0. An admissible finite volume discretization of Q x (0,T), denoted by
D, is given by D = (M,E,P,N), where (M,E,P) is an admissible discretization of
QO in the sense of Definition 2.1 and N € N* is given. We then define 6t = T/N, and
we denote by size(D) = max(size(M, &, P), 6t) and regul(D) = regul(M, &, P).

Under hypotheses (1.3)—(1.7), let D be an admissible discretization of  x (0,7T)
in the sense of Definition 4.9 and let A € (0,4+00) and « € (0,2) be given. We write a
Crank—Nicolson scheme for the time discretization, and follow the nonlinear steady-
state case for the space discretization; the finite volume scheme for the approximation
of the solution (1.1)—(1.2) is then

(4.13)

Ug € HD(Q)d,
1
(4.14) Uo, K = 7/ uini(x)dm VK € M,
K

mg



CONVERGENCE ANALYSIS OF A FINITE VOLUME SCHEME 27

and, again using Bernoulli’s pressure p + %uQ instead of p, again still denoted by p,
forn=0,...,N =1, find (tn41,p,11) € Hp(Q) x Hp(Q),
such that / Pnyi(w)dz =0 and Vv € Hp(Q)%, Vg € Hp(Q),
Q

L(un+1(x) — Up(x)) - v(z)de + uét[un+%,v]p

(4.15) - &/Qpn_i_% (z)divp (v)(x)dz + % /Q Upy 1 (z)*divp(v)(z)dz

(n+1)ét
+§t bD(un+l7un+la’U) — / / f(.’IJ,t) '[}(.’L‘)d.’tdt,
2 2 nét Q

| vl @ate)ds = X size(D)" (.o

where u,, 1 stands for L (wng1 + up).

In (4.15), we consider the approximation of bp(-,-,-) given by (4.4). We then
define the set Hp(2x (0, T)) of piecewise constant functions in each K x (nét, (n+1)ét),
KeM,n=0,...,N —1, and we define (u,p) € Hp(Q x (0,7))? x Hp(2 x (0,T))
by, forn=1,...,N —1,

u(z,t) = un+%(x)’
(4.16) { p(z,0) = p, 1 (), for a.e. (z,t) € Q x (nét, (n + 1)6t).

Remark 4.4 (time discretization). If, instead of the Crank-Nicolson scheme, we
use the § scheme, u,, 1 = Oupi1 + (1= 0)uy, with 6 € [1/2,1], the convergence proof
which follows applies with a few minor changes. However, this is not so if # is smaller
than 1/2; in particular, the estimate of Lemma 4.10 does not seem to be obtained
easily in this case. Note that variable time steps may also be considered.

LEMMA 4.10 (existence of a discrete solution). Under hypotheses (1.3)—(1.7),
let D be an admissible discretization of Q x (0,T) in the sense of Definition 4.9.
Let A € (0,400) and a € (0,2) be given. Then there exists at least one (u,p) €
Hp(Q x (0,7))% x Hp(2 x (0,T)), solution to (4.14)-(4.16).

Proof. We remark that, for a given n = 0,..., N — 1, taking as unknown Uy 1,

1
2

and noting that tn41 = 2u,,; 1 — uy, scheme (4.15) is under the same form as scheme
(4.3), with n = 2/6t and with a term involving wu, included in the right-hand side.
Therefore the existence of at least one solution follows from Lemma 4.5. a

LEMMA 4.11 (estimates for the velocity). Under hypotheses (1.3)—(1.7), let D
be an admissible discretization of Q x (0,T) in the sense of Definition 4.9. Let \ €
(0,+00) and o € (0,2). Let (u,p) € Hp(2 x (0,7))% x Hp(2 x (0,T)) be a solution
to (4.14)—(4.16). Then there exists Cas > 0, depending only on d, Q, v, uy, f, T,
such that the following inequalities hold:

(4.17) |l oo (0,75 22(0)4) < Cas,
(4.18) Null 20,7315 (0)1) < Cos s
and

N-1 T

(4.19) A size(D)“ Z 6t|pn+%|2p = size(’D)"‘/ Ip(-, ) |Hdt < Cog..

n=0 0



28 R. EYMARD, R. HERBIN, AND J. C. LATCHE

Proof. Let k =1,...,N. Seftting v = u,,; 1 in the first equation of (4.15), and
summing on K € M and n = 0,...,k — 1 in the first equation of (4.15), and using
property (4.7), we get.

,Z/ Uni1(2)? — up(x das—|—1/2(‘5t Upily Uy t]D
(n+1)ét
,Zét/pm_ z)divp (uy, 1) (x)de = / /f z,t) -ty y 1 (x)dadt.
n=0"né

This leads, setting ¢ = Ppyl in the second equation of (4.15), to

k—1

1
3 /Q(uk(a;)2 —up(z)*)dz + v Z 6t[un+% , un_%]p
n=0

(4.20) - 0
A size(D)* 3 6tlp, 43 = / / Ft) - ulx, ) dadt.
= 0 Q

Setting k = N in (4.20) gives (4.18) and (4.19). The discrete Poincaré inequality (2.4)
and the inequality [|uol|z2(qy¢ < [|tinill L2 () give

dlam( )2
Hf”L2 (2x(0,T))¢ + ||u1111HL2(Q o Vk = 1 N,

l[ukl72(pa <
which proves (4.17), since [[u,,; 1]/r2()¢ < S(lunllp2(@ye + lunttllp2(qye) for all n =
0,...,N—1. |
LEMMA 4.12 (space and time velocity translate estimates). Under hypotheses
(1.3)~(1.7), let D be an admissible discretization of Qx (0,T) in the sense of Definition
4.9. Let A € (0,+0), a € (0,2), and ¢ > 0, such that regul(D) > (. Let (u,p) €
Hp(Qx (0,T))% x Hp(Q x (0,T)) be a solution to (4.14)-(4.16). We still denote by u
the extension in R x R of u by 0 outside of Q2 x (0,T). Then there exists Ca9 > 0 and
Cs39 > 0, depending only on d, Q, v, \, a, ug, f, ¢, and T, such that the following
inequalities hold:

(4.21) lu- +€,) = ullZamaxmys < Cao€l(1€] + dsize(M)) V€ € RY
and
(4.22) flu(y-+7) — U||L1(R;L2(Rd)d) < Csg |7'|1/2 vr e R.

Proof. In the following proof, we denote by C;, where ¢ is an integer, various
positive real numbers which can depend only on d, Q, v, A\, «a, ug, f, ¢, and T.
Inequality (4.21) is obtained from (4.18) (see [13]). Let us prove (4.22). Let 7 € (0,T)
be given. We define the following norms on Hp ()4,

Y w € Hp(Q)4,

(423)  lwlp\ = llwlp 2
1 .
+ Nsize(D) (sup {/deD(w)(x)q(:c)dac, g€ Hp(Q),|qlp = 1})



CONVERGENCE ANALYSIS OF A FINITE VOLUME SCHEME
and
Y w e Hp(Q)4,
[lw]lx,D,x = sup {/Qw(x) v(x)dz,v € Hp(Q)?, lvllpa = 1} .
We then have, for a.e. t € (0,T),
lult+7) = ul, ) Zagqya < llu(t+7) —u-,1)

and therefore, thanks to Young’s formula,

(4.24)

(ot 47) = ulllpn,

(4.25) st 7) —u( D)l 2@y < gllut,w ) — (-, t)|pa

1
+ 2\7”“(% +7) —ul )l

We get, from (4.15), for all ¢ € Hp(2) and for a.e. ¢ € (0,T),
/ divp(u(-,))(x)q(x)dz = =X size(D)* (p(-,1),q)p,
Q
which proves, using (4.23), that

[uC ) 1D 5 < lul O)lI5 + A size(D)*[p(-, t)[p.
Using the Cauchy—Schwarz inequality, we have

Tt 2 T
( / (-t 4 7) — U('J)HD,Adf) <4T / (-, )13 Adt,
0 0

and therefore, using (4.18) and (4.19),

29

T—1
(4.26) [t m) = utloade < Car.
0

We now study |u(-,t 4+ 7) — u(-, t)|lx,p,x. We can write, for a.e. ¢t € (0,7 — 7) and
x €,

N1

1
u(@,t+7) —u(z,t) = 5 D 0t )+ Xn1 (7)) (tnga () = un(2)),
n=0

where, for all n € N and ¢ € (0,T), xn(t,7) = 1 if nét € [t,t + 7, and x,(t,7) =0

otherwise. This implies
[u(,t+7) = ul-, )]0

(4.27)

l\')\r—l

N—
Z Xn(t, ) + Xnt1(t 7)) [unt1 — unlle,pr-

Let us then obtain a bound for ||tn4+1 — tn|«,p, 1. Using the definition of the scheme

(4.15), we get that, for all v € Hp(2)?,

/Q(un+1(x)_un( dx_/nﬂ /f (w,t) - v(x)dzdt

(4.28) — VOt y 1, v]D + 615/ Pyt (2)divp(v)(z)de
Q
ot )
) ui+%d1VD(v)(x)dx—5t bp (Upy g 15 Uy 1,0).

Q
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Using the definition of divp, the fact that ZUEEK m,ng,, = 0, and the Cauchy-
Schwarz inequality, there exists Csy such that

/QuiJré(x)diVD(v)(:c)do: < Cso ||ui+% 220y llvl|p-
The discrete Sobolev inequality (4.9) leads to

d d
a1 ey < DN )Mz = Dl sy < Csalluny 4113
i=1 i=1

We take ||v]|p,x = 1 and note that, from definition (4.23), we obtain that ||v||p <1
and that

[ pacy@iivn(o)(@)de < (i) Il

We then take the supremum in (4.28). Using the Cauchy—Schwarz inequality, the
discrete Poincaré inequality, and (4.8), this yields

[tns1 — tnllpn < VOt diam(Q)|| £l L2 ((not,(nt1)50):12 ()4 O
+ 6tV |ty 1llp + (A size(D)™)'/?

1
+6t (2032 Csz + ClQ) [ty 2 1%-

|pn+%|'D

Summing the above equation for n = 0 to N — 1, applying the Cauchy—-Schwarz
inequality to all terms of the right-hand side except the last one, and using (4.18) and
(4.19), we get that there exists C34 such that

N-1

Z ltnt1 — unll«,px < Csq.

n=0

Hence, noting that for all n =0,..., N, fTiT

o Xa(t,7)dt <7, we have

1 T—71 N-1
5[ L altn) ot ) s = wnll padt <
0 n=0

which proves, using (4.27),
T—1
(4.20) / lu(t+7) = u(o8) o padt < Caar.
0
Thanks to (4.25), (4.26), and (4.29), we obtain that

T—T1
/ Ju(-t+7) = u(-, t)|| L2 @)edt < Cs5 v/
0

Using (4.17), we have

T T
/ Hu(~,t—|— T) - u(~,t)HL2(Q)ddt = / H — U(',t)HLQ(Q)ddt S C2ST S \/;\/TCQS,
T

T—71 —T
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and a similar inequality holds for f_OT lu(-,t+7) — u(-, )| L2(qyedt. This thus gives
(4.22), for any 7 € (0,T). The case 7 > T is obtained again using (4.17), and the case
7 < 0 is obtained from 7 > 0 by the change of variable s = ¢ 4+ 7. This completes the
proof of (4.22). |

THEOREM 4.13 (convergence of the scheme). Under hypotheses (1.3)—(1.7), let
¢ > 0 be given and let (DU™),en be a sequence of admissible discretizations of Q x
(0,T) in the sense of Definition 4.9, such that regul(D™)) > ¢ and size(D™)) tends
to 0 as m — oo. Let A € (0,+00) and o € (0,2) be given. Let, for all m € N,
(u™) p™)) € Hpm (Q x (0,T)% x Hpwm (2 x (0,T)) be a solution to (4.14)—(4.16)
with D = D). Then there exists a subsequence of (D(m))meN, again denoted by
(D(m))meN, such that the corresponding subsequence of solutions (u(m))meN converges
in L2(0,T; L?(Q)9) to a weak solution @ of (1.1)~(1.2) in the sense of Definition 4.8.

Proof. Let us assume that the assumptions of the theorem hold. Using trans-
lates estimates (4.21) and (4.22) in the space L'(R;L'(R%)%), we can apply Kol-
mogorov’s theorem. We get that there exist u € L'(0,7; L'(2)¢) and a subsequence
of (D™),,cn, again denoted by (D(™),,cn, such that the corresponding subsequence
of solutions (u(™),,en converges in L'(0,T; L*(Q)%) to @ as m — oo. Using (4.18),
we get ||U("l)||L2(07T;HDm(Q)d) < (g for all m € N, which gives, using the discrete
Sobolev inequalities, ||U(m)||L1(O7T;L4(Q)d) < (36 for all m € N. Using a classical re-
sult on spaces LP(0,T; L9(R)), we get that (u(™),,cn converges in L'(0,T; L?(2)%)
to & as m — oo. Thanks to (4.17), we have [[u(™|| (o 1,120y < Cas for all
m € N. The same result on spaces LP(0,T; L(2)) implies that (u(™),,cn converges
in L2(0,T; L?(2)%) to 4 as m — oo. We can therefore pass to the limit in (4.21). The
resulting inequality implies @ € L?(0,T; H}(2)?9) (see [13]). Passing to the limit in
(4.17) leads to w € L>=(0,T; L?(2)%).

Let us now prove that 4 is a weak solution of (1.1)—(1.2) in the sense of Definition
4.8.

Let ¢ € C°(Q2 x (—o0,T))? be given, with divg(x,t) = 0 for all (x,t) € Q x
(=00, T). Let D™ be a given admissible discretization extracted from the considered
subsequence. Omitting some of the indices m for the simplicity of notation, we then
set v = Ppy(-,nét) in (4.15), and we sum for n =0,..., N — 1. We thus get

(4.30) T + 0 + T + T + 1Y = T,

with

N—-1
T =% /Q (tns1(2) — wn()) - Pop(z, ndt)de,
n=0

N—-1

T = > 8tluy g, Poo(,nbt)]p
n=0

Tl(;” = Z(St/pn+ x)divp(Ppe(-,nbét))(z)dz,

T = Z& / 2)2divp (Ppy(-, nét))(z)dz,
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N-1
Tl(;n) = Z 6tbp (Up 4 1, Uy 1, Pp(-, nbt)),

n=0
and
N—-1 .(n+1)ét
T2(0 )= Z
n=0

In the following, we denote by C; various positive reals which can depend only on d,
Q T, i, f, v, ¢, and \. We first start with the study of T15. We classically have
(see [13])

/ f(z,t) - Ppo(x,ndt)dzdt.
not Q

T
(4.31) lim T = / / Va(z,t) : Vo(z, t)dadt.
0 Q

m—00

The proof that

(4.32) lim 70" =0

m— 00

is a consequence of (4.19) and of a direct adaptation of Lemma 2.3 to time-dependent
functions. Let us now prove that

(4.33) lim T = 0.

m— 00

Since (u("™)? tend to @? as m — oo in L*(Q x (0,T)), the same argument as in the
steady-state case (see proof of Theorem 4.7) provides (4.33).

We now turn to the study of Tig. Following the proof of Lemma 4.7, the proof
that

(4.34) Jim Tf;”>=/ bl 1), @ 1), o (-, £))dt

m—00 0

is a direct consequence of the convergence of u to @ in L?(Q2 x (0,7))% and Lemma
2.3. The study of Ty is classical, and we have

T
(4.35) lim Tz(gl) = / flx,t) - p(x, t)dadt.

Let us now prove that

T

(4.36) lim Tl(;n) = —/ /ﬂ(m,t)atgo(%t)dxdt—/uini(ac)go(xﬂ)d:c.
mereo 0o JQ Q

Indeed, we have

m m 1 m
T1(5 )= —/ ug(z) - Ppp(z,0)dr — T2(1 )~ §T2(2 )
o

with

N—1
T =Y / s (2) - (Pp(z, (n+ 1)6t) — Pop(z, nbt))de
n=0 Q
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and
N—-1
T =Y / (tns1(2) = un(2)) - (Ppp(x, (n+ 1)8t) — Ppp(z, nét))da.

We classically have

lim uo(x) - Ppp(z,0)dx = /Quini(x)go(x,O)dm.

m—00 9]

We also easily have, thanks to the convergence properties of u("™, that

T
lim 7™ :/ /a(x,t)atgo(x,t)dxdt.
m—0o0 0 O

7 gl

Let us prove that the term T ) tends to 0 as m — co. We have T2(2 ™ = Tys5 ",

with
N-—1
T = > /Q (tns1(2) — n()) - Pop(, (n + 1)ét)dz

Thanks to the limits given by (4.31), (4.32), (4.33), (4.34), and (4.35), and thanks to
(4.30), we obtain that lim,,— o T( m T4, with

Ty = _yz/ Vud (@, ) - Vool (a, t)dacdt—/ bu(,t), u(-, 1), o 1))dt

/ /f o(z, t)dadt.

Since (4.31), (4.32), (4.33), (4.34), and (4.35) are available as well, replacing Ppy(+, nt)
by Ppp(-, (n + 1)6t) in Tig, T17, T1s, Tho, and Thy, we also get using (4.15) with
v = Ppy(-, (n+1)6t), that lim,, Tz(gn) = Tyy. Thus we get that lim,, . T:,(;n) =0,
which concludes the proof of (4.36). Thanks to (4.30), (4.36), (4.31), (4.32), (4.33),
(4.34), and (4.35), we thus obtain (4.13), provided that we can prove that

divi(z,t) =0 for ae. (z,t) € Q2 x (0,T).

This last relation can be shown by following the proof of (3.22). This completes the
proof of the above theorem. ]

Remark 4.5. Using the above proof of convergence, we get the energy inequality
for d = 2 or 3 from inequality (4.20), since we have the property

T NO™ D m
(%) < [ m,i m,i :|
/0 /Q(Vu (z,t))*dxdt lmgof E ot et d U Do

5. Numerical results. Some simple numerical experiments are described here
to observe the convergence rate of schemes (3.8) and (4.14)—-(4.15) with respect to the
space and time discretizations. To that purpose, we use a prototype code where the
nonlinear equations are solved by an underrelaxed Newton method, and the linear
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systems by a direct band Gaussian elimination solver. This code handles Stokes or
Navier—Stokes problems with various boundary conditions, using nonuniform rectan-
gular or triangular meshes on general 2D polygonal domains.

The linear Stokes equations are first considered in the case d = 2, Q = (0,1) x
(0,1), v =1, and f is taken to satisfy (3.1) with a solution equal to

a( )(x(l) JZ(Q)) — _8(2)\I/(x(1)’ x(2))’
(2 )(x(l) x(2)) — 3(1)\1;(95(1)@(2))7
oz (1) m )) =100 ((x(l))2 + (x(2))2),

denoting by (zM, 2®?) = 1000 [z (1 — M)z (1 — 2?))]2. The approximate
solution (u,p) is computed with the scheme (3.8). The observed numerical order of
convergence, considering the norms ||u — Ppi||12(qye and [|p — Pppl|12(q), is equal to
2 for the velocity components, and to 1 for the pressure in the cases of nonuniform
rectangular and square meshes (from 400 to 6400 control volumes). Note that in these
cases, there is apparently no need for a significant positive value of the stabilization
coefficient A\. The observed numerical order of convergence is similar in the case of
triangular meshes (from 1400 to 5600 control volumes), but values such as A = 1074,
a = 1 have to be used in order to avoid oscillations in the pressure field. This
confirms that in the case of triangles, the approximate pressure space is too large to
avoid stabilization. In fact, other tests were performed (e.g., the classical backward
step) which show that stabilization is also needed in the case of rectangles when more
severe problems are considered. Note that in industrial implementations, stabilization
may be performed by other means; see [29, 1] (see also [4] in the triangular case).

We then proceed to a similar comparison in the case of transient nonlinear prob-
lems. Considering a transient adaptation of the above steady-state analytical solu-
tion, the continuous problem is then defined by zero initial and boundary conditions,
T = 0.1, and the function f is taken to satisfy (1.1) with a solution equal to

aM(zM, 2@ 1) = —¢ 3(2)\11( M), (),
1 (M, 2? ¢) =t oMW (2D, x(2 ),
p(zM, 23 1) =100t ((x(l)) + (2(2))? )

with the same function ¥ as above. We again observe an order 2 of convergence
of the approximate solution at times ¢ = .05 and ¢ = .1, when the space and time
discretizations are simultaneously modified with the same ratio (from 6t = 0.01 to
6t = 0.0025 as the size of the mesh is divided by 4). Similar observations are still
valid for the classical Green—Taylor example.

6. Conclusions. The above numerical results show that the theoretical error
estimate, which is proven in section 3 for the linear Stokes equations, is nonoptimal;
a sharper estimate is currently being written [20] under more regularity assumptions
on the mesh.

The proof of convergence of the full space-time discrete approximation of (1.1)
given by (4.15) uses estimates on the time translates, which were introduced in the
L?(2 x (0,7T)) framework for the proof of convergence of the finite volume method
for degenerate parabolic equations [17, 13] and used for several other cases; see, e.g.,
[16]. A major difficulty which arises here is the handling on the nonlinear advective
term, as in the continuous case, which leads us to establish an estimate for the time
translates in L' (0, T; L?(Q2)). This new technique may be used for parabolic problems
with other types of nonlinearities.
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We remarked that industrial codes use other types of stabilizations than the

one used here. Further works will be devoted to the mathematical study of such
stabilizations, for which, to our knowledge, no proof of convergence is known up to

now.

Finally, let us also mention undergoing work on a generalization of the scheme

studied here to the full transient Navier—Stokes equations including the energy balance
under the Boussinesq approximation.
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A REFINED GALERKIN ERROR AND STABILITY ANALYSIS FOR
HIGHLY INDEFINITE VARIATIONAL PROBLEMS*

L. BANJAIT AND S. SAUTER'

Abstract. Recently, a refined finite element analysis for highly indefinite Helmholtz problems
was introduced by the second author. We generalize the analysis to the Galerkin method applied to
an abstract highly indefinite variational problem. In the refined analysis, the condition for stability
and a quasi-optimal error estimate are expressed in terms of approximation properties 7(S) ~ S
and 7(u + S) ~ S. Here, u is the solution of the original variational problem, 7 is a certain
continuous solution operator, and S is the finite dimensional test and trial space. The abstract
analysis can be applied to both finite and boundary element solutions of high-frequency Helmholtz
problems. We apply the analysis to investigate the properties of the Brakhage—Werner boundary
integral formulation of the Helmholtz problem, discretized by a standard Galerkin boundary element
method. In the case of scattering by the unit sphere, we derive the explicit dependence of the error
and of the stability condition on the wave number k. We show that hk < 1 is a sufficient condition for
stability and a quasi-optimal error estimate. Further, we show that the constant of quasioptimality
is independent of k, which is an improvement over previously available results. Thus, the boundary
element method does not suffer from the pollution effect.

Key words. indefinite problems, Helmholtz equation, finite and boundary element methods
AMS subject classifications. 65N30, 656N38, 65R20

DOI. 10.1137/060654177

1. Introduction. The numerical solution of high-frequency Helmholtz problems
has attracted much interest in recent years; see, for example, [3, 4, 7, 10, 11, 12, 17,
28, 29]. The main aim of this paper is to develop a refined analysis for the error and
the stability of the Galerkin discretization of high-frequency Helmholtz problems.
The analysis should be general enough to include both boundary and finite element
methods and allow for discussion of standard and special finite/boundary elements
such as the ones used in [23, 27, 29]. Most importantly, it should be possible to obtain
optimal results on the dependence of the error bounds and the stability condition on
the wave number k. The explicit dependence on k is rarely given in existing literature;
for exceptions, see [8, 11, 13].

It is well known that the Galerkin finite element method with standard piecewise
polynomial basis functions suffers from the so-called pollution effect [3]. If piecewise
linear basis functions are used, the stability condition in the mesh width h is very
strong: hk? < 1. In [3], a generalized finite element method was presented in one
dimension, with the stability condition reduced to hk < 1; see also [17]. The proofs
rely on explicit knowledge of the Green’s function and, hence, do not carry over to
higher dimensions. Further, the general stability and convergence analysis given in
[23] does not yield the improved stability condition. With this in mind, in [29] a
refined finite element analysis was developed that gives improved stability and error
estimates.

In this paper, we generalize the results of [29] to an abstract theory applicable
to a general indefinite variational problem. We prove that the condition 7(S) =~ S,
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of approximate invariance of the test and trial space S under a certain continuous
solution operator 7, is sufficient for stability. The quasi-optimal error estimate is
proved under a similar condition 7 (u + S) ~ S, where u is the solution of the con-
tinuous variational problem. This new concept is the crux of the abstract analysis
we develop. We describe how the abstract analysis can be used to prove the results
of [29] for the finite element method. As a further example of its use, we consider
the boundary element method for the solution of high-frequency Helmholtz problems
using the Brakhage—Werner boundary integral formulation. This problem has already
been considered in [13] and recently in [11]. There, the stability condition hk < 1 and
a quasi-optimal error estimate, with the constant of quasi-optimality proportional to
k1/3, was proved for the case of the unit sphere. In [11], the authors consider the
problem of high-frequency scattering by a convex object in two dimensions. Known
asymptotics of the scattered wave were used to reduce the problem to the computation
of unknown amplitudes, which are less oscillatory than the original scattered wave.
These were then computed using a Galerkin method for which the quasi-optimal error
with constant of O(k'/?) was proved in the case of the unit disk and sphere.

We obtain a sharper error estimate, with the quasi-optimality constant indepen-
dent of k. More importantly, our paper provides a framework in which to investigate
the properties of boundary element methods with special basis elements such as plane
waves [27]. For special finite element methods, it was already shown in [29] that
the refined analysis obtains results outside the reach of standard analyses. We give
reasons to expect the same to be true for boundary element methods. Further, the
condition of the approximability of 7(S) and 7 (u+.S) by the boundary element space
can give guidelines for the construction of special boundary elements.

2. A highly indefinite variational problem. Let H and V be Hilbert spaces
such that H is continuously imbedded in V' and, hence, V' is continuously imbedded
in H', where V' and H' are the dual spaces; see [33]. Denote by (-,)x and (-,-), the
respective inner products, and by || - ||z and | - ||, the induced norms.

We are interested in the following abstract variational problem: Given f € H',
find v € H such that

(2.1) a(u,v) = (f,v) forallve H,

where a(-,-) : H x H — C and we have written (f,v) = f(v) for the value of the
functional f at v.
Naturally, we need to place some conditions on the above problem.
Assumptions.
Al: a(-,-) : H x H— C is a bounded sesquilinear form. Thus, a(u,v) is linear in
u, conjugate linear in v, and

la(u, v)| < Cellullallv]s-

A2: There exist bounded sesquilinear forms ay(-,-) : H x H — C and ay(+,*) :
V x V — C such that

a(u,v) = ay(u,v) + ay (u,v)
and

lan (u, w)] > axllully,  lav(w,v)] < Cyllullv vl for any u,v € H.
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A3: Problem (2.1) and its adjoint have a unique solution v € H. Further,

[ull < Cregl| fll -

The sesquilinear forms a(-,-), ax(+,), and ay (-, -) define the corresponding bound-
ed linear operators:

(2.2) A:H—H', Ay:H—H, and A,:V — V'
In view of A3, the inverses of A and the adjoint A* are also bounded linear operators:
(2.3) AV:H —H and A ':H — H.

We now investigate the properties of the Galerkin discretization of (2.1).

2.1. Abstract stability and convergence analysis of the Galerkin meth-
od. Let S C H be a finite dimensional subspace of H. We wish to consider the
Galerkin discretization of problem (2.1): Given f € H’, find ug € S such that

(2.4) a(ug,v) = (f,v) forallveS.

We now derive a condition on S that guarantees the existence and uniqueness of ug
and a quasi-optimal error estimate.

2.1.1. Stability and convergence. For our analysis of the stability and con-
vergence of (2.4), the following continuous dual problem will be crucial: Given w € H,
let z € H be such that

a(v,z) = —ay(w,v) forallve H.

From (A2) it follows that ay (w, ) defines a bounded linear functional on V. Since H
is continuously imbedded in V| i.e., the identity mapping [ : H — V is continuous,
ay(w, -) defines also a bounded linear functional on H. Therefore, we can apply (A3)
to obtain that the solution z € H of the above adjoint problem exists and is unique.
Consequently, we can define a solution operator by 7w := z. Using again the fact
that H is continuously imbedded in V and the properties of the operators in (2.2)
and (2.3), we conclude that the solution operator 7 = —A*71A, is a bounded linear
operator mapping from H to H. Hence, there exists a constant C'r such that

(2.5) |Tullz < Crllul|lz forallu e H.

REMARK 1. In applications, the operator T will be a compact operator. Usually
it is also a smoothening operator; see Remark 5 and [29].

Let us now define a measure of approximability in the space S. This measure
depends on some subset H C H, which satisfies S C H and u + S C H, where u is
the exact solution of (2.1). The measure is defined by

Tw —
(2.6) n(S):= sup inf M
wermjoy v€S  llwlls

REMARK 2. I
1. For a dense sequence (S;);>1 of spaces, i.e., U;S) " — H, we have lim;_, o n(Sy)
=0.
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2. We will prove stability of (2.4) and a quasi-optimal error estimate, under the
condition that n(S) is small enough.

3. Note that the choice H = H is always possible. However, a choice of a smaller
set H C H might result in a smaller value of 1n(S) and a less restrictive
stability condition.

THEOREM 2.1. Let S be such that
Qg
2.7 S) < —
(2.7) (%) < 55
and let uw € H be the solution of (2.1). Then there exists a unique solution ug € S of
the discrete problem (2.4). Moreover,

c

e — sl < == inf flu ol

Proof. Since S is finite dimensional, it suffices to prove uniqueness. Given wg € S,

let zg be the best approximation to z = 7ws with respect to the H-norm. Then,

la(ws, ws + zs)| = |an(ws, ws) — a(ws, z — z5)| = O‘HH“’S”% = Cellwslullz — zsllu
> ayllws|[}, — Cen(S) Jws|3-
From (2.5) we have that
Izl < Crllws|lx
and hence

lws + 2sllu < lwslla + [|2lla + 12 = 2slla < (1 + Cr + 1)) lws |-

Using (2.7), we have that

« (%
lalws, ws + 2 = -l > t sl llws + 251l

"= 94207 4 2n(S)
Hence, we have the discrete inf-sup condition

. la(u, v)| Qy
inf sup > > 0,
ueS\{0} yes\foy llullullvlle — 2+ 2C7 + 2n(S)

and we have proved that the discrete solution us exists and is unique.
Next, let 2z’ = Te, where e = u — ug, and again let z, be the best approximation
to 2z’ in the H-norm. Then,

lav(e,e)| = la(e, 2")| = |a(e, 2’ — )| < Cen(S)llell-
Hence, for any v € S,

aullell < lau(e,e)] = la(e,¢) — av (e, e)| = lale,u = v) — ay(e,e)]
< Cellellnllu = vl + Cen(S)llell?-

Therefore, using (2.7),

C

2C,
el <
O

|lu—wv|y foranywveS.

Thus, we have also proved the quasioptimality of the Galerkin method. 0
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REMARK 3. A result on the stability and convergence of the Galerkin finite el-
ement method applied to an indefinite PDE can be found in Theorem 5.7.6 of [6].
The same constant of quasioptimality 2C./ay, as above, is also given in [6]; this is
an improvement over the usual estimate given by Céa’s lemma; see Remark 6. The
essential novelty of our concept is that for stability and convergence it is sufficient to
have T(S) = S and T(u+ S) = S. In contrast, the approach taken in [6] requires
that the adjoint problem have full reqularity. Theorem 2.1 is a stronger result, which
implies the result of [6]. In particular, the kind of condition given in [6] does not
allow for improved stability estimates of [29]; for details see [29].

2.1.2. Error estimate in the V-norm. By using the Aubin—Nitsche tech-
nique, we can bound the V-norm of the error by the H-norm of the error. Let v € H
be such that

a(v,y) = (e,v)y forallve H.
Let S : H — H be the solution operator defined by Se := 1, and let
u(S):= sup inf ISw = vl
wei\jo3 'S llwllv
If 95 is the best approximation to 1 with respect to the H-norm, then
(2.8) lell? = a(e, ) = ale, ¥ — vs) < Cep(S)e|lullelv-

Hence, we have an estimate of the V-norm of the error in terms of the H-norm of the
error. We proceed now to obtain an alternative condition to that given in Theorem 2.1
for the existence of a quasi-optimal error estimate. For any v € H,

anllel} < lau(e,e)| = la(e, e) — av (e, e)] < Cellellullu — vl + Cvllel?
< Cellellullu— vl + Cy (CeplS))* [lell3

Hence, under the alternative condition
Cy (Cen(S))* < au/2,

we have obtained the same quasi-optimal estimate as before. The results are collected
in the following theorem.

THEOREM 2.2. Let u € H be the solution of (2.1) and us € S be a solution of
(2.4). Then

v —wuslly < Cep(9)|lu — us| -
Further, if S is such that Cy, (Cop(S))? < ay /2, then

c

= sl < =5 il = o]

REMARK 4. An abstract indefinite problem similar to the one we investigate here
has been considered by Schatz in [31]. As an assumption of the abstract problem,
Schatz imposes a condition of the type (2.8) with u(S) — 0 for dim(S) — oo; see [31,
(12)]. This is not possible if V- = H, which is the case of the boundary integral equation
considered in section 3; hence the results of [31] do not apply, and Theorem 2.1 needs
to be used. Further in [31] the constant of quasioptimality is not investigated.
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2.2. An example application in a finite element setting. The abstract
analysis given here is a generalization of the finite element analysis for highly indefinite
Helmholtz problems introduced in [29]. The appropriate choice of spaces H and V
for the finite element method in [29)] is

H=H'Q), V=L,
where the space H is equipped with a weighted norm (cf. [23]):
)1/2

[l = ( ullf ¢
With this choice of spaces, the assumptions A1-A3 are proved in [29]. Theorems 2.2
and 2.5 of [29] are then implied by Theorems 2.1 and 2.2, respectively. For details we
refer the reader to [29].

We now turn to another case to which the abstract theory can be applied. Namely,
we consider the solution of a Helmholtz problem by a Galerkin boundary element
method.

3. A Helmholtz scattering problem. Let © be a bounded domain in R?,
d = 2,3, with a smooth boundary I'. We consider the following exterior Helmholtz
problem: Given g € HY/2(T), find u € HL_(Q°) such that

—Au—kK*u= 0 in Q°,
(3.1) u= g on T,
0
lim r(d=1)/2 (au - zku) = 0, wherer:=|z|,
r

r—00
is satisfied in a weak sense. The equation governs the process of acoustic scattering
by a sound soft object; see [25].

Let Gi(-) be the fundamental solution of the Helmholtz equation:

Gi(r) = iHo(k:r), for d = 2,

1 eikr
G =5
with » > 0. Throughout the paper H, is the Hankel function of the first kind of order

v defined by

, ford=3,

H(z):=J,(x)+iY,(x), x>0,

where J, and Y, are the Bessel functions of the first and second kind. Employing the
fundamental solution, we define, respectively, the single layer and the double layer
integral operators:

(3.2) (k) ( /Gk (Il — yl)pw)dr,, =eRI\T,

(3.3) (Dip) ( / 5o Oz —ylDpl)dry, @ € RI\T,

where n,, is the unit normal to the surface I' at the point y € I'. The corresponding
boundary integral operators are defined by

(3.4) (Vi) ( / Gilllz — yl)p(y)dy, z €T,

(3.5) (i) ( / o Oz~ yl)p)iry, T
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We now state the well-known mapping properties of the above operators; see [9, 30].

PROPOSITION 3.1. Let Q C R%, d = 2 or 3, be a bounded domain with smooth
boundary T'. Then for any s € R the following are bounded linear operators:

(a) Vi : H*(T) — H*TY(T),

(b) Ky : H*(T') — H* ().

It is well known that every solution ¢ € H~/2(T") of Vi, = g has the property
that u = Sk satisfies the exterior Helmholtz problem (3.1). However, for countably
many wave numbers k the operator Vj, is not injective. To avoid this problem Brakhage
and Werner [5], Leis [22], and Pani¢ [26], independently suggested representing the
solution as a combination of the single and double layer potentials,

(36) u = Dkw - iaSkQDv

for some coupling parameter « > 0. The unknown density ¢ in (3.6) satisfies the
boundary integral equation

1
(3.7 g= <2I—|— Ky — ionk> 0,
where I is the identity operator. We denote by (-,-)o the L?(T") inner product, and
by || - |lo the corresponding norm, and define
1
(3.8) a(p,v) = (Rrp,v)o, where Ry := 5[ + K — iaV.

To be able to apply the abstract theory developed in section 2, we need to prove that
the assumptions A1-A3 hold in this case. Proposition 3.1 implies that the condi-
tion A1l is satisfied with the choice H = L*(I'). We can then define

1 ~ ~
ay(p,v) = 5([@,1})0 and  ay(p,v) = (Rrp,v)o, where Ry, := Kj, —iaVj.

Therefore, A := Ry, Ay := %I, and A, = Ry. Again by Proposition 3.1, it follows
that the condition A2 holds with the choice V' = L?(T); trivially, V is then contin-
uously imbedded in H. Furthermore, we can clearly set ay = 1/2. The following
proposition deals with assumption A3.

PROPOSITION 3.2. Let Q C R? be a bounded domain with smooth boundary T .
Then, for any g € L*(T) there exists a unique o € L*(T") such that

(3.9) a(p,v) = (g,v)0 for allv € L*(T),
and there exists a constant Creq > 0, which depends on both k and Q, such that
lello < Cregllgllo-
Moreover,
u = (D) — i (Skep)

is the solution of the Helmholtz problem (3.1).
Proof. In the original paper of Brakhage and Werner [5], the existence and unique-
ness were proved for the classical formulation. To extend the proof to the variational
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formulation we proceed as in [13].1 Since R}, is a continuous operator from L2(T') to
HY(T"), and HY(T") is compactly imbedded in L2(T'), we have that Ry is a compact
operator from L?(T') to L?(T'). Therefore we can apply the Fredholm-Riesz—Schauder
theory to the operator Ry, = I/2 + f{k, which implies that to prove invertibility it
suffices to prove injectivity; i.e., it suffices to prove that Ker Ry = {0}.

Let Riyp = 0; then ¢ = —2§kg0. Applying the mapping property Ry : H(T) —
H*THT) twice, we have that ¢ € H?(T') and is hence continuous. For continuous
functions the proof of uniqueness given in [5] is applicable, therefore ¢ = 0. 0

To find an approximation to the solution ¢ numerically, we use the Galerkin
discretization. Let S be a finite dimensional subset of L?(I"). Then, find a ¢s € S
such that

(3.10) a(ps,v) = (g,v)g forallveS.

Since we have checked that all the assumptions of the abstract theory hold, from
Theorem 2.1 we immediately obtain the following result.

COROLLARY 3.3. Let S be such that C.n(S) < 1/4. Then (3.10) has a unique
solution ps € L*(T) and

H‘P - ()DSHO <4C. ;22 ||90 - 'UHO’

where ¢ € L?(T) is the solution of (3.9).

REMARK 5. Recall the definition of T from the previous section. Since T =
szle, from Proposition 3.1 we have that T : L>(T) — H(T'); therefore, T is a
smoothening operator. To emphasize the dependence of T on k, for the rest of the
paper we denote it by T :=T.

We will later show that for the case of Q = S? and a particular choice of the
coupling parameter «, the constant C., is independent of k. The result of Theorem 2.2
brings little new in this setting, since V.= H. For the finite element method of [29],
Theorem 2.2 is of more interest.

So far we have made no specification for the set S except that it is a finite dimen-
sional subspace of L?(I'). Next, we consider the special case of the usual piecewise
polynomial boundary elements.

3.1. Piecewise polynomial boundary elements. Let G be a shape-regular
triangulation of I'. We assume that no approximation of the boundary occurs; namely,

F:UT.

The mesh width A is defined to be

h:=max{h, : 7 € G}, where h, := sup ||z —y|.
T,YET
The set S is then defined to be a space of piecewise polynomial functions on the tri-
angulation G. In particular we are interested in the space Sg:;l of functions constant
on each triangle 7 € G.
Next we give the well-known approximation property of the piecewise-constant
finite element spaces.

'In [13] a weaker assumption is made on the smoothness of I" but stronger on the spaces: I' € C2:*,
O0<A<1l,and u, f € H1/2(F).



A REFINED GALERKIN ERROR AND STABILITY ANALYSIS 45

THEOREM 3.4. Let o € HY(T) and S = 88:;1. There exists a constant Ca,
which depends only on the minimal angle of the triangulation G, such that

inf (o —vllg < Cahlloll;.
;gsllw vllo < Cahllp|l:

We now proceed to investigate the dependence of the stability and the Galerkin
error on the wave number. To do this, we make the assumption that the derivatives
of the solution grow proportionally with the wave number k.

DEFINITION 3.5. For a given p > 0, the set O, contains functions ¢ € H'(T)
such that

lelle < pk![l2llo-

The conditions under which the solution of (3.9) belongs to a class O, are
discussed in [8].
COROLLARY 3.6. Let S = Sg:;l, and let ¢ € L*(T) be the solution of (3.9). If

CCCAhHIZVkHHl(F)«sz(F) < 1/4,

the discrete problem (3.10) has a unique solution pg € S. If, further, ¢ € O, 11 and
@ # 0, then the relative error is bounded as

M < 4C,Cahk.
lello

Proof. Using the approximation property of the piecewise-constant space and
choosing H = H = L*(T), we have that

T](S): sup jnfM<CA sup M< 1 .
perznioyves  llello = Coerzangoy el T 4C

Hence, by Corollary 3.3, we have the required stability condition.
Let us now assume that ¢ € O, ;. Using Corollary 3.3 again,

llp = @sllo < 4Cc inf [lp —vllo < AC.Cahllell < 4CCahklipllo- D

In the next section we investigate the dependence of C.. and of |7y | g1 (ry—r2(r)
on the wave number k. Our goal is to state the dependence on k of all the constants
in Corollary 3.6 in the case of the sphere.

3.2. The special case of the unit sphere. In this section we restrict our
discussion to the case I' = S?. This case was investigated by Giebermann in [13] and
by Dominguez, Graham, and Smyshlyaev in [11]. Our final result will be a slight
improvement on the results of [13] and [11]. The improvement is in part due to the
abstract theory developed at the start of the paper and in part due to some stronger
bounds on the eigenvalues that we prove; the details are stated in Remark 6.

The Fourier coefficients of a function f € L*(S?) are defined by

(3.11) = Y™(&)f(2)dsg,

where Y™ are the spherical harmonics; see [1]. Spaces equivalent to the usual Sobolev
spaces on S? can be defined through the Fourier coefficients.
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DEFINITION 3.7. For any s > 0, let H*(S?) be the space containing all functions
f € L3(S?) whose Fourier coefficients satisfy

(oo} n
Yo PR <o
n=0m=—n
The inner product is defined by
(f.g)s =) _(1+n?) Z ;g
n=0 m=—n

For negative s, H*(S?) is the dual space of H™*(S?).
In the following, j,, y., and hg) are spherical Bessel functions of the first, second,
and third kind, respectively; see [1]. These can be defined through the Bessel functions

jale) = \/ngxx

(3.12) Yn(z) = %YM% (2),
h(2) = o (2) + iyn(z) = %Hn+%(x),

LEMMA 3.8.

(a) The space H*(S?) is a Hilbert space and is equivalent to H*(S?). Namely, the
norms induced by the inner products are equivalent, and the sets H*(S?) and
H*(S?) coincide.

(b) The spherical harmonics form a complete orthogonal system in H*(S?) and
are the eigenfunctions of operators Vi, Ky, Ry, and Ty,. We have that

Vv = ANy, with AY) = szzh(l)(k) n(K),
RLY," = Aﬁ)Y,T, with )\(R =1/2+ )\(K) ‘ )\(V)

—zk2h<1>(k) (k)+2akh(1)(k:) (k).
M) o)

Y =Ry Ry = ATy, with A7) =

1/2 + )\(K) + zoz)\
(¢c) Fors >0,

T
@) = S92 VL [Tl @ereen = sup VIFn2AL
n&Ng

|| R

Proof. For the proof of (a) see [24]. The eigenvalues of the operators Vi, and K}
are given in [19]. From these it is easy to derive the eigenvalues of the remaining two
operators. A proof of (¢) can be found in [13]; see also [24]. O

The above result justifies our writing H*(S?) for both H*(S?) and H?*(S?). We
now prove some results on the Bessel functions that, in view of (3.12) and Lemma 3.8,
have direct use in bounding eigenvalues )\( . Recall that the Bessel functions J,(x)
and Y, (x) are real valued for v € R and z > O
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LEMMA 3.9.

(a) Ju(z),J,(z),Y,)(z) >0, Y, (z) <0, for 0 <z <v,

(b) Ju(x) and zJ)(x) are positive increasing functions of z, for 0 < x < v,

(c) for x>0 the product x [J2(x) + Y2 (x)], as a function of x, decreases mono-
tonically if v > 1/2, and increases monotonically if v < 1/2.

Proof. Parts (a) and (b) are proved in Watson [32, section 15.3]. A proof of

(c) can also be found in Watson [32, section 13.74]. |

PROPOSITION 3.10. There exists a constant C' > 0 such that for any x > 1 and

€ [1/2,00) U {0},

(a) |J,(x)H, ()| < Cz=2/3
(b) |zJ),(x)Hy(x)| < C.

Proof. A proof of part (a) for v > 1/2 is given in [13] and [11], where also a bound

that is less sharp than what we prove here is given for part (b).

In the proof we make use of the following asymptotic expansions [1, (9.3.31)-

(9.3.34)]:
J,(v) =av™3 4+ O(w0?),
(3.13) Y, (v) = —VBar™ V2 + 0w,
' J(v) =23 — w43 L O3,
Y)(v) = V3(bv™ 2 + cv™43) O3,

where a, b, and c are certain positive constants.

We divide the proof into two cases, as follows.
Case 1: v > x > 0. Using the identity J,(2)Y.(x) — J,(2)Y,(z) = 2/(7x)

[1, (9.1.16)], we have that
0 Lemm%&g(a) ()Y () (1, (9.1.16)] % + T (@)Y (2).
Therefore,
e L)Y (@) T g @)Y ) < 2
Also,

Lemma 3.9(b) (3.13)
) (2) ]y (2)] = 2], (x) T, (x) < v, (W)(v) <

v )

where C' is independent of z and v. Combining the last two results, we have that

(3.14) |z, (z2)H, (z)| < |zJ,(z)J,(2)| + |zJ,(2)Y,(z)] < C + % for z < v.

Case 2: 1/2 < v < x. We use the following definitions:

M,(x) = |H,(z)| and N,(z):=|H.,(x)|.

We have that

(3.15) 2? |, (@) Hy (2)[* < 2 N () M ()

2 2 @) M ) +
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Next,

d /
v A= M, (@)}

1. (0225)] 5 o 41 22 4,
= (x* — v*)M, () AN M, (z) <x i M, *(x)
14, (8.479)] s o
< Mu(x)(:z —v —x)SO.

Hence, —z M/ (x) is a monotonically decreasing function. From Lemma 3.9(c) we have
that, for v > 1/2, xM?2(x) is monotonically decreasing, and hence M/ (z) < 0. It is
now not difficult to see that zM’*(z) is also a monotonically decreasing function.
Therefore,

(3.16) e M (2)zM2(z) < V2 M (V) M, (v)? (

3.13) 1
< C forz>v> 3
Combining this last result with (3.14) and (3.15) gives the required bound for v >
1/2. The result for ¥ = 1/2 is obtained by the continuity of Bessel functions in the
argument v.

Finally we prove (a) and (b) for v = 0.

1 9 Lemma 3.9(c) ] . 9 [1,(923)] 1 —2/3
Jo(k)Ho()| < TME(k) < & lim kMi(k) < O < O
Similarly,
k|Jy (k) Ho (k)| = k|J1(k)Ho(K)| < VEM;(k)VEMo (k)
Lemma 3.9(c) [1, (9.2.3)]
< M;(1) lim VEMy(k) < C. O

k—o0

COROLLARY 3.11. Let Ry : L?(S?) — L*(S?) be the operator defined, as in (3.8),
by

Ry =1/2+ Ky —iaV.
Then Ry is bounded, and there exists a constant C > 0 independent of k such that
||Rk||L2(S2)<_L2(S2) < C(l + ak*2/3).

Proof. In view of Lemma 3.8, to prove the statement we need to find bounds on
the eigenvalues of the operator Rj. Using the definition of spherical Bessel functions
(3.12) and Proposition 3.10, we have that

AV = 26RO (k) (k)| = |7 H,py 1 (k)1 (K)| < CR2/3,
a2 =] | = [ Ay )y )

and

. ™ 1
= [ w0 09] = 3kt ) (T 09+ 5 09)

< |Gk a3 0) )y (B)] + | T Ho s () ()] < 14 R720%),

1 K
‘2+>\£L),3
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The result now follows from the identity

||Rk||HS(S2)<—HS(S2) = Sup ]./2 + )\55;) — ’LO()\;Yk) . D

n€Ng

)\gle) ‘ = sup
’ n€Np

Note that for a < k%/3, || Ri||12(s2)—r2(s2) is bounded by a constant independent
of k. Numerical experiments suggest C. = || R | 12(s2)—r2(s2) < 1.76, for a = k%/3.

DEFINITION 3.12. Let a := k*/® in the definition of Ry; see (3.8).

REMARK 6. The choice a  k is prevalent in the literature; see [2, 11, 13, 21].
In [2] and [21] the choice was made to minimize the condition number of the matrices
arising from the discretization of boundary integral operators in the case of the unit
sphere and the unit disk. The same choice mazimizes the inf-sup constant and hence
optimizes the error estimate given by Céa’s lemma; see [13]. The error estimate in
Corollary 3.3 is not affected by the inf-sup constant, and with the choice a = k*/3
the constant of quasioptimality C,. is independent of k. Céa’s lemma gives a more
pessimistic bound, with the quasioptimality constant growing as k'/3; see [11, 13].

It remains now to find the dependence on k of the continuity constant of the
operator 7, = Rz_lR. From Lemma 3.8 we have that

A~ i)

7k | 1 (s2)— 12 (s2) = sup mp‘%ﬂ = sup /1 + n? S Ll
' " 124+ A8 +ian()

By taking into account the properties of the zeros of Bessel functions (see [1, (9.5)]),
it can be seen that the denominator in the above expression is never zero; however,
a proof of a useful upper bound for the whole expression is beyond the scope of this
paper. Instead, we consider the three asymptotic cases: k fixed and n — oo, n =~ k,
and n fixed and k — oo.

ProPoOSITION 3.13.

(a) For fized v and k — oo we have, for a <k,

1

. O(k~!
2eix (f%costrisinx) + O™

)

where x =k —vm/2 — /2.
(b) Forv+1/2 =k and o < k** we have

-1
AT =1+ ‘imb(l +V/3i) + 2ma?(1 — V3i)ak ™23 + 0(1(2/3)‘ :

where a and b are constants from the asymptotic expansions (3.13).
(¢) For fized k and v — oo we have

Ar=0w").
Proof. Part (a). We first use the definition of spherical functions to write the

eigenvalues in terms of Bessel functions and then make use of asymptotic expansions
given in [1, (9.2)]. From (3.12), as in proof of Corollary 3.11, we have for v fixed and
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k — oo that
N —g +iskH, 1 (k)] 1 (k) = 5(5 = 20)H, 3 (B) ], 43 (k)
o igkH, 3 (k)T (k) = 5(5 = 20)H, 3 (k)] 3 ()
. _ 1
- inkH, .y (k)J, (k) = (5 = 20)H, (k)43 (k)
[, 02|, 1
- 2ex (=22 cosx +isinx) — $O(k~1) + O(k~1) |’

where x = k— (v +1/2)7/2 — w/4 = k — vw/2 — w/2. The result now follows from
the assumption o < k.
Part (b). Using the asymptotic expansions (3.13), we obtain that

AL = U fimhab (14 VB +O(k?)
—ma®(i/2 — 2a) ((1 Bk O(k‘Q)) )71

— 14 \mbu +/30) + 2ma2(1 — V3i)ak~2/3 + O(k~2/%) + aO(k™2)

Part (c). For the proof, we use the asymptotic expansions given in [1, (9.3)]:

(3.17) T (k) H (k) T L (k) —it —op.

2mv \ 2v TV

We also make use of Stirling’s approximation to the Gamma function [1, (6.1.39)]:
1y
, Bk (L 24w LN 1
T(v+1) \k 2 \2 Jv+1

[1’(6@1‘39”\/;@5) (k+0( ))

77 (k) 1 €210

Hence,
3. 1
(3.18) T (k) H, (k) &) i+ 0.
Y
Finally,

(3.17), 3.18) —1/2+1/24+0(v™1)

)\T
v,k 1/24+0(v1)

0. O

Part (c¢) in the above proposition merely confirms that 7 is a pseudodifferential
operator of order —1. From part (b) we conclude that for n +1/2 =k,

(3.19) V1+n2AZ, |~

The denominator in the expression of part (a) is clearly never 0; however, it becomes
arbitrarily close to zero for certain large enough values of k and for @ < k. Neverthe-
less, note that |—2% cos x + isin x| > 2a/k, for k > 2. Thus,

|)\Z—k\ =O(k/a) for k> 2a.
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50

T
— - k=10
— k=20
451 — k=40 [

Fic. 3.1. Plot of V1+ ”2|>‘Zk| for different values of n and k. The vertical lines denote the
positions at which n+1/2 = k.

Since a = k?/3, the condition k > 2« is equivalent to k > 8.

To see how relevant these asymptotic cases are for estimating the continuity con-
stant, in Figure 3.1 we plot V1 + ”2|>‘£,k| for different values of k£ and n. The picture
suggests that the maximum occurs for n 4+ 1/2 ~ k. Hence, in view of (3.19), we are
lead to the following heuristic:

(3.20) 1Tkl (s2)—12(s2) < Cxk

for some constant C'xy > 0 independent of k. Numerical experiments suggest that
Cx < 1.7. In [11], it was proved that, in two dimensions with the coupling parameter
a = k and large enough k, the eigenvalues of Ry are bounded below by 1/2. This
further supports our claim (3.20).

Now we are in a position to give estimates of the dependence on k of the stability
and the accuracy of the boundary element method.

3.2.1. Piecewise-constant Galerkin boundary element method.

PROPOSITION 3.14. Let T' =82, § =8y, ¢ € LA(T) be the solution of (3.9),
and let (3.20) hold. There exists a constant ¢ independent of k such that if hk < c,
the discrete problem (3.10) has a unique solution pg € S. If, further, ¢ € Op 1, then
there exists a constant C independent of k such that

e = @sllo < Chkllello-

Therefore, the boundary element method does not suffer from the pollution effect,
and a condition hk < 1 is sufficient to guarantee stability and a quasi-optimal error
estimate.

REMARK 7. Let us consider the two dimensional case, I' = {z € R? : ||lz| = 1}.
The Sobolev space H*(T') can be identified with the space H*([0,2r]) of 27 periodic
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distributions; see [2, 20]. Periodic functions, e*"? n € Ny, are then the eigenfunc-

tions of the operators Vi, and Ky with eigenvalues given by

v i K 1 s

AV = 5 (k) Ha (k). A = -+ T

Comparing these with the case of the sphere, it is clear that the analogous analysis of

this section holds for the two dimensional case as well. In particular, the statement

of Proposition 3.14 also holds for the case of the unit ball in two dimensions.

3.2.2. The h-p version of the Galerkin method. Just as in the finite element
method [17, 18], the use of higher order polynomials improves the stability condition
of the boundary element method. Let S = Sg’}l be the usual boundary element space
of continuous piecewise polynomial functions of order p. Using the approximation
properties of such spaces proved in [15, 16, 17, 18], we proceed as in the case of

piecewise-constant basis functions. Assuming that H = O, where 1 <1 < p, we
obtain the estimate

T — [15, 17] T B\ L
n(S) = sup infin &% — vllo < Ca(l) sup [Tt llsr <>

1/}Eﬁ\{o}ves HwHO o weﬁ\{o} Hib”o 2p
1+1
< Ca()Cxk sup Il (h)
peH\{0} ||1/1H0 2p
TGS
< -
paex (5)

where C(l) is a constant depending only on [. Therefore, the condition for stability
and the quasi-optimal error estimate reduces to hk < 2p. Thus, higher order elements
allow for a coarser mesh and the following error estimate:

I+1
kh
lo— a0 < C (2p) Ielo.
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TIME SPLITTING ERROR IN DSMC SCHEMES FOR THE
SPATTIALLY HOMOGENEOUS INELASTIC BOLTZMANN
EQUATION*
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Abstract. The paper is concerned with the numerical treatment of the uniformly heated inelastic
Boltzmann equation by the direct simulation Monte Carlo (DSMC) method. This technique is
presently the most widely used numerical method in kinetic theory. We consider three modifications
of the DSMC method and study them with respect to their efficiency and convergence properties.
Convergence is investigated with respect to both the number of particles and the time step. The
main issue of interest is the time step discretization error due to various splitting strategies. A
scheme based on the Strang-splitting strategy is shown to be of second order with respect to time
step, while there is only first order for the commonly used Euler-splitting scheme. On the other
hand, a no-splitting scheme based on appropriate Markov jump processes does not produce any time
step error. It is established in numerical examples that the no-splitting scheme is about two orders
of magnitude more efficient than the Euler-splitting scheme. The Strang-splitting scheme reaches
almost the same level of efficiency as that of the no-splitting scheme, since the deterministic time
step error vanishes sufficiently fast.

Key words. granular matter, Boltzmann equation, stochastic numerics
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1. Introduction. A basic tool for modeling low-density flows of granular mate-
rials is the inelastic Boltzmann equation. We refer to the conference proceedings [17],
[16] and to the monograph [5] for details concerning applications and an appropriate
physical justification. In this paper we consider the spatially homogeneous uniformly
heated inelastic Boltzmann equation

(1.1) atf_ﬁAvf:Qa(fmf)
with initial condition
(1.2) f(0,v) = fo(v).

Equation (1.1) describes the time evolution of a function f(¢,v) representing the
average number of particles at time t having a velocity close to v. The symbol A
denotes the Laplace operator and the parameter § > 0 determines the strength of the
random forcing. The collision integral is most conveniently written in the weak form

(1.3) /R Q£ ) elv) dv
1 ) )
T2 /R /R /S B(v,w,e) [p(v}) + p(wh) — (v) — p(w)] f(v) f(w)de dw dv,
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where ¢ is a test function and S? denotes the unit sphere in the Euclidean space R3.
The function B is called the collision kernel. The postcollisional velocities are defined
by

1 1-— 1
v&:v;(uw,e)zi(v—kw)—i— a(v—w)—i— +a|v—w\e,
(1.4)
1 1-— 1
wl, = wl (v,w,e) == (v+w) — Oé(v—w)— +a|v—w\e.

2

The parameter 0 < o < 1 is called the restitution coefficient. For o = 1 the collisions
are elastic and Q1(f, f) coincides with the classical Boltzmann collision operator. A
discussion of the relevance of (1.1), as well as more references, can be found in [10].

In this paper we address the issue of the numerical treatment of (1.1) by the
direct simulation Monte Carlo (DSMC) method. This technique is presently the most
widely used numerical method in kinetic theory (cf. [2], [6]). It is based on a system of
particles performing a random evolution that imitates the behavior of the underlying
physical model. As to inelastic collisions, the homogeneous cooling state of a low-
density granular flow was studied by the DSMC method in [4]. A DSMC method for
uniformly heated granular fluids, described by (1.1), was introduced in [13]. Related
studies were performed in [1], [21]. We refer to [8] for an account of deterministic
numerical methods for the elastic Boltzmann equation and to [9] concerning a deter-
ministic numerical approach to (1.1).

The purpose of this paper is to study three modifications of the DSMC method
for the uniformly heated inelastic Boltzmann equation with respect to their efficiency
and convergence properties. The main issue of interest is the time step discretization
error due to various splitting strategies. The first method, from [13], implements a
straightforward FEuler-type splitting in analogy with the classical Bird scheme for the
spatially inhomogeneous elastic Boltzmann equation. The second method follows the
Strang-splitting strategy (cf. [20]). The third method, previously used in [11], avoids
any time step discretization error, since no splitting is used. Convergence is studied
with respect to both the number of particles and the time step. All methods are of first
order with respect to the inverse number of particles. The Strang-splitting scheme is
of second order with respect to the time step, while the Euler-splitting scheme is of
first order. In the numerical examples, the no-splitting scheme is about two orders
of magnitude more efficient than the Euler-splitting scheme. It is observed that the
Strang-splitting scheme reaches almost the same level of efficiency compared to the
no-splitting scheme, since the deterministic time step error vanishes sufficiently fast.

The paper is organized as follows. In section 2 we describe a Markovian parti-
cle system approximating (1.1). In section 3 we define the three DSMC algorithms
mentioned above. In section 4 we introduce a test example and present the results
of numerical experiments. Here we study efficiency and convergence properties of the
algorithms both in the transient and in the steady state cases. Section 5 contains
some concluding remarks.

2. The direct simulation process. Here we describe the time evolution of a
Markovian particle system

(2.1) (vl(t), . ,vn(t)>, >0,

where each particle is characterized by its velocity. The process (2.1) corresponds to
(1.1) in the sense that the family of empirical measures
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(2.2) )(t, dv) Z 6oy (t)

converges (as n — o00) to the measures f(t,v)dv. We refer to [14], [12] concerning
rigorous convergence results for a wide class of Boltzmann-type models (see also [19,
section 2.3.3]).

Roughly speaking, the system interacts through binary inelastic collisions. In
addition, the particles continuously gain kinetic energy due to Gaussian white noise
forcing. More precisely, we assume

(2.3) B(v,w,e)de < Bpax Yo,w € R3.
S2
Then the evolution of system (2.1) is determined via the following steps.

Initial measure. System (2.1) at ¢t = 0 is chosen in such a way that the empirical
measure (™) (0, dv) (cf. (2.2)) approximates the initial measure fo(v)dv (cf. (1.2)).

Time counter. Given system (2.1) at time ¢, the next interaction (collision) takes
place at a random time t + 7, where

1
(2.4) Prob{r > s} = exp <2Bmam s) , s> 0.

Brownian motion. The particle velocities perform individual Brownian motions
between the collisions. After some time 7 without collisions, the particle velocities
are given by

(2.5) vi(t+71) =v;(t) + 207 E;, ji=1,...,n,
where &; € R? are independent standard Gaussian random variables.

Collision partners. The indices ¢ and j of the collision partners are chosen uni-
formly on the set {1 <i# j <n}.

Fictitious collision. Given i and j, the collision is fictitious (the system does not
change) with probability

(vs,v5,€) de
B’maw

(2.6) 1- Js: B

Collision. With the remaining probability, a direction vector e is generated ac-
cording to the density

B 19 )
(2.7) (” e g,
fSQ (vi, vj,€) de
and the postcollisional velocities
(2.8) vl (vi, v, €), wi, (vi, v, €)

are computed according to the collision transformation (1.4).
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3. DSMC algorithms. Here we describe three algorithms based on the Markov
process introduced in the previous section. They differ in the way time splitting is
carried out.

The algorithms perform the time evolution of a particle system (vy,...,v,). At
some observation points

(3.1) Sims m=0,1..., M,

functionals of the system

(32) RIS

j=1

3

are computed, where ¢ is an appropriate test function. The random variable (3.2)
approximates the functional

(3.3) Aywﬂ%mm

of the solution of (1.1).
In order to reduce the random fluctuations of the estimator (3.2), a number
N of independent ensembles of particles is generated. The corresponding values of

the random variable are denoted by f%n), cee 5\7). The empirical mean value of the
random variable (3.2)

1 N
(3.4) N = =Yg
j=1

is used as an approximation to the functional (3.3). The independent ensembles of
particles are also used to estimate the random fluctuations by means of confidence
intervals. For details we refer, e.g., to [19, section 3.1.4].

3.1. Euler-splitting scheme. First we describe the DSMC method introduced
n [13]. Tt implements the idea of standard (elastic) DSMC, where the free flow and
collision simulation are separated (cf. [2]). The simulation of random “kicking” and
collisions is split over a time step At. The state of the particle system is calculated
at the discrete time points

(3.5) th=kAt, k=0,1,...,

until all observation points (3.1) (assumed to be multiples of the time step) are
reached.
ALGORITHM 3.1.
1. Initialization
1.1 set system time ¢ =ty
1.2 generate v;, j=1,...,n, according to fo(v)
2. Simulation (for k=1,2,...)
2.1 Collision step of length At
2.1.1 compute 7 according to (2.4)
2.1.2 update the system time t:=t+ 7
2.1.3 if t > t; then go to Step 2.2
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4 generate the indices ¢ # j

.5 go to Step 2.1.1 with probability (2.6)
6 generate e according to (2.7)

7 replace v; and v; according to (2.8)
icking step of length At

v = v + /20 At &, i=1,....n

2.2.2 set system time ¢ = {
3. Compute functional (3.2) at all s,

3.2. Strang-splitting scheme. Next we describe a modification of the algo-
rithm from the previous section. We apply the idea of the Strang splitting. This
has been introduced in the context of the elastic Boltzmann equation in [15]. Its
application to equations with rather general operators was studied in [3].

ALGORITHM 3.2.

1. Initialization

2. Simulation (for k=1,2,...)

2.1 Collision step of length At/2
2.2 Kicking step of length At
2.3 Collision step of length At/2

3. Computation of functionals

3.3. No-splitting scheme. Finally we recall a DSMC algorithm that was in-
troduced in [11]. The symbols o; denote the last time, at which the particle j was
kicked.

ALGORITHM 3.3.

1. Initialization

1.1 set system time t =0
1.2 generate v;, j=1,...,n, according to fo(v)
1.3 set 0; =0, j=1,...,n
2. Simulation (for m=0,1,..., M)
.1 compute 7 according to (2.4)
update the system time {:=t+ 7
if ¢ > s, then go to Step 3
generate the indices i #j
update the velocities v; and v; (cf. (2.5))

vi::vi+m&, v ¢:Uj+m5j

NN NNDN
O WN

.6 update the times of last kicking o; =0, :=t
.7 go to Step 2.1 with probability (2.6)
.8 generate e according to (2.7)
.9 replace v; and v; according to (2.8) and go to Step 2.1
3. Calculation of functionals
3.1 update the velocities of all particles (cf. (2.5))

Ui::Ui+V2ﬁ(Sm_o—i)§ia i:1,...,n

3.2 compute (3.2)
3.3 set system time ¢{ =5, and go to Step 2.1

2
2
2
2



INELASTIC BOLTZMANN EQUATION 59

3.4. Comments. In Algorithms 3.1 and 3.2, the kicking step is computed accu-
rately, i.e., without any further time discretization. Particles are just moved according
to Brownian motion. The collision step contains the random interaction times dis-
tributed according to (2.4). Its accuracy depends on the number of particles. In Algo-
rithm 3.3 particles perform Brownian motion between collisions so that any splitting
errors are avoided.

One might use deterministic interaction times obtained as the expectation of the
distribution (2.4). This would introduce another error, which is small for large n. We
refer to [19, section 3.5.2] concerning a discussion of various time counting procedures.

Unbounded collision kernels. The variable hard sphere model
(3.6) B(v,w,e) = Cy |v — w|*, 0< A<,

is widely used in applications (cf. [2, Chapter 2]). Particular cases are the models
of hard spheres (A = 1) and of pseudo-Mazwell molecules (A = 0). The kernel (3.6)
does not satisfy condition (2.3), unless A = 0. In order to fit into the framework of
section 2, one has to truncate the kernel using some maximal relative velocity U qz-
The truncated kernel

> — B(/U’ w) e) if |U - w| S U77L(1.’I/'7
(3.7) B(v,w,e) = { C\U},. otherwise
satisfies (2.3) with By,u. = 47 Cy U)\,..- Correspondingly, the parameter of the wait-
ing time distribution (2.4) takes the form
(3.8) 2w (n —1)CL U

axr*

The probability of a fictitious collision (2.6) is

v = ]\
11— —L) .
Umam
The density (2.7) is constant so that the vector e is distributed uniformly on the unit
sphere.

Adapting majorants. There are two aspects related to the choice of the trun-
cation parameter Up,q,. If it is small, then the solution of (1.1) for the kernel (3.7)
will significantly differ from the solution for the original kernel B. If, on the other
hand, the parameter U,,,, is big, then the time steps between collisions are small
(inverse of parameter (3.8)) and the algorithms are time consuming. Therefore, the
parameter U,,q. is usually derived from the particle system used in the simulation.

In the classical (elastic) DSMC algorithm (cf. [2]) the starting value of Uppq, is
based on the temperature of the initial particle system. Then this value is adapted
during the process of calculation each time the relative velocity of a pair of particles
exceeds the stored quantity. This procedure works well in steady state calculations.
The error related to this procedure in transient calculations was studied in [18].

A problem with finding the maximum relative velocity in a particle system is
related to the fact that the effort is quadratic in the number of particles. However,
this can easily be reduced to a linear effort by using the estimate

max |v; — v;| < max (|vl -V|I+|V - vj|) = 2max |v; — V|,
i.j i.j i
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where V' is any fixed vector. A particular choice is the numerical bulk velocity
1 n
V== i
w2 U
j=1

Thus, one may start with U4, = 2max; |v; — V| and update the majorant after each
collision

(3.9 Unag = max {Umax’ lvi — V|, |vj — V|}

This procedure is used in Algorithms 3.1 and 3.2. The situation in Algorithm 3.3 is
slightly more difficult, since particle velocities change continuously as a result of the
kicking process. Here we implemented the above procedure of adapting the majorant,
but in addition the quantity U,,q, was updated according to (3.9) after each Step 2.5.
The error caused by this truncation does not seem to be significant, as shown by the
very precise tail calculations in [11].

4. Numerical examples. Here we test the algorithms introduced in the previ-
ous section with respect to their convergence properties and efficiency.
We consider the case of a constant collision kernel, namely, (3.6), with

1
(4.1) A=0, Co=—.
T
Note that other values of the constant Cy can be handled by an appropriate time scal-

ing, since the function f(ct,v) solves (1.1) with diffusion coefficient ¢ 8 and collision
kernel ¢ B, where ¢ > 0 is some constant. Furthermore, we assume

fo(v)dv =1, / v fo(v) dv = 0.
R3 RS

Note the conservation properties

g f(t,v)dv = /R3 fo(v) dv, /Rgvf(t, v)dv = /R3vf0(v) dv,

which can be derived easily from the weak form of the equation (cf. (1.3)).
In this case the relaxation of the temperature

1

(4.2) T(t) = 3 /R 02 f (£, v) dv

is known analytically. Assuming 0 < a < 1, one obtains (cf. [11])
2 2
T(t) = Tap(t) = Tye~ (1= )47, 45(00) (1 —e (- ”)

(4.3) = T 5(00) + [To — T p(00)] e~ (1 =091

1
T, = g/ (o[ fo (v) dv
R3
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and

2
4.4 T, = —.
( ) 7[}(00) 1— (XQ
Note that

hml Ta,g(t) = T() + 25 t.

According to (4.1), the collision kernel is bounded so that the only sources of error
are the number of particles n, the time step At (in Algorithms 3.1 and 3.2), and the
number of independent samples N (cf. (3.4)). First order of convergence with respect
to n has been established under rather general assumptions (cf. [14], [12] concerning
the transient case and [7] concerning the steady state case). Convergence with respect
to At for Euler splitting (first order) and Strang splitting (second order) was studied
in [3] in the context of rather general operator equations. We refer to [19, section
3.5.5] for more details.

4.1. Approximation on a finite time interval (transient case). Here we
use the Maxwell distribution

1 _lui?

(4.5) fo(v) = @2n)2 e 2
as the initial condition. For the parameters

1
(4.6) a=1, B=1,

2
one obtains from (4.3), (4.4)
(4.7) T(t) :e*%w%(l_e*%t).

We approximate the evolution of the temperature (4.2) on the time interval [0, 8.0],
using (3.2) with ¢(v) = % |v|? (cf. (3.3)). The time step in the splitting schemes
(cf. (3.5)) is chosen in the form

8
At = — K > 4.
K’ -
Unless indicated otherwise, the results are averaged over N = 10000 independent
ensembles (cf. (3.4)).

Particle number convergence. Figure 4.1 illustrates the approximation of the
analytical solution (4.7) (dashed line) by confidence bands (solid lines) computed using
the no-splitting scheme with two different values of n. A “zoom” on the time interval
[5.0,8.0] of the no-splitting scheme for two higher values of n is shown in Figure 4.2.
The analytical solution (4.7) is mostly covered by the confidence interval for n = 4 096
and completely covered for n = 65536. More detailed results are given in Table 4.1.
The errors are computed as

T(tx) — Tk
T(tk)
where T'(t;) are the exact values (4.7) of the temperature at time point t; and T} is
the computed temperature. The convergence factors (quotients of subsequent values)
are denoted by CF. The results in Table 4.1 clearly indicate the expected convergence

order O(n’l) of the error. Note that the width Conf,.,4 of the confidence interval at
tx is proportional to ﬁ, since the variance of the estimator (3.2) has the order %

T(ty) — Tk

E =
, max Og}CaSXK ‘ T(tk)

9

Eend = ’
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F1G. 4.2. No-splitting scheme for n = 4096 (left) and n = 65536 (right).

TABLE 4.1
No-splitting scheme for different n.

| n |  Eena | CF | Confeng | CF | FEmas | CF |
16 [ 0.359E-00 | - | 0.119B-00 | - | 0.359E-00 | -
64 | 0.939E-01 | 3.82 | 0.420E-01 | 2.83 | 0.939E-01 | 3.82
256 | 0.229E-01 | 4.10 | 0.183E-01 | 2.30 | 0.229E-01 | 4.10
1024 | 0.584E-02 | 3.92 | 0.865E-02 | 2.11 | 0.584E-02 | 3.92
4096 | 0.136E-02 | 4.29 | 0.430E-02 | 2.01 | 0.136E-02 | 4.29
16382 | 0.293E-03 | 4.64 | 0.215E-02 | 2.00 | 0.332E-03 | 4.10
65536 | 0.141E-03 | 2.08 | 0.108E-02 | 1.99 | 0.141E-03 | 2.35

TABLE 4.2
Euler- and Strang-splitting schemes for n = 4096.

| k| EBuer | cF | ESens | cF |
4] 0931E-00 | - | 0.863E0L | -

8 | 0.421E-00 | 2.21 | 0.195E-01 | 4.42
16 | 0.200E-00 | 2.11 | 0.501E-02 | 3.89

32 | 0.977E-01 | 2.05 | 0.997E-03 | 5.03

Time step convergence. Similar convergence behavior with respect to the par-
ticle number is observed for the Euler- and Strang-splitting schemes, except that the
n-limits contain an error depending on At. The corresponding numerical results are
collected in Table 4.2. The linear convergence of the Euler-splitting scheme as well as
the quadratic convergence of the Strang-splitting scheme are clearly indicated.

For n = 4096 and K = 32 the error of the Strang-splitting scheme is comparable
to that of the no-splitting scheme, while the error of the Euler-splitting scheme is
about 70 times larger. We note that for these parameters the numerical work of all
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F1G. 4.3. No-splitting scheme for n = 256, 1024, and 4096 (from below).
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F1G. 4.4. No-splitting scheme (thick line), Strang-splitting scheme (upper thin line), and Euler-
splitting scheme (lower thin line) for n = 4096.

schemes is roughly the same. A more detailed study of the efficiency will be made in
section 4.2.

Deviation from the Maxwellian state. An interesting feature of the inelastic
Boltzmann equation (1.1) is a non-Maxwellian steady state. A specific “criterion” for
detecting deviations from the Maxwellian state has the form (cf. [19, section 1.8])

1

(48) C 't(t)l(l 1P = p) T1% + o (O] + (t)?)m
' A TORY P AE T 5y 1 1207(t)2 7 ’

where P(t) is the pressure tensor, p(t) is the scalar pressure, ¢(t) is the heat flux
vector, I denotes the identity matrix, |A||z denotes the Frobenius norm of a matrix
A, and

90 = [ ol ft0)av 1570

is a fourth moment of the distribution function.

In Figure 4.3 we show the criterion (4.8) obtained by the no-splitting scheme
with different values of n. The curves were calculated using, respectively, N = 65536,
16192, and 4 096 repetitions. The functional starts from zero, according to (4.5), and
tends to a strictly positive stationary value as ¢ — co. So it allows one to quantify
the deviation from the Maxwellian state.

For comparison the corresponding curves for the splitting schemes with K = 32,
n = 4096, and N = 4096 are provided in Figure 4.4. Similar to what was observed
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TABLE 4.3
Euler-splitting scheme for n = 65536.

[ K] Tw | Error [ CF ] Conf [ CPU [ CF |
32 [ 2.9226 [ 0.2559 | - ] 0.0046 | 1.09 -
256 | 2.6975 | 0.0308 | 8.3 | 0.0041 | 6.57 [ 6.03
512 | 2.6817 | 0.0150 | 2.1 | 0.0040 | 12.8 [ 1.95

2048 | 2.6719 | 0.0052 [ 2.9 [ 0.0039 | 51.1 | 3.99

4094 [ 2.6710 | 0.0043 | 1.2 | 0.0053 | 100.4 | 1.96

TABLE 4.4
Strang-splitting scheme for n = 65536.

[ K] T | Error [ CF | Conf [ CPU |
8 [ 2.6055 [ 0.0612 | - [ 0.0040 | 0.61
16 | 2.6520 | 0.0147 | 4.2 | 0.0047 | 0.86
32 [ 2.6620 | 0.0047 | 3.1 | 0.0038 | 1.07
64 | 2.6655 | 0.0012 | 3.9 | 0.0045 | 1.87

TABLE 4.5
No-splitting scheme for n = 65536.

[ Too [ Error [ Conf [CPU]
[ 2.6684 [ 0.0017 | 0.0040 [ 1.0 |

for the temperature, the Strang-splitting scheme gives basically the same accuracy as
the no-splitting scheme, while the error of the Euler-splitting scheme is significantly
larger.

4.2. Approximation of the stationary value (steady state case). Here we
consider the same example as in section 4.1 (cf. (4.7)). Figures 4.1 and 4.2 show that
the stationary value T'(co) ~ 2.6667 has almost been reached. So we start averaging
at sop = 8 (cf. (3.1)). The quantity of interest is measured after each Atyax = 2 so
that

Sm = 8o + M Atmax, m=1,...,M.

This time step (corresponding to K = 4 in the context of the previous subsection)
is big enough to assure almost independent observations. Confidence intervals are
constructed over M = 64 observation points, so that sy, = 136.

Time step error. We choose n = 65536 so that the particle number error is
negligible. Results for the different methods are given in Tables 4.3-4.5. As above,
Conf denotes the width of the confidence interval and CF denotes the convergence
factors (quotients of subsequent values). The CPU times for the splitting schemes are
measured relative to the CPU time for the no-splitting scheme.

First order of the time step error is observed for the Euler-splitting scheme, while
the Strang-splitting scheme provides second order. The no-splitting scheme avoids
any time step error. Note that 0.0267 would be a 1% error.

Efficiency. The effort is roughly determined by the sum of the mean number of
collisions N1 and the mean number of kicks Ny;c. These quantities can be predicted
rather accurately.

The mean number of collisions is (cf. (3.8), (4.1))

NCOH(’I’L) =2 (n — 1) SM-
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TABLE 4.6
Ezample (4.9) for n = 65536.

[ Method [ Too [ Error [ Conf ]
Euler 109.596 | 9.596 | 0.1711
Strang 99.739 0.261 | 0.1425
no-split 99.981 0.019 | 0.1877

This quantity does not depend on the particular splitting procedure. The number of
kicks is easily calculated from the other parameters. In the no-splitting scheme one
obtains

SM — S0

NP (n) = 2 Noon(n) + 1 M, M = At ;

since at each collision both partners are kicked and, in addition, all particles are kicked
before making a measurement. In the other methods one obtains

lit SM
independently of the particular way of splitting. Accordingly, the effort is roughly the
same for the splitting and no-splitting schemes if

SM — So SM

4(n—1 SM TS0 SM
(n )Ysm +n Af At n

or

1 4 1

AT Nt
Thus, all methods have a similar effort for At ~ %, i.e., K ~ 32. In general, the effort
for the splitting schemes increases inversely proportional to the time step. Note that
these predictions are confirmed by the CPU measurements in Tables 4.3—4.5.

In conclusion, the Euler-splitting scheme needs running time about 100 times
longer than the no-splitting scheme to cover the correct temperature by the confidence
interval. The Strang-splitting scheme needs running time only about two times longer.
Alternatively, with the same effort, the error for the Euler-splitting scheme is 100 times
bigger than that for the no-splitting scheme, while the error for the Strang-splitting
scheme is two times bigger.

These conclusions are qualitatively confirmed by a rough test for another param-
eter configuration, namely,

(4.9) a=05 B=375

instead of (4.6). In this case the exact asymptotic value of the temperature is T'(c0) =
100 (cf. (4.4)). All other parameters are as above, in particular, K = 32, so that all
three methods have approximately the same effort. The results are given in Table 4.6.

5. Concluding remarks. The direct simulation Monte Carlo (DSMC) method
is one of the basic tools for the numerical treatment of nonlinear kinetic equations
so that improvements of its efficiency are of significant practical importance. In this
paper we considered a particular application, namely, the uniformly heated inelastic
Boltzmann equation. We investigated the performance of two new DSMC algorithms
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compared to a commonly used procedure. The order of convergence with respect to
the numerical parameters (number of particles, time step) as well as the computational
efficiency of the algorithms were studied both in the transient case (approximation
of the solution on a finite time interval) and in the steady state case (approximation
of the stationary solution). One scheme uses the Strang-splitting strategy instead of
the Euler-splitting scheme. It provides second order time step convergence instead
of first order. The other scheme is based on an appropriate Markov process avoiding
any splitting procedure. It can be considered as providing infinite order time step
convergence. All schemes are of first order with respect to the inverse particle number.
In our particular numerical test cases, both the Strang-splitting scheme and the no-
splitting scheme were up to two orders of magnitude more efficient than the Euler-
splitting scheme.

Here we comment on the relevance of the results for more general applications.
The first direction of generalization concerns the type of the driving force in (1.1).
The adaptation of the schemes to other mechanisms instead of Brownian motion, e.g.,
to deterministic force terms as in [13], is rather obvious. We expect that the main
messages of the paper concerning “Strang versus Euler” and “no-splitting scheme”
remain valid.

It should be emphasized that in the case of inelastic collisions the spatially homo-
geneous situation is of independent interest, since there is some “nontrivial” behavior
as, for example, a non-Maxwellian steady state. This issue has been intensively stud-
ied in recent years. The no-splitting scheme is very useful for investigating “fine”
properties of the solution, as higher moments or tails of the steady state distribu-
tion. It is remarkable that the no-splitting scheme not only avoids the time step
discretization error, but also is usually even more efficient than the other schemes.
The quantitative value of the efficiency gain depends on the concrete example, in
particular, on the level of “acceptable” time step error: if big time steps are sufficient,
there is less or no efficiency gain; if small time steps are required, the efficiency gain
may be rather significant.

Another interesting aspect of the present study is that it throws some additional
light on the controversial issue about the order of the time step error in the elastic case
(6 =0, a =1). Without going into detail, we refer to [19, section 3.5.5] concerning
a discussion of this matter for the DSMC method in rarefied gas dynamics. Since
temperature is not conserved, it provides a simple nontrivial test example in the
inelastic situation. This is in contrast to the elastic case, where the time step issue
can be studied only in spatially inhomogeneous examples.

A second direction of further study concerns the spatially inhomogeneous situa-
tion. In this case a term (v, V) is added to (1.1) and the solution f(¢,x,v) depends
on three more variables (position coordinates x). The direct simulation process intro-
duced in section 2 can be adapted to this situation. In addition to being accelerated by
a random force, particles change their positions between collisions. However, DSMC
algorithms in engineering applications [6] are based on splitting. The point is that it
would be computationally too expensive to take into account the relative positions for
the whole system at all times. The splitting should be performed by the Strang strat-
egy, moreover, since the Strang and Euler schemes have basically the same effort per
trajectory. The no-splitting approach provides alternatives for the splitting procedure
in the spatially inhomogeneous situation. For example, the acceleration term might
be combined either with the motion term or with the collision term. Additional time
step errors should be avoided, whenever this is possible, and the no-splitting idea may
help to do so.
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Abstract. This paper establishes a unified framework for the a posteriori error analysis of a
large class of nonconforming finite element methods. The theory assures reliability and efficiency of
explicit residual error estimates up to data oscillations under the conditions (H1)—(H2) and applies
to several nonconforming finite elements: the Crouzeix—Raviart triangle element, the Han parallel-
ogram element, the nonconforming rotated (NR) parallelogram element of Rannacher and Turek,
the constrained NR parallelogram element of Hu and Shi, the P; element on parallelograms due to
Park and Sheen, and the DSSY parallelogram element. The theory is extended to include 1-irregular
meshes with at most one hanging node per edge.

Key words. nonconforming quadrilateral finite elements, a posteriori error analysis
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1. Introduction. Nonconforming finite element methods are very appealing for
the numerical approximation of partial differential equations, for they enjoy better
stability properties compared to the conforming finite elements. While the study of
the approximation properties of nonconforming triangular and quadrilateral elements
has reached a certain level of maturity [3, 18, 27], the a posteriori error analysis of
nonconforming quadrilateral finite element approximations is still in its infancy.

Following the contribution of [16, 15] the a posteriori error analysis for the L2
norm of the piecewise gradient of the error, ||Vyel|r2(q), has been carried out success-
fully for triangular elements [9, 1] on the basis of two arguments: (a) the Helmholtz
decomposition of Vye, and (b) some orthogonality with respect to some conforming
finite element space V,?. Condition (b) fails for some quadrilateral nonconforming
finite elements, e.g., the nonconforming rotated quadrilateral element of Rannacher
and Turek, referred to as the NR element [25]. As a result, the a posteriori error
analysis of ||Vpel[z2(q) for nonconforming quadrilateral elements appears as a mine-
field. For the NR element, for instance, the work [23] bypasses condition (b) by some
enlargement of V;*¢ with local bubble trial functions, but their analysis applies only
to goal-oriented error control and cannot be extended to the control of ||Vye|| L2 ().
Another inherent mathematical difficulty for the NR element functions results from
the nonequivalence of the continuity at midpoints and the equality of integral averages
along edges. This makes the operator II in [2] not well defined (while correct for all
triangular elements of [1]).
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This paper aims to clarify and develop a unified framework for the a posteriori
error analysis of nonconforming finite element methods based on properties for meshes
obtained through affine mappings. The resulting framework is exemplified in the two-
dimensional elliptic model problem

(1.1) divVu=finQ, wu=uponlp, Vu-v=gonly

on some Lipschitz domain 2 C R? with the outward unit normal v along 0 :=
IpUTN. Let V:={v e HY(Q):v=0onI'p} denote the space of the test functions
approximated by conforming, Vi, and nonconforming, Viios finite element spaces
associated with a shape regular triangulation 7, with £ the set of the edges and £(2)
and £(T'p) the interior and boundary edges, respectively. Also, define [vs] as the jump
across E € £(Q) of the general discontinuous v;, € V;*° and Py (w) the polynomials of
total degree k on the domain w. Throughout the paper, the hypotheses (H1)—-(H2)
characterize some class of nonconforming finite elements allowing for efficient and

reliable error control.
(H1) For all v, € V;*¢ there holds

(1.2) /E[vh} ds=0for E € £(2) and /E(vh—up)ds:OforEef,’(l"D).

(H2) There exists some bounded, linear operator II : V' — V;'G and some mesh size
independent constant C' with the properties (1.3)—(1.5) for every v, € Vi?y, K € T,
and F € &,

3 / Vwyp, - V(vp — Hup)dz =0 for all wy, € V'
K

(1.4) /K(vh — ITvy,) dz = 0; /E(vh —ITvp,) ds = 0;

(1.5) HVH'UhHLZ(K) §C||V'Uh||L2(K)~

The main result of the paper (Theorem 3.1 below) establishes the reliability of

(1.6) n*= Z 0 + Z n%, with

KeT EcE
(1.7) nei= h| f + div VuhH%Z(K) for K € T,
(1.8) M= hp (el ) + 1E.r |12 ) for B €&,

up to the data oscillations osc(f) and osc(g) (see section 2.5 below):
(1.9) IVi(u —un)l[L2(9) < C(n+ osc(f) + osc(g)),

with Jg, and Jg  defined by (2.9) and (2.10), respectively.

The weak continuity condition (H1) is met by quite a large class of nonconforming
finite elements proposed in the literature [14, 19, 25, 17, 24, 21]. However, there are
also elements that fail the above condition, for instance, the version of the Rannacher—
Turek element [25] with local degree of freedom equal to the value of the function at the
midside nodes of each edge, and the nonconforming quadrilateral element of Wilson
et al. [29]. Both elements are therefore ruled out by the present analysis.
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Condition (H2) represents a key assumption of the theory. It weakens the or-
thogonality condition (b) mentioned above (see Lemma 3.3 below) by means of an
estimate depending on data oscillations and allows the analysis of nonconforming fi-
nite elements obtained through affine mappings.

The efficiency of n in the sense that there exists a mesh size-independent constant
C such that

(1.10) n < C([|Vhel|lL2(q) + osc(f) + osc(up) + osc(g)),

with osc(up) defined in section 2.5, can be proved by adapting the arguments from
[28, pp. 15-18] and [16, 9.

An outline of the remaining parts of the paper is as follows. Section 2 displays the
setup of the model problem (1.1), and introduces the conforming and nonconforming
finite element spaces as well as the a posteriori error estimate (1.6) and the data oscil-
lations in (1.9). Theorem 3.1 shows that the abstract conditions (H1)-(H2) imply the
reliability in the sense of (1.9). This is stated and proved in section 3 in the abstract
framework, while the relevant examples follow in section 4. Namely, applications of
the theory are given for the Crouzeix—Raviart element, the Han element [19], the NR
element [25] with local degrees of freedom equal to the average value over the edges,
the constrained NR element of Hu and Shi [21], the P, quadrilateral element of Park
and Sheen [24], and the DSSY element [17]. Section 4 concludes with a discussion of
the applicability of the theory to l-irregular meshes, with at most one hanging node
per edge, and its generalization to elliptic systems. Section 5 describes an adaptive
finite element method and a numerical example for the NR element with hanging
nodes.

2. Notation and preliminaries.

2.1. Model problem. Let Q be a polygonal domain in R? with boundary I' :=
0N split into a closed Dirichlet boundary I'p C I' with positive surface measure and
the remaining Neumann boundary I'y := I' \ I'p. Given f € L*(Q), g € L*(T'y),
up € H'/2(I'p), and V := {v € H'(Q) : v =0 on T'p}, the solution of (1.1) satisfies

(2.1) /Vu~Vvd:c:/fvdx+/ gvds for every v € V,
Q Q I'n

where the symbol - is the scalar product in the Euclidean space R?. Furthermore, we
denote by L? the Lebesgue space of square integrable functions, and by H*® with s > 0
the Sobolev space defined in the usual way [18]. For the corresponding norm we use
the symbols || - ||zz and || - | &=, respectively, with explicit indication of the domain
of integration. With Q an open set of R?, and ¢ € H'(f2), the curl and gradient
operators are given as

(2.2) curlp = (—0p/0xa, Op/0x1), Vo= (dp/0x1, Dp/0xs),
whereas for an R?-valued function v = (v, v) the divergence is
(2.3) divv = dvy /0x1 + Ovg/Oxs.

Throughout the paper, the letter C' denotes a generic constant, not necessarily the same
at each occurrence.
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2.2. Conforming finite element spaces. For approximating (2.1) by the finite
element method, we introduce a regular triangulation 7 of Q C R? in the sense of
Ciarlet [12, 6] into closed triangles, and /or convex quadrilaterals, such that | oy K =
Q, two distinct elements K and K’ in 7 are either disjoint, or share the common edge
E, or a common vertex; that is, hanging nodes at this stage are not allowed, and we
refer to section 4.6 and [11] for further discussion. Let £ denote the set of all edges
in 7, N the set of vertices of the elements K € 7, and N,, the set of the midside
nodes mpg of the edges E € £. The set of interior edges of Q2 are denoted by £(Q),
the set of edges of the element K by £(K), whereas those that belong to the Dirichlet
and Neumann boundary are denoted by £(T'p) and E(T'y), respectively. For the set
of midpoints of the edges ¥ € £(T'p) we use the notation N,,(I'p). By hx and hg
we denote the diameter of the element K € 7 and of the edge E € &, respectively.
Also, we denote by wg the patch of elements K’ € 7 that share an edge with K, and
by wg the patch of elements having in common the edge E. Given any edge F € £
we assign one fixed unit normal vg; if (1, 12) are its components, 75 denotes the
orthogonal vector of components (—vs, v1). For E € E(I'p)UE(T x) on the boundary
we choose vg = v, the unit outward normal to €2, and concordantly the unit tangent
vector 7. Once vg and 7 have been fixed on F, in relation to vg one defines the
elements K;, € T and Ky € T, with E = K,,; N K, as depicted in Figure 1.

Fic. 1. Definition of the elements K;yp and Koyt in relation to vg.

Given E € £(Q) and an R%valued function v defined in €, with d = 1,2, we
denote by [v]g the jump of v across E, that is,

Wl (@) = (v]K,.. (2) = vk, (2))  for € B = Kin N Kout;

the subscript E¥ will be omitted whenever it is clear from the context.
With the triangulation 7 we associate, moreover, the space H'(7) defined as

HYT)={ve L*(Q):VK € T, v|x € H'(K)},

and for v € H'(7T), we denote by Vv the gradient operator defined piecewise with
respect to 7, i.e.,

Vivlg == V(v|k).

Whenever it is clear from the context that we are considering the restriction of v to
an element K € 7, then we clearly write only Vo in lieu of Vjv.

For a nonnegative integer k the space Qp(w) consists of polynomials of total
degree at most k defined over w in the case in which w = K is a triangle, whereas it
denotes polynomials of degree at most k in each variable in the case in which K is a
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quadrilateral. For this presentation it will suffice to assume k& = 1. The corresponding
conforming space will be denoted by

Vi={ve H'(Q):v|g € Q1(K)} and Vi :={veV :v=0o0nTIp}.

Throughout the paper, for triangular elements, V)’ stands for the conforming
space of P; elements, whereas for quadrilateral elements it denotes the conforming
space of bilinear elements.

Given the conforming finite element space V', we consider the Clément inter-
polation operator or any other regularized conforming finite element approximation
operator J : H'(2) — V¢ with the property

(2.4) IVT @2y + 105 (0 = Tole2 ) < ClIVOll 2w

(2.5) 1h5"2(p — T2 () < ClIVl L2 )

forall K € T, E € £, and ¢ € H'(Q). The existence of such operators is guaranteed,
for instance, in [13, 26, 7, 5].

2.3. Nonconforming finite element spaces and a posteriori error estima-
tor. A nonconforming finite element approximation is defined by a finite-dimensional
trial space V;"¢ C H'(T) along with the test space Vi corresponding to the dis-
crete homogeneous Dirichlet boundary conditions. The nonconforming finite element
approximation uy, € V¢ of (2.1) then satisfies

(2.6) / Vyup - Vyop de = / fop dx +/ gupds for every vy, € V}'G.
Q Q I'n ,

The Helmholtz decomposition is a well-established tool in the a posteriori error anal-
ysis of nonconforming finite element methods [16, 9].

LEMMA 2.1. Given any e € V + V;"° such that Ve € L?(Q;R?) there exist
w, p € HY(Q) withw =0 on T'p, and Vo -7 =curlp-v =0 on 'y such that

(2.7 Vie = Vw + curl g,

(2.8) IVhellZzi) = IVwlliz () + [ curlgl|7z )

2.4. A posteriori error estimator. For each edge I/ € £, define Jg, the jump
of Vyjuy across E in direction vg, i.e.,

[Vouplg -ve i E € &g,
(2.9) JEgy =< g—Vuy v if £ €&y,
0 if £ e€é&p,
and Jg » the jump of Vjuy, across E in direction tg, i.e.,
[Viunlg - TE if £ € &g,
(2.10) Jgr =10 it £ eépn,
(Vup —Vuy) -7 if E €&p,

and recall n from (1.6) with the local contributions nx (1.7) and ng (1.8) for each
K €7 and F € &, respectively.
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2.5. Data oscillations. For f € L%*() and its piecewise constant approxima-
tion f;, with respect to 7, we refer to osc(f) as the oscillation of f [28],

(2.11) osc(f) = D> Bilf = fullZz (e

KeT

with osc(f) being a higher order term if f € H'(Q). Similar definitions hold for the
oscillations osc(up) and osc(g) of the Dirichlet and Neumann boundary data, up €
HY?(Tp) and g € L*(T'y), and their piecewise affine and constant approximations
up,p, and gp, respectively, as [28, 8]

2

)

L2 (E)

0
%(UD —Up,h)

osc(up) := Z hg

Ec&(T'p)

osc?(g) = Z helg — gh||2L2(E)'
EcE(T'nN)

3. Reliability of n. This section presents the main result of this paper, that is,
(H1)—(H2) imply the reliability of n. Throughout this section, let u solve (2.1), let uy,
solve (2.6), and set e := u — up,.

THEOREM 3.1. Assume that the space V;'¢ along with the corresponding Vi'o
satisfy (H1)—(H2). Then there exists a positive constant C depending only on the
manimum angle of T such that n is reliable in the sense that

(3.1) Vel L2 ) < C(77+OSC(f) —|—osc(g)).

The remainder of this section is devoted to the proof of Theorem 3.1.

We establish first some interpolation error estimates for the operator II in (H2).

LEMMA 3.2. Given the operator II meeting (H2), there then exists some mesh
size—independent constant C such that there holds

hic lvn — o L2y + [V (vn — Tow) || 2y < ClVonllz2 k),
(3.2) i
hg " llop — gl 222y < ClIVUR|| L2 (wp) -

Proof. Let T denote the mean average operator over K. Using condition (1.4);
with I v, = IIE vy, the triangular inequality, and (1.5), one obtains

(3 3) H’Uh — thHL2(K) < th — H(I)(UhHL2(K) + ||H£(H’Uh - th”L?(K)
< C(hx|IVunllzz ) + hrclVonl Lz cr))-

A triangular inequality and (1.5) also gives
||V’Uh — VH’l)h||L2(K) S C||V’Uh||L2(K),

which, combined with (3.3), finally yields (3.2);. Arguing in a similar way and using
the trace theorem [6, 12] one obtains (3.2)s. 0

Here and throughout, f; and g, denote piecewise constant approximations of f
and g, respectively. From (H2) and for every v, € Vi o, the following holds:

(3.4) / Viup - Vop dx = / f vy, dz + / g vy, ds.
Q Q I'n
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LEMMA 3.3. There exists a mesh size-independent constant C' such that, for
every vy € Vi, the following holds:

(3.5) /QVhe - Vup dx < Closc(f) + osc(g)) || Vunllz2(0)-

Proof. From (2.1) and (3.4), for every v, € V7 it follows that

/Vhe-Vvhdx: Z
Q

KeT

+ Z (/E(g_gh)(vh—ﬂvh)dg_p/

Ee&(TN) B

(/K(f — fn)(vn — Moy, dz + /K fn(vn — Hop) dﬂ?)
gn(on — TIop) ds).

Since (1.4), this equals

/ (f = f)(on — op) d + / (9 — gu)(vn — Ty ds.
Q

I'n

The combination of Cauchy inequalities with (3.2) yields its upper bound:

1/2 1/2
c((zhm—fhnim) +( )3 hEng—ghniQ(E)) )nwnmm.

KeT Ee&(Ty)

O

Remark 1. If Vi¢  is a subspace of V;'G, then (H1)~(H2) hold for IT = I and (3.5)
recovers the L2-orthogonality of Ve and Vuy, for every vy, € Vio (because C' = 0 in

(3.2)).

The following orthogonality condition (3.6) is well established in the literature on
a posteriori error estimates for nonconforming finite element schemes.
LEMMA 3.4. For every vy, € V¢ such that Ovy/0s =0 on I'y, it holds that

(3.6) / Ve - curlvy, dx = 0.
Q

Proof. The proof is along the lines of [16, eqn. (3.4)] for the Crouzeix-Raviart
element. An integration by parts over each element gives

. 8'Uh
(3.7 /the -curlvy dz = EEE:E/E[U uh]g ds.

Since for vy, € V)¢, Oup /s is constant over each edge E € £(Q)UE(T'p), or is zero on
E € £(I'n), accounting for (H1), one obtains (3.6). ad

The proof of (3.1) starts with the decomposition (2.7), the interpolation operator
J of Clément, and Lemma 3.4. Without loss of generality one can choose ¢ in (2.7)
to be equal to a constant on I'y, and J¢|ry = ¢|ry. Then it follows that

||Vhe||%2(9):/Vhe-(Vw+cur1<p)d:c:/Vh6~V(w—jw)dx
Q Q

—|—/Vhe-curl(go—jcp)dm—i—/Vhe~ijdx.
Q Q
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From Lemma 3.3 and the estimate (2.4), one obtains

29 /QVhe - VIwdz < C(osc(f) + osc(9))[VIw| 120
3.8

< C(osc(f) 4 o0sc(9)) [Vl L2 -

Since (w — Jw) and (¢ — J¢) belong to H(£), the use of the Stokes theorem and
Green’s formula over each element gives, after some rearrangements,

[ Ve Viw=gu)da+ [ Vie-eulp - 7o) ds
Q Q

= Z </EJE,T(<p—Jga)ds+/EJE,y(w_jw)ds)

Eec€&

+ Z (f +divVuy) (w — Jw) dx.

KeT 'K

It is a standard argument with Cauchy inequalities and (2.4)—(2.5) to bound this by

Cn([[Vwl 2 + Vel r2@)

with n from (1.6). The combination of the aforementioned estimates with (2.8) con-
cludes the proof of (3.1).

4. Examples. In this section, we verify (H1)—(H2) for several nonconforming
finite elements proposed in the literature and discuss the applicability of the theory
to l-irregular meshes and to elliptic systems in divergence form. For the following
examples, the operator IT that enters (H2) is the interpolation operator of V associated
with V;'G.

4.1. The Crouzeix—Raviart element. The nonconforming finite element space
associated with the Crouzeix—Raviart element [14] reads

(4.1) V¢ :={vy € HY(T): vn|lg € Pi(K) VK €T, vy, is continuous at each
mp € Ny \Nim(Tp), and vy(mg) = up(mg) for mg € Nop(T'p)},

and V3G denotes the space corresponding to the discrete homogeneous Dirichlet
boundary conditions. For this element, it is trivial to check that the space V" meets
(H1). Furthermore, since V¢, C VG, (H2) follows immediately (see Remark 1) and
Theorem 3.1 recovers the results of [16, 9].

4.2. The Han element. With respect to the global coordinate system (x1,x2),
the nonparametric formulation of rectangular and parallelogram elements proposed
by Han in [19] is obtained by introducing the local space

)
(4.2) Oy = Span{ 1, 21, xg, % — gx%, 32— §x2 },

and the Qff-unisolvent set of linearly independent linear forms [12, 19] reads

(4.3) Fr(v) ! /vds, ]—'K(v)zi/ vdr with F € £(K), KeT.
E K] Jx

~hp



76 CARSTEN CARSTENSEN, JUN HU, AND ANTONIO ORLANDO

This defines the five degrees of freedom for the Han element. In (4.3), |K| denotes
the area of the element. Recall from [12] that, given E = KN K’ for K, K’ € T, and
v € HY(T) such that v|g € QFF(K) and v|gr € QFF(K'), we say that v is continuous
with respect to Fg if Fg(v|kx) = Fr(v|k/). The nonconforming finite element space
V¢ is then defined as

(4.4)
Ve :={ve HYT) : v|x € Q¥ (K) for each K € T, v continuous with respect

to Fp V E € £(Q), and Fg(v) = Fr(up) V E € E(Tp)},

whereas V6 denotes the space corresponding to the discrete homogeneous Dirichlet
boundary conditions in (4.4). For v;, € V;*, the definition (4.4) of V; and (4.3) yield

(4.5)
/[vh]ds:() for all E € £(Q) and /(vh—uD)ds:O for all E € £(T'p),
E E

and so V;*¢ verifies (H1). Let V)¢ be the conforming space of the bilinear elements
constructed from the local spaces Q°(K) = span{l, x1, x2, z122}. Consider then
the interpolation operator I : V' +— VG defined by the following conditions: For all
Ecé(K)and K €T,

(46) IIv € th’g, ]rE(HU|K) :fE(’U|K), fK(HU|K) :]:K(’U|K).
Given v € V7, the restriction of v to K € 7 has the following representation:
(4.7) v =ag+ a1x1 + asTy + a3r1To

for some interpolation constants a;, i = 0,...,3. Since the degrees of freedom (4.3)
vanish over the nonconforming bubble function zi29 € Q°(K), it follows that the
restriction of II to V¢ yields [21]

(48) HU|K =ag+ a1x1 + asxs.

By a scaling argument, one can verify that II meets (1.5) and therefore the estimates
(3.2). Furthermore, for every v, € Vi a direct evaluation of the integrals shows
(1.3)-(1.4) over rectangular and parallelogram element domains, i.e., the space V;*°
meets (H2).

4.3. The quadrilateral rotated nonconforming element. In [25] Rannacher
and Turek introduced two types of quadrilateral nonconforming elements referred to
as NR elements. The corresponding local finite element spaces are obtained by rotat-
ing the mixed term of the bilinear element, and assuming as local degree of freedom
either the average of the function over the edge or its value at the midside node. In
this section we consider the nonparametric formulation for rectangular and parallel-
ogram elements with the first choice of degree of freedom. More precisely, for each
element K € 7 and with respect to the global coordinate system (z1,z2), we set [25]

(4.9) O =span{ 1, 1, z2, x% - x% }

and introduce the four degrees of freedom as
1

(4.10) Fr) = @/Evds with E € £(K).
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With the corresponding nonconforming finite element space defined as in (4.4) and
concordantly Vg, it follows that V' meets (H1).

For any v € V, the interpolation operator llv € V;'( is defined as in [25, 21]: For
al EeE(K)and K € T,

(4.11) v e V's  and Fe(llv|k) = Fe(v|k),

and, hence, as with the Han element, since Fg vanishes over the nonconforming bubble
function x172 € Q°(K), the restriction of Il to Vi7, C V is represented locally by (4.8)
[21]. Therefore, the above arguments verify (H2).

Remark 2. For the version of the NR element with function evaluation at the
midpoints as degree of freedom, (H1) is not satisfied and we refer to section 4.5 for a
modification of the NR element.

Remark 3. The proof of Lemma 3.4 for the NR element can be found in [20, 22].

Remark 4. The interpolation operator IIp defined in [2, eqn. (6)] does not, in
general, map into the space Xp r of the NR element functions continuous at the
midside nodes [2, p. 4]. This results in a gap in the analysis of [2] for this finite
element; the remaining assertions in [2] seem to be correct.

Remark 5. The present analysis shows that the augmentation of V;*¢ with local
bubble trial functions proposed in [23] is not necessary for the error control of ||Vpe]|.

Remark 6. The flux Vyu|k - vg is not required to be constant over each edge E
with normal vg as in [2]. The latter hypothesis would in fact restrict the analysis to
only rectangular meshes.

4.4. The constrained NR element and the P;-quadrilateral element.
The constrained NR finite element (referred to as the CNR element) introduced in
[20, 21] is obtained by enforcing a constraint on the degree of freedom of the NR
element described in section 4.3. With Q%° denoting here the space of the global trial
functions defined over €2 and corresponding to the NR element, the space of the CNR
element is then defined as follows:

Q}C::{UEQ?{:VKET Uds—|—/ UdSz/ Ud8+/ vds
E1 E3 E2 E4

(4.12)
with E;, 1<i<4, edges of K € 7 numbered counterclockwise} .
For rectangular and parallelogram element domains, considered here, the element is
equivalent to the Pj-quadrilateral element of [24]. For homogeneous Dirichlet bound-
ary conditions, it is trivial to check that the space V;* meets (H1) for being the CNR
space, a subspace of NR. Furthermore, in [20, 21] it is also proved that on the generic
element K € 7 with vertices 1, 2, 3, 4 labeled counterclockwise, the interpolation
IIv € V5 defined as in (4.11) and for v € V}7, has the representation

(4.13) Hv|g = vig1 + vada + V303 + Va4,
with v; nodal value of v € th,o and

o1(z1,22) = i(l — 1 —x2), ¢a(x1,72) = i(l — 21 + x2),

(4.14)

1 1
¢3(r1,22) = Z(l + @1 +x2), a1, 22) = Z(l —x1 + T2)

associated with each of such vertices. The arguments of section 4.3 finally show (H2).
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4.5. The DSSY element. The main motivation for the definition of this ele-
ment is to obtain a quadrilateral element with approximation properties similar to
those of the Crouzeix—Raviart element. For parallelogram elements these properties
were identified in [17] by (i) continuity at the midpoints of each edge, (ii) value of the
function at these points as degrees of freedom, and (iii) validity of the orthogonality
condition [17, eqn. (6.1)]: For all v, € V6 there holds

(4.15) / [vp]ds =0 for E € (D).

The latter condition plays a crucial role in the proof of optimal error estimates as
realized in [17], for instance, by two spaces of local basis obtained by an ad hoc
modification of the local basis of the Rannacher—Turek element. Set

{t22t4 for ¢ =1,

4.16 0o(t) =
( ) () t2—%5t4+%t6 for ¢ = 2.

Then the local space reads

(4.17) OF =span{l, z1, x2, O¢(x1) — Op(x2)} for £=1,2,

and the QF-unisolvent linear forms read

(4.18) Fi,(vn|k) = vnlx(mg,) for E; € E(K), 1<i<4, v, € QF,

with m g, midside nodes of the edge E;. The nonconforming finite element spaces V,*
and V6 are then defined as in (4.4) with Qff replaced by Q7. Following [17], one
can show that (H1) holds. Furthermore, with the interpolation operator I1: V' + V7§
defined as in (4.11), one obtains

1

(4.19) Tlv € V;'5, To|g(mp) = h—/ vds for each edge F € £(K), KeT,
EJE

with the restriction of II to the space V7 having the local representation (4.8) that

implies (H2).

4.6. Hanging nodes. This section discusses 1-irregular meshes and refers to
[11] for further details and technicalities. Given an initial regular mesh 7y of € in
the sense of Ciarlet [12, 6], a 1-irregular mesh 7 is obtained from 7;_; by refining
some elements K into four congruent elements by connecting the midside points of
the edges of K [4].

Let Ny denote the set of hanging nodes, Nz the set of the endpoints of the edges
containing one hanging node, £c the set of edges with one endpoint in Ny, and £ the
set of edges containing one hanging node, hereafter referred to as hanging edges. We
define the set N of regular nodes as Ng = N\ (Mg UNE) and the set Eg of regular
edges as Eg = (E(Q) \ E¢) UE(T'p). Tt is then possible to construct a partition of
unity (¢2)zenNzuns on §2 that forms a basis for Vir o and define a regularized operator
J + H'(2) — V)¢ meeting (2.4)-(2.5) [11].

Under proper constraints for the degrees of freedom for the hanging edges we have
the following result that controls the nonconforming part of the error [11]:

1/2
(4.20) min ) th(uh — ’U)HL2(Q) <C ( Z hE||JE,T||%2(E)> + COSC(’LLD).

veHL(Q
v=up onI'p Ecér
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F1G. 2. Experimental convergence rate of nn and the ezact error ||Vyen|| with respect to the
number N of degrees of freedom for the adaptive and uniform refinement based on ny and with
the NR finite element. The displayed results show 2.13 < nn/||Vien|| < 2.83 for adaptive and
2.13 < nn/||Vhen|| < 2.35 for uniform mesh refinement.

An integration by parts, use of Young’s inequality, the properties of the operator 7,
and (4.20) finally prove (3.1) with i + osc(f) + osc(g) + osc(up) and corresponding
modifications for the contribution to 7 from the hanging edges [11].

4.7. Generalizations. If A € L>(;R?>*?) denotes a symmetric positive defi-
nite matrix piecewise constant with respect to 7', then Theorem 3.1 with correspond-
ing modifications for the definition of 1 applies also to the elliptic PDE div AVu = f
with boundary conditions « = up on I'p and (AVu)-v =g on I'y.

5. Numerical experiment. This section concludes the paper with an example
of an adaptive finite element model for the Poisson problem.

5.1. Adaptive finite element method. By rewriting 1 from (1.6) as n? =
> ker Nk, With

. 1
Nk = hi | f + div vUh||2L2(K) T3 Z hE(HJE,VHQLZ(E) + ||JE,TH%2(E))’
Ec&(K)

the estimate 17 and the elemental contributions 7 can be used to generate the trian-
gulations {7;}sen in an adaptive way using the following algorithm.
ALGORITHM 1. Input a coarse mesh Ty with rectangular and/or triangular ele-
ments, and set £ = 0.
(a) Solve the discrete problem on Ty with N degrees of freedom.
(b) Compute nk for all K € Ty and ny = (X ger n5) />
(¢) Mark K € M C Ty for refinement into four congruent elements by connecting
the midside points of its edges if @ maxrer, N < MK .
(d) Mark further elements to ensure at most one hanging node per edge. Define
the resulting mesh as the actual mesh Ty11, update £, and go to (a).



80 CARSTEN CARSTENSEN, JUN HU, AND ANTONIO ORLANDO

To T
N NN
Bl S22l
T T3
BT e ]
e R
+ -
o +
i i
7 75

Fi1G. 3. Adapted triangulations T, ..., Ts generated with Algorithm 1 with 6 = 1/2. Notice a
local higher refinement towards the reentrant corner.

The triangulations 7 generated by Algorithm 1 are l-irregular meshes. Error
reduction and convergence of the adaptive finite element method based on the bulk
criterion has been established in [10] for the Crouzeix—Raviart element.

5.2. Numerical example. On the L-shaped domain Q = [0, 1]\ [0.5, 1.0]2,
we use the NR element defined in section 4.3 to approximate the Poisson problem

(1.1) with f =0, 'p = 9Q, 'y = 0, and up a smooth function such that in polar
coordinates

2
u(r,0) = r*/3sin (39)
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is the exact solution of (1.1). Figure 2 displays experimental convergence rates for
the exact error and the estimate ny for uniform and adaptive refinement with the
corresponding triangulations depicted in Figure 3. The adaptive refinement improves
the convergence rate of uniform refinement to the optimal one, O(N~1/2), with respect
to the number of degrees of freedom, and the convergence rate of the estimate mirrors
that of the exact error for both uniform and adaptive refinement.

(9]
[10]

[11]
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FAST SWEEPING METHODS FOR EIKONAL EQUATIONS ON
TRIANGULAR MESHES*

JIANLIANG QIANT, YONG-TAO ZHANG!, AND HONG-KAI ZHAO?

Abstract. The original fast sweeping method, which is an efficient iterative method for sta-
tionary Hamilton-Jacobi equations, relies on natural ordering provided by a rectangular mesh. We
propose novel ordering strategies so that the fast sweeping method can be extended efficiently and
easily to any unstructured mesh. To that end we introduce multiple reference points and order all the
nodes according to their {P-metrics to those reference points. We show that these orderings satisfy
the two most important properties underlying the fast sweeping method: (1) these orderings can
cover all directions of information propagating efficiently; (2) any characteristic can be decomposed
into a finite number of pieces and each piece can be covered by one of the orderings. We prove
the convergence of the new algorithm. The computational complexity of the algorithm is nearly
optimal in the sense that the total computational cost consists of O(M) flops for iteration steps
and O(MlogM) flops for sorting at the predetermined initialization step which can be efficiently
optimized by adopting a linear time sorting method, where M is the total number of mesh points.
Extensive numerical examples demonstrate that the new algorithm converges in a finite number of
iterations independent of mesh size.
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1. Introduction. The eikonal equation in its simplest form says that the mag-
nitude of the gradient of the eikonal is constant: |VT| = 1, where T is the so-called
eikonal. Because it appears in a variety of applications, it is essential to develop fast
and efficient numerical methods to solve such an equation. In this work, we design
a class of fast sweeping methods on triangulated domains for an eikonal equation of
the following form:

W VTGl = f(),  x€Q\T,
T(x) = g(x), xel CQ,

where f(x) is a nonnegative function,  is an open, bounded polygonal domain in
R?, and T is a subset of Q.

Two key points in designing an efficient numerical algorithm for solving such a
nonlinear boundary value problem of hyperbolic type are (1) a numerical discretization
that is both consistent with the causality of the PDE and able to deal with singu-
larities in the solution gradient, and (2) a fast algorithm to solve the resulting large
nonlinear system of equations. There are usually two types of methods for solving the
nonlinear system: time marching methods and direct methods. Time marching meth-
ods add to the equation a pseudo—time variable which transforms the problem into
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a time dependent one and evolve the solution to the steady state. Due to the finite
speed of propagation and the Courant—Friedrichs—Lewy (CFL) condition for stability,
many iterations are needed to reach the steady state solution. The last two decades
have witnessed much effort towards solving the eikonal equation directly: upwind-
ing schemes [32, 31], dynamic programming sweeping methods [27], Jacobi iterations
[26], semi-Lagrangian schemes [8], fast marching-type methods [30, 10, 28, 13], down-
n-out approaches [7], wavefront expanding methods [23], adaptive upwinding methods
[19, 21], fast sweeping methods [2, 37, 29, 35, 12, 34, 11, 36, 33]; see also the refer-
ences therein. Accuracy of numerical solutions is determined by the discretization
scheme. For example, if a first-order monotone scheme is used, in general only the
h'/2? convergence rate can be shown [6] and the hlog h convergence rate is optimal for
the eikonal equation [35].

Among all these methods, both the fast marching method and the fast sweeping
method are designed to solve the nonlinear discretized system directly and efficiently
by exploiting causality of the underlying PDE. In terms of complexity, the fast march-
ing method [30, 10, 28, 13] has the complexity of O(M log M), where M is the total
number of mesh points and the log M factor comes from the heapsort algorithm needed
for sorting out the causality order at each step, while the fast sweeping method has
the complexity of O(M), where the constant in O depends on the equation, and this
was proved in [35] for eikonal equations on rectangular grids. For a particular problem
on a fixed grid, one method could be faster than the other. When the grid is more
refined the fast sweeping method will be faster eventually. In [9], concrete and de-
tailed comparisons are presented for various numerical examples. In terms of accuracy
there is no difference since they are two different ways of solving the same nonlinear
discretized equation. The main difference between these two methods lies in the use
of causality. The fast marching method enforces the causality sequentially and on the
fly during each update step; that is why a heapsort algorithm is needed to order all
possible candidates and pick up the correct one by the causality at each step; once a
point is accepted it cannot be revisited and its value cannot be changed afterwards.
On the other hand the fast sweeping method is an iterative method of Gauss—Seidel
type which is extremely simple to implement; such a simple iterative method for a
nonlinear problem is able to achieve an optimal complexity because it can capture
the causality of the PDE in a parallel way, as shown in [35]. Since it is an iterative
method by nature the fast sweeping method is applicable to other situations such as
higher order schemes with ease [34, 33|, nonconvex Hamiltonians [12], and parallel
implementation [36].

On the other hand, most of these methods are based on rectangular meshes.
However, it is important to design fast methods on triangulated meshes as well. For
example, in seismics a subsurface velocity model usually consists of several irregular
interfaces, and in robotic path planning an obstacle may have an irregular boundary.
Thus, for applications involving irregular boundaries or interfaces, it is much desired
to triangulate a computational domain into irregular meshes to fit with boundaries
or interfaces. Kimmel and Sethian [13] extended the fast marching method to trian-
gulated domains to compute geodesics on manifolds.

In this work, we extend the fast sweeping method to triangulated domains by in-
troducing novel ordering processes into the sweeping strategy. The resulting method
is proved to be convergent, and numerical examples demonstrate that the method
converges in a finite number of iterations independent of mesh size. The computa-
tional complexity of the new algorithm is nearly optimal in the sense that the total
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computational cost consists of O(M) flops for iteration steps and O(MlogM) flops
for sorting at the predetermined initialization step, which can be efficiently optimized
by adopting a linear time sorting method.

An essential property of the eikonal equation is that it is hyperbolic, and a stable
scheme must look for information by following characteristics in an upwind fashion,
which is equivalent to the simple causality for the eikonal equation in that its so-
lution is always increasing (or decreasing) along a characteristic. To satisfy such a
property, it is crucial for a scheme of computing viscosity solutions to be based on a
monotone numerical Hamiltonian [1, 17]. Once we have in place such a discretization
for eikonal equations, the problem reduces to one of solving the resulting nonlinear
system efficiently; the fast sweeping method is designed to do exactly that. The orig-
inal fast sweeping method was inspired by the work in [2]. The fast sweeping method
uses Gauss—Seidel iterations with alternate sweeping orderings to solve the nonlinear
system. The fact that the iterative algorithm for a nonlinear system can converge in
a finite number of iterations independent of mesh size is quite remarkable; even for
a linear system, such as the discretized system for the Laplace equation, this is not
true.

The crucial idea underlying the fast sweeping method is the following [35]: all
directions of characteristics can be divided into a finite number of groups; any char-
acteristic can be decomposed into a finite number of pieces that belong to one of the
above groups; there are systematic orderings that can follow the causality of each
group of directions simultaneously.

On a rectangular grid there are natural orderings of all grid points. For example,
in the two-dimensional (2-D) case, all directions of the characteristics can be parti-
tioned into four groups, up-right, up-left, down-right, and down-left, and it is very
natural to order all the nodes according to their indexes in ascent or descent orders
[2, 37, 29, 11, 35, 12, 34], which yields four possible orderings to cover all those four
directions of characteristics.

However, on an unstructured mesh, only local connection of the nodes is available
and natural ordering no longer exists. To overcome these difficulties we propose
general ordering strategies by introducing multiple reference points and ordering all
the nodes according to their [P-distances to those reference points. For example,
information is propagated as plane waves in different directions when the {!-metric is
used or as spherical waves with different centers when the [?>-metric is used. We show
that these orderings satisfy the key properties essential for the fast sweeping method
to converge and numerically demonstrate that the fast sweeping method converges
in a finite number of iterations independent of mesh size. Although it may still
cost O(MlogM) by a comparison-based sorting method, the ordering step in our
algorithm may be made to be O(M) by a linear time sorting method since we know
the distribution of nodes at the initial step. For example, the radix sorting method
[4] may be used for such a purpose. Moreover this initial ordering is done for a fixed
mesh once and for all. This is different from other methods based on heap sorting to
maintain a dynamic data structure. Therefore the methods proposed here are very
efficient and extremely easy to write in any number of dimensions.

The rest of the paper is organized as follows. In section 2, we construct local
solvers at each node on a triangulated mesh, propose novel ordering strategies, and
detail fast sweeping algorithms. In section 3, we analyze the new algorithm and prove
convergence results. In section 4, we present various numerical examples to illustrate
the efficiency and the accuracy of the new method. We conclude the paper in section 5.
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Fic. 2.1. Update the value at C in a triangle when causality is satisfied.

2. Fast sweeping methods on unstructured meshes.

2.1. 2-D local solvers. Take d =2 in (1.1):

21 {T§+T;:f(m,y>, (2,y9) €QC R,
T(x,y) =g(z,y), (z,y)el

where f(x) is a nonnegative function, 2 is an open, bounded polygonal domain in
R? and T is a subset of Q.

We consider a triangulation 7, of Q which consists of nonoverlapping, nonempty,
and closed triangles 7, with diameter hz, such that Q= Urer, 7. We assume that
Ty, satisfies the following conditions:

e No more than p triangles have a common vertex; h = supycr, hr < 1.
e 7, is regular; there exists a constant wg independent of h such that if pr is
the diameter of the largest ball B C 7, then for all 7 € 7j, hy < wopT-

For a given triangle AABC, we denote ZA =3, /B =a, and ZC =~; AB =,
AC = b, and BC = a are the lengths of the edges AB, AC, and BC, respectively.

During the solution process we need a local solver at vertex C for each triangle;
see Figure 2.1. Given the values T4 and Tp at A and B of triangle AABC, we want
to calculate the value T¢ at C.

To make the description specific, we introduce the definition of causality.

DEFINITION 2.1. Under the above regular triangulation we consider a local scheme
based on piecewise linear reconstructions. By the causality condition of isotropic wave
propagation for updating the travel-time at the node C' from travel-times Ty and Ty,
we mean that the ray which is orthogonal to the wavefront and passes through C' must
fall inside the triangle AABC'.

We notice that in isotropic wave propagation the ray direction is the same as
the gradient direction of the travel-time field and thus it is the same as the outward
normal of the wavefront.

First we assume that AABC is acute. To construct a first-order scheme we
determine a planar wavefront from the known values T4 and Ts. Suppose that the
angle is 6 between the incoming wavefront and the edge AB.

Without loss of generality, we further assume that Tp > T4. If T¢ is deter-
mined by both Ty and Tz, then by the Huygens principle the wavefront must first
pass through the vertex A, then B, and finally C'. To guarantee this, the following
conditions must be satisfied:



FAST SWEEPING FOR EIKONAL EQUATIONS 87

Fic. 2.3. C and its obtuse triangle.

[T — Tal/fo < AB = ¢; i.e., it is possible for the wavefront to propagate
from A to B with the given speed, where f¢ is the value of f(C'), the inverse
of the speed at C.
e 0 < a so that the wavefront passes through B first rather than C.
e 0+ [ < 7; otherwise the causality is violated since the vertical line from C
to the wavefront does not fall inside the triangle; see Figure 2.2.

If all n triangles 77, 7o, ..., 7, around C are acute, the wavefront can be captured
well in one of these triangles, no matter which direction the wave comes from. How-
ever, if one of the triangles is obtuse and the wavefront comes in just from this obtuse
angle, then the situation is different; there are two possible cases: (i) if the normal
of the wavefront is contained between those two dotted lines in Figure 2.3, then the
value at C' can be updated using values at A and B even though the accuracy will
be degraded; (ii) otherwise, the value at C cannot be updated by A and B correctly
[25]. These will be shown in numerical examples in section 4.

In order to treat obtuse triangles, we adopt the strategy used in [25]. As illustrated
in Figure 2.4, if ZC is obtuse, then we connect C' to a vertex D of a neighboring
triangle to cut the obtuse angle into two smaller angles. If these two angles are both
acute, then we are done, as shown in Figure 2.4(a); otherwise, if one of the smaller
angles is still obtuse, then we keep connecting C' to the vertexes of the neighboring
triangles of the next level until all new angles at C' are acute, as shown in Figure
2.4(b). All these added edges are “virtual”; i.e., they exist only when the value at
C is updated. Because such a treatment depends on a given mesh, we only need to
do that once before the iteration in the algorithm begins; the resulting algorithm is
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D E
(a) (b)

Fia. 2.4. A strategy to treat obtuse angles.

simple with almost no extra computational cost, as shown by numerical examples in
section 4. This construction is different from the one used in [13].
We first give a geometric version of our local solvers.
A 2-D LOCAL SOLVER (Version 1: given Ty < Tg, determine Te = T¢ (T4, Tr)).
1. If [Ts — Ta] < ¢ fe, then

0 = arcsin ([TB — TA]) ;

c fc

(a) if max (0, — 5) <0 < § — 3, then
h=CP =asin(a —0);Tc = min{Tc,h fc + Tr};
(b) else
Te =min{Te, Ta+b fc,Ts +a fc};
2. else
Te =min{Tc,Ta +b fo,Ts +a fc}.

The angle condition,

max(O,a—E) <0<

92 _57

T
2
can be obtained in the following way:

1. If 8> Z, then the causality condition is not valid.

2. If 8 < 3, then we must have 6 < 5 — ; otherwise, the causality is violated
since the vertical line from C' to the wavefront does not fall inside the triangle.
Furthermore,

(a) from this condition we can directly deduce that o > 6, since ZC' =y < §
by construction;
(b) if @ > F, then we must have a — 6 < 7 so that the ray from C reaching
the wavefront is located inside the triangle.
The following algorithm unifies all the cases into one.
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A 2-D LOCAL SOLVER (Version 2: given T4 and Tg, determine T = To(Ta, Tg)).

1. If [Ts — Ta| < ¢ fe, then
Tr —
0 = arcsin ([ B TA]) ;
c fe

(a) if max (0,0 —5) <0< F —Bora— 7 <6 <min (0,5 — ), then

h=CP =a sin(a—0); H=CQ = b sin(3 + 0);

Te = min{T¢,0.5 (h fo+Tp) +0.5 (H fo +Ta)};
(b) else
Te = min{Te,Ta +b fo,Ts +a fo;
2. else
Te = min{To,Ta +b fc,Ts +a fc}.

In the special case that a given mesh is rectangular and o = 8 =
forward to verify that the above local solver reduces to the one given in
the local solver is consistent with the one on rectangular meshes.

If a triangle is acute, then the angle conditions in Version 2 reduce to one condi-
tion:

it is straight-

T
[35]. Therefore,

a-2<9< -5
2
otherwise, the two angle conditions cannot be combined into one, since there are gaps
corresponding to one of the angles a or § being obtuse. See Figures 2.1 and 2.2 for
illustrations.
We emphasize that both updating algorithms require that ZC' = v < 7, but one
of the other two angles may be obtuse.

2.2. A 3-D local solver. A local solver in three dimensions can be derived
similarly. Take d = 3 in (1.1):

22) { T4 T3 +T2 = f(x.y.2),  (1.9.2) €QCRY,
T

(z,y,2) = g(x,y, 2), (z,y,2) e C Q.

Equation (2.2) is solved in the domain , which has a triangulation 7;, consisting of
tetrahedrons. We consider every vertex and all tetrahedrons which are associated to
this vertex. Again the question reduces to one of calculating the numerical solution
at the current central vertex for each tetrahedron; see Figure 2.5.

Given the values T'x, T, and T at A, B, and C of the tetrahedron ABCD,
we need to calculate the value Tp at the current central vertex D. The key is to
determine the normal direction 1 of the wavefront and determine whether the causality
condition is satisfied or not. Analogous to Definition 2.1, the ray which has direction
n and passes through D must fall inside the tetrahedron ABCD so as to satisfy the
causality condition. To check the causality condition numerically, we first compute
the coordinates of the point £ at which the ray passing through D with direction i
intersects the plane spanned by A, B, and C; afterwards, we check to see whether F
is inside AABC or not.

Without loss of generality, we assume that Ty = min{7T4,Tg,Tc}.
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D

Fi1Gc. 2.5. A 3-D local solver.

A 3-D LocAL SOL\@ (given TA, TB7 and TCLdetermine Tp =Tp (TA, TB, Tc))
1. If [T —Ta] < AB- fp and [Tc —Ta] < AC- fp, then we solve the quadratic
equation for the normal direction i of the wavefront:

AB-ii = [Tg — Tal/ fp,
(2.3) AC -ii = [Te — Tal/ fp,

6| = 1;

(a) if there exist solutions A", i = 1,2, for the quadratic equation (2.3) and
the area | A EAB|+| A EAC|+| A EBC| = | A ABC| for an i”, then

Tp = min{Tp, T + (|AD - D)) - fp};

(b) else, apply the 2-D local solver on surfaces AABD, AACD, and ABCD
and take the minimal one;
2. else, apply the 2-D local solver on surfaces AABD, ANACD, and ABCD and
take the minimal one.

2.3. Sweeping orders and a complete algorithm. An essential ingredient
for making the fast sweeping method [35] successful is a systematic ordering that
covers all directions of characteristics efficiently. With a causality preserving dis-
cretization in place, information along characteristics of certain directions is captured
simultaneously in each sweeping ordering. Moreover, once the solution at a node gets
its correct value, i.e., the smallest possible value, it will not change in later iterations.
There are natural orderings on rectangular meshes. For example, in 2-D cases [35],
all directions can be divided into four groups, up-right, up-left, down-left, and down-
right, which can be covered by the orderings i =1:1,j=1:J;i=1:1,7=J:1;
i=1:1,7j=1:J;9=1:1,73=J:1, respectively, where ¢ and j are the running
indexes in the x- and y-directions, respectively. However, such natural orderings no
longer exist on an unstructured mesh.

To devise efficient fast sweeping methods on unstructured meshes, we propose
systematic orderings by introducing multiple reference points and sorting all the nodes
according to their [P-distances to each individual reference point. In this paper we
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focus on p = 1 and 2 and give explicit geometric interpretation. The argument works
for all other p’s.

The [P-metric for a vector x= (21, 22, ..., Zn) € R™ is defined as |x|, = (Z?Zl |2 |P)H/P.
Without abuse of notation we also use |x| to denote the 2-norm of a vector x. For
example, in two dimensions, we first fix a reference point x.¢; if we sweep through
all nodes according to |x — X,ef|1 in the ascent (or descent) order, then the sweeping
wavefront is an outgoing (or incoming) plane wave since the unit ball of the /!-metric
is a tilted square. If we use |x — X;cf|2 to order all nodes, then the sweeping wavefront
is an outgoing (or incoming) spherical wave.

Next we address the following questions:

1. How many references points are needed in a systematic ordering that can
cover all directions of information propagating?
2. How many iterations are needed for the algorithm to converge?

To address the first question, we have to understand the directional relation be-
tween a sweeping wavefront and a characteristic. In the continuous case the following
is a basic fact: if the propagating direction of the sweeping wavefront forms an acute
angle with the direction of the characteristic, then the causality along this charac-
teristic can be captured in this ordering. As illustrated in Figure 2.6, if we use the
[?-metric, i.e., with a spherical sweeping wavefront, a straight characteristic in any
direction can be partitioned into two pieces by the tangent point to a particular
spherical sweeping wavefront, and each piece forms an acute angle to the outgoing
or incoming sweeping wavefront. If all characteristics are straight lines, which is the
case when the right-hand side of the eikonal equation is constant, we cover almost all
characteristics by sweeping all nodes according to the [2-distance to a single reference
point in both ascent and descent orders alternately. However, for all characteristics at
the tangent point, the normal of the sweeping wavefront is orthogonal to the direction
of characteristics. So information will not propagate across the tangent point from
one piece to other pieces effectively. To remedy this problem we introduce another
reference point. Now all directions of characteristics can be covered effectively by
the four orderings except one direction, which is orthogonal to the line connecting
these two reference points, as shown in Figure 2.6. Therefore we need at least three
noncollinear reference points and we sweep through all the nodes according to their
[2-distances to these reference points in ascent and descent orderings; a total of six
orderings cover all directions of information propagating along characteristics. It can
be easily seen that four noncoplanar reference points are needed in three dimensions.

If we use the ['-metric, the sweeping wavefront is a tilted square. For each refer-
ence point, as shown in Figure 2.7, the whole plane can be divided into four quadrants,
and each quadrant can be covered by one planar sweeping wavefront. If we choose
two reference points such that the computational domain lies in different quadrants of
these two reference points, all directions of characteristics can be covered by the four
orderings corresponding to the ascent and descent sorting according to the I!-metric;
see Figure 2.7.

When characteristics are not straight lines, any characteristic can be divided into
a finite number of pieces so that each piece can be covered effectively by one of the
orderings, as shown in [35]. The total number of sweepings is increased due to curved
characteristics, but it is still finite. The number of iterations will be estimated in
section 3.

In terms of numerical implementation on a particular mesh some remarks are in
order.
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FIG. 2.6. Reference points and sweeping wavefronts for the 1%-metric.
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FIG. 2.7. Reference points and sweeping wavefronts for the I*-metric.

The domain of dependence for a node in the discrete case is a region rather
than only the characteristic that passes through the node in the continuous case.
On a triangular mesh, the propagating direction of a sweeping wavefront has to fall
into the triangle which satisfies the causality criterion in Definition 2.1 so that the
two neighbors that determine the current vertex have already been updated in the
current sweeping. Numerically this means that the normal of the sweeping wavefront
has to make an acute angle with the characteristic that passes through this vertex.

The criterion for an optimal choice of reference points and their locations on a
triangular mesh is that all directions of characteristics should be covered with minimal
redundancy. In practice, it is better if these reference points are evenly spaced both
spatially and angularly with respect to the data set or boundary where the solution
is prescribed. In our numerical tests we use the corners as reference points if the
computational domain is rectangular. Other points, such as the center point of the
domain or middle points of each edge, can be used as well. The number of iterations
needed for convergence may be different for different choices of reference points but
it will be finite.

If we have only a point source as the boundary condition on a rectangular mesh
and we use that point as the single reference point, then the square wave sweeping
accesses nodes in the ascent order in the same way that the down-n-out model does
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[32, 7], and the spherical wave sweeping shares some similarities with the expanding
wavefront model proposed in [31, 23]. However, we are not aware of any work accessing
the nodes in the way similar to the plane wave sweeping proposed here.

The above isotropic metrics are suitable for ordering nodes in solving isotropic
eikonal equations. For general anisotropic eikonal equations considered in [24, 18, 20],
we may introduce anisotropic Riemannian metrics [5] to sort all the nodes, derive
a local solver to update solutions at each node by using phase velocity and group
velocity, as illustrated in [24, 18], and design fast sweeping methods accordingly; see
[22] for a recent work along this direction.

Now we summarize local solvers and sweeping orderings into a complete algorithm.

THE FAST SWEEPING ALGORITHM ON A TRIANGULAR MESH.

1. Initialization:
(a) Triangulate the computational domain . Add virtual edges to cut ob-
tuse angles if there are any.
(b) Choose multiple reference points: x’ ¢, i =1,..., R.
(¢) Sort all nodes according to their [P-distances to the reference points in
ascent and descent orders, and put them into arrays:
S :ascent order,i =1,2,...,R;

3

(2.4) S, :descent order,i =1,2,..., R.

(d) Assign exact values or interpolated values T(®) at vertexes on or near the
given boundary I', and keep these values fixed during the iterations. At
all other vertexes, assign large positive values N to T(©), where N should
be larger than the maximum of the true solution, and these values will
be updated in later iterations.

2. Gauss—Seidel iteration for £k =0,1,...:
(a) Fori=1,...,R:
i. For j =+, —: ‘
A. To every vertex C' € S7 and every triangle associated with C,
fe=f(C), apply the local solver;
B. Convergence test: ||[T*+1) — T®)| < ¢ for € > 0 given, where
Il - || is some specified norm.

We remark that during the Gauss—Seidel iteration the numerical solution at C' is
calculated using the current values of its neighbors in every triangle. The smallest
one will be taken as the possible new value. If this smallest new value is smaller than
the current value at C', then the numerical solution at C' is updated to be the smallest
new value.

In passing we point out that the sorting procedure in the above algorithm can cost
O(MlogM) flops if a comparison-based sorting method is used; however, to achieve
an optimal O(M) complexity for the algorithm, we may use a radix sorting method [4]
in that we know the distribution of nodes. Radix sorting runs an O(M) counting sort
on each digit of the key, starting with the least significant and working for bounded
integers. For general distances computed in the above algorithm, we argue that a
fixed number of digits is sufficient because in some sense the order of updates does
not matter too much for two nodes sufficiently close to each other. Moreover, this
initial ordering is done for a fixed mesh once and for all.

3. Convergence results. In this section we prove convergence of the fast sweep-
ing algorithm on triangular meshes. In the following analysis, we consider a regular
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triangulation 7p, of Q with the property that all the inner angles of the triangles in
T, satisty < 3.

Considering a triangle AABC in which T4 and T are given, we update the
travel-time T at the vertex C. Denoting

Tc—TA TC_TB TB_TA
plzTy Po=——"" P3=—

a c
we adopt the framework in [3] to show consistency and monotonicity of the Godunov
numerical Hamiltonian resulting from the local solver introduced in section 2.

LEMMA 3.1 (Godunov numerical Hamiltonian). Assuming that the causality
condition holds, the updating formula for the local solver is one of the solutions for
the following equations:

(TC;zTA)2 . 2(TC7TA(3(TC*TB) COS’Y + L = f2 SiHQ’Y
(3.1) if |ps| < fc and a — % < arcsm(f )< 5 =05
maX(chTA, Tc ) fc otherwzse.

Here /C =~, LZA=(, LB = «, and fc = f(C). This discretization for the eikonal
equation is based on the Godunov numerical Hamiltonian:

(3.2) He <TG —Ta To - TB> = fec,

b a

where

) 5 VP — 2p1 p2cosy + p3
(3.3) He(pi,p2) = if [p3| < fo and a — 5 < arcmn(f ) < 5 — 5
max (p1,p2) otherwise.

Proof. By Version 2 of the local solver, we have

1(Ta + Tp) + H5e=0) (T - Tp) + S0esind /22 (Tyy — Ta)?
(34) To = if [ps| < fc and a — § < arcsm(f ) < 5 - B;

min (T4 + bfc, T + afc) otherwise.

By solving (3.1), we have

1(Ta+Tg)+ %(TB —Ta) £ abbﬂ\/@f2 — (T —Ta)?
(3.5) Tc= if [ps| < fc and a — § <aresin(2) < 5 — 5
min (T4 + bfc, T + afc) otherwise;

one of the two roots corresponds to (3.4).
Next we derive the numerical Hamiltonian. Denote A : (za,y4), B : (B,yB),
and C : (z¢,yc). Since the causality condition holds, we have

Tc - T To— X — K
(3.6) CbA—VT(C’)~< Cb A’ycbyA) +o(h?),

Tc—T To— X — K
(3.7) CGBVT(C)~< < B,ycayB) +o(h?),
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where t denotes the transpose of vectors. Furthermore we have

To—Ta
(3.5) ( o ) —PYT(C) + o(?),

a
where
To—TA Yyc—Ya
P = < JUCEQ"B yCEyB )
a a

Ignoring higher-order terms and solving for VI, we have

(3.9) |VT(O)|~ if |p3| <fcand a—F < arcsm(fé) <Z- 6,
max (TCbTA To— TB) otherwise;
this is the Godunov numerical Hamiltonian for the eikonal equation. ]

LEMMA 3.2 (consistency and causality). The Godunov numerical Hamiltonian

) a5 VT — 21 pacosy +p3
(3.10) Ho(p1,p2) = if [ps| < fe and o — § < arcsin(£2) < § — 3;
max (p1,p2) otherwise

is consistent; namely,

(T —Ta T
(3.11) HC<C A Ca >_||

b )

if VT, = p € R?. It is monotone if the causality condition holds: 0 < v, < v, where
~v1 is the angle from the edge CA to the ray (i.e., the vertical line to the wavefront)
CQ counterclockwise; see Figure 2.1.

Proof. By VT}, = p € R?, we have

Tc—Ta
(312) < chTB ) = Pp

Inserting this into the numerical Hamiltonian, we have (3.11).
Differentiating He(p1,p2) with respect to p; and ps, the monotonicity of the
Hamiltonian requires

OHc dHc
3.13 >0, > 0;
(3.13) op1 — Op2
these can be satisfied if and only if cosvy < pz < = By
c i'y
Te —T )
(3.14) p1 =" = fosin(B+0),
Tc — T,
(3.15) P2 = % = fosin(a — 0),

where § = arcsin(£2), we have

sin(5 + 0) < 1

3.16 <
(3.16) ORT = sin(a —0) ~ cosy’
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which is equivalent to the causality condition 0 <, <, since 1 = § — (8 +0) and
n=(+a-6—-% O

LEMMA 3.3 (monotonicity). The fast sweeping algorithm is monotone and Lip-
schitz continuous, i.e.,

ol le: ol le!

Nl 1> —> 1>—>
(3 7) — 0T — 0, — 0Ty — 0,
and

0T I1¢
3.18 —+ —=1
(3-18) oT, T T,

Proof. Consider the case that T4 < Tg. We need only verify that the above
inequalities hold when T¢ is updated by

(3.19) Te =h fc + T,

which is the case that the causality condition is satisfied. From Version 1 of the local
solver we have

oT, 00
(320) ﬁ =1 + CLfC COS(O[ — 9) <_8T‘B>
acos(a — )
3.21 =1-—=;
( ) ccosf
oT, o0

acos(a — 6)
3.23 = 77
( ) ccosf
From Figure 2.1, we have acos(a — 8)=PB, ccos(§)=AR, and PB < AR; therefore,
1>%2>0,1>%¢>0,and 57 + 5 =1. 0O

LEMMA 3.4 (maximum change principle). In the Gauss—Seidel iteration for the
fast sweeping algorithm, the mazimum change of Ty, at any vertex is less than or equal
to the maximum change of Ty, at its neighboring points.

Proof. This follows from the above monotonicity property proved in Lemma
3.3. d

LEMMA 3.5 (order preserving). The fast sweeping algorithm is monotone in the
wnitial data.

Proof. By the monotonicity property of the solution, if T3 (C) < Ry(C) at all
vertexes initially, then T}, (C) < Ry(C) at all vertexes after any number of Gauss—
Seidel iterations. O

LEMMA 3.6 (nonincreasing). The solution of the fast sweeping algorithm is non-
increasing with each Gauss—Seidel iteration.

Proof. This is evident from the updating formula, which updates the current
value only if it is larger than the newly computed value during the Gauss—Seidel
iteration. O

LEMMA 3.7 (I%®-contraction). Let T™) and R™ be two numerical solutions at
the kth iteration of the fast sweeping algorithm. Let || - |l be the mazimum norm.
Then

(3.24) IT® — R®)|| o < |T¢D — RE=D|;
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(3.25) 0< max {Ték) - T((Jk+1)} < max {T((kal) - Ték)} .
Proof. Assume that the first update at the kth iteration is at C,
T = min{TF~V, T},

where T is the solution computed from its neighbors Ték_l) and Ték_l). The same is

true for R(C]f). By the maximum change principle, we have
(3.26) 787 = R < IT* = RO |,

For an update at any other node later in the iteration, the neighboring values used
for the update are either from the previous iteration or from an earlier update in
the current iteration, both of which satisfy the above bound. By induction, we have
[*°-contraction (3.24). By the monotonicity of the fast sweeping algorithm and (3.24),
setting R*%) = T(*=1) we conclude (3.25). O

THEOREM 3.8 (convergence). The solution of the fast sweeping algorithm con-
verges monotonically to the solution of the discretized system.

Proof. Denote the numerical solution after the kth iteration by Ték). Since T((jk)
is bounded below by 0 and is nonincreasing with Gauss—Seidel iterations, T, ék) is
convergent for all C. After each sweep for each C at each triangle, we have by the
monotonicity of the numerical Hamiltonian

(k) (k)\2 (k) (k) (k) (k) (k) (k)2

T T T T T, T T T

(3.27) (T .QA) 2(0 A)‘(zc B)cosy (T .QB)>]¢%
b2 sin” ~ ab sin®y a? sin® -~y

because any later update of neighbors of Ték) in the same iteration is nonincreasing.

Moreover, it is easy to see that after Ték) is updated, the function

k k k k k k
(1) TP @ - T - 1)

(k) (k)
P, 7®) = )
(T Ts7) b2 sin?~ ab sin®~y s
T(k) _ T(k) 2
(3.29) e —Tp) _p
a? sin®~y

is Lipschitz continuous in T’ XQ) and T ];k), and the Lipschitz constant is bounded by

(k) (k) (k) (k) (k) (k) (k) (k)

T, T T, T T, T T T

2 max 02 : 2A |, T¢ : 2B |cos'y7‘ ¢ 2B |, Te : 2A |COS’7 _
b? sin”~y a b sin” vy a? sin®~y a b sin® vy

Since T((jk) is monotonically convergent for all C', we can have an upper bound Z > 0
for the Lipschitz constant. Let 6(*) = max{Ték_l) - Ték)} be the maximum change
at all grid points during the kth iteration. By the [°°-contraction property and the
convergence property of Ték), 8®) converges monotonically to zero. After the kth
iteration, we have

(@ TR @8 TS -1 T8 T
0< PRy -2 — cosy+ ——————f¢
b? sin”~ a b sin®~ a® sin” -~y

< Z6®.

(3.29)
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(a) (b)

Fic. 3.1. Partitioning of a characteristic.

Thus T®*) converges to the solution to (3.1). O

Note that the monotone convergence is very important during iterations. Once
the solution at a node reaches the minimal value that it can get, it is the correct value
at that node and will not change in later iterations.

Next we show the estimate for the total number of iterations needed for conver-
gence. As pointed out above, given a systematic ordering, any characteristic can be
partitioned into a finite number of pieces and each piece will be covered correctly by
one of the sweeping orderings, as shown in Figure 3.1(a). Since these pieces have to
be captured sequentially the total number of iterations needed is proportional to the
number of pieces. Finally the number of pieces needed to partition a characteristic is
related to the directional change of the characteristic. We now give an estimate on
the total variation of the tangent direction of any characteristic in a fixed domain €.

Denote H(p,x) = |p| — f(x), where p = VT. The characteristic equation for the
eikonal equation is

x=VpH = (x),
pzfva:vf( )7
T=VT %= f(x),
where " denotes the derivative along characteristics parametrized by the arc length s.

Since |%| = 1, it was shown in [35] that the curvature bound along a characteristic
is

Vf(x)
f(x)
LEMMA 3.9. Assuming that f(x) is strictly positive and Ct in Q, the total vari-

ation of the tangent direction of the shortest characteristic L from an initial point
xg € I' to a point x € Q is bounded by

(3.31) / || DKf M

where s is the arc-length along the characteristic L, D is the diameter of domain §,
and

(3.30) %] <

N itelgf(X), fm = irené f(x).
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Proof. The existence of the shortest path L, yielding the first-arrival travel-time
from an initial point xg € I" to a point x € (2, is guaranteed by the results in [14, 16].
If L is a single characteristic curve, then from (3.30) we have

(3.32) /L|>'&|ds§/L|va2S)|ds§K/Lds,

where s is the arc-length; see Figure 3.1(b). The travel-time at x is T(x) = [, f(s)ds.
This travel-time, which is the first arrival time at x, is smaller than the travel-time
along the direct path from xg to x. So we have

(3.33) fm/Ldsg/Lf(s)ds:T(x) g/xf(s)dsng|x_x0|.

Hence

(3.34) length(L) = / ds < %

L m
Together with (3.32) we finish the proof. In general L may be composed of several
pieces of characteristic curves. The above integral may be broken into several parts
accordingly, but the same proof goes through. 1]

According to the above lemma the maximal number of sweeping needed to cover
all characteristics can be bounded by C' x %f’”, where the constant C' may depend
on the number of reference points and orderiﬁ%gs.

Here is a discrete version of the above argument [36]. For an appropriate upwind
scheme the corresponding discretized nonlinear system of equations has a solution (see
Theorem 3.8). We can classify all nodes into a few groups according to the solution.
All nodes in each group have a dependence pattern similar to their neighbors. For
example, on a rectangular grid in two dimensions, almost all grid points can be di-
vided into simply connected regions. In each region the value at a grid point depends
on two of its neighbors in the following ways: (1) left and down neighbors; (2) left
and up neighbors; (3) right and down neighbors; (4) right and up neighbors. By the
Gauss—Seidel iteration each connected region can be covered by one of the orderings
simultaneously when the ordering is in the upwind direction of the dependence pat-
tern. The number of connected regions is proportional to the number of directional
changes of characteristics which is bounded above. This relates the number of itera-
tions for the fast sweeping method to the above bound. On a triangular mesh, because
an arbitrary unstructured mesh may accommodate much more information flowing
directions than a rectangular mesh, the situation is more complicated. However, given
a triangulation and a choice of the reference points, all nodes can be partitioned into
a finite number of connected regions. In each region the nodal dependence follows one
of the orderings according to the increase/decrease of the distance to the reference
points. For example, all those connected nodes, whose values depend on neighboring
nodes that are closer to one of the reference points, belong to one region. The number
of regions is proportional to the bound above. Although the triangulation and the
choice of the reference points may affect the number of iterations, it is finite for a
fixed setup.

4. Numerical examples. Now we show numerical examples in both two and
three dimensions to illustrate the efficiency and the accuracy of our algorithm. In all
the examples we have used the quick-sort method to order the nodes, though a radix
sorting method may be implemented as well.
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Our computational experience indicates that for an acute triangulation, using
four corners in 2-D rectangular domains or eight corners in 3-D rectangular domains
as the reference points is sufficient for the algorithm to converge in a finite number of
iterations. For a triangulation with some obtuse triangles, more reference points may
be needed. However, if the virtual splitting of obtuse angles as described in section
2.1 is used, then no extra reference point is needed; the results in convergence and
accuracy are similar to those with all triangles being acute.

In all the presented examples the number of iterations is independent of the mesh
size. The convergence of iteration is measured as full convergence in terms of the
[*°-norm; i.e., the iteration stops when the successive error reaches machine zero. On
the other hand, the convergence order of the method is measured in the I'-norm, as
advocated by Lin and Tadmor [15].

We note that in our implementation, the convergence test is checked for every
sweeping; here one sweeping is defined as passing through each node once according
to a given ordering of nodes. So the iteration numbers reported in numerical examples
are, in fact, the sweeping numbers needed for the algorithm to converge.

4.1. 2-D acute triangulation. We first triangulate the computational domain
into acute triangles, then we refine the mesh uniformly by cutting each triangle in
the coarse mesh into four smaller similar ones. We have chosen the four corners as
the reference points in Examples 1, 2, and 3, with both the {!- and [?>-metric-based
sortings.

Ezample 1 (two-circle problem). The eikonal equation (2.1) with f(x,y) = 1. The
computational domain is Q = [—2,2] x [—2, 2]; " consists of two circles of equal radius
0.5 with centers located at (—1,0) and (v/1.5,0), respectively. The exact solution is
the distance function to I'. An acute triangulation is used in the computation. The
solution is shown in Figure 4.1(a).

Ezample 2 (shape-from-shading). This example is taken from [26], in which

(4.1) f(z,y) = 2m\/[cos(2mz) sin(27y)]2 + [sin(27z) cos(2my)]2.
I = {(%, %), (%, %), (i, %), (%,i), (%,%)}, consisting of five isolated points. The

computational domain is Q = [0,1] x [0, 1]. T'(z,y) = 0 is prescribed on the boundary
of the unit square. The solution to this problem is the shape function, which has
the brightness I(z,y) = 1/4/1 + f(x,y)? under vertical lighting. We have used acute
triangulations for the following two cases.

Case a.

LY (3 32y L3y (3 LYo LY
94’4 _g 474 - 9474 _g 474 - I 9272 - Y-
The exact solution for this case is smooth,
T(x,y) = sin(2nz) sin(27y).
Case b.
11_33_13_31_1 11_2
g 4’ 4 _g 4? 4 _g 4a 4 _g 47 4 - g 27 2 -
The exact solution for this case is nonsmooth,

max(|sin(27x) sin(27y)|, 1+ cos(2nx) cos(27y))
T(x,y) = if|w+y—1\<%and\x—y|<%;
| sin(27z) sin(27y)| otherwise.
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Two circles problem, 90625 nodes, 180224 triangels

Five rings problem, 90625 nodes, 180224 triangles
1

0.9 E

08E

07
06
>05
04
03F

02

R

Fic. 4.1. (a) Ezample 1: two-circle problem. (b) Ezample 3: five-ring problem.

TABLE 4.1
Accuracy tests for Examples 1 and 2. Acute triangulation. Four corners as the reference points.

Two-circle Shape (Case a) Shape (Case b)
Nodes | Elements | L! error | Order | L' error | Order | L! error | Order
1473 2816 7.7T1E-3 - 4.54E-2 - 2.83E-2 -
5716 11264 4.21E-3 0.87 2.54E-2 0.84 1.62E-2 0.81
22785 45056 2.18E-3 0.95 1.34E-2 0.92 8.76E-3 0.89
90625 180224 1.11E-3 0.97 6.90E-3 0.96 4.60E-3 0.93

TABLE 4.2
Iteration numbers for Examples 1,2, and 3. Acute triangulation. Spherical wave sweeping based
on the 1?2-metric ordering. Four corners as the reference points.

Nodes | Elements | Two-circle | Shape (Case a) | Shape (Case b) | Five-ring
1473 2816 6 9 9 19
5716 11264 6 13 13 20

22785 45056 8 11 13 21

90625 180224 8 11 13 21

Ezample 3 (five-ring). The computational domain is @ = [0,1] x [0, 1], T" is a point
source at (0,0), and a five-ring obstacle is placed in the computational domain. This
example is borrowed from [9]. Here we also use an acute triangulation. The solution
is shown in Figure 4.1(b).

From Table 4.1, we can see that the accuracy of the algorithm for Examples 1 and
2 is first order. Although the same discretized nonlinear system is solved, no matter
which ordering metric is used, different ordering strategies may result in different
numbers of iterations, as illustrated in Tables 4.2 and 4.3, where we have applied
orderings based on ['- and [%-metrics, respectively. Certainly, the two tables also
indicate that the iteration number does not depend on the mesh size as the mesh is
refined.

Table 4.4 shows the number of iterations needed using the I'-metric with only
two reference points. The two reference points are two corners that are not diagonal
to each other.

On the other hand, Table 4.5 shows that a simple extension of the ordering
strategy used for rectangular meshes, i.e., sorting all vertexes according to the ascent
and descent orders of their z- and y-coordinates, may result in more iterations.
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TABLE 4.3
Iteration numbers for Examples 1,2, and 3. Acute triangulation. Planar wave sweeping based
on the I'-metric ordering. Four corners as the reference points.

Nodes | Elements | Two-circle | Shape (Case a) | Shape (Case b) | Five-ring
1473 2816 7 12 9 26
5716 11264 7 12 9 27

22785 45056 7 16 9 27

90625 180224 7 15 9 27

TABLE 4.4
Iteration numbers for Examples 1,2, and 3. Acute triangulation. Planar wave sweeping based
on the I'-metric ordering using only two reference points.

Nodes | Elements | Two-circle | Shape (Case a) | Shape (Case b) | Five-ring
1473 2816 6 12 8 16
5716 11264 6 12 9 25

22785 45056 7 17 9 29

90625 180224 7 14 10 29

TABLE 4.5
Iteration numbers for Examples 1,2, and 3. Acute triangulation. Nodes are sorted by x- and
y-coordinates. Four corners as the reference points.

Nodes | Elements | Two-circle | Shape (Case a) | Shape (Case b) | Five-ring
1473 2816 9 9 9 22
5716 11264 9 10 14 26

22785 45056 13 18 15 33

90625 180224 13 13 15 33

4.2. 2-D obtuse triangulation. We test our strategy for treating a triangula-
tion which has obtuse angles. The obtuse triangulations are constructed by perturbing
randomly the a-coordinates of vertexes (Figure 4.2(a)) or perturbing randomly both
the z-coordinates and the y-coordinates of vertexes (Figure 4.2(b)) in a uniform trian-
gulation. The uniform triangulation, in turn, is obtained by connecting the diagonal
line in every rectangle of a rectangular mesh and cutting every rectangle into two
equivalent isosceles triangles. The perturbation range is [—0.5h,0.5h], where h is the
length of an isosceles triangle. We use Example 1 in section 4.1 as a test example and
apply spherical-wave sweepings.

As a first test, we use the obtuse triangulation as in Figure 4.2(a), choose four
corners of the computational domain as the reference points, and sweep through all the
nodes according to both ascent and descent sortings. The accuracy and the number
of iterations for the algorithm without and with the obtuse-angle treatment are listed
in Table 4.6.

As a second test, we use eight reference points which include both the four cor-
ners and four middle points of the four edges of the computational domain, and we
use only ascent orders. The accuracy and the number of iterations for the algorithm
without and with the obtuse-angle treatment are listed in Table 4.7 for the obtuse
triangulation as in Figure 4.2(a) and in Table 4.8 for the obtuse triangulation as in
Figure 4.2(b). Comparing Tables 4.6, 4.7, and 4.8, we can see that more reference
points may help us reduce the number of sweepings needed in the algorithm. Roughly
speaking, for different meshes the errors from the algorithm with the obtuse-angle
treatment are decreased 2 ~ 4 times in comparison to the errors from the algorithm
without such a treatment, as shown in both Table 4.7 and Table 4.8. The first-order
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Obtuse triangulation, 1681 nodes, 3200 triangles
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Obtuse triangulation, 1681 nodes, 3200 triangles
perturbing randomly both x and y coordinates
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Obtuse triangulations. (a) Perturbing randomly the x-coordinate of vertexes in a
uniform triangulation; (b) perturbing randomly x- and y-coordinates of vertezes.

TABLE 4.6

Two-circle problem. Obtuse triangulation (Figure 4.2(a)). Spherical wave sweepings: 4 refer-
ence points (4 corners of computational domain). Both ascent and descent orderings.

Before treatment After treatment
Elements | Obtuse elements | Max obtu | L! error | Order | Iter. | L error | Order | Iter.
200 78 120° 6.70E-2 - 6 | 4.26E-2 - 5
800 528 115° 2.49E-2 1.43 8 1.71E-2 1.32 6
3200 958 125° 2.90E-2 | —0.22 15 | 9.71E-3 0.81 12
12800 5890 118° 1.98E-2 0.55 34 | 4.60E-3 1.08 18
51200 40558 116° 4.71E-3 2.07 44 2.31E-3 0.99 24
TABLE 4.7
Two-circle problem. Obtuse triangulation (Figure 4.2(a)). Spherical wave sweepings: 8 refer-

ence points (4 corners and 4 middle points of the 4 edges). Only ascent ordering.

Before treatment After treatment
Elements | Obtuse elements | Max obtu | L! error | Order | Iter. | L' error | Order | Iter.
200 78 120° 6.70E-2 - 4 | 4.26E-2 - 4
800 528 115° 2.49E-2 1.43 8 1.71E-2 1.32 6
3200 958 125° 2.91E-2 | —0.22 8 9.71E-3 0.81 8
12800 5890 118° 1.98E-2 0.55 8 | 4.60E-3 1.08 9
51200 40558 116° 4.72E-3 2.07 13 2.31E-3 0.99 11
TABLE 4.8
Two-circle problem. Obtuse triangulation (Figure 4.2(b)). Spherical wave sweepings: 8 refer-

ence points (4 corners and 4 middle points of the 4 edges). Only ascent ordering.

Before treatment After treatment
Elements | Obtuse elements | Max obtu | L! error | Order | Iter. | L' error | Order | Iter.
200 81 106° 3.55E-2 - 4 3.08E-2 - 4
800 727 108° 2.30E-2 0.63 8 1.70E-2 0.86 4
3200 1344 106° 1.32E-2 0.80 8 8.04E-3 1.08 6
12800 5909 106° 7.73E-3 0.77 11 4.66E-3 0.79 10
51200 50560 108° 3.88E-3 0.99 14 1.89E-3 1.31 14
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Two Spheres problem,
38400 tetrahedrons,
68921 nodes.

—_— The contour T=0.17 in 3D z

Fic. 4.3. Two-sphere problem. Use a tetrahedral mesh. (a) The surface contour, 30 equally
spaced contour lines from T =0 to T = 0.742402 (produced automatically by the plotting software);
(b) the contour plot of T = 0.17 in the 3-D case.

TABLE 4.9
Two-sphere problem. Comparison between tetrahedral meshes and rectangular meshes. Spheri-
cal wave sweepings: 8 corners as reference points. Both ascent and descent orderings.

Unstructured mesh Structured mesh
Nodes | Elements | L! error | Order | Iter. | L! error | Order | Iter.
9261 48000 1.25E-2 — 12 1.77E-2 15

68921 384000 7T.17E-3 0.81 12 1.02E-2 0.80 15
531441 3072000 3.79E-3 0.92 12 5.41E-3 0.91 16

accuracy with the obtuse-angle treatment is more regular than that without the treat-
ment. Moreover, comparing the errors in Table 4.6 with those in Table 4.7, we can
observe that without the obtuse-angle treatment different sweeping ordering strate-
gies yield slightly different numerical solutions, and with the obtuse-angle treatment
different sweeping ordering strategies yield the same solutions up to machine zero.
This indicates that the causality of PDEs may not be captured accurately if obtuse
angles are not treated.

4.3. A 3-D example. We test our 3-D fast sweeping methods on tetrahedral
meshes. We use a two-sphere problem as an example: the eikonal equation (2.3) with
fz,y,2) = 1.

The computational domain is Q = [0, 1] x [0,1] x [0,1]; T consists of two spheres
of equal radius 0.1 with centers located at (0.25,0.25,0.25) and (0.75,0.75,0.75), re-
spectively. The exact solution is the distance function to I'.

We first partition the computational domain into identical rectangular cubes.
Then a tetrahedral mesh is obtained by cutting each cube into six tetrahedrons.

The results in Figure 4.3 are obtained by using a tetrahedral mesh which consists
of 40 x 40 x 40 x 6 = 384000 tetrahedrons. We choose the eight corners of the
computational domain as the reference points. Both ascent and descent orderings
are used, and the ordering strategy is based on the [?-metric. Figure 4.3(a) shows
contours of the solution on the surface of the domain, and Figure 4.3(b) shows 3-D
plots of the contour T = 0.17.

In Table 4.9, we present the accuracy and numbers of iterations when the tetra-
hedral mesh is refined. To calibrate the result, we apply the same sweeping ordering
to the rectangular mesh from which the tetrahedral mesh is obtained. For the rec-
tangular mesh we use the local solver for rectangular grids as in [35]. Although the
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TABLE 4.10
Two-circle problem. Comparison between triangular meshes and rectangular meshes. Spherical
wave sweepings: 4 corners as reference points.

Unstructured mesh Structured mesh
Nodes | Elements | L! error | Order | Iter. | L! error | Order | Iter.
1681 3200 9.85E-3 - 5 1.46E-2 - 5
6561 12800 5.30E-3 0.89 5 7.91E-3 0.88 5
25921 51200 2.74E-3 0.95 5 4.13E-3 0.94 5
103041 204800 1.39E-3 0.98 5 2.10E-3 0.97 5

two-circle problem two-sphere problem
—8—— N=1473 —H8— N=9261
: = R =

10'F O N=90625 10' B
= 10" =107
(<] (<]
N 3| s 3
o 10 10
B0} B0}
3107 3107

107 107
< <
gm"- 210'9-
< 11 < 11
Qi07 |- Q10"+
o o

10k 10k

-15 1 1 1 1 1 1 -15 1 1 1 1 1 1 1 1 1 1 1
10 2 6 7 10 2 3 5 6 7 8 9 10 11 12

3 4 5 4
Iteration numbers Iteration numbers

F1c. 4.4. log plot of convergence error for 2-D and 3-D examples.

nodes are the same, the local solvers at each node are different so that the discretized
nonlinear systems of the equation are different. The comparison results are also shown
in Table 4.9. It is obvious from the table that the local solver on unstructured meshes
can achieve higher accuracy than that on structured meshes since the former uses
more neighboring points at each node and captures directions of characteristics more
accurately than the latter.

Also we can see from Table 4.9 that if the [2-metric is used for ordering, the
number of iterations on an unstructured mesh can be less than that on a structured
one. However, the local solver at each node for an unstructured mesh is more expensive
than that for a rectangular mesh. Most importantly, we see that both iteration
numbers do not change as the mesh is refined. So our ordering strategy works for
both cases.

A similar comparison for a 2-D case, Example 1 of section 4.1, is presented in
Table 4.10; again the local solver on unstructured meshes achieves higher accuracy
than that on structured meshes.

4.4. Typical convergence behavior. Figure 4.4 shows the typical behavior of
convergence error of the fast sweeping method in terms of the difference between two
consecutive iterations in maximum norm. It demonstrates that the exact solution (up
to machine error) to the discretized system is achieved in a finite number of iterations
independent of mesh size.

5. Conclusion. We propose novel ordering strategies to extend the fast sweep-
ing method to unstructured meshes. To that end we introduce multiple reference
points and order all the nodes according to their [P-metrics to those reference points.
Information propagating along all characteristics can be covered efficiently by the
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systematic orderings. We prove that the new algorithm converges and numerical ex-
amples demonstrate that the algorithm converges in a finite number of iterations in-
dependent of mesh size. The computational complexity of the new algorithm is nearly
optimal in the sense that the total computational cost consists of O(M) flops for iter-
ation steps and O(MlogM) flops for sorting at the predetermined initialization step,
which can be efficiently optimized by adopting a linear time sorting method, where
M is the total number of mesh points. Extensive numerical examples demonstrate
the accuracy and the efficiency of the new fast sweeping method.

Acknowledgment. Qian thanks Profs. Stan Osher, William W. Symes, and
Eitan Tadmor for encouragement in this project. Qian also thanks Prof. Ian Mitchell
for comments related to sorting algorithms. The authors would like to thank the
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Abstract. Attenuated Radon projections with respect to the weight function W, (z,y) = (1 —
o y2)”_1/2 are shown to be closely related to the orthogonal expansion in two variables with
respect to W),. This leads to an algorithm for reconstructing two-dimensional functions (images)
from attenuated Radon projections. Similar results are established for reconstructing functions on
the sphere from projections described by integrals over circles on the sphere, and for reconstructing
functions on the three-dimensional ball and cylinder domains.

Key words. approximation, reconstruction of images, Radon projections, polynomials of several
variables, algorithms
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1. Introduction. Computer tomography (CT) offers a noninvasive method for
two-dimensional (2D) cross-sectional or three-dimensional (3D) imaging of an object.
In a typical CT application, the distribution of the attenuation coefficient through a
body from measurements of x-ray transmission is estimated and used to reconstruct
an image of the object. The mathematical foundation of CT is the Radon transform.
Let f be a function defined on the unit disk B? of the R? plane. A Radon transform
of f is a line integral,

(1.1) Ro(f;t) ::/ f(z,y)dz dy, 0<6<2m, —-1<t<1,
1(0,1)

where 1(0,t) = {(z,y) : xcosf + ysind = t} N B? is a line segment inside B2. An
essential problem in CT is to reconstruct the function f from its Radon projections.
An algorithm amounts to an approximation to f that uses values of Ry(f;t) from a
finite set of parameters (6,t).

The attenuation of an x-ray beam is dependent on the energy of each photon.
A line integral as defined in (1.1) represents a monochromatic x-ray. In practice,
however, an x-ray is usually polychromatic, meaning that it consists of photons with
different energies. This could lead to artifacts in the reconstruction; see, for example,
[4, Chap. 4]. A polychromatic x-ray is represented by the so-called attenuated Radon
projections for which the integral is taken against exp{—ap(z, y) }dx dy, where ag(x, y)
is a given function, instead of dxdy. The attenuated Radon transform appears in,
for example, emission tomography [7]. The reconstruction algorithms for attenuated
Radon data have been derived from Novikov’s inversion formula; see [10] and [8]. See
also the recent survey in [3] in this direction.

In the present paper we consider the special case that exp{—ay(x,y)} is given, or
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can be approximated, by the function
(1.2) Wz, y) = (1—2* =g )* 12 (2,y) € B,

where g1 > 0; in other words, ag(x,y) = —(u — 1/2)log(1 — 22 — y?). The attenuated
Radon transform, denoted by R}, then takes the form

(L3)  RE(Fi) = /I(g)f@,y)m(x,y)dxdy, 0<p<om, —1<t<l
,t

Clearly this is just a special case of the attenuated Radon transform. This case,
however, appears to be useful in understanding the effect of monochromatic and
polychromatic x-rays. In this regard let us mention the classical example of the water
phantom in a skull in [4, p. 121], which demonstrated that beam hardening causes an
elevation in CT numbers for tissues close to the skull bone. The attenuated Radon
transform defined in (1.3) models the boundary behavior of the x-rays differently.

Our approach is based on orthogonal polynomial expansions on B2. Let Vﬁ(Wu)
denote the space of orthogonal polynomials with respect to the weight function W,
on B2. It is well known that

o0 o0
L*(B*W,) =Y &Vi:  f=) projf,
k=0 k=1
where proji! f is the projection of f on VZ(W,,). The infinite series holds in the sense
that the sequence of the partial sums

n

Sh(f;a,y) ==Y _projy f(z,y),  n=>0,
k=0

converges to f asn — oo in L?(B?,W,,) norm. The partial sum S,, f provides a natural
approximation to f. It turns out that there is a remarkable connection between S¥ f
and the attenuated Radon transforms, which states that

2um
om+1’

2m 1
14 S = [ RE GO 0=
v=0""

where ®,, are polynomials of two variables given by explicit formulas. This represen-
tation provides a simple and direct access to attenuated Radon data. For the ordinary
Radon transforms (p = 1/2), this was discovered recently in [16]. Applying an appro-
priate quadrature formula to the integrals in the expression leads to an approximation
to f that uses discrete attenuated Radon projections. One important feature of the
algorithm is that polynomials up to a certain degree are reconstructed exactly, which
guarantees that the algorithm has a fast rate of convergence. Such an algorithm can
be easily implemented numerically. For the ordinary Radon transforms, the algorithm
is named OPED (orthogonal polynomial expansion on the disk) and has proved to be
a highly effective method [17, 18].

There are other expressions in the spirit of (1.4). In order to prove them, we need
to study orthogonal expansions in terms of orthogonal polynomials with respect to
Wy(x,y) on B2, The case u = 1/2 is easier since an orthonormal basis for V(W 5)

is known to be Ug(z cos ,j—_:l + ysin kj—_:l), 0 < j < k. No such convenient orthonormal
basis is available for p # 1/2.
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There is another advantage for considering the attenuated Radon transform
Ry (f;t). It is known that there is a close relation between orthogonal polynomials
on the unit ball and those on the unit sphere, which allows us to establish analogous
results on the unit sphere S2. In particular, the case u = 0 on B? can be used to
show that we can reconstruct a function f from its integral projections:

15 QG = /< L

where x = (21, 7, z3) and dw is the surface measure on S2. Reconstruction from such
spherical transforms has been studied in the literature; see [9].

From the disk B? we can also extend the results to the unit ball B and to cylinder
domains in R3, taking Radon projections on parallel disks in each case. It turns out,
however, that there is an important difference between the ball and the cylinder. For
the cylinder domain, all results obtained in the disk can be extended without problem.
For the unit ball, however, we still have an analogue of (1.4), but the reconstruction
algorithm may no longer work as efficiently as in the cylinder case. The problem is
that the operator produced by the algorithm no longer preserves polynomials.

For the algorithm on B2, we provide a numerical example in section 2, which
reconstructs a 2D phantom image for three different values of p. For the transform
on the sphere and the 3D transforms on the ball and on the cylinder domain, we
will be content with deriving the algorithms and will not discuss convergence or the
performance of the algorithms at this time.

The paper is organized as follows. In the following section we consider the recon-
struction and approximation on the unit disk B? from attenuated Radon projections.
This section is divided into several subsections, the last one including the numerical
example. In section 3 the results on B? are transplanted to those on the surface S2,
while the attenuated Radon projections become weighted spherical transforms. The
analogous results are then established for the unit ball B3 in section 4 and for the
cylinder domain in section 5.

2. Reconstruction and approximation on the unit disk. Let II¢ denote
the space of polynomials of d variables and let 1 denote the subspace of polynomials
of total degree n in I1¢, which has dimension dim IT¢ = (”jd). We set II,, ;= II}. In
this section we mainly work with the case d = 2.

2.1. Orthogonal polynomials on the unit disk. Let W, be the weight func-
tion defined in (1.2). Let VZ(W,) denote the space of orthogonal polynomials of
degree k on B? with respect to the inner product

(P,Q), = ay /32 P(z,y)Q(z, y)W,(z,y)dz dy, a, = (n+1/2)/7,

where a,, is the normalization constant of W, a, = 1/[z, W,(x)dz. Thus, P €
VZ(W,) if P is of degree k and (P,Q), = 0 for all Q € II?_,. We note that elements
in a basis for VZ(W,,) may not be orthogonal with respect to each other according to
our definition. A basis for VZ(W,,) is called orthonormal if the elements in the basis
are mutually orthogonal and (P, P), = 1.

The reproducing kernel of the space V%(W#) plays an important role in our de-
velopment. In terms of an orthonormal basis {PF : 0 < j < k} of VZ(W,,), the
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reproducing kernel satisfies

k
(2.1) Pe(Wuix,y) = Y PF(x)PH(y).

Jj=0

The kernel is independent of the choice of the bases of V? (W,). In fact, a compact
formula for this kernel can be given in terms of the Gegenbauer polynomial [13],

o ktpt1)2 /1 j1/2
(2:2) Pu(Wuixoy) = = L | CE (o)

VI xIEYT= TylPe) (1= ) e

for o > 0; the formula also holds for © = 0 upon taking limit 4 — 0. Here and
in the following, the Gegenbauer polynomials C,i‘(s) are orthogonal with respect to
(1—s)*1/20on [-1,1],

A2k

(2.3) cA,l/z/_IC,é(s)C?(s)(l — s 2ds = [CESY

O,1 = hpor,
where ¢y_q /5 := (A +1)/(y/7T(A+1/2)) is the normalization constant of the weight
function (1 — s>)*~1/2 on [~1,1], and (a)y := a(a +1)---(a + k — 1). For pu = 1/2,
C,’:H/Q(s) = Ui (s) is the Chebyshev polynomial of the second kind.

For the weight function W ,5(z) = 1, it is known [5] that the set

{Uk (xcosb;,+ysinb; ) : 0<j <k}

forms an orthonormal basis of V7 (W, s2)- The elements of this basis are the so-called
ridge functions. In general, given an angle ¢ and a polynomial p € II; := H}C, a ridge
polynomial is defined by

p(¢;w,y) = p(xcos ¢ + ysin ), ¢ € [0,27].

It is easy to see that p(¢;z,y) is a polynomial in II2 as well. The functions
{C£+1/2(9j7k;x,y) : 0 < j <k}, where 0, = jn/(k + 1), form a basis for VZ(W,,),
albeit not a mutually orthogonal one (see, for example, [14]). The lack of an orthonor-
mal ridge basis in the case of pu # 1/2 makes the results for the attenuated Radon
transform more difficult, as we shall see below.

We call a polynomial P € Il of one variable symmetric with respect to the origin
if P is even when k is even, and if P is odd when k is odd. It is known that C’,’:H/z (t)
is symmetric with respect to the origin. The ridge polynomials arising from such a
polynomial turn out to satisfy a remarkable relation.

PRroOPOSITION 2.1. Forn > 0 and k < n, the identity

1 < v . v
(2.4) T ;)Uk (n+1’COS 9,sm9> Py (M,x,y> = Pi(0;z,y)

holds for all polynomials Py € 1y, that are symmetric with respect to the origin.
Proof. The proof uses the elementary trigonometric identities

- um - 2um n+1l ifk=0 modn+1
2.5 sin k =0 and cosk = ’
22 u;o n+tl ,;) n+1 {O otherwise,
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which hold for all nonnegative integers k. Let us prove the case k = 2[. We follow
the proof of Proposition 2.3 in [16]. The polynomial Py can be written as a linear
combination of U_q; for 0 < 2j < k. Consequently, we can write Py (6; x,y) as

l
(2.6) Py (6;2,y) = Poy(rcos(0 — ¢)) ij ) cos25(0 — @)
7=0

in polar coordinates x = r cos ¢ and y = rsin ¢, where b;(r) is a polynomial of degree
2j in r. Furthermore, we know that

!
Us:1(0; cos ¢, sin @) = Uy (cos(0 — ¢)) = Z dj;cos2j(0 — ¢),

=0

where dy = 1 and d; = 2 for j > 1. The identities (2.5) and the product formula of
the cosine function show that

0 if i # 4,
ZCOSQZ o— T ) cos2j ¢ — vyl 2j(0—¢) if0<i=j<
nt+1 n+1 J nt1) " J2esl0-9) if0<i=jsn
1 ifi=j=0.

Let us denote by I the left-hand side of (2.4). The above trigonometric identity
implies immediately that, for 0 < 2] < n,

l l n
1 . VT . v
L = Zdiz"j“)mz“’“Z("‘ n+1) c0s2] (¢‘ n+1>
j— j— v=0

—Zb ) cos 2j(0 — @) = Pay(r cos(0 — ¢)) = Pu(6; z,y).

This completes the proof for the case k = 2] < n. The case k = 2l — 1 is similar. 0
In (2.4) the summation is over angles, vm/(n + 1), that are equally spaced in the
interval [0, 7). In the case that n is even, the angles can be arranged as equally spaced
angles in [0, 27] by using the fact that
2k +1 2 2k 2k +1 2 2k
(27) cos CEHT __ OmAIT 4 i GEEDT g Gm 2
2m+1 2m+1 2m +1 2m+1
The result is the following proposition proved in [16] for Py being the Chebyshev
polynomial of the second kind.
PROPOSITION 2.2. For m > 0 and k < 2m, the identity

2m

1 2um 2um
2.8 U [ =2 cos0.sin6 ) P, — P,(6;
(2:8) 2m+1; ’“<2m+1’coS St > ’“<2 Tl y) k(0:2,y)

holds for all polynomials Py € Iy, that are symmetric with respect to the origin.
There are many orthonormal bases of VZ(W,,) that are known explicitly (see [2]).
One that is particularly useful for us is given in terms of the polar coordinates

T =7rCcos¢,y =rsing, 0<r<1, 0<¢<2m,
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and Jacobi polynomials [2, Prop. 2.3.1]. Let p%a’ﬁ )(t) denote the orthonormal Jacobi

polynomials, that is,

1
qw{/ P (pleD () (1 — )2 (1 4+ 1)Pdt = b, myn=0,1,2,...,
-1

where ¢, g is the normalized constant so that ¢, g f_ll(l —t)2(1+t)Pdt = 1.
PRrROPOSITION 2.3. Fore =0 or 1, define the polynomials Pl’“5 by

—L k-2 _
(2.9) PE(2,y) = hugp™ 720 @202 = 128y o (9),
where

Sk—21,0(¢) = cos(k —20)¢p for 0 <2l <k,
Sk—a1,1(¢) =sin(k —20)¢ for 0 <2l <k —1,

and

L(k—20+p+3/2)
(u+3/2)0(k—20+1)

[hl,k]2 = T

Then these polynomials form an orthonormal basis for Vi(W,,).
By the definition of the reproducing kernel (2.1) and formula (2.2), it follows that
the above orthonormal basis satisfies

kE+A
(2.10) S S PE(ey)PE(cos o sing) = TG (65,),

£=0,10<2I<k

where A\ = p + 1/2. This formula will play an important role below. It shows, in
particular, the expansion of C,‘: +/ 2(¢;x,y) in terms of our orthonormal basis. The
following lemma shows the converse.

LEMMA 2.4. Let b,y = jm/(k+1). Then for0 <2l <kife =0and0 <2l < k-1
ife=1,

1

s
5 1 Hll,tkdhkpll,ce(xv y)a
2

k
1
;o Sk (050)CL T O35, ) = k+p+3

k+1+4

where dy iy =1/2 if 20 < k and dyp =1 if 20 = k, Hf, := hf',pi*/** 720 (1) and

(+ i+ Dr—i(k+pn+3)
Uk —DI(k—1+pu+3)

2
[quk] =
Proof. Using the identities (2.5) it is easy to verify that

(2.11)

k
1

— Z Sk—21,e(05.1)Sk—21 £ (05,1) = di k011
Fl
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Using (2.9) and the fact that P/ (cos 6 ,sinf; ) = H/, Sk—21.(0;), we obtain

k
1 +1/2
Pl jz::OSk_m,s(é’j,k)Cﬁ / (Oj,k52,9)
g+ 3 1 &
= —2_ Z PF_(z )7ZP’c (cos b k,sinb; x)S 0 k)
1 l,e Y l,e 7,k 7,k )RPk—21,e\Vj,k
k+u+50§l§2k k+1l:0

1
p+ 5 k

=2 0" d P} (x,
k+#+% l,kl,kl( Y)

upon using (2.11). Finally, the expression of [H[]? is derived from the well-known

formula of p?(1) (see [11]) and the formula of hip. O
LEMMA 2.5. Let 0, be as above. Then

k

1 .

Tl E Sk—21,6(05,1)Ur (0,1 cos ¢, sin @) = dy 1, Sk—21,-(9).
7=0

Proof. Using (2.6) and the analogous formula for Uy _1, the identity is an easy
consequence of (2.11). 0

2.2. Attenuated Radon transforms. Let 6 be an angle measured counter-
clockwise from the positive z-axis. Let £ denote the line perpendicular to the direction
(cosf,sin ) and passing through the point (tcos#,tsinf). The equation of the line
is £(0,t) = {(x,y) : xcosO 4+ ysinh =t} for —1 <t < 1. We use

(2.12) I(6,t) = £(6,t) N B?, 0<f<2m, —-1<t<1,

to denote the line segment of ¢ inside B2. Let W, be the weight function defined in
(1.2). The attenuated Radon projection of a function f, with respect to W, in the
direction § with parameter t € [—1,1] is defined in (1.3). It can be written as

VI
(2.13) Ry (f;t) :/ f(tcosf — ssin6, tsinf + scos @)W, (s, t)ds,
i

using the fact that the mapping (s,t) — (x,y) defined by x = tcosf — ssinf and
y = tsinf + scos @ amounts to a rotation. When p = 1/2, this is the usual Radon
projection, which is also called an x-ray transform. The definition (1.3) or (2.13)
shows that Ry (f;t) = R, ,(f; —1).

The ridge polynomials are particularly useful for studying Radon transforms, as
seen in the following result.

PROPOSITION 2.6. For f € L'(B?) and p € 11,

(2.14) | f@aplosa )Wl pdedy = [ RE( 0001t

Proof. Since the change of variables t = x cos¢+ysin¢ and s = —z sin ¢+ y cos ¢
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amounts to a rotation, we have

/B H ) pe(6:2,) W) dy

f(t cos ¢ — ssin g, tsin ¢ + scos @)px (1) W, (t, s)dt ds

Vi—tz
/ / f(tcos¢ — ssing, tsing + scos @)W, (t, s)dspy(t)dt,
Vi—tz

and the inner integral is exactly RY(f;t) by (2.13). O

In particular, attenuated Radon transforms of the orthogonal polynomials in
V2(W, ) can be explicitly computed.

LEMMA 2.7. If P € VE(W,,), then for each t € (—1,1), 0 < 0 < 2,

KD,y _£2\p
(2.15) RE(P;t) = b, (1 — £2) T

P(cosf,sinb),

where b, = c;l for ¢, defined in (2.3).
Proof. Changing variables in (2.13) shows that

Q(t) = (1 — ) "Ry (P;1)

1
= / P (tcos9 — SMSinﬁ,tsmG + sﬂcos 9) (1— 52)#*1/2d5.
1

Since an odd power of /1 — ¢ in the integrand is always attached to an odd power of
s, which has integral zero, Q(t) is a polynomial of ¢ of degree at most k. Furthermore,
the integral shows that Q(1) = b, P(cosf,sin@). Equation (2.14) in Proposition 2.6
shows that

Ry (P;t

/ ( )C”H/Q( (1 — t*)"dt :/ P(a,y)CLH2 (052, ) dw dy = 0

(1 - t2) J B2 J
for j = 0,1,...,k — 1, since P € Vi(B?). In particular, this shows that Q(¢) is
in fact orthogonal to all polynomials in II;_; with respect to the weight function
(1 —t3)* on [~1,1]. Since Q is of degree k, it must be an orthogonal polynomial
of degree k with respect to this weight function. Hence, we conclude that Q(t) =
cC;;H/z(t) for some constant ¢ independent of t. Setting ¢ = 1 shows that ¢ =
bMP(COSH,sinﬁ)/C]?H/Q(l). 0
In the case of u = 1/2, the above lemma appeared first in [6].

2.3. Orthogonal expansion and attenuated Radon projections. The stan-
dard Hilbert space theory shows that any function in L?(W,; B?) can be expanded
as a Fourier orthogonal series in terms of VZ(W,,). More precisely,

o

(2.16) L*(W,; B?) = Z@Vﬁ(WM) : f= ZpI‘OJk

k=1

where proj! f is the orthogonal projection of f from L?(W,; B?) onto the subspace
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V2(W,,). It is well known that proj; f can be written as an integral operator in terms
of the reproducing kernel Py(W,;, ) of Vi(B?) in L?(B?); that is,

(217) proif 160 = [ PWix ) )W, () dy.

where x = (21, 22) and y = (y1,y2).

This formula plays an essential role in studying the convergence behavior of the
orthogonal expansions; see, for example, [13, 15]. For our purposes, we need a different
expression for proj, f. This is the following remarkable formula that relates proj, f
to the attenuated Radon transforms of f directly. Let

v
€u:n+1a 0<v<n.

THEOREM 2.8. Forn >0 and k < n, the operator proj}, f can be written as

. 1 & !
(2.18) proji f(z,y) = ] Zau/ Rgu(f;t)Df:H/z(f,,,t;x,y)dt
v=0 -1
1 2n+1 1 /
2.19 = RE (f1)DATY2 (&, 42, y)dt,
(219) 53 2 o | RGP 6t
where
E+p+1/2
e20) DI tan) = SR D )

with X'y, = [H[]7* and

k
Dy, y) =Y M PE(cos €y, sin €, ) P (. y).
=0

Proof. Since C} +1/2 4 symmetric with respect to the origin, using Propositions 2.1
and 2.6, we have

0 [ F@a)CE 0,05 )W ) dy

1 .
= - 1 IZ:OU;C(@; cos 6, ,sinb; 1)

< a, / F (@, g) Ol 2 (6 s,y W (2, y) e dy
B2

1 n 1 .
T+l Z a# / 1 Re, (F;)CLT2(4)dtU(€,: cos 0 1, 5in 0 1)
v=0 -
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Using Lemmas 2.4 and 2.5 we conclude that
ap / (@, ) PE (@, y)W(z,y)da dy
B

Ly ' 1/2 k+p+2 -
= e [ Re(rncE et )
v=0 — s

k
4 1 .
x dyy, Tl z;) Sk—21,£(05,6) Uk (€5 cos 0, sin 0 k)

1 « ! E+p+ 1t
- Re, (f;)CL 2 (4)dt— 2 [H] "S- (&,
w1 oo || ReF0Ct a6

Multiplying by Pl’“E (z,y) and summing up, it follows from the definition of the repro-
ducing kernel that

n 1 k4 p+ %
. _ . +1/2 H
projy f(z,y) = 1 Z %/_ Re, (f;1)C} (t)dt?;
X Z " [Sk—200(&0) Plo(@,y) + Sk—211(&) Py (2, )]

~

TL k+ (L+ ,1
QDN 1/2 ; T
k (fﬂ 7y)7

1
+
k
=0
1 ut+1/2
au Rfy fit)C ()t

_l’_
since Pl’fs(cosgy,singy) = Hl‘kak_gl,a(gy) and )\éfk = [Hl‘fk]’Z. This proves the first
identity.

We now prove the second equation, (2.19). Using the fact that &,1,41 =&, + 7,

cos(k — 20)&ntps1 = (=D Fcos(k — 20)¢,,  sin(k — 20)&n4041 = (—1)Fsin(k — 21)¢,,

we conclude that DZH/Q(E,,; x,y) = (—1)kC’,’:+1/2(£n+1+ug x,y). Hence, using the fact
that Ry . (fit) = Rg (f;—t), we conclude that

proif 1) = 1y D / RE (FODI P (G tiz,y)dt,

n—|—1

Adding this equation and the first equation of (2.18) and dividing the result by 2, we

then have (2.19). 0
In the case of p = 1/2, it is easy to see that >\2k =1/(k + 1), independent of I.

Hence, for = 1/2, (2.10) shows that

Du+1/2(

Eiwy) = ——(k+ 1)Ch(&iz,y) = Ur(&s 2, y),

k+1
and formulas (2.18) and (2.19) are of a particular simple form. This case was studied
n [16].

The two expressions of proj, f look similar but are different in one important
point: the first expression consists of Radon projections in equally spaced directions
along half of the circumference of the circle, while the second expression uses Radon
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projections in equally spaced directions along the entire circumference of the circle.
This distinction is meaningful for reconstruction algorithms for Radon data.

If n is even, then we can use Proposition 2.2 instead of Proposition 2.1 in the
proof. The result is another identity that uses Radon projections over equally spaced
angles in [0, 27]. Let

2um

= —) 0<v<2m.
2m+1

b

THEOREM 2.9. For m >0 and k < 2m, the operator projl f can be written as

2m 1
(2.21) projy. f(z,y) = > au/ RY (fst) D2 (.t 2, y) dt.
v=0 -1

2m +1

This expression of proj, f is not a special case of (2.19), even though both use
equally spaced angles. In fact, setting n = 2m shows that (2.19) uses exactly twice as
many Radon projections in equally spaced directions. For y = 1/2 the identity (2.21)
has appeared in [16]. Equation (2.21) can be deduced from (2.18) by using the fact
that Rytxf(t) = Re(f; —t) and changing variable ¢ — —t in the integral whenever
¢ = &, in (2.18), then making use of the equations in (2.7) and the fact that the
Gegenbauer polynomial is symmetric.

Let S* f denote the nth partial sum of the expansion (2.16); that is,

n

St(fim,y) =Y projy f(x,y).

k=0

The operator S¥ is a projection operator from L?(W,; B?) onto II2. An immediate
consequence of Theorem 2.8 is the following corollary.
COROLLARY 2.10. For n > 0, the partial sum operator S f can be written as

(2.22) Sh(fiz,y) = nil Y a, /11 RE (fit) R, t 2, y)dt
_ 1 V;:H ' (e D\ PH .
= omto ;) ay /71Rgu(f,t)%(fmt,z,y)dt,
where

n

(2.23) DL L, y) =Y

k=0

E+p+1/2 412 +1/2
- t)D" JTLY).
Likewise, an immediate consequence of Theorem 2.9 is the following corollary.
COROLLARY 2.11. For m > 0, the partial sum operator Sh, f can be written as

2m 1

1

o [ R (00, (6t )i
v=0 -1

@20 Sh(fimy) =5

2.4. Discretization and reconstruction algorithm. Equation (2.22) ex-
presses the partial sum of the Fourier orthogonal expansion as the integrals of at-
tenuated Radon projections in the equally spaced directions. In order to derive an



ATTENUATED RADON PROJECTIONS 119

algorithm that uses only values of attenuated Radon projections on a set of finite line
segments, we approximate the integrals by a quadrature formula. If f is a polyno-
mial, then Rg(f, t)/(1—t?)* is a polynomial of the same degree by Lemma 2.7, which
shows that we should use a quadrature formula with respect to the weight function
(1 — t2)#; that is,

/1 g(t) (1 — t?)rdt ~ Z)\Jg

-1

where t; are real numbers and A; are chosen so that the quadrature produces exact
values of the integrals for polynomials of degree at least M. Such a quadrature is said
to be of N points and of precision M. A Gaussian quadrature of N points has the
highest precision M = 2N — 1 among all quadrature formulas of N points.

For our purpose we are interested in quadrature formulas of precision 2n that use
n + 1 points. A class of such formulas is given in the following proposition, which is
based on the zeros of the quasi-orthogonal polynomial C/}, Ny 2( )+ aChtt/? (t), where
a is a real number [11]. For a certain range of a, such a polynomial has n + 1 real
distinct zeros in the interval [—1,1].

PROPOSITION 2.12. Lett;,, 0 < j < n, be the distinct zeros of a quasi-orthogonal

polynomial 05;1/2( t) + aC,‘me(t). Then there are positive numbers A;, such that
the quadrature

1 n
(2.25) / g(t)(1— )t = 37 Ny nglts.n) = TE(9)

-1 =0

has precision 2n if a # 0. If a = 0, then the quadrature has precision 2n + 1.

Using an appropriate quadrature on the integrals in (2.22) we obtain a recon-
struction algorithm for the attenuated Radon data. We state such an algorithm only
in the case of the quadrature formula in (2.25).

ALGORITHM 2.13. Let 1 > 0 and n > 0. Let t;, and \j,, be as in (2.25). For
(x,y) € B? define

n

(2.26) AL(f;,y) ZZR“ (@, y),

v=0 j=0
where

apAjn

™" —
Fo(T,y) o1

(1 —2,) 7 PRI(Ey, tjn: 2, y).
For a given f, the approximation process A f uses attenuated Radon data
{Rgl,(thj,n) :0<v<n, 0<j5< n}

of f. The data consist of Radon projections on n 4+ 1 equally spaced directions
(specified by &,) along the circumference of a half circle, and there are n + 1 parallel
lines (specified by ¢;,,) in each direction. The algorithm produces a polynomial A# f
which is an approximation to f. In the case of y = 1/2 the algorithm (2.13) appeared
earlier in [1]; the connection to the orthogonal partial sums, however, was neither
established nor used there.
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THEOREM 2.14. The operator AY is a projection operator on I12. In other words,
Avf € 12 and A*P = P for P € T12.

Proof. The function ®*(&,,t;n;2,y) is evidently an element in II2. It follows
immediately that A" f € T12. By definition, S* is a projection operator on I12. The
operator A" f is obtained from S¥f by applying the quadrature (2.25), exactly for
polynomials in I13,,, on (1 —t*)"#R{ (f;t)®4(&y,t;-), which is a polynomial of degree
2n in t variable by Lemma 2.7 and (2.23) whenever f € II2. Hence, the quadrature
(2.25) is exact. Thus, A'f =Skf=fif fell2. DO

Alternatively, we can use a quadrature formula of proper order on the second
expression of (2.22) to derive an algorithm that uses Radon projections on 2n + 2
directions equally distributed along the circumference of the entire circle. Instead of
stating such an algorithm we consider the case of n = 2m and use the expression
(2.24). This leads to an algorithm that sums over 2m + 1 angles that are equally
spaced over [0, 27], as we shall discuss in the following subsection.

2.5. Reconstruction algorithm using attenuated Radon projections. For
practical applications in CT, the discretization described in Algorithm 2.13 needs to
be further specified or simplified. In fact, one has to take into consideration what scan
geometry is used in practice. For example, the zeros of quasi-orthogonal polynomials
will not coincide with the discrete measurement of the attenuated Radon projections
in the usual scan geometry. If these points were used, then it would be necessary to
introduce an interpolation process, which would introduce new errors. As an alter-
native, we suggest using a different discretization, which amounts to using a different
quadrature formula.

For the ordinary Radon projections (u = 1/2), Gaussian quadrature formulas for
the weight function v/1 — 22 are used for the integrals in (2.24) to generate algorithms.
For practical implementation in CT, the quadrature formula

(2.27) L - Loy ( W) ,

T J_1 \/1—t2_n+1j
based on zeros of T),1+1(z) = cos(n+1)0, z = cos 6, is used [17]. The reason for such a
choice lies in the scanning geometry of the input data. It turns out that for n = 2m,
such a choice allows us to adopt fan beam geometry and use it as parallel geometry
in a straightforward way.

It is possible to use the quadrature formula (2.27) for attenuated Radon trans-
forms Rg( f;t), especially when p is a half integer. The resulting As,, will no longer
be a projection operator, but it still reproduces polynomials of degree slightly less
than n when p is a half integer.

ALGORITHM 2.15. For m >0, (z,y) € B2,

NE

Il
=)

2m 2m
(2:28) AL (fimy) =D Y T RY (ficosy) TE, (x,y),
v=0 j=0
where
p41/2 , (2j+Dm
Tffu(l“ay) = W51ﬂwj@5m(¢u7008¢j7$’y), Yy = dmai2

The constant p + 1/2 in T}, comes from the fact that a,, = (1 +1/2)/7.
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This algorithm provides an approximation for the reconstruction of a function
f(x,y) from a set of attenuated Radon projections

{RY, (ficosyy), 0<v<2m, 1<j<2mj}.

The set {¢, : 0 < v < 2m} consists of equally spaced angles along the circumference
of the disk. For u = 1/2 it has appeared in [16]. The advantage of this algorithm
lies in the fact that it can be used with attenuated Radon data obtained from the fan
beam geometry directly; see the discussion in [17]. The operator, however, reproduces
polynomials up to a lower degree.

THEOREM 2.16. Let u be a half integer, u+ 1/2 € N. Then the operator Af,
in Algorithm 2.15 preserves polynomials of degree 2m — 2pu; that is, Ay, P = P for
P e H2m 2

Proof. The algorithm is obtained by using the Gaussian quadrature formula (2.27)
to discretize the integrals in (2.24); that is,

1 t
/ng(f;t)C’gH/g(t)dt: \/1(%0#“/2 W1 t2dt
1 —

Zsmwﬂ%" (f;cos w7)C“+1/2(cost)

2m+1

If f €113, ,,, then using the fact that Ry (f;t)/(1— t2)# is a polynomial of degree
2m — 2u, the assumption that p is a half integer shows that

Ro, (f;1)/V1—1? = PR, (fi0)/ (L — 2"

is a polynomial of 2y — 1+ 2m — 2 = 2m — 1. Since ®4, (&,,t;-) is of degree 2m and
the quadrature (2.27) is of precision 4m — 1, the dlscretlzatlon becomes exact in this
case and we conclude that AL f = fif f €13, _ o 0

Let C(B?) denote the space of continuous function on B? with the uniform norm
I - oo and let ||A#|| denote the operator norm of A# under the uniform norm. By
A ~ B we mean that there are two constants ¢; and cp such that c;A < B < ¢ A.
Evidently the convergence of the algorithm depends on || A¥||. In fact, since A¥ in
Algorithm 2.13 preserves I1,,, it is easy to see that

If = ARSIl < e (U4 AR En(f),

where E,(f) := inf{||f — P|| : P € 12} is the error of the best approximation of f by
polynomials on B2, If f has rth order continuous derivatives, then E, (f) < c¢yn™",
in which ¢y depends on the norm of the rth derivatives of f. The same applies to
A, in Algorithm 2.15, which preserves Ily,,_2,. Using the formula in (2.13), the
proof of Proposition 5.1 of [16] gives the following formula of the norm of A5, in
Algorithm 2.15.

PROPOSITION 2.17. The operator norm || Ay, || of C(B?) to C(B?) is given by

2m 2m
[ = i An(ew) M) = D0 3 (685, T, o)l
- v=05=0

As m — oo, the norm grows in an essentially polynomial order of m. Hence, the
algorithm converges uniformly if f is sufficiently smooth. Estimating the exact order
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000

Fic. 1. From left to right, p = 0,1/2,3/2.

of A% s difficult. In the case of p = 1/2, it is carried out in [16] and the order is
Az || ~ mlog(m + 1). Based on this fact, we conjecture that the operator norm of
Ab,., is of the the order

| A5, || ~ mH T2 log(m + 1) as m — 0o,

which is only slightly worse than the norm || S¥|| ~ n#**1/2 (see [15]). If the conjecture
holds, then the algorithm will converge uniformly for smooth f € C"(B?) with r >
1+ 1/2. In most applications, however, the function or image could have jumps; that
is, there is not even continuity. The numerical tests in the case of ordinary Radon
data shows that the algorithm is stable and yields fairly accurate results even when
the data are highly singular (see [17]). See also the example given in the following
subsection.

2.6. Numerical example. For the numerical examples we use Algorithm 2.15,
for which the scan geometry is easy to implement. The data required are g;, :=
ng (f;cosvp;), where ¢, = 2vm/(2m + 1) stands for the 2m + 1 views equally spaced
along the circumference of the region to be reconstructed and ¢; = (25 +1)/(4m +2)
means that the x-rays in each view are distributed according to the zeros of the
Chebyshev polynomial T5,,4+1. In this case the fan data can be resorted into parallel
data (see [17]).

We reconstruct a simple analytical phantom defined by the function

1 if09<r<1 or 0<r<0.1,

f(.’L', y) = { .
0 if0.1<r<0.9,

where r = y/x2 + y2 on the unit disk. This phantom contains strong singularity along

the circles r = 0.9 and r = 0.1. The rotationally invariant nature of the function allows

certain simplification of the algorithm.

For the reconstruction, we choose three values of the parameter u, = 0,1/2,3/2.
The case p = 1/2 means the ordinary Radon transform. The case u = 0 means that
the Radon transform is attenuated by the weight function (1 — 22 — y2)’1/2, which
is infinity at the boundary of the disk. The case u = 3/2 means that the Radon
transform is attenuated by the weight function 1 — z? — y?, which is zero at the
boundary. In each case, the Radon data are computed analytically.

For each of the three values of u, we use Algorithm 2.15 for the reconstruction
with a moderate m = 100. The reconstructed image is evaluated on a 300 x 300 grid.
The result is shown in Figure 1.
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These images show that the function is reconstructed rather faithfully in each of
the three cases, even though the function has strong singularity. The case p = 1/2
has been tested extensively and compared with the FBP (filtered back-projection)
algorithm (see [17, 18]). The above is our first attempt to test the algorithm for
attenuated Radon transforms.

3. Reconstruction and approximation on the unit sphere. It is known
that orthogonal polynomials on the unit ball and on the unit sphere are closely related
(see [12]). Since the approximation and the reconstruction in the previous section are
based on orthogonal expansions on the unit disk, the relation suggests analogous
results on the unit sphere S? = {(z,vy, 2) : 22 +y? + 22 = 1}, which we explore in this
section.

On the sphere we consider the attenuated spherical transform defined by

Qs = [ feolesrde,
(x,0)=t
where x = (21, 79,73) € S, ( € R?, and ¢ # 0, and dw is the measure on the subset
{x € §%: (x,() = t}, which is the circle on the sphere. When u = 0, this is the usual
spherical transform (1.5); see, for example, [9, p. 33]. We will mainly work with the
case that (3 = 0. We say that a function is even in x3 if f(x1,x2,23) = f(x1, 22, —23).
PROPOSITION 3.1. Let f be even in x3. If ( = (cos6,sinf,0), then

(3.1) QM f(¢t) = Ry (F;t), F(xq,22) = f(:vl,l‘g, 1—a22 — x%)

Proof. Since f is even in z3 we have f(x) = F(z1,z2) for x € S2. The definition

of ¢ shows that (x C = x1c080 + xosinf = I(0,t). In terms of z; and x9, dw =
dzidrs/+/1 — 23 — x3. Thus,
dxidz
Q“f((;t):/ F(z1,x2) (1—xf—x§)“%7
x1 cos 0+x2 sin 0=t \/ 1-— ] — Ty

which is precisely Ry (F;¢). 0O
Let H,(x) = |z3|*. The space L?*(H,;S?) has an orthogonal decomposition

(3.2) L?(H,; S?) = Z SHY,

where the subspace H) contains homogeneous polynomials of degree k that are or-
thogonal to lower degree polynomials with respect to H,dw on S2. For u =0, Hg is
the space of ordinary spherical harmonics. Let

projye f : L*(H,; S%) — HY

be the orthogonal projection from L?(H,;S?) onto H}. The space HY is closely
related to the space VZ(W,) discussed in the previous section (see [12]) For our
purpose, we only need the following relation on the orthogonal projections: if f is
even in x3, then

(3.3) projye f(x) = projh, F(x1,z2),
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where F' is the function defined in (3.1). This relation, together with (3.1), allows
us to express the projection operator on the sphere in terms of spherical transforms.
Using these relations and Theorem 2.8 we obtain the following result.

THEOREM 3.2. Let f be even in x3. Forn > 0 and k < n, the operator prosz
can be written as

. 1 n 1
(34)  proipg F00 = 7 Yo an [ QUAGNDE 6t aa)d,
v=0 -1

where §, = 75, G = (cos&y,siné,,0), and DZH/Q(@t;a:,y) is defined in (2.20).
Let Y f denote the nth partial sum of the expansion (3.2); that is,

V(%) =Y projye f (1, ).

k=0

The operator Y,* is a projection operator from L?(H,; S5?) onto II,,(S?), the restriction
of IT3 on S?. An immediate consequence of Theorem 3.2 is the following.

COROLLARY 3.3. Let f be even in x3. Forn > 0, the partial sum operator Y} f
can be written as

1 L 1
(3.5) Yi(fix) = o IZ:OCL” [1 Q" F(Coi )BE(Ey, £ 21, ) d
1 2n+1 1
= I P }
~ s | @it o,

where ®F is the function defined in (2.23).

For n = 2m we can also use Theorem 2.9 to derive an expression for Y, (f),
which leads to the following corollary.

COROLLARY 3.4. Let f be even in x3. For m > 0, the partial sum operator Y, f
can be written as

1 2m 1
B6) V0= gy Do | @G 6tz

where ¢, = 2727’:11, ¢ = (cos ¢y, sin ¢y, 0), and ®h, . is the function defined in (2.23).

In the case of u = 0, equations (3.5) and (3.6) are representations of the partial
sums of ordinary spherical harmonic expansions, which are expressed in terms of the
Legendre polynomial Py (t) = C,i/2 (t).

Just like the case of orthogonal expansions on the unit disk, we can use a quadra-
ture formula to obtain a reconstruction algorithm using spherical transforms. For
example, using the quadrature formula with respect to (1 — ¢2)* in Proposition 2.12
as in the case of Algorithm 2.13, we get the following result.

ALGORITHM 3.5. Let f be even in x3. Let u > 0. Forn >0, x € S,

n n

(3.7) SE(Fix) = > Q" F(Cuityn)TE, (21, 2),

v=0 j5=0

where t; , are as in the quadrature (2.25) and T;fy are defined in Algorithm 2.13.
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This algorithm reconstructs a function f(x) from a set of spherical transforms
{Quf(<V§tj)7 G = (COS£V7Sin§M,O>7 0<v<2m, 1<j5< 2m},

which consists of integrals over a number of circles on the sphere. These circles lie
on planes that are parallel to the x3-axis. The circles intersect the circumference of
a disk perpendicular to the x3-axis at equally spaced angles. The distance between
these parallel circles depends on the values of ¢;,. In the case u = 0, the algorithm
provides an approximation to the function based on ordinary spherical transforms.
The assumption that f is even in x3 implies that we can use the algorithm to recon-
struct a function defined on the upper hemisphere from spherical transforms that are
integrals over half circles parallel to the x3-axis on the upper hemisphere.

If 1 is a half integer, we can also state an algorithm using the quadrature (2.27),
as in Algorithm 2.15, so that ¢;,, = cosjm/(2m+1). However, in the most interesting
case of = 0, we do not have such a somewhat simplified algorithm.

4. Reconstruction and approximation on the unit ball. In this section we
consider reconstruction of functions on a unit ball B3 in R? based on the attenuated
Radon projections.

4.1. Radon projections and orthogonal polynomials. We will work with
attenuated Radon projections that are integrals on line segments inside B with re-
spect to the weight function

WM(X) = (1 - ||X||2)'u71/27 X = (.131,.’172,1'3) € BS) 14 > 0.

For our purpose, however, we will consider only those lines lying on the planes that
are perpendicular to the zz-axis. Let x3 = w be such a plane. Its intersection with
the unit ball B? is a disk {x : 27 + 23 < V1 —w?, 23 = w}. A line on this disk is
given by the equation

£: xcosb+ysinh =1t\/1— w2, —-1<t<1.

Let I(0,w;t) denote the intersection of ¢ with B3. The attenuated Radon projection
on such a line is then defined by

(4.1) Ri(fitw)i= [ Wi,

1(0,w;t)

The case ;= 1/2 again corresponds to the usual Radon projection.
LEMMA 4.1. For f € L*(W,; B*) and for a fivzed w € [—1,1], define a function
gw on B2 by

guw(z,y) = f (\/1 —w?z,\/1 —w2y,w) :
The x-ray transform (4.1) is related to the 2D Radon transform (1.3) by
(4.2) RY(fit,w) = (1 — w?)*RY (gu; t).

Proof. Since I(6,w;t) can be represented by

21 =V 1—w?(tcostd — ssinf), x9=1+/1—w?(tsinf +tcosh), z3=w
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for s € [-v1—1t2,v/1 —¢?], which is a rotation around the zs-axis on the plane
defined by x3 = w, we have

Vi-tZ
Ro(fit,w) = (1 —w?)* / Guw(tcos — ssinb, tsin @ + scos 0)W,, (s, t)ds.
—Vi-t®
The integral is precisely RY (gw;t) by (2.13). o
Let V3(W,) denote the space of orthogonal polynomials with respect to W, on
B3, which contains polynomials of degree n that are orthogonal to polynomials of
lower degrees with respect to the inner product

L(p+2)

(P.Q) =0 [ POOQRIW(a)ix, a5 = T2

where a,, 3 is the normalization constant of W,,. We derive a basis for V3(W,,), making
use of an orthogonal basis for V2(W,,). We note that the W, in these two notations
are different: the first one is on B and the second one is on B?. We denote by CN’;‘
the orthonormal Gegenbauer polynomial, which is equal to C3/v/h,, by (2.3).

PROPOSITION 4.2. Let {leC : 0 < j <k} be an orthonormal basis for VE(W,,).
Then the polynomials

x ~

(43) Ql,k,j(x7ya Z) = hk(l — ZQ)k/QPf (ma \/1y722> lkjkqul(Z)
for 0 < j <k <, where h2 = (u+ 2)x/(pn + 3/2)k, form an orthonormal basis for
VP,

Proof. From Proposition 2.3, it is easy to see that Pf is a sum of even powers of
homogeneous polynomials when k is even, and a sum of odd powers of homogeneous
polynomials when & is odd. Thus, it follows that @ ; € II3. Using the fact that Pf
is orthonormal, it follows from the integral relation

1
(4.4) . f(x)dx = [1 /132 f (xl\/l - x%,:@\/l - x%,m) dridrs(1 — x3)dxs

and the fact that a, 3 = a,c,;1/2, where a,, is the normalization of W, on B? and Cy
is defined in (2.3), that

a3 /B3 Qi (%) Qu ke jr (X)W (x)dx

1
= hicui1/2 / ) PR OO () (1 = ) 2at6, 408 1

_ p2 Sut1/2

i o117 Ok ke 65,7 -
Chktp+1/2

It follows from the definition of ¢, that c,1/2/Chipr1/2 = (+3/2)1 /(1 +2)r, which
completes the proof. ]
The attenuated Radon transforms of this basis can be computed explicitly.
PROPOSITION 4.3. Let 1 > 0 and let Q. ; be defined by (4.3). Then

RY(Qriyit,w) CEr2 (4
o\LLE, 55T . r
(4.5) 1= 2yl —a?)r =b, C’ﬁH/Q(l)Ql’kJ (\/ 1—w2cos¢, V1 —w? 51n¢,w) .
k
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Proof. By Lemma 4.1 and the definition of Q1 ; we have
Ro(Quijit,w) = (1= w) RY (gust),
where gy (z,y) = he PF(z,y)(1 — w?)F/2CF T (). By Lemma 2.7, it follows that
ik
RE (gusi t) = hi(1 — w?) M2 (w)RE (PFs t)

c““%) "

=b,hp(1— wz)k/Qafjk“H(w)(l —%)r Py (cos ¢, sin ¢)

pn+1/2
=b,(1 -t} g“H/Q(( >)Qlkj (\/1 — w? cos ¢, \/1—wzsin¢,w>

by the definition of () 1, ;. Putting these equations together completes the proof. 0
Let projf3 denote the projection operator from L?(W,;B?) onto the space

V3 (W,,). Again we have the decomposition

(4.6) 2(W,; B®) = Z@Vk : f=> projisf.

k=0

PROPOSITION 4.4. Forn >0 and 0 <[ <n,

(4.7)  proji's f(x) = Z/ / Re (fit,w)Gi(&y, t, wyx)dty/ 1 — w?dw

n+1

2n+1

Z/ / Ry (fit,w)Gi(&, t, wix)dty/ 1 — w?dw,

2n—|—2

where

l
X1 X2
Gi(&,t,wix) = a3 Y hEDIT? (5, t; )
k=0 V1= \/ 1— a3

x (1= w?)*2(1 — x%)’“/chfk“ﬂ(w)Cffk“H(ws).

Proof. The projection operator has an integral expression just as that of (2.17).
Furthermore, the kernel function P(W,;x,y) can be written as a sum of an orthonor-
mal basis. In particular,

l k
projl's f(x) = > > frkjQuij(x

k=0 35=0

where Q1 ; is the orthonormal basis for V¥ (W,,) defined in (4.3) and
Fiks = aus /33 F¥)Quk,; (y)Wyu(y)dy.

Using (4.4), the definition of Qg ;, and the fact that a, 3 = a,c,11/2, we have

1
Fors = cusiys / [ / o 11, 0) P2 ut, 0) W, (u, v)
71 B2

X B G ) (1= w?) /2 2,
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where g,, is defined as in Lemma 4.1. Hence, it follows from (2.17) and (2.1) that

hié«fjku+1(x3)(1 - x%)k/%#ﬂ/z

|
MN

pr0j1,3 f(x)

)Ck+;t+1(w)(1 - w2)(k+1)/2+,udw'

1
X/lprOJkgw(\/i \/7

The identity (4.7) follows from the above equation upon using (2.18) and (4.2). ad
Let us denote by 5573 f the nth partial sum of the orthogonal expansion (4.6),

x) =y _ projf's f(x)
=0

As an immediate consequence of Proposition 4.4 we have the following corollary.
COROLLARY 4.5. Forn >0,

n 1
(4.8)  Spaf(x)= ! Z/ /1 R (fit,w)®@h (&, t,wix)di/ 1 — widw
-1/

n+1

2n+1

_ Z/ / RE (f3t,w) @ (&, t,w; x)dty/1 — w2dw,

2n+2

where
DUt wix) = Y Gilt,w;x).
1=0

In the case of n = 2m we can use (2.21) instead of (2.18) in the last step of
the proof of Proposition 4.4 to get an expression for projff3 f- The corresponding
expression for the partial sum is the following result.

PROPOSITION 4.6. For m > 0,

2m

Z//R“ (F1t,w)®om (b, t, w; x)dtr/T — wdw.

Sgwn,?) ( 2m+1

From such an expression of S 3 we naturally want to derive an algorithm as in
the 2D case. However, there is a problem when we use a quadrature formula. Indeed,
in order to obtain an algorithm, we need to discretize the integrals

1 1
(4.9) /_1 /_1ng(f;uw)@ﬁ(fwt,w;x)dt\/1—w2dw

in S}, 5 f by a quadrature formula. We can use, for example, the quadrature (2.25) of
precision 2n, which we denote by

Lf(t)(l ZA £2,)

to emphasis the dependence of ¢ , and Ay, on the weight function. If we follow the
2D case, then (4.5) indicates that we should apply the quadrature with respect to
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(1 — )" in the ¢ variable, and apply the quadrature with respect to (1 —w?)#+1/2 in

the w variable. The result of using these quadrature formulas gives us the following.
ALGORITHM 4.7. Let u > 0. Forn >0, x = (z1,22,73) € B3,

BEsx) = 30 S0 SR (5t T (),

v=0 j=0 k=0
where
AH}\H"Fl/Z
+1/2
le‘fk,u(x) = n+1 q)ﬁ(fw Jnytu / ,X)-

However, this is not likely an accurate algorithm. The problem is that the operator
Bt does not preserve polynomials of degree n. In fact, in order that B, P = P for
P € 113, we need the discretization of the integrals (4.9) to be exact whenever f is a
polynomial of degree at most n. The function

Fyu(tw) == (1= )71 = w?)7"RE (fit,w) @} (&, t, w; x)

is a polynomial of degree 2n in variable ¢ whenever f is a polynomial of degree n by
the definition of ®# and Proposition 4.3, so that the discretization in the ¢ variable
is exact. However, the function F,(¢,w) is not a polynomial in the w variable. By
the definition of Q1 ; in (4.3), equation (4.5) shows that F,(t,w) with f = Qi ;
contains (1 — w)k/zéffkﬂﬂ(w), which is not a polynomial in the w variable if k is
odd. The formula of ®#(¢,,t, w;x) shows that it is a sum of functions, which is also
not a polynomial. This means that the quadrature will not be exact and polynomials
are not preserved by B..

An algorithm should have high convergence order if it preserves polynomials up
to certain degrees. The fact that B f does not preserve polynomials means that the
convergence of the algorithm may not be as desirable.

5. Reconstruction and approximation on the cylinder domain. In con-
trast to the unit ball in R3, the reconstruction algorithm on a cylinder domain works
well. Let L > 0 and let By, be the cylinder domain defined by

Bp =B*x[0,L] = {(z,y,2) : (x,y) € BZ,0< 2 < L}.

We will show that the partial sum operator of the orthogonal expansions on W, admits
an expression that relates to Radon data, and we will use it to get a reconstruction
algorithm.

Let W, be defined as in (1.2). Let W, ;. be the weight function

W;L,L(xayaz) = Wﬂ(zay)WL(Z)? (I’,y,Z) € BL-

We retain the notation RY(g;t) for the attenuated Radon projection of a function
g: B? — R, as defined in (1.3). For a fixed z in [0, L], we define

(51) RUSCAs0 = [ Sy 2 Wate )i dy

which is the attenuated Radon projection of f in a disk that is perpendicular to the
z-axis.
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We consider the orthogonal polynomials with respect to the inner product

1
(52) <f7 g>BL = ; B f(xvyaZ)g(xay7z)WH7L(xay7z) dx dde

Let V3 (W, 1,1) denote the subspace of orthogonal polynomials of degree n on By, with
respect to the inner product (5.2); that is, P € V3(W, 1) if (P,Q)p, = 0 for all
polynomial Q € TI3 ;.

Let py be the orthonormal polynomial of degree n with respect to W, on [0, L]
and let {PF(z,y) : 0 < j < k} denote an orthonormal basis of VZ(W,). Since W, 1, is
a product on a product domain, the following proposition is obvious.

PROPOSITION 5.1. An orthonormal basis for V¥ (W, 1) is given by

7

Py ={P,;:0<j<k<n}, Py (2,9,2) =P (@y)pni(2)
In particular, the set {P; : 0 <1< n} is an orthonormal basis for II3.

For f € L*(W,,1; BL), the Fourier coefficients of f with respect to the orthonor-
mal system {P; : [ > 0} are given by

fffk,j:au &) Pl ()W p(x)dx, 0<j<k<L

Let S¥ L f denote the Fourier partial sum operator,

n l k
D IP I I ARLARIC
=0 k=0 35=0

Just like its counterpart in two variables, this is a projection operator. The following
is an analogue of Theorem 2.10 for the cylinder domain By.
THEOREM 5.2. Forn > 0,

(5.3) Sy 1 L Zau/ / Re, w); 6)PL (&, w, t; x) Wi (w)dw dt,
where
E+p+1/2
(5.4) on (& w, tix) = Zil/Q/DHHﬂ €, b1, 20 Zpl w)pi(z3).
k=0

Proof. By the definition of fl“ k., We can write

.Elij' = au/2 flfk(xay)PJk(xvy)Wlt(xay)dmdya
B

where

L
fi—r(z,y) ::/O fz,y, w)pr— g (W)W (w)dw, I1>k>0.

Consequently, by the definition of projj in (2.17), it follows that

n l
=3 proji(fiks w1, x2)pik(@s).

=0 k=0
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We can then use the expression (2.18) for projj f and the fact that

RH fl ka / RH oW )pl k( )WL<w)dw

to complete the proof. ]
In the case of n = 2m, we can use (2.21) in place of (2.18) in the proof. The
result is the following proposition, which has appeared in [16] when p = 1/2.
PropPoOSITION 5.3. Form > 0,

(5.5) Sk, Lf(x)
1 2m 1 L
= W;)a”/l/o RE (f(rw); )L, (¢, w, 1 X)W (w)duw dt.

From the expression (5.3) or (5.5) of S¥ f» we can apply a quadrature formula
to get a reconstruction algorithm on B; for the attenuated Radon data. In [16] the
weight function W7, is chosen to be the Chebyshev weight function

1

m, z €0, L],

W) =

normalized to have integral 1 on [0, L]. The reason for this choice is that the Gaussian
quadrature formula takes a simple form

L .
1 27 +1
. W -1
(5.6) /O 9()Wi(2) n+1§:gzz 5 2( +cos2n+2>,

which is of precision 2n+41. We can apply this quadrature for the integral with respect
to w and use the quadrature (2.25) for the integral with respect to ¢ in (5.3) or (5.5).
The result is the following algorithm.

ALGORITHM 5.4. Let pn >0 and let 7y, ;; = ng(f(~, %)itjn). Forn>0

n n n

(5.7) By (f;x) = Z Z Z Yo j,i L5, (%)

v=0 j=0 i=0
where

Tyj4i(x) = %(1 — tin)_“QJﬁ(ﬁu, Ziytjn;X).

Like the algorithms in the previous sections, this algorithm produces a polynomial
as an approximation to the function. It does preserve polynomials of lower degrees.

THEOREM 5.5. The operator BZ)L is a projection operator on II3. In other words,
B,.f €1}, and B, (f) = f if f € I3

Proof. Let PT’Z k. be defined as in Proposition 5.1. It follows from the definition
in (5.1) that Ry (Pf} ;(- - w)it) = R“(Pk t)pi—k(w). Consequently, it follows from
(2.15) that Ry (P(-, - w);t)/(1 — t2)* is a polynomial of degree n in both the ¢ vari-
able and the w variable whenever P € II2. By its definition in (5.4), the function
D1 (&, w, t;x) is evidently a polynomial of degree n in both ¢ and w variables. Hence,
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we can apply (5.6) for the w variable and apply the quadrature (2.25) of precision 2n
to the ¢ variable, which are exact on (1 — tz)*“Rg(P(, Lw); ) PH(E, w, t; ). o

The approximation process in Algorithm 5.4 uses the attenuated Radon data

{RE (f(2i)itjm) :0<v<n, 0<j<n, 0<i<n}

which consists of Radon projections on n + 1 disks that are parallel to the z-axis. In
other words, it consists of reconstructions of the function on n + 1 planes.

In the case in which n = 2m and p is a half integer, we can also use the quadrature

(2.27) to derive a more explicit algorithm as in Algorithm 2.15. Such an algorithm is
given in [17] for u = 1/2. We shall not elaborate further.

&3]
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COMPOSITE WAVELET BASES WITH EXTENDED STABILITY
AND CANCELLATION PROPERTIES*

ROB STEVENSONT

Abstract. The efficient solution of operator equations using wavelets requires that they gen-
erate a Riesz basis for the underlying Sobolev space and that they have cancellation properties of
a sufficiently high order. Suitable biorthogonal wavelets were constructed on reference domains as
the n-cube. Via a domain decomposition approach, these bases have been used as building blocks to
construct biorthogonal wavelets on general domains or manifolds, where, in order to end up with local
wavelets, biorthogonality was realized with respect to a modified La-scalar product. The use of this
modified scalar product restricts the application of these so-called composite wavelets to problems
of orders strictly larger than —1. Moreover, those wavelets with supports that extend to more than
one patch generally have no cancellation properties. In this paper, we construct local, composite
wavelets that are close to being biorthogonal with respect to the standard La-scalar product. As a
consequence, they generate Riesz bases for the Sobolev spaces H® for the full range of s allowed by
the continuous gluing of functions over the patch interfaces, the properties of the primal and dual
approximation spaces on the reference domain, and, in the manifold case, by the regularity of the
manifold. Moreover, all these wavelets have cancellation properties of the full order induced by the
approximation properties of the dual spaces on the reference domain. We illustrate our findings by
a concrete realization of wavelets on a perturbed sphere.
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1. Introduction. The use of wavelet bases for solving operator equations, as
partial differential equations or (boundary) integral equations, has a number of advan-
tages; cf. [9, 3]. Let us assume that the operator is symmetric, and, for H being some
Hilbert space, H-bounded and H-coercive, and that the infinite collection of properly
scaled wavelets generates a Riesz basis for H. Then the stiffness matrix in wavelet co-
ordinates resulting from a Ritz—Galerkin discretization is well conditioned uniformly
in its size, guaranteeing a uniform rate of convergence of an iterative method. In
case of a differential operator, this stiffness matrix is not truly sparse, but has the
well-known “finger structure.” For multiplying with this matrix, however, one may
switch to a single-scale basis, with respect to which the stiffness matrix is sparse.

For integral operators, the stiffness matrix with respect to both single-scale and
wavelet basis is densely populated. Here the second important property of wavelets—
that of having vanishing moments or, more generally, cancellation properties, meaning
that the integral of a wavelet against a smooth function vanishes with a certain order
of the length scale of the wavelet—can be exploited. If, depending on the order of the
operator and the order of approximation, this order of the cancellation properties is
sufficiently large, then the stiffness matrix with respect to the wavelet basis can be a
priorily compressed to a sparse one without reducing the order of convergence. With
this a method of linear complexity is obtained for solving integral equations [18, 10].
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Instead of projecting the operator equation onto a fixed finite dimensional space,
and then solving the resulting matrix-vector problem with an iterative method, the
availability of a Riesz basis for H opens an attractive alternative for approximating
the solution by adaptive wavelet methods [4, 5]. By writing this unknown solution
in terms of this basis and testing the equation for all basis functions, one obtains an
infinite dimensional matrix-vector problem. This problem is equivalent to the operator
equation, and it is well-posed in ¢3-metric, meaning that it can be solved using an
iterative method. In each iteration of such a method, the application of the infinite
stiffness matrix to the current approximation vector has to be approximated. Here
the concept of adaptivity enters; the accuracy with which a column is approximated
grows with the modulus of the corresponding entry of the vector. The resulting
method, extended with a so-called coarsening routine to remove small entries from the
approximation vector, can be proven to be optimal in the following sense. Whenever,
for a certain range of s, the solution is in a class of functions for which the error of the
best N-term approximations from the wavelet basis decays like N ~*, the sequence of
approximations produced by this adaptive method has the same rate of convergence,
whereas the computational cost is equivalent to their support sizes. A necessary
condition for this statement to be true is that the stiffness matrix is sufficiently close
to a sparse matrix, which depends on the smoothness of the wavelets and, again, on
the order of the cancellation properties [21]. Recently, it has been shown that an
optimal adaptive wavelet method can even be obtained without coarsening [15].

Aiming at the aforementioned applications, this paper deals with the construc-
tion on general n-dimensional domains or manifolds of wavelets that, properly scaled,
generate Riesz bases for a range of Sobolev spaces, and satisfy cancellation properties
of any required order. To be able to choose this order independently from the order of
approximation, we will consider biorthogonal wavelets. Their construction starts with
two nested sequences of approximation spaces that both satisfy Jackson and Bern-
stein estimates (“multiresolution analyses”). Then the primal and dual wavelets are
sought as bases of the biorthogonal complements of successive approximation spaces
at primal and dual side, respectively. In case the primal and dual approximation
spaces can be equipped with bases of local, biorthogonal scaling functions, local pri-
mal wavelets are found by applying the biorthogonal projector onto a local basis of
some complement space of two successive primal approximation spaces. In this case,
under some mild additional condition, the corresponding dual wavelets are also local.
Actually, for constructing only local primal wavelets, a reduced set of assumptions
already suffices, which for simplicity we will ignore in this introduction. Note that in
algorithms for solving operator equations, usually dual wavelets do not play any role.

Biorthogonal scaling functions have been constructed on the real line [6] and,
as adaptations of these, on the interval [11]. By taking tensor products, one ob-
tains biorthogonal scaling functions on the n-dimensional unit cube. To construct
biorthogonal scaling functions and wavelets on general domains and manifolds, a do-
main decomposition approach has been developed by Dahmen and Schneider in [12]
(see [1, 7] for related approaches). The domain or manifold of interest is written as
a disjoint union of smooth parametric images of the unit cube. The biorthogonal
scaling functions on the cube are lifted to the patches, and, assuming that the decom-
position satisfies some matching condition, they are continuously connected over the
interfaces. With respect to a modified Lo-scalar product, defined by ignoring the Jaco-
bian determinants of the parametrizations in the definition of the canonical Ls-scalar
product, the resulting collections of scaling functions are biorthogonal. Wavelets, in
this setting called composite wavelets, can now be constructed using the biorthogonal
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projector. There are, however, two principal limitations related to the realization of
biorthogonality with respect to the modified Lo-scalar product. First, wavelets with
supports that extend to more than one patch generally have no cancellation proper-
ties with respect to the canonical Lo-scalar product. So results concerning matrix
compression do not apply to entries involving such wavelets. Second, with respect to
the interpretation of a wavelet as a functional using the duality pairing in terms of
the canonical Lo-scalar product, generally the resulting wavelets cannot generate a
Riesz basis for H® for s < —%. So for operators of order 2s < —1, like the single-layer
potential operator, neither are the optimal preconditioning results valid, nor can the
adaptive wavelet method be applied.

These limitations were already recognized by the authors in [12]. In [13], they
developed an elegant approach to construct wavelets on general domains or manifolds
that, properly scaled, generate Riesz bases for H*® for in principal any s, and that
have cancellation properties of any required order. Unfortunately, so far with this
approach it seems not easy to construct wavelets that have competitive quantitative
properties. A recent investigation of this approach was made in [16].

In this paper, we reconsider the approach from [12], except that, in view of the
aforementioned limitations, we make use of the canonical Lo-scalar product. Al-
though, generally, the lifted and connected scaling functions are not biorthogonal
with respect to this scalar product, we can derive a general formula for the corre-
sponding biorthogonal wavelets. Since this formula, however, involves the inverse of
the matrix consisting of the Ls-scalar products between all primal and dual scaling
functions (this matrix is thus generally not diagonal), these wavelets have global sup-
ports. On the other hand, this matrix is nearly diagonal, so that its inverse can be
well appr